Sample records for crustal extensional structures

  1. Kinematic models of extensional structures

    International Nuclear Information System (INIS)

    Groshong, R.H. Jr.


    This paper discusses kinematic models that can relate faults of different types and different positions within a single dynamic system and thereby offer the potential to explain the disparate seismic activity characteristic of extensional terrains. The major styles are full grabens, half grabens, domino blocks, and glide-block systems. Half grabens, the most likely models for Basin and Range structure, are formed above a master fault of decreasing dip with depth and a hangingwall that deforms as it passes over the curved fault. Second-order normal faults, typically domino style, accommodate the required hangingwall deformation. According to the author low-angle detachment faults are consistent with the evidence of seismicity only on high-angle faults if the hangingwall of the detachment is broken by multiple half-graben systems

  2. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons (United States)

    Pavlis, T. L.; Miller, M.; Serpa, L.


    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  3. Crustal structure along Gakkel Ridge (United States)

    Schmidt-Aursch, M. C.; Jokat, W.


    Relationships between melt generation, crustal thicknesses and spreading rates are well-known for fast- and intermediate- to slow-spreading midoceanic ridges. But for very-slow-spreading ridges with full spreading rates smaller than 20 mm/yr only few data have been available yet. Therefore, the 1800 km long ultra-slow-spreading Gakkel Ridge with full spreading rates between 13 mm/yr near Greenland and 6 mm/yr in the Laptev Sea was investigated by the joint AMORE expedition in summer 2001. The two research icebreakers RV Polarstern and USCGC Healy conducted several petrological and geophysical programs. Seismic refraction experiments with receivers deployed on ice floes and a 24 l airgun array towed behind one ship were performed along the rift valley during the cruise. Gravity measurements onboard revealed additional information on the crustal structure. A helicopter-based magnetic survery gave evidence for long term focused magmatism along the ridge. Forward modelling of the wide-angle seismic data with raytracing yields an exceptional thin crust with thicknesses well below 3 km. Crustal seismic velocities not higher than 6.4 km/s indicate a missing or not resolvable oceanic layer 3. Refracted mantle waves with seismic velocities up to 7.8 km/s give constraints on the crustal thickness. First results of a 3D forward gravity modelling based on the 5-minute-grid of the Arctic Gravity Project and shipboard data will also be shown. They extend the knowledge of crustal thickness and upper mantle structure to areas off-axis Gakkel Ridge and the parts along the rift valley not covered by deep seismic data.

  4. Crustal structure beneath Eastern Greenland

    DEFF Research Database (Denmark)

    Reiche, Sönke; Thybo, H.; Kaip, G.


    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice......The conjugate Atlantic passive margins of western Norway and eastern Greenland are characterized by the presence of coast-parallel mountain ranges with peak elevations of more than 3.5 km close to Scoresby Sund in Eastern Greenland. Knowledge about crustal thickness and composition below...

  5. Crustal structure of Central Sicily (United States)

    Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo


    We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.

  6. Crustal Extensional Faulting Triggered by the 2010 Chilean Earthquake: The Pichilemu Seismic Sequence (United States)

    Comte, D.; Farias, M.; Roecker, S. W.; Carrizo, D.


    The MW =8.8 south-central Chilean earthquake occurred on February 27th , 2010 is one of the largest event recorded by modern seismology. Its rupture area, located along the interplate contact between Nazca and South America was about 500 × 140 km2, striking parallel to the coast of South America and extending to about 45 km depth. Somewhat surprisingly, although there have been numerous aftershocks in the rupture zone, none of them has had a magnitude Mw greater than 6.5, except the one observed on January 2nd, 2011, almost one year after the mainshock, located in the southern edge of the rupture zone. The first largest aftershocks, (Mw=6.9 and Mw=7.0), occurred within 15 minutes of each other on 11 March 2010 within the overriding South American plate at the northern tip of the rupture zone near the city of Pichilemu. These events are part of a sequence of normal faulting activated by the Maule earthquake. The purpose of this study is to document the first well-recorded case of forearc faulting due to a subduction megathrust earthquake in the Andean region. We combine evidence from local seismicity, Global Centroid-Moment Tensor (gCMT) focal solutions, and geological-geomorphological observations to provide some context for the 11 March sequence in the framework of the 27 February megathrust. We hypothesize that the megathrust earthquake produced alterations on the stress field, enhancing fluid circulation in the forearc, which finally triggered intraplate faulting in regions of pre-existing crustal weakness. In this study, we focus on the sequence of events associated with the March 11th aftershocks, which we name the Pichilemu seismic sequence, in particular on a swarm of 350 events with M > 4 that occurred within the first 24 hours after the largest aftershocks, and the two largest subsequent events, a Mw=5.9 and a Mw=5.3 that occurred on May 2nd and May 21th, 2010 respectively. The hypocenters located in our final 3D model body-wave velocity model, define a

  7. Geochemical Relationships between Middle- to Upper-Crustal Exposures of the Alisitos Oceanic Arc (Baja California, Mexico): An Outstanding Field Analog to Active Extensional Oceanic Arcs (United States)

    Morris, R.; DeBari, S. M.; Busby, C.; Medynski, S.


    The southern volcano-bounded basin of the Rosario segment of the Cretaceous Alisitos oceanic arc provides outstanding 3-D exposures of an extensional arc, where crustal generation processes are recorded in the upper-crustal volcanic units and underlying middle-crustal plutonic rocks. Geochemical linkages between exposed crustal levels provide an analog for extensional arc systems such as the Izu-Bonin-Mariana (IBM) Arc. Upper-crustal units comprise a 3-5 km thick volcanic-volcaniclastic stratigraphy with hypabyssal intrusions. Deep-seated plutonic rocks intrude these units over a transition of <500m, where rafted volcanic blocks and evidence of magma mingling are exposed. Thermobarometry suggests <6 km emplacement depths. Compositional ranges (basalt to rhyolite) and mineral assemblages are similar in both middle-crustal and upper-crustal units, with striking compositional overlap. The most mafic compositions occur in upper-crustal hypabyssal units, and as amphibole cumulates in the plutonic rocks ( 51% SiO2). The most felsic compositions occur in welded ignimbrites and a tonalite pluton ( 71% SiO2). All units are low K with flat REE patterns, and show LILE enrichment and HFSE depletion. Trace element ratios show limited variation throughout the crustal section. Zr/Y and Nb/Y ratios are similar to the Izu active ( 3 Ma to present) zone of extension immediately behind the arc front, suggesting comparable mantle melt % during extension. Th/Zr ratios are more enriched in Alisitos compared to Izu, suggesting greater subducted sediment input. The Alisitos crustal section shows a limited range in ɛNd (5.7-7.1), but a wider range in 87Sr/86Sr (0.7035-0.7055) and 206Pb/204Pb (18.12-19.12); the latter is likely alteration effects. Arc magmas were derived from a subduction-modified MORB mantle source, less depleted than Izu arc front and less enriched than the rear arc, but is a good match with the zone of extension that lies between. Differentiation occurred in a closed

  8. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    International Nuclear Information System (INIS)

    Pavlis, T L; Serpa, L; Miller, M


    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  9. Extensional Structures on the Po Valley Side of the Northern Apennines (United States)

    Bettelli, G.; Vannucchi, P.; Capitani, M.


    The present-day tectonics of the Northern Apennines is characterized by extension in the inner Tyrrhenian side and compression in the outer Po Valley-Adriatic side. The boundary separating the two domains, extensional and compressional, is still largely undetermined and mainly based on geophysical data (focal mechanisms of earthquakes). Map-scale extensional structures have been studied only along the Tyrrhenian side of the Northern Apennines (Tuscany), while along the Po Valley-Adriatic area the field studies concentrated on compressional features. A new, detailed field mapping of the Po Valley side of the Northern Apennines carried out in the last ten years within the Emilia Romagna Geological Mapping Program has shown the presence of a large extensional fault crossing the high Bologna-Modena-Reggio Emilia provinces, from the Sillaro to the Val Secchia valleys. This Sillaro-Val Secchia Normal Fault (SVSNF) is NW-SE trending, NE dipping and about 80 km long. The age, based on the younger displaced deposits, is post-Miocene. The SVSNF is a primary regional structure separating the Tuscan foredeep units from the Ligurian Units in the south-east sector of the Northern Apennines, and it is responsible for the exhumation of the Tuscan foredeep units along the Apennine water divide. The sub-vertical, SW-NE trending faults, formerly interpreted as strike slip, are transfer faults associated to the extensional structure. A geological cross-section across the SVSNF testifies a former thickness reduction and lamination of the Ligurian Units, as documented in the field, in the innermost areas of the Bologna-Modena-Reggio Emilia hills, implying the occurrence of a former extensional fault. These data indicate that the NE side of the water divide has already gone under extension reducing the compressional domain to the Po Valley foothills and plain. They can also help in interpreting the complex Apennines kinematics.

  10. Middle Miocene E-W tectonic horst structure of Crete through extensional detachment faults

    International Nuclear Information System (INIS)

    Papanikolaou, D; Vassilakis, E


    Two east-west trending extensional detachment faults have been recognized in Crete, one with top-to-the-north motion of the hanging wall toward the Cretan Sea and one with top-to-the-south motion of the hanging wall toward the Libyan Sea. The east-west trending zone between these two detachment faults, which forms their common footwall, comprises a tectonic horst formed during Middle Miocene slip on the detachment faults. The detachment faults disrupt the overall tectono-stratigraphic succession of Crete and are localized along pre-existing thrust faults and along particular portions of the stratigraphic sequence, including the transition between the Permo-Triassic Tyros Beds and the base of the Upper Triassic-Eocene carbonate platform of the Tripolis nappe. By recognizing several different tectono-stratigraphic formations within what is generally termed the 'phyllite-quartzite', it is possible to distinguish these extensional detachment faults from thrust faults and minor discontinuities in the sequence. The deformation history of units within Crete can be summarized as: (i) compressional deformation producing arc-parallel east-west trending south-directed thrust faults in Oligocene to Early Miocene time (ii) extensional deformation along arc-parallel, east-west trending detachment faults in Middle Miocene time, with hanging wall motion to the north and south; (iii) Late Miocene-Quaternary extensional deformation along high-angle normal and oblique normal faults that disrupt the older arc-parallel structures

  11. Crustal structure of Bristol Bay Region, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A.K.; McLean, H.; Marlow, M.S.


    Bristol Bay lies along the northern side of the Alaska Peninsula and extends nearly 600 km southwest from the Nushagak lowlands on the Alaska mainland to near Unimak Island. The bay is underlain by a sediment-filled crustal downwarp known as the north Aleutian basin (formerly Bristol basin) that dips southeast toward the Alaska Peninsula and is filled with more than 6 km of strata, dominantly of Cenozoic age. The thickest parts of the basin lie just north of the Alaska Peninsula and, near Port Mollar, are in fault contact with older Mesozoic sedimentary rocks. These Mesozoic rocks form the southern structural boundary of the basin and extend as an accurate belt from at least Cook Inlet to Zhemchug Canyon (central Beringian margin). Offshore multichannel seismic-reflection, sonobuoy seismic-refraction, gravity, and magnetic data collected by the USGS in 1976 and 1982 indicate that the bedrock beneath the central and northern parts of the basin comprises layered, high-velocity, and highly magnetic rocks that are locally deformed. The deep bedrock horizons may be Mesozoic(.) sedimentary units that are underlain by igneous or metamorphic rocks and may correlate with similar rocks of mainland western Alaska and the Alaska Peninsula. Regional structural and geophysical trends for these deep horizons change from northeast-southwest to northwest-southeast beneath the inner Bering shelf and may indicate a major crustal suture along the northern basin edge.

  12. Seismic studies of crustal structure and tectonic evolution across the central California margin and the Colorado Plateau margin (United States)

    Howie, John Mark

    This thesis presents results from two integrated deep-crustal seismic-reflection and wide-angle-reflection/refraction studies that improve our understanding of crustal structure and tectonic evolution in two tectonically active areas of the western United States. A multi-faceted approach to the study of crustal structure includes the use of compressional and shear wave seismic data. Supplementing the controlled source seismic observations with seismicity, gravity, heat flow, laboratory measurements and available geologic information allows a much improved understanding of crustal structure and tectonic evolution than would be available from the seismic data alone. Chapter 1 introduces the data integration strategy applied to the studies completed. In Chapter 2, an integrated crustal-velocity model across the south-central California margin west of the San Adreas fault is presented. The crustal structure defines tectonostratigraphic terranes 15 to 20 km thick underlain by a 6-km-thick high-velocity layer (6.8-7.0 km/s) interpreted as tectonically underplated oceanic crust. Structures defined in the oceanic crust indicate significant compressional and strike-slip deformation within the oceanic crust that probably formed during the final stages of subduction from 24-16 Ma. In Chapter 3, the crustal model from Chapter 2 is used as a constraint for models of the tectonic evolution of the Pacific-North American transform plate boundary. By combining the crustal structure with thermal models for asthenospheric upwelling associated with a slab-free window, I find that the mantle lithosphere east of the coast beneath south-central California probably delaminated from the oceanic crust, stranding the oceanic crust beneath the margin. In Chapter 4, results from a high-resolution reflection experiment in central Arizona across the southwestern edge of the Colorado Plateau address the relationship between strength of the crust and localization of extensional tectonism. A low

  13. Crustal Structure of Khövsgöl, Mongolia (United States)

    Scott, A. M.; Meltzer, A.; Stachnik, J.; Russo, R.; Munkhuu, U.; Tsagaan, B.


    Mongolia is part of the Central Asian Orogenic Belt, an accretionary event that spanned 800 million years from the mid-Proterozoic to mid-Phanerozoic. As a result of the past collisional and rifting events, the modern Khövsgöl rift system of northern Mongolia contains a heterogeneous lithospheric structure. The current rift system has three parallel N-S trending basins that roughly align with terrane boundaries. Structures inherited during the accretionary events may be a factor influencing regional deformation. The forces that drive local deformation are not well understood, but varying processes have been proposed: far-field effects of India-Eurasian plate convergence, westward subduction of the Pacific plate, magmatic underplating at the base of the crust, mantle plume activity, and asthenospheric mantle convection. Determining the nature of crustal features within this poorly understood region may illuminate processes that control rifting within intracontinental settings. A network of 26 broadband seismic stations encompassing 200 square kilometers of the Khövsgöl rift system were deployed from August 2014 to June 2016. More than 2100 events were detected, and most earthquakes were concentrated near rift structures. Events between Busiin-Gol and Darkhad, the westernmost and central basins of the Khövsgöl rift system, are distributed within the crust. An active fault is outlined along the eastern border of the Darkhad basin. Khövsgöl earthquakes bound both sides of the rift. Along the northern border of Lake Khövsgöl, seismic events define a shallow active fault orthogonal to the basin. The largest event recorded within the network was a magnitude ml=5.2 located near the northeastern border of Lake Khövsgöl on 12-05-2014. The focal mechanism of this earthquake is predominantly strike-slip, but also includes an extensional component. This work focuses on earthquake relocation and calculating moment tensors and focal mechanisms of larger regional

  14. The Aegean/Cycladic and the Basin and Range Extensional Provinces - A Tectonic and Geochronologic Perspective (United States)

    Stockli, D. F.


    The Aegean/Cycladic region (AC) and the Basin and Range Province (B&R) are two of the most famous Cenozoic extensional provinces and have greatly influenced our thinking about syn-convergent back-arc extension, core complex formation, syn-extensional magmatism, and kinematic transitions. They share numerous tectonic and structural similarities, such as a syn-convergent setting, previous contractional deformation, and core complex formation, but fundamental geological ambiguities remain, mainly centering around timing. The B&R affected a previously contractional belt (Sevier) and voluminous continental magmatic arc that created a pre-extensional orogenic highland. Extension was long-lived and complex, driven by both gravitational collapse and temporally distinct kinematic boundary condition changes. The B&R was also affected by massive, largely pre-extensional regional magmatic flare-ups that modified both the thermal and crustal composition. As the B&R occupies an elevated interior plateau, syn-extensional basin deposits are exclusively continental in character. In contrast, the AC is a classic marine back-arc extensional province that affected an active subduction margin with numerous accreted oceanic and continental ribbons, exhuming an early Cenozoic HP-LT subduction complex. Exhumation of the HP-LT complex, however, was accommodated both by vertical extrusion and crustal extension. Late Cenozoic extensional faulting was contemporaneous with S-ward sweeping arc magmatism and affected by little to no kinematic changes. As both the AC and B&R experienced contractional deformation during K-Cz subduction and J-K shortening, respectively, it is critical to differentiate between contractional and extensional structures and fabrics. The lack of temporal constraints hampers the reconstructions of pre-extensional structural anatomies and extensional strain magnitudes or even the attribution of structures to specific geodynamic settings. Novel methodologies in

  15. Deep seismic investigation of crustal extensional structures in the Danish Basin along the ESTRID-2 profile

    DEFF Research Database (Denmark)

    Sandrin, Alessandro; Thybo, Hans


    The crust and uppermost mantle in the Danish Basin are investigated by modelling the P-wave velocity distribution along the north-south trending seismic profile ESTRID-2. Seismic tomography and ray inversion modelling demonstrate a variable depth to the top of the crystalline crust, from ~10 km...... the orthogonal ESTRID-1 profile and the Eugeno-S profile 2. This high velocity zone in the middle to lower crust is interpreted as a mafic intrusion, which explains a positive gravity anomaly of ~50 mGal (Silkeborg Gravity High). The total length of the intrusion is at least 80 km in the east-west direction......P signal is very weak, due to the small velocity contrast between the lowermost crust (~7.4 km s-1) and uppermost mantle (~7.6-7.7 km s-1). The main Moho reflection has a 'reverberative' character to the south of the intrusion. This feature is interpreted by layering at the Moho level, possibly due...

  16. Orphan Basin crustal structure from a dense wide-angle seismic profile - Tomographic inversion (United States)

    Watremez, Louise; Lau, K. W. Helen; Nedimović, Mladen R.; Louden, Keith E.; Karner, Garry D.


    across the basin. In particular, we observe (1) a zone of extreme thinning, where the crust is thinner than 7 km; (2) basement highs and lows highlighting the blocks that accommodate the crustal thinning; (3) a central block that is thicker compared to the rest of the basin; (4) lower crustal thinning that is highly variable, which suggests a ductile deformation in the lower crust and an extensional discrepancy between the upper and lower crust (DDS); and (5) no evidence for upper-mantle serpentinization under the ultra-thinned crust. Furthermore, we show the importance of structural inheritance in rifting of the Avalon crust. Thus, we suggest that Orphan Basin is the result of rifting of a non-homogeneous Avalon terrane where the lower crust is primarily ductile.

  17. Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data (United States)

    Yang, Yu-shan; Li, Yuan-yuan


    In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.

  18. A new model of crustal structure of Siberia

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina; Thybo, Hans


    , or tectonic similarities, or seismic data reported not along seismic reflection/refraction profiles but as interpolated contour maps are excluded from the new crustal database. Due to uneven quality of seismic data related both to data acquisition problems and interpretation limitations, a special attention...... is paid to the data quality problem, and quality parameters are incorporated into the new database of regional crustal structure. The present database comprises detailed and reliable information on the seismic structure of the crust for most of the tectonic structures of the region and provides valuable....... Archean terranes have a large (39-44 km) thickness of consolidated crust (excluding sediments), which decreases in Paleo-Mesoproterozoic terranes to 34-42 km. Thickness of consolidated crust in Mesozoic and Cenozoic regions is 32-34 km only. The total crustal thickness (including the sedimentary layer...

  19. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.


    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  20. Seismically constrained two-dimentional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin. In this work P-wave velocities obtained from the DSS studies have been converted into heat generation values for the computation of ...

  1. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  2. Central Andean crustal structure from receiver function analysis (United States)

    Ryan, Jamie; Beck, Susan; Zandt, George; Wagner, Lara; Minaya, Estela; Tavera, Hernado


    The Central Andean Plateau (15°-27°S) is a high plateau in excess of 3 km elevation, associated with thickened crust along the western edge of the South America plate, in the convergent margin between the subducting Nazca plate and the Brazilian craton. We have calculated receiver functions using seismic data from a recent portable deployment of broadband seismometers in the Bolivian orocline (12°-21°S) region and combined them with waveforms from 38 other stations in the region to investigate crustal thickness and crust and mantle structures. Results from the receiver functions provide a more detailed map of crustal thickness than previously existed, and highlight mid-crustal features that match well with prior studies. The active volcanic arc and Altiplano have thick crust with Moho depths increasing from the central Altiplano (65 km) to the northern Altiplano (75 km). The Eastern Cordillera shows large along strike variations in crustal thickness. Along a densely sampled SW-NE profile through the Bolivian orocline there is a small region of thin crust beneath the high peaks of the Cordillera Real where the average elevations are near 4 km, and the Moho depth varies from 55 to 60 km, implying the crust is undercompensated by 5 km. In comparison, a broader region of high elevations in the Eastern Cordillera to the southeast near 20°S has a deeper Moho at 65-70 km and appears close to isostatic equilibrium at the Moho. Assuming the modern-day pattern of high precipitation on the flanks of the Andean plateau has existed since the late Miocene, we suggest that climate induced exhumation can explain some of the variations in present day crustal structure across the Bolivian orocline. We also suggest that south of the orocline at 20°S, the thicker and isostatically compensated crust is due to the absence of erosional exhumation and the occurrence of lithospheric delamination.

  3. Crustal Structure of Southern Baja California Peninsula, Mexico, and its Margins (United States)

    Gonzalez, A.; Robles-Vazquez, L. N.; Requena-Gonzalez, N. A.; Fletcher, J.; Lizarralde, D.; Kent, G.; Harding, A.; Holbrook, S.; Umhoefer, P.; Axen, G.


    Data from 6 deep 2D multichannel seismic (MCS) lines, 1 wide-angle seismic transect and gravity were used to investigate the crustal structure and stratigraphy of the southern Baja California peninsula and its margins. An array of air guns was used as seismic source shooting each 50 m. Each signal was recorded during 16 s by a 6 km long streamer with 480 channels and a spacing of 12.5 m. Seismic waves were also recorded by Ocean Bottom Seismometers (OBS) in the Pacific and the Gulf of California and by portable seismic instruments onshore southern Baja California. MCS data were conventionally processed, to obtain post-stack time-migrated seismic sections. We used a direct method for the interpretation of the wide-angle data, including ray tracing and travel times calculation. In addition to the gravity data recorded onboard, satellite and land public domain data were also used in the gravity modeling. The combined MCS, wide-angle and gravity transect between the Magdalena microplate to the center of Farallon basin in the Gulf of California, crossing the southern Baja California Peninsula to the north of La Paz, allows to verify the existence of the Magdalena microplate under Baja California. We have also confirmed an extensional component of the Tosco-Abreojos fault zone and we have calculated crustal thicknesses. We have also observed the continuation to the south of the Santa Margarita detachment. The MCS seismic sections show a number of fault scarps, submarine canyons and grabens and horsts associated to normal faults offshore southern Baja California peninsula. The normal displacement observed in the Tosco-Abreojos fault zone and some basins in the continental platform, as well as the presence of faulted acoustic basement blocks, evidence that not all extension was accommodated by the Gulf Extensional Province during the middle to late Miocene. Part of the extension was (and is) accommodated in the Baja California Pacific margin. This confirms the observations

  4. Crustal structure of the Eastern Gulf of Mexico (United States)

    Nwafor, Emeka

    The Gulf of Mexico initiated in the Late Triassic as South America and Africa separated from North America during the break up of Pangea. Previous studies indicate three models for the opening of the GOM. These include counter clockwise rotation of the Yucatan Block, rotation of the Yucatan Block about the same pole of rotation as those describing seafloor spreading in the central North Atlantic, and clockwise rotation of the Yucatan Block. There is much debate about the margin type and the crustal structure of the Eastern Gulf of Mexico (EGOM), especially below the depth of 6 km where crustal structure is poorly imaged on seismic reflection data. Two 2.5-D forward gravity and magnetic models across the margin are presented. These are constrained by basement picks from sparse seismic reflection and refraction data, spectral analysis of gravity data to determine the depth to source, magnetic susceptibility derived from results from other margins, the empirical relationship between P-wave velocity and density, and crustal scale isostatic modeling. The models, combined with a kinematic reconstruction of the GOM, show that: 1) it is a rifted margin; 2) the point where the Moho deepens downward from ˜17 km to ˜32 km is approximately 50 km outboard of the topographic shelf edge; 3) the carbonate bank retreated by several kilometers from its original termination due to the action of contourite currents; 4) extension and subsidence was accommodated with little shallow brittle faulting; 5) oceanic lithosphere is possibly outboard of the EGOM continental slope.

  5. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.


    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  6. The Crustal Structure and Seismicity of Eastern Venezuela (United States)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.


    from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.

  7. Effect of Crustal Density Structures on GOCE Gravity Gradient Observables

    Directory of Open Access Journals (Sweden)

    Robert Tenzer Pavel Novák


    Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.

  8. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling (United States)

    Martinetti, Luca

    At service temperatures, A--B--A thermoplastic elastomers (TPEs) behave similarly to filled (and often entangled) B-rich rubbers since B block ends are anchored on rigid A domains. Therefore, their viscoelastic behavior is largely dictated by chain mobility of the B block rather than by microstructural order. Relating the small- and large-strain response of undiluted A--B--A triblocks to molecular parameters is a prerequisite for designing associated TPE-based systems that can meet the desired linear and nonlinear rheological criteria. This dissertation was aimed at connecting the chemical and topological structure of A--B--A TPEs with their viscoelastic properties, both in the linear and in the nonlinear regime. Since extensional deformations are relevant for the processing and often the end-use applications of thermoplastic elastomers, the behavior was investigated predominantly in uniaxial extension. The unperturbed size of polymer coils is one of the most fundamental properties in polymer physics, affecting both the thermodynamics of macromolecules and their viscoelastic properties. Literature results on poly(D,L-lactide) (PLA) unperturbed chain dimensions, plateau modulus, and critical molar mass for entanglement effect in viscosity were reviewed and discussed in the framework of the coil packing model. Self-consistency between experimental estimates of melt chain dimensions and viscoelastic properties was discussed, and the scaling behaviors predicted by the coil packing model were identified. Contrary to the widespread belief that amorphous polylactide must be intrinsically stiff, the coil packing model and accurate experimental measurements undoubtedly support the flexible nature of PLA. The apparent brittleness of PLA in mechanical testing was attributed to a potentially severe physical aging occurring at room temperature and to the limited extensibility of the PLA tube statistical segment. The linear viscoelastic response of A--B--A TPEs was first

  9. Building the Pamir-Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust (United States)

    Hacker, Bradley R.; Ratschbacher, Lothar; Rutte, Daniel; Stearns, Michael A.; Malz, Nicole; Stübner, Konstanze; Kylander-Clark, Andrew R. C.; Pfänder, Jörg A.; Everson, Alexa


    Large domes of crystalline, middle to deep crustal rocks of Asian provenance make the Pamir a unique part of the India-Asia collision. Combined major-element and trace element thermobarometry, pseudosections, garnet-zoning deconstruction, and geochronology are used to assess the burial and exhumation history of five of these domes. All domes were buried and heated sufficiently to initiate garnet growth at depths of 15-20 km at 37-27 Ma. The Central Pamir was then heated at 10-20°C/Myr and buried at 1-2 km/Myr to 600-675°C at depths of 25-35 km by 22-19 Ma. The Shakhdara Dome in the South Pamir was heated at 20°C/Myr and buried at 2-8 km/Myr to reach 750-800°C at depths of ≥50 km by 20 Ma. All domes were exhumed at >3 km/Myr to 5-10 km depths and 300°C by 17-15 Ma. The pressures, temperatures, burial rates, and heating rates are typical of continental collision. Decompression during exhumation outpaced cooling, compatible with tectonic unroofing along mapped large-scale, normal-sense shear zones, and with advection of near-solidus or suprasolidus temperatures into the upper crust, triggering exhumation-related magmatism. The Shakhdara Dome was exhumed from greater depth than the Central Pamir domes perhaps due to its position farther in the hinterland of the Paleogene retrowedge and to higher heat input following Indian slab breakoff. The large-scale thickening and coincident 20 Ma switch to extension throughout a huge area encompassing the Pamir and Karakorum strengthens the idea that the evolution of orogenic plateaux is governed by catastrophic plate-scale events.

  10. Crustal structure beneath Portugal from teleseismic Rayleigh Wave Ellipticity (United States)

    Attanayake, Januka; Ferreira, Ana M. G.; Berbellini, Andrea; Morelli, Andrea


    Up until now, Portugal lacked a countrywide shear velocity model sampling short length-scale crustal structure, which limits interpretations of seismicity and tectonics, and predictions of strong ground motion. In turn, such interpretations and predictions are important to help mitigate risk of destruction from future large on- and offshore earthquakes similar to those that Portugal has experienced in the past (e.g. the Mw 8.5-8.7 tsunamigenic event in 1755). In this study, we measured teleseismic Rayleigh Wave Ellipticity (RWE) from 33 permanent and temporary seismic stations in Portugal with wave periods between 15 s and 60 s, and inverted it for 1-D models of shear wave velocity (Vs) structure beneath each station using a fully non-linear Monte Carlo method. Because RWE is strongly sensitive to the uppermost few kilometres of the crust, both RWE measurements and Vs models are spatially correlated with surface geology in Portugal. For instance, we find that sedimentary basins produced by rifting that had begun in the Mesozoic such as the Lusitanian Basin (LB) and the Lower Tagus-Sado Basin (LTSB) are characterised by higher RWE (lower Vs). Interestingly, we observe similar RWE (and Vs) values in the interior of the Central Iberian Zone (CIZ), which is a metamorphic belt of Paleozoic age. Together with reduced crustal thickness previously estimated for the same parts of the CIZ, this suggests that the CIZ might have experienced an episode of extension possibly simultaneous to Mesozoic rifting. The Galicia-Tras-os-Montes-Zone (GTMZ) that has undergone polyphased deformation since the Paleozoic is characterised by the lowest RWE (highest Vs) in Portugal. Ossa Morena Zone and the South Portuguese Zone exhibit intermediate Vs values when compared to that of basins and the GTMZ. Our crustal Vs model can be used to provide new insights into the tectonics, seismicity and strong ground motion in Portugal.

  11. Crustal structure variations along the Lesser Antilles Arc (United States)

    Schlaphorst, D.; Kendall, J. M.; Melekhova, E.; Blundy, J.; Baptie, B.; Latchman, J. L.


    Continental crust is predominantly formed along subduction zones. Therefore, an investigation of the crustal and mantle structure variation of these areas is crucial for understanding the growth of continental crust. This work deals with the seismological characteristics along the Lesser Antilles Arc, an island arc system built by the relatively slow subduction (~2cm/yr) of the North and South American plates beneath the Caribbean plate. The amount of subducted sediments changes significantly from sediment-rich subduction in the South to sediment-poor subduction in the North. The abundance of broadband seismic stations on the Lesser Antilles islands enables a range of seismic methods to be used to study arc processes. Furthermore, the abundance of cumulate samples allows for a detailed petrological analysis, which can be related to the seismological patterns. We use data from three component broadband stations located on the individual islands along the arc. From the island of Grenada in the South to the Virgin Islands in the North significant variations in sediment load, petrology and volcanism are observed along the arc. In this work, we investigate crustal structure using receiver functions to determine Moho depth and Vp/Vs ratio. The ratio gives an idea about the material of the subsurface as well as its water and its melt contents. The receiver functions are computed using the extended-time multitaper frequency domain cross-correlation receiver-function (ETMTRF) by Helffrich (2006). This method has the advantage of resistance to noise, which is helpful since most of the data around the arc will have been collected by stations close to the ocean, thus containing a large amount of noise. Our results show clear variations in these measurements. There are also regions where the Moho is not very sharp due to a low velocity contrast. The real data results were then compared to synthetic receiver functions from subsurface models. We compute a range of synthetic

  12. Correlation of Crustal Structures and Seismicity Patterns in Northern Appalachians (United States)

    Yang, X.; Gao, H.


    The earthquake distributions in northern Appalachians are bounded by major geologically-defined terrane boundaries. There is a distinct seismic gap within Taconic Belt between the Western Quebec Seismic Zone (WQSZ) to the west and the seismically active Ganderia terrane to the east. It is not clear, however, what crustal structures control the characteristics of earthquake clustering in this region. Here we present a newly constructed crustal shear velocity model for the northern Appalachians using Rayleigh wave data extracted from ambient noises. Our tomographic model reveals strongly heterogeneous seismic structures in the crust. We observe multiple NW-dipping patches of high-velocity anomalies in the upper crust beneath the southeastern WQSZ. The upper crust shear velocities in the Ganderia and Avalonia region are generally lower than those beneath the WQSZ. The middle crust has relatively lower velocities in the study area. The earthquakes in the study area are constrained within the upper crust. Most of the earthquake hypocenters within the WQSZ are concentrated along the NW-dipping boundaries separating the high-velocity anomalies. In contrast, most of the earthquake hypocenters in the Ganderia and Avalonia region are diffusely distributed without clear vertical lineaments. The orientations of maximum compressive stresses change from W-E in the Ganderia and Avalonia region to SW-NE in the WQSZ. The contrasts in seismicity, velocity, and stress field across the Taconic Belt indicate that the Taconic Belt terrane may act as a seismically inactive buffer zone in northern Appalachians.

  13. Structural analysis of three extensional detachment faults with data from the 2000 Space-Shuttle Radar Topography Mission (United States)

    Spencer, J.E.


    The Space-Shuttle Radar Topography Mission provided geologists with a detailed digital elevation model of most of Earth's land surface. This new database is used here for structural analysis of grooved surfaces interpreted to be the exhumed footwalls of three active or recently active extensional detachment faults. Exhumed fault footwalls, each with an areal extent of one hundred to several hundred square kilometers, make up much of Dayman dome in eastern Papua New Guinea, the western Gurla Mandhata massif in the central Himalaya, and the northern Tokorondo Mountains in central Sulawesi, Indonesia. Footwall curvature in profile varies from planar to slightly convex upward at Gurla Mandhata to strongly convex upward at northwestern Dayman dome. Fault curvature decreases away from the trace of the bounding detachment fault in western Dayman dome and in the Tokorondo massif, suggesting footwall flattening (reduction in curvature) following exhumation. Grooves of highly variable wavelength and amplitude reveal extension direction, although structural processes of groove genesis may be diverse.

  14. Variable styles of rifting expressed in crustal structure across three rift segments of the Gulf of California (United States)

    Lizarralde, D. D.; Axen, G. J.; Brown, H. E.; Fletcher, J. M.; Fernandez, A. G.; Harding, A. J.; Holbrook, W. S.; Kent, G. M.; Paramo, P.; Sutherland, F. H.; Umhoefer, P. J.


    We present a summary of results from a crustal-scale seismic experiment conducted in the southern Gulf of California. This experiment, the PESCADOR experiment, imaged crustal structure across three rift segments, the Alarcon, Guaymas, and San José del Cabo to Puerto Vallarta (Cabo-PV) segments, using seismic refraction/wide-angle reflection data acquired with airgun sources and recorded by closely spaced (10-15 km) ocean-bottom seismometers (OBSs). The imaged crustal structure reveals a surprisingly large variation in rifting style and magmatism between these segments: the Alarcon segment is a wide rift with apparently little syn-rift magmatism; the Guaymas segment is a narrow, magmatically robust rift; and the Cabo-PV segment is a narrow, magmatically "normal" rift. Our explanation for the observed variability is non-traditional in that we do not invoke mantle temperature, the factor commonly invoked to explain end-member volcanic and non-volcanic rifted margins, as the source of the considerable, though non-end-member variability we observe. Instead, we invoke mantle depletion related to pre-rift arc volcanism to account for observed wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism. These factors may commonly vary over small lateral spatial scales in regions that have transitioned from convergent to extensional tectonics, as is the case for the Gulf of California and many other rifts. Our hypothesis suggests that substantial lateral variability may exist within the uppermost mantle beneath the Gulf of California today, and it is hoped that ongoing efforts to image upper mantle structure here will provide tests for this hypothesis.

  15. Crustal structure of Australia from ambient seismic noise tomography (United States)

    Saygin, Erdinc; Kennett, B. L. N.


    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  16. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion (United States)

    Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim


    In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.

  17. Crustal and upper mantle structure of Siberia from teleseismic receiver functions

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Thybo, Hans; Artemieva, Irina


    . The current results of RF analysis of the crustal and mantle structure will help to build a model for tectonic and geodynamic evolution of different provinces of Siberia. We compare our results to the recent detailed models of crustal structure in the area and with seismic models for similar geodynamic...

  18. Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data (United States)

    Pichot, T.; Delescluse, M.; Chamot-Rooke, N. R.; Pubellier, M. F.; Qiu, Y.; Meresse, F.; Savva, D.; Watremez, L.; Auxietre, J.


    The South China Sea (SCS) is the largest marginal basin of SE Asia. Yet its mechanism of formation is still debated. While the NE part of the SCS northern margin exhibits ~400 km of extended continental crust, its SW part shows nearly 800 km of extended continental crust, which makes it one of the widest rifted margin in the world. In June 2011, Chinese and French scientists conducted a joint geophysical experiment on board the R/V Tan Bao across the SW sub-basin of the SCS. A 1000-km-long wide-angle refraction seismic profile was acquired along the conjugate margins using a total of 50 Ocean Bottom Seismometers (OBS). 41,100 first refraction and 6,622 PmP reflection arrival traveltimes have been picked. A joint reflection and refraction traveltime tomography inversion is performed to obtain a 2-D velocity model of the crustal and upper mantle structures. Based on this new tomographic model, northern and southern margins are found genetically linked since they share common structural characteristics: an average 12-km-thick crust and crustal scale lateral velocity variations. These lateral variations correlate well with seismic reflection observations of the crustal structures. Small-scale normal faults (grabens and horsts, with a spacing of ~15-30 km) are often associated with an apparent tilt of the iso-velocity contours affecting the upper crust. The upper-middle crust shows clear high lateral velocity variations defining low velocity bodies (LVB) bounded by large-scale normal faults (also referred as 'Throughgoing crustal faulting'). Major sedimentary basins are located above the LVBs, interpreted as hanging-wall blocks. The Moho interface remains rather flat (less than 4°) over the extended domain, suggesting that large normal faults root in a ductile lower crust, allowing isostatic compensation of the large normal fault blocks. Along the northern margin, the wavelength of the LVBs decreases from 90 to 45 km as the total crust thins toward the Continent

  19. Crustal and Lithospheric Structure of the Western Mediterranean: Pds Receiver Function Results from the PICASSO Experiment (United States)

    Thurner, S.; Palomeras, I.; Levander, A.


    The Betic Mountains in southern Spain, the Gibraltar Arc, the Alboran Sea, and the Rif and Atlas Mountains in northern Africa comprise the western Mediterranean tectonic region, which has been affected by simultaneous extension and compression throughout the Cenozoic. Multiple geodynamic models have been invoked to explain the coeval compressional and extensional tectonic processes, including slab roll-back (Royden, 1993; Lonergan and White, 1997; Gutscher et al., 2002), accompanied and followed by lithospheric convective downwelling (Seber et al., 1996; Calvert et al., 2000), and delamination (Platt et al., 1996). We use Ps teleseismic receiver functions to investigate the crustal and lithospheric structure throughout this region. PICASSO (Program to Investigate Convective Alboran Sea System Overturn) is a multi-disciplinary, international investigation seeking to improve our understanding of the geodynamics of the western Mediterranean. The PICASSO deployment includes 89 broadband stations distributed linearly from central Spain to the Morocco-Algeria border. For this study we supplemented the PICASSO dataset with data from six other Moroccan, Spanish, Portuguese, and German networks in the region. Using 167 events (M > 6.0) recorded at a total of 240 stations we calculated 1 Hz and 2Hz receiver functions. The receiver functions were then CCP stacked to create a 3D image volume of the region. The Pds receiver functions indicate crustal thicknesses between ~42-47 km in southern Spain beneath the Betic Mountains and ~35-45 km across the Gibraltar Strait. Beneath both the Rif and Betic Mountains we observe complex crustal structures, including two strong positive arrivals around Moho depth (~50 km). A number of models can explain this feature, including those associated thrust systems in each region. In Morocco, along a NW-SE transect from the Gibraltar Strait across the Atlas Mountains, we observe thick crust in the north beneath the Rif Mountains and to the south

  20. Gakkel Ridge: Geophysical Constraints on its Crustal Structure (United States)

    Jokat, W.


    Among the world's mid-ocean ridges the Gakkel Ridge has the slowest spreading rates at all. In contrast to other ultra slow spreading ridges its rift valley is not displaced by large-scale fracture zones. In 2001 an international expedition with the two research ice breakers Polarstern and Healy was scheduled to investigate the Arctic mid-ocean ridge. A wide variety of different geophysical investigations were carried out to investigate the crustal structure. Seismic investigations show the presence of thin oceanic crust (less than 3 km). Oceanic layer 3 is in most of the recordings not present. A joint interpretation of bathymetric and magnetic data allow the interpretation that discrete spreading cells are present along the ridge. Off-axis investigations show that thin crust is also present in the adjacent deep sea basins. However, the seismic reflection data in the Amundsen and Nansen basins show that in the past the spreading was not symmetric north and south of the rift valley. The new results will be presented and discussed.

  1. Assessing interaction of active extensional faults from structural and paleoseismological analysis: The Teruel and Concud faults (eastern Spain) (United States)

    Simón, José L.; Arlegui, Luis E.; Ezquerro, Lope; Lafuente, Paloma; Liesa, Carlos L.; Luzón, Aránzazu


    The relationship of independence, interaction or linkage between two neighbouring intraplate active extensional faults, the Teruel and Concud faults, are investigated from structural and paleoseismological data, and the results are discussed to improve seismic hazard assessment for the region. This paper provides the structural and paleoseismological characterization of the almost unknown Teruel Fault from detailed mapping and trench analysis, and discusses its kinematic and dynamic relationships with the Concud Fault. Four individual events occurred between 76.0 ka and 9.2 ka BP have been recorded at two branches of the Teruel Fault. Unfortunately, these only represent a small fraction of its overall activity during such time lapse, and their time constraints do not allow correlating them with those at the Concud Fault. The Teruel and Concud faults are independent structures from the geometric and kinematic point of view, as evinced by their distinct (i) transport directions (N275°E and N220°E, respectively), and (ii) average coseismic displacements (0.5 m and 1.9 m, respectively). These displacements are consistent with their respective lengths (9.0 km and 14.2 km) and significantly smaller than those expected for a hypothetically joint Concud-Teruel, 23 km-long fault. However, their displacement gradients close to the relay zone indicate that both faults undergo dynamic interaction, thus suggesting a transient stage from independence to linkage. We hypothesize that slip on both structures occurred, at the scale of the seismic cycle, in a broadly alternating manner, which induced strain partitioning between them and allowed accommodating bulk biaxial extension in the region. Such deformation pattern would have increased the earthquake frequency with respect to the scenario of a hypothetically linked Concud-Teruel Fault, but diminished the potential seismic magnitude.

  2. Shallow Crustal Thermal Structures of Central Taiwan Foothills Region

    Directory of Open Access Journals (Sweden)

    Shao-Kai Wu


    Full Text Available Crustal thermal structures are closely related to metamorphism, rock rheology, exhumation processes, hydrocarbon maturation levels, frictional faulting and other processes. Drilling is the most direct way to access the temperature fields in the shallow crust. However, a regional drilling program for geological investigation is usually very expensive. Recently, a large-scale in-situ investigation program in the Western Foothills of Central Taiwan was carried out, providing a rare opportunity to conduct heat flow measurements in this region where there are debates as to whether previous measured heat flows are representative of the thermal state in this region. We successfully collected 28 geothermal gradients from these wells and converted them into heat flows. The new heat flow dataset is consistent with previous heat flows, which shows that the thermal structures of Central Taiwan are different from that of other subduction accretionary prisms. We then combine all the available heat flow information to analyze the frictional parameters of the Chelungpu fault zone that ruptured during the 1999, Chi-Chi, Taiwan, earthquake. The heat flow dataset gave consistent results compared with the frictional parameters derived from another independent study that used cores recovered from the Chelungpu fault zone at depth. This study also shows that it is suitable for using heat-flow data obtained from shallow subsurface to constrain thrusting faulting parameters, similar to what had been done for the strike-slip San Andreas Fault in California. Additional fieldworks are planned to study heat flows in other mountainous regions of Taiwan for more advanced geodynamic modeling efforts.

  3. Deep crustal structure of northwestern part of Turkey (United States)

    Kaya, Cemal


    The deep crustal structure of the Polatlı-Nallıhan-Karasu (NW Turkey) area was investigated by Magnetotelluric and Transient Electromagnetic measurements. All measurements were acquired as part of a national project called Crustal Structures of Turkey undertaken by the General Directorate of Mineral Research and Exploration of Turkey (MTA). Magnetotelluric data were collected from 44 stations located along a 250 km northwest to southeast profile crossing in succession the İstanbul Zone, Intra-Pontid Suture, Sakarya Continent, İzmir-Ankara Suture, Tavşanlı Zone (the Tauride-Anatolide Belt), Intra-Pontid Suture and Sakarya Continent. After decompositional analysis and strike direction estimation, static shift is corrected by using transient electromagnetic data from MT apparent resistivity data. The processed MT data were inverted to derive a two-dimensional geoelectrical model. The estimated model is interpreted with the help of gravity data observed along the MT lines and using earthquake epicenter which occurred around MT measurement lines. Four layers with distinctive resistivity values dominate the geoelectrical section. The uppermost layer, having resistivity values of 5-35 ohm m can be interpreted as the sedimentary fill. This layer reaches down to about 10 km depth in Haymana Basin. The second layer has resistivity values higher than 110 ohm m and reaches 27 km depth. The first and second layers can be inferred as constituting the upper crust in the general model of the Earth's lithosphere. The third layer underlying the upper crust has resistivity values of 10-30 ohm m corresponding to the lower crust. The fourth layer having high resistivity values (> 225 ohm m) can be considered as the upper mantle. The depth of the boundary separating the crust from the upper mantle (Moho) varies between 20 and 40 km. High conductive zones between the İstanbul Zone and Sakarya Continent, Sakarya Continent and Tavşanlı Zone coincide with high Bouguer gravity

  4. Crustal structure and composition of the Oslo Graben, Norway

    DEFF Research Database (Denmark)

    Stratford, Wanda Rose; Thybo, Hans


    Although more than 250 my old, the Oslo Graben has retained a distinctive distribution of P-wave velocities associated with rifting, intrusion and underplating of the thinned crustal section. We calculate Poisson's ratio values from crustal P and S-wave velocities along an ~400 km long profile...... across the southern Scandinavian Peninsula, with a focus on the Oslo Graben. Plutonic rocks are now exposed at the surface in the graben due to post rifting erosion and the corresponding low (5.5 km/s) P-wave velocities extend to depths of ~3 km. The Pwave velocity and Poisson's ratio between depths of 6...


    DEFF Research Database (Denmark)

    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon

    Atlantic region. The intraplate Eurekan orogeny in the Cenozoic caused additional crustal shortening in the area, related to the opening of Baffin Bay, the North Atlantic and the Arctic Ocean basins and the complex plate tectonic responses to these plate boundary reconfigurations. Geophysically Ellesmere...

  6. Crustal structure beneath seismic stations deployed on rock in West Antarctica: New constrains on crustal shear wave velocities, Poisson's ratios and Moho depths (United States)

    Ramirez, C.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.


    Over the past two decades there have been a number of broadband seismic networks deployed in Antarctica for investigating the deep earth structure and elucidating the nature of the crust and upper mantle beneath major tectonic features such as the Transantarctic Mountains, the Gamburtsev Subglacial Mountains, the West Antarctic Rift System, and the Marie Byrd Land Dome. Seismic data recorded by these networks have been analyzed to obtain estimates of crustal structure, such as Moho depth and Possion's ratio, leading to an improved understanding of Antarctic crustal structure. However, data from the different networks have been analyzed separately with a variety of modeling methods, resulting in non-uniform information on crustal properties. In this paper, we address the non-uniformity of available crustal parameters by modeling P wave receiver functions and Rayleigh wave velocities for all broadband stations in West Antarctica and the Transantarctic Mountains deployed on rock. Using the H-k stacking and a joint inversion methods and applying them to data from the 2000-2003 TAMSEIS and 2009-2015 POLENET networks, in addition to three permanent stations, we have obtained new estimates of Moho depth, crustal shear wave velocities and crustal Poisson's ratio. In addition, we report results for two new stations in West Antarctica. The ensemble of information on crustal thickness, crustal Poisson's ratio, and crustal shear wave velocity enables us to examine more comprehensively than previous studies the composition and structure of the crust beneath several tectonic blocks within the West Antarctica and the Transantarctic Mountains, and to comment further on their origin.

  7. Upper mantle and crustal structure of the East Greenland Caledonides

    DEFF Research Database (Denmark)

    Schiffer, Christian; Balling, N.; Jacobsen, B. H.

    of the North Atlantic passive margins, including the gravitational collapse, extension, rifting and a possible influence by volcanism related to the Iceland hot spot. The landscape and topography were finally shaped by extensive erosion, finding its peak in the quaternary glaciations. Seismological data were...... present selected results from on-going detailed studies of the crustal and upper mantle, including a Receiver Function inversion, seismic P-wave travel time tomography and gravity modelling....

  8. Crustal structure of the Eastern Alps and their foreland

    DEFF Research Database (Denmark)

    Grad, M.; Brückl, E.; Majdanski, M.


    ) and are also characterized by variations in apparent velocity and amplitude. The Moho reflections are usually strong and well correlated, while Pn arrivals are only fragmentarily recorded. Detailed 2-D forward modelling of all refracted, post-critical and reflected phases, identified in the correlation process...... of the area. Main features derived by 2-D modelling (low velocities beneath the accretionary wedge, high velocities in the lower crust of the Bohemian Massif, Moho topography) well correlate with the 3-D model. Furthermore, the 3-D model allows assessing the lateral extent of significant features alongside...... the CEL10/Alp04 profile. This area is affected by both collision and escape tectonics. The high-reflectivity zone in the middle crust is explained by intermediate to mafic intrusions, rather than by ductile extensional deformation as generally observed in the lower crust....

  9. Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure (United States)

    Kusznir, Nick; Alvey, Andy; Roberts, Alan


    The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT

  10. Seismotectonics of Taiwan Shoal region in northeastern SCS: Insights from crustal structure (United States)

    Kuiyuan, Wan; Jinlong, Sun; Shaohong, Xia; Xiaoling, Xie; Xiang, Zhang; Huilong, Xu; Jinghe, Cao


    A seismicity cluster and a great 16 September 1994 earthquake occur in the Taiwan Shoal region, outer rise of the Manila subduction zone. To understand what mechanisms control and generate the earthquake cluster, it is important to investigate the deep crustal structure of the Taiwan Shoal region. We present a 2-D seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean bottom seismographic (OBS) data. The structure exhibits that a high velocity anomaly in the upper crust beneath the Taiwan Shoal is flanked by lower velocity anomalies. Based on the crustal structure, we study the 765 earthquakes, which occurred in the period 1991-2015. These epicenters, combined with the regional faults, and crustal structure, allow us to better understand the nature of the active tectonics in this region. The high velocity area is interpreted as representing stronger, defining major asperities where stress is concentrated corresponding to the location of the earthquake cluster. The earthquake cluster is influenced by the fault interactions. However, the 16 September 1994 earthquake is independents of the seismic activities but associated with the reactivation of the preexisting fault. In Taiwan region, the slab-pull was resisted by the exposed pre-collision accretionary prism and the resistive force caused the in-plane compressive stress accumulation. This condition may favor the triggering of future damaging earthquakes in this region. Key words: earthquake cluster; crustal structure; fault interactions; outer rise; Taiwan Shoal

  11. Shallow crustal structure of the Central Bohemian Pluton, Czech Republic, inferred from refraction measurements

    Czech Academy of Sciences Publication Activity Database

    Málek, Jiří; Novotný, O.; Žanda, Libor


    Roč. 6, č. 2 (2009), s. 143-154 ISSN 1214-9705 R&D Projects: GA AV ČR IAA300460705; GA AV ČR IAA300460602 Institutional research plan: CEZ:AV0Z30460519 Keywords : pluton * refraction measurements * crustal structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.275, year: 2009

  12. Spatial Relationship Between Crustal Structure and Mantle Seismicity in the Vrancea Seismogenic Zone of Romania (United States)

    Knapp, C. C.; Enciu, D. M.; Knapp, J. H.


    Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the

  13. Crustal structure of western Hispaniola (Haiti) from a teleseismic receiver function study (United States)

    Corbeau, J.; Rolandone, F.; Leroy, S.; Guerrier, K.; Keir, D.; Stuart, G.; Clouard, V.; Gallacher, R.; Ulysse, S.; Boisson, D.; Bien-aimé Momplaisir, R.; Saint Preux, F.; Prépetit, C.; Saurel, J.-M.; Mercier de Lépinay, B.; Meyer, B.


    Haiti, located at the northern Caribbean plate boundary, records a geological history of terrane accretion from Cretaceous island arc formations to the Eocene to Recent oblique collision with the Bahamas platform. Little is presently known about the underlying crustal structure of the island. We analyze P-waveforms arriving at 27 temporary broadband seismic stations deployed over a distance of 200 km across the major terrane boundaries in Haiti to determine the crustal structure of western Hispaniola. We compute teleseismic receiver functions using the Extended-Time Multi-Taper method and determine crustal thickness and bulk composition (Vp/Vs) using the H-k stacking method. Three distinctive and fault-bounded crustal domains, defined by their characteristic Moho depth distributions and bulk crustal Vp/Vs, are imaged across Haiti. We relate these domains to three crustal terranes that have been accreted along the plate boundary during the northeastwards displacement of the Caribbean plate and are presently being deformed in a localized fold and thrust belt. In the northern domain, made up of volcanic arc facies, the crust has a thickness of 23 km and Vp/Vs of 1.75 ± 0.1 typical of average continental crust. The crust in the southern domain is part of the Caribbean Large Igneous Province (Caribbean LIP), and is 22 km thick with Vp/Vs of 1.80 ± 0.03 consistent with plume-related rocks of late Cretaceous age. Significantly thicker, the crust in central Haiti has values of Moho depths averaging 41 km and with Vp/Vs of 1.80 ± 0.05. We propose that the central domain is likely constructed of an island arc upper crust with fragments of dense material originating from mafic lavas or LIP material. We produce a crustal profile along a N-S transect across Haiti accounting for the surface geology, shallow structural history, and new seismological constraints provided by variations of crustal thickness and bulk composition.

  14. Ultrasonics transduction in metallic and composite structures for structural health monitoring using extensional and shear horizontal piezoelectric wafer active sensors (United States)

    Abdelrahman, Ayman Kamal

    Structural health monitoring (SHM) is crucial for monitoring structures performance, detecting the initiation of flaws and damages, and predicting structural life span. The dissertation emphasizes on developing analytical and numerical models for ultrasonics transduction between piezoelectric wafer active sensors (PWAS), and metallic and composite structures. The first objective of this research is studying the power and energy transduction between PWAS and structure for the aim of optimizing guided waves mode tuning and PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical models for power and energy were developed based on exact Lamb wave solution with application on multimodal Lamb wave situations that exist at high excitation frequencies and/or relatively thick structures. Experimental validation was conducted using Scanning Laser Doppler Vibrometer. The second objective of this work focuses on shear horizontal (SH) PWAS which are poled in thickness-shear direction (d35 mode). Analytical and finite element predictive models of the E/M impedance of free and bonded SH-PWAS were developed. Next, the wave propagation method has been considered for isotropic materials. Finally, the power and energy of SH waves were analytically modeled and a MATLAB graphical user interface (GUI) was developed for determining phase and group velocities, mode shapes, and energy of SH waves. The third objective focuses on guided wave propagation in composites. The transfer matrix method (TMM) has been used to calculate dispersion curves of guided waves in composites. TMM suffers numerical instability at high frequency-thickness values, especially in multilayered composites. A method of using stiffness matrix method was investigated to overcome instability. A procedure of using combined stiffness transfer matrix method (STMM) was presented and coded in MATLAB. This was followed by a comparative study between commonly used methods for the calculation of

  15. Detailed crustal structure of the North China and its implication for seismicity (United States)

    Jiang, Wenliang; Wang, Xin; Tian, Tian; Zhang, Jingfa; Wang, Donglei


    Since the Mesozoic-Cenozoic era the North China Craton has experienced an important tectonic transition and it has given rise to complicated crustal structure and strong earthquake activity. Based on the large-scale surface gravity data, we studied the detailed crustal structure and seismogenic mechanism of the North China. The results indicate that the North China presents typical characteristics of adjoining depression and uplift, alternating basins and hills, inhomogeneous density and also great differences in crustal structure and Moho topography. The upper and middle crustal structures are dominated by the NNE-striking tectonic units, with many faults cut down to the middle crust. The lower crust is characterized by the folding-structure, with high and low-density placed alternately from west to east, presenting lateral heterogeneous feature. Adjusted by the gravity isostasy, Moho topography of the North China fluctuates greatly. Compared with the North China Basin, crustal thickness in the Western Taihang, northern Yanshan and Luzhong areas are much thicker while those densities are lower than the North China Basin. The dominating tectonic direction of the Moho topography strikes NE to NNE and undulates alternately from west to east. The epicenters are mostly concentrated in the upper and middle crust, especially the transitional areas between the high and low-gravity anomalies. The Tancheng earthquake in 1668, Sanhe earthquake in 1673, Tangshan earthquake in 1976, and all other seismic tectonic zones of the North China are all distributed in area where magma moves strongly beneath the crust, which is considered to be related to the movement of the high density, unstable and heat flows along the deep passage from the uppermost and asthenosphere due to the subduction of the Pacific slab towards the Eurasian plate.

  16. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea (United States)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian


    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  17. Extensional Fault Evolution and its Flexural Isostatic Response During Iberia-Newfoundland Rifted Margin Formation (United States)

    Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.


    During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60

  18. Crustal structure and geodynamics of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling (United States)

    Lü, Qingtian; Shi, Danian; Liu, Zhendong; Zhang, Yongqian; Dong, Shuwen; Zhao, Jinhua


    A 300 km long seismic reflection profile was acquired across the Middle and Lower Reaches of the Yangtze River (MLY) metallogenic belt and its adjacent areas. The objective of the survey was to establish the deep architecture and geodynamic framework of the region. Results based on the interpretation of the deep seismic data include (1) Tan-Lu fault appears as a subvertical thrust fault or transpression fault with its deep portion dipping toward the southeast; (2) the Zhangbaling uplift is squeezed out along this fault; (3) complex upper crustal deformation structures beneath the Chuquan depression include both kink bands, thrusts, imbrication and fold structures reflecting contraction deformation, and detachment fault and normal-fault structures reflecting extensional deformation; (4) the "crocodile" reflection structure emerging beneath the Tan-Lu fault and Ningwu-Lishui volcanic basin, which represents the decoupled deformation process of the upper and lower crust associated with intra-continental subduction; (5) further to the southeast, the upper crust deformation shows a large-scale "wave-form" pattern, making crustal scale syncline and anticline; (6) the entire section of the reflection Moho is clearly discernible at depth of 30.0-34.5 km, and the Moho beneath the Middle and Lower Reaches of Yangtze River metallogenic belt is shallowest, while the Moho beneath the North China block is deeper than that beneath the Yangtze block. The Moho offsets could be seen beneath the Ningwu volcanic basin. The seismic reflection data suggest that lithosphere delamination and asthenosphere upwelling that may result from the Mesozoic intra-continental orogenesis is responsible for the formation of large scale magmatism and mineralization in the MLY metallogenic belt.

  19. Crustal-scale alpine tectonic evolution of the western Pyrenees - eastern Cantabrian Mountains (N Spain) from integration of structural data, low-T thermochronology and seismic constraint (United States)

    DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.


    The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the

  20. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis (United States)

    Xu, C.; Luo, Z.; Sun, R.; Li, Q.


    The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

  1. Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data (United States)

    Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.


    Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.

  2. Evaluating upper versus lower crustal extension through structural reconstructions and subsidence analysis of basins adjacent to the D'Entrecasteaux Islands, eastern Papua New Guinea (United States)

    Fitz, Guy; Mann, Paul


    The D'Entrecasteaux Island (DEI) gneiss domes are fault-bounded domes with ~2.5 km of relief exposing ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic gneisses and migmatites exhumed in an Oligocene-Miocene arc-continent collision and subduction zone subject to late Miocene to recent continental extension. Multichannel seismic reflection data and well data show the Trobriand basin formed as a fore-arc basin caused by southward Miocene subduction at the Trobriand trench. Subduction slowed at ~8 Ma as the margin transitioned to an extensional tectonic environment. Since then, the Trobriand basin has subsided 1-2.5 km as a broad sag basin with few normal faults deforming the basin fill. South of the DEI, the Goodenough rift basin developed after extension began (~8 Ma) as the hanging wall of the north-dipping Owen-Stanley normal fault that bounds the basin's southern margin. The lack of upper crustal extension accompanying subsidence in the Trobriand and Goodenough basins suggests depth-dependent lithospheric extension since 8 Ma has accompanied uplift of the DEI gneiss domes. Structural reconstructions of seismic profiles show 2.3-13.4 km of basin extension in the upper crust, while syn-rift basin subsidence values indicate at least 20.7-23.6 km of extension occurred in the entire crust since ~8 Ma. Results indicating thinning is preferentially accommodated in the lower crust surrounding the DEI are used to constrain a schematic model of uplift of the DEI domes involving vertical exhumation of buoyant, postorogenic lower crust, far-field extension from slab rollback, and an inverted two-layer crustal density structure.

  3. Crustal structure of the Western Carpathians and Pannonian Basin: Seismic models from CELEBRATION 2000 data and geological implications (United States)

    Janik, Tomasz; Grad, Marek; Guterch, Aleksander; Vozár, Jozef; Bielik, Miroslav; Vozárova, Anna; Hegedűs, Endre; Kovács, Csaba Attila; Kovács, István; Keller, G. Randy; Celebration 2000 Working Group


    During the CELEBRATION 2000 seismic experiment, the Western Carpathians and Pannonian basin region was investigated by a dense system of deep seismic sounding profiles. In this paper, we present the results of modeling refracted and reflected waves employing 2D ray tracing for seven interlocking profiles that were jointly modeled and interpreted with the constraint that the models match at the crossing points of the profiles. The resulting P-wave velocity models reveal complex structures in the crust and large variations in the depth of the Moho discontinuity (˜25-45 km). In the southern part of the area, the relatively thin Pannonian basin crust consists of 3-7 km thick sediments and two crustal layers with velocities of 5.9-6.3 km/s in the upper crust and 6.3-6.6 km/s in the lower crust. In the central region, the upper crust of the ALCAPA (Alpine-Carpathian-Pannonian) microplate contains a high velocity body of Vp ≥ 6.4 km/s, which spatially corresponds with the Bükk Composite Terrane. The total thickness of the ALCAPA crust is 1-2 km greater than in the adjacent Tisza-Dacia microplate. To the north in the area of the Trans-European suture zone (TESZ) and Carpathian foredeep, we observe a 10-20 km thick upper crust with low velocity ( Vp ≤ 6.0 km/s). Sub-Moho velocities have average values of 7.8-8.0 km/s for the Pannonian basin, while in the Western Carpathians, the TESZ and the East European Craton (EEC) area, they are slightly higher (8.0-8.1 km/s). Lower velocities beneath the ALCAPA and Tisza-Dacia microplates could be caused by compositional variations and the significantly higher surface heat flow. Beneath some profiles, reflectors in the lithospheric mantle were found sub-parallel to the Moho but 10-20 km below it. Our integrated geophysical and geological analysis indicates that the observed structure was created by collision of two lithospheric plates with only a moderate degree of convergence. The northern plate consists of older European

  4. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    International Nuclear Information System (INIS)

    Polat, Orhan; Özer, Çaglar


    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  5. Gravity anomalies and crustal structure of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Krishna, K.S.; Murthy, I.V.R.; Sarma, K.V.L.N.S.; Desa, M.; Ramana, M.V.; KameshRaju, K.A.

    of Oceanography (NIO), Goa, India. The study con¢rmed strong negative gravity anomalies associated with the 85‡E Ridge, but its structure and density cannot explain them. The Bengal Fan is typical in many ways prompting repeated geological and geophysical in... and Planetary Science Letters 192 (2001) 447^456448 Moore [4] as a subsurface basement rise along the 85‡E longitude, is buried under deep sediment cover of 3^5 km thickness. While the Ninetyeast Ridge is decisively con¢rmed to be an emplace- ment...

  6. A three-dimensional Vp, Vs, and Vp/Vs crustal structure in Fujian, Southeast China, from active- and passive-source experiments (United States)

    Cai, Hui-Teng; Kuo-Chen, Hao; Jin, Xin; Wang, Chien-Ying; Huang, Bor-Shouh; Yen, Horng-Yuan


    Fujian, Southeastern China, has experienced multistage tectonic activities since the Neoproterozoic Era and is currently influenced by collision between the Eurasian and Philippine Sea plates. Topography, fault zones, and patterns of seismicity are the imprints of tectonic evolution. Historically, there have been several catastrophic earthquakes in the southeastern part of Fujian. To understand the crustal structure related to the fault zones, we performed Vp, Vs, and Vp/Vs travel-time tomography using joint inversion of active and passive sources. A total of 75,827 and 31,044 arrivals of P and S waves, respectively, from 33 explosions and 2543 earthquakes are used in our study. As a result, seismicity has indicated that two NE strike seismogenic zones, the Zhenghe-Dapu and Changle-Zhaoan fault zones, are currently active. Low Vp/Vs ratios in inland Fujian imply that the crust is mainly composed of felsic rocks as part of the Eurasian continental crust, which is consistent with geological observations at the surface. Based on Vp tomography, the thickness of the crust along the coastline is shallower than that on land, which is related to higher heat flow and the Bouguer anomaly. This shallow crust phenomenon near the coastline could be related to the regional extensional stress: the remaining structure of the back-arc extension that stretched the continental crust during the Mesozoic Era or/and the Cenozoic extension due to South China sea opening in Taiwan Strait.

  7. The diverse crustal structure and magmatic evolution of the Manihiki Plateau, central Pacific (United States)

    Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.


    The Manihiki Plateau is a Large Igneous Province (LIP) in the central Pacific. It was emplaced as part of the "Super-LIP" Ontong Java Nui and experienced fragmentation into three sub-plateaus, possibly during the break-up of Ontong Java Nui. The Manihiki Plateau is presumably the centerpiece of this "Super-LIP" and its investigation can therefore decipher the break-up mechanisms as well as the evolution of the plateau after its initial emplacement. By analyzing two seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the High Plateau and the Western Plateaus, we give new insights into their crustal structure and magmatic evolution. The High Plateau shows a crustal structure of 20 km thickness and a seismic P wave velocity distribution, which is comparable to other LIPs. The High Plateau experienced a strong secondary volcanism, which can be seen in relicts of seamount chain volcanism. The Western Plateaus on the other hand show no extensive secondary volcanism and are mainly structured by fault systems and sedimentary basins. A constant decrease in Moho depth (9-17 km) is a further indicator of crustal stretching on the Western Plateaus. Those findings lead to the conclusion, that the two sub-plateaus of the Manihiki Plateau experienced a different magmatic and tectonic history. Whereas the High Plateau experienced a secondary volcanism, the Western Plateaus underwent crustal stretching during and after the break-up of Ontong Java Nui. This indicates, that the sub-plateaus of the Manihiki Plateau play an individual part in the break-up history of Ontong Java Nui.

  8. Crustal velocity structure of the Deccan Volcanic Province, Indian Peninsula, from observed surface wave dispersion

    Directory of Open Access Journals (Sweden)

    Gaddale Suresh


    Full Text Available Through inversion of fundamental mode group velocities of Love and Rayleigh waves, we study the crustal and subcrustal structure across the central Deccan Volcanic Province (DVP, which is one of the world’s largest terrestrial flood basalts. Our analysis is based on broadband seismograms recorded at seismological station Bhopal (BHPL in the central India from earthquakes located near west coast of India, with an average epicentral distance about 768 km. The recording station and epicentral zone are situated respectively on the northern and southern edges of DVP with wave paths across central DVP. The period of group velocity data ranges from 5 to 60 s for Rayleigh waves and 5 to 45 s for Love waves. Using the genetic algorithm, the observed data have been inverted to obtain the crust and subcrustal velocity structure along the wavepaths. Using this procedure, a similar velocity structure was also obtained earlier for the northwestern DVP, which is in the west of the present study region. Comparison of results show that the crustal thickness decreases westward from central DVP (39.6 km to northwestern DVP (37.8 km along with the decrease of thickness of upper crust; while the thickness of lower crust remains nearly same. From east to west S-wave velocity in the upper crust decreases by 2 to 3 per cent, while P-wave velocity in the whole crust and subcrust decreases by 3 to 6 per cent. The P- and S-wave velocities are positively correlated with crustal thickness and negatively correlated with earth’s heat flow. It appears that the elevated crustal and subcrustal temperature in the western side is the main factor for low velocities on this side.

  9. Magnetotelluric imaging of the crustal structure of the Great Slave Lake shear zone in Northwest Alberta (United States)

    WANG, E.; Unsworth, M. J.; Chacko, T.


    The Alberta basement is part of the North American craton - Laurentia, which was assembled in the Paleoproterozoic era. The Great Slave Lake shear zone (GSLsz) is the major crustal-scale right-lateral strike-slip feature in northwest Laurentia. Because of the extensive coverage of the rocks of the WCSB, geological studies in northern Alberta are limited to studies of drill core samples. The crustal structures of northern Alberta were defined from potential field in combination with isotopic studies. Magnetotelluric method is helpful in this case, because it is sensitive to conductive bodies. New Broadband magnetotelluric data were collected across the GSLsz to give a clear image of the crustal structure. Dimensionality analyses showed that the data are two-dimensional at the crustal depth, even though 3-D effects are present at the lowest frequencies. Consequently, 2-D inversions were applied and a preferred resistivity model was achieved. The WCSB was imaged as a conductive layer on the top of the resistive Precambrian basement rocks. Four conductive bodies associate with terrane boundaries were identified. The largest conductor - KC is located coincident with the Kiskatinaw terrane at the mid-crustal depth. The second conductor - KCC is located at the boundary of the Ksituan and Chinchaga terranes at upper-crustal depth. The KC and KCC are suspected to be linear conductors that are consistent along the strikes of the Kiskatinaw terrane and the western boundary of the Chinchaga terrane, respectively. This is concluded when considering the result of this study in combination with the potential field data, a previously proposed 3-D resistivity model and a 2-D seismic reflection result. Both of the KC and KCC corresponds to seismically reflective zones. The third conductor - HC is imaged beneath the Hottah terrane. The GSLsz is close to the HC and they may be related in origin. The fourth conductor - CBHC is imaged at the boundary of the Chinchaga and Buffalo Head

  10. Crustal structure beneath the southern Korean Peninsula from local earthquakes (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon


    The 3-D subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a 3-D velocity model of the upper crust beneath the southern Korean Peninsula using 19 935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  11. Crustal structure and tectonic history of the Kermadec arc inferred from MANGO seismic refraction profiles (United States)

    Bassett, D.; Kopp, H.; Sutherland, R.; Henrys, S.; Watts, A. B.; Timm, C.; Scherwath, M.; Grevemeyer, I.; de Ronde, C. E. J.


    We have analyzed three wide-angle seismic reflection and refraction profiles and applied spectral averaging techniques to regional grids of bathymetry and free-air gravity anomaly to place the first regional constraints on the crustal structure of the Kermadec arc. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure, across which, 1) the remnant Lau-Colville and active Kermadec arc ridges narrow by >50%; 2) the backarc and forearc deepen by 1 km, and 3) the active volcanic arc is deflected west into the deepest known backarc basin. We use residual bathymetric anomalies to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110±20 km) and strike ( 005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7-7.3 km s-1. Lower crustal velocities are similar to the northern Kermadec forearc, but there is no seismic or gravimetric evidence for an extinct arc ridge within the forearc. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. The northern Kermadec/Tonga arc preserves a substrate of the Eocene arc, the southern Kermadec forearc preserves Mesozoic forearc rocks accreted at the Gondwana margin, and the central Kermadec arc may have fomed in the Kupe Abyssal Plain. The oldest arc related rocks recovered north and south of the CKD are 52 Ma and 16.7 Ma respectively, and plate tectonic reconstruction suggest the Eocene arc was originally conjoined with the Three Kings Ridge. The separation of these ridges during the early Oligocene likely formed the CKD. In contrast to previous interpretations, we

  12. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data (United States)

    Leftwich, T. E.; vonFrese, R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, P. T.


    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered and intruded. The mantle plume appears to be centered at (64.6 deg N, 17.4 deg W) near the Vatnajokull Glacier and the central Icelandic neovolcanic zones.

  13. Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina M.; Thybo, Hans


    We present a digital model SibCrust of the crustal structure of the Siberian craton (SC) and the West Siberian basin (WSB), based on all seismic profiles published since 1960 and sampled with a nominal interval of 50 km. Data quality is assessed and quantitatively assigned to each profile based...... on acquisition and interpretation method and completeness of crustal model. The database represents major improvement in coverage and resolution and includes depth to Moho, thickness and average P-wave velocity of five crustal layers (sediments, and upper, middle, lower, and lowermost crust) and Pn velocity...

  14. Crustal structure of the Western Carpathians and Pannonian Basin System: seismic models from CELEBRATION 2000 data and geological implication (United States)

    Janik, Tomasz; Grad, Marek; Guterch, Aleksander; Vozár, Jozef; Bielik, Miroslav; Vozárova, Anna; Hegedżs, Endre; Attila Kovács, Csaba; Kovács, István.; Celebration 2000 Working Group


    During CELEBRATION 2000 experiment the area of the Western Carphathians and Pannonian Basin System on the territory of southeastern Poland, Slovak Republic and Hungary was investigated by dense system of the deep seismic sounding profiles. In this paper, we present results of modelling of refracted and reflected waves with use 2-D ray tracing technique for profiles CEL01, CEL04, CEL05, CEL06, CEL11, CEL12 and CEL28. All seven profiles were jointly interpreted with verification and control the models at crossing points. Obtained P-wave velocity models of the crust and uppermost mantle are very complex and show differentiation of the seismic structure, where the depth of the Moho discontinuity is changing from about 25 to about 45 km. In the southern part of the area the relatively thin Pannonian Basin System crust consists of 3-7 km thick sediments and two crustal layers with 5.9-6.3 km/s in the upper crust and 6.3-6.6 km/s in the lower crust. In the upper crust of ALCAPA beneath profile CEL05 a high velocity body of Vp≥ 6.4 km/s was detected in the uppermost 5 km, which corresponds to the Bükk Composite Terrane. The total thickness of the ALCAPA crust is 1-2 km bigger than in the Tisza-Dacia. In the northern part of the area we observe 10-20 km thick uppermost crust with low velocity (Vp≤6.0 km/s), connected with TESZ and Carpathian Foredeep. Together with ca. 6.2-6.5 km/s and 6.5-6.9 km/s crustal layers they have a total thickness of 30-45 km (north of the Pieniny Klippen Belt). A sub-Moho velocities have in average values of 7.8-8.0 km/s for the Pannonian basin System, while in the Western Carpathian, the Trans-European suture zone (TESZ) and the East European Craton (EEC) part they are slightly bigger, 8.0-8.1 km/s. Lower velocities beneath the microplates ALCAPA and Tisza-Dacia could be caused by the different mineralogical and petrological compositions and the significant higher surface heat flow and temperature within the upper mantle. Beneath some

  15. Crustal seismic structure beneath Portugal and southern Galicia (Western Iberia) and the role of Variscan inheritance (United States)

    Veludo, Idalina; Dias, Nuno A.; Fonseca, Paulo E.; Matias, Luís; Carrilho, Fernando; Haberland, Christian; Villaseñor, Antonio


    The crustal structure in Western Iberia, is the result of a complex geodynamic history. Most of the surface is covered by rocks dating to the Variscan orogeny, the coastal ranges dominated by Mesozoic structures and Mesocenozoic basins covering partially the mainland. In this study we present the results of a local earthquake tomographic study, performed to image in depth this complex crustal structure down to 24 km depth. The obtained tomograms present a good correlation with the surface geology, in general with higher Vp velocities in the north, and lower Vp velocities in the south. The heterogeneity observed on the surface geology of the Galicia-Tras-os-Montes Zone is well marked, being a relatively thin layer over the smoother structure of the Centro Iberia Zone CIZ. The CIZ crustal block confined between the Porto-Tomar-Ferreira do Alentejo and the Manteigas-Bragança faults having higher Vp values, enhancing the contrast to the Lusitanian Basin to the west. The Ossa-Morena Zone corresponds to the unit presenting the greater heterogeneity in both Vp and Vp/Vs models, showing also with a complex transition to the South Portuguese Zone and a relatively smooth transition to the Centro Iberian Zone. Unexpectedly, the South Portuguese Zone present an east-west velocity variation with no apparent correspondence with the surface geology. The transition to the coastal Mesocenozoic basins is clearly marked, the Lower Tagus Valley corresponding to a 4 km thick low velocity region. The relocation inland recorded seismicity in the period 2000-2014 allows cleansing some of the alignments and establish their correlation with some of the active structures in Portugal. The model features and seismicity pattern reveal the strong role played by the Variscan heritage.

  16. Thermal and Crustal Structure Beneath the Northern Segment of the Western Brach of the East African Rift System: Constraints from Gravity and Magnetic Data (United States)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Mickus, K. L.; Ngalamo, J. G.


    We used two-dimensional (2D) radially averaged power spectral analysis and 2D forward modeling of aeromagnetic and satellite gravity data to investigate the thermal and crustal structure beneath the Albertine-Rhino graben and the Edward-George rift in order to understand controls on strain localization during rift initiation. These extensional structures are separated by the 5 km high Rwenzori Mountains (RM) and represent the northern segment of the magma-poor Western Branch (WB) of the East African Rift System (EARS). The northern part of the Albertine-Rhino graben is non-volcanic and extends within the Mesoproterozoic Madi-Igisi fold belt between the Archean North Uganda terrane in the east and the West Nile block to the west. The southwestern part of the Albertine-Rhino graben and the Edward-George rift contain volcanic exposures and extend within the Paleoproterozoic Rwenzori and Kibara-Karagwe-Ankole orogenic belts. Previous seismic and magenetotelluric data has suggested magma assisted rifting in the Edward-George rifts and southern Albertine rift. We found shallow Curie Point Depths ( 19-22±1 km), elevated heat flow ( 62-79±0.2 mWm-2) and thin crust ( 24-32 km) consistent with previous seismic receiver function data beneath the Edward-George rift and the Rwenzori Mountains. Both the crustal thickness and thermal anomaly exhibit a strong gradient, attenuating to the north beneath the Albertine-Rhino graben. Additionally, the 2D forward models suggest consistent crustal thinning beneath the Rwenzori Mountains, the Edward-George rifts and the entire axis of the Albertine-Rhino rifts. We propose that strain localization was facilitated by sub-continental lithospheric mantle delamination beneath the Edward-George rift and the Rwenzori Mountains that resulted in rapid uplift. This was accompanied by mantle melting that produced the Toro-Ankole volcanic field. The presence of the Madi-Igisi "suture zone" assisted the northeastward migration of the mantle fluids

  17. Grabens on Io: Evidence for Extensional Tectonics (United States)

    Hoogenboom, T.; Schenk, P.


    Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture

  18. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles (United States)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.


    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  19. Crustal structure beneath Beijing and its surrounding regions derived from gravity data (United States)

    Jiang, Wenliang; Zhang, Jingfa; Lu, Xiaocui; Lu, Jing


    In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake ( M S8.0) and Tangshan earthquake ( M S7.8).

  20. Crustal Structure across Rivera Plate and Jalisco Block (MEXICO): TsuJal Project (United States)

    Nuñez-Cornu, F. J.; Nunez, D.; Barba, D. C., Sr.; Trejo, E.; Escalona, F.; Danobeitia, J.; Gutierrez Pena, Q. J.


    Located on the western margin of Mexico, the collision zone between Rivera, Cocos and North American plates is a complex tectonic collage with high seismic hazards and potential tsunamigenic sources. During the spring of 2014, within the framework of TSUJAL project, Spanish and Mexican scientists investigated this region with the main objective of defining the crustal architecture of this active margin and recognizing potential structural sources that can trigger earthquakes and tsunamis at the convergence between Rivera plate-Jalisco block with the North American Plate. To achieve these goals, a wide-ranging of geophysical data was acquired in this region both offshore and onshore. In this paper, we present the preliminary results obtained from this project about bathymetric, structural geology and wide-angle seismic data of the southern coast of Bahía de Banderas. A crustal P-wave velocity model for the southern coast of Bahía de Banderas was obtained using WAS data recorded by OBS and land seismic stations for more than 150 km across Rivera Plate and Jalisco Block. The thickness of the slab in this area is about 10 km and presents a dip angle about 8º. Continental crustal thickness below Puerto Vallarta is about 20 km, no evidence of continental Moho was found in this study. This model support that due to the convergence of Rivera Plate against Jalisco Block, the region of Bahía de Banderas is under strong crustal stresses that generate structural lineaments and have the same trends offshore and inland. Most of the seismicity reported can be associated to the main structural lineaments. The Banderas Canyon apparently is in an opening process from west to east, which seems to continue through the Rio Pitillal river valley. There is no seismic or morphological evidence to consider that the Banderas Canyon is a continuation of Vallarta Graben.South of María Cleofas Island, the SC marks the limit between RP and JB, possibly being the result of the RP against JB

  1. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield (United States)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.


    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to

  2. Lithospheric Structure, Crustal Kinematics, and Earthquakes in North China: An Integrated Study (United States)

    Liu, M.; Yang, Y.; Sandvol, E.; Chen, Y.; Wang, L.; Zhou, S.; Shen, Z.; Wang, Q.


    The North China block (NCB) is geologically part of the Archaean Sino-Korean craton. But unusual for a craton, it was thermally rejuvenated since late Mesozoic, and experienced widespread extension and volcanism through much of the Cenozoic. Today, the NCB is characterized by strong internal deformation and seismicity, including the 1976 Tangshan earthquake that killed ~250,000 people. We have started a multidisciplinary study to image the lithospheric and upper mantle structure using seismological methods, to delineate crustal kinematics and deformation via studies of neotectonics and space geodesy, and to investigate the driving forces, the stress states and evolution, and seismicity using geodynamic modeling. Both seismic imaging and GPS results indicate that the Ordos plateau, which is the western part of the NCB and a relic of the Sino-Korean craton, has been encroached around its southern margins by mantle flow and thus is experiencing active cratonic destruction. Some of the mantle flow may be driven by the Indo-Asian collision, although the cause of the broad mantle upwelling responsible for the Mesozoic thinning of the NCB lithosphere remains uncertain. At present, crustal deformation in the NCB is largely driven by gravitational spreading of the expanding Tibetan Plateau. Internal deformation within the NCB is further facilitated by the particular tectonic boundary conditions around the NCB, and the large lateral contrasts of lithospheric strength and rheology. Based on the crustal kinematics and lithospheric structure, we have developed a preliminary geodynamic model for stress states and strain energy in the crust of the NCB. The predicted long-term strain energy distribution is comparable with the spatial pattern of seismic energy release in the past 2000 years. We are exploring the cause of the spatiotemporal occurrence of large earthquakes in the NCB, especially the apparent migration of seismicity from the Weihe-Shanxi grabens around the Ordos to

  3. Uppermost mantle and crustal structure at Tristan da Cunha derived from ambient seismic noise (United States)

    Ryberg, T.; Geissler, W. H.; Jokat, W.; Pandey, S.


    According to classical plume theory, the Tristan da Cunha hotspot, located ∼400 km east off the Mid-Atlantic Ridge, is thought to have played a major role in the rifting while creating an aseismic Walvis Ridge during and after the breakup of the South Atlantic margins. Volcanic activity on the Tristan da Cunha Island shows that the hotspot might still be there influencing the upper mantle and crustal structure. In this study we present ambient noise data from 24 broadband OBS around Tristan da Cunha and a seismic station on Nightingale Island, which provide first constraints on the crustal and uppermost mantle structure around the island. By combining ambient noise techniques, dispersion curve analysis of Rayleigh waves, 2D tomographic inversion of travel times and 3D depth inversion of dispersion data we derived a 3D VS velocity model around the archipelago of Tristan da Cunha. The model shows an isolated, vertically sharp bounded thickened and modified crust beneath the islands surrounded by thin oceanic crust (feeding system/magmatic underplating, respectively. The observed simple and localized volcanic structure, embedded in a rather homogeneous crust and upper mantle indicates only minor and very localized magmatic overprinting of the existing lithosphere by the Tristan da Cunha hotspot. The uppermost mantle S wave velocity beneath nearby seamounts and to the SW of the islands is also slow and could indicate a thermal influence from a deeper source, whereas the Tristan da Cunha Fracture Zone shows no signs of modification.

  4. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.


    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  5. Relation between relief and crustal structure in the Cantabrian Mountains (Spain) using DEM-GIS analysis (United States)

    Llana-Fúnez, Sergio; Rodríguez-Rodríguez, Laura; Ballesteros, Daniel; María Díaz-Díaz, Luis; Valenzuela, Pablo; López-Fernández, Carlos; José Domínguez-Cuesta, María; Meléndez, Mónica; Jiménez-Sánchez, Montserrat; Fernández-Viejo, Gabriela


    The Cantabrian Mountains show a linear E-W trend parallel to the northern coast of Iberia peninsula, from the Pyrenees to Galicia, where it looses its trend and linearity. The western end of the linear segment of the orogen coincides with a change in the style of structures, accommodating the N-S shortening during the convergence between Europe and Iberia plates. We study the relief of the 230 km-long segment of the linear range between the Cantabria and Galicia re- gions, up to 2,650 m altitude. The bulk trend of the orogeny is controlled by the orientation of alpine thrusts that accommodate the shortening in relation to plate convergence. The Alpine Orogeny produced crustal thickening and the present day topography. Crustal thickness varies from 30 km in Eastern Cantabrian Mountains to 45-55 km at the Middle part of these mountains. The collision between European and African plates localized in northern Iberia from the Eocene to Oligocene and later migrated to southern Iberia during the Miocene. No major tectonic convergence was accommodated in the Cantabrians Mountains since the Oligocene, entering the orogen an erosional phase since then. The GIS-analysis present here, using 5 and 25 m-resolution DEMs by the Spanish National Geographical Institute, aims to identify the major features and to characterize the overall relief of the Cantabrians Mountains. In our preliminary approach, we present swath profiles, major river basins, watershed, longitudinal profiles of major rivers and hypsometric curves from selected areas that cover the studied orogen segment. Major tectonic structures control the location and orientation of the main watershed of the mountain range, but also the orientation of some local watersheds, e.g. associated to the Llanera thrust or the Ventaniella (strike-slip) fault. An unexpected result is that the average altitude along the water divide is 1,500 m, regardless of the large differences in crustal thickness along the study area. Most

  6. Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Neprochnov, Y.P.; Rao, D.G.; Grinko, B.N.

    of compressional and extensional stresses applied along the 89 degrees E Fracture Zone (FZ). The stresses are interpreted as resulting from multiple ridge jumps of Wharton spreading centers during the Late Cretaceous and middle Eocene. The velocity-depth model...

  7. Along-axis crustal structure of the Porcupine Basin from seismic refraction data modelling (United States)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian; Minshull, Tim; Reston, Tim; Wagner, Gerlind; Gaws, Viola; Klaschen, Dirk; Shannon, Patrick


    The Porcupine Basin is a tongue-shaped offshore basin SW of Ireland that formed during the opening of the North Atlantic Ocean. Its history of development involved several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on subsidence analysis, showed that stretching factors (β) in the northern part of the basin are 6. However, recent studies based on seismic reflection and refraction profiles concluded that β in places along the basin axis were significantly higher, and suggested the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Constraining β and the processes related to the formation of the basin will provide insights into aspects such as the tectonic response to lithospheric extension and the thermal evolution of the basin. Here we present the tomography results of five wide-angle seismic (WAS) profiles acquired across and along the basin axis. We used a travel time inversion method to model the WAS data and obtain P-wave velocity (Vp) models of the crust and uppermost mantle, together with the geometry of the main geological interfaces along each of these lines. Coincident seismic reflection profiles to each WAS line were also used to integrate the tectonic structure with the Vp model. These results improved constrains on the location of the base of the crust and allow to estimate maximum β (βmax) along each profile. The analysis shows that βmax values in the northern part of the basin are 5-6 times larger than estimates based on subsidence analysis. Towards the south, βmax increases up to 10, but then rapidly decreases to 3.3 southwards. These values are well within the range of crustal extension at which the crust becomes entirely brittle at magma-poor margins allowing the formation of major crustal faulting and serpentinization of the mantle. In agreement with this observation, Vp

  8. Constraints on the crustal structure beneath the Sinai subplate, SE Mediterranean, from analysis of local and regional travel times

    Directory of Open Access Journals (Sweden)

    Mohamed K. Salah


    Full Text Available The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift, the Dead Sea Transform fault, and the Red Sea rift. The upper and lower crustal structures of this tectonically active, rapidly developing region are yet poorly understood because of many limitations. For this reason, a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network (ENSN from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai. Because the velocity model used for routine earthquake location by ENSN is one-dimensional, the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures. Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west. The crustal Vp/Vs ratio is 1.74 from shallow (depth ≤ 10 km earthquakes and 1.76 from deeper (depth > 10 km crustal events. The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model (PREM, implying that the seismic stations are located above widely distributed, tectonically-induced low-velocity zones. These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures. The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities, which should be excluded from major future development projects and large constructions in central and southern Sinai.

  9. Upper crustal structure in the Potenza area (Southern Apennines, Italy using Sp converted wave

    Directory of Open Access Journals (Sweden)

    D. Jongmans


    Full Text Available In this paper we analyse the records of the two Potenza seismic sequences (Southern Apennines, Italy which occurred in 1990 and 1991, in order to obtain information on the upper crustal structure in this area. The hypocentral depths are mainly concentrated below 10 km which is the supposed upper limit of the crystalline basement. The seismograms recorded at temporary arrays deployed during the two sequences clearly show on the vertical component, an intermediary phase between the P and S waves. For the investigated epicentral distances (less than 30 km the delay between this secondary phase and the direct S wave arrival is almost constant at each station, suggesting that the observed intermediary phase might be an S to P conversion at a discontinuity shallower than the hypocentral depth. This interpretation has been supported by polarisation analysis and numerical modelling results. Considering the regional geological structure, these latter have also shown that the interface generating strong converted waves could be the top of the Apulian carbonate platform overlaid with recent clay deposits and flysch sediments. 1D inversion of the travel-time data was performed in order to evaluate a local vertical upper crustal profile.

  10. Crustal Structure and Subsidence of the Williston Basin: Evidence from Receiver Function Stacking and Gravity Modeling (United States)

    Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.


    The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.

  11. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China (United States)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju


    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly

  12. Crustal seismic structure and depth distribution of earthquakes in the Archean Kuusamo region, Fennoscandian Shield (United States)

    Uski, Marja; Tiira, Timo; Grad, Marek; Yliniemi, Jukka


    Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12-20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5-6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5-15 km in the Archean part to 15-22 km in the Archean-Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9-7.3 km/s and 7.9-8.2 km/s. The average Vp/ Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust. The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N-NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW-SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ˜2.4-2.1 Ga. The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14-30 km deep earthquakes are characteristic features of the Kuusamo

  13. Study of crustal structure and geological implications of southwestern margin of Northeast India (United States)

    Saikia, Sowrav; Baruah, Santanu; Chopra, Sumer; Singh, Upendra K.; Gogoi, Bibhuti; Gohain, Himanata B.


    It is noticed that few geophysical studies have been carried out to decipher the crustal structure of southwestern part of the Northeast India comprising of Tripura fold belt and Bengal basin as compared to the Shillong plateau and the Brahmaputra basin. This region has a long history of seismicity that is still continuing. We have determined first-order crustal features in terms of Moho depths ( H) and average VP/VS ratios ( κ) using H- κ stacking technique. The inversion of receiver functions data yields near surface thick sedimentary layer in the Bengal basin, which is nearly absent in the Shillong plateau and Tripura fold belt. Our result suggests that the crust is thicker (38-45 km) in the Tripura fold belt region with higher shear-wave velocity in the lower crust than the Shillong plateau. The distribution of VP/VS ratio indicates heterogeneity throughout the whole region. While low to medium value of Poisson's ratio (1.69-1.75) indicates the presence of felsic crust in the Shillong plateau of the extended Indian Archean crust. The medium to high values of VP/VS ratio (> 1.780) in the Bengal basin and the Tripura fold belt region represent mafic crust during the formation of the Bengal delta and the Tripura fold belt creation in the Precambrian to the Permian age. The depth of the sediments in the Bengal basin is up to 8 km on its eastern margin, which get shallower toward its northeastern and southeastern margins.

  14. Crustal and uppermost mantle structure and deformation in east-central China (United States)

    Li, H.; Yang, X.; Ouyang, L.; Li, J.


    We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present

  15. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim


    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  16. Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen) (United States)

    Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias


    Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.

  17. A long-lived Late Cretaceous-early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey (United States)

    Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.


    Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.

  18. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

    DEFF Research Database (Denmark)

    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon


    Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere...... Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (∼82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny...

  19. Early Neoarchaean A-type granitic magmatism by crustal reworking ...

    Indian Academy of Sciences (India)


    dyke swarm). It is suggested that the ~2.8 Ga A-type granites in the Singbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting. Key words: Granite; A-type; Geochemistry; Archaean; Crustal reworking; Singhbhum craton. Abstract. Click here to ...

  20. Spatial relationships between crustal structures and mantle seismicity in the Vrancea Seismogenic Zone of Romania: Implications for geodynamic evolution (United States)

    Enciu, Dana-Mihaela

    Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.

  1. Active faulting, 3-D geological architecture and Plio-Quaternary structural evolution of extensional basins in the central Apennine chain, Italy (United States)

    Gori, Stefano; Falcucci, Emanuela; Ladina, Chiara; Marzorati, Simone; Galadini, Fabrizio


    The general basin and range Apennine topographic characteristic is generally attributed to the presently active normal fault systems, whose long-term activity (throughout the Quaternary) is supposed to have been responsible for the creation of morphological/structural highs and lows. By coupling field geological survey and geophysical investigations, we reconstructed the 3-D geological model of an inner tectonic basin of the central Apennines, the Subequana Valley, bounded to the northeast by the southern segment of one of the major active and seismogenic normal faults of the Apennines, known as the Middle Aterno Valley-Subequana Valley fault system. Our analyses revealed that, since the late Pliocene, the basin evolved in a double half-graben configuration through a polyphase tectonic development. An early phase, Late Pliocene-Early Pleistocene in age, was controlled by the ENE-WSW-striking and SSE-dipping Avezzano-Bussi fault, that determined the formation of an early depocentre towards the N-NW. Subsequently, the main fault became the NW-SE-striking faults, which drove the formation during the Quaternary of a new fault-related depocentre towards the NE. By considering the available geological information, a similar structural evolution has likely involved three close tectonic basins aligned along the Avezzano-Bussi fault, namely the Fucino Basin, the Subequana Valley, and the Sulmona Basin, and it has been probably experienced by other tectonic basins of the chain. The present work therefore points out the role of pre-existing transverse tectonic structures, inherited by previous tectonic phases, in accommodating the ongoing tectonic deformation and, consequently, in influencing the structural characteristics of the major active normal faults. This has implications in terms of earthquake fault rupture propagation and segmentation. Lastly, the morpho-tectonic setting of the Apennine chain results from the superposition of deformation events whose geological

  2. Extensional tectonics in Mt Parnon (Peloponnesus, Greece) (United States)

    Skourtsos, Emmanuel; Lekkas, Spyridon


    Peloponnesus in the south-western part of the Aegean is formed by a heterogeneous pile of alpine thrust sheets that was reworked by normal faulting from Upper Miocene to recent times. Upper Miocene-Lower Pliocene extension in Mt Parnon was accommodated by several mappable brittle detachment faults that exhibit a top-to-the-NE-ENE sense of shear. The hanging wall of the detachments comprises a number of highly tilted fault blocks containing abundant evidence of intense internal deformation by normal faulting and layer-parallel shearing contemporaneous with faulting. These fault blocks are remnants of a cohesive extensional block that slipped to the NE-ENE and broke up along high-angle normal faults that sole into or are cut by the detachments. The largest part of this block is located at the eastern edge of the metamorphic core forming the hanging wall of East Parnon high-angle normal fault that excised part of the aforementioned detachments. The lowermost metamorphic Unit of the nappe-pile does not seem to be affected by the previous extensional episode. Upper plate reconstruction shows that various units of the nappe-pile were affected by high-angle normal faults that linked to detachment faults in the weaker layers. Since the Middle-Upper Pliocene further exhumation of the metamorphic rocks has resulted in the formation of high-angle normal faults overprinting Neogene extensional structures and cut the entire nappe-pile. This new fault system tilted the earlier extensional structures and produced a NE-SW coaxial deformation of Mt Parnon.

  3. Crustal structure and inferred extension mode in the northern margin of the South China Sea (United States)

    Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.


    Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted

  4. Interaction of ascending magma with pre-existing crustal structures: Insights from analogue modeling (United States)

    Le Corvec, N.; Menand, T.; Rowland, J. V.


    Magma transport through dikes is a major component of the development of basaltic volcanic fields. Basaltic volcanic fields occur in many different tectonic setting, from tensile (e.g., Camargo Volcanic Field, Mexico) to compressive (e.g., Abu Monogenetic Volcano Group, Japan). However, an important observation is that, independently of their tectonic setting, volcanic fields are characterized by numerous volcanic centers showing clustering and lineaments, each volcanic center typically resulting from a single main eruption. Analyses from Auckland Volcanic Field reveal that, for each eruption, magma was transported from its source and reached the surface at different places within the same field, which raises the important question of the relative importance of 1) the self-propagation of magma through pristine rock, as opposed to 2) the control exerted by pre-existing structures. These two mechanisms have different implications for the alignment of volcanic centers in a field as these may reflect either 1) the state of crustal stress dikes would have experienced (with a tendency to propagate perpendicular to the least compressive stress) or 2) the interaction of propagating dikes with pre-existing crustal faults. In the latter case, lineaments might not be related to the syn-emplacement state of stress of the crust. To address this issue, we have carried out a series of analogue experiments in order to constrain the interaction of a propagating magma-filled dike with superficial pre-existing structures (e.g., fracture, fault, joint system). The experiments involved the injection of air (a buoyant magma analogue) into elastic gelatine solids (crustal rock analogues). Cracks were cut into the upper part of the gelatine solids prior to the injection of air to simulate the presence of pre-existing fractures. The volume of the propagating dikes, their distance from pre-existing fractures and the ambient stress field were systematically varied to assess their influence

  5. Upper crustal structure of Madeira Island revealed from ambient noise tomography (United States)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo


    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  6. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai


    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  7. Crustal and Upper Mantle Structure of the Ultra-slow Spreading Gakkel Ridge (United States)

    Schmidt-Aursch, M.; Jokat, W.


    The 1800 km long Gakkel Ridge (Arctic Ocean) shows full spreading rates between 13 mm/yr north of Greenland and 6 mm/yr near its termination in the Laptev Sea. It is the slowest-spreading mid-oceanic ridge worldwide, and therefor plays a key role in understanding melt generation and crustal accretion processes. The joint AMORE expedition investigated the rigde in summer 2001 with the two research icebreakers RV Polarstern and USCGC Healy. Several geophysical and petrological experiments have been conducted including refraction seismic profiling along the rift valley and detailed sampling of the sea floor. Analysis of the rock samples and forward modelling of the wide-angle seismic data resulted in a clear division of the ridge in three parts with completely different structural characteristics. First results of a helicopter-based magnetic survey gave evidence for long-term focused magmatism along some parts of the ridge. The seismic data yielded also an exceptional thin oceanic crust with thicknesses not higher than 3 km and seismic velocities well below 6.4 km/s. Seismic velocities in the upper mantle are with values around 7.8 km/s also very low. The velocity models gave direct constraints for a 3D forward modelling of gravity data based on the 5-minute-grid of the Arctic Gravity Project. The crustal thickness shows only little variations along the rift valley, but perpendicular to the ridge the thickness varies between vanishingly thin and about 6 km. The density models off-axis strongly depend on the assumed temperature structure of the upper mantle. We will present several 3D density models of the oceanic crust and upper mantle to discuss different melt generation processes along the ridge.

  8. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    International Nuclear Information System (INIS)

    Milnes, A.G.; Gee, D.G.; Lund, C.E.


    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics

  9. Regional Gravity and Magnetic Studies of Crustal Structure in Northeastern Mexico and Their Tectonic Implications (United States)

    Sanchez-Alvarez, R.; Urrutia-Fucugauchi, J.


    Detailed modeling of regional Bouguer gravity and aeromagnetic anomalies in northeastern Mexico permits documentation of the crustal structure and tectonic relationships of major structural features at the southern margin of the North American craton. This region has experienced a complex evolution with major events that include Paleozoic subduction and consumption of an ocean, subsequent collision of continental plates to form the supercontinent Pangaea, major faulting and deformation, middle Mesozoic fragmentation and rifting between North and South America, formation of the Gulf of Mexico and Caribbean, strike-slip lateral faulting, Laramide compression and Cenozoic extension. The Marathon-Ouachita system in northern Mexico shows the effects of strike-slip faulting and deformation, which can be traced from its potential field anomalies and oil- exploration borehole logs and data. Major tectonic elements from west to east are the foreland, frontal zone, interior zone, the Coahuila terrane, and a large elongated intrusive province. Remnants of the Permo-Triassic magmatic arc and exotic continental crust are present in the Coahuila and Gulf coast terranes. They are all affected by lateral faulting along roughly east-west regional faults, and, if the characterization of tectonic elements is correct, the proposed paleoreconstruction sets limits on the amount of lateral translation and regional crustal deformation in northern Mexico. Younger deformational episodes during the Cenozoic need to be accounted for in the tectonic reconstruction. The apparent displacement of the intrusive belt is of the order of 600-700 km. The intrusive belt and the Ouachita frontal and interior zones appear also fragmented and displaced in the Coahuila area by lateral faults such as San Marcos, China-Sierra Mojada, Barroteran, San Carlos and Sabinas. Displacement is less than that observed for the Mojave-Sonora megashear south of Monterrey area, as documented from the gravity and

  10. Crustal Structure in the Western Part of Romania from Local Seismic Tomography (United States)

    Zaharia, Bogdan; Grecu, Bogdan; Popa, Mihaela; Oros, Eugen; Radulian, Mircea


    The inner part of the Carpathians in Romania belongs to the Carpathians-Pannonian system bordered by the Eastern Carpathians to the north and east, Southern Carpathians to the south and Pannonian Basin to the west. It is a complex tectonic region with differential folding mechanisms, post-collisional kinematics, rheology and thermal properties, including within its area the Apuseni Mountains and the Transylvanian Basin. The purpose of this study is to map the 3-D structure of the crust over this region on the basis of local earthquake data. Input data were recorded during the South Carpathian Project (2009–2011), a successful collaboration between the Institute of Geophysics and Tectonics of the University of Leeds and the National Institute for Earth Physics (NIEP), Romania. A temporary array of 32 broadband seismic stations (10 CMG-40T, 8 CMG-3T and 14 CMG-6TD) was installed across the western part of Romania (spaced at 40 to 50 km intervals) during the project. In addition, 25 stations deployed in the eastern Hungary and Serbia was considered. P- and S-wave arrivals are identified for all the selected events (minimum 7 phases per event with reasonable signal/noise ratio). All the events are first relocated using Joint Hypocentre Determination (JHD) technique. Then the well-located events were inverted to determine the crustal structure using LOTOS algorithm. The lateral variations of the crustal properties as resulted from the tomography image are interpreted in correlation with the station corrections estimated by JHD algorithm and with the post-collisional evolution of the Carpathians-Pannonian system.

  11. The crustal structure of the Southern Nain and Makkovik Provinces of Labrador deriverd from seismic refraction data

    DEFF Research Database (Denmark)

    Funck, T.; Hansen, A.K.; Reid, Ian Derry


    A refraction seismic profile was used to determine the crustal structure across the Nain/ Makkovik boundary, and to look for an offshore continuation of the  Nain Plutonic Suite (NPS). Velocity models were developed from forward and inverse modeling of travel times. There are. In the Saglek block...

  12. The crustal and upper mantle structure around the Gulf of California, inferred from surface wave data and receiver functions

    NARCIS (Netherlands)

    de Vos, D.


    This thesis reports on studies that have been carried out to better image the crustal and upper mantle shear velocity structure around the Gulf of California, Mexico. The Gulf of California forms a part of the plate boundary between the Pacific and North-American plates, where transform motion in

  13. Imaging of upper crustal structure beneath East Java-Bali, Indonesia with ambient noise tomography (United States)

    Martha, Agustya Adi; Cummins, Phil; Saygin, Erdinc; Sri Widiyantoro; Masturyono


    The complex geological structures in East Java and Bali provide important opportunities for natural resource exploitation, but also harbor perils associated with natural disasters. Such a condition makes the East Java region an important area for exploration of the subsurface seismic wave velocity structure, especially in its upper crust. We employed the ambient noise tomography method to image the upper crustal structure under this study area. We used seismic data recorded at 24 seismographs of BMKG spread over East Java and Bali. In addition, we installed 28 portable seismographs in East Java from April 2013 to January 2014 for 2-8 weeks, and we installed an additional 28 seismographs simultaneously throughout East Java from August 2015 to April 2016. We constructed inter-station Rayleigh wave Green's functions through cross-correlations of the vertical component of seismic noise recordings at 1500 pairs of stations. We used the Neighborhood Algorithm to construct depth profiles of shear wave velocity (Vs). The main result obtained from this study is the thickness of sediment cover. East Java's southern mountain zone is dominated by higher Vs, the Kendeng basin in the center is dominated by very low Vs, and the Rembang zone (to the North of Kendeng zone) is associated with medium Vs. The existence of structures with oil and gas potential in the Kendeng and Rembang zones can be identified by low Vs.

  14. Crustal Structure and Deformation of the Sichuan-Yunnan Region Revealed by receiver Function Data (United States)

    Zeng, S.; Zheng, Y.


    Sichuan-Yunnan and its surrounding areas locates in the southeast side to the Tibetan Plateau, due to the intrusion of the Indian Plate under the Tibetan Plateau, materials escape from the Tibetan Plateau and flow southward to southeastward. Because of such tectonic environment, the Sichuan-Yunnan region is experiencing high tectonic movement, and is capable of highly diffused seismicity. Based on dynamic simulation and field survey investigations, tectonic and geological studies proposed a decoupling model in this region and lower crustal flow may inflate in the crust. However, this idea needs more evidences, especially anisotropic structures to support it, since the anisotropic structures are usually directly related to the movement of materials, or to the tectonic distributions. In the past several years, a number of works have been done on the anisotropic structures in the Tibetan Plateau and its surroundings. In usually, previous studies were mainly carried out by two kinds of methods. First, the shear wave splitting of SKS, which mainly reflects the accumulation effect of the anisotropy of the crust to the mantle; the other way is use surface wave to investigate the anisotropic features at different azimuths and depths. In the recent years, receiver function is used to determine the inclination and anisotropy of the subsurface structure, comparing with the other two methods, receiver functions can provide higher resolution and reliable anisotropic features in the crust. Following the method of Liu and Niu(2012), we collected teleseismic data from the Himalayan first term network, and picked out high quality data based on the waveform SNR ratio, as well as the azimuthal distributions. Comparing with previous work (e.g., Sun et al.,2012), our work can provide more receiver functions results with higher reliability. We find that the crust beneath the Sichuan-Yunnan region has a thickness of 30-60 km and Vp/Vs ratio of 1.70-1.80. The Moho depth from northwest to

  15. Crustal structure across the lateral edge of the Southern Tyrrhenian slab (United States)

    Pio Lucente, Francesco; Piana Agostinetti, Nicola; Di Bona, Massimo; Govoni, Aladino; Bianchi, Irene


    In the southeastern corner of the Tyrrhenian basin, in the central Mediterranean Sea, a tight alignment of earthquakes along a well-defined Benioff zone reveals the presence of one of the narrowest active trenches worldwide, where one of the last fragments of the former Tethys ocean is consumed. Seismic tomography furnishes snapshot images of the present-day position and shape of this slab. Through receiver function analysis we investigate the layered structures overlying the slab. We compute receiver functions from the P-coda of teleseismic events at 13 temporary station deployed during the "Messina 1908-2008" research project (Margheriti, 2008), and operating for an average period of 15 months each. The crustal and uppermost mantle structure has been investigated using a trans-dimensional McMC algorithm developed by Piana Agostinetti and Malinverno (2010), obtaining a 1D S-wave velocity profile for each station. At three of the stations, operating for a longer period of time, the number and the azimuthal distribution of teleseisms allowed us to stack the RF data-set with back azimuth and to compute the harmonic expansion. The analysis of the back-azimuthal harmonics gave us insight on the presence of dipping interfaces and anisotropic layers at depth. The strike and the dip of interfaces and the anisotropic parameters have been quantified using the Neighbourhood Algorithm (Sambridge, 1999). Preliminary results highlight: (1) a neat differentiation of the isotropic S-wave velocity structure passing through the slab edge, from the tip of the Calabrian arc to the Peloritani Range, and (2) the presence of crustal complexities, such as dipping interfaces and anisotropic layers, both in the upper and lower crust. Margheriti, L. (2008), Understanding Crust Dynamics and Subduction in Southern Italy, Eos Trans. AGU, 89(25), 225-226, doi:10.1029/2008EO250002. Piana Agostinetti, N. and A. Malinverno (2010) Receiver Function inversion by trans-dimensional Monte Carlo

  16. Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt. (United States)

    Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.


    Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern

  17. The Hatton Basin and continental margin: Crustal structure from wide-angle seismic and gravity data (United States)

    Vogt, Ulrike; Makris, Jannis; O'Reilly, Brian M.; Hauser, Franz; Readman, Peter W.; Jacob, A. W. Brian; Shannon, Pat M.


    Results from a wide-angle seismic and gravity study between the Rockall Bank and the Iceland Basin in the North Atlantic are presented. Crustal and sedimentary structures are resolved in the Hatton Basin and across the Hatton continental margin (HCM) east of magnetic anomaly 24. The structure of the oceanic crust west of the anomaly is also determined. Gravity data support the seismic model in areas of good seismic coverage and are used to control the model where the wide-angle seismic data are poor. A two-layer sedimentary sequence is present both in the Hatton Basin and across the continental margin. The lower layer, with P wave velocity of about 4 km/s, is interpreted as pre-Eocene synrift sediments and is up to 3.5 km thick. A younger and thinner (1-2.5 km) postrift sequence, with a velocity of about 2 km/s, defines a strong velocity contrast, which suggests an erosional unconformity surface. The sedimentary structure is distinctly different from that in the Rockall Trough, where a third intermediate layer (Vp ≈ 3 km/s) occurs. The three-layer crust, characterized by two intracrustal reflections (PiP1 and PiP2) varies from 30 km thick under the Rockall Bank to about 15 km below the Hatton Basin, where it is stretched by a factor of 2 relative to onshore Ireland. The crust is thinnest below the Hatton Bank, where the presence of a single intracrustal reflection indicates that the lower crustal layer thins to below the seismic resolution limit. Below the HCM a region of thick lower crust with anomalously high velocity (Vp ≈ 7.2 km/s) is resolved by the seismic and gravity data. It is connected (west of anomaly 24) to a region of oceanic crust, which is thicker than in the Iceland Basin. These relationships between the thick lower crust below the HCM and the oceanic crust in the Iceland Basin are interpreted as evidence for magmatic underplating, consistent with previous models for the HCM. The inferred unconformity surface between the synrift and postrift

  18. Crustal structure at the western end of the North Anatolian Fault Zone from deep seismic sounding

    Directory of Open Access Journals (Sweden)

    B. Baier


    Full Text Available The first deep seismic sounding experiment in Northwestern Anatolia was carried out in October 1991 as part of the "German - Turkish Project on Earthquake Prediction Research" in the Mudurnu area of the North Anatolian Fault Zone. The experiment was a joint enterprise by the Institute of Meteorology and Geophysics of Frankfurt University, the Earthquake Research Institute (ERI in Ankara, and the Turkish Oil Company (TPAO. Two orthogonal profiles, each 120 km in length with a crossing point near Akyazi, were covered in succession by 30 short period tape recording seismograph stations with 2 km station spacing. 12 shots, with charge sizes between 100 and 250 kg, were fired and 342 seismograms out of 360 were used for evaluation. By coincidence an M b = 4.5 earthquake located below Imroz Island was also recorded and provided additional information on Moho and the sub-Moho velocity. A ray tracing method orginally developed by Weber (1986 was used for travel time inversion. From a compilation of all data two generalized crustal models were derived, one with velocity gradients within the layers and one with constant layer velocities. The latter consists of a sediment cover of about 2 km with V p » 3.6 km/s, an upper crystalline crust down to 13 km with V p » 5.9 km/s, a middle crust down to 25 km depth with V p » 6.5 km/s, a lower crust down to 39 km Moho depth with V p » 7.0 km/s and V p » 8.05 km/s below the Moho. The structure of the individual profiles differs slightly. The thickest sediment cover is reached in the Izmit-Sapanca-trough and in the Akyazi basin. Of particular interest is a step of about 4 km in the lower crust near Lake Sapanca and probably an even larger one in the Moho (derived from the Imroz earthquake data. After the catastrophic earthquake of Izmit on 17 August 1999 this significant heterogeneity in crustal structure appears in a new light with regard to the possible cause of the Izmit earthquake. Heterogeneities in

  19. Polymer fragmentation in extensional flow

    International Nuclear Information System (INIS)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech


    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments

  20. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael


    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves...

  1. Polymer fragmentation in extensional flow

    Energy Technology Data Exchange (ETDEWEB)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech


    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments.

  2. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    International Nuclear Information System (INIS)

    Martha, Agustya Adi; Widiyantoro, Sri; Cummins, Phil; Saygin, Erdinc; Masturyono


    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images

  3. Crustal structure at the easternmost termination of the Variscan belt based on CELEBRATION 2000 and ALP 2002 data

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Środa, P.


    Roč. 460, č. 1-4 (2008), s. 55-75 ISSN 0040-1951 R&D Projects: GA MŽP SB/630/2/00 Institutional research plan: CEZ:AV0Z30120515 Keywords : Variscan orogen * Bohemian Massif * crustal structure * refraction and wide-angle reflection * seismic methods Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.677, year: 2008

  4. Ultrasound monitoring of applied forcing, material ageing, and catastrophic yield of crustal structures

    Directory of Open Access Journals (Sweden)

    G. P. Gregori


    Full Text Available A new kind of data analysis is discussed – and a few case histories of actual application are presented – concerning the physical information attainable by acoustic emission (AE records in geodynamically active or volcanic areas. The previous analyses of such same kind of observations were reported in several papers appeared in the last few years, and here briefly recalled. They are concerned with the inference of the forcing ("F" acting on the physical system, and on the ageing ("T" or fatigue of its "solid" structures. The new analysis here discussed deals with the distinction between a state of applied stress ("hammer regime", compared to state of "recovery regime" of the system while it seeks a new equilibrium state after having been perturbed. For instance, in the case of a seismic event – and according to some kind of almost intuitive argument – the "hammer regime" is the phenomenon leading to the main shock, while the "recovery regime" deals with the well known aftershocks. Such same intuitive inference, however, can be investigated by a much more formal algorithm, aimed at envisaging the minor changes of the behaviour of the system, during its history and during its present dynamic evolution. As a demonstrative application, detailed consideration is given of AE records – each one lasting for a few years – collected on the Italian peninsula vs. records collected on the Kefallinìa Island (western Greece. Such two areas are well known being characterised by some great comparative difference in their respective tectonic setting. When considering planetary scale phenomena, they appear comparatively very close to each other. Hence, they are likely being presumably affected by similar large-scale external actions, although they ought to be expected to respond in some completely different way. Such facts are clearly manifested by some substantially different AE responses of the local crustal

  5. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography (United States)

    Korenaga, J.; Holbrook, W. S.; Kent, G. M.; Kelemen, P. B.; Detrick, R. S.; Larsen, H.-C.; Hopper, J. R.; Dahl-Jensen, T.


    We present results from a combined multichannel seismic reflection (MCS) and wideangle onshore/offshore seismic experiment conducted in 1996 across the southeast Greenland continental margin. A new seismic tomographic method is developed to jointly invert refraction and reflection travel times for a two-dimensional velocity structure. We employ a hybrid ray-tracing scheme based on the graph method and the local ray-bending refinement to efficiently obtain an accurate forward solution, and we employ smoothing and optional damping constraints to regularize an iterative inversion. We invert 2318 Pg and 2078 PmP travel times to construct a compressional velocity model for the 350-km-long transect, and a long-wavelength structure with strong lateral heterogeneity is recovered, including (1) ˜30-km-thick, undeformed continental crust with a velocity of 6.0 to 7.0 km/s near the landward end, (2) 30- to 15-km-thick igneous crust within a 150-km-wide continent-ocean transition zone, and (3) 15- to 9-km-thick oceanic crust toward the seaward end. The thickness of the igneous upper crust characterized by a high-velocity gradient also varies from 6 km within the transition zone to ˜3 km seaward. The bottom half of the lower crust generally has a velocity higher than 7.0 km/s, reaching a maximum of 7.2 to 7.5 km/s at the Moho. A nonlinear Monte Carlo uncertainty analysis is performed to estimate the a posteriori model variance, showing that most velocity and depth nodes are well determined with one standard deviation of 0.05-0.10 km/s and 0.25-1.5 km, respectively. Despite significant variation in crustal thickness, the mean velocity of the igneous crust, which serves as a proxy for the bulk crustal composition, is surprisingly constant (˜7.0 km/s) along the transect. On the basis of a mantle melting model incorporating the effect of active mantle upwelling, this velocity-thickness relationship is used to constrain the mantle melting process during the breakup of Greenland

  6. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data (United States)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.


    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north

  7. Impact of acoustic velocity structure to measurement of ocean bottom crustal deformation (United States)

    Ikuta, R.; Tadokoro, K.; Okuda, T.; Sugimoto, S.; Watanabe, T.; Eto, S.; Ando, M.


    We are developing a geodetic method of monitoring crustal deformation under the ocean using kinematic GPS and acoustic ranging. The goal of our research is to achieve sub-centimeter accuracy in measuring oceanic crustal deformation by a very short-time measurement like 10 hours. In this study, we focused on lateral variation of acoustic velocity structure in seawater and introduced an inclined acoustic velocity structure model to improve accuracy of the measurement. We have a few measurement sites along Nankai trough, Japan. In each sites, we deployed a trio of transponders on ocean floor (seafloor benchmark units) within distance comparable with the depth. An ultrasonic signal is generated from a surface vessel drifting over the benchmark unit, which is received and replied by the benchmark unit. In this system, both acoustic velocity structure and the benchmark unit positions were determined simultaneously for the each measurement using a tomographic technique. This tomographic technique was adopted on an assumption that the acoustic velocity structure is horizontally layered and changes only in time, not in space. Ikuta et al., (AGU fall meeting 2009) reported an approach to improve accuracy of benchmark positioning using a new additional assumption. The additional assumption was that the configuration of the transponders trio constituting one benchmark unit does not change. They determined the time evolution of weight center for the fixed transponder triangle between different measurements using all repetitively obtained data sets at once. This is contrasting to the previous method in which each data set for different measurement was solved independently. This assumption worked well in reducing number of unknown parameters. As a result, repeatability of benchmark positioning improved from 5 cm to 3 cm. We conducted numerical experiments synthesizing acoustic travel-time data to evaluate the robustness of this new approach. When acoustic travel-time data is

  8. Crustal Structure Across the Okavango Rift Zone, Botswana: Initial Results From the PRIDE-SEISORZ Active-Source Seismic Profile (United States)

    Canales, J. P.; Moffat, L.; Lizarralde, D.; Laletsang, K.; Harder, S. H.; Kaip, G.; Modisi, M.


    The PRIDE project aims to understand the processes of continental rift initiation and evolution by analyzing along-axis trends in the southern portion of the East Africa Rift System, from Botswana through Zambia and Malawi. The SEISORZ active-source seismic component of PRIDE focused on the Okavango Rift Zone (ORZ) in northwestern Botswana, with the main goal of imaging the crustal structure across the ORZ. This will allow us to estimate total crustal extension, determine the pattern and amount of thinning, assess the possible presence of melt within the rift zone, and assess the contrasts in crustal blocks across the rift, which closely follows the trend of a fold belt. In November 2014 we conducted a crustal-scale, 450-km-long seismic refraction/wide-angle reflection profile consisting of 19 sources (shots in 30-m-deep boreholes) spaced ~25 km apart from each other, and 900 receivers (IRIS/PASSCAL "Texan" dataloggers and 4.5Hz geophones) with ~500 m spacing. From NW to SE, the profile crosses several tectonic domains: the Congo craton, the Damara metamorphic belt and the Ghanzi-Chobe fold belt where the axis of the ORZ is located, and continues into the Kalahari craton. The record sections display clear crustal refraction (Pg) and wide-angle Moho reflection (PmP) phases for all 17 of the good-quality shots, and a mantle refraction arrival (Pn), with the Pg-PmP-Pn triplication appearing at 175 km offset. There are distinct changes in the traveltime and amplitude of these phases along the transect, and on either side of the axis, that seem to correlate with sharp transitions across tectonic terrains. Initial modeling suggests: (1) the presence of a sedimentary half-graben structure at the rift axis beneath the Okavango delta, bounded to the SE by the Kunyere-Thamalakane fault system; (2) faster crustal Vp in the domains to the NW of the ORZ; and (3) thicker crust (45-50 km) at both ends of the profile within the Congo and Kalahari craton domains than at the ORZ and

  9. Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia. (United States)

    Alemu, T. B.; Abdelsalam, M. G.


    The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging

  10. Towards seismic data inversion for crustal thermo-chemical structure: what thermodynamics say (United States)

    Diaferia, Giovanni; Cammarano, Fabio


    decrease in VS and an increase in VP/VS when reaching melting temperature. The ratio VS/density of the bulk crustal rock shows a narrow variability across a wide range of temperatures (400-1000 K), dry compositions and water content. We suggest that this ratio can be used as a constraint in joint-inversions of gravity and seismic data or to derive the density distribution of the crust given a VS model. Sharp impedance jumps in correspondence of main phase transitions cause relevant seismic signature (i.e. receiver functions. In particular, the transformation of -Quartz in -Quartz represents a non-negligible seismic discontinuity, marked by increases in VP and VP/VS that are larger than those generated by compositional change at the upper-middle, middle-lower crust boundaries. Since the depth of the - Quartz transition is mainly controlled by temperature, information about the local geothermal gradient is fundamental for discriminating between compositionally-induced increase in VP and VP/VS from those related to the Quartz transition. Our findings can be used as a basis for an improved and geologically-consistent joint-inversion of surface wave and receiver functions for the Italian crust. Additional constraints from gravity data on density structure will be first tested with the purely seismically-based model and then included into the joint inversion.

  11. Electrical structure and its implication across the lower- and upper-crustal settings of South India (United States)

    Raval, U.


    Measurements of a large scale MMA experiment covering both the granulite and greenstone terrains of Archeans in the southern part of India is re-visited and re-analyzed. The induced field variations contain the signatures of crustal and subcrustal electrical conductivities, although substantially distorted by the sea-land interfaces and cenozoic sediments. However, through a selection of some reconnaissance profiles and temporal variations, an attempt is made to deduce whether: (1) significant differences exist between the electrical structures of the high and low grade complexes (i.e., if the electrical conductivity of the lower crust is due to minerological composition or is intrinsic to the positioning at depths greater than 15 km); (2) the probable seaward extension of the continental crust and its transition to oceanic type may also contribute (through intracrustal DC-like telluric sheets) to the induction field in addition to or rather than the sharply localized zones; (3) the observed parameters are indicative of a formal anisotropy and/or undulations in the deep crust; and (4) the postulate of relatively hotter Indian shield is reflected particularly with regard to differential metamorphism. In the last case, the crust-mantle coupling in this region - unlike other similar areas - seems to be markedly affected by the evolution of Ne-plate velocity field.

  12. Modeling and Crustal Structure in the Future Reservoir of Jequitaí, Brazil (United States)

    Teixeira, C. D.; Von Huelsen, M. G.; Chemale, F., Jr.; Nascimento, A. V. D. S., Sr.; do Sacramento, V., Sr.; Garcia, V. B. P., Sr.


    Integrated geophysical and geological data analysis in the state of Minas Gerais, Brazil, allowed the modeling of the subsurface framework in a region where a reservoir - the Jequitaí reservoir - will be constructed. Studies of this nature during the previous stages of the construction of large hydroelectric projects are highly important, because the regional geology understanding associated with geophysical data interpretation can help to prevent damage in the physical structure of the dam, which will aid in its preservation. The use of gravity and magnetic data in a 2D crustal model provided information on a possible framework of the area and revealed features not mapped until now, which may be useful for further studies and can contribute to the understanding of this portion of the crust. The results show the presence of high gravity anomalies in the southern part of the study area, besides extensive lineaments that cross the whole area, interpreted as possible faults and dykes. Depth estimation techniques, such as Euler deconvolution and radially averaged power spectrum, allowed the identification of continuous structures up to 400 m depth, and showed differences in the basement depth in the northern and southern portions of the study area. Inversion of the gravity data along a profile crossing a gravity anomaly yielded to information about the depth, thickness and shape of a possible intrusive body. The geological-geophysical model was consistent with the interpretations based on surface geology and in the gravity and magnetic signal, because the section could be modeled respecting the geophysical data and the pre-existing structural proposals.

  13. Trans-Dimensional Bayesian Imaging of 3-D Crustal and Upper Mantle Structure in Northeast Asia (United States)

    Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.


    Imaging 3-D structures using stepwise inversions of ambient noise and receiver function data is now a routine work. Here, we carry out the inversion in the trans-dimensional and hierarchical extension of the Bayesian framework to obtain rigorous estimates of uncertainty and high-resolution images of crustal and upper mantle structures beneath Northeast (NE) Asia. The methods inherently account for data sensitivities by means of using adaptive parameterizations and treating data noise as free parameters. Therefore, parsimonious results from the methods are balanced out between model complexity and data fitting. This allows fully exploiting data information, preventing from over- or under-estimation of the data fit, and increases model resolution. In addition, the reliability of results is more rigorously checked through the use of Bayesian uncertainties. It is shown by various synthetic recovery tests that complex and spatially variable features are well resolved in our resulting images of NE Asia. Rayleigh wave phase and group velocity tomograms (8-70 s), a 3-D shear-wave velocity model from depth inversions of the estimated dispersion maps, and regional 3-D models (NE China, the Korean Peninsula, and the Japanese islands) from joint inversions with receiver function data of dense networks are presented. High-resolution models are characterized by a number of tectonically meaningful features. We focus our interpretation on complex patterns of sub-lithospheric low velocity structures that extend from back-arc regions to continental margins. We interpret the anomalies in conjunction with distal and distributed intraplate volcanoes in NE Asia. Further discussion on other imaged features will be presented.

  14. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magmatic Rifts (United States)

    Siler, D. L.; Karson, J. A.


    Magmatic rift systems are composed of discrete spreading segments defined by morphologic, structural, and volcanic features that vary systematically along strike. In Iceland, structural features mapped in the glaciated and exhumed Miocene age upper crust correlate with analogous features in the seismically and volcanically active neovolcanic zone. Integrating information from both the active rift zones and ancient crust provides a three-dimensional perspective of crustal structure and the volcanic and tectonic processes that construct crust along spreading segments. Crustal exposures in the Skagi region of northern Iceland reveal significant along-strike variations in geologic structure. The upper crust at exhumed magmatic centers (segment centers) is characterized by a variety of intrusive rocks, high-temperature hydrothermal alteration, and geologic evidence for kilometer-scale subsidence. In contrast, the upper crust along segment limbs, which extend along strike from magmatic centers, is characterized by thick sections of gently dipping lava flows, cut by varying proportions of subvertical dikes. This structure implies relatively minor upper crustal subsidence and lateral dike intrusion. The differing modes of subsidence beneath segment centers and segment limbs require along-axis mass redistribution in the underlying upper, middle, and lower crust during crustal construction. This along-axis material transport is accomplished through lateral dike intrusion in the upper crust and by along-axis flow of magmatic to high-temperature solid-state gabbroic material in the middle and lower crust. These processes, inferred from outcrop evidence in Skagi, are consistent with processes inferred to be important during active rifting in Iceland and at analogous magmatic oceanic and continental rifts.

  15. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: [Graduate Research on Earthquake and Active Tectonics (GREAT), Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia); Hananto, Nugroho D.; Handayani, Lina [Research Centre for Geotechnology - Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia)


    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  16. Crustal structure of the Eurasia-Africa plate boundary across the Gloria Fault, North Atlantic Ocean (United States)

    Batista, Luis; Hübscher, Christian; Terrinha, Pedro; Matias, Luis; Afilhado, Alexandra; Lüdmann, Thomas


    The oceanic crustal and uppermost lithospheric mantle structure across the Gloria Fault (GF) transcurrent plate boundary between Africa and Eurasia in the Northeast Atlantic is investigated based on seismic reflection, seismic refraction and wide-angle reflection data. This experiment used 18 ocean bottom stations along an N-S 150 km long traverse together with acquisition of a multichannel seismic reflection profile. Modeling of P and S seismic waves and gravimetric anomalies allowed estimation of P- and S-wave velocities, density, Poisson's ratio and discussion of a compositional model. A five-layer model is proposed in which layers 1-3 correspond to normal sediments through typical oceanic crust layers 2 and 3. Layer 5 yielded mantle velocities above 7.9 km s-1. Layer 4 with 4 km of thickness has Vp velocities between 7.1 and 7.4 km s-1 and is clearly separated from typical oceanic crust and mantle layers. Comparison with natural analogues and published lab measurements suggest that layer 4 can be a mix of lithologies that comply with the estimated P and S velocities and computed Poisson's ratio and densities, such as, olivine cumulates, peridotite, gabbro and hydrated mantle. We favour the tectonic process that produces secondary porosity from which results serpentinization due to sea water circulation in fractures. Structural and seismic stratigraphic interpretation of the reflection profile shows that Neogene to recent tectonic deformation on this segment of the plate boundary concentrated on the southern side of the GF, that is, the Africa plate.

  17. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments (United States)

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.


    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  18. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil (United States)

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.


    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  19. Alaskan crustal thickness variations from P receiver functions provide insight into both inherited and active plate boundary structures (United States)

    Miller, M. S.; O'Driscoll, L.; Porritt, R.; Roeske, S.


    The geologic mosaic of terranes, adjacent multi-phase plate boundary in the south, rapid lateral topographic variations, and heterogeneous distribution of strain throughout Alaska all suggest strong heterogeneity of crustal architecture. We present the first wide-scale model of crustal thickness based on broadband seismic data across the region that is primarily constrained where seismic instrumentation has been deployed - dense coverage in the south-central region and more sparse coverage in the northern, western, and arctic regions from EarthScope Transportable Array (TA) stations. P receiver functions (PRF) were calculated for 2070 events at 465 stations, which yielded a final 22,886 total RFs. The resulting 3D CCP stacked model and individual receiver functions at remote stations reproduce many of the Moho depth variations previously modeled by both more concentrated studies using receiver functions and tomographic imaging. However, these new results provide more detailed images of the entire state that illustrate the active and inherited crustal structures that have persisted throughout the tectonic history in the region. The continental growth by accretion and strike-slip displacement of oceanic and pericratonic terranes is documented in discrete changes in crustal thicknesses that are observed across the terranes of the northern Cordillera in Alaska and there are distinct changes across major, active and inactive faults. Analysis of P receiver functions provides the first detailed look at the crust and upper mantle structures across Alaska. These images show variability that reflects inherited thickness from Mesozoic convergent and extension events, which in some regions is being extensively modified by ongoing convergence and collision, particularly along the active southern margin. The 4D interpretation of the Alaskan crust and Moho structure will continue to evolve as the full USArray Transportable Array is deployed and geologic studies are combined with

  20. Using a Genetic Algorithm to Model Broadband Regional Waveforms for Crustal Structure in the Western United States (United States)

    Bhattacharyya, Joydeep; Sheehan, Anne F.; Tiampo, Kristy; Rundle, John


    In this study, we analyze regional seismograms to obtain the crustal structure in the eastern Great Basin and western Colorado plateau. Adopting a for- ward-modeling approach, we develop a genetic algorithm (GA) based parameter search technique to constrain the one-dimensional crustal structure in these regions. The data are broadband three-component seismograms recorded at the 1994-95 IRIS PASSCAL Colorado Plateau to Great Basin experiment (CPGB) stations and supplemented by data from U.S. National Seismic Network (USNSN) stations in Utah and Nevada. We use the southwestern Wyoming mine collapse event (M(sub b) = 5.2) that occurred on 3 February 1995 as the seismic source. We model the regional seismograms using a four-layer crustal model with constant layer parameters. Timing of teleseismic receiver functions at CPGB stations are added as an additional constraint in the modeling. GA allows us to efficiently search the model space. A carefully chosen fitness function and a windowing scheme are added to the algorithm to prevent search stagnation. The technique is tested with synthetic data, both with and without random Gaussian noise added to it. Several separate model searches are carried out to estimate the variability of the model parameters. The average Colorado plateau crustal structure is characterized by a 40-km-thick crust with velocity increases at depths of about 10 and 25 km and a fast lower crust while the Great Basin has approximately 35- km-thick crust and a 2.9-km-thick sedimentary layer.

  1. Crustal structure of north Peru from analysis of teleseismic receiver functions (United States)

    Condori, Cristobal; França, George S.; Tavera, Hernando J.; Albuquerque, Diogo F.; Bishop, Brandon T.; Beck, Susan L.


    In this study, we present results from teleseismic receiver functions, in order to investigate the crustal thickness and Vp/Vs ratio beneath northern Peru. A total number of 981 receiver functions were analyzed, from data recorded by 28 broadband seismic stations from the Peruvian permanent seismic network, the regional temporary SisNort network and one CTBTO station. The Moho depth and average crustal Vp/Vs ratio were determined at each station using the H-k stacking technique to identify the arrival times of primary P to S conversion and crustal reverberations (PpPms, PpSs + PsPms). The results show that the Moho depth correlates well with the surface topography and varies significantly from west to east, showing a shallow depth of around 25 km near the coast, a maximum depth of 55-60 km beneath the Andean Cordillera, and a depth of 35-40 km further to the east in the Amazonian Basin. The bulk crustal Vp/Vs ratio ranges between 1.60 and 1.88 with the mean of 1.75. Higher values between 1.75 and 1.88 are found beneath the Eastern and Western Cordilleras, consistent with a mafic composition in the lower crust. In contrast values vary from 1.60 to 1.75 in the extreme flanks of the Eastern and Western Cordillera indicating a felsic composition. We find a positive relationship between crustal thickness, Vp/Vs ratio, the Bouguer anomaly, and topography. These results are consistent with previous studies in other parts of Peru (central and southern regions) and provide the first crustal thickness estimates for the high cordillera in northern Peru.

  2. Seismic crustal structure between the Transylvanian Basin and the Black Sea, Romania (United States)

    Hauser, F.; Raileanu, V.; Fielitz, W.; Dinu, C.; Landes, M.; Bala, A.; Prodehl, C.


    In order to study the lithospheric structure in Romania a 450 km long WNW-ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300-1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0-5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of

  3. Deep crustal structure and continent-ocean boundary along the Galicia continental margin (NW Iberia) (United States)

    Druet, María; Muñoz-Martín, Alfonso; Carbó, Andrés; Acosta, Juan; Granja Bruña, José Luis; Llanes, Pilar; Vázquez, Juan-Tomás; Ercilla, Gemma


    The Galicia continental margin is a magma-poor rifted margin with an extremely complex structure. Its formation involves several rifting episodes during the Mesozoic in the vicinity of a ridge triple junction, which produces a change in the orientation of the main structures. In addition, there is an overimposed Cenozoic partial tectonic inversion along its northern border. Although this continental margin has been widely studied since the 70's, most studies have focused on its western part in the transition to the Iberia Abyssal Plain, and there is a significant lack of information on the north and northwestern flanks of this margin. This fact, along with its great structural complexity, has resulted in the absence of a previous comprehensive regional geodynamic model integrating all the processes observed. In the present study we integrate a large volume of new geophysical data (gravity, swath bathymetry and 2D multichannel reflection seismic). Data come from the systematic mapping of the Spanish EEZ project which provides a dense grid of gravity data and full seafloor coverage with swath bathymetry, and from the ERGAP project which provides serially-arranged 2D seismic reflection profiles across the NW Iberia margin. The combined interpretation and modelling of this new information has arisen significant constraints on the origin, the deep crustal structure and the physiographic complexity of the margin, as well as on the characterization of the along- and across-strike variation of the ocean-continent transition along NW Iberia margin. The analysis of this information leads us to propose a conceptual model for the initiation of the tectonic inversion of a magma-poor rifted margin. Finally, a framework for the geodynamic evolution of the Galicia margin has been constructed, involving three main stages: A) an early stage from the end of rifting and oceanic drift in the Bay of Biscay (Santonian); B) an intermediate stage with the beginning of tectonic inversion in

  4. Subsidence history, crustal structure, and evolution of the Somaliland-Yemen conjugate margin (United States)

    Ali, M. Y.; Watts, A. B.


    We have used biostratigraphic data from deep exploration wells to determine the tectonic subsidence history of the Somaliland (northwestern Somalia)-Yemen conjugate margin, a poorly known margin in the central part of the Gulf of Aden. Bathymetry and magnetic anomaly data suggest the Gulf of Aden is a young feature that formed following the rifting apart and breakup of the African and Arabian plates ~32 Ma. Our tectonic subsidence data suggest, however, that the present-day Gulf of Aden developed on an earlier Mesozoic rift system. The oldest episode of rifting initiated at ~156 Ma and lasted for ~10 Ma and had a NW-SE trend. We interpret the rift as a late stage event associated with the breakup of Gondwana and the separation of Africa and Madagascar. At ~80 Ma, there is evidence of an intermediate rift event which correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The combined effect of all three rifting events has been to thin the crust and upper mantle by up to a factor of 2. The amount of thinning deduced from the wells is in accord with the crustal structure inferred from available seismic refraction data and process-oriented gravity and flexure modeling. The margin is asymmetric with a steeper gradient in the Moho on the Yemen side than the Somaliland side. The main discrepancy is on the Yemen side where the gravity-derived Moho is 10 km deeper than the well-derived Moho. We attribute the discrepancy to the addition of material at the base of the crust since rifting, possibly magma sourced from the Afar plume.

  5. A Full-Wave Seismic Tomography for the Crustal Structure in the Metropolitan Beijing Region (United States)

    Sun, A.; Zhao, L.; Chen, Q.


    The greater Beijing metropolitan region is located in an old cratonic block in northeast China with complex geology and several large historic earthquakes, such as the Sanhe-Pinggu earthquake (~M8.0) in 1679, the Xingtai earthquake (M7.2) in 1966, and the Tangshan earthquake (M7.8) in 1976. To enhance our understanding of the crustal structure and the seismotectonics under this region, we conduct a full-wave three-dimensional (3D) tomographic study of this region using the waveforms recorded by the newly established Beijing metropolitan digital seismic network. Since the Beijing network was put into operation in October 2001, there have been 89 local earthquakes of magnitude 3.0 and above. From these, we selected 23 events of magnitude 3.2 and above and obtained their waveform records at 50 stations within our area of interest. The types of instruments at these stations include broadband, short-period and very broadband. First-motion focal mechanisms were determined for these events. We used a regional 3D model obtained by seismic reflection surveys as the reference model and calculated the synthetic seismograms by the finite-difference method. In this first attempt at finite- frequency tomography for the Beijing region, we focus on the variation of the P-wave speed using the first- arriving P waves. We measure the frequency-dependent traveltime anomalies of the P waves by the cross- correlation between observed and synthetic P waveforms within several discrete frequency bands between 20-sec and 5-sec periods. The sensitivity or Frechet kernels of these measurements for the perturbations in P-wave speed were computed by the same finite-difference method. We will present the preliminary result in our full-wave seismic tomography for the Beijing region.

  6. A 3D gravity model of crustal structure in the Central-Eastern Alpine sector

    Directory of Open Access Journals (Sweden)

    S. Scarascia


    Full Text Available Assuming as a starting model the pattern of the Moho boundary as interpreted in a recent study on the basis of the available DSS profiles, a preliminary 3D gravity model of the crustal structures in the Central-Eastern Alpine sector is proposed. The aim of the present work is to confirm the seismic results concerning the Moho and to better shape the main discontinuities in the intermediate and upper crust, where the seismic data are too scattered to allow a reliable interpretation. The gravity field is calculated along twelve cross-sections oriented S-N and crossing the Alpine range from the Padan-Venetian plain to the Bavarian molasse and to the Austrian calcareous Alps. The westernmost section coincides with the European Geotraverse while the easternmost one is positioned at the longitude of about 14ºeast. The assumed density model is very simple (only 6 layers; for each unit the density is maintained constant. The model describes a European mantle dipping southwards underneath an overlapping, uplifted Adriatic mantle. As far as the lower crust is concerned, its top is found at depths between 18 and 28 km, the deepest values being reached in the south-eastern sector; the density appears higher in the Adriatic domain than in the European one and the Adriatic lower crust seems to be deeply indented northwards. The low density surface layers appear very thin in a large area of the northwestern sector, while in the south and southeast their thickness reaches about 10 km. This study must be considered as a complement to the seismic interpretation both as a validation of the model of the deep crust and Moho boundary and as an additional source of information on the upper crust.

  7. Crustal and uppermost mantle structure of southern Norway: results from surface wave analysis of ambient seismic noise and earthquake data (United States)

    Köhler, Andreas; Weidle, Christian; Maupin, Valérie


    We use ambient seismic noise and earthquake recordings on a temporary regional network in southern Norway to produce Rayleigh and Love wave phase velocity maps from 3 to 67 s period. Local dispersion curves are then jointly inverted for a 3-D shear wave velocity model of the region. We perform a two-step inversion approach. First, a direct search, Monte Carlo algorithm is applied to find best fitting isotropic velocity depth profiles. Those profiles are then used as initial models for a linearised inversion which takes into account radial anisotropy in the shear wave structure. Results reveal crustal as well as uppermost mantle structures in the studied region. Velocity anomalies in the upper crust are rather small in amplitude and can in most parts be related to surface geology in terms of rock densities. Old tectonic units like the Oslo Graben (300-240 Ma) and the Caledonian nappes (440-410 Ma) are clearly imaged. Furthermore, we find clear indications for localized crustal anisotropy of about 3 per cent. Despite generally poor resolution of interface depths in surface wave inversion, we find lateral variation of crustal thickness in agreement with previous studies. We are able to confirm and locate the transition from a slow lithospheric upper mantle underneath southern Norway to a fast shield-like mantle towards Sweden.

  8. Short-wavelength contractional structures in crustal plateau fold belts on Venus: constraints on early thermal state (United States)

    Ghent, R. R.; Phillips, R. J.; Hansen, V. L.; Nunes, D. C.


    Marginal fold belts within Venusian crustal plateaus are characterized by contractional tectonic features showing a range of spatial wavelengths from 30 km. Previous studies have proposed that these features are folds formed by layer-normal compression during crustal plateau formation [e.g., 1] and that the characteristic deformation wavelength(s) expressed by these features reflect the thickness of a competent surface layer during deformation [1, 2]. We investigate the conditions under which the shortest wavelength features represented in these fold belts may have formed. Specifically, we report on finite element simulations of concurrent shortening and cooling in models with uniform composition and elasto-visco-plastic (EVP) rheology. The models are constrained by observations of crustal plateau marginal fold belts using Magellan SAR imagery and are motivated by the current plume tectonic hypothesis for crustal plateau formation [2, 3]. The models are unique because a) the EVP rheology more accurately represents the actual crust than viscous or viscoelastic models; and b) our models incorporate spatially uniform material properties but temperature-dependent rheology [4], so that the strength profile through the crust evolves with cooling. This allows local thermal and stress conditions to determine the instantaneous effective surface layer thickness and strength, which in turn determines surface topographic wavelengths. We find that short-wavelength contractional features can form under hot conditions consistent with the plume scenario but do not form under cooler conditions. The final model topography results from simultaneous brittle faulting and viscous folding. We conclude that the shortest-wavelength features preserved in marginal fold belts record an early stage of crustal plateau evolution and require an elevated thermal gradient and surface temperature. [1] Ghent, R.R., and V.L. Hansen 1999. Structural and kinematic analysis of eastern Ovda Regio

  9. 3D Crustal Velocity Structure Model of the Middle-eastern North China Craton (United States)

    Duan, Y.; Wang, F.; Lin, J.; Wei, Y.


    Lithosphere thinning and destruction in the middle-eastern North China Craton (NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. Up to 42 wide-angle reflection/refraction deep seismic sounding (DSS) profiles have been completed in the middle-eastern NCC, we collect all the 2D profiling results and perform gridding of the velocity and interface depth data, and build a 3D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, using the Kriging interpolation method. In this model, four layers are divided by three interfaces: G is the interface between the sedimentary cover and crystalline crust, with velocities of 5.0-5.5 km/s above and 5.8-6.0 km/s below. C is the interface of the upper and lower crust, with velocity jump from 6.2-6.4 km/s to 6.5-6.6 km/s. M is the interface between the crust and upper mantle, with velocity 6.7-7.0 km/s at the crust bottom and 7.9-8.0 km/s on mantle top. Our results show that the first arrival time calculated from HBCust1.0 fit well with the observation. It also demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C. The depth of interface Moho varies beneath the source area of the Tangshan earth-quake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin (NCB) in the east of the craton is obviously higher than the regional average, this high-velocity probably results from longterm underplating of the mantle magma. This research is founded by the Natural Science

  10. Crustal structure of the Central Precordillera of San Juan, Argentina (31°S) using teleseismic receiver functions (United States)

    Ammirati, Jean-Baptiste; Alvarado, Patricia; Perarnau, Marcelo; Saez, Mauro; Monsalvo, Guillermo


    The subduction of the Nazca plate under the South American plate around 31°S is characterized by flat slab geometry. The (Chilean) Pampean flat slab of Argentina associated with the subduction of the Juan Fernandez ridge lies in a region of a series of foreland uplifts corresponding to the thin-skinned Precordillera and basement cored Sierras Pampeanas ranges. The SIEMBRA project deployed 40 broadband stations in 2008-2009 in both the Precordillera and the Sierras Pampeanas with the aim to foster the understanding of the entire central Andean flat slab region. One of the SIEMBRA station (DOCA) located on the western flank of Sierra de la Invernada in the Central Precordillera appears particularly appropriate to study the crustal structure and eventually detect discontinuities related to terranes establishment. We thus performed a receiver function analysis using teleseismic data recorded at the DOCA station during the SIEMBRA project and from October 2011 to June 2012 using a broadband UNSJ (National University of San Juan) seismic station with the purpose to obtain crustal images with details of the intracrustal structure consistent with a mechanism that could explains both the observed earthquake depths and the uplift pattern in the Central Precordillera. Our results show that the Moho beneath the Precordillera lies at a depth of about 66 km. The Moho signal appears diminished and behaves irregularly as a function of azimuthal orientations. Although this observation could be the result of an irregular geometry it also correlates with the hypothesis of partial eclogitisation in the lower crust. Two mid-crustal discontinuities have also been revealed. The shallower one could correspond to a décollement level between the Precordilleran strata and the Cuyania basement at 21 km depth. The deeper one which the presence has been matched with a sharp decrease of the crustal seismic activity drove us to the hypothesis of a major change in crustal composition at 36 km

  11. Surface-wave analysis and its application to determining crustal and mantle structure beneath regional arrays (United States)

    Jin, Ge

    comprises 31 inland and 8 off-shore broad-band seismic sensors, and were operated from March 2010 to July 2011. We adopt the ASWMS to retrieve phase velocities from earthquake signals, and apply the ambient-noise analysis to obtain the Rayleigh-wave phase velocities at higher frequencies. The multi-band phase velocities are inverted for a three-dimensional shear-velocity model of the crust and the upper mantle. The result reveals localized lithosphere extension along a rift-like axis beneath the DI, with a shear-velocity structure similar to an adiabatic upwelling mantle. West of the DI, very slow shear velocities are observed at shallow mantle depth (30-60~km), which we interpret either as the presence of in situ partial melt due to inhibited melt extraction, or as the existence of un-exhumed felsic crustal material embedded within the surrounding mantle. Love waves contain important information to constrain the upper-mantle radial anisotropy. However, Love-wave fundamental-mode phase-velocity measurements are often contaminated by overtone interference, especially within regional-scale arrays. We evaluate this problem by analytically and numerically evaluating the behavior of synthetic wavefields consisting of two interfering plane waves with distinct phase velocities but comparable group velocities. The results indicate large phase variance due to the interference that can explain the systemic bias observed in data. We develop a procedure that utilizes amplitude measurements to correct for the interference effect. The synthetic tests show the correction can significantly reduce the phase-velocity variance and the bias generated by the interference.

  12. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.


    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  13. Seismotectonics of the Taiwan Shoal region in the northeastern South China Sea: Insights from the crustal structure (United States)

    Wan, Kuiyuan; Sun, Jinlong; Xu, Huilong; Xie, Xiaoling; Xia, Shaohong; Zhang, Xiang; Cao, Jinghe; Zhao, Fang; Fan, Chaoyan


    A cluster of earthquakes occurred in the Taiwan Shoal region on the outer rise of the Manila Trench. Although most were of small to medium magnitudes, one strong earthquake occurred on September 16, 1994. Several previous studies have provided important information to progress our understanding of this single earthquake. However, little is currently known about the earthquake cluster, and it is necessary to investigate the deep crustal structure of the Taiwan Shoal region to understand the mechanisms involved in controlling and generating it. This study presents a two-dimensional seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean-bottom seismograph (OBS) data, which exhibits a high-velocity anomaly flanked by low-velocity anomalies in the upper crust beneath the Taiwan Shoal. In this study, 765 earthquakes (Richter magnitude ML > 1.5) occurring between 1991 and 2015 were studied and analyses of earthquake epicenters, regional faults, and the crustal structure provides an improved understanding of the nature of active tectonics in this region. Results of analyses indicate firstly that the high-velocity area represents major asperities that correspond to the location of the earthquake cluster and where stress is concentrated. It is also depicted that the earthquake cluster was influenced by fault interactions. However, the September 1994 earthquake occurred independently of these seismic activities and was associated with reactivation of a preexisting fault. It is also determined that slab pull is resisted by the exposed precollision accretionary prism, and the resistive force is causing accumulation of inplane compressive-stress. This may trigger a future damaging earthquake in the Taiwan Shoal region.

  14. Crustal thickness and velocity structure of the Colorado Rockies from CREST and Transportable array data (United States)

    Hansen, S. M.; Stachnik, J. C.; Dueker, K. G.


    The Colorado Rocky Mountains are the largest topographic anomaly in the western US with a mean elevation of 3.2 km within a 500 by 300 km area. From a global perspective, this topographic anomaly, far from any plate boundary, is truly unique. Although the timing of uplift(s) (Laramide-age and/or late-Neogene) and support of the current topographic anomaly is debated, it is indubitable that this area was below sea-level in the late Cretaceous as evidenced by the sedimentary record. P-wave and surface wave tomograms from previous seismic studies find two low velocity anomalies in the upper mantle beneath the Colorado Rocky Mountains: 1) a north trending anomaly under the Western Slope region that extends from the San Juan Volcanic Field to NW Colorado; 2) an anomaly beneath the San Luis Basin in southern Colorado. In a broad sense, these velocity anomaly are associated with high heat flow (>70 mW) and a large negative Bouguer gravity anomaly somewhat correlated with the topographic anomaly. About 100 mgals of this gravity anomaly is thought to manifest a low density (3.2 g/cc) body in the upper mantle that supports the high topography (McCoy et al., 2005). Complicating any simple isostatic balance is seismic-geodynamic modeling that suggests up to 700 m of dynamic topography (uplift in the last 25 Ma) of the Colorado Plateau and Colorado Rocky Mountains (Moucha et al., 2008). In this report, we intend to constrain the crustal thickness and crustal density variations so that a more accurate isostatic balance can be performed. The 59 station CREST array was deployed within the central Colorado Rocky Mountains for a period of ~15 months in 2008 and 2009. The CREST array has had a 100% temporal overlap with the EarthScope Transportable Array (TA) in Colorado. The combined CREST and TA array consisted of 91 stations with a mean station spacing of ~23 km. From this dataset, surface wave group velocities are extracted from the ambient noise field by correlating the

  15. The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway (United States)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.


    Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep

  16. Vertical-axis block rotations linked to normal faulting: paleomagnetic and structural evidence from Miocene to Recent extensional basins in southern Turkey (United States)

    Koç, Ayten; van Hinsbergen, Douwe J. J.; Kaymakcı, Nuretdin; Langereis, Cornelis G.


    Paleomagnetism provides important constraints on complex patterns of vertical axis rotations in orogens. Where normally paleomagnetism is applied to constrain regional rotations, in the vicinity of fault zones often locally varying rotation patterns occur. Here we provide results of an extensive paleomagnetic survey constraining vertical axis rotation in Neogene extensional continental basins in the Taurides, in the eastern flank of the Isparta Angle (SW Turkey). In total, 437 oriented cores were sampled at 43 sites distributed within Miocene-Pliocene continental sedimentary rocks from the basins at the eastern limb (Ilgın and Altınapa Basins) and also central part (Yalvaç Basin) of the Isparta Angle. Despite the more or less coherent overall strike of the mountain belt and sedimentary basins, our results show different senses and varying amounts of vertical rotation within short distances; the Altınapa Basin has undergone only very minor rotations during and after the Miocene, but the paleomagnetic data from Yalvaç and Ilgın basins show 50° clockwise and 20° counter-clockwise rotation, respectively. Following a long history of shortening and thrusting, our study area has undergone regional extension since the mid-Miocene, which is still active in the present-day as portrayed by active seismicity, earthquake focal mechanisms, field data including fault plane solutions, and GPS measurements. This extension is accommodated along major normal faults that end in relay ramps with overlapping, adjacent normal faults. We show that the paleomagnetically determined rotations are related to such relay ramps, in places superimposed on rigid block rotations, and can be used as a first-order tool to quantify horizontal extension. As such, vertical axis rotations and paleomagnetism unravels important insights in the evolution of deformation in major normal fault zones.

  17. The crustal thickness and lithospheric structure of active and inactive volcanic arc terrains in Fiji and Tonga (United States)

    Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.


    In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.

  18. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data (United States)

    Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.


    This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above

  19. Basement-cover relationships in the Grampian Caledonides of Scotland - extensional strain preceding continental rupture and generation of the Laurentian ocean-continent transition zone (United States)

    Leslie, Graham; Smith, Martin; Gillespie, Martin; Thomas, Christopher; Krabbendam, Maarten


    Ancient rift and passive margin basins can frequently only be studied in outcrop after uplift following orogenesis. Such basins are thus deformed, metamorphosed and partially eroded as a consequence of closure of the oceanic system in which the passive margin was originally established. As a result there are significant challenges in restoration and interpretation of the original basin geometries and lithostratigraphical relationships. The mid-Neoproterozoic to Cambrian Dalradian Supergroup of Scotland and Ireland was intensively deformed and metamorphosed by mid-Ordovician arc-accretion (c. 460 Ma) during the Caledonian Orogeny. Nevertheless, we can determine a history of stretching and break-up associated with rupture of the Neoproterozoic supercontinent of Rodinia and opening of Iapetus. Continental fragments apparently separated from the passive margin during rift-drift transition. The extensional structures bounding the various fragments subsequently exerted control on the collisional geometry and acted as nuclei for deformation structures during Caledonian orogenesis. Reading the record of Neoproterozoic extension in the Scottish Caledonides is further complicated by the need to unravel the structural record at the boundary between the Dalradian Supergroup and underlying early-Neoproterozoic metamorphic basement. The depositional age of the Dalradian succession is not well constrained but the oldest strata could pre-date 800 Ma. If such should be the case, then the thick siliciclastic deposits characteristic of the lower Dalradian Grampian Group succession accumulated before 800 Ma during an early stretching phase (distributed high angle faulting) that led to crustal thinning (low-angle shearing). A major low-angle, regional-scale ductile shear zone in the upper levels of the underlying basement is arranged sub-parallel to the present structural base of the Dalradian. The high-temperature regional metamorphism in basement is c. 830 Ma old while the ductile

  20. Regionalization of Crustal and Upper Mantle Q Structure in Eastern Eurasia Using Multiple Regional Waves (United States)


    activity that modified the crustal blocks ranges between Paleozoic and current. Mitchell et al. [1997] found the Lg coda Q values throughout Eurasia...north of these regions there is a band of moderate Q0 regions (300–450) that covers the Tarim Block, the Ordos and the Sino-Korean Platforms . To the...province that was affected by wide-spread volcanism and rifting in the late Paleozoic -Mesozoic time. Values of Q0 in the Trap are between about 400

  1. Crustal and lithospheric structure of the west Antarctic Rift System from geophysical investigations: A review (United States)

    Behrendt, John C.


    The active West Antarctic Rift System, which extends from the continental shelf of the Ross Sea, beneath the Ross Ice Shelf and the West Antarctic Ice Sheet, is comparable in size to the Basin and Range in North America, or the East African rift systems. Geophysical surveys (primarily marine seismic and aeromagnetic combined with radar ice sounding) have extended the information provided by sparse geologic exposures and a few drill holes over the ice and sea covered area. Rift basins developed in the early Cretaceous accompanied by the major extension of the region. Tectonic activity has continued episodically in the Cenozoic to the present, including major uplift of the Transantarctic Mountains. The West Antarctic ice sheet, and the late Cenozoic volcanic activity in the West Antarctic Rift System, through which it flows, have been coeval since at least Miocene time. The rift is characterized by sparse exposures of late Cenozoic alkaline volcanic rocks extending from northern Victoria Land throughout Marie Byrd Land. The aeromagnetic interpretations indicate the presence of > 5 x 105 km2 (> 106 km3) of probable late Cenozoic volcanic rocks (and associated subvolcanic intrusions) in the West Antarctic rift. This great volume with such limited exposures is explained by glacial removal of the associated late Cenozoic volcanic edifices (probably hyaloclastite debris) concomitantly with their subglacial eruption. Large offset seismic investigations in the Ross Sea and on the Ross Ice Shelf indicate a ~ 17-24-km-thick, extended continental crust. Gravity data suggest that this extended crust of similar thickness probably underlies the Ross Ice Shelf and Byrd Subglacial Basin. Various authors have estimated maximum late Cretaceous-present crustal extension in the West Antarctic rift area from 255-350 km based on balancing crustal thickness. Plate reconstruction allowed < 50 km of Tertiary extension. However, paleomagnetic measurements suggested about 1000 km of post

  2. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review (United States)

    Cemen, I.


    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions

  3. Insights into the crustal structure and magmatic evolution of the High and Western Plateau of the Manihiki Plateau, Central Pacific (United States)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele


    The Manihiki Plateau is a Large Igneous Province (LIP) located in the Central Pacific. It is assumed, that the formation of the Manihiki Plateau took place during the early Cretaceous in multiple volcanic stages as part of the "Super-LIP" Ontong-Java-Nui. The plateau consists of several sub-plateaus of which the Western Plateau und High Plateau are the largest. In addressing the plateau's magmatic evolutionary history, one of the key questions is whether all sub-plateaus experienced the same magmatic history or if distinct phases of igneous or tectonic processes led to its fragmentation. During the RV Sonne cruise SO-224 in 2012; we collected two deep crustal seismic refraction/wide-angle reflection lines, crossing the two main sub-plateaus. Modeling of P- and S-wave phases reveals the different crustal nature of both sub-plateaus. On the High Plateau, the 20 km thick crust is divided into four seismic units, interpreted to range from basaltic composition in the uppermost crust to peridotitic composition in the middle and lower crust. The Western Plateau on the other hand shows multiple rift structures and no indications of basalt flows. With a maximum of 17 km crustal thickness, the Western Plateau is also thinner than the High Plateau. The upper basement layers show relatively low P-wave velocities (3.0 - 5.0 km/s), which infers that on the Western Plateau these layers consist of volcanoclastic and carbonatic rocks rather than basaltic flow units. Later volcanic stages may be restricted to the High Plateau with a possible eastward trend in the center of volcanic activity. Extensive secondary volcanism does not seem to have occurred on the Western Plateau, and its later deformation is mainly caused by tectonic extension and rifting.

  4. Imaging the Seismic Crustal Structure of the Western Mexican Margin between 19°N and 21°N (United States)

    Bartolomé, Rafael; Dañobeitia, Juanjo; Michaud, François; Córdoba, Diego; Delgado-Argote, Luis A.


    Three thousand kilometres of multichannel (MCS) and wide-angle seismic profiles, gravity and magnetic, multibeam bathymetry and backscatter data were recorded in the offshore area of the west coast of Mexico and the Gulf of California during the spring 1996 (CORTES survey). The seismic images obtained off Puerto Vallarta, Mexico, in the Jalisco subduction zone extend from the oceanic domain up to the continental shelf, and significantly improve the knowledge of the internal crustal structure of the subduction zone between the Rivera and North American (NA) Plates. Analyzing the crustal images, we differentiate: (1) An oceanic domain with an important variation in sediment thickness ranging from 2.5 to 1 km southwards; (2) an accretionary prism comprised of highly deformed sediments, extending for a maximum width of 15 km; (3) a deformed forearc basin domain which is 25 km wide in the northern section, and is not seen towards the south where the continental slope connects directly with the accretionary prism and trench, thus suggesting a different deformational process; and (4) a continental domain consisting of a continental slope and a mid slope terrace, with a bottom simulating reflector (BSR) identified in the first second of the MCS profiles. The existence of a developed accretionary prism suggests a subduction-accretion type tectonic regime. Detailed analysis of the seismic reflection data in the oceanic domain reveals high amplitude reflections at around 6 s [two way travel time (twtt)] that clearly define the subduction plane. At 2 s (twtt) depth we identify a strong reflection which we interpret as the Moho discontinuity. We have measured a mean dip angle of 7° ± 1° at the subduction zone where the Rivera Plate begins to subduct, with the dip angle gently increasing towards the south. The oceanic crust has a mean crustal thickness of 6.0-6.5 km. We also find evidence indicating that the Rivera Plate possibly subducts at very low angles beneath the Tres

  5. Constraints on crustal structure in the Southeastern United States from the SUGAR 2 refraction seismic refraction experiment (United States)

    Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.


    The Southeastern United States is an ideal location to study the interactions between continental collision, extensive but short-lived magmatism, and continental rifting. Continental collision during the Alleghenian Orogeny ( 290 Ma) formed the supercontinent Pangea. Extension leading to the breakup of Pangea began 230 Ma, forming the South Georgia Basin and other rift basins. The extensive Central Atlantic Magmatic Province (CAMP) magmatism was emplaced at 200 Ma, and continental separation occurred afterwards. During these processes, part of the African continent was added to North America. Prior work has raised questions including (1) the location and geometry of the suture zone and implications for the style of collision (thin-skinned versus thick-skinned), (2) the role of pre-existing structures on later rifting, and (3) the distribution of magmatism, and possible relationships between magmatism and rifting. To address these questions, we present preliminary velocity models for the 400-km-long refraction seismic line from the SUwanee Suture and GA Rift basin experiment (SUGAR) Line 2. This line is central to CAMP magmatism, and crosses the South Georgia rift basin and two hypothesized locations for the ancient suture zone. The data were collected in August 2015 by a team of over 40 students and scientists. Fifteen shots spaced at 20-40 km were recorded by 1981 Texans spaced at 250 m. We observe refractions from the basin, crust, and upper mantle, and wide-angle reflections from the base of the sediments, within the crust, and from the Moho. Prominent mid crustal reflections may arise from the top of elevated lower crustal velocities and possible lower crustal layering. The starting velocity model and constraints on the upper sedimentary basin velocity structure are obtained through forward modeling, which show basin sediment thickness increasing to the South. We then invert for smooth 2D velocity structure using first arrivals (FAST) and a layered velocity

  6. Late Cretaceous - recent lithosphere scale evolution of Turkey: linking the crustal surface evolution to the structure of the mantle (United States)

    Bartol, J.; Govers, R. M. A.; Wortel, M. J. R.


    Central Anatolia (Central Turkey) possesses all the characteristics of a plateau. It experienced a period of rapid and substantial uplift (late Miocene, ˜8 Ma) while significant crustal shortening did not occur. Similar to other plateaus, the presence of volcanic ash and tuff within the sediments suggest that uplift was preceded by widespread volcanism (˜14-9Ma). The lithospheric context of these events is, however, unknown. For the Eastern Anatolian plateau, similar events have been attributed to southward retread followed by slab break-off of the northern Neotethys slab. Recent tomographic results indicate that this northern Neotethys slab extended beneath both the Eastern and Central Anatolian plateau prior to late Miocene delamination and possibly even beneath western Anatolia prior to the Eocene (?). We propose a new lithospheric scenario for the regional evolution for the Aegean-Anatolia-Near East region that combines a recent compilation of surface geology data with the structure of the upper mantle imaged with tomography. In our new scenario for the evolution of the Aegean-Anatolia-Near East region, a single continuous subduction zone south of the Pontides (Izmir - Ankara - Erzincan crustal suture zone) accommodated the Africa - Eurasia convergence until the end of the late Cretaceous. In the Late Cretaceous - Eocene the northern Neotethys Ocean closed followed by Anatolide - Taurides (south) and Pontides (north) continental collision along the Izmir - Ankara - Erzincan crustal suture zone. While the trench jumped to the south of Anatolide - Taurides terrane, subduction continued beneath the Izmir-Ankara-Erzincan suture where the northern Neotethys slab continued to sink into the deeper mantle. In the early Miocene (˜20-15Ma), the northern Neotethys slab started to retreat southward towards the trench, resulting in delamination of the lithospheric mantle. The last part of (early Miocene - recent) our scenario is testable. We use a coupled thermal

  7. Extensional viscosity of microfibrillated cellulose suspensions. (United States)

    Moberg, Tobias; Rigdahl, Mikael; Stading, Mats; Levenstam Bragd, Emma


    The extensional properties of micro fibrillated cellulose (MFC)-suspensions at different fibril concentrations and with different amounts of added sodium chloride were evaluated. The MFC-suspensions were obtained by diluting a stock solution consisting of 0.95 wt.% cellulose with either deionized water or sodium chloride solution, giving a series of different concentrations and sodium chloride contents. The extensional viscosities of the suspensions were measured utilizing contraction flow geometry. Here the specimens were forced through a hyperbolic nozzle and the required pressure drop over the nozzle was measured. The extensional viscosity exhibited an extensional-thinning behaviour over the extensional strain rates used. Furthermore the extensional viscosity decreased with decreasing concentration of the suspensions, in similarities with the shear properties of the specimens. For the suspensions containing sodium chloride, the extensional viscosity appeared to increase when the concentration of sodium chloride was increased. But excessive amounts of added sodium chloride promoted an agglomeration of the suspensions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions (United States)

    Wu, Zhenbo; Xu, Tao; Liang, Chuntao; Wu, Chenglong; Liu, Zhiqiang


    The northeastern (NE) Tibet records and represents the far-field deformation response of the collision between the Indian and Eurasian plates in the Cenozoic time. Over the past two decades, studies have revealed the existence of thickened crust in the NE Tibet, but the thickening mechanism is still in debate. We deployed a passive-source seismic profile with 22 temporary broad-band seismic stations in the NE Tibet to investigate the crustal shear wave velocity structure in this region. We selected 288 teleseismic events located in the west Pacific subduction zone near Japan with similar ray path to calculate P-wave receiver functions. Neighbourhood algorithm method is applied to invert the shear wave velocity beneath stations. The inversion result shows a low-velocity zone (LVZ) is roughly confined to the Songpan-Ganzi block and Kunlun mountains and extends to the southern margin of Gonghe basin. Considering the low P-wave velocity revealed by the wide-angle reflection-refraction seismic experiment and high ratio of Vp/Vs based on H-κ grid searching of the receiver functions in this profile, LVZ may be attributed to partial melting induced by temperature change. This observation appears to be consistent with the crustal ductile deformation in this region derived from other geophysical investigations.

  9. From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Środa, P.; Grad, M.; Geissler, W.H.; Guterch, A.; Vozár, J.; Hegedüs, E.


    Roč. 183, č. 2 (2010), s. 611-633 ISSN 0956-540X R&D Projects: GA ČR GAP210/10/2063 Institutional research plan: CEZ:AV0Z30120515 Keywords : controlled source seismology * body waves * continental margins: convergent * crustal structure * Europe Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.411, year: 2010

  10. Crustal thickness and velocity structure across the Moroccan Atlas from long offset wide-angle reflection seismic data: The SIMA experiment (United States)

    Ayarza, P.; Carbonell, R.; Teixell, A.; Palomeras, I.; Martí, D.; Kchikach, A.; Harnafi, M.; Levander, A.; Gallart, J.; Arboleya, M. L.; Alcalde, J.; Fernández, M.; Charroud, M.; Amrhar, M.


    The crustal structure and topography of the Moho boundary beneath the Atlas Mountains of Morocco has been constrained by a controlled source, wide-angle seismic reflection transect: the SIMA experiment. This paper presents the first results of this project, consisting of an almost 700 km long, high-resolution seismic profile acquired from the Sahara craton across the High and the Middle Atlas and the Rif Mountains. The interpretation of this seismic data set is based on forward modeling by raytracing, and has resulted in a detailed crustal structure and velocity model for the Atlas Mountains. Results indicate that the High Atlas features a moderate crustal thickness, with the Moho located at a minimum depth of 35 km to the S and at around 31 km to the N, in the Middle Atlas. Upper crustal shortening is resolved at depth through a crustal root where the Saharan crust underthrusts the northern Moroccan crust. This feature defines a lower crust imbrication that, locally, places the Moho boundary at ˜40-41 km depth in the northern part of the High Atlas. The P-wave velocity model is characterized by relatively low velocities, mostly in the lower crust and upper mantle, when compared to other active orogens and continental regions. These low deep crustal velocities together with other geophysical observables such as conductivity estimates derived from MT measurements, moderate Bouguer gravity anomaly, high heat flow, and surface exposures of recent alkaline volcanism lead to a model where partial melts are currently emplaced at deep crustal levels and in the upper mantle. The resulting model supports the existence of a mantle upwelling as mechanism that would contribute significantly to sustain the High Atlas topography. However, the detailed Moho geometry deduced in this work should lead to a revision of the exact geometry and position of this mantle feature and will require new modeling efforts.

  11. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.


    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  12. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta (United States)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona


    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  13. Extensional scientific realism vs. intensional scientific realism. (United States)

    Park, Seungbae


    Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Extensional rheometer based on viscoelastic catastrophes outline

    DEFF Research Database (Denmark)


    The present invention relates to a method and a device for determining viscoelastic properties of a fluid. The invention resides inter alia in the generation of viscoelastic catastrophes in confined systems for use in the context of extensional rheology. The viscoelastic catastrophe is according ...... to the invention generated in a bistable fluid system, and the flow conditions for which the catastrophe occurs can be used as a fingerprint of the fluid's viscoelastic properties in extensional flow....

  15. Crustal structure, heat flux and mass transfer within a continental back-arc basin: Taupo Volcanic Zone, New Zealand (United States)

    Stern, T. A.; Benson, A.; Greve, A.


    New seismic crustal structure data combined with gravity analysis provide constraints on mass and heat transfer processes in a continental back-arc basin. A recent high resolution seismic refraction, wide-angle experiment across the Taupo Volcanic Zone (TVZ), New Zealand, shows the lower crust is dominated by a ~ 10 km thick, lozenge-shaped body with seismic P-wave velocities of 6.8-7.1 km/s. Seismic reflections define the top and bottom surface of the body at depths of ~ 15 and 25 km, respectively. This "rift-pillow" we interpret as a mafic under-plate that will be in various stages of cooling. Heat fluxes from the TVZ at a rate of about 4GW, and the area is extending at a rate of 10-16 mm/y. To sustain 4GW in steady state for this extension rate requires the continuous intrusion, then cooling, of a molten -layer about 10-15 km thick. Thus the rift pillow is likely to be the main source of heat and rhyolite volcanism that dominates the surface processes within the TVZ. On the southeastern margin of the TVZ lies the active volcanic arc of andesite and dacitic volcanoes. Directly beneath the arc at a depth of ~ 32 km we detect a bright seismic reflection of limited lateral extent (~ 18 km wide). The relative amplitude and negative phase of this reflection suggests a melt body of unknown thickness. We relate this melt body to corner of an upwelling of the mantle asthenosphere, which feeds the primary melts into the active volcanic arc, and also may supply melt to rift pillow structure in the central TVZ. Gravity anomalies across the central North Island are dominated by a long wavelength signal related to subduction. We remove this regional effect with 2-way, third-order polynomial to leave a residual that is largely due to the rifting process in the back arc basin. The residual signal has a classical rift signature of a central low of -55 mgals and gravity highs of about +10 mgals over the flanks of the TVZ. Using the detailed seismic data as a constraint we account

  16. Crustal structure and velocity model of the Moroccan Atlas from refraction/wide angle data. Implications for its tectonic evolution (United States)

    Ayarza, P.; Carbonell, R.; Teixell, A.; Martí, D.; Kchikach, A.; Harnafi, M.; Palomeras, I.; Levander, A.; Gallart, J.; Arboleya, M.; Ouraini, F.; Charroud, M.; Amrhar, M.


    The Atlas Mountain Range is an intra-continental Cenozoic orogenic belt located at the southern edge of the diffuse plate boundary zone separating Africa and Europe. Its western part, the Moroccan Atlas, has long been under the scope of scientist regarding the origin of its high topographies, locally exceeding 4000 m. Geological studies indicate that this mountain belt has experienced low to moderate shortening. Furthermore, the later decreases as topography increases towards the west. These observations rise the question about the origin of the Atlas Mountains topography. Potential field studies indicate that an astenospheric upwelling supports the Atlas high elevations. However, these models depend strongly on the Moho topography and depth. Refraction/wide angle experiments carried out in the 80's suggested that the crust is thin and the Moho relatively flat. However, the proposed crustal structure and velocity inversions are not in agreement with the present models of this mountain belt. With the goal of improving the knowledge of the Moho boundary geometry and the velocity structure of the crust, a refraction/wide angle experiment was carried out in spring 2010 by an international team: the SIMA (Seismic Imaging of the Moroccan Atlas) experiment. A ~700 km long profile, going from Tanger to the Sahara Desert, south of Merzouga, recorded, every 400-1000 m, the energy of 6, 1 tn shots. Even with a low signal/noise ratio, the data allows the identification of crustal phases (Ps, Pg and PiP) and Moho reflected/refracted phases (PmP and Pn). Very weak subcrustal energy appers in some shot gathers. Forward modeling pictures a 3 layers crust and shows the Moho as an asymmetric feature that locally defines a crustal root, suggesting that the crust is imbricated. The crust-mantle boundary is modeled at relatively shallow depths that are in accordance with the results of other geophysical data, thus supporting the idea of a 'mantle plume' as main contributor to the Atlas

  17. Crustal Structure of the Gulf of Aden Continental Margins, from Afar to Oman, by Ambient Noise Seismic Tomography (United States)

    Korostelev, F.; Weemstra, C.; Boschi, L.; Leroy, S. D.; Ren, Y.; Stuart, G. W.; Keir, D.; Rolandone, F.; Ahmed, A.; Al Ganad, I.; Khanbari, K. M.; Doubre, C.; Hammond, J. O. S.; Kendall, J. M.


    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Gulf of Aden presents volcanic margins to the west, where they are influenced by the Afar hotspot, and non volcanic margins east of longitude 46° E. We imaged the crustal structure of the Gulf of Aden continental margins from Afar to Oman to evaluate the role of the Afar plume on the evolution of the passive margin and its extent towards the East. We use Ambient Noise Seismic Tomography to better understand the architecture and processes along the Gulf of Aden. This recent method, developed in the last decade, allows us to study the seismic signal propagating between two seismic stations. Ambient Noise Seismic Tomography is thus free from artifacts related to the distribution of earthquakes. We collected continuous records from about 200 permanent or temporary stations since 1999 to compute Rayleigh phase velocity maps over the Gulf of Aden.

  18. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina) (United States)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio


    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  19. Crustal Structure Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania from Teleseismic Receiver Functions (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.


    We present new measurements of receiver functions at 4 broadband stations temporarily deployed in the Transylvanian Basin within the Carpathian Arc, Romania. Receiver functions can reveal depths to sharp crustal seismic velocity boundaries, which in complex tectonic environments such as the study area provide a good diagnostic for the regional tectonics. As a result of Africa (Adria) collision with Europe and subduction of a part of Tethys Ocean, Tisza-Dacia and Alcapa blocks escaped the collision and were emplaced in an embayment of this ocean, and form today the basement of the Transylvanian Basin. The collision of these terranes with the European continent culminated in the formation, in the Romanian part, of the Eastern Carpathians at the contact between the Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture zone, and of Southern Carpathians at the contact with Moesian Platform. In the foreland of the Carpathian Bend Zone, connecting the two mountain chains, in a very constrained area, a high velocity seismic body was contoured by hypocenters between 70 and 200 km depth. We constructed receiver functions using teleseismic P waves generated by events located between 30 and 95 degrees epicentral angle using the method of Ligorria and Ammon (1999) for individual measurements. We used the H-K method of Zhu and Kanamori (2000) to derive boundary interfaces depths and receiver function complexity from binned stacks. Preliminary results show a relatively shallow Moho depth beneath the Transylvanian Basin.

  20. Diapir versus along-channel ascent of crustal material during plate convergence: constrained by the thermal structure of subduction zones (United States)

    Liu, M. Q.; Li, Z. H.


    Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. The crustal rocks undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channel; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. Thick overriding continental plate and low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, thin overriding lithosphere and steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may corresponds to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate

  1. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis (United States)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence


    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  2. Crustal and upper mantle S-wave velocity structures across the Taiwan Strait from ambient seismic noise and teleseismic Rayleigh wave analyses (United States)

    Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.


    Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.

  3. Crustal structure across Tancheng-Lujiang fault belt in East China (United States)

    Zhang, Zhongjie; Xu, Tao; Tian, Xiaobo; Teng, Jiwen; Bai, Zhiming


    Tancheng-Lujiang (T-L) fault extends more than 3,000km in the eastern China continent. T-L fault is closely related to strong earthquake occurrences such as Ms 7.8 Tangshan earthquake in 1976, basin development with rich oil/gas reserves and mineral resource concentration. The mechanism to form this fault is still in dispute. The proposed models include: post-collisional offset model (Okay and Sengor, 1992); indenter model (Yin and Nie, 1994); thrust model (Li, 1994); North China Craton penetration into South China model (Yokoyama et al., 2001) and Scissor collision model (Zhang et al., 2002, 2006). T-L fault is characterized with its segmentation, while the south segment is favored to understand the deep continental subduction and ultra-high pressure rocks extrusion from the collision between the convergence between Yangtze and North China Craton. In order to provide constraints on the evaluation of the proposed tectonic models, we carried out a 400-km-long wide-angle seismic profiling across the southern segment of the T-L fault. Here we present seismic P-wave data and the interpretation results. Seismic events of reflection and refraction from Moho discontinuity and other intracrustal reflections are remarkably observed with high signal/noise ratio. Crustal P-wave velocity model was reconstructed with forward modelling inversion, and T-L fault penetrates the whole crust, with gentle penetration angle in the upper crust, but very steep angle in the lower crust, which are probably seismic indicators of two phases of lateral escaping to accommodate the collision and extrusion of continental crust of the Yangtze block.

  4. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study. (United States)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.


    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  5. Entangled Polymer Melts in Extensional Flow - Characterization by Combined Rheology and Small-Angle Neutron Scattering

    DEFF Research Database (Denmark)

    Mortensen, Kell; Kirkensgaard, Jacob JK; Hassager, Ole

    generic knowledge about the process in which macromolecular fluidfilaments are extended and stretched and show how the extensional properties are related to theproperties on individual molecules. We combine structural and rheological studies of a series ofmodel polymers with different composition...... and architectures. The project entails synthesizingmodel polymer systems of precisely known molecular architecture, subjecting these materials tocontrolled extensional flows and to measure the molecular deformation under controlled flowsituation by SANS. Neutron contrast is obtained using specific deuterium labeled...

  6. Crustal structure of a Proterozoic craton boundary: east Albany-Fraser Orogen, Western Australia, imaged with passive seismic and gravity anomaly data (United States)

    Sippl, Christian; Brisbout, Lucy; Spaggiari, Catherine; Gessner, Klaus; Tkalcic, Hrvoje; Kennett, Brian; Murdie, Ruth


    We use passive seismic and gravity data to characterize the crustal structure and the crust-mantle boundary of the east Albany-Fraser Orogen in Western Australia, a Proterozoic orogen that reworked the southern and southeastern margin of the Archean Yilgarn Craton. The crustal thickness pattern retrieved from receiver functions shows a belt of substantially thickened crust - about 10 km thicker than the surrounding regions - that follows the trend of the orogen, but narrows to the southwest. Common conversion point profiles show a clear transition from a wide, symmetric Moho trough in the northeast to a one-sided, north-western Moho dip in the southwest, where the Moho appears to underthrust the craton towards its interior. The change from a Moho trough to an underthrust Moho appears to coincide with the inferred trace of the Ida Fault, a major terrane boundary within the Yilgarn Craton. Bulk crustal vp/vs ratios are mostly in the felsic to intermediate range, with clearly elevated values (≥1.8) at stations in the Fraser Zone granulite facies, dominantly mafic metamorphic rocks. Forward modelling of gravity anomaly data using the retrieved Moho geometry as a geometric constraint shows that a conspicuous, elongated gravity low on the northwestern side of the eastern Albany-Fraser Orogen is almost certainly caused by thickened Archean crust. To obtain a model that resembles the regional gravity pattern the following assumptions are necessary: high-density rocks occur in the upper crustal portion of the Fraser Zone, at depth inside the Moho trough and in parts of the eastern Nornalup Zone east of the Moho trough. Although our gravity models do not constrain at which crustal level these high-density rocks occur, active deep seismic surveys suggest that large extents of the east Albany-Fraser Orogen's lower crust include a Mesoproterozoic magmatic underplate known as the Gunnadorrah Seismic Province. The simplest interpretation of the imaged crustal structure is that

  7. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions (United States)

    Li, Yonghua; Wang, Xingchen; Zhang, Ruiqing; Wu, Qingju; Ding, Zhifeng


    We investigated the crustal structure at 34 stations using the H-κ stacking method and jointly inverting receiver functions with Rayleigh-wave phase and group velocities. These seismic stations are distributed along a profile extending across the Songpan-Ganzi Terrane, Qinling-Qilian terranes and southwestern Ordos Basin. Our results reveal the variation in crustal thickness across this profile. We found thick crust beneath the Songpan-Ganzi Terrane (47-59 km) that decreases to 45-47 km in the west Qinling and Qilian terranes, and reaches its local minimum beneath the southwestern Ordos Block (43-51 km) at an average crustal thickness of 46.7 ± 2.5 km. A low-velocity zone in the upper crust was found beneath most of the stations in NE Tibet, which may be indicative of partial melt or a weak detachment layer. Our observations of low to moderate Vp/Vs (1.67-1.79) represent a felsic to intermediate crustal composition. The shear velocity models estimated from joint inversions also reveal substantial lateral variations in velocity beneath the profile, which is mainly reflected in the lower crustal velocities. For the Ordos Block, the average shear wave velocities below 20 km are 3.8 km/s, indicating an intermediate-to-felsic lower crust. The thick NE Tibet crust is characterized by slow shear wave velocities (3.3-3.6 km/s) below 20 km and lacks high-velocity material (Vs ≥ 4.0 km/s) in the lower crust, which may be attributed to mafic lower crustal delamination or/and the thickening of the upper and middle crust.

  8. High resolution crustal structure for the region between the Chilenia and Cuyania terrane above the Pampean flat slab of Argentina from local receiver function and petrological analyses (United States)

    Ammirati, J. B.; Alvarado, P. M.; Pérez, S. B.; Beck, S. L.; Porter, R. C.; Zandt, G.


    Jean-Baptiste Ammirati 1,Sofía Perez 1, Patricia Alvarado 1, Susan L. Beck 2, Ryan Porter 3 and George Zandt 2(1) CIGEOBIO-CONICET, Universidad Nacional de San Juan, Argentina (2) The University of Arizona, USA (3) Northern Arizona University, USA At ~31ºS, The subduction of the Nazca plate under the South American plate presents along-strike variations of its dip angle referred to the Chilean-Pampean flat slab. Geological observations suggest that the regional crustal structure is inherited from the accretion of different terranes at Ordovician times and later reactivated during Andean compression since Miocene. Geophysical observations confirmed that the structure is extending in depth with décollement levels that accommodate crustal shortening in the region. In order to get a better insight on the shallow tectonics we computed high frequency local receiver functions from slab seismicity (~100 km depth). Local earthquakes present a higher frequency content that permits a better vertical resolution. Using a common conversion point (CCP) stacking method we obtained cross sections showing high-resolution crustal structure in the western part of the Pampean flat slab region, at the transition between the Precordillera and the Frontal Cordillera. Our results show a well-defined structure and their lateral extent for both units down to 80 km depth. In good agreement with previous studies, our higher resolution images better identify very shallow discontinuities putting more constraints on the relationships with the regional structural geology. Recent petrological analyses combined with RF high-resolution structure also allow us to better understand the regional crustal composition. Interestingly, we are able to observe a shifting structure beneath the Uspallata-Calingasta Valley, highlighting the differences in terms of crustal structure between the Precordillera and the Frontal Cordillera. Previously determined focal mechanisms in the region match well this

  9. Gravity evidence for shaping of the crustal structure of the Ameca graben (Jalisco block northern limit). Western Mexico (United States)

    Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José


    The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the

  10. Development of simulator for studying formation process of crustal structure. 1; Chikaku kozo keisei simulator no kaihatsu. 1

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Murakami, Y.; Okubo, Y.; Matsubayashi, O.; Tanaka, A.; Nakajima, Y.; Morijiri, R. [Geological Survey of Japan, Tsukuba (Japan); Rokugawa, S. [The University of Tokyo, Tokyo (Japan)


    The purpose of this study is to combine seismic activity and volcanic activity by reproducing the formation process of the crustal structure from a physical viewpoint or developing as its extension a numerical simulator which can predict the future. The phenomenon to which attention is especially paid at present is a relation between the dynamic process and the thermal process in the domain including the crust or the upper mantle. Namely, to elucidate the formation process of the crust structure, diastrophism also including seismic activity, igneous activity, etc., it is important to evaluate effects of the behavior of heat supplied from the deep on the dynamic process. In the finite element method, it is not easy to make the effect of gravity reflect to the calculation for boundary conditions. Accordingly, it is general to pay attention to stress difference, considering that stress by gravity is in proportion to static rock pressure stress. Further, to realize interaction between the thermal process and the dynamic process, effects of thermal stress are expressed combining the heat conducting analysis and the plastic flow analysis. 3 refs., 7 figs.

  11. Crustal structure of the Tethyan Himalaya, southern Tibet: new constraints from old wide-angle seismic data (United States)

    Zhang, Zhongjie; Klemperer, Simon


    A wide-angle seismic profile between Peigu Tso (85.5°E) and Pumoyong Tso (90.5°E) in southern Tibet, acquired under a joint Sino-French program in 1981, passes through the South Tibetan Detachment System (STDS, the eastern segment of the profile) and the central part of the Tethyan Himalaya (the western segment). We herein reinterpret this wide-angle seismic profile, which has a total length of ~480 km, in order to improve our understanding of the crustal structure of the Tethyan Himalaya. We identify multiple P- and S-wave wide-angle reflections within the crystalline crust and from the Moho, but cannot identify any refracting waves beneath the Moho. We model the structure of P- and S-wave velocity throughout the whole crust, while acknowledging the significant uncertainties that are inherent in many places. A low-wave speed cover sequence may be identified with the Tethyan sedimentary cover (Vp endured a transition from steep subduction to low-angle subduction, and the subduction slab flattening may be attributed to the break-off of Indian lithosphere slab beneath the Indur-Zurpo suture.

  12. Magnitude of crustal shortening and structural framework of the easternmost Himalayan orogen, northern Indo-Burma Ranges of northeastern India (United States)

    Haproff, P. J.; Yin, A.


    Along-strike variation in crustal shortening throughout the Himalayan orogen has been attributed to (1) diachronous, eastward-increasing convergence, or (2) localized controls including pre-collisional stratigraphic configuration and climate. In this study, we present new geologic maps and balanced cross-sections across the easternmost segment of the Himalayan orogen, the N-S-trending N. Indo-Burma Ranges of northeastern India. First order structures are NE-dipping, km-wide ductile thrust shear zones with mylonitic fabrics indicating top-to-the SW motion. Major structures include the Mayodia klippe and Hunli window, generated during folding of the SW-directed Tidding thrust and duplexing of Lesser Himalayan rocks (LHS) at depth. Reconstruction of two balanced cross-sections yields minimum shortening estimates of 70% (48 km) and 71% (133 km), respectively. The widths of the orogen for each transect are 21 km and 54 km, respectively. Our percent strain values are comparable to that of western Arunachal Himalaya, reflecting eastward-increasing strain due to counterclockwise rotation of India during convergence or along-strike variation in India's subduction angle. However, shortening magnitudes much less than that of the Sikkim (641 km), Bhutan (414-615 km), and western Arunachal Himalaya (515-775 km) could signal eastward increasing shortening of a unique Himalayan stratigraphic framework, evidenced by few GHC rocks, absence of Tethyan strata, and an extensive subduction mélange and forearc complex.

  13. Crustal structure due to collisional and escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02 from the ALP 2002 seismic experiment

    Czech Academy of Sciences Publication Activity Database

    Brückl, E.; Bleibinhaus, F.; Gosar, A.; Grad, M.; Guterch, A.; Hrubcová, Pavla; Keller, G. R.; Majdański, M.; Šumanovac, F.; Tiira, T.; Yliniemi, J.; Hegedüs, E.; Thybo, H.


    Roč. 112, č. B6 (2007), B06308/1-B06308/25 ISSN 0148-0227 R&D Projects: GA MŽP SB/630/3/02 Institutional research plan: CEZ:AV0Z30120515 Keywords : crustal structure * ALP 2002 seismic experiment * seismic refraction Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.953, year: 2007

  14. Deep Crustal Structure and Tectonic History of the Northern Kapuskasing Uplift of Ontario: AN Integrated Petrological-Geophysical Study (United States)

    Percival, J. A.; McGrath, P. H.


    The northeast trending Kapuskasing uplift transects the east-west belts of the central Superior Province over a distance of some 500 km. Granulite to upper amphibolite facies rocks of the uplift form three distinct geological-geophysical entities: from south to north, the Chapleau, Groundhog River, and Fraserdale-Moosonee blocks. Uplift of the granulites along a moderately northwest dipping crustal-scale thrust fault is attributed to an early Proterozoic compressional event. Major northeast-striking faults that bound the Kapuskasing zone on the west were examined by modelling of geophysical anomalies to determine dip and by geobarometry of garnet-orthopyroxene-plagioclase-quartz assemblages to determine vertical displacement. Granulites in the Kapuskasing zone have 7- to 9-kbar signatures whereas those in the Quetico belt to the west indicate metamorphic pressure of 4-6 kbar. Individual calibrations of the barometer yield consistent pressure differences of 2-3 kbar, suggesting 7-10 km of west-side-down movement on the faults. Modelling of gravity and aeromagnetic gradients indicates westerly dips of 60°-65°, with west-side-down offset of up to 14 km. These major normal faults probably formed as collapse structures in response to crustal thickening which occurred during the preceding compressional uplift stage. Differences in the configuration of individual blocks of the Kapuskasing zone can be related to variable fault slip and intersection angles between normal and reverse faults. Thus the Groundhog River and southern Fraserdale-Moosonee blocks are perched thrust tips analogous to the Sangre de Cristo Range of the Laramide uplift province, whereas the southern Chapleau block is a tilted slab with similar configuration to the Laramide Wind River Range. Pop-up geometry deduced for the northern Fraserdale-Moosonee block resembles the structure of the Laramide Uinta Mountains. A normal fault crosses the surface trace of the basal thrust fault between the Groundhog

  15. Crustal permeability (United States)

    Gleeson, Tom; Ingebritsen, Steven E.


    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  16. Geophysical studies of aseismic ridges in northern Indian Ocean-crustal structure and isostatic models

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.

    The present work consists of a detailed geophysical study of the structure and isostatic compensation mechanisms of three major aseismic ridges; The Comorin Ridge, The 85°E Ridge and Ninety east Ridge of the northeastern Indian Ocean. Various...

  17. The Northeastern Brazil and Gabon Basins: a Double Rifting System Associated with Multiple Crustal Detachment Surfaces (United States)

    Castro, Augusto Canellas M., Jr.


    Analysis of structural, stratigraphic, and gravimetric data from the Reconcavo, Tucano, and Sergipe-Alagoas basins in northeastern Brazil and the Gabon basin in Africa shows that these basins originated in a double rifting system associated with multiple crustal detachment surfaces and that the direction of dip of the detachment surfaces was reversed at the Vaza-Barris fault system. This geometry is in agreement with models and data from modern rifts, but it requires the existence of a predominantly extensional stress regime in the northern part of the South Atlantic during the early stages of oceanic evolution. Evidence for the existence of such a stress regime is given by application of kinematic constraints to Early Cretaceous reconstructions of the South Atlantic Ocean. Interpretation of the regional geologic setting suggests that the double rifting system and the point of final continental rupture were controlled by the preexisting structural orientation of the tectonic provinces in the Precambrian basement.

  18. Electrical Resistivity Structure and Helium Isotopes around Naruko Volcano, Northeastern Japan and Its Implication for the Distribution of Crustal Magma

    Directory of Open Access Journals (Sweden)

    Koichi Asamori


    Full Text Available The two-dimensional electrical resistivity structure beneath Naruko volcano was determined using magnetotelluric soundings. The resulting model shows that a prominent conductor exists through the middle crust to the uppermost mantle beneath the volcano. The location of the conductor agrees closely with a seismic low-velocity zone. Low-frequency microearthquakes occur near the conductor around the Moho depth. The cutoff depth of crustal earthquakes is coincident with the upper boundary of the conductor, implying that the conductor has a temperature appreciably higher than 400∘C. Furthermore, new helium isotope data from hot springs around the volcano were obtained. The spatial distribution of the observed 3He/4He ratios reveals the extent of mantle-derived materials beneath Naruko volcano. Consequently, it is apparent that the conductor determined beneath the volcano reflects the presence of high-temperature mantle-derived materials such as magmas and/or related fluids derived from active magmatism in the northeastern Japan subduction zone.

  19. Crustal structure and development of the SW Barents Sea and the adjacent continental margin

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Asbjoern Johan


    Because of its expected petroleum potential, the western Barents Sea has been extensively mapped and investigated. The present thesis deals with many aspects of the geological development of this area. The emphasis is on Late Paleozoic structuring, Late Mesozoic basin formation, and early Tertiary margin formation including geodynamical response to the late Cenozoic sedimentation. The thesis begins with a review of the literature on the Late Palaeozoic structural development of the south-western Barents Sea, Svalbard and eastern Greenland. A structural map is developed for the Upper Carboniferous rift system in the southwestern Barents Sea that shows the interference of the northeasterly and the northerly structural grain. A discussion of the Ottar Basin uses a combination of seismic interpretation and gravity modelling to investigate this important structural element of the Upper Palaeozoic rift system. Previous work on Late Mesozoic basin formation in the southwestern Barents Sea is extended by incorporating new seismic reflection data and gravity modelling. Finally, the focus is shifted from the Barents Sea shelf to the continental-ocean transition and the oceanic basin. Gridded free-air gravity data from the ERS-1 enables the construction of a Bouguer gravity map of unprecedented resolution. The relationship between isostacy and gravity was resolved by modelling the thermal structure across the margin. Admittance analysis of the relationship between bathymetry and free-air gravity indicates an elastic thickness of the oceanic Lithosphere of 15-20 km, which is compatible with the depth to the 450{sup o}C isotherm obtained from thermal modelling. It is concluded that the southwestern Barents Sea margin does not deviate in any significant respects from passive rifted margins, except for a very straight and narrow continent-ocean transition zone. 332 refs., 55 figs., 7 tabs.

  20. Recent geodynamics of West Bohemia in relation on the crustal structure (unique natural laboratory)

    Czech Academy of Sciences Publication Activity Database

    Horálek, Josef; Brož, Milan; Nehybka, V.; Novotný, O.; Ulrych, Jaromír; Kotková, J.

    11 (128) (2003), s. 55-74 ISSN 1212-1576 R&D Projects: GA ČR GA205/99/0907 Institutional research plan: CEZ:AV0Z3013912; CEZ:AV0Z3012916 Keywords : West Bohemia seismic region * recent geodynamics * earthquake swarms Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  1. 2-D Crustal thermal structure along Thuadara–Sindad DSS profile ...

    Indian Academy of Sciences (India)

    province, India; Journal of Volcanology and Geothermal. Research 93 111–123. Chary N R 1993 Structure tectonics and basinal history of. Vaidarbha Nadi coalfield of Yavatmal district, Maharash- tra; Gondwana Geological Magazine, Special Volume on. Birbal Sahani centenary National Symposium on Gond- wana of ...

  2. Crustal structure and rift tectonics across the Cauvery–Palar basin ...

    Indian Academy of Sciences (India)

    India from subsidence modelling; Mar. Petrol. Geol. 12. 667–675. Curray J R, Emmel F J, Moore D G and Raitt R W 1982. Structure, tectonics and geological history of the north- eastern Indian Ocean; In: The Ocean Basins and Margins: The Indian Ocean (eds) Nairn A E M and Stehli F G, 6,. Plenum Press, New York, pp.

  3. Joint Inversion of Crustal and Uppermost Mantle Structure in Western China (United States)


    Crosson, Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data, J. Geophys. Res., 94, pp... Saint Louis University Department of Geology 221 N. Grand Boulevard 605 E. Springfield Ave. St. Louis, MO 63103 Champaign, IL 61820 8

  4. The rift architecture and extensional tectonics of the South China Sea (United States)

    Cameselle, Alejandra L.; Ranero, César R.; Barckhausen, Udo; Franke, Dieter


    fault-bounded basement blocks, fault reflections, and crust-mantle boundary reflections, which defines the tectonic structure formed during rifting. The images clearly show the progressive thinning of the continental crust related to different styles of faulting. The continental and oceanic domains can be distinguished based on their different tectonic styles and supported by published magnetic anomalies. Between both crustal domains, the continent-ocean transition is interpreted as an abrupt change in tectonic style and some characteristics features. It can be defined in most seismic profiles at both conjugated margins of the South China Sea subbasins, providing key information to understand the mechanisms for crustal extension and to discuss the classical pure- and simple-shear extensional model. Seismic profiles are distributed spatially and with a direction perpendicular to the continental margin, which have allowed studying the structure and variability of the continent-ocean transition along-strike. The resulting information helps to understand the processes involved in the last stages of continental rifting, directly before the final breakup of continental crust, the final emplacement of the spreading centre, and the earliest stages of seafloor spreading.

  5. Complex crustal structures: their 3D grav/mag modelling and 3D printing (United States)

    Götze, Hans-Jürgen; Schmidt, Sabine; Menzel, Peter


    Our new techniques for modelling and visualization are user-friendly because they are highly interactive, ideally real-time and topology conserving and can be used for both flat and spherical models in 3D. These are important requirements for joint inversion for gravity and magnetic modelling of fields and their derivatives, constrained by seismic and structural input from independent data sources. A borehole tool for magnetic and gravity modelling will also be introduced. We are already close to satisfying the demand of treating several geophysical methods in a single model for subsurface evaluation purposes and aim now for fulfilling most of the constraints: consistency of modelling results and measurements and geological plausibility as well. For 3D modelling, polyhedrons built by triangles are used. All elements of the gravity and magnetic tensors can be included. In the modelling interface, after geometry changes the effect on the model is quickly updated because only the changed triangles have to be recalculated. Because of the triangular model structure, our approach can handle complex structures very well and flexible (e.g. overhangs of salt domes or plumes). For regional models, the use of spherical geometries and calculations is necessary and available. 3D visualization is performed with a 3D-printer (Ultimaker 2) and gives new insights into even rather complicated Earth subsurface structures. Inversion can either be run over the whole model, but typically it is used in smaller parts of the model, helping to solve local problems and/or proving/disproving local hypotheses. The basic principles behind this interactive approach are high performance optimized algorithms (CMA-ES: Covariance-matrix-adoption-evolution-strategy). The efficiency of the algorithm is rather good in terms of stable convergence due to topological model validity. Potential field modelling is always influenced by edge effects. To avoid this, a simple but very robust method has been

  6. Three-dimensional velocity model of crustal structure in the southern Korean Peninsula and its full-waveform validations (United States)

    Rhie, J.; Kim, S.; Woo, J. U.; Song, J. H.


    To obtain a high-resolution crustal three-dimensional (3-D) model, we incorporate multiple regional ambient noise datasets in different scales, which consist of 150 accelerometer stations (1-6 s group velocity), 37 regional broadband stations (5-30 s group and phase velocity), and longer period phase velocity maps from previous study (25-40 s phase velocity). A 3-D structure of shear wave velocity is constrained by integrating one-dimensional depth profiles from inversions of surface wave dispersions. The model estimation is carried out thoroughly in a trans-dimensional and hierarchical Bayesian inversion framework, such that the resulting model is less biased by arbitrary assumptions in the inversion process. To obtain P-wave velocity structure, then, a previous estimation of the variation of Vp/Vs ratio is applied. A 1-D velocity model will be replaced by this new 3-D model for determining accurate hypocenters and source processes of local earthquakes in the region. In addition, the new model will make more reliable seismic hazard analysis for scenario earthquakes possible. Before adopting the new model for various applications, it is necessary to validate it. To verify the validity of the model, full-waveform simulations for recent local earthquakes are performed. Two well observed moderate earthquakes occurred at NE and SW of the southern Korean Peninsula are considered for waveform simulations. The comparison between synthetic and observed waveforms shows that the new model reasonably well represents the seismic wave propagation characteristics in the southern Korean Peninsula.

  7. Seismicity, seismotectonics and crustal structure of the southern Kenya Rift-new data from the Lake Magadi area (United States)

    Ibs-von Seht, M.; Blumenstein, S.; Wagner, R.; Hollnack, D.; Wohlenberg, J.


    Local seismic activity has been monitored in the southern part of the Kenya Rift in the area around Lake Magadi. An earthquake recording network consisting of 15 station sites was operated for 8months from November 1997 to June 1998. During this period, the Magadi area proved to be seismically active. Approximately 10 events per day were detected and found to be equally distributed over the rift floor. The hypocentre depth distribution shows surprisingly large depths of up to 27km in the south and much shallower depths in the northern part of the area. Apart from the background activity, swarm activity with rates of more than 300 events per day was also recorded. The epicentres are clustered and trace a linear structure lying SSW-NNE over a length of 10km north of Lake Magadi. Hypocentres in the region of the earthquake cluster are shallow and exhibit a sharp cut-off at 9km depth. A surface crack that occurred during the recording period is connected to the earthquake swarm. Analysis of the focal mechanisms of selected earthquakes indicates predominantly normal faulting in response to a WNW-ESE-directed tensional stress field. This direction corresponds to the general alignment of the southernmost part of the Kenya Rift and to the surface faulting pattern inside the rift. The crustal structure of the area has been investigated using local earthquake tomography and the spatial distribution of hypocentres. The main results of the tomography are a linear positive velocity anomaly following the rift axis and a negative anomaly at shallow depth underneath Lake Magadi. The high velocities can be explained by mafic material that has intruded into the upper crust. The negative anomaly is attributed to highly fractured rocks. Maximum hypocentre depths indicate a body of low shear strength centred at the rift axis and a general deepening of the brittle-ductile transition from north to south.

  8. Correlations between Crustal Structure and Slip on the Cascadia Megathrust (Invited) (United States)

    Trehu, A. M.


    A number of active-source seismic imaging experiments of the Cascadia forearc margin have been conducted over the past three decades. Seismic P-wave velocity models derived from these experiments, when combined with geodetic, potential field, morphological and other data, reveal structures in both the upper and lower plate that can be correlated with current microseismic activity, geodetic signals indicating interplate locking, and apparent segmentation of past large plate boundary earthquakes as determined from onshore and offshore paleoseismic data. These data are being interpreted to construct maps of the apparent seismic velocity structure averaged over several km above and below the expected plate boundary and extending from the region characterized by episodic tremor and slip up dip to the deformation front. Preliminary results for the recent CIET, COAST and Ridge-to-Trench experiments that support, challenge or extend an evolving working model for structural constraints on plate boundary deformation in Cascadia will also be discussed. Other co-PIs who have planned and executed the CIET, COAST and Ridge-to-Trench experiments are listed below with the lead PI for each group listed first. CIET (Cascadia Initiative Science Team): Doug Toomey, Emilie Hooft (both at Un. of Oregon); Bob Dziak (Oregon State Un. NOAA); William Wilcock (Un. Washington); Susan Schwartz (UC Santa Cruz); John Collins, Jeff McGuire (WHOI); Maya Tolstoy (LDEO); Richard Allen (UC Berkeley) COAST (Cascadia Open-Access Seismic Transects): Steve Holbrook (Un. Wyoming); Graham Kent (Un. Nevada Reno); Katie Keranen (Un. Oklahoma); Paul Johnson (Un. Washington); Jackie Caplan-Auerbach (Western Washington Un.); Harold Tobin (Un. Wisconson) Ridge-to-Trench: Suzanne Carbotte, Helene Carton, Geoff Abers (all at LDEO); Pablo Canales (WHOI); Mladen Nedimovic (Dalhousie Un.)

  9. Foreland crustal structure of the New York recess, northeastern United States (United States)

    Herman, G.C.; Monteverde, D.H.; Schlische, R.W.; Pitcher, D.M.


    A new structural model for the northeast part of the Central Appalachian foreland and fold-and-thrust belt is based on detailed field mapping, geophysical data, and balanced cross-section analysis. The model demonstrates that the region contains a multiply deformed, parautochthonous fold-and-thrust system of Paleozoic age. Our interpretations differ from previous ones in which the entire region north of the Newark basin was considered to be allochthonous. The new interpretation requires a substantial decrease in Paleozoic tectonic shortening northeastward from adjacent parts of the Central Appalachian foreland and illustrates the common occurrence of back-thrusting within the region. During early Paleozoic time northern New Jersey consisted of a Taconic orogenic foreland in which cover folds (F1) involved lower Paleozoic carbonate and flysch overlying Middle Proterozoic basement. F1 folds are open and upright in the foreland and more gently inclined to recumbent southeastward toward the trace of the Taconic allochthons. F1 structures were cut and transported by a fold-and-thrust system of the Allegheny orogeny. This thrust system mostly involves synthetic faults originating from a master decollement rooted in Proterozoic basement. Antithetic faults locally modify early synthetic overthrusts and S1 cleavage in lower Paleozoic cover and show out-of-sequence structural development. The synthetic parts of the regional thrust system are bounded in the northwestern foreland by blind antithetic faults interpreted from seismic-reflection data. This antithetic faulting probably represents Paleozoic reactivation of Late Proterozoic basement faults. Tectonic contraction in overlying cover occurred by wedge faulting where synthetic and antithetic components of the foreland fault system overlap. S2 cleavage in the Paleozoic cover stems from Alleghanian shortening and flattening and commonly occurs in the footwall of large overthrust sheets. Paleozoic structures in Proterozoic

  10. Modeling of dual cylinder wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Marin, Jose; Jensen, Mette

    measurements are useful for polymer characterization. The Sentmanat extensional Rheometer[1] is an new testing platform for the study of polymers and elastomers in extensional flow. This technique employs a dual wind-up drum technique to perform an uni-axial extensional deformation during experiments...

  11. Integrated geophysical data processing and interpretation of crustal structure in Ethiopia with emphasis on the Ogaden Basin and adjacent areas (United States)

    Tadesse, Ketsela

    The combined effects of magmatism and stretching due to asthenosphere upwelling modifies the crustal structure of the Earth as seen in the Ethiopian rift and adjacent areas. The Ethiopian rift provides unique opportunities to understand the nature of rifted crust and the intensity of its modification by magmatic processes. I used geological and geophysical data to conduct an integrated study in and around the Ethiopian rift including the northern Kenyan rift and the northern part of the Kenyan dome. New gravity, controlled source seismic, and teleseismic data from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment) were used as additional constraints in my analysis of the crustal structure of Ethiopian rift and adjacent plateaus. Application of a residual gravity anomaly filtering technique using upward continuation revealed various crustal features within the Ethiopian rift and the flanking plateau regions. Short wavelength high amplitude positive anomalies coincide with the local volcanic complexes and calderas. In addition low gravity anomalies are associated with areas of thicker sediments within the rift valley. Axial and cross rift gravity profiles were modeled in 2.5 dimensions constrained with seismic refraction and geologic data. The axial model connects the Kenyan dome through Turkana rift and Main Ethiopian rift (MER) up to the Afar triple junction and provides a new integrated picture of lithospheric structure along the rift for over 1000 km. This model indicates a thin crust (26 km) underlying the Afar region. The crust gradually thickens towards the MER where it is about 35-40 km thick. Towards the south the crust thins and is only 22 km thick when it reaches the Turkana area. The southern section of the axial model indicates that the crust is about 35 km thick beneath the central Kenyan rift. All these thickness values are in agreement with the EAGLE and Kenya Rift International Seismic Project (KRISP) and earlier refraction results and

  12. Crustal structure of Shatsky Rise from joint refraction and reflection seismic tomography (United States)

    Korenaga, J.; Sager, W. W.


    Shatsky Rise in the western Pacific is one of a few gigantic oceanic plateaus in the world, with a surface area of ˜ 4.8 ± 105~km2 (about the same size as California). In contrast to other large oceanic plateaus formed during the Cretaceous Quite Period, Shatsky Rise formed during the frequent reversals of magnetic polarity, allowing its tectonic environment to be resolved in detail. It was formed at a rapidly spreading ridge-ridge-ridge triple junction, so the effect of lithospheric lid on magma migration is expected to be minimal, thereby facilitating the petrological interpretation of its seismic structure in terms of parental mantle processes. In the summer of 2010, a seismic refraction survey combined with multichannel seismic profiling was conducted across Shatsky Rise. Twenty eight ocean-bottom seismometers were deployed along two crossing perpendicular lines, and all of the instruments were recovered successfully, yielding a large volume of high-quality wide-angle refraction and reflection data, with the source-receiver distance often exceeding 200~km. In this contribution, we present the P-wave velocity structure of the Shatsky Rise crust, which is constructed by joint refraction and reflection travel time tomography, and also discuss its implications for the origin of Shatsky Rise.

  13. Crustal structure of the NE Rockall Trough from wide-angle seismic data modeling (United States)

    KlingelhöFer, F.; Edwards, R. A.; Hobbs, R. W.; England, R. W.


    Two wide-angle seismic lines located in the northern Rockall Trough were acquired in May 2000. One line (line E) crosses the trough from the continental shelf off Lewis to normal oceanic crust west of Lousy Bank in NW-SE direction. The other line (line D) intersects with line E, crosses the Wyville-Thomson Ridge in a SW-NE direction and ends in the Faeroe-Shetland Basin. Sonobuoy data and expanding spread profiles acquired in the same area have been remodeled. Analysis of the seismic data using travel times and amplitudes reveals an up to 5 km thick sedimentary basin including an up to 1.5 km thick basaltic layer which is present in most of the trough. Further conclusions of this study are that the Rockall Trough is underlain by highly stretched continental crust of ˜13 km thickness. The crust thickens to ˜24 km beneath Lousy Bank, which is interpreted to be of continental nature. Beneath the Hebrides continental shelf a three-layer continental crust of 26 km is modeled. An up to 12 km thick high-velocity layer is observed underneath the ocean-continent boundary and is interpreted as magmatic underplating resulting from excess volcanism during rifting. No evidence for an underplate layer could be distinguished beneath the trough area. Modeling of the structure of the Wyville-Thomson Ridge revealed no existing igneous core of the ridge confirming existing theories, that it is a compressional structure.

  14. The Unified Extensional Versioning Model

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred; Christensen, H. B.


    Versioning of components in a system is a well-researched field where various adequate techniques have already been established. In this paper, we look at how versioning can be extended to cover also the structural aspects of a system. There exist two basic techniques for versioning - intentional...

  15. Crustal and Mantle Structure Beneath the Iles Eparses (Mozambique Channel, Indian Ocean) (United States)

    Barruol, G.; Fontaine, F. R.; Davy, C.; Schlindwein, V. S. N.; Sigloch, K.


    In order to investigate the lithospheric structure of the Mozambique channel (Indian Ocean), we deployed 5 broadband three-components seismic stations between April 2011 and January 2014 on the Islands of Europa (EURO), Juan de Nova (JNOV), Mayotte (MAYO), and Glorieuses (GLOR) in the Mozambique channel and on Tromelin Island (TROM) located ca. 450 km east of Madagascar. We performed measurements of teleseismic shear wave splitting using SKS and SKKS phases and receiver function analyses to characterize the nature and thickness of the crust and the underlying upper mantle structure. Seismic anisotropy is observed at all seismic stations and display a rather homogeneous pattern: average values of the splitting parameters show fast polarization trending between N112°E (EURO) and N120°E (JNOV) to N81°E (MAYO). Observed delay times vary between 0.8 (JNOV) and 1.0 s (MAYO). In Mayotte, analysis of individual backazimuthal variation of splitting parameters suggests an upper mantle more complex than a single anisotropic layer. Station TROM located on Tromelin Island shows similar fast polarization azimuth of N123°E but slightly higher delay time (1.4 s). Fast polarization directions are compared with values predicted by drag-induced anisotropy and absolute plate motion direction and with lithospheric fossil spreading directions. Results are also compared to orientation predicted by large-scale mantle convection models. Receiver functions observations and modelling of P-to-S conversions at the Mohorovičić (Moho) discontinuity have been employed to investigate the variations in the Moho depth, the nature of the crust and of the crust-mantle transition. Preliminary results suggest a Moho depth of 16 km beneath Europa Island.

  16. Ps receiver function imaging of crustal structure and Moho topography beneath the Northeast Caribbean (United States)

    Ntuli, G.; Agrawal, M.; Pulliam, J.; Huerfano Moreno, V. A.; Polanco Rivera, E.


    Due to its tectonic history, the Caribbean plate contains complex fault systems that are likely to have disrupted the Moho. To study the region's subsurface structure we computed a 3D image of the Northeast Caribbean via "velocity analysis" with Ps receiver functions. In this technique we simultaneously find, via an optimization procedure, depths to major discontinuities (in this case the Moho) and P and S velocity profiles beneath each seismic station. Ps receiver functions are time series computed from three-component seismograms that identify waves converted from P- to S-type at velocity discontinuities, such as the Moho and subducting lithosphere. Data were requested from the IRIS Data Management Center for events that occurred in the 2005-15 time period with magnitudes of 5.5-8.0 and epicentral distances of 30°-95° from stations in the study region. Data pre-processing steps include tapering, removing the trend and mean, and rotating from Z-N-E to L-Q-T (ray-based) coordinate systems. Ps receiver functions were then computed via iterative deconvolution in the time domain and the best receiver functions were stacked and modeled to generate a 3D image of the subsurface. Shear velocity profiles for each station are varied in a procedure, driven by simulated annealing, that seeks to optimize the correlation of a target feature—in this case the Moho—in the set of pre-processed Ps receiver functions. This procedure is feasible only when station spacing is relatively dense, which limits its success in this region to the islands of Puerto Rico and Hispaniola. Individual receiver functions were computed for isolated stations in the NE Caribbean, as well, but velocity analysis is limited to the two islands that have the densest station coverage. Moho depths beneath Puerto Rico range from 24 km, in the north, to 37 km, in the south. Moho depths beneath Hispaniola range from 23 km to 36 km but exhibit a more complex pattern of variation than beneath Puerto Rico

  17. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    International Nuclear Information System (INIS)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.


    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  18. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.


    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  19. Crustal and upper mantle structure of the Slave craton from P- and S- Receiver Functions (United States)

    Barantseva, Olga; Vinnik, Lev; Artemieva, Irina


    Teleseismic events recorded by POLARIS array in NW Canada (Slave craton) and Yellowknife station were used to calculate a sufficient number of receiver functions for P (PRF) and S (SRF) waves. Velocity (Vp and Vs) and Vp/Vs profiles from the Earth's surface down to 300 km are obtained through the simultaneous inversion of PRF and SRF with teleseismic travel time residuals for the crust and upper mantle. We observe highly heterogeneous structure of the cratonic upper mantle. The Lehman discontinuity (the bottom of the low velocity zone) is found in the western Slave craton, whereas it is not observed in the eastern part of the Slave craton. At stations located in the southern part of the craton, we observe an increase of S-wave velocities (as compared to IASP91 values) at the depths 45-150 km which is typical for depleted cratonic mantle. Low Vp/Vs ratio, obtained for the uppermost mantle (1.65-1.70) can be explained by a high fraction of Opx. A comparison of our results with available xenoliths data shows a good agreement between seismic velocity change at a depth of ca. 160 km and a decrease in mantle depletion at about the same depth.

  20. Crustal structure movement of the Northern Caucasus from the continuous GNSS network observations (United States)

    Milyukov, Vadim; Mironov, Alexey; Ovsyuchenko, Aleksandr; Steblov, Grigory


    The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of four Northern Caucasian Republics: Karachay-Cherkessia, Kabardino-Balkaria, North Ossetia, Dagestan, and Stavropol region of the Russian Federation. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This excessive horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. The result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. On the background of general compression of the Northern Caucasus expansion in the eastern part of the region in combination with shear deformation in the central and eastern parts are revealed too.

  1. 3-D crustal structure beneath the southern Korean Peninsula from local earthquakes (United States)

    Kim, K. H.; Park, J. H.; Park, Y.; Hao, T.; Kang, S. Y.; Kim, H. J.


    Located at the eastern margin of the Eurasian continent, the geology and tectonic evolution of the Korean Peninsula are closely related to the rest of the Asian continent. Although the widespread deformation of eastern Asia and its relation to the geology and tectonics of the Korean Peninsula have been extensively studied, the answers to many fundamental questions about the peninsula's history remain inconclusive. The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks maintained by Korea Meteorological Administration and Korea Institute of Geosciences and Mineral Resources. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  2. Crustal structure of Northwest Zagros (Kermanshah) and Central Iran (Yazd and Isfahan) using teleseismic Ps converted phases (United States)

    Afsari, Narges; Sodoudi, Forogh; Taghizadeh Farahmand, Fataneh; Ghassemi, Mohammad Reza


    Receiver functions are widely employed to detect P-to-S converted waves and are especially useful to image seismic discontinuities in the crust. In this study we used the P receiver function technique to investigate the velocity structure of the crust beneath the Northwest Zagros and Central Iran and map out the lateral variation of the Moho boundary within this area. Our dataset includes teleseismic data ( M b ≥ 5.5, epicentral distance from 30° to 95°) recorded at 12 three-component short-period stations of Kermanshah, Isfahan and Yazd telemetry seismic networks. Our results obtained from P receiver functions indicate clear Ps conversions at the Moho boundary. The Moho depths were firstly estimated from the delay time of the Moho converted phase relative to the direct P wave beneath each network. Then, we used the P receiver function inversion to find the properties of the Moho discontinuity such as depth and velocity contrast. Our results obtained from PRF are in good agreement with those obtained from the P receiver function modeling. We found an average Moho depth of about 42 km beneath the Northwest Zagros increasing toward the Sanandaj-Sirjan Metamorphic Zone and reaches 51 km, where two crusts (Zagros and Central Iran) are assumed to be superposed. The Moho depth decreases toward the Urmieh-Dokhtar Cenozoic volcanic belt and reaches 43 km beneath this area. We found a relatively flat Moho beneath the Central Iran where, the average crustal thickness is about 42 km. Our P receiver function modeling revealed a shear wave velocity of 3.6 km/s in the crust of Northwest Zagros and Central Iran increasing to 4.5 km/s beneath the Moho boundary. The average shear wave velocity in the crust of UDMA as SSZ is 3.6 km/s, which reaches to 4.0 km/s while in SSZ increases to 4.3 km/s beneath the Moho.

  3. Crustal structure and sedimentation history over the Alleppey platform, southwest continental margin of India: Constraints from multichannel seismic and gravity data

    Directory of Open Access Journals (Sweden)

    P. Unnikrishnan


    Full Text Available The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that: (1 the Alleppey Platform is associated with a basement high in the west of its present-day geometry (as observed in the time-structure map of the Trap Top (K/T boundary, (2 the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and, (3 both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns (as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region. The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region. The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension, in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment.

  4. Tectonic burial, thrust emplacement, and extensional exhumation of the Cabot nappe in the Appalachian hinterland of Cape Breton Island, Canada (United States)

    Lynch, Gregory


    Silurian imbricate thrusting, Early Devonian high-grade metamorphic nappe emplacement, and Devonian-Carboniferous extensional denudation characterize deformation in the Appalachian hinterland of Cape Breton Island. Compressional deformation following Early Silurian arc volcanism features imbrication of Cambrian-Precambrian basement rocks of Gondwana derivation with Ordovician-Silurian cover sequences across thick zones of mylonite during south directed transport. High grade metamorphism and gneissic rocks of late Silurian age in the region indicate that significant tectonic burial and crustal thickening occurred as a result of the thrusting. Partial denudation of the high grade assemblages occurred during Early Devonian thrust emplacement of the Cabot nappe toward the northwest, along the Highlands Shear Zone. The nappe is characterized by an amphibolitic gneiss and high-grade schist complex defining a large folded klippe above Silurian units. Kyanite is widespread within the nappe, and a distinctive feature of the thrust sheet is the dynamothermal metamorphism of cooler greenschist-grade footwall rocks producing inverted isograds; staurolite is regionally distributed and occurs in pelitic units in the immediate footwall of the Highlands Shear Zone forming a discontinuous halo around the klippe. Greenschist-grade footwall rocks are exposed in structural windows as a result of folding and faulting. Shear sense indicators along the margins of the Cabot nappe have been rotated into their present positions due to superposed folding, providing apparent movement directions for the nappe. Complete exhumation to surface occurred during Late Devonian extension along the low-angle Margaree Shear Zone.

  5. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong


    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  6. Seismological observations at the Northern Andean region of Colombia: Evidence for a shallowly subducting Caribbean Slab and an extensional regime in the upper plate (United States)

    Monsalve, G.; Cardona, A.; Yarce, J.; Alvira, D.; Poveda, E.


    A number of seismological observations, among which we can mention teleseismic travel time residuals, P to S receiver functions and Pn velocity quantification, suggest a clear distinction between the seismic structure of the crust and uppermost mantle between the plains on the Caribbean coast of Colombia and the mountains at the Northern Andean region. Absolute and relative travel time residuals indicate the presence of a seismically fast material in the upper mantle beneath northern Colombia; preliminary results of Pn studies show a region of relatively slow Pn velocities (between 7.8 and 7.9 km/s) underneath the Caribbean coast, contrasting with values greater than 8 km/s beneath the Central and Western cordilleras of Colombia, and the Pacific coast; receiver functions suggest a significantly thinner crust beneath the Caribbean coast, with a crustal thickness between 25 and 30 km, than beneath the Northern Andean zone at the cordilleras of Colombia, where it exceeds 40 km and reaches about 57 km at the location of Bogota. Besides the obviuos discrepancies that appear in response to different topography, we think that the seismological observations are a consequence of the presence of two very distinct slab segments beneath Colombia and contrasting behaviors of the upper plate, which correspond to Caribbean and Nazca subductions. Our seismic observations can be explained by a shallowly subducting Caribbean Plate, in the absence of an asthenospheric wedge, that steepens at about the location of the Bucaramanga nest, and a thinned continental crust that reflects an extensional component linked to oblique convergence of the Caribbean, which contrasts with the crustal thickening in the Andean Cordillera linked to crustal shortening and Nazca plate subuction. These new data are consistent with the idea of of a relatively warm Nazca slab of Neogene age which seems to have a relatively frontal convergence, and a colder, more buoyant Caribbean slab which represents an

  7. Recent crustal movements (United States)

    Maelzer, H.

    Calculation of temporal height changes for the determination of recent vertical crustal movements in northern, western, and southern Germany is described. Precise geodetic measurements and their analysis for the determination of recent crustal movements in north-eastern Iceland, western Venezuela, and central Peru are described. Determination of recent vertical crustal movements by leveling and gravity data; geodetic modeling of deformations and recent crustal movements; geodetic modeling of plate motions; and instrumental developments in geodetic measuring are discussed.

  8. Crustal structure across the Møre margin, mid-Norway, from wide-angle seismic and gravity data

    DEFF Research Database (Denmark)

    Kvarven, Trond; Ebbing, Jörg; Mjelde, R.


    The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection...... and refraction data were acquired in 2009; two dip-profiles which were extended by land stations, and one tie-profile parallel to the strike of the Møre–Trøndelag Fault Complex. The modeling of the wide-angle seismic data was performed with a combined inversion and forward modeling approach and validated...... an interpretation as magmatic underplating, the inner body has a density close to mantle density which might suggest an origin as an eclogized body, formed by metamorphosis of lower crustal gabbro during the Caledonian orogeny. The difference in velocity and extent of the lower crustal bodies seems to be controlled...

  9. Joint inversion of ambient noise surface wave and gravity data to image the upper crustal structure of the Tanlu fault zone to the southeast of Hefei, China (United States)

    Wang, K.; Gu, N.; Zhang, H.; Zhou, G.


    The Tanlu fault is a major fault located in the eastern China, which stretches 2400 km long from Tancheng in the north to Lujiang in the south. It is generally believed that the Tanlu fault zone was formed in Proterozoic era and underwent a series of complicated processes since then. To understand the upper crustal structure around the southern segment of the Tanlu fault zone, in 2017 we deployed 53 short period seismic stations around the fault zone to the southeast of Hefei, capital city of Anhui province. The temporary array continuously recorded the data for about one month from 17 March to 26 April 2017. The seismic array spans an area of about 30km x 30Km with an average station spacing of about 5-6km. The vertical component data were used for extracting Rayleigh wave phase and group velocity dispersion data for the period of 0.2 to 5 seconds. To improve imaging the upper crustal structure of the fault zone, we jointly inverted the surface wave dispersion data and the gravity data because they have complementary strengths. To combine surface wave dispersion data and gravity observations into a single inversion framework, we used an empirical relationship between seismic velocity and density of Maceira and Ammon (2009). By finding the optimal relative weighting between two data types, we are able to find a shear wave velocity (Vs) model that fits both data types. The joint inversion can resolve the upper crustal fault zone structure down to about 7 km in depth. The Vs model shows that in this region the Tanlu fault is associated with high velocity anomalies, corresponding well to the Feidong complex seen on the surface. This indicates that the Tanlu fault zone may provide a channel for the intrusion of hot materials.

  10. First results on the crustal structure of the Natal Valley from combined wide-angle and reflection seismic data (MOZ3/5 cruise), South Mozambique Margin. (United States)

    Leprêtre, Angélique; Verrier, Fanny; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; de Clarens, Philippe; Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline


    The Natal valley (South Mozambique margin) is a key area for the understanding of the SW Indian Ocean history since the Gondwana break-up, and widely, the structure of a margin system at the transition between divergent and strike-slip segments. As one part of the PAMELA project (PAssive Margins Exploration Laboratories), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN, the Natal Valley and the East Limpopo margin have been explored during the MOZ3/5 cruise (2016), conducted onboard the R/V Pourquoi Pas?, through the acquisition of 7 wide-angle profiles and coincident marine multichannel (720 traces) seismic as well as potential field data. Simultaneously, land seismometers were deployed in the Mozambique coastal plains, extending six of those profiles on land for about 100 km in order to provide information on the onshore-offshore transition. Wide-angle seismic data are of major importance as they can provide constrains on the crustal structure of the margin and the position of the continent-ocean boundary in an area where the crustal nature is poorly known and largely controversial. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along two perpendicular MZ1 & MZ7 wide-angle profiles crossing the Natal Valley in an E-W and NNW-SSE direction respectively, which reveal a crust up to 30 km thick below the Natal Valley and thus raises questions of a purely oceanic origin of the Valley. The post-doc of Angélique Leprêtre is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.

  11. Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back-arc basin (United States)

    Arai, Ryuta; Kodaira, Shuichi; Yuka, Kaiho; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki


    Back-arc basins are a primary target to understand lithospheric evolution in extension associated with plate subduction. Most of the currently active back-arc basins formed in intraoceanic settings and host well-developed spreading centers where seafloor spreading has occurred. However, rift structure at its initial stage, a key to understand how the continental lithosphere starts to break in a magma-rich back-arc setting, is poorly documented. Here we present seismological evidence for structure of the southern Okinawa Trough, an active rift zone behind the Ryukyu subduction zone. We find that the southern Okinawa Trough exhibits an almost symmetric rift system across the rift axis (Yaeyama Rift) and that the sedimentary layers are highly cut by inward dipping normal faults. The rift structure also accompanies a narrow (2-7 km wide) on-axis intrusion resulted from passive upwelling of magma. On the other hand, an active submarine volcano is located 10 km away from the rift axis. The P wave velocity (Vp) model derived from seismic refraction data suggests that the crust has been significantly thinned from the original 25 km thick arc crust and the thinnest part with 12 km thickness occurs directly beneath the rift axis. The velocity model also reveals that there exists a thick layer with Vp of 6.5-7.2 km/s at lower crustal levels and may indicate that mantle materials accreted at the bottom of the crust during the crustal stretching. The abrupt crustal thinning and the velocity-depth profile suggest that the southern Okinawa Trough is at a transitional stage from continental rifting to seafloor spreading.

  12. Inhomogeneous Crustal Structure of the Rifting in the Okinawa Trough, a Backarc Basin West of Kyushu, Japan, Deduced from Seismic Reflection and Refraction Data (United States)

    Nishizawa, A.; Kaneda, K.; Oikawa, M.; Horiuchi, D.; Fujioka, Y.; Okada, C.


    Several depressions found under the thick sediments in the East China Sea shelf have been considered as failed rift basins. Their formation age becomes progressively younger from NW to SE and the youngest rift basin is the Okinawa Trough, an active backarc basin of the Ryukyu (Nansei-Shoto) arc-trench system, to the southwest of Kyusyu, Japan. Its rifting is in progress and related hydrothermal activity is present in the trough. The knowledge of the crustal structure of the trough is fundamental to understand the current active tectonics and predict the future of the trough. We, Japan Coast Guard, have conducted extensive seismic reflection and refraction surveys in the Ryukyu region since 2008 and compiled the seismic structures of the Okinawa Trough. We will show the crustal structures along seven along-trough and ten across-trough seismic survey lines. The P-wave velocity models beneath the Okinawa Trough generally show a thinned continental/island arc crust consisting of upper, middle, and lower crusts. Moho depths below the trough were estimated mainly from Moho reflection (PmP) travel times. The crustal thickness of the trough is thinner than those of the East China Sea shelf and of the Ryukyu Islands. The depth of the Moho below the trough decreases from over 30 km in the north to about 13 km in the south, indicating a difference in degree of the rifting process. The position of the shallowest Moho along the across-trough lines in the northern trough does not necessarily correspond to the center of the trough defined as the deepest water depth, but it corresponds to the transition area between the East China Sea shelf and the Okinawa Trough. An M7.1 earthquake occurred at the transition area on Nov. 14, 2015 (JST) and many aftershocks were observed along the transition. This seismic activity demonstrated that the area is under rifting tectonics in the present.

  13. A Permo-Triassic border rift structure within the south-western Bay of Biscay controlling the shape of the Alpine crustal root beneath the Cantabrian Mountains (United States)

    Cadenas, Patricia; Fernández-Viejo, Gabriela; Álvarez-Pulgar, Javier


    The Bay of Biscay-Pyrenean geological system is an inverted hyperextended rift that illustrates in its deep structure the transition between an oceanic underthrusting in the west to a continent-continent collision in the east. We developed a structural analysis of the south-western reactivated rift system, which represents at present-day the western branch of the Cantabrian-Pyrenean collisional chain, including the Cantabrian Mountains onshore and the central and western segments of the North Iberian margin in the southern Bay of Biscay. This passive margin was structured during polyphase Triassic to Lower Cretaceous rifting events and subsequently inverted in the Cenozoic during the Alpine orogeny, when the Cantabrian-Pyrenean realm formed in the Iberian-European plate boundary. The reactivated rift system shows a significant structural variability resulting from the strong segmentation and strain partitioning during the subsequent tectonic events. Thus, it is a natural laboratory to study the constraints imposed by tectonic inheritance in the successive stages of an almost complete orogenic cycle. From the interpretation of offshore geological and geophysical data and the integration of onshore wide-angle results, where Mesozoic fossil remnants are very scarce, we analyzed the crustal structure of the reactivated rift system and mapped the now inverted rift domains. Our results show that the inherited rift architecture controlled the subsequent compressional reactivation of the hyperextended rift system. Of particular interest are the structural variations observed in proximal areas. Offshore, the proximal domain includes classical shallow grabens and half-grabens with low degrees of extension developed during an early Permo-Triassic rift event governed by stretching processes. Its NW-SE distal limit runs parallel to the Cantabrian Fault. Following this trend, a major structure, called Ventaniella fault, has been traditionally mapped onshore, interpreted as a

  14. An Extensional CPS Transform (Preliminary Report)

    DEFF Research Database (Denmark)

    Filinski, Andrzej


    We shoe that, in a language wihg general continuation-effects, the syntactic, or intensional, CPS transform is mirrored by a semantic, or extensional, functional term. In other words, form only the observable behavior any direct-style term (possibly containing the usual first-class continuation...... primitives), we can uniformly extract the observable behavior of its CPS counterpart. As a consequence of this result, we show that the computational lambda-calculus is complete for observational equivalence of pure, simply typed lambda-terms in Scheme-like contexts....

  15. Analysis and Simulation of 3D Scattering due to Heterogeneous Crustal Structure and Surface Topography on Regional Phases; Magnitude and Discrimination (United States)


    Bull. Seism . Soc. Am., 75, 1087-1104. Campillo, M., and A. Paul, 1992: Influence of lower crustal structure on early coda of regional seismograms. J... Seism . Soc. Am., 91(3), 520-531. Day, S.M. and K.L. McLaughlin, 1991: Seismic source representations for spall. Bull. Seism . Soc. Am. 81,191-201...simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock. Bull. Seism . Soc. Am. 82, 2045-2074. Graves, R.W., and S

  16. FAST TRACK PAPER: Seismic tomography of crustal P and S across Eurasia (United States)

    Steck, L. K.; Phillips, W. S.; Mackey, K.; Begnaud, M. L.; Stead, R. J.; Rowe, C. A.


    In this paper, we present inversion results for regional Pg and Sg phases for the Eurasian continent to explore its use for understanding upper crustal velocity structure. Tomographic inversion of traveltimes from first arriving compressional and shear waves for velocity structure has been applied with great success at all length scales, ranging from the laboratory bench-top to the entire Earth, while inversion of later arriving phases has been much more limited. Our inversion is performed using a damped, smoothed LSQR implementation that solves for site and event terms as well as for velocity along great circle paths between the source and receiver. Results are broadly consistent with published upper crustal velocities for Eurasia, with predominantly high velocities in cratonic regions. Generally, but not always, lower velocities are observed in orogenic and extensional areas and in deep sedimentary basins. A spot-comparison of VP/VS from local and regional studies compares well with the ratio of observed Pg to Sg velocities from our study where resolution is high. Resolution is determined through the use of checkerboard tests, and these suggest that in regions where data density is high we can resolve features down to at least 2°, with 4° possible over broader areas. rms residual reductions are on the order of 25 per cent for Sg and 30 per cent for Pg.

  17. A Pyrenean Cretaceous extensional fault system in the Briançonnais Domain of the Alps: implications for the eastern termination of the segmented Bay of Biscay-Pyrenean rift system. (United States)

    Tavani, Stefano; Bertok, Carlo; D'Atri, Anna; Piana, Fabrizio; Barale, Luca; Corradetti, Amerigo; Granado, Pablo; Martire, Luca; Vigna, Bartolomeo


    Recent studies in the foreland fold and thrust belt of the SW Alps reported that, in spite of the obliterating effect by the Alpine deformation, Mesozoic structures can still be recognised. These structures, occurring at the southern portion of the Western Alps arc, include a well-exposed crustal-scale Cretaceous extensional fault system. Field data (geological maps) and subsurface data (karst network) have been integrated to produce a detailed 3D reconstruction of this extensional fault system. Cretaceous faults affect the Paleozoic and Mesozoic successions and consist of a tens of km long E-W striking master fault, having in its northern block a set of E-dipping transverse extensional faults, having displacements in the order of hundreds of meters. The 3D reconstruction indicates that E-W extension, accommodated by transverse faults, is between 20% and 40%, and it reduces toward the E-W striking master fault. N-S extension is instead negligible and the E-W fault is interpreted as a Cretaceous right-lateral strike-slip fault. Removing the about 120° counter-clockwise vertical axis rotation, which is associated with the post-Cretaceous Alpine orogeny, the strike-slip fault becomes parallel to a suite of NNE-SSW to NE-SW striking faults occurring in the SW Alps foreland (present Provence region). We propose that, during the Cretaceous separation of Iberia from Eurasia, the NNE-SSW striking faults of Provence and Western Alps were delimiting to the east the Bay of Biscay - Pyrenean rift system. In detail, they formed a NNE-SSW striking transfer zone bounding to the east the Pyrenean arm of the rift, and likely ensured the connection of the Bay of Biscay - Pyrenean rift system with a further eastern, intra-plate, arm.

  18. Extensional rheometry with a handheld mobile device (United States)

    Marshall, Kristin A.; Liedtke, Aleesha M.; Todt, Anika H.; Walker, Travis W.


    The on-site characterization of complex fluids is important for a number of academic and industrial applications. Consequently, a need exists to develop portable rheometers that can provide in the field diagnostics and serve as tools for rapid quality assurance. With the advancement of smartphone technology and the widespread global ownership of smart devices, mobile applications are attractive as platforms for rheological characterization. The present work investigates the use of a smartphone device for the extensional characterization of a series of Boger fluids composed of glycerol/water and poly(ethylene oxide), taking advantage of the increasing high-speed video capabilities (currently up to 240 Hz capture rate at 720p) of smartphone cameras. We report a noticeable difference in the characterization of samples with slight variations in polymer concentration and discuss current device limitations. Potential benefits of a handheld extensional rheometer include its use as a point-of-care diagnostic tool, especially in developing communities, as well as a simple and inexpensive tool for assessing product quality in industry.

  19. Upper-crustal velocity structure along 150 km of the Mendeleev Ridge from tomographic inversion of long-offset refraction data collected during HLY0602 (United States)

    Vermeesch, P. M.; van Avendonk, H. J.; Lawver, L. A.


    In the summer of 2006 we acquired a unique seismic refraction data set on the Chukchi Borderlands and Mendeleev Ridge utilizing USCGC Healy and two helicopters. The array on the Mendeleev Ridge consisted of 14 instrument sites with 12 km spacing between instruments. On every site we deployed a Sea-Ice Seismometer (S- IS) especially designed for this experiment in the ice-covered part of the Arctic Ocean. Each S-IS contained a vertical component geophone that was buried in the ice and a hydrophone that was hanging from the ice edge in the water. From the 14 instrument sites, 10 contained useful data with refracted crustal arrivals up to offsets of 40 km. Because of extensive drifting of the receivers (40 km in 5 days and containing numerous loops), and because of the irregular geometry of airgun shots due to the problems of sailing through ice-covered seas, a 3D ray-shooting code was developed to calculate ray paths within a 3D velocity model that extends along 150 km in the X- direction and along 35 km in the Y-direction. Using the velocity model proposed by Lebedeva-Ivanova et al. (2006) we observe that the maximum depth of our calculated ray paths is 11 km below sealevel. Using all the available data, the Root Mean Square (RMS) difference between observed and calculated travel-times is of the order of 500 ms. Initially a simple 1D travel-time inversion was developed to constrain the velocity structure of the basement underneath a layer of water (3D) and a layer of sediment (1D). This inversion was carried out on 2 pairs of receivers: one pair in the NNE and one more towards the SSW part of the line. Inversion of S-IS 45N-42 (NNE) results in a model with a velocity of 5.5 km s-1 at the top of the basement, slowly increasing to a velocity of 5.7 km s-1 at 3 km below the top of the basement (RMS = 117 ms). Inversion of S-IS 49-45S (SSW) results in a model with a velocity of 4.8 km s-1 at the top of the basement, increasing to a velocity of 5.9 km s-1 at 3 km below

  20. Structural analysis of central and eastern Ovda Regio, Venus (United States)

    Ghent, R. R.; Hansen, V. L.


    Ovda Regio is the largest of the Venusian crustal plateaus and lies in Western Aphrodite Terra, Venus. An understanding of the strain history of this region will provide a key to understanding the processes involved in the formation of Ovda Regio and of crustal plateaus in general. This paper reports on a detailed structural mapping and analysis of Ovda and implications for the tectonic evolution of Ovda and other crustal plateaus. The tectonic features of Ovda Regio were mapped using Magellan SAR images. The three major structures seen in Ovda Regio are folds, ribbons, and graben. The folds are interpreted to be contractional, and the graben and ribbons extensional. The strain history recorded in Ovda Regio involves early extension, followed by contraction, then later extension. This strain history is consistent with the formation of Ovda Regio by mantle upwelling.

  1. Human capability in the perception of extensional and shear viscosity. (United States)

    Lv, Zhihong; Chen, Jianshe; Holmes, Melvin


    Shear and extensional deformation are two basic rheological phenomena which occur commonly in our daily life. Because of the very different nature of the two deformations, fluid materials may exhibit significant differences in their responses to shear and extensional forces. This work investigated the human perception of shear and extensional viscosity and tested the hypothesis that human have different discriminatory sensation mechanisms including scaling to the two deformations. A series of fluid samples were prepared using two common food thickeners, guar gum and sodium carboxylmethylcellulose (CMC-Na). The shear and extensional flow behavior of these fluids were assessed using shear and extensional rheometers and in addition two separate sensory analysis sessions were organized to assess human sensitivity in perceiving the two viscosities. Magnitude estimation was used in the first session to assess human sensitivity in the perception of the shear and extensional viscosities and just-noticeable-difference (JND) assessment was used for the second session to identify the typical threshold of viscosity discrimination. For the participants considered, it was found that the perception of both shear and extensional viscosity follow a power law relationship i.e. Steven's law. It was also observed that the human has a greater discriminatory capacity in perceiving extensional viscosity. JND analysis showed that the human threshold in detecting shear viscosity difference was 9.33%, but only 6.20% for extensional viscosity. Shear and extensional deformation are two basic rheological properties which occur during food manipulation, mastication, deglutition executed during oral consumption and also in the processing and packaging of foods. Fluid resistance against shear and extensional deformation differ widely and whilst this has been confirmed theoretically and experimentally, a clear understanding of human perception of these properties will have beneficial returns to

  2. Upright folding during extensional and transtensional tectonics (United States)

    Teyssier, Christian; Fossen, Haakon; Rey, Patrice F.; Whitney, Donna L.


    shallow crust (low-angle detachment system) and flow of low-viscosity (partially molten) deep crust. As the low-viscosity crust converges toward the zone of extension, it forms two crustal-scale upright to slightly inclined folds that eventually, in three dimensions, define two elongate domes. These contraction structures develop while the lithosphere undergoes extension. As it flows toward the zone of extension, deep crust material is incorporated into a contractional domain located directly beneath the zone of shallow crust extension, forming two domes of foliation separated by a high strain zone. This double-dome and high strain zone accommodate rapid exhumation of the deep crust, which then enters a domain of extension as it reaches the base of the shallow crust. Therefore, structural and metamorphic history indicates that high-pressure contraction is overprinted by low-pressure extension under nearly isothermal conditions. Geologic observations, for example in the Montagne Noire double dome (Massif Central, France), indicate that upright folds in the core of domes formed during extension of the units that mantle the dome. These folds/domes have significant exhuming power since eclogite that crystallized at the onset of extension is found in blocks and pods in the migmatite dome, indicating > 30 km of exhumation.

  3. Crustal Structure in the Southern Rockall Trough from Satellite Gravity Data: Evidence for Sea-floor Spreading (United States)

    Chappell, A.; Kusznir, N. J.


    The southern Rockall Trough south of 57 N has previously been interpreted as either an intra-continental rift floored with highly extended continental crust, or a failed oceanic rift formed by Cretaceous sea floor spreading. Satellite gravity, bathymetry data and seismic estimates of sediment thickness are used to derive crustal basement thickness for the southern Rockall Trough and adjacent regions using a gravity inversion method incorporating a correction for the large negative thermal gravity component present in oceanic and stretched continental lithosphere. The marine Bouguer anomaly, derived from satellite free air gravity (Sandwell & Smith 1997) and Gebco 2003 bathymetry data, is inverted using the method of Oldenberg (1974), incorporating an iteratively applied thermal anomaly correction, to give Moho depth. For oceanic crust the thermal anomaly correction is calculated using isochron ages (Muller et al. 1997) and for continental crust from the beta stretching factors resulting from gravity derived crustal basement thickness and an assumed rift age. When sediment thickness and volcanic addition are assumed to be zero, the resulting upper bound of crustal thickness from the gravity inversion is as little as 10 km in the southern Rockall Trough. A segmented axial thickening of the crust at the centre of the Rockall Trough is predicted, between the Barra volcanic ridge and the Anton Dohrn seamount and is interpreted as having a volcanic origin. Inclusion of a sediment thickness correction in the gravity inversion further reduces predicted crustal thickness. A pseudo-sediment-thickness map has been constructed from the available wide-angle data and incorporated in the gravity inversion. The addition of up to 5.5 km of sediment in the gravity inversion reduces the upper bound of crustal thickness to less than 3 km in some locations. The segmented axial thickening and thin crust shown by the gravity inversion, the lack of intra-basinal faulting, and the volcanic

  4. Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative

    DEFF Research Database (Denmark)

    Støvring, Kristian


    We answer Klop and de Vrijer's question whether adding surjective-pairing axioms to the extensional lambda calculus yields a conservative extension. The answer is positive. As a byproduct we obtain a "syntactic" proof that the extensional lambda calculus with surjective pairing is consistent....

  5. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    . On the other hand, addition of low-volatility solvents to polymers is also a common industrial practice that others a means for lowering the Tg of the polymers. Moreover industrial polymers present a wide distribution of chain lengths and/or branched architectures that strongly influence their response....... Understanding the behaviour of polymer melts and solutions in complex non-linearflows is crucial for the design of polymeric materials and polymer processes. Through rheological characterization, in shear and extensional flow, of model polymer systems,i.e. narrow molar mass distribution polymer melts......Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...

  6. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China (United States)

    Wang, M.


    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  7. Transient Overshoot Extensional Rheology: Experimental and Numerical Comparisons

    DEFF Research Database (Denmark)

    Hoyle, David; Huang, Qian; Auhl, Dietmar

    in the extensional viscosity. We present a modified Pompom model capable of capturing these overshoots and show finite element simulations of the cross-slot flow using this model. In doing this we show how the overshoot causes the W-cusp and how the shape of the cusps is dependent upon the difference between...... polymer chains, and not having steady state values for the extensional viscosity makes understanding and modelling molecular rheology in extensional flow challenging. Here we present a comparison between tree extensional rheometers: the Sentmanat extensional rheometer (SER), the filament stretching...... the steady state measurements from the FSR to the predictions of the CSER, which measures the viscosity using optical flow induced birefringence techniques. The FSR is capable of measuring a steady state for strain rates less than 0.5/s and the CSER for strain rates typically in the range of 0.1/s to 10/s...

  8. The Upper- to Middle-Crustal Section of the Alisitos Oceanic Arc, (Baja, Mexico): an Analog of the Izu-Bonin-Marianas (IBM) Arc (United States)

    Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.


    The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are

  9. Basement characterization and crustal structure beneath the Arabia-Eurasia collision (Iran): A combined gravity and magnetic study (United States)

    Mousavi, Naeim; Ebbing, Jörg


    We present a study on the depth to basement and magnetic crustal domains beneath the Iranian Plateau by modeling aeromagnetic and gravity data. First, field processing of the aeromagnetic data was undertaken to estimate the general characteristics of the magnetic basement. Afterwards, inverse modeling of aeromagnetic data was carried out to estimate the depth to basement. The obtained model of basement was refined using combined gravity and magnetic forward modeling. Hereby, we were able to distinguish different magnetic domains in the uppermost crust (10-20 km depths) influencing the medium to long wavelength trends of the magnetic anomalies. Magnetic basement mapping shows that prominent shallow magnetic features are furthermore located in the volcanic areas, e.g. the Urumieh Dokhtar Magmatic Assemblage. The presence of ophiolite outcrops in SE Iran implies that shallow oceanic crust (with high magnetization) is the main source of one of the biggest magnetic anomalies in entire Iran area located north of the Makran.

  10. Seismic evidence for widespread western-US deep-crustal deformation caused by extension (United States)

    Moschetti, M.P.; Ritzwoller, M.H.; Lin, F.; Yang, Y.


    Laboratory experiments have established that many of the materials comprising the Earth are strongly anisotropic in terms of seismic-wave speeds. Observations of azimuthal and radial anisotropy in the upper mantle are attributed to the lattice-preferred orientation of olivine caused by the shear strains associated with deformation, and provide some of the most direct evidence for deformation and flow within the Earths interior. Although observations of crustal radial anisotropy would improve our understanding of crustal deformation and flow patterns resulting from tectonic processes, large-scale observations have been limited to regions of particularly thick crust. Here we show that observations from ambient noise tomography in the western United States reveal strong deep (middle to lower)-crustal radial anisotropy that is confined mainly to the geological provinces that have undergone significant extension during the Cenozoic Era (since 65 Myr ago). The coincidence of crustal radial anisotropy with the extensional provinces of the western United States suggests that the radial anisotropy results from the lattice-preferred orientation of anisotropic crustal minerals caused by extensional deformation. These observations also provide support for the hypothesis that the deep crust within these regions has undergone widespread and relatively uniform strain in response to crustal thinning and extension. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  11. Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central) (United States)

    Faure, M.; Grolier, J.; Pons, J.


    In the Northern part of the Variscan French Massif Central, the Sioule series, from top to bottom, consists of a pre-Viséan granite, migmatite, gneiss and mica schist. Two ductile deformations have been recognized. The earlier phase is characterized by a north-east-south-west trending stretching lineation; the second phase, characterized by a north-west-south-east trending mineral, stretching and crenulation lineation, is better marked in the lower mica schist part than in the upper granito-gneissic part. This second phase occurred during retrogression of the metamorphic rocks; related shear criteria indicate a top to the south-west shear. The Namurian-Westphalian magmatic bodies such as the Echassières leucogranite, Pouzol-Servant microgranite and numerous north-east -south-west trending microgranite dykes are emplaced in extensional fractures related to the same north-west-south-east maximum stretching direction. The asymmetrical shapes of the two granitic massifs indicate that they intruded towards the south-east. The synkinematic retrogression of the metamorphic rocks, the shape of the magmatic bodies and a re-examination of the numerous available data support the interpretation that the deformation is due to the extensional tectonic regime related to the Variscan crustal re-quilibration. This interpretation is in agreement with the correlation of the Sioule series with the Chavanon series. The two series belong to a unique tectono-metamorphic unit left-laterally offset by the Stephanian motion of the Sillon Houiller fault. This study also shows that the Sillon Houiller did not play a significant part during the Namurian-Westphalian extensional tectonics of the Massif Central.

  12. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic (United States)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.


    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D

  13. Extensional Seismogenic Stress and Tectonic Movement on the Central Region of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiren Xu


    Full Text Available Various earthquake fault types, mechanism solutions and stress fields, as well as GPS and geothermal data are analyzed for the study of the crustal movements on the Tibetan plateau and their tectonic implications. The results show that a lot of the normal faulting type-event concentrated at altitudes greater than 4000 m on the central Tibetan plateau. The altitudes concentrating normal faulting type-events can be zoned two parts: the western part, the Lhasa block, and the eastern part, the Qiangtang-Changdu region. The azimuths of T-axes are in a general E-W direction in the Lhasa block and NW-SE or NNW-SSE in the Qiangtang-Changdu region at the altitudes of the Tibetan plateau. The tensional stresses in E-W direction and NW-SE direction predominate normal faulting earthquake occurrence in the Lhasa block and the Qiangtang-Changdu region, respectively. The slipping displacements of the normal-faulting-type events have great components in near E-W direction and NW-SE direction in the Lhasa block and the Qiangtang-Changdu region, respectively. The extensions are probably an eastward or southeastward extensional motion, being mainly tectonic activity phenomena in the plateau altitudes. The extensional motions due to normal-fault earthquakes are important tectonic activity regimes on the high altitudes of the plateau. The easterly crustal extensions on the plateau are attributable to the gravitational collapse of the high plateau and eastward extrusion of hotter mantle materials beneath the eastern boundary of the plateau. Numbers of thrust-fault and strike-slip-fault earthquakes with strong compressive stress in a general NNE-SSW direction occur on the edges of the plateau.

  14. Extremely Shallow Extensional Faulting Near Geothermal Fields (United States)

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.


    Surface faulting has been discovered in association with a shallow extensional M 4.9 earthquake, the source properties of which have also been studied by modeling of broadband seismic data and geodetic imagery. This M 4.9 and also a M 4.6 shallow normal event occurred late in the Brawley Swarm of August 2012, a dominantly strike-slip sequence with events up to M 5.5 (Hauksson et al., SRL 2013 and Wei et al., GRL 2013). The point source waveform inversions reveal normal mechanisms and centroid depths of ~2.5 km for both events, while the modeling of the geodetic data indicates a compatible depth of ~2.0 km. The M 4.9 event had unusually large (~40 cm) and sudden (~1.0 - 1.5 km/sec) slip, considering its extremely shallow depth. The earlier and larger strike-slip events during the Aug. 2012 swarm were on a left-lateral SW-NE oriented vertical planar cross-fault, whereas the M 4.6 and M 4.9 occurred on a SSW-NNE oriented, west-dipping plane. Airborne imagery obtained using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) revealed a surface fault rupture that was subsequently confirmed and documented in the field in May 2013. A pre-existing but previously un-mapped fault sustained west-down surface slip of up to 18 × 2 cm along breaks extending ~3.5 km along a NNE orientation, and ruptured beneath and under a railroad track and pipeline (without breaking them). UAVSAR and seismological data were used jointly to image the source properties of the M 4.9 earthquake in detail. Typically, the uppermost few kms of right-lateral faults in the Salton Trough exhibit creep, especially after larger earthquakes, as in 1979 and 1987. On this basis, general models of stable sliding within the uppermost few kms have been developed. In this case, however, the joint inversion indicates that seismic energy was radiated by slip of up to 40 cm on a fault plane extending from the surface to a depth of only ~3 km, extending ~4 km along-strike, and dipping ~45° west, with west

  15. Crustal Structure of the Caribbean-South American Diffuse Plate Boundary: Subduction Zone Migration and Polarity Reversal Along BOLIVAR Profile 64W (United States)

    Clark, S. A.; Levander, A.; Magnani, M.; Zelt, C. A.; Sawyer, D. S.; Ave Lallemant, H. G.


    The BOLIVAR (Broadband Ocean-Land Investigation of Venezuela and the Antilles arc Region) project is an NSF funded, collaborative seismic experiment in the southeast Caribbean region. The purpose of the project is to understand the diffuse plate boundary created by the oblique collision between the Caribbean and South American plates. Profile 64W of the BOLIVAR experiment, a 450 km-long, N-S transect onshore and offshore Venezuela located at ~64°W longitude, images the deep crustal structures formed by this collision. The active source components of profile 64W include 300 km of MCS reflection data, 33 coincident OBSs, and 344 land seismic stations which recorded 7500 offshore airgun shots and 2 explosive land shots. Results from the reflection and refraction seismic data along 64W show complex crustal structure across the entire span of the diffuse plate boundary. The onshore portion of 64W crosses the fold and thrust belt of the Serrania del Interior, which formed at ~16 Ma by collision of the Caribbean forearc with the northern South American passive margin. Underlying the Serrania del Interior is a south-vergent, remnant Lesser Antillean subduction zone. As this Lesser Antilles subduction impinged on continental crust, it caused a polarity reversal and jump offshore to the north. Convergence was initially localized in the closure and inversion of the Grenada Basin. However, subduction could not develop because of the ~20-km-thick crust of the Aves Ridge; instead, north-vergent subduction initiated further to the north, where ~12-km-thick Caribbean oceanic crust of the Venezuela Basin began to subduct beneath the Aves Ridge in the Pliocene (~4 Ma) and appears to continue subducting today. Between the remnant subduction zone and the modern one, the El Pilar and Coche dextral strike-slip faults accommodate most of the transform motion of the plate boundary. From the Serrania del Interior to the Aves Ridge, ~260 km of accreted orogenic float comprises the diffuse

  16. Crustal structure around the asperity regions of large earthquakes along the southernmost Kuril trench revealed by two Airgun-OBS seismic profilings (United States)

    Machida, Y.; Takanami, T.; Murai, Y.; Amamiya, S.; Nishimura, Y.; Shinohara, M.; McHizuki, K.; Yamada, T.; Nakahigashi, K.; Kuwano, A.; Kanazawa, T.; Hino, R.; Azuma, R.


    In the southeast off Hokkaido, Japan, large earthquakes have occurred repeatedly with temporal and spatial regularities along the Kuril trench due to the subduction of Pacific plate at a rate of 80 mm/year (DeMets et al., 1990) [e.g. the 1952 Tokachi-oki earthquake (Mw=8.2), the 1973 Nemuro-oki earthquake (Mw=7.8) and the 2003 Tokachi-oki earthquake (Mw=8.2)]. It is considered that the next large earthquake will occur at the source region of the 1973 Nemuro-oki earthquake in the near future because a low seismic activity has been found in the off shore region of the Nemuro peninsula. In order to clarify the relation between asperity and the recurrence of large earthquake, it is necessary to determine a detailed crustal structure running across the two asperities of the 2003 Tokachi-oki earthquake and 1973 Nemuro-oki earthquake. Therefore we conducted a wide-angle survey across the coseismic rupture areas of the 2003 Tokachi-oki and 1973 Nemuro-oki earthquakes and the afterslip area of the 2003 Tokachi-oki earthquake parallel (profile-A) and perpendicular (profile-B) to the Kuril trench using Ocean Bottom Seismometers (OBSs). In profile-A, 19 OBSs were deployed at a spacing of about 10km and three 25 liter air-guns were fired every 90 seconds which corresponds to a shot interval of about 230m. In profile-B, 11 OBSs were deployed at a spacing of about 11km and two 25 liter airguns were fired every 60 seconds which corresponds to a shot interval of about 150m. In this presentation, we report on the crustal structure using the data obtained in the profile A and B and compare our results with past researches around this region. This study is founded by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  17. 3D modeling of dual wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.


    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape...... is attached onto two drums, followed by a rotation of both drums in opposite direction. The numerical modeling is based on integral constitutive equations of the K-BKZ type. Generally, to ensure a proper uni-axial extensional deformation in dual wind-up drum rheometers the simulations show that a very small...

  18. Recent advances in extensional rheology: controlled flows and fracture

    DEFF Research Database (Denmark)

    Hassager, Ole; Huang, Qian

    Extensional deformation and flow occur in a number of polymer processing operations such as fiber spinning and film blowing. To understand and analyze material behavior in such operations, accurate and quantitative measurements of the rheological properties in well-defined extensional deformations...... are needed. However, while shear flows may in principle easily be generated in geometries such as cone-and-plate and plate-and-plate, the generation of controlled extensional flows has proven to be a challenge [1]. This presentation will focus on the application of Filament Stretching Rheometry (FSR...

  19. Crustal structure of southwestern Montana and east-central Idaho: Results of a reversed seismic refraction line (United States)

    Sheriff, Steven D.; Stickney, Michael C.


    On October 20, 1982, we collected seismic refraction data on a 250 km line segment between Butte, Montana and Challis, Idaho. These data are from two open pit mine blasts; one at Anaconda Minerals Companys' southeast Berkely pit and the other at Cyprus Mines Corporations' Thompson creek mine. Eight of our ten recorders wrote clear records of both blasts with measured travel times accurate to +/-0.2 seconds. We supplemented these data with data from permanent stations in the Butte area. The Pg (crustal) velocity is 5.8 km/s to the southwest and 6.0 km/s to the northeast. The Pn (mantle) velocity is 7.9 km/s to the northeast and 8.1 km/s to the southwest; total travel-times are equal. The S-wave velocity in the crust is about 3.5 km/s. The symmetry of the travel-time results, with their intersection within one kilometer of the midpoint between the pit blasts, strongly suggests the refraction line overlies a horizontal Moho or parallels the strike line of a dipping Moho surface. These data indicate the crust in southwestern Montana and east-central Idaho is approximately 33 km thick. Contrasting tectonic processes, compression and thickening during the Laramide orogeny with extension and thinning since the Paleocene, resulted in a crust with slightly less than normal thickness.

  20. A refraction study of deep crustal structure in the Basin and Range:Colorado Plateau of eastern Arizona (United States)

    Gish, Dan M.; Keller, G. R.; Sbar, Marc L.


    A reversed seismic refraction profile extending 260 km between Globe, Arizona and Tyrone, New Mexico has been recorded using quarry blasts from open pit copper mines as energy sources. Interpretation of these data suggest a 28-km-thick crust for the Basin and Range in east-central Arizona and a 32-km-thick crust for the Transition Zone in eastern Arizona and western New Mexico. Delays in Pn arrivals have been interpreted as evidence for approximately 4 km of abrupt crustal thickening near Morenci, Arizona. The area of abrupt Moho offset corresponds to rapid changes in tectonic style, late Quaternary faulting, Quaternary and late Tertiary volcanism, high heat flow and evidence for partial melting of the lower crust. Uniformity of layer thicknesses along the profile can be interpreted as upward displacement of the Basin and Range relative to the Transition Zone. The above evidence suggests that the Transition Zone of eastern Arizona and western New Mexico may be experiencing active tectonic readjustment.

  1. Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data (United States)

    Klingelhoefer, Frauke; Biari, Youssef; Sahabi, Mohamed; Aslanian, Daniel; Schnabel, Michael; Matias, Luis; Benabdellouahed, Massinissa; Funck, Thomas; Gutscher, Marc-André; Reichert, Christian; Austin, James A.


    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from four study regions along the margin located in the south offshore DAKHLA, on the central continental margin offshore Safi, in the northern Moroccan salt basin, and in the Gulf of Cadiz. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. Crustal thinning takes place over a region of 150 km in the north and only 70 km in the south. The North Moroccan Basin is underlain by highly thinned continental crust of only 6-8 km thickness. The ocean-continent transition zone shows a variable width between 40 and 70 km and is characterized by seismic velocities in between those of typical oceanic and thinned continental crust. The neighbouring oceanic crust is characterized by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganization. Volcanic activity seems to be mostly confined to the region next to the Canary Islands, and is thus not related to the initial opening of the ocean, which was associated to only weak volcanism. Comparison with the conjugate margin off Nova Scotia shows comparable continental crustal structures, but 2-3 km thinner oceanic crust on the American side than on the African margin.

  2. Upper crustal stress and seismotectonics of the Garhwal Himalaya using small-to-moderate earthquakes: Implications to the local structures and free fluids (United States)

    Prasath, R. Arun; Paul, Ajay; Singh, Sandeep


    The work presents new focal-mechanism data of small-to-moderate (3.0 ⩾ ML ⩽ 5.0) upper crustal earthquakes for the Garhwal Himalaya from a local seismic network installed in July 2007. Majority of the epicenters of these earthquakes are located close to the Main Central Thrust (MCT) zone. We retrieved Moment Tensor (MT) solutions of 26 earthquakes by waveform inversion. The MT results and 11 small-to-moderate earthquakes from the published records are used for stress inversions. The MT solutions reveal dominatingly thrust mechanisms with few strike slip earthquakes near Chamoli. The seismic cross sections illustrate that, these earthquakes are located around the Mid-Crustal-Ramp (MCR) in the detachment. The optimally oriented faults from stress inversions suggest that, the seismogenic fault in this region is similar to a fault plane having dip angle between 12 and 25 degrees, which is compatible with the dip angle of the MCR (∼16°) in this region. P-axes and the maximum horizontal compressive stress are NE-SW oriented; the direction of the relative motion of Indian plate with respect to the Eurasian plate. The Friction Coefficient estimated from stress inversions show that the Chamoli region having low friction in comparison to the overall values. The free fluids trapped beneath the detachment are penetrating into the local faults, hence, decreasing the frictional strength and altering the prevailing stress conditions of the surroundings. The present study reveals that the MCR structure is seismogenically active and producing the small-moderate earthquakes in the region, while the MCT is probably dormant at present.

  3. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang


    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  4. A portable and affordable extensional rheometer for field testing


    Hallmark, Bart; Bryan, Matthew; Bosson, E; Butler, S; Hoier, T; Magens, Ole; Pistre, N; Pratt, L; Ward, B-A; Wibberley, S; Wilson, David Ian


    Extensional shear testing is often needed to characterise the behaviour of complex fluids found in industry and nature. Traditional extensional rheometers are typically expensive, fragile and heavy and are only suited to making measurements in a laboratory environment. For some applications, it is necessary to make in situ rheological measurements where, for example, fluid properties change rapidly over time or where laboratory facilities are unavailable. This paper reports the development an...

  5. Passive non-linear microrheology for determining extensional viscosity (United States)

    Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.


    Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.

  6. The evolution of shallow crustal structures in early rift-transform interaction: a case study in the northern Gulf of California. (United States)

    Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.


    The Gulf of California represents a young oblique rift/transtensional plate boundary in which all of the transform faults are actively shearing the crust, separated by active rift segments. Previous workers have shown that in the northern Gulf of California, the relative plate motion between the Pacific and North American plates is distributed between: a) the Cerro Prieto Fault (CPF) in the NE b) the Ballenas Transform Fault (BTF) in the SW and c) a pull-apart structure located between these two faults consisting of a number of extensional basins (the Wagner, Consag, and Upper and Lower Delfin basins). A plate boundary relocation at approximately 2 Ma, continued to separate Isla Angel de la Guarda from the Baja California peninsula and created the 200x70 km2 NE-SW pull-apart structure located northeast of the BTF. Here we use seismic stratigraphy analysis of the UL9905 high resolution reflection seismic dataset acquired by the Lamont-Doherty Earth Observatory, Caltech, and the Centro de Investigación Científica y de Educación Superior de Ensenada to build on previous structural interpretations and seek to further understand the processes that formed the structural and sedimentary architecture of the pull-apart basin in the northern Gulf of California. We examine the formation of depositional and deformation structures in relation to the regional tectonics to provide insight into the development of structural patterns and related seismic-stratigraphic features in young rift-transform interactions. Using bathymetric data, characteristic seismic-stratigraphic packages, and seismic evidence of faulting, we confirm the existence of three major structural domains in the northern Gulf of California and examine the interaction of the seismic stratigraphy and tectonic processes in each zone. The first and most distinctive is an abrupt NE-SW 28x5 km2 depression on the seabed of the Lower Delfin Basin. This is aligned orthogonally to the BTF, is situated at its northern

  7. BOLIVAR: Crustal structure of the Caribbean-South America plate boundary between 60W and 70W from wide-angle seismic data (United States)

    Zelt, C. A.; Christeson, G. L.; Magnani, M. B.; Clark, S. A.; Guedez, M. C.; Bezada, M.; Levander, A.; Schmitz, M.


    We present the results from five wide-angle seismic profiles collected onshore and offshore Venezuela in 2004 as part of the Broadband Ocean Land Investigation of Venezuela and the Antilles arc Region project (BOLIVAR). The study area is the diffuse plate boundary between South America (SA) and the SE Caribbean plate (CAR) covering roughly 1000 km by 500 km. Over the past 55 My the Leeward Antilles island arc that borders the CAR plate has been colliding obliquely with the SA continent resulting in a collision front that has migrated from west to east. The five wide-angle profiles sample different stages of the time-transgressive margin from west to east, each crossing the margin roughly perpendicularly. The main purpose of this presentation is to contrast and compare the crustal velocity structure along these profiles to better understand the tectonic processes that are responsible for the evolution and present-day configuration of the plate boundary. Each of the wide-angle profiles is about 500 km in length and includes both onshore and offshore shots and receivers, except the easternmost profile, which is entirely offshore. The dense wide-angle data were modeled in the same way along each profile using a two-step, layer-stripping approach: (1) the first-arrival times were tomographically inverted for a smooth velocity model, and (2) the lower crust, Moho, and uppermost mantle were determined by simultaneous inversion of the PmP refection and Pn refraction phases while keeping the upper and middle crust from the first step fixed. The five models show tremendous lateral heterogeneity, as they cross features such as normal oceanic crust, oceanic plateau crust, an accretionary wedge, active and remnant island arcs, forearc and foreland basins, a major strike-slip system, a fold and thrust belt, and the edge of cratonic continental crust. Two of the main contributions of the wide-angle models to the BOLIVAR project, and the focus of this presentation, are the Moho

  8. Crustal response to lithosphere evolution

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Cherepanova, Yulia


    with a thicker crust in some Archean terranes than in adjacent Proterozoic blocks. However, the thickest Precambrian crust often appears to be related to ancient sutures within or at the edges of the Archean terranes. We discuss the factors that control the maximum thickness of the crust, given that 60+ km thick...... in the Baltic shield, and the Viluy rift in Siberia. Despite clear similarities, there are also significant differences in the crustal structure of these rifts. Phanerozoic crust also shows strong heterogeneity and its major structural characteristics are clearly linked to lithosphere-scale modification...

  9. A First Crustal Model beneath Portugal from Teleseismic Rayleigh Wave Ellipticity Inversion (United States)

    Attanayake, Januka; Ferreira, Ana M. G.; Berbellini, Andrea; Morelli, Andrea


    Accurate seismic crustal models are important for interpreting seismicity and tectonics and predicting strong ground motion. These interpretations and predictions are particularly important in regions prone to significant seismic hazard such as Portugal, where considerable destruction has taken place from large on- and offshore earthquakes (e.g. 1755 M 8 Lisbon and 1909 Benavente M 6.0 earthquakes). The lack of high quality countrywide broadband data in the past has hindered quantitative characterization of regional Earth structure in Portugal. Due to a significant expansion of the Portuguese seismic network, however, a large volume of data is accumulating since 2006. We used this new high quality dataset to measure multi-period Rayleigh Wave Ellipticity (RWE), which we inverted to build the first seismic crustal model beneath Portugal. RWE is defined by the Horizontal-to-Vertical (H/V) amplitude ratio at a given seismic station, and theoretical studies demonstrate it to be strongly sensitive to the structure immediately beneath that particular station. We measured teleseismic RWE between 15 s and 60 s from 33 permanent and temporary stations in Portugal and inverted it for shear wave velocity (Vs) structure of the crust using a fully non-linear Monte Carlo method. Our results show that both RWE and Vs are spatially correlated with surface geology. Notably, sedimentary basins produced by Mesozoic rifting (e.g. Lusitanian Basin (LB) and the Lower Tagus-Sado Basin (LTSB)) are correlated with higher RWE (lower Vs). Similar high RWE values are observed in the interior of Central Iberian Zone (CIZ), which is an older metamorphic belt. We interpret this to be the signature of an extensional episode that the CIZ has undergone possibly simultaneous to the Mesozoic rift event. The Galicia-Tras-os-Montes-Zone (GTMZ)- a Paleozoic metamorphic belt - in Northern Portugal exhibits the lowest RWE (highest Vs), whereas other metamorphic terrains have RWE intermediate to Basins and

  10. Crustal thickness variations in northern Morocco (United States)

    Mancilla, Flor de Lis; Stich, Daniel; Morales, José; Julià, Jordi; Diaz, Jordi; Pazos, Antonio; Córdoba, Diego; Pulgar, Javier A.; Ibarra, Pedro; Harnafi, Mimoun; Gonzalez-Lodeiro, Francisco


    During the TopoIberia experiment, a total of 26 seismic broadband stations were recording in northern Morocco, providing for the first time extended regional coverage for investigating structure and seismotectonics of the southern branch of the Betic-Rif arc, its foreland, and the Atlas domain. Here, we analyze P-to-S converted waves in teleseismic receiver functions to infer gross crustal properties as thickness and Vp/Vs ratio. Strong lateral variations of the crustal thickness are observed throughout the region. Crustal thicknesses vary between 22 and 44 km and display a simple geographic pattern that divides the study area into three domains: entire northwestern Morocco underlain by a thickened crust with crustal thicknesses between 35 and 44 km; northeastern Morocco affected by significant crustal thinning, with crustal thicknesses ranging from 22 to 30 km, with the shallowest Moho along the Mediterranean coast; and an extended domain of 27-34 km thick crust, farther south which includes the Atlas domain and its foreland regions. Vp/Vs ratios show normal values of ˜1.75 for most stations except for the Atlas domain, where several stations give low Vp/Vs ratios of around 1.71. The very sharp transition from thick crust in northwestern Morocco to thin crust in northeastern Morocco is attributed to regional geodynamics, possibly the realm of present-day subcrustal dynamics in the final stage of western Mediterranean subduction. Crustal thicknesses just slightly above 30 km in the southern domain are intriguing, showing that high topography in this region is not isostatically compensated at crustal level.

  11. Crustal temperature structure derived from a ground temperature gradient chart of Hokkaido; Hokkaido no chion kobaizu kara motometa chikakunai ondo kozo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Y. [Geological Survey of Japan, Tsukuba (Japan); Akita, F. [Hokkaido Geological Survey, Sapporo (Japan); Nagumo, S. [Oyo Corp., Tokyo (Japan)


    The Hokkaido Underground Resources Investigation Institute has prepared in 1995 a detailed temperature gradient chart that shows local anomalies around volcanoes. This paper describes an attempt to derive crustal temperature structure of Hokkaido from the above data. The model was hypothesized as a primary model in which no thermal convection exists. In volcanic and geothermal areas which show a temperature gradient of more than 100 {degree}C km {sup -1}, a solidus temperature is reached at a depth shallower than 10 km. Below the volcanic chain forming the Chishima arc, a partially melted region exists in a width of about 100 km. Most of the areas in the southern Hokkaido have the temperature reached the solidus temperature in the crust. On the other hand, in most of the areas of the forefront side, no solidus temperature is reached in the crust. In the temperature structure of a cross section crossing almost orthogonally with the volcanic front passing through Mt. Daisetsu, a high temperature area reaches to a shallow portion beneath Mt. Daisetsu, where the depth at which the solidus temperature is reached is 10 km or shallower. The range of area where the solidus depth is shallower than 10 km has a south-west width of about 40 km. This means that a partially melted area with a size of 40 km in the horizontal direction exists at a depth of several kilometers. 20 refs., 3 figs.

  12. Upper Crustal Shear Structure of NE Wyoming Inverted by Regional Surface Waves From Mining Explosions-Comparison of Niching Genetic Algorithms and Least-Squares Inversion (United States)

    Zhou, R.; Stump, B. W.


    Surface-wave dispersion analysis of regional seismograms from mining explosion is used to extract shallow subsurface structural models. Seismograms along a number of azimuths were recorded at near-regional distances from mining explosions in Northeast Wyoming. The group velocities of fundamental mode Rayleigh wave were determined by using the Multiple Filter Analysis (MFA) and refined by Phase Matched Filtering (PMF) technique. The surface wave dispersion curves covered the period range of 2 to 12 sec and the group-velocities range from 1.3 to 2.9 km/sec. Besides least-squares inversion, a niching genetic algorithm (NGA) was introduced for crustal shear-wave velocity inversion. Niching methods are techniques specifically to maintain diversity and promote the formation and maintenance of stable sub-populations in the tradition genetic algorithm. This methodology identifies multiple candidate solutions when applied to both multimodal optimization and classification problems. Considering the nonuniqueness of inversion problem, the capacity of NGA is explored to retrieve classes of S-wave velocity structural profiles from the dispersion curves. Synthetic tests illustrate the range of nonuniqueness in linear surface wave inversion problems. Application of this new technique to regional surface wave observations from the Powder River Basin provides classes of models from which the one that is most consistent with geologic constraints can be chosen.

  13. Evolution of a passive crustal-scale detachment (Syros, Aegean region): Insights from structural and petrofabric analyses in the hanging-wall (United States)

    Aravadinou, E.; Xypolias, P.


    New detailed (micro-)structural investigations, quartz petrofabric analyses and geological/structural mapping in southeast Syros (Cycladic massif, Aegean region) allow us to place new constraints on the tectonic evolution of the Uppermost unit, which occupies the immediate hanging-wall of the crustal-scale Vari Detachment. We show that the Eocene ‒ Oligocene deformation history in the hanging-wall of this detachment is associated with SW-directed ductile shearing. This history includes an early distributed constrictional deformation expressed by transport-parallel upright folds, L-tectonites and cleft-girdles quartz c-axis fabrics that were formed at temperatures ∼500 °C. Ductile deformation progressively localized at the bottom of the Uppermost unit leading to the formation of a greenschist-facies mylonitic zone under plane strain conditions inferred from Type-I cross-girdles quartz c-axis fabrics. The ongoing mylonitization was also associated with temporally increasing pure shear component of deformation coupled with cooling from ∼500 °C to ∼400 °C. We suggest that the Vari Detachment represents a passive normal-sense roof fault resulted from the NE-directed ductile extrusion of the Blueschist unit (footwall) at middle Eocene ‒ Oligocene times. In the middle Miocene, the activation of the brittle SSW-directed Late Vari Detachment enhanced the brittle exhumation of both the Blueschist unit and the Vari Detachment.

  14. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea (United States)

    Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao


    The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.

  15. Simulation of lipid vesicle breakup in extensional flows* (United States)

    Banton, Rohan; Eggleton, Charles


    Lipid molecules in solution can spontaneously form vesicles encapsulating the solvent. Vesicles can be used to manufacture artificial cells and as a novel means of drug delivery. Unlike biological cells, vesicles do not possess a cytoskeleton (scaffolding for structural rigidity) and cannot resist in-plane shearing forces. The Evans-Skalak strain energy function is used to model the interfacial stresses in the vesicles due to deformation using measured values of the area dilatational and bending moduli. An understanding of vesicle breakup in fluid flow is required in order to effectively design vesicles for particular applications. The Boundary Integral Method is employed to simulate the deformation of the model membrane in both uniaxial and bi-axial extensional flows. The flow field is characterized by a capillary number based on the area dilatational modulus of the vesicle. The response of an initially spherical vesicle to the external flow field was simulated for internal to external viscosity ratios of 0.1,1,10 and capillary numbers in the approximate range of 0.005-0.025. The perturbation analysis developed by Barthes-Biesel (1980) was adapted to predict the deformation of lipid vesicles and compared to the simulations at small capillary numbers. At large capillary numbers, the break-up of the vesicle is simulated and the critical capillary number is determined.

  16. A portable and affordable extensional rheometer for field testing (United States)

    Hallmark, Bart; Bryan, Matthew; Bosson, Ed; Butler, Simon; Hoier, Tom; Magens, Ole; Pistre, Nicolas; Pratt, Lee; Ward, Betsy-Ann; Wibberley, Sam; Wilson, D. Ian


    Extensional shear testing is often needed to characterise the behaviour of complex fluids found in industry and nature. Traditional extensional rheometers are typically expensive, fragile and heavy and are only suited to making measurements in a laboratory environment. For some applications, it is necessary to make in situ rheological measurements where, for example, fluid properties change rapidly over time or where laboratory facilities are unavailable. This paper reports the development and validation of an inexpensive, lightweight and robust ‘open source’ extensional rheometer, Seymour II. Validation was carried out experimentally and computationally. Measurements on a Newtonian fluid (492 mPa s Brookfield silicone oil) yielded results of 510  ±  51 mPa s; these are comfortably within the range of  ±10% which other authors have quoted for extensional techniques using laboratory rheometers. Comparison of the observed filament thinning dynamics to those obtained using computational fluid dynamics (CFD) gave good qualitative agreement. Use of Seymour II at the University of Cambridge Botanic Gardens revealed that the mucilage of the ‘crane flower’, Strelitzia reginae, was a viscoelastic fluid whose extensional response could be described by a two-mode Giesekus equation. Engineering drawings and image analysis code for Seymour II are available for download at the project website,

  17. A portable and affordable extensional rheometer for field testing

    International Nuclear Information System (INIS)

    Hallmark, Bart; Bryan, Matthew; Bosson, Ed; Butler, Simon; Hoier, Tom; Magens, Ole; Pratt, Lee; Ward, Betsy-Ann; Wibberley, Sam; Wilson, D Ian; Pistre, Nicolas


    Extensional shear testing is often needed to characterise the behaviour of complex fluids found in industry and nature. Traditional extensional rheometers are typically expensive, fragile and heavy and are only suited to making measurements in a laboratory environment. For some applications, it is necessary to make in situ rheological measurements where, for example, fluid properties change rapidly over time or where laboratory facilities are unavailable. This paper reports the development and validation of an inexpensive, lightweight and robust ‘open source’ extensional rheometer, Seymour II. Validation was carried out experimentally and computationally. Measurements on a Newtonian fluid (492 mPa s Brookfield silicone oil) yielded results of 510  ±  51 mPa s; these are comfortably within the range of  ±10% which other authors have quoted for extensional techniques using laboratory rheometers. Comparison of the observed filament thinning dynamics to those obtained using computational fluid dynamics (CFD) gave good qualitative agreement. Use of Seymour II at the University of Cambridge Botanic Gardens revealed that the mucilage of the ‘crane flower’, Strelitzia reginae , was a viscoelastic fluid whose extensional response could be described by a two-mode Giesekus equation. Engineering drawings and image analysis code for Seymour II are available for download at the project website, (paper)

  18. Verification of the shallow seismic crustal structure of the western Krušné Hory crystalline unit, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Novotný, O.; Málek, Jiří; Žanda, Libor


    Roč. 57, č. 3 (2013), s. 507-519 ISSN 0039-3169 R&D Projects: GA ČR GAP210/12/2336; GA AV ČR IAA300120905 Institutional support: RVO:67985891 Keywords : West Bohemia * Krušné hory * crystalline unit * shallow structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.752, year: 2013

  19. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights From Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling (United States)

    Xue, Zhenhua; Martelet, Guillaume; Lin, Wei; Faure, Michel; Chen, Yan; Wei, Wei; Li, Shuangjian; Wang, Qingchen


    This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS) measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular gravity models not only support the imbricated shape of the Pengguan complex but also reveal an imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally, this suggests a basement-slice-imbricated structure that developed along the margin of the Yangtze Block, as shown by the regional gravity anomaly map, together with the published nearby seismic profile and the distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.

  20. A crustal model for Zealandia and Fiji (United States)

    Segev, Amit; Rybakov, Michael; Mortimer, Nick


    Existing maps of satellite (free-air) gravity and bathymetry, and the CRUST 2.0 global crustal structure model have been used to make new Bouguer gravity anomaly and crustal thickness maps of the SW Pacific region to analyse the region's crustal structure. The new maps clearly outline the limits of the rifted, largely submerged continent of Zealandia. The Bouguer gravity anomalies of ocean crust, large igneous provinces and backarc basins vary simply and predictably with age. The bathymetric Fiji Platform lies in a water depth of 19 km for the entire Fiji Platform, comparable to stretched and submerged parts of Zealandia. The question whether the continental crustal thickness of Fiji is due to its actually being a rifted part of Gondwana-Zealandia or due to enhanced Eocene-Pliocene magmatism remains open, but testable, with the latter more likely. Using the new accurate 3-D crustal thickness and published radiometric dating of lavas, we estimate that the magmatic portions of Southwest Pacific Cenozoic subduction-related arcs (three Kings, Tonga and Vanuatu) have grown at net volumes which vary from 263 to ˜1400 km3 km-1 with net addition rates of 17-31 km3 km-1 Ma-1.

  1. Crustal architecture and tectonic evolution of the Sergipe-Alagoas and Jacuípe basins, offshore northeastern Brazil (United States)

    Mohriak, Webster Ueipass; Bassetto, Marcelo; Vieira, Ines Santos


    The Sergipe-Alagoas and the Jacuípe basins are divergent margin basins located in the South Atlantic Ocean, at the northeastern Brazilian margin. High-quality 18 s (two-way travel time) seismic reflection profiles, which extend from the coastline towards the boundary with the oceanic crust, were integrated with potential field data and calibrated with the results of several exploratory boreholes. When combined, these data provide evidence that the deep seismic reflectors in the deep-water region are related to the crustal architecture of the basin, rather than to sedimentary features. Arrays of high-impedance reflectors, previously interpreted as top of basement, probably correspond to detachment planes near the base of the crust, or to underplated igneous rocks above the Moho. The extensional processes that were active during rifting resulted in normal crustal faults that apparently detach near the seismic Moho in the deep-water region. These crustal faults control and rotate syn-rift sedimentary units along the margin. The seaward portion of the rift seems to have been uplifted and highly eroded during a post-break-up tectonic event. The deep seismic reflection profiles also indicate that the deep-water province is characterized by wedges of reflectors that dip seawards. These features probably correspond to seaward-dipping reflectors (SDR), which are composed of volcanic rocks marking the transition to oceanic crust. The SDR wedges are locally associated with volcanic intrusions. Several volcanic plugs in deep-water region are aligned with oceanic fracture zones that apparently penetrate through the whole crust and reach the upper mantle. On the other hand, there are some diapiric structures located near the boundary between continental and oceanic crust that bear evidence for deep-water salt tectonics.

  2. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting (United States)

    Huismans, R. S.; Duclaux, G.; May, D.


    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  3. A relook into the crustal architecture of Laxmi Ridge, northeastern ...

    Indian Academy of Sciences (India)

    derived free-air gravity (FAG) data to derive the crustal structure of Laxmi Ridge and adjacent areas. 2D and 3D crustal modelling suggests that the high resolution FAG low associated with the ridge is due to underplating and that it is of ...

  4. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China (United States)

    Wang, Jun; Meng, Xiaohong; Li, Fang


    Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.

  5. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting (United States)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.


    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  6. Shallow Crustal Structure in the Northern Salton Trough, California: Insights from a Detailed 3-D Velocity Model (United States)

    Ajala, R.; Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.


    The Coachella Valley is the northern extent of the Gulf of California-Salton Trough. It contains the southernmost segment of the San Andreas Fault (SAF) for which a magnitude 7.8 earthquake rupture was modeled to help produce earthquake planning scenarios. However, discrepancies in ground motion and travel-time estimates from the current Southern California Earthquake Center (SCEC) velocity model of the Salton Trough highlight inaccuracies in its shallow velocity structure. An improved 3-D velocity model that better defines the shallow basin structure and enables the more accurate location of earthquakes and identification of faults is therefore essential for seismic hazard studies in this area. We used recordings of 126 explosive shots from the 2011 Salton Seismic Imaging Project (SSIP) to SSIP receivers and Southern California Seismic Network (SCSN) stations. A set of 48,105 P-wave travel time picks constituted the highest-quality input to a 3-D tomographic velocity inversion. To improve the ray coverage, we added network-determined first arrivals at SCSN stations from 39,998 recently relocated local earthquakes, selected to a maximum focal depth of 10 km, to develop a detailed 3-D P-wave velocity model for the Coachella Valley with 1-km grid spacing. Our velocity model shows good resolution ( 50 rays/cubic km) down to a minimum depth of 7 km. Depth slices from the velocity model reveal several interesting features. At shallow depths ( 3 km), we observe an elongated trough of low velocity, attributed to sediments, located subparallel to and a few km SW of the SAF, and a general velocity structure that mimics the surface geology of the area. The persistence of the low-velocity sediments to 5-km depth just north of the Salton Sea suggests that the underlying basement surface, shallower to the NW, dips SE, consistent with interpretation from gravity studies (Langenheim et al., 2005). On the western side of the Coachella Valley, we detect depth-restricted regions of

  7. Crustal structure beneath Liaoning province and the Bohai Sea and its adjacent region in China based on ambient noise tomography (United States)

    Pang, Guang-hua; Feng, Ji-Kun; Lin, Jun


    The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phase-velocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequency-time analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at 8-35 s periods and the Love wave at 9-32 s periods, respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps, respectively, were inverted simultaneously to determine the 3D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and the Tangshan region are mainly clustered in the transition zone between the low- and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.

  8. 3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography (United States)

    Yolsal-Ćevikbilen, Seda; Biryol, C. Berk; Beck, Susan; Zandt, George; Taymaz, Tuncay; Adıyaman, Hande E.; Özacar, A. Arda


    3-D P-wave velocity structure and Vp/Vs variations in the crust along the North Anatolian Fault Zone (NAFZ) in north-central Anatolia were investigated by the inversion of local P- and S-wave traveltimes, to gain a better understanding of the seismological characteristics of the region. The 3-D local earthquake tomography inversions included 5444 P- and 3200 S-wave readings obtained from 168 well-located earthquakes between 2006 January and 2008 May. Dense ray coverage yields good resolution, particularly in the central part of the study area. The 3-D Vp and Vp/Vs tomographic images reveal clear correlations with both the surface geology and significant tectonic units in the region. We observed the lower limit of the seismogenic zone for north-central Anatolia at 15 km depth. Final earthquake locations display a distributed pattern throughout the study area, with most of the earthquakes occurring on the major splays of the NAFZ, rather than its master strand. We identify three major high-velocity blocks in the mid-crust separated by the İzmir-Ankara-Erzincan Suture and interpret these blocks to be continental basement fragments that were accreted onto the margin following the closure of Neo-Tethyan Ocean. These basement blocks may have in part influenced the rupture propagations of the historical 1939, 1942 and 1943 earthquakes. In addition, large variations in the Vp/Vs ratio in the mid-crust were observed and have been correlated with the varying fluid contents of the existing lithologies and related tectonic structures.

  9. Crustal and uppermantle velocity structure of the northern Korean Peninsula constrained by ambient noise cross-correlations (United States)

    Lee, S. J.; Rhie, J.; Kim, S.


    The seismic velocity structure of the northern Korean Peninsula has not been well known because available seismic data observed inside the region is very rare. Therefore, constructing a one-dimensional (1-D) reference velocity model will be a meaningful first step to understand the detailed velocity structure and also the tectonic evolution of the region. In this study, we use two-year long (2010-2011) ambient noise data recorded by three component broadband seismometers of KIGAM, KMA, F-net, and IRIS networks surrounding the study area. Ambient noise cross-correlations are calculated for station pairs sampling the study area. Multiple filter technique is applied to measure group and phase velocity dispersions of the fundamental mode Rayleigh and Love waves for period ranges between 5 and 70 s, which are sensitive to shear wave velocities in the crust and uppermost mantle. Recently developed inversion method using the Bayesian technique is applied to estimate 1-D models of shear wave velocities and corresponding uncertainties. Combined with the Markov chain Monte Carlo (MCMC) technique, the posterior probability density is evaluated for given data and the prior. Boundaries, velocities, and anisotropy parameters of layers are searched together on the assumption of the layered half-space model. The used method automatically adjusts the number of layers and degree of data fitting by the Bayesian Information Criterion (BIC) estimation and scaling of the data-covariance matrix, respectively. The estimated anisotropic S-wave velocity model in the crust and upper-mantle can help to investigate tectonic processes of the region. For practical use, our velocity model for the Northern Korean Peninsula can be useful to enhance monitoring power of the underground nuclear tests in given area.

  10. A tomographic image of upper crustal structure using P and S wave seismic refraction data in the southern granulite terrain (SGT), India (United States)

    Rajendra Prasad, B.; Behera, Laxmidhar; Rao, P. Koteswara


    We present a 2-D tomographic P and S wave velocity (Vp and Vs) image with Vp/Vs ratios along N-S trending 220 km long deep seismic profile acquired in 2005, which traverses across major shear and tectonically disturbed zones in southern granulite terrain (SGT), India. The 2-D velocity model constrained down to maximum 8 km depth shows velocity anomalies (>0.2 km/s) beneath major shear zones with good spatial resolution (>0.05 km/s). The presence of high Vp (6.3-6.5 km/s), Vs (3.5-3.8 km/s), Vp/Vs (>1.75) and Poisson's ratio (0.25-0.29) indicate significant compositional changes of rocks at shallow depths (0.5 to 8 km) reveal rapid crustal exhumation of mid to lower crustal rocks. This crustal exhumation could be responsible due to Pan-African tectonothermal activity during Neoproterozoic period.

  11. Insights into crustal structure of the Eastern North American Margin from community multichannel seismic and potential field data (United States)

    Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.


    In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.

  12. Modifying the pom-pom model for extensional viscosity overshoots

    DEFF Research Database (Denmark)

    Hawke, L. D. G.; Huang, Qian; Hassager, Ole


    We have developed a variant of the pom-pom model that qualitatively describes two surprising features recently observed in filament stretching rheometer experiments of uniaxial extensional flow of industrial branched polymer resins: (i) Overshoots of the transient stress during steady flow and (i...

  13. Rheology of dense granular suspensions under extensional flow (United States)

    Cheal, Oliver; Ness, Christopher


    We study granular suspensions under a variety of extensional deformations and simple shear using numerical simulations. The viscosity and Trouton's ratio (the ratio of extensional to shear viscosity) are computed as functions of solids volume fraction $\\phi$ close to the limit of zero inertia. Suspensions of frictionless particles follow a Newtonian Trouton's ratio for $\\phi$ all the way up to $\\phi_0$, a universal jamming point that is independent of deformation type. In contrast, frictional particles lead to a deformation-type-dependent jamming fraction $\\phi_m$, which is largest for shear flows. Trouton's ratio consequently starts off Newtonian but diverges as $\\phi\\to\\phi_m$. We explain this discrepancy in suspensions of frictional particles by considering the particle arrangements at jamming. While frictionless particle suspensions have a nearly isotropic microstructure at jamming, friction permits more anisotropic contact chains that allow jamming at lower $\\phi$ but introduce protocol dependence. Finally, we provide evidence that viscous number rheology can be extended from shear to extensional deformations, with a particularly successful collapse for frictionless particles. Extensional deformations are an important class of rheometric flow in suspensions, relevant to paste processing, granulation and high performance materials.

  14. Rift processes and crustal structure of the Amundsen Sea Embayment, West Antarctica, from 3D potential field modelling (United States)

    Kalberg, Thomas; Gohl, Karsten; Eagles, Graeme; Spiegel, Cornelia


    The Amundsen Sea Embayment of West Antarctica is of particular interest as it provides critical geological boundary conditions in better understanding the dynamic behavior of the West Antarctic Ice Sheet, which is undergoing rapid ice loss in the Amundsen Sea sector. One of the highly debated hypothesis is whether this region has been affected by the West Antarctic Rift System, which is one of the largest in the world and the dominating tectonic feature in West Antarctica. Previous geophysical studies suggested an eastward continuation of this rift system into the Amundsen Sea Embayment. This geophysical study of the Amundsen Sea Embayment presents a compilation of data collected during two RV Polarstern expeditions in the Amundsen Sea Embayment of West Antarctica in 2006 and 2010. Bathymetry and satellite-derived gravity data of the Amundsen Sea Embayment complete the dataset. Our 3-D gravity and magnetic models of the lithospheric architecture and development of this Pacific margin improve previous interpretations from 2-D models of the region. The crust-mantle boundary beneath the continental rise and shelf is between 14 and 29 km deep. The imaged basement structure can be related to rift basins within the Amundsen Sea Embayment, some of which can be interpreted as products of the Cretaceous rift and break-up phase and some as products of later propagation of the West Antarctic Rift System into the region. An estimate of the flexural rigidity of the lithosphere reveals a thin elastic thickness in the eastern embayment which increases towards the west. The results are comparable to estimates in other rift systems such as the Basin and Range province or the East African Rift. Based on these results, we infer an arm of the West Antarctic Rift System is superposed on a distributed Cretaceous rift province in the Amundsen Sea Embayment. Finally, the embayment was affected by magmatism from discrete sources along the Pacific margin of West Antarctica in the Cenozoic.

  15. Crustal structure determined from ambient noise tomography near the magmatic centers of the Coso region, southeastern California (United States)

    Yang, Yingjie; Ritzwoller, Michael H.; Jones, Craig H.


    We apply seismic ambient noise tomography to image and investigate the shallow shear velocity structure beneath the Coso geothermal field and surrounding areas. Data from a PASSCAL experiment operated within the Coso geothermal field between 1998 and 2000 and surrounding broadband stations from the Southern California Seismic Network are acquired and processed. Daily cross correlations of ambient noise between all pairs of stations that overlapped in time of deployment were calculated and then stacked over the duration of deployment. Phase velocities of Rayleigh waves between 3 and 10 s periods are measured from the resulting cross correlations. Depending on the period, between about 300 and 600 reliable phase velocity measurements are inverted for phase velocity maps from 3 to 10 s periods, which in turn are inverted for a 3-D shear velocity model beneath the region. The resulting 3-D model reveals features throughout the region that correlate with surface geology. Beneath the Coso geothermal area shear velocities are generally depressed, a prominent low-velocity anomaly is resolved clearly within the top 2 km, no significant anomaly is seen below about 14 km depth, and a weakly resolved anomaly is observed between 6 and 12 km depth. The anomaly in the top 2 km probably results from geothermal alteration in the shallow subsurface, no magmatic body is imaged beneath 14 km depth, but the shear velocity anomaly between 6 and 12 km may be attributable to partial melt. The thickness and amplitude of the magma body trade off in the inversion and are ill determined. Low velocities in the regions surrounding Coso at depths near 7 km underlie areas with Miocene to recent volcanism, suggesting that some magmatic processing of the crust could be focused near this depth.

  16. BOLIVAR: Crustal Structure Across the Caribbean-South American Plate Boundary at 70W: Results from Refraction and Reflection Data. (United States)

    Guedez, M. C.; Zelt, C. A.; Magnani, M. B.; Levander, A.; Christeson, G. L.; Sawyer, D. S.


    The active-seismic component of the BOLIVAR project (Broadband Ocean and Land Investigations of Venezuela and the Antilles arc Region) was completed in June 2004. Among the goals of BOLIVAR is to study the structure of the South America-Caribbean plate boundary as a site of likely continental growth by island arc accretion of the Leeward Antilles arc to the South American continent. In the west end of the Venezuelan basin the complex motion across the plate boundary is poorly understood. Other studies have concluded that the Caribbean Plate is subducting beneath the South American Plate and the Leeward Antilles arc is being accreted to older continental crust. Complicating this picture, the Maracaibo block is being displaced northward along the Bocono and Santa Marta strike-slip faults, while the Oca fault is a paleo-strand of the large right-lateral strike-slip system of the plate boundary. We present results of analyses of refraction and reflection seismic data along a 450 km long onshore-offshore profile at 70oW, extending from 10oN to 14.3oN. The refraction data include 40 Ocean Bottom Seismometer (OBS) and 348 Reftek Texan land seismometers that recorded the R/V Ewing airgun shots. The land stations also recorded two large landshots to provide reversed refraction coverage onshore. A 2-D velocity model obtained from travel time inversion of first arrivals shows that the Caribbean crust is anomalously thick, typical of oceanic plateau, ~ 15-20 km. Low velocity sediments, on the Caribbean oceanic plateau, are observed subducting beneath the South-Caribbean deformed belt over a distance of 75-100 km. We also observe low velocities associated with the Paraguana/Falcon basin extending from onshore to offshore depths of 3 km. We observe localized high compressional velocities spatially associated with the Oca fault. Similar high velocity bodies are observed on other BOLIVAR transects (see Avé Lallemant et al., this session). A migrated stack of the marine reflection

  17. Crustal structure beneath discovery bank in the South Scotia Sea from group velocity tomography and seismic reflection data

    International Nuclear Information System (INIS)

    Vuan, A.; Lodolo, E.; Panza, G.F.


    Bruce, Discovery, Herdman and Jane Banks, all located along the central-eastern part of the South Scotia Ridge (i.e., the Antarctica-Scotia plate boundary), represent isolated topographic reliefs surrounded by relatively young oceanic crust, whose petrological and structural nature is still the subject of speculations due to the lack of resolving data. In the Scotia Sea and surrounding regions negative anomalies of about 34% are reported in large-scale group velocity tomography maps. The spatial resolution (∼500 km) of these maps does not warrant any reliable interpretation of such anomalies. A recent surface wave tomography in the same area, performed using broad band seismic stations and 300 regional events, shows that in the period range from 15 s to 50 s the central-eastern part of the South Scotia Ridge is characterized by negative anomalies of the group velocities as large as 6. The resolution of our data set (∼300 km) makes it possible to distinguish an area (centered at 61 deg S and 36 deg W) with a crust thicker than 25 km, and a shear wave velocity vs. depth profile similar to that found beneath the northern tip of the Antarctic Peninsula and southern South America. Rayleigh and Love wave dispersion curves are inverted in the period range from 15 s to 80 s to obtain shear wave velocity profiles that suggest a continental nature of Discovery Bank. The continental-type crust of this topographic relief is in agreement with the interpretation of a multi-channel seismic reflection profile acquired across this rise. Peculiar acoustic facies are observed in this profile and are interpreted as thinned and faulted continental plateau. The boundaries of the negative group velocity anomalies are marked by a high seismicity rate. Historical normal faulting earthquakes with magnitude around 7 are localised between the low velocity anomaly region in the eastern South Scotia Ridge and the high velocity anomaly region associated with the surrounding oceanic crust

  18. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier


    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  19. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier


    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  20. Upper mantle diapers, lower crustal magmatic underplating, and lithospheric dismemberment of the Great Basin and Colorado Plateau regions, Nevada and Utah; implications from deep MT resistivity surveying (United States)

    Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.


    In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated

  1. Subduction initiation and recycling of Alboran domain derived crustal components prior to the intra-crustal emplacement of mantle peridotites in the Westernmost Mediterranean: isotopic evidence from the Ronda peridotite (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel


    During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic

  2. Crustal structure and composition to the S of the Spanish Central System: Effect of Alpine reactivation in an internal Variscan domain (United States)

    Ayarza, Puy; Carbonell, Ramón; Ehsan, Siddique; Martí, David; Palomeras, Immaculada; Martínez Poyatos, David


    The ALCUDIA Project has acquired vertical incidence and wide-angle reflection seismic data in the Variscan Central Iberian Zone of Spain. The NE-SW, ~300 km long profiles sample an area going from the suture between the Variscan Central Iberian and the Ossa-Morena Zones in the S to the boundary between the former and the Alpine Central System to the N. Although crustal thickness appears to be fairly constant along most of the Central Iberian Zone, a gradual increase of 3-5 km in the northern half of the profile is clearly imaged by the wide-angle data. This increase in the Moho depth is accompanied by a decrease in the thickness of the layered lower crust from the Toledo Anatectic Complex to the N. Right in this area, the amount of Variscan metasediments diminish and the surface geology is characterized by granites, migmatites and by the Madrid Basin, a foreland basin of the Alpine Central System that is part of the bigger Tagus Basin. The increase in crustal thickness identified in the neighborhood of the Central System is also accompanied by a slight increase in the Poisson ratio values, which even though still below 0.25, they are higher than those observed in the southern part of the profile, far from the influence of the late Variscan melting episode and of that of the Alpine tectonics. Two scenarios are considered to take part in the Moho deepening near the Central System: Firstly, the Alpine reactivation causing this mountain belt has increased the crustal load giving rise to a foreland basin and a moderate crustal thickening. Also, a gradual change in crustal composition to the N, incorporating denser and more basic rocks, might also play a role in the average crustal density and contribute to Moho deepening by isostatic readjustment. The importance of each of these process is, as yet, unknown. However, the next acquisition of the CIMDEF project wide-angle reflection dataset across the central part of the Iberian Peninsula, crossing the Central System, will

  3. Crystallinity of polyethylene in uni-axial extensional flow

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; van Drongelen, Martin; Mortensen, Kell

    Flow history of polymer melts in processing greatly influences the crystallinity and hence the solid properties of the final material. A wide range of polymer processes involve extensional flows e.g. fiber spinning, blow moulding etc. However, due to instrumental difficulties, experimental studies......, hence much can be learned from studying polymers in extension. Recent advances in filament stretching rheometry now enable the performance of controlled uniaxial stretching of polymeric liquids even to high Hencky strains [1]. In addition the instrument allows for quenching at specific strains...... such that crystallization from a stretched state can take place. In this work we explore this feature in the attempt to link the nonlinear extensional rheology to the final morphology. We investigate polyethylenes (PE) of various chain architectures and observe that, even for complex architectures like long chain branched...

  4. Crustal structure and evolution of the NW Zagros Mountains (Iran): Insights from numerical modeling of the interplay between surface and tectonic processes (United States)

    Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Vergés, Jaume


    Protracted Arabia-Eurasia convergence resulted in the closure of the >2000 km wide Neo-Tethys Ocean from early Late Cretaceous to Recent. This process was controlled by the structure of the NE margin of the Arabian plate, the NE-dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere and the collision of small continental and volcanic arc domains of the SW margin of Eurasia. The evolution of the Zagros Amiran and Mesopotamian foreland basins is studied in this work along a ~700 km long transect in NW Zagros constrained by field, seismic and published data. We use the well-defined geometries and ages of the Amiran and Mesopotamian foreland basins to estimate the elastic thickness of the lithosphere and model the evolution of the deformation to quantitatively link the topographic, tectonic and sedimentary evolution of the system. Modelling results show two major stages of emplacement. The obduction (pre-collision) stage involves the thin thrust sheets of the Kermanshah complex together with the Bisotun basement. The collision stage corresponds to the emplacement of the basement duplex and associated crustal thickening, coeval to the out of sequence emplacement of Gaveh Rud and Imbricated Zone in the hinterland. The geodynamic model is consistent with the history of the foreland basins, with the regional isostasy model, and with a simple scenario for the surface process efficiency. The emplacement of Bisotun basement during obduction tectonically loaded and flexed the Arabian plate triggering deposition in the Amiran foreland basin. The basement units emplaced during the last 10 My, flexed the Arabian plate below the Mesopotamian basin. During this stage, material eroded from the Simply Folded belt and the Imbricated zone was not enough to fill the Mesopotamian basin, which, according to our numerical model results, required a maximum additional sediment supply of 80 m/Myr. This additional supply had to be provided by an axial drainage system

  5. Late Cretaceous Localized Crustal Thickening as a Primary Control on the 3-D Architecture and Exhumation Histories of Cordilleran Metamorphic Core Complexes (United States)

    Gans, P. B.; Wong, M.


    The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by

  6. Quaternary extensional growth folding beneath Reno, Nevada, imaged by urban seismic profiling (United States)

    Stephenson, William J.; Frary, Roxy N.; Louie, John; Odum, Jackson K.


    We characterize shallow subsurface faulting and basin structure along a transect through heavily urbanized Reno, Nevada, with high‐resolution seismic reflection imaging. The 6.8 km of P‐wave data image the subsurface to approximately 800 m depth and delineate two subbasins and basin uplift that are consistent with structure previously inferred from gravity modeling in this region of the northern Walker Lane. We interpret two primary faults that bound the uplift and deform Quaternary deposits. The dip of Quaternary and Tertiary strata in the western subbasin increases with greater depth to the east, suggesting recurrent fault motion across the westernmost of these faults. Deformation in the Quaternary section of the western subbasin is likely evidence of extensional growth folding at the edge of the Truckee River through Reno. This deformation is north of, and on trend with, previously mapped Quaternary fault strands of the Mt. Rose fault zone. In addition to corroborating the existence of previously inferred intrabasin structure, these data provide evidence for an active extensional Quaternary fault at a previously unknown location within the Truckee Meadows basin that furthers our understanding of both the seismotectonic framework and earthquake hazards in this urbanized region.

  7. From nappe stacking to extensional detachments at the contact between the Carpathians and Dinarides - The Jastrebac Mountains of Central Serbia (United States)

    Erak, Dalibor; Matenco, Liviu; Toljić, Marinko; Stojadinović, Uroš; Andriessen, Paul A. M.; Willingshofer, Ernst; Ducea, Mihai N.


    Reactivation of inherited nappe contacts is a common process in orogenic areas affected by back-arc extension. The amount of back-arc extension is often variable along the orogenic strike, owing to the evolution of arcuated mountain chains during stages of rapid slab retreat. This evolution creates low rates of extension near rotation poles, where kinematics and interplay with the pre-existing orogenic structure are less understood. The amount of Miocene extension recorded by the Pannonian Basin of Central Europe decreases SE-wards along the inherited Cretaceous - Paleogene contact between the Dinarides and Carpathian Mountains. Our study combines kinematic data obtained from field and micro-structural observations assisted with fission track thermochronological analysis and U-Pb zircon dating to demonstrate a complex poly-phase evolution in the key area of the Jastrebac Mountains of Serbia. A first event of Late Cretaceous exhumation was followed by latest Cretaceous - Eocene thrusting and magmatism related to a continental collision that sutured the accretionary wedge containing contractional trench turbidites. The suture zone was subsequently reactivated and exhumed by a newly observed Miocene extensional detachment that lasted longer in the Jastrebac Mountains when compared with similar structures situated elsewhere in the same structural position. Such extensional zones situated near the pole of extensional-driven rotation favour late stage truncations and migration of extension in a hanging-wall direction, while directions of tectonic transport show significant differences in short distances across the strike of major structures.

  8. Cyprus Crustal Study Project (United States)

    Hall, James M.

    The Cyprus Crustal Study Project is a joint venture of the International Crustal Research Drilling Group (ICRDG) and the Government of Cyprus through its Geological Survey Department. The aim of the project is to carry out a detailed reexamination of the Troodos, Cyprus, ophiolite, using high speed diamond drilling combined with extensive surface geological and geophysical studies. The ICRDG group, comprising about 100 geoscientists from eight countries, includes many participants familiar with ophiolites and with in situ ocean crust through work from Glomar Challenger, thus allowing the ophiolite to be viewed from a new perspective.Studies are being concentrated on a section through the north flank of the ophiolite between the villages of Agrokipia and Palekhori. Research drilling and associated mapping in this segment are aimed at providing a continuous sample through the upper 4 km of the ophiolite and at sampling the stockworks beneath the sulfide deposits located within the extrusive section. The Troodos massive sulfide deposits are considered to be close analogs of the deposited being formed by active hydrothermal circulation on the crest of the East Pacific Rise.

  9. Crustal Thickness in the Ibero-Maghrebian region II: Southern Iberia Peninsula (United States)

    Mancilla, F.; Stich, D.; Morales, J.; Martin, R.; Diaz, J.; Pazos, A.; Córdoba, D.; Pulgar, J. A.; Ibarra, P.; Harnafi, M.; Gonzalez-Lodeiro, F.


    During the first leg of the TopoIberia experiment, a total of 86, temporal and permanent, seismic broadband stations were recording in Southern Iberian Peninsula. This station deployment provides an extraordinary regional coverage for investigating structure and seismotectonics of the Northern branch of the Betic-Rif arc, and the Iberian Massif. Here, we analyze P-to-S converted waves in teleseismic receiver functions to infer gross crustal properties as thickness and Vp/Vs ratio. Strong lateral variations of the crustal thickness are observed throughout the region. Crustal thicknesses vary between ~19 km and ~49 km. Homogeneity in the crustal structure is observed for all the stations in the Iberian massif with average crustal thickness of ~30 km and average Vp/Vs ratio of ~1.71. Outside the Iberian Massif the crustal structure is revealed more complex. In the Betic region, a thickened crust underlies the contact between the External and Internal zones with crustal thicknesses between 35 km and 49 km, decreasing its values toward the Alboran Sea (~ 25 km in the coast). The South-eastern of the Betic region is affected by significant crustal thinning with the presence of dipping crustal-mantle discontinuity with crustal thicknesses between ~30km to ~20 km. The crustal thickness variations are attributed to regional geodynamics possibly the realm of present-day subcrustal dynamics in the final stage of western Mediterranean subduction.

  10. Caledonian and late Caledonian Europe: a working hypothesis involving two contrasted compressional/extensional scenarios

    Directory of Open Access Journals (Sweden)

    Oyarzun, R.


    Full Text Available The tectonomagmatic and metamorphic structuration of the European Caledonian realm suggests that two mutually perpendicular compressional/extensional scenarios developed during the Ordovician-Devonian time-span. As a result of the mid Ordovician Grampian compressional scheme (Caledonian s.s., a major extensional province developed further east from the Caledonian foldbelt in continental Europe. This scenario ended by early/mid Devonian, with the complete locking of North America, Baltica and Gondwana into a Pangaea supercontinent, thus triggering a contrasted tectonic environment which might be termed La estructuración tectonomagmática y metamórfica del dominio caledónico europeo sugiere que dos escenarios, compresional y extensional, mutuamente perpendiculares, se desarrollaron durante el Ordovícico-Devónico. Como resultado del esquema compresional del Ordovícico medio (Grampian, caledónico s.s., en el O de Europa continental se desarrolló una provincia extensional localizada al E de la faja de plegamiento caledónica. Esta situación finalizó hacia el Devónico inferior/medio, cuando la convergencia de América del Norte, Báltica y Gondwana dió origen al supercontinente Pangea. Esta colisión generó un ambiente tectónico caracterizado por: 1. plegamiento y plutonismo en Europa continental occidental, y 2. extensión y volcanismo en la parte N de la faja de plegamiento caledónica (Escocia, SO de Noruega y E de Groenlandia. Este evento puede ser tentativamente denominado «Tardicaledónico». En términos globales, la evolución del dominio caledónico puede ser explicada en términos de «tectónica de inversión» (s.l., esto es, períodos de adelgazamiento cortical (extensionales seguidos por períodos de engrosamiento cortical (compresionales y viceversa

  11. Crustal and upper mantle structure of the Anatolian plate: Imaging the effects of subduction termination and continental collision with seismic techniques (United States)

    Delph, Jonathan R.

    The neotectonic evolution of the eastern Mediterranean is intimately tied to interactions between the underthrusting/subducting slab along the southern margin of Anatolia and the overriding plate. The lateral variations in the subduction zone can be viewed as a temporal analogue of the transition between continuous subduction and subduction termination by continent-continent collision. By investigating the lateral variations along this subduction zone in the overriding plate, we can gain insight into the processes that precede continent collision. This dissertation summarizes the results of three studies that focus on different parts of the subduction margin: 1) In the west, where the development of a slab tear represents the transition between continuous and enigmatic subduction, 2) In the east, where continent-continent collision between the Arabian and Eurasian Plate is leading to the development of the third largest orogenic plateau on earth after complete slab detachment, and 3) In central Anatolia, where the subducting slab is thought to be in the processes of breaking up, which is affecting the flow of mantle material leading to volcanism and uplift along the margin. In the first study, we interpret that variations in the composition of material in the downgoing plate (i.e. a change from the subduction of oceanic material to continental material) may have led to the development of a slab tear in the eastern Aegean. This underthrusting, buoyant continental fragment is controlling overriding plate deformation, separating the highly extensional strains of western Anatolia from the much lower extensional strains of central Anatolia. Based on intermediate depth seismicity, it appears that the oceanic portion of the slab is still attached to this underthrusting continental fragment. In the second study, we interpret that the introduction of continental lithosphere into the north-dipping subduction zone at the Arabian-Eurasian margin led to the rollback and

  12. Superimposed basin formation during Neogene-Quaternary extensional tectonics in SW-Anatolia (Turkey): Insights from the kinematics of the Dinar Fault Zone (United States)

    Alçiçek, M. Cihat; Brogi, Andrea; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco


    In the extensional province of SW-Anatolia, the cross-cutting relationship between the NW- and NE-oriented Neogene and Quaternary basins is an ongoing debate in the understanding of the tectonic evolution of this area. In order to contribute to this issue, we carried out a structural and kinematic study along the seismogenic NW-trending Dinar Fault Zone (DFZ). This structure was initially controlled by the sedimentary and tectonic evolution of the NE-oriented Neogene Baklan, Acıgöl and Burdur basins and, later, by the NW-oriented Quaternary Dinar Basin. On the basis of > 1000 structural and kinematic data, in conjunction with basin stratigraphy, the DFZ can be divided into three almost parallel and continuous bands, that are: (a) the Hangingwall where Quaternary sediments are deformed by normal faults with mechanical striations; (b) the Inner Zone, corresponding to the present Dinar fault scarp, where NW-trending normal faults with mechanical striations are dominant, and (c) the Outer Zone, located in the footwall of the structure comprising the area between the fault scarp and undeformed bedrock, where faults exhibit variable orientation and kinematics, from strike-slip to normal dip-slip. These kinematics are mainly indicated by calcite shear veins and superimposed mechanical striations, respectively. This suggests that the DFZ changed kinematics over time, i.e., the DFZ initiated as dominant dextral strike-slip to oblique-slip fault system and continued with a dominant normal movement. Therefore, we hypothesize that the NW-trending DFZ was initially a transfer zone during the late Miocene-Pliocene, coeval to the sedimentary and structural evolution of the NE-trending Baklan, Acigöl and Burdur basins. During the Quaternary the DFZ, representing an already weakened crustal sector, played the role of a normal fault system providing the accommodation space for the Quaternary Dinar Basin. Hydrothermal circulation and volcanism at NE-/NW-trending faults

  13. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    International Nuclear Information System (INIS)

    Cemen, I; Catlos, E J; Gogus, O; Diniz, E; Hancer, M


    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Bueyuek Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Bueyuek Menderes, and Simav grabens, containing high

  14. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Cemen, I; Catlos, E J [Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research Center, Stillwater OK 74078 (United States); Gogus, O [University of Toronto, Department of Geology, Earth Sciences Centre, 22 Russell St. Toronto, Ontario, M5S 3B1 (Canada); Diniz, E [Occidental Oil and Gas Corporation, PO Box 22757, Houston TX 77227 (United States); Hancer, M [Pamukkale Universitesi, Muhendislik Fakultesi, Jeoloji Muh. Bolmu, Denizli, 20070 Turkey (Turkey)], E-mail:


    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Bueyuek Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Bueyuek Menderes, and Simav grabens, containing high

  15. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey (United States)

    Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.


    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high

  16. Influence of extensional stress overshoot on crystallization of LDPE

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; van Drongelen, Martin; Mortensen, Kell


    Low-density polyethylene (LDPE) shows a stress overshoot in start-up of strong uniaxial extensional flows of constant rate. It is believed that the overshoot is caused by a contraction of the polymer backbone due to alignment of the long chain branchesthe consequence being that the molecular...... that the overshoot indeed is reflected in the orientation of the crystalline domains of the quenched filaments. In a broader perspective, we show that the final crystalline morphology is determined by the stress at quenchnot the strain at quench. With these findings we confirm that the much debated overshoot has...

  17. Extensiones al meta-modelo UML desarrollando nuevos estereotipos


    Riesco, Daniel Eduardo


    UML es un lenguaje universal de modelado de aplicaciones orientadas a objetos que cubre un amplio rango de dominios. Sin embargo, ningún paradigma es suficiente para expresar claramente todas las vistas de los dominios posibles en le mundo. Por ello, se han hecho muchas extensiones a UML que reflejan dominios específicos. En el estándar del OMG (Object Management Group) se proveen tres mecanismos para extender el meta-modelo UML: valores etiquetados, restricciones y estereotipos. Est...

  18. A new look at extensional rheology of low-density polyethylene

    DEFF Research Database (Denmark)

    Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.


    The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co......The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU....... With the capability of the filament stretching rheometers, we show that LDPEs with quite different linear viscoelastic properties can have very similar steady extensional viscosity. This points to the potential for independently controlling shear and extensional rheology in certain rate ranges....

  19. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies

    International Nuclear Information System (INIS)

    Berryman, J.G.


    Ultrasonic dispersion of extensional waves in fluid-saturated porous cylinders is studied by analyzing generalized Pochhammer equations derived using Biot's theory. Cases with open-pore surface and closed-pore surface boundary conditions are considered. For both cases, the dispersion of the fast extensional wave does not differ much qualitatively from the dispersion expected for extensional waves in isotropic elastic cylinders. A slow extensional wave propagates in the case with a closed-pore surface but not in the case with an open-pore surface. The propagating slow wave has very weak dispersion and its speed is always lower than, but close to, the bulk slow wave speed

  20. The case for pre-Middle Cretaceous extensional faulting in northern Yucca Flat, southwestern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Lanphere, M.A.; Barker, C.E.; Warren, R.G.


    Extremely complex low-angle fault relationships within the Late Proterozoic to Pennsylvania sedimentary rocks near Yucca Flat, Nevada Test Site, have been previously ascribed to Mesozoic compression during the Sevier orogeny, or to middle Tertiary extension of a pre-existing thrust stack. New field evidence and detailed studies of a 3,500-foot drillhole show that this structural complexity results from post-thrust regional extension that may be much older than previously recognized. The interpreted age constraint is inferred from thermal disturbances recorded by rocks above the altered monzodiorite(?) porphyry border phase of an intrusion penetrated in the bottom of the drillhole. The pluton intrudes middle Devonian dolomite that forms the lowermost of at least seven structural sheets. Each sheet is bounded by breccia zones and consists of an identifiable slice of the local Paleozoic section without ordered sequence. The intervening structural sheets of carbonaceous siltstone appear to have been thermally disturbed because they yield essentially no volatile hydrocarbons during pyrolysis. All observed features are consistent with thermal overprinting by the 102 Ma intrusion and permit an interpretation that the complicated fault/stratigraphy relationships also predate 102 Ma. Outcrop studies of numerous low-angle faults within the Paleozoic and late Proterozoic rocks in this region indicate that many are extensional, whether they involve younger-over-older or older-over-younger age relations. The authors infer a dominantly extensional origin for the structural sheets encountered in the drillhole on the basis of similarities with the outcrop faults, but the sheets must have been derived from the upper plate of the nearby CP thrust fault

  1. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf


    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  2. Crustal structure in the southern part of Central Java based on analysis of tele-seismic receiver function using a neighbourhood algorithm (United States)

    Ariyanto, P.; Syuhada; Rosid, S.; Anggono, T.; Januarti, Y.


    In this study, we applied receiver functions analysis to determine the crustal thickness, the ratio of Vp/Vs and the S wave velocity in the southern part of the Central Java. We selected tele-seismic data with magnitude more than 6 (M>6) and epicenter distance 30°-90° recorded from 3 broadband stations: UGM, YOGI, and WOJI station, as part of Indonesia-Geophone Network (IA-GE). Inversions were performed using nonlinear Neighborhood Algorithm (NA). We observed Ps phase conversion on the receiver functions corresponding to Moho depth at around 36-39 km. We also observed strong negative phase arrivals at around 10-12 s which might be associated with Indo-Australian subducting slab underneath the stations. The inversion results show the presence of low velocity zone with high Vp/Vs ratio (>1.78) in the middle crust around the study area which could be related to the Merapi-Lawu Anomaly (MLA).

  3. Geophysical evidence of crustal-heterogeneity control of fault growth in the Neocomian Iguatu basin, NE Brazil (United States)

    de Castro, David L.; Bezerra, Francisco H. R.; Castelo Branco, Raimundo M. G.


    Models of fault growth propose that rift initiation starts with short fault segments. Knowledge of the growth of these segments and their interactions is important to understanding rift geometry and evolution. In the northern part of the Borborema Province, northeastern Brazil, a continental-scale, Cretaceous extensional system of faults has been observed to have reactivated ductile Precambrian shear zones. The faults form small grabens that represent the rift stage of the sedimentary basins. We integrated airborne radiometric and magnetic data with terrestrial gravity survey to investigate the influence of crustal heterogeneity on fault growth and the development of the extensional faults in one of these grabens, the Iguatu basin. Previous studies presented geophysical data, which provide evidence that the Iguatu basin contains a half-graben geometry. In our study, gravity and airborne geophysical data indicate that the basement of the Iguatu basin is part of a heterogeneous structural framework composed of two structural domains, is affected by several ductile shear zones and intruded by a few granite bodies. The gravity modeling reveals that this basin is composed of three right-bend en echelon fault segments. They form a sigmoid system of normal faults that accommodate the strong ˜90° bend of the Precambrian shear zones from E-W to roughly N-S. The growth of these segments led to the generation of two isolated depocenters. The overlapping fault segments link through relay ramps. Release faults that are nearly perpendicular or oblique to the three main fault segments form marginal strike ramps and horst structures in both depocenters. 3D-gravity modeling incorporates the presence of interfering sources of a heterogeneous structural framework. The modeling reveals a maximum sedimentary cover 1620 m thick, which occurs at the bend of the reactivated shear zones. The gravity signature of a possible granite body, after removal of the gravity effect of the basin

  4. Shear and Extensional Rheology of Polystyrene Melts and Solutions with the Same Number of Entanglements

    DEFF Research Database (Denmark)

    Costanzo, Salvatore; Huang, Qian; Ianniruberto, Giovanni


    We investigate the nonlinear shear and uniaxial extensional rheology of entangled polystyrene (PS) melts and solutions having the same number Z of entanglements, hence identical linear viscoelasticity. While experiments in extensional flows confirm that PS melts and solutions with the same Z behave...

  5. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust (United States)

    Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan


    The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late

  6. Crustal structure variations along the NW-African continental margin: a comparison of new and existing models from wide angle and reflection seismic data (United States)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Philippe, S.; Louden, K. E.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabellouahed, M.; Reichert, C. J.


    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from three study regions along the margin located in the North Moroccan salt basin, on the central continental margin offshore Safi and in the south, offshore Dakhla. In each of the study areas several combined wide-angle and reflection seismic profiles perpendicular and parallel to the margin have been acquired and forward modelled using comparable methods. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. In the North Moroccan Basin continental crust thins from originally 36 km to about 8 km in a 150 km wide zone. The basin itself is underlain by highly thinned continental crust. Offshore safi thinning of the continental crust is confined to a 130 km wide zone with no neighboring sedimentary basin underlain by continental crust. In both areas the zone of crustal thinning is characterised by the presence of large blocks and abundant salt diapirs. In the south crustal thinning is more rapid in a zone of 90 km and asymmetric with the upper crust thinning more closely to the continent than the lower crust, probably due to depth-dependent stretching and the presence of the precambrian Reguibat Ridge on land. Oceanic crust is characterised by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganisation. Volcanic activity seems to be confined to the region next to the Canary Islands, and is thus not related to the initial opening of the oceanic, which was related to no

  7. Central and eastern Anatolian crustal deformation rate and velocity fields derived from GPS and earthquake data (United States)

    Simão, N. M.; Nalbant, S. S.; Sunbul, F.; Komec Mutlu, A.


    We present a new strain-rate and associated kinematic model for the eastern and central parts of Turkey. In the east, a quasi N-S compressional tectonic regime dominates the deformation field and is partitioned through the two major structural elements of the region, which are the conjugate dextral strike-slip North Anatolian Fault Zone (NAFZ) and the sinistral strike slip East Anatolian Fault Zone (EAFZ). The observed surface deformation is similar to that inferred by anisotropy studies which sampled the region of the mantle closer to the crust (i.e. the lithospheric mantle and the Moho), and is dependent on the presence or absence of a lithospheric mantle, and of the level of coupling between it and the overlaying crust. The areas of the central and eastern parts of Turkey which are deforming at elevated rates are situated above areas with strong gradients in crustal thickness. This seems to indicate that these transition zones, situated between thinner and thicker crusts, promote more deformation at the surface. The regions that reveal elevated strain-rate values are 1) the Elaziğ-Bingol segment of the EAFZ, 2) the region around the Karlıova triple-junction including the Yedisu segment and the Varto fault, 3) the section of the NAFZ that extends from the Erzincan province up to the NAFZ-Ezinepazarı fault junction, and 4) sections of the Tuz Gölü Fault Zone. Other regions like the Adana basin, a significant part of the Central Anatolian Fault Zone (CAFZ), the Aksaray and the Ankara provinces, are deforming at smaller but still considerable rates and therefore should be considered as areas well capable of producing damaging earthquakes (between M6 and 7). This study also reveals that the central part of Turkey is moving at a faster rate towards the west than the eastern part Turkey, and that the wedge region between the NAFZ and the EAFZ accounts for the majority of the counter clockwise rotation between the eastern and the central parts of Turkey. This

  8. Gravity in extensional regimes: A case study in the Central Volcanic Region, New Zealand (United States)

    Greve, A.; Stern, T. A.


    Using the interpretation of a large crustal seismic experiment conducted in 2009 as boundary model, we produced a sequence of new 2D gravity models for the central North Island in New Zealand. The Bouguer gravity field in the region ranges from -100 to 60 mGal and is dominated by the long wavelength signals of the subduction of the Pacific beneath the Australian plate along the Hikurangi margin and the transition from continental to oceanic lithosphere about the Bay of Plenty coast (NE New Zealand). Removal of these broad regional trends reveals the presence of a triangular shaped area, within the lines Taranaki-Coromandel and Taranaki - White Island, with negative anomalies between -30 and 60 mGal and positive anomalies around 10 mGal along the margins. This area, commonly referred to as the Central Volcanic Region (CVR) represents the continental continuation of the Lau-Havre, oceanic, back-arc rift basin. The Taupo Volcanic Zone forms the active eastern half of the CVR, where anomalously high heat output, geothermal activity and active volcanism occur. The new gravity model includes the presence of a 90km wide, ca. 10 km thick rift pillow of new underplated, lower crust between the depths of 15 and 25 km. A positive density contrast of 300 kg/m3 for this body is consistent with the observed seismic velocities (6.8 ≤ Vp ≤ 7.1 km/s). A ca. 2.5 km deep basin dominates the upper crustal structure and is about 50 km wide, infilled by low density volcaniclastics, with adopted average negative densities of -425 kg/m3. In the mid-crustal region, between 2.5 and 15 km depth, isostatic compensation requires a small density contrast of -110 kg/m3. This density contrast, with respect to a standard crustal model, can be ascribed to the presence of low density intrusives, within the old and now stretched crust. On the basis of this new crustal structure model we estimate a stretching factor (ß) for the old crust of 2-2.4. The intruded mid crust and the underplated new

  9. Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone (United States)

    Elitez, İrem; Yaltırak, Cenk; Aktuğ, Bahadır


    The tectonic framework of the eastern Mediterranean presented in this paper is based on an active subduction and small underwater hills/mountains on the oceanic crust moving toward the north. The Hellenic Arc, the Anaximander Mountains, the Rhodes and Finike basins, the compressional southern regions of the Western Taurides, and the extensional western Anatolian graben are the main interrelated tectonic structures that are shaped by the complex tectonic regimes. There are still heated debates regarding the structural properties and tectonic evolution of the southwestern Anatolia. GPS velocities and focal mechanisms of earthquakes demonstrate the absence of a single transform fault across the Burdur-Fethiye region; however, hundreds of small faults showing normal and left-lateral oblique slip indicate the presence of a regionally extensive shear zone in southwestern Turkey, which plays an important role in the eastern Mediterranean tectonics. The 300-km-long, 75-90-km-wide NE-SW-trending Burdur-Fethiye Shear Zone developed during the formation of Aegean back-arc extensional system and the thrusting of Western Taurides. Today, the left-lateral differential motion across the Burdur-Fethiye Shear Zone varies from 3 to 4 mm/yr in the north to 8-10 mm/yr in the south. This finding could be attributed to the fact that while the subduction of the African Plate is relatively fast beneath the western Anatolia at the Hellenic Trench, it is slow or locked beneath the Western Taurides. Therefore, the GPS vectors and their distributions on land indicate remarkable velocity differences and enable us to determine the left-lateral shear zone located between the extensional and compressional blocks. Furthermore, this active tectonic regime creates differences in topography. This study also demonstrates how deep structures, such as the continuation of the subduction transform edge propagator (STEP) fault between the Hellenic and Cyprus arcs in the continental area, can come into play

  10. Plume-driven plumbing and crustal formation in Iceland (United States)

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Nettles, M.; Ekstrom, G.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.


    Through combination of surface wave and body wave constraints we derive a three-dimensional (3-D) crustal S velocity model and Moho map for Iceland. It reveals a vast plumbing system feeding mantle plume melt into upper crustal magma chambers where crustal formation takes place. The method is based on the partitioned waveform inversion to which we add additional observations. Love waves from six local events recorded on the HOTSPOT-SIL networks are fitted, Sn travel times from the same events measured, previous observations of crustal thickness are added, and all three sets of constraints simultaneously inverted for our 3-D model. In the upper crust (0-15 km) an elongated low-velocity region extends along the length of the Northern, Eastern and Western Neovolcanic Zones. The lowest velocities (-7%) are found at 5-10 km below the two most active volcanic complexes: Hekla and Bardarbunga-Grimsvotn. In the lower crust (>15 km) the low-velocity region can be represented as a vertical cylinder beneath central Iceland. The low-velocity structure is interpreted as the thermal halo of pipe work which connects the region of melt generation in the uppermost mantle beneath central Iceland to active volcanoes along the neovolcanic zones. Crustal thickness in Iceland varies from 15-20 km beneath the Reykjanes Peninsula, Krafla and the extinct Snfellsnes rift zone, to 46 km beneath central Iceland. The average crustal thickness is 29 km. The variations in thickness can be explained in terms of the temporal variation in plume productivity over the last ~20 Myr, the Snfellsnes rift zone being active during a minimum in plume productivity. Variations in crustal thickness do not depart significantly from an isostatically predicted crustal thickness. The best fit linear isostatic relation implies an average density jump of 4% across the Moho. Rare earth element inversions of basalt compositions on Iceland suggest a melt thickness (i.e., crustal thickness) of 15-20 km, given passive

  11. Crustal Ages of the Ocean Floor - Poster (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crustal Ages of the Ocean Floor Poster was created at NGDC using the Crustal Ages of the Ocean Floor database draped digitally over a relief of the ocean floor...

  12. 40Ar/39Ar constraints on the activity of the Temsamane extensional detachment (eastern Rif, Morocco) (United States)

    Jabaloy Sánchez, A.; Booth-Rea, G.; Azdimousa, A.; Asebriy, L.; Vázquez-Vílchez, M.; Martínez-Martínez, J. M.; Gabites, J.


    The subducted North Maghrebian passive margin was exhumed by an upper crustal brittle-ductile extensional detachment and brittle low-angle normal faults in a continental subduction transform setting. The Temsamane detachment in the eastern Rif is defined by a ductile shear zone approximately 100 m thick with a low-angle ramp geometry that cuts down into the Temsamane fold-nappe stack. The shear zone shows southwestward kinematics and separates epizone metapelites of the Temsamane units below from the epizone to diagenetic rocks of the Tanger-Ketama-Aknoul units above. To the east, the detachment becomes brittle, branching into a listric-fan that cuts through 10-6 Ma sediments and volcanoclastics in the Tres Forcas cape. New 40Ar/39Ar radiometric ages on amphiboles and micas from the footwall of the Temsamane detachment indicate that the metamorphic peak was reached in the footwall (Temsamane units) at ca. 21 Ma, producing the amphibolite epidote facies in the Ras Afrou Unit. The cooling of the footwall rocks below the 325 °C occurred between the 16 and 13 Ma, while apatite fission track ages indicate that the cooling below the 120 °C occurred at ca. 11 Ma. The 40Ar/39Ar radiometric ages on amphiboles and micas of the metamorphic klippes over the Temsamene units (Ait-Amrâne massif) indicates that the Jurassic marbles of the Tanger-Ketama Unit reached their metamorphic peak at ca. 80 Ma, in agreement with previously published K/Ar ages in micas. The rocks of the Tanger-Ketama Unit cooled below the 120 °C between 17.0 ± 2.4 Ma and 13.9 ± 1.8 Ma. We interpret the increase of cooling rates of the footwall rocks between 15-13 Ma and 11 Ma as due to the activity of the Temsamane detachment fault. Thus, both the North Maghrebian and the South Iberian subducted passive margins were exhumed in the Betic and Rif branches of the Gibraltar arc by SW-directed brittle-ductile detachments during the Late Miocene in an oblique collisional setting.

  13. Shear History Extensional Rheology Experiment: A Proposed ISS Experiment (United States)

    Hall, Nancy R.; Logsdon, Kirk A.; Magee, Kevin S.


    The Shear History Extensional Rheology Experiment (SHERE) is a proposed International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. Collectively referred to as Boger fluids, these polymer solutions have become a popular choice for rheological studies of non-Newtonian fluids and are the non-Newtonian fluid used in this experiment. The SHERE hardware consists of the Rheometer, Camera Arm, Interface Box, Cabling, Keyboard, Tool Box, Fluid Modules, and Stowage Tray. Each component will be described in detail in this paper. In the area of space exploration, the development of in-situ fabrication and repair technology represents a critical element in evolution of autonomous exploration capability. SHERE has the capability to provide data for engineering design tools needed for polymer parts manufacturing systems to ensure their rheological properties have not been impacted in the variable gravity environment and this will be briefly addressed.

  14. Propagation of extensional waves in a piezoelectric semiconductor rod

    Directory of Open Access Journals (Sweden)

    C.L. Zhang


    Full Text Available We studied the propagation of extensional waves in a thin piezoelectric semiconductor rod of ZnO whose c-axis is along the axis of the rod. The macroscopic theory of piezoelectric semiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations of piezoelectricity. The motion of carriers was then determined from the conservation of charge using a trigonometric series. It was found that while the acoustic wave was approximated by a sinusoidal wave, the motion of carriers deviates from a sinusoidal wave qualitatively because of the contributions of higher harmonics arising from the originally nonlinear terms. The wave crests become higher and sharper while the troughs are shallower and wider. This deviation is more pronounced for acoustic waves with larger amplitudes.

  15. Dumbbell formation for elastic capsules in nonlinear extensional Stokes flows (United States)

    Dimitrakopoulos, P.


    Cross-slot and four-roll-mill microdevices are commonly used for particle manipulation and characterization owing to the stagnation-point flow at the device center. Because of the solid boundaries, these devices may generate extensional Stokes flows where the velocity is a nonlinear function of position associated with a decreased pressure at the particle edges and an increased pressure at the particle middle. Our computational investigation shows that in this class of Stokes flows, an elastic capsule made of a strain-hardening membrane develops two distinct steady-state conformations at strong flows, i.e., an elongated weak dumbbell shape with rounded edges at low flow nonlinearity and a laterally extended dumbbell shape at high flow nonlinearity. These effects are more pronounced for the less strain-hardening capsules which develop a flat extended middle where the two sides of the membrane approach each other. The strong stability properties of the strain-hardening capsules (owing to the development of strong membrane tensions) contrast significantly with the behavior of droplets in these nonlinear flows which are unable to achieve highly deformed steady-state dumbbell shapes owing to their constant surface tension.

  16. Mercury's Crustal Magnetic Field from MESSENGER Data (United States)

    Plattner, A.; Johnson, C.


    We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.

  17. The effect of shear and extensional viscosity on atomization in medical inhaler. (United States)

    Broniarz-Press, L; Ochowiak, M; Matuszak, M; Włodarczak, S


    The paper contains the results of experimental studies of water, aqueous solutions of glycerol and aqueous solutions of glycerol-polyethylene oxide (PEO) atomization process in a medical inhaler obtained by the use of the digital microphotography method. The effect of the shear and extensional viscosity on the drop size, drop size histogram and mean drop diameter has been analyzed. The obtained results have shown that the drop size increases with the increase in shear and extensional viscosity of liquid atomized. Extensional viscosity has a greater impact on the spraying process. It has been shown that the change in liquid viscosity leads to significant changes in drop size distribution. The correlation for Sauter mean diameter as function of the shear and extensional viscosity was proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Upper crustal structure of the northern part of the Bohemian ­Massif in ­rel­ation­ t­o geological, potential field data and new deep seismic data (Eger/Ohře Rift, Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Skácelová, Z.; Mlčoch, B.; Novotný, Miroslav; Mrlina, Jan


    Roč. 39, č. 1 (2011), s. 1-18 ISSN 0303-4534 R&D Projects: GA AV ČR IAA300460602; GA MŽP SB/630/3/02 Institutional research plan: CEZ:AV0Z30120515 Keywords : upper crustal structure * Bohemian Massif * Eger/Ohře Rift * Saxothuringian Zone * Teplá-Barrandian Unit * Moldanubian Zone Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  19. Density heterogeneity of the North American upper mantle from satellite gravity and a regional crustal model

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans


    and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by highquality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. Given a relatively small range of expected density......We present a regional model for the density structure of the North American upper mantle. The residual mantle gravity anomalies are based on gravity data derived from the GOCE geopotential models with crustal correction to the gravity field being calculated from a regional crustal model. We analyze...... how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. Uncertainties in the residual upper (lithospheric) mantle gravity anomalies result from several sources: (i) uncertainties in the velocity-density...

  20. Shear History Extensional Rheology Experiment II (SHERE II) Microgravity Rheology with Non-Newtonian Polymeric Fluids (United States)

    Jaishankar, Aditya; Haward, Simon; Hall, Nancy Rabel; Magee, Kevin; McKinley, Gareth


    The primary objective of SHERE II is to study the effect of torsional preshear on the subsequent extensional behavior of filled viscoelastic suspensions. Microgravity environment eliminates gravitational sagging that makes Earth-based experiments of extensional rheology challenging. Experiments may serve as an idealized model system to study the properties of lunar regolith-polymeric binder based construction materials. Filled polymeric suspensions are ubiquitous in foods, cosmetics, detergents, biomedical materials, etc.

  1. Evolution and dynamics of the Cenozoic tectonics of the South Balkan extensional system


    Burchfiel, Clark B.; Nakov, R.; Dumurdzanov, Nikola; Papanikolaou, D.; Tzankov, Tzanko; Serafimovski, Todor; King, Robert W.; Kotzev, Valentin; Todosov, Angel; Nurce, Bilbil


    The South Balkan extensional system consists of normal faults and associated sedimentary basins within southern Bulgaria, Macedonia, eastern Albania, northern Greece, and northwestern Turkey. Extensional tectonism began during the final convergence across the Vardar, Intra-Pontide, and Izmir-Ankara suture zones, where oceanic regions closed between continental Europe and continental fragments that make up the Pelagonian, Sakar, and western Anatolian tectonic units. Earliest extension of lates...

  2. Experimental Investigation of Extensional Deformation of Immiscible Droplets in a Laminar, Converging Flow (United States)

    Sangli, Aditya; Arispe-Guzman, Marcelo; Armstrong, Connor; Bigio, David


    The deformation of an immiscible droplet in an extensional flow has been widely studied by researchers using experimental four-roll mills where the bulk liquid imposes a stagnation extensional deformation on the droplet. However, it is of vital interest to study the behavior of an immiscible droplet in a non-stagnant extensional flow which can be produced using a converging channel. A hyperbolic converging channel was built, which could produce a constant extensional rate in the center of the channel, and deformation of droplets of Castor oil injected in a matrix of Silicone oil was observed. Droplets injected in the center of the channel experienced a pure extensional deformation while the droplets injected at an offset position attained the affine state. The nature of the droplet deformation and the critical Capillary numbers are compared with the four-roll mill experiments. Additional experiments were performed with the initial position of the droplet being vertically off center. Higher strain rates were exhibited compared to the pure extensional flow condition. An analysis of the flow field helps explaining the phenomenon and provides insight into the droplet behavior.

  3. Crustal seismicity in central Chile (United States)

    Barrientos, S.; Vera, E.; Alvarado, P.; Monfret, T.


    Both the genesis and rates of activity of shallow intraplate seismic activity in central Chile are poorly understood, mainly because of the lack of association of seismicity with recognizable fault features at the surface and a poor record of seismic activity. The goal of this work is to detail the characteristics of seismicity that takes place in the western flank of the Andes in central Chile. This region, located less than 100 km from Santiago, has been the site of earthquakes with magnitudes up to 6.9, including several 5+ magnitude shocks in recent years. Because most of the events lie outside the Central Chile Seismic Network, at distances up to 60 km to the east, it is essential to have adequate knowledge of the velocity structure in the Andean region to produce the highest possible quality of epicentral locations. For this, a N-S refraction line, using mining blasts of the Disputada de Las Condes open pit mine, has been acquired. These blasts were detected and recorded as far as 180 km south of the mine. Interpretation of the travel times indicates an upper crustal model consisting of three layers: 2.2-, 6.7-, and 6.1-km thick, overlying a half space; their associated P wave velocities are 4.75-5.0 (gradient), 5.8-6.0 (gradient), 6.2, and 6.6 km/s, respectively. Hypocentral relocation of earthquakes in 1986-2001, using the newly developed velocity model, reveals several regions of concentrated seismicity. One clearly delineates the fault zone and extensions of the strike-slip earthquake that took place in September 1987 at the source of the Cachapoal River. Other regions of activity are near the San José volcano, the source of the Maipo River, and two previously recognized lineaments that correspond to the southern extension of the Pocuro fault and Olivares River. A temporary array of seismographs, installed in the high Maipo River (1996) and San José volcano (1997) regions, established the hypocentral location of events with errors of less than 1 km

  4. Analysis of gravity anomalies in the Ulleung Basin (East Sea/Sea of Japan) and its implications for the crustal structure of rift-dominated back-arc basin (United States)

    Kim, Yoon-Mi; Lee, Sang-Mook


    The Ulleung Basin (UB), one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental-rifting end-member of back-arc basin system, but is much less understood compared to the nearby Yamato Basin (YB) and Japan Basin (JB). This study examines the gravity anomalies of the UB since the variation in crustal thickness can provide important insights on the mode of extension during basin opening. Our analysis shows that the Moho depth (from the sea surface) varies from 16 km at the basin center to 22 km at the edges. However, within the central part of the basin, the crustal thickness (not including sediment) is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. Our finding of anomalous but uniformly thick crust is consistent with the recent seismic results from the YB (14 km on average). A mantle residual gravity anomaly high (∼20 mGal) exists in the northeastern part of the UB. This feature is interpreted as the location of maximum extension (slightly thinner crust by ∼1 km). Together with another moderate gravity high to the southwest, the two anomalies form a NNE-SSW line, which corresponds to the direction of the major tectonic structures of the Korean Peninsula. We argue that the a massive magmatic emplacement took place extensively in the lower crust of the UB during the opening, significantly increasing its overall thickness to almost twice as that of the JB where a mid-ocean-ridge style seafloor spreading occurred. Two important post-opening processes took place after the formation of uniformly thick crust: post-rift volcanic intrusions in the north, especially in its northeast sections but had little effect on the residual gravity anomaly itself, and the deflection of crust in response to differential sediment loading towards the south, producing the median high in the basement in response to the flexural bending. We also conducted a simple test to

  5. Moroccan crustal response to continental drift. (United States)

    Kanes, W H; Saadi, M; Ehrlich, E; Alem, A


    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.

  6. TranSCorBe Project: A high-resolution seismic-passive profile to study the variation of the crustal and upper mantle structures under the Betic mountain ranges (United States)

    Morales, José; Martín, Rosa; Stich, Daniel; Heit, Benjamín; Yuan, Xiaohui; Mancilla, Flor; Benito, José; Carrion, Francisco; Serrano, Inmaculada; López-Comino, Jose Angel; Abreu, Rafael; Alguacil, Gerardo; Almendros, Javier; Carmona, Enrique; Ontiveros, Alfonso; García-Quiroga, Daniel; García-Jerez, Antonio


    The goal of this project is to study the crustal and upper mantle structures under the Betic mountain ranges and their variations between the different geological domains. We deployed 50 broadband and short period seismic stations during 18 months following two profiles. We collect teleseismic events to perform a high-resolution P-to-S and S-to-P receiver function analysis. The main profile (TranSCorBe), of 160 km length, starts near the coast in Mazarrón (Murcia) and follows a NW-SE direction, crossing the Cazorla mountain range. It probes, from south to north, the Alboran domain (metamorphic rocks), the External zones (sedimentary rocks) and the Variscan terrains of the Iberian Massif. The spacing between stations is around 3-4 km. This inter-station distance allows us mapping with high accuracy the variations of the crust and upper mantle discontinuities in the Betic Range and their transition to the Iberian Massif. A second profile (HiRe II) with a larger spacing between seismic stations, is a continuation of a previously installed HiRe I profile, a NS profile starting near the Mediterranean coast in Adra (Almería) through Sierra Nevada Mountains. HiRe II profile prolongs HiRe I profile until the Variscan intersecting with TranSCorBe profile near Cazorla.

  7. Microbial Communities of Terrestrial Springs in Extensional Settings of the Western U.S.A. (United States)

    Takacs-Vesbach, C.; Hall, J.; Crossey, L. J.; Karlstrom, K. E.; Fischer, T.; Cron, B.


    Gas and water chemistry from hot springs, gas vents, travertine-bearing cool springs, and high-pCO2 groundwaters of the western U.S. indicate a regionally extensive flux of deeply sourced volatiles through spring vents. We use the term "continental smokers" to emphasize and test analogs to mid-ocean vent systems, and are currently concentrating on vents in the Rocky Mountain/Colorado Plateau region as part of the Colorado Rockies and Experiment and Seismic transects (CREST). Measurable mantle-derived helium components (3He/4He = 0.10 to 2.1 RA) occur in nearly all springs in Colorado and New Mexico suggesting direct fast fluid pathways from the mantle to the surface hydrologic system. Important components of the CO2 are also derived from the mantle. We surveyed the geochemistry and microbial diversity of more than forty deeply sourced terrestrial springs that ranged in temperatures from 9° to 70°C. We hypothesize that degassing in continental extensional settings supports microbial assemblages that are analogous to chemolithotrophic communities at mid-ocean ridges and continental volcanic hydrothermal systems. Geochemical characteristics of the fluids and gases structure and sustain distinctive geomicrobiological communities as indicated by the widespread presence of archaea and thermophilic organisms in cool as well as hot springs.

  8. The method for consecutive subtraction of selected anomalies: the estimated crustal velocity structure in the 1996 Onikobe (M= 5.9) earthquake area, northeastern Japan (United States)

    Smaglichenko, T. A.; Nikolaev, A. V.; Horiuchi, S.; Hasegawa, A.


    The consecutive subtraction of selected anomalies (CSSA) method has been presented to provide a new opportunity to improve the quality of inversion results in seismic tomography. The basic idea of the iterative method is to determine in each step a parameter that subtracts the total largest square residuals. The criteria proposed control the selection of the best solution from all candidates by inspecting their convergence to the accurate solution in the lsq sense. Resolution measures were defined by estimating the convergence degree. The matching of the Lanczos (LSQR) and CSSA methods has been demonstrated from the perspective of the projection technique. The storage and work requirements for both algorithms were compared, revealing that CSSA is also efficient for large and sparse systems. Synthetic models were reconstructed comparing CSSA and LSQR and indicating that CSSA gives us more reliable results, when large-sized structures are considered. At the same time, the simultaneous subtraction of the selected anomalies algorithm was examined. Numeral tests revealed that this algorithm is able to produce results that are similar to those obtained by LSQR. Complicated velocity structure can lead to ambiguous results, a problem that can be solved by setting the appropriate starting vector for the CSSA inversion. The difference between the starting vector and the starting (or reference) model is discussed. The CSSA method was applied to P-wave arrival times from shallow earthquakes to determine deep structure in the focal area of the Onikobe M= 5.9 earthquake (1996) in the northern part of Honshu (Japan). A specific feature of the traveltime residuals is a set of positive values corresponding to late P-wave arrivals. Tomography revealed a low-velocity body in the focal area from the surface down to the hypocentres. Local anomalies with the lowest perturbations were found in the surface layer of 0-2 km around the Onikobe epicentre, to the north of the focal area and to

  9. A Comparison of the Crustal Deformation Predicted by Glacial Isostatic Adjustment to Seismicity in the Baffin Region of Northern Canada (United States)

    James, T. S.; Schamehorn, T.; Bent, A. L.; Allen, T. I.; Mulder, T.; Simon, K.


    The horizontal crustal strain-rates induced by glacial isostatic adjustment (GIA) in northern Canada and western Greenland region are compared to the spatial pattern of seismicity. For the comparison, an updated seismicity catalogue was created from the 2010 version of the NRCan Seismic Hazard Earthquake Epicentre File (SHEEF2010) catalogue and the Greenland Ice Sheet Monitoring Network (GLISN) catalogue of the Geological Survey of Denmark and Greenland (GEUS). Crustal motion rates were computed with the Innu/Laur16 ice-sheet history and the VM5a viscosity profile (Simon et al., 2015; 2016). This GIA model optimizes the fit to relative sea-level and vertical crustal motion measurements around Hudson Bay and in the Canadian Arctic Archipelago (CAA). A region in Baffin Bay with historically high seismicity, including the 1933 M 7.4 and the 1934 and 1945 M 6.5 earthquakes, features high predicted GIA strain-rates. Elsewhere, agreement is not strong, with zones of seismicity occurring where predicted horizontal crustal strain-rates are small and large crustal strain-rates predicted where earthquake occurrence is muted. For example, large compressional crustal strain-rates are predicted beneath seismically quiescent portions of the Greenland ice sheet. Similarly, large predicted extensional strain-rates occur around southern Hudson Bay and the Foxe Basin, which are also regions of relative seismic quiescence. Additional factors to be considered include the orientation of the background stress field, relative to the predicted stress changes, and potential pre-existing zones of lithospheric weakness.

  10. Crustal structure in high deformation zones: Insights from gravimetric and magnetometric studies in the Guacha Corral shear zone (Eastern Sierras Pampeanas, Argentina) (United States)

    Radice, Stefania; Lince Klinger, Federico; Maffini, M. Natalia; Pinotti, Lucio P.; Demartis, Manuel; D´Eramo, Fernando J.; Giménez, Mario; Coniglio, Jorge E.


    The Guacha Corral shear zone (GCSZ) is represented by mylonites that were developed under amphibolites facies conditions from migmatitic protoliths. In this contribution, geophysical, petrological and structural data were combined to determine the 3D geometry of the GCSZ. New gravimetric, magnetometric and structural studies, along an E-W profile, were integrated with existing magnetotelluric and seismological data from a representative regional database of the Eastern Sierras Pampeanas. The zonation of different fabrics across the GCSZ suggests that the pre-existing heterogeneities of the protoliths played a key role in governing the degree of metamorphism of different regions. The low gravity anomalies observed in the GCSZ suggest a transitional boundary zone between the migmatitic and mylonitic domains, where highly deformed shear bands are interspersed with undeformed rocks, presenting gradual contacts. The mylonites in this shear zone show a considerably reduced density when compared to the migmatite protoliths. The density of the rocks gradually increases with depth until it reaches that of the protolith. These changes in the gravity values in response to density changes allowed us to infer a listric geometry at depth of the GCSZ. Low gravity anomalies in the profiles, in regions where high density rocks (migmatites) outcrop at the surface, modeled as buried granitic plutons.

  11. Seismic velocity and crustal thickness inversions: Moon and Mars (United States)

    Drilleau, Melanie; Blanchette-Guertin, Jean-François; Kawamura, Taichi; Lognonné, Philippe; Wieczorek, Mark


    We present results from new inversions of seismic data arrival times acquired by the Apollo active and passive experiments. Markov chain Monte Carlo inversions are used to constrain (i) 1-D lunar crustal and upper mantle velocity models and (ii) 3-D lateral crustal thickness models under the Apollo stations and the artificial and natural impact sites. A full 3-D model of the lunar crustal thickness is then obtained using the GRAIL gravimetric data, anchored by the crustal thicknesses under each Apollo station and impact site. To avoid the use of any seismic reference model, a Bayesian inversion technique is implemented. The advantage of such an approach is to obtain robust probability density functions of interior structure parameters governed by uncertainties on the seismic data arrival times. 1-D seismic velocities are parameterized using C1-Bézier curves, which allow the exploration of both smoothly varying models and first-order discontinuities. The parameters of the inversion include the seismic velocities of P and S waves as a function of depth, the thickness of the crust under each Apollo station and impact epicentre. The forward problem consists in a ray tracing method enabling both the relocation of the natural impact epicenters, and the computation of time corrections associated to the surface topography and the crustal thickness variations under the stations and impact sites. The results show geology-related differences between the different sites, which are due to contrasts in megaregolith thickness and to shallow subsurface composition and structure. Some of the finer structural elements might be difficult to constrain and might fall within the uncertainties of the dataset. However, we use the more precise LROC-located epicentral locations for the lunar modules and Saturn-IV upper stage artificial impacts, reducing some of the uncertainties observed in past studies. In the framework of the NASA InSight/SEIS mission to Mars, the method developed in

  12. Deep Crustal Anisotropy and its Distortion Through the Seismological Lens (United States)

    Schulte-Pelkum, V.; Mahan, K. H.


    Seismic interpretations of crustal anisotropy often appear to be at odds with expectations based on structural geology. We provide a solution to the apparent discrepancy based on petrological data and synthetic seismograms and present results across the continental US. Seismic investigations of crustal anisotropy offer one of the best chances to observe lower crustal flow in situ, and receiver function (converted wave) studies have good horizontal and depth resolution and are less expensive than active source studies, and suffer from less tradeoff than tomographic studies. A puzzling observation in receiver function studies of the continental crust has been a prevalence of observed plunging axis anisotropy in subhorizontal layers interpreted to have accommodated a significant component of simple shear. In contrast, geological field observations and deformation experiments suggest that shear zones develop a significant boundary-parallel foliation (C-planes in S-C mylonite) after only modest amounts of strain accumulation (~gamma A2), while plunging P anisotropy shows a much higher amplitude single peak and trough (termed A1). Published crustal sample P versus S anisotropies range within a factor of 2 of each other, with the majority of samples showing comparable P and S anisotropy. While the A2 signal theoretically provides a robust detector for anisotropy, we suggest that a search for the larger A1 signal is more likely to be successful. We present seismic forward modeling results for petrological crustal deformation fabrics with aligned mica, amphibole, and quartz for different geometries. We also show results from the EarthScope Transportable Array across areas with presumed past or present lower crustal flow. When observed receiver function signal amplitudes are decomposed into A0 (isotropic, 1-D), A1, and A2 components, the A1 component dominates A2 by a factor of ~3 averaged across the entire network. The A1 component also contains information on isotropic

  13. Displaced terranes and crustal evolution of the Levant and the eastern Mediterranean (United States)

    Ben-Avraham, Zvi; Ginzburg, Avihu


    Geophysical data from the Levant and the eastern Mediterranean suggest that this area can be divided into distinct crustal units of different origins. For example, a marked difference in crustal structure and structural style exists in the Levant between Samaria and Judea, south of the Carmel structure, and the Galilee and Lebanon, north of it. On the other hand, several microcontinental fragments such as Cyprus, and the Eratosthenes and Anaximander Seamounts are embedded within the oceanic crust of the eastern Mediterranean. The present location of these units has resulted from complex tectonic processes which were active during the mid Paleozoic-Mesozoic evolution of this area. During this period several crustal units were accreted to the northern margin of Africa while others were detached away from it. The crustal evolution of the eastern Mediterranean and the Levant is intimately linked with the closure of the Paleo-Tethys, the formation of the Neo-Tethys, and its subsequent closure.

  14. Effects of three-dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L'Aquila earthquake

    KAUST Repository

    Gallovič, František


    Earthquake slip inversions aiming to retrieve kinematic rupture characteristics typically assume 1-D velocity models and a flat Earth surface. However, heterogeneous nature of the crust and presence of rough topography lead to seismic scattering and other wave propagation phenomena, introducing complex 3-D effects on ground motions. Here we investigate how the use of imprecise Green\\'s functions - achieved by including 3-D velocity perturbations and topography - affect slip-inversion results. We create sets of synthetic seismograms, including 3-D heterogeneous Earth structure and topography, and then invert these synthetics using Green\\'s functions computed for a horizontally layered 1-D Earth model. We apply a linear inversion, regularized by smoothing and positivity constraint, and examine in detail how smoothing effects perturb the solution. Among others, our tests and resolution analyses demonstrate how imprecise Green\\'s functions introduce artificial slip rate multiples especially at shallow depths and that the timing of the peak slip rate is hardly affected by the chosen smoothing. The investigation is extended to recordings of the 2009 Mw6.3 L\\'Aquila earthquake, considering both strong motion and high-rate GPS stations. We interpret the inversion results taking into account the lessons learned from the synthetic tests. The retrieved slip model resembles previously published solutions using geodetic data, showing a large-slip asperity southeast of the hypocenter. In agreement with other studies, we find evidence for fast but subshear rupture propagation in updip direction, followed by a delayed propagation along strike. We conjecture that rupture was partially inhibited by a deep localized velocity-strengthening patch that subsequently experienced afterslip.

  15. Capillary break-up, gelation and extensional rheology of hydrophobically modified cellulose ethers (United States)

    Sharma, Vivek; Haward, Simon; Pessinet, Olivia; Soderlund, Asa; Threlfall-Holmes, Phil; McKinley, Gareth


    Cellulose derivatives containing associating hydrophobic groups along their hydrophilic polysaccharide backbone are used extensively in the formulations for inks, water-borne paints, food, nasal sprays, cosmetics, insecticides, fertilizers and bio-assays to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. The presence of hydrophobic stickers influences the linear and nonlinear rheology of cellulose ether solutions. In this talk, we systematically contrast the difference in the shear and extensional rheology of a cellulose ether: ethy-hydroxyethyl-cellulose (EHEC) and its hydrophobically-modified analog (HMEHEC) using microfluidic shear rheometry at deformation rates up to 10^6 inverse seconds, cross-slot flow extensional rheometry and capillary break-up during jetting as a rheometric technique. Additionally, we provide a constitutive model based on fractional calculus to describe the physical gelation in HMEHEC solutions.

  16. State of stress and crustal fluid migration related to west-dipping structures in the slab-forearc system in the northern Chilean subduction zone (United States)

    Salazar, P.; Kummerow, J.; Wigger, P.; Shapiro, S.; Asch, G.


    Previous studies in the forearc of the northern Chilean subduction zone have identified important tectonic features in the upper crust. As a result of these works, the West Fissure Fault System (WFFS) has recently been imaged using microseismic events. The WFFS is the westward-dipping, sharp lower boundary of the northern Chilean forearc and is geometrically opposed to subduction of the Nazca plate. The present article builds on this previous work and is novel in that it characterizes this structure's stress distribution using focal mechanisms and stress tensor analysis. The results of the stress tensor analysis show that the state of stress in the WFFS is related to its strike-slip tectonic context and likely represents a manifestation of local forces associated with the highest areas in the Andes. Two seismic clusters have also been identified; these clusters may be associated with a blind branch of the WFFS. We studied these clusters in order to determine their sources and possible connection with fluid migration across the upper plate. We observed that the two clusters differ from one another in some regards. The central cluster has characteristics consistent with an earthquake swarm with two clearly identifiable phases. Conversely, the SW cluster has a clear main shock associated with it, and it can be separated into two subclusters (A and A΄). In contrast, similarities among the two clusters suggest that the clusters may have a common origin. The b-values for both clusters are characteristic of tectonic plate boundaries. The spatial spreading, which is approximately confined to one plane, reflects progressive growth of the main fracture underlying the swarm and subcluster A. We also find that earthquakes themselves trigger aftershocks near the borders of their rupture areas. In addition, the spatio-temporal migration of hypocentres, as well as their spatial correlation with areas that are interpreted to be fluid migration zones, suggest that there is a close

  17. Metamorphic and Ar/Ar geochronology constraints on the Alakeci shear zone: Implications for the extensional exhumation history of the northern Kazdag Massif, NW Turkey

    International Nuclear Information System (INIS)

    Bonev, N; Beccaletto, L; Robyr, M; Monie, P


    The Kazdag Massif exposes a metamorphic dome in the Biga Peninsula of northwest Turkey. An extensional origin has been proposed for the dome, limited on both flanks by detachments and/or shear zones. The northern flank is bounded by the extensional Alakeci Shear Zone (ASZ), whose P-T-t path is still poorly known. We therefore focus on its metamorphic conditions and related temporal history to precise its tectono-metamorphic evolution. The local tectonostratigraphy in structurally ascending order comprises: (i) the high-grade metamorphic core rocks of the Kazdag Massif (gneisses and micaschists intercalated with amphibolites and marbles); (ii) the two kilometer-thick ASZ; (iii) the overlaying unmetamorphosed pre-Cenomanian accretionary Cetmi melange; and (iv) Neogene sedimentary and volcanic cover rocks. ASZ mylonites were derived from both the core rocks and the melange lithologies. From the north to the south the mylonitic fabrics in the ASZ depict a top-to-the N-NNE shearing, parallel to the NNE-plunging stretching lineation and NNW-dipping mylonitic foliation. This geometry implies normal sense movement i.e. north-side down-dip extensional displacement along this flank of the Kazdag Massif. The northward transition from ductile to brittle-ductile regime through the ASZ shows that the deformation occurred at decreasing temperatures and degree of metamorphism. The paragenesis in equilibrium within the mylonitic gneisses and schists contains Qtz + Fs + Ms + Bt + Grt ± St ± Sill, with late retrogressive chlorite after biotite and garnet. Four samples of ASZ rocks yielded pressures between 6.9-5.7 kbar and temperatures between 706-587 deg. C. Three samples from the mylonitic rocks supplied in situ isochron 36 Ar/ 40 Ar mica ages between 31.2-24.2 Ma, which we interpret to date the cooling of the mylonites following the P-T decrease across the ASZ. The metamorphic and structural results support the extensional character of the ASZ, and sketch transition from

  18. Analysis of Neogene deformation between Beaver, Utah and Barstow, California: Suggestions for altering the extensional paradigm (United States)

    Anderson, R. Ernest; Beard, Sue; Mankinen, Edward A.; Hillhouse, John W.


    For more than two decades, the paradigm of large-magnitude (~250 km), northwest-directed (~N70°W) Neogene extensional lengthening between the Colorado Plateau and Sierra Nevada at the approximate latitude of Las Vegas has remained largely unchallenged, as has the notion that the strain integrates with coeval strains in adjacent regions and with plate-boundary strain. The paradigm depends on poorly constrained interconnectedness of extreme-case lengthening estimated at scattered localities within the region. Here we evaluate the soundness of the inferred strain interconnectedness over an area reaching 600 km southwest from Beaver, Utah, to Barstow, California, and conclude that lengthening is overestimated in most areas and, even if the estimates are valid, lengthening is not interconnected in a way that allows for published versions of province-wide summations.We summarize Neogene strike slip in 13 areas distributed from central Utah to Lake Mead. In general, left-sense shear and associated structures define a broad zone of translation approximately parallel to the eastern boundary of the Basin and Range against the Colorado Plateau, a zone we refer to as the Hingeline shear zone. Areas of steep-axis rotation (ranging to 2500 km2) record N-S shortening rather than unevenly distributed lengthening. In most cases, the rotational shortening and extension-parallel folds and thrusts are coupled to, or absorb, strike slip, thus providing valuable insight into how the discontinuous strike-slip faults are simply parts of a broad zone of continuous strain. The discontinuous nature of strike slip and the complex mixture of extensional, contractional, and steep-axis rotational structures in the Hingeline shear zone are similar to those in the Walker Lane belt in the west part of the Basin and Range, and, together, the two record southward displacement of the central and northern Basin and Range relative to the adjacent Colorado Plateau. Understanding this province



    Villacís Zambrano, Lilia Moncerrate


    THE EDUCATIONAL QUALITY AND THE SATISFACTION OF THE STUDENTS IN MANABITAS EXTENSIONSRESUMENLa presente indagación se desarrolló en tres Extensiones de la Provincia de Manabí (Ecuador), se logró como objetivo explicar la relación entre la calidad de la educación y el grado de satisfacción de los estudiantes en las Extensiones objeto de estudio. En el tratado se utilizaron herramientas cualitativas y cuantitativas, entre las esenciales, se pueden mencionar: el muestreo, las encuestas, modelo Se...

  20. Fractal behavior in continental crustal heat production (United States)

    Vedanti, N.; Srivastava, R. P.; Pandey, O. P.; Dimri, V. P.


    The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India), Kaapvaal craton (South Africa), Baltic shield (Kola, Russia), Hidaka metamorphic belt (Japan), Nissho pluton (Japan) and Continental Deep Drilling site (KTB, Germany). The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  1. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny) (United States)

    Pereira, M. F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U.


    Zircon grains extracted from S-type granites of the Mêda-Escalhão-Penedono Massif (Central Iberian Zone, Variscan Orogen) constrain the timing of emplacement and provide information about potential magma sources. Simple and composite zircon grains from three samples of S-type granite were analyzed by LA-ICP-MS. New U-Pb data indicate that granites crystallized in the Bashkirian (318.7 ± 4.8 Ma) overlapping the proposed age range of ca. 321-317 Ma of the nearby S-type granitic rocks of the Carrazeda de Anciães, Lamego and Ucanha-Vilar massifs. The timing of emplacement of such S-type granites seems to coincide with the waning stages of activity of a D2 extensional shear zone (i.e. Pinhel shear zone) developed in metamorphic conditions that reached partial melting and anatexis (ca. 321-317 Ma). Dykes of two-mica granites (resembling diatexite migmatite) are concordant and discordant to the compositional layering and S2 (main) foliation of the high-grade metamorphic rocks of the Pinhel shear zone. Much of the planar fabric in these dykes was formed during magmatic crystallization and subsequent solid-state deformation. Field relationships suggest contemporaneity between the ca. 319-317 Ma old magmatism of the study area and the switch from late D2 extensional deformation to early D3 contractional deformation. Inherited zircon cores are well preserved in these late D2-early D3 S-type granite plutons. U-Pb ages of inherited zircon cores range from ca. 2576 to ca. 421 Ma. The spectra of inherited cores overlap closely the range of detrital and magmatic zircon grains displayed by the Ediacaran to Silurian metasedimentary and metaigneous rocks of the Iberian autochthonous and parautochthonous domains. This is evidence of a genetic relationship between S-type granites and the host metamorphic rocks. There is no substantial evidence for the addition of mantle-derived material in the genesis of these late D2-early D3 S-type granitic rocks. The ɛNd arrays of heterogeneous

  2. Crustal structure of the Khartoum Basin, Sudan

    CSIR Research Space (South Africa)

    El Tahir, N


    Full Text Available Africa b Department of Geosciences, Penn State University, University Park, PA 16802, USA c Departamento de Geofísica & Programa de Pós-Graduação em Geodinâmica e Geofísica, Universidade Federal do Rio Grande do Norte, Natal, Brazil d CSIR...

  3. Crustal Thickness Along the Central American Volcanic Front (United States)

    MacKenzie, L. S.; Abers, G. A.; Rondenay, S.; Fischer, K. M.; Syracuse, E. M.; Protti, J. M.; Gonzalez, V.; Strauch, W.


    Subduction zone processes alter the upper plate in a number of ways, including accretion, magmatic addition, serpentinization of the mantle wedge and formation of mafic cumulates in the lower crust. All of these changes affect seismic velocities, and characterizing the structure of underlying terranes in Central America establishes a baseline for composition and continental growth. Tomography Under Costa Rica and Nicaragua (TUCAN) is a PASSCAL deployment of broadband seismometers over an 18-month period. The network has two dense cross arc lines and two along arc lines that cross terrane boundaries. Teleseismic P and PP arrivals recorded on the TUCAN network have been used to estimate crustal thickness and Vp/Vs, and to develop receiver function images. Surface reflected mode conversions (Ppms and Psms) enhance resolution. Crustal thickness ranges from 25 to 44 km with formal errors ranging 1.6-9.2 km. The thinnest crust (24.6 +/- 3.5 km) lies directly beneath the arc in Nicaragua, whereas the thickest crust (43.5 +/- 2.5 km) lies in the backarc in Nicaragua and beneath the Costa Rican arc (37.9 +/- 5.2). Changes in crustal thickness and Vp/Vs show two distinct terrane boundaries crossing the arc. Vp/Vs indicate continental crust (Vp/Vs=1.71-1.77) in Nicaragua, with a transition to gabbroic crust (Vp/Vs=1.82-1.88) in Costa Rica where fragments of the Caribbean large Igneous Province have been found. Crustal thickness beneath the arc in Costa Rica yields a crustal growth rate of 16-36 km3/km/Ma, assuming a base crustal thickness of 30-32 km with 6-14 Ma of magmatism. The Moho shows strong velocity contrasts throughout the study area, and is the only interface seen in the backarc, but it is complicated by interferences caused by shallow structure beneath the arc and forearc. Forward modeling indicates that reverberations in sediment layers interfere with the Ps arrival, however surface reflected arrivals (Ppms) require a velocity contrast on the order of 0.5-1.0 km

  4. A 700 km long crustal transect across northern Morocco (United States)

    Carbonell, Ramon; Gallart, Josep; Díaz, Jordi; Gil, Alba; Harnafi, Mimoun; Ouraini, Fadila; Ayarza, Puy; Teixell, Antonio; Arboleya, Maria Luisa; Palomeras, Imma; Levander, Alan


    Two controlled-source wide angle seismic reflection experiments have been acquired recently (2010 and 2011) in northern Africa across Morocco. A lithospheric scale transect can be constructed by joining both data sets. Hence, an approximately 700 km-long seismic velocity cross section can be derived. From south-to-north the transect goes from the Sahara Platform, south of Merzouga, to Tanger in the north. The first experiment, SIMA, aimed to constrain the crustal structure across the Atlas Mountains. The Rif, the orogenic belt located just south of the coast of Alboran Sea, was the target of the second experiment, RIFSIS. In both cases 900 recording instruments (TEXANS) from the IRIS-PASSCAL instrument center were used to record the acoustic energy generated by explosion shots. In both experiments the shots consisted of 1 TM of explosives fired in ~30 m deep boreholes. Although the data quality varies from shot to shot, key seismic phases as Pg, PmP, Pn, and a few intra-crustal arrivals have been identified to constrain the velocity-depth structure along the whole transect. Forward modelling of the seismic reflection/refraction phases reveals a crust consisting of 3 layers in average. The Moho topography shows from south to north a relatively moderate crustal root beneath the High Atlas, which can reach 40-42 km depth. The crust is thicker beneath the Rif where the Moho is imaged as an asymmetric feature that locally defines a crustal root reaching depths of 50 km and suggesting a crustal imbrication. P wave velocities are rather low in the crust and upper mantle. First arrivals/reflections tomography supports the forward modelling results. Low fold wide-angle stacks obtained by using hyperbolic move-out reveals the geometry of the Moho along the entire transect. Beneath the Atlas, the moderate crustal root inferred is not isostatically consistent with the high surface elevations, hence supporting the idea of a 'mantle plume' as main contributor to the Atlas

  5. First images of the crustal structure across the central Algerian margin, off Tipaza (West Algiers) from deep penetrating seismic data: new information to constrain the opening of the Algerian basin (United States)

    Leprêtre, A.; Deverchere, J.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Yelles, K.; Bracene, R.


    the crustal structure at the continent-ocean boundary. In the Algerian basin off Tipaza, the Moho discontinuity is identified using wide-angle modelling at 11-12 km depth which corresponds in two-way travel-time to 7-8 s. Wide-angle seismic modelling imaged a major thinning of the crust from more of 15 km in the upper margin (KADB) to only 5-6 km in the deep basin. This thinning also marks the rapid transition from a thinned continental crust at the Khayr-al-Din bank to an oceanic crust in the Algerian Basin, revealing a narrow transition zone (20-30 km) between the two domains. This work presents the deep structure of the margin West of Algiers from wide-angle and multichannel seismic data in order to discuss models of opening for the Algerian basin.

  6. Crustal Structure, Seismic Anisotropy and Deformations of the Ediacaran/Cambrian of the Małopolska Block in SE Poland Based on Data from Two Seismic Wide-Angle Experiments (United States)

    Środa, Piotr


    tight (sub-vertical) folding and fracturing of intrinsically anisotropic metasediments forming the MB basement. Obtained anisotropy models are compared with data about stratal dips of the MB sequences and implications of assuming more realistic TTI model are discussed. Wide-angle recordings from off-line measurements along a reflection profile provided new information about seismic velocity and anisotropy, not available from standard near-vertical profiling, and contributed to more complete image of the upper crustal structure of Małopolska Block.

  7. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    diagnostic anomaly pattern, and is independent of the location of the boundary with respect to the shelf edge. Robinowitz and Labrecque (1977) computed isostatic gravity anomalies across Argentine and southern African continental margins. The profiles... anomalies over the shelf edge were explained in several ways. For example, Worzel and Shurbet (1955) suggested that that basement ridge and crustal thinning account for gravity high near the shelf edge. High density belts in the basement have been...

  8. Investigating Microbial Biofilm Formations on Crustal Rock Substrates (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.


    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  9. Transient overshoot extensional rheology of long-chain branched polyethylenes: Experimental and numerical comparisons between filament stretching and cross-slot flow

    DEFF Research Database (Denmark)

    Hoyle, D.M.; Huang, Qian; Auhl, D.


    This work analyses the high-strain extensional behavior of long-chain branched polyethylenes, employing two novel extensional rheometer devices, the filament stretching rheometer and the cross-slot extensional rheometer. The filament stretching rheometer uses an active feedback loop to control th...

  10. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin (United States)

    Bai, Y.; Dong, D.; Runlin, D.


    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  11. Science Academies Refresher Course on Crustal Strength ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 3. Science Academies Refresher Course on Crustal Strength Rheology and Seismicity (CSRS-2017). Information and Announcements Volume 22 Issue 3 March 2017 pp 328-328 ...

  12. NASA plan for international crustal dynamics studies (United States)


    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  13. Crustal balance and crustal flux from shortening estimates in the Central Andes (United States)

    Hindle, David; Kley, Jonas; Oncken, Onno; Sobolev, Stephan


    The Central Andes of South America form the second largest high elevation plateau on earth. Extreme elevations have formed on a noncollisional margin with abundant associated arc magmatism. It has long been thought that the crustal thickness necessary to support Andean topography was not accounted for by known crustal shortening alone. We show that this may in part be due to a two-dimensional treatment of the problem. A three-dimensional analysis of crustal shortening and crustal thickness shows that displacement of material towards the axis of the bend in the Central Andes has added a significant volume of crust not accounted for in previous comparisons. We find that present-day crustal thickness between 12°S and 25°S is accounted for (∼-10% to ∼+3%)with the same shortening estimates, and the same assumed initial crustal thickness as had previously led to the conclusion of a ∼25-35% deficit in shortening relative to volume of crustal material. We suggest that the present-day measured crustal thickness distribution may not match that predicted due to shortening, and substantial redistribution of crust may have occurred by both erosion and deposition at the surface and lower crustal flow in regions of the thermally weakened middle and lower crust.

  14. MAVEN Observations of the Effects of Crustal Magnetic Fields on Electron Density and Temperature in the Martian Dayside Ionosphere (United States)

    Flynn, Casey L.; Vogt, Marissa F.; Withers, Paul; Andersson, Laila; England, Scott; Liu, Guiping


    Mars lacks a global magnetic field but possesses concentrated regions of crustal magnetic field that influence the planet's interaction with the solar wind and the structure of the Martian ionosphere. In this study we survey 17 months of MAVEN Langmuir Probe and Waves dayside electron density and temperature measurements to study how these quantities are affected in regions with strong crustal magnetic fields. Above 200 km altitude, we find that regions of strong crustal magnetic fields feature cooler electron temperatures and enhanced electron densities compared to regions with little or no crustal magnetic field. Neutral densities and temperatures are not significantly affected. Closed field lines on which electrons can be trapped are more prevalent in strong crustal field regions than elsewhere. Trapped on closed field lines, electrons are protected against loss processes involving the solar wind. This would lead to longer plasma lifetimes, higher densities, and lower temperatures.

  15. Inherited discontinuities and fault kinematics of a multiphase, non-colinear extensional setting: Subsurface observations from the South Flank of the Golfo San Jorge basin, Patagonia (United States)

    Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia


    We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations

  16. The nature of crustal reflectivity at the southwest Iberian margin (United States)

    Buffett, G. G.; Torne, M.; Carbonell, R.; Melchiorre, M.; Vergés, J.; Fernàndez, M.


    Reprocessing of multi-channel seismic reflection data acquired over the northern margin of the Gulf of Cádiz (SW Iberian margin) places new constraints on the upper crustal structure of the Guadalquivir-Portimão Bank. The data presented have been processed with optimized stacking and interval velocity models, a better approach to multiple attenuation, preserved amplitude information to derive the nature of seismic reflectivity, and accurate time-to-depth conversion after migration. The reprocessed data reveal a bright upper crustal reflector just underneath the Paleozoic basement that spatially coincides with the local positive free-air gravity high called the Gulf of Cádiz Gravity High. To investigate the nature of this reflector and to decipher whether it could be associated with pieces of mantle material emplaced at upper crustal levels, we calculated its reflection coefficient and compared it to a buried high-density ultramafic body (serpentinized peridotite) at the Gorringe Bank. Its reflection coefficient ratio with respect to the sea floor differs by only 4.6% with that calculated for the high-density ultramafic body of the Gorringe Bank, while it differs by 35.8% compared to a drilled Miocene limestone unconformity. This means that the Gulf of Cádiz reflector has a velocity and/or density contrast similar to the peridotite at the Gorringe Bank. However, considering the depth at which it is found (between 2.0 and 4.0 km) and the available geological information, it seems unlikely that the estimated shortening from the Oligocene to present is sufficient to emplace pieces of mantle material at these shallow levels. Therefore, and despite the similarity in its reflection coefficient with the peridotites of the Gorringe Bank, our preferred interpretation is that the upper crustal Gulf of Cádiz reflector represents the seismic response of high-density intracrustal magmatic intrusions that may partially contribute to the Gulf of Cádiz Gravity High.

  17. Crustal Thickness in the Ibero-Maghrebian region I: Northern Morocco (United States)

    Mancilla, F.; Stich, D.; Morales, J.; Julià, J.; Diaz, J.; Pazos, A.; Córdoba, D.; Pulgar, J. A.; Ibarra, P.; Harnafi, M.; Gonzalez-Lodeiro, F.


    During the TopoIberia experiment, a total of 26 seismic broadband stations were recording in northern Morocco, providing for the first time extended regional coverage for investigating structure and seismotectonics of the southern branch of the Betic-Rif arc, its foreland and the Atlas domain. Here, we analyze P-to-S converted waves in teleseismic receiver functions to infer gross crustal properties as thickness and Vp/Vs ratio. Strong lateral variations of the crustal thickness are observed throughout the region. Crustal thicknesses vary between 22 km and 44 km and display a simple geographic pattern that divides the study area into three domains: entire northwestern Morocco underlain by a thickened crust with crustal thicknesses between 35 km and 44 km; northeastern Morocco affected by significant crustal thinning, with crustal thicknesses ranging from 22 km to 30 km, with the shallowest Moho along the Mediterranean coast; and an extended domain of 27-34 km thick crust, further south which includes the Atlas domain and its foreland regions. Vp/Vs ratios show normal values of ~ 1.75 for most stations except for the Atlas domain, where several stations give low Vp/Vs ratios around 1.71. The very sharp transition from thick crust in northwestern Morocco to thin crust in northeastern Morocco is attributed to regional geodynamics possibly the realm of present-day subcrustal dynamics in the final stage of western Mediterranean subduction. Crustal thicknesses just slightly above 30km in the southern domain are intriguing, showing that high topography in this region is not isostatically compensated at crustal level.

  18. The missing link between the extensional dynamics of polymer melts and solutions

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Huang, Qian


    contains less than two Kuhn steps. At the same entanglement number (e.g. concentrations) its extensional viscosities are up to about 300% higher than the corresponding viscosities for polymer blends. A blend is understood as a polymer system diluted with polymer/oligomer containing active chain in term......Based on extensional viscosities measured on narrow molecular weight distributed (NMMD) polystyrenes and polystyrene oligomer dilutions thereof, we discuss the relation between the flow physics of polymer solutions and melts. A polymer solution is here characterized as a dilution where the diluent...... of Kuhn steps, e.g. at least two Kuhn steps. A similar disagreement is observed between blends and pure NMMD melts, both containing the same entanglement number. © 2013 Elsevier B.V....

  19. Prediction of cryogenic cavitation around hydrofoil by an extensional Schnerr-Sauer cavitation model (United States)

    Sun, T. Z.; Wei, Y. J.; Wang, C.


    Developing a robust computational strategy to address the rich physics characteristic involved in the thermodynamic effects on the cryogenic cavitation remains a challenging problem. The objective of this present study is to model the numerical methodology to simulate the cryogenic cavitation by implanting the thermodynamic effects to the Schnerr-Sauer cavitation model, and coupling the energy equation considered the latent heat. For this purpose, cavitating flows are investigated over a three dimensional hydrofoil in liquid hydrogen and nitrogen. Experimental measurements of pressure and temperature are utilized to validate the extensional Schnerr-Sauer cavitation model. Specifically, the further analysis of the cavitation solution with respect to the thermodynamic term is conducted. The results show that the extensional Schnerr-Sauer cavitation model predicts better accuracy to the quasi-steady cavitation over hydrofoil in the two cryogenic fluids.

  20. The mechanism of fracture for entangled polymer liquids in extensional flow

    DEFF Research Database (Denmark)

    Huang, Qian; Yu, Liyun; Skov, Anne Ladegaard

    In uniaxial extensional flow of entangled polymer liquids, different rupture modes may happen, including necking and fracture. Malkin andPetrie [1] proposed a ''master curve'' dividing the flow behavior into four zones based on the stretch rate: (I) Flow zone; (II) Transition zone; (III) Rubbery...... zone; and (IV) Glass-like zone. The master curve shows that steady extensional flow can only be reached in Zone I where thestretch rate is very slow, while rupture happens in Zones II-IV with faster stretch rate. Furthermore, Wang et al. [2-4] reported experimental datathat matches the master curve...... and suggested the mechanism of rupture in Zone III and IV is disentanglement and chain scission, respectively. In this work we measure two groups of entangled polystyrene solutions. In one group the samples have the same entanglement molecular weight (Me) but different number of entanglements (Z...

  1. Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Huang, Qian


    times and entanglements have been established based on published extensional experiments on nearly monodisperse polystyrene melts. The constitutive equation has shown agreement with the experimental startup of and steady extension data from Huang et al. (Macromolecules 46:5026–5035, 2013a) based on 285...... and 545 kg/mol polystyrenes diluted in styrene oligomers containing 3.3 (1.92 kg/mol) and 7.3 (4.29 kg/mol) Kuhn steps....

  2. Extensional origin of ductile fabrics in the Schist Belt, Central Brooks Range, Alaska—II. Microstructural and petrofabric evidence (United States)

    Law, Richard D.; Miller, Elizabeth L.; Little, Timothy A.; Lee, Jeffrey


    A regional system of S-dipping faults is exposed in the Florence and Fall Creeks area of the south-central Brooks Range. This fault system has previously been mapped as the ·root zone' of a N-vergent fold-and-thrust belt of Jurassic-Cretaceous age, although individual faults juxtapose lower grade on higher grade metamorphic rocks suggesting apparent extensional geometries. The structurally highest of these faults places rocks of the oceanic Paleozoic-Mesozoic Angayucham terrane, together with unconformably overlying Cretaceous clastic rocks, on Devonian metagreywacke and phyllite. This metagreywacke-phyllite (MP) unit in turn structurally overlies Devonian (?) and older basement rocks of the Brooks Range Schist Belt along a S-dipping structural contact previously mapped as the Florence Creek fault. The Schist Belt and MP units are both characterized by a regionally developed, S-dipping greenschist facies foliation that displays a pronounced N-S-trending, down-dip elongation lineation which earlier workers regarded as being associated with N-vergent thrusting. While only one foliation ( Sd) is recognized in the MP unit, in the underlying Schist Belt this foliation ( S2) overprints an earlier blueschist facies mineral assemblage and associated foliation ( S1). Mylonites with strong asymmetric crystal fabrics are well developed in quartz stringers in the MP unit and in Schist Belt rocks located at less than 250 m beneath the Florence Creek fault. These asymmetric single- and cross-girdle c-axis fabrics indicate a top down-to-the-south shear sense. This shear sense is confirmed in XZ sections by the presence of elongate, dynamically recrystallized quartz grains oblique to the Sd - S2 mylonitic foliation. Quartzose and quartzo-feldspathic lithologies become coarser grained in the deeper levels of the Schist Belt, and a greater proportion of the quartz grains are equant in outline suggesting the increasing importance of temperature-sensitive recovery processes. These

  3. Considering too few alternatives: The mental model theory of extensional reasoning. (United States)

    Chevalley, Thierry; Schaeken, Walter


    When solving a simple probabilistic problem, people tend to build an incomplete mental representation. We observe this pattern in responses to probabilistic problems over a set of premises using the conjunction, disjunction, and conditional propositional connectives. The mental model theory of extensional reasoning explains this bias towards underestimating the number of possibilities: In reckoning with different interpretations of the premises (logical rules, mental model theoretical, and, specific to conditional premises, conjunction and biconditional interpretation) the mental model theory accounts for the majority of observations. Different interpretations of a premise result in a build-up of mental models that are often incomplete. These mental models are processed using either an extensional strategy relying on proportions amongst models, or a conflict monitoring strategy. The consequence of considering too few possibilities is an erroneous probability estimate akin to that faced by decision makers who fail to generate and consider all alternatives, a characteristic of bounded rationality. We compare our results to the results published by Johnson-Laird, Legrenzi, Girotto, Legrenzi, and Caverni [Johnson-Laird, P., Legrenzi, P., Girotto, V., Legrenzi, M., & Caverni, J. (1999). Naive probability: A mental model theory of extensional reasoning. Psychological Review, 106, 62-88. doi: 10. 1037/0033-295X.106.1.62], and we observe lower performance levels than those in the original article.

  4. Extensional Detachment faulting in melange rocks. Plurikilometres migration by W the External Zone (Cordillera Bética, Spain) (United States)

    Roldán, Francisco Javier; Azañon, Jose Miguel; Rodríguez, Jose; Mateos, Rosa Maria


    The synthesis and correlation of units carried out in the continuous geological map (Roldán et al., 2012), has revealed a fragmentation of the carbonate outcrops belong to the Subbetic Domain (García-Hernández et al., 1980). Subbetic NW verging thrust and fold axial traces have not lateral continuity and Jurassic carbonate outscrops appear as klippes on the olistotromic unit. These ductile structures that can be observed in the internal structure of these jurassic blocks are unrelated to the brittle-ductile deformation bands observed at the basal pelitic levels. Basal detachments are rooted in: a) the Olistostromic unit, a Upper Langhian-Lower Serravallian breccia constituted by gypsum-bearing clay and marls; b) Cretaceous-Tertiary marly sedimentary rocks (Rodríguez-Fernández, et al., 2013) . In both kind of rocks, cataclastic structures allows to infer a top-to-the WSW displacement. Paleostress measurements, made on these detachments levels, are compatible with a extensional regime (Roldán et al., 2012). At the same time, the analysis and interpretation of subsurface data (seismic surveys and borehole testing) shows that the Subbetic Domain (External Subbetic, Molina 1987) are affected by westward low-angle normal faults. A balanced cross-section, based on morphological and cartographic data in the area between Sierra de Cabra and Sierra de Alta Coloma (Valdepeñas de Jaén), shows plurikilometric displacements which has been produced during Late Serravallian-Early Tortonian times. References: García-Hernández, M., López-Garrido, A.C., Rivas, P., Sanz de Galdeano, C., Vera, J.A. (1980): Mesozoic paleogeographic evolution of the zones of the Betic Cordillera. Geol. Mijnb. 59 (2). 155-168. Molina, J.M. (1987). Análisis de facies del Mesozoico en el Subbético. Tesis Doctoral, Univ. Granada. 518 p. Rodríguez-Fernández, J., Roldán, F. J., Azañón, J.M. y García-Cortés, A. (2013). El colapso gravitacional del frente orogénico a lpino en el Dominio Subb

  5. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock

    Directory of Open Access Journals (Sweden)

    Nick Barton


    Full Text Available The authors investigate the failure modes surrounding over-stressed tunnels in rock. Three lines of investigation are employed: failure in over-stressed three-dimensional (3D models of tunnels bored under 3D stress, failure modes in two-dimensional (2D numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD, both in intact rock and in rock masses with one or two joint sets, and finally, observations in TBM (tunnel boring machine tunnels in hard and medium hard massive rocks. The reason for ‘stress-induced’ failure to initiate, when the assumed maximum tangential stress is approximately (0.4–0.5σc (UCS, uniaxial compressive strength in massive rock, is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect. However, because similar ‘stress/strength’ failure limits are found in mining, nuclear waste research excavations, and deep road tunnels in Norway, one is easily misled into thinking of compressive stress induced failure. Because of this, the empirical SRF (stress reduction factor in the Q-system is set to accelerate as the estimated ratio σθmax/σc >> 0.4. In mining, similar ‘stress/strength’ ratios are used to suggest depth of break-out. The reality behind the fracture initiation stress/strength ratio of ‘0.4’ is actually because of combinations of familiar tensile and compressive strength ratios (such as 10 with Poisson's ratio (say 0.25. We exceed the extensional strain limits and start to see acoustic emission (AE when tangential stress σθ ≈ 0.4σc, due to simple arithmetic. The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by ‘stable’ extensional strain fracturing, but propagation in ‘unstable’ and therefore dynamic shearing. In the case of very deep tunnels (and 3D physical simulations, compressive stresses may be too high for extensional strain fracturing, and

  6. Crustal strain-dependent serpentinisation in the Porcupine Basin, offshore Ireland (United States)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian M.; Minshull, Timothy A.; Reston, Tim J.; Shannon, Patrick M.; Klaeschen, Dirk; Wagner, Gerlind; Gaw, Viola


    Mantle hydration (serpentinisation) at magma-poor rifted margins is thought to play a key role in controlling the kinematics of low-angle faults and thus, hyperextension and crustal breakup. However, because geophysical data principally provide observations of the final structure of a margin, little is known about the evolution of serpentinisation and how this governs tectonics during hyperextension. Here we present new observational evidence on how crustal strain-dependent serpentinisation influences hyperextension from rifting to possible crustal breakup along the axis of the Porcupine Basin, offshore Ireland. We present three new P-wave seismic velocity models that show the seismic structure of the uppermost lithosphere and the geometry of the Moho across and along the basin axis. We use neighbouring seismic reflection lines to our tomographic models to estimate crustal stretching (βc) of ∼2.5 in the north at 52.5° N and >10 in the south at 51.7° N. These values suggest that no crustal embrittlement occurred in the northernmost region, and that rifting may have progressed to crustal breakup in the southern part of the study area. We observed a decrease in mantle velocities across the basin axis from east to west. These variations occur in a region where βc is within the range at which crustal embrittlement and serpentinisation are possible (βc 3-4). Across the basin axis, the lowest seismic velocity in the mantle spatially coincides with the maximum amount of crustal faulting, indicating fault-controlled mantle hydration. Mantle velocities also suggest that the degree of serpentinisation, together with the amount of crustal faulting, increases southwards along the basin axis. Seismic reflection lines show a major detachment fault surface that grows southwards along the basin axis and is only visible where the inferred degree of serpentinisation is >15%. This observation is consistent with laboratory measurements that show that at this degree of

  7. Crustal architecture beneath the Tibet-Ordos transition zone, NE Tibet, and the implications for plateau expansion (United States)

    Guo, Xiaoyu; Gao, Rui; Wang, Haiyan; Li, Wenhui; Keller, G. R.; Xu, Xiao; Li, Hongqiang; Encarnacion, John


    Most previous studies of the Tibetan Plateau have focused on the processes of crustal thickening and subsequent outward growth. However, lithospheric structure across the tectonic boundaries of the plateau has not yet been fully imaged, and therefore, how geological structures evolved in association with the lateral expansion of the margins remains unclear. Here together with interpretation of regional aeromagnetic anomalies, we employ a recently acquired 165 km long deep seismic reflection image that crosses the northeastern flank of the Tibetan Plateau. The resulting crustal "architecture" suggests that crustal shortening is a primary driver for plateau uplift of northeastern Tibet and that the Xiaoguan Shan to the east of the Liupan Shan belt marks the easternmost edge of the strata that has been affected by the northeastward growth of the plateau. In addition, decoupled crustal deformation owing to differential structural integrity has been accommodated during the subsequent northeastward growth of the plateau.

  8. Compilation of seismic-refraction crustal data in the Soviet Union (United States)

    Rodriguez, Robert; Durbin, William P.; Healy, J.H.; Warren, David H.


    The U.S. Geological Survey is preparing a series of terrain atlases of the Sino-Soviet bloc of nations for use in a possible nuclear-test detection program. Part of this project is concerned with the compilation and evaluation of crustal-structure data. To date, a compilation has been made of data from Russian publications that discuss seismic refraction and gravity studies of crustal structure. Although this compilation deals mainly with explosion seismic-refraction measurements, some results from earthquake studies are also included. None of the data have been evaluated.

  9. Paleoproterozoic crustal evolution of the Hengshan–Wutai–Fuping region, North China Craton

    Directory of Open Access Journals (Sweden)

    Chunjing Wei


    Full Text Available An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton (NCC is whether the tectonic setting in the central belt during the mid-Paleoproterozoic (2.35–2.0 Ga was dominated by an extensional regime or an oceanic subduction–arc regime. A review of the mid-Paleoproterozoic magmatism and sedimentation for the Hengshan–Wutai–Fuping region suggests that a back-arc extension regime was dominant in this region. This conclusion is consistent with the observation that the 2.35–2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline (or A-type granites, and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group. Although the final amalgamation of the NCC was believed to occur at ∼1.85 Ga, recent zircon U–Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ∼1.95 Ga. The metamorphic ages of ∼1.85 Ga, obtained mostly from the high-grade rocks using the zircon U–Pb approach, most probably indicate uplifting and cooling of these high-grade terranes. This is because (i phase modeling suggests that newly-grown zircon grains in high-grade rocks with a melt phase cannot date the age of peak pressure and temperature stages, but the age of melt crystallization in cooling stages; (ii the metamorphic P–T paths with isobaric cooling under 6–7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle–lower crust; and (iii the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga. Thus, an alternative tectonic scenario for the Hengshan–Wutai–Fuping region involves: (i formation of a proto-NCC at ∼2.5 Ga; (ii back-arc extension during 2.35–2.0

  10. "Storms of crustal stress" and AE earthquake precursors

    Directory of Open Access Journals (Sweden)

    G. P. Gregori


    Colfiorito – and (maybe in 2002 also the Molise earthquake can be reckoned to this "storm". During the "storm", started in 2008, the l'Aquila earthquake occurred.

    Additional logical analysis envisages the possibility of distinguishing some kind of "elementary" constituents of a "crustal storm", which can be briefly called "crustal substorms". The concept of "storm" and "substorm" is a common logical aspect, which is shared by several phenomena, depending on their common intrinsic and primary logical properties that can be called lognormality and fractality. Compared to a "crustal storm", a "crustal substorm" is likely to be reckoned to some specific seismic event. Owing to brevity purposes, however, the discussion of "substorms" is given elsewhere.

    AE is an effective tool for monitoring these phenomena, and other processes that are ongoing within the crust. Eventually they result to be precursors of some more or less violent earthquake. It should be stressed, however, that the target of AE monitoring is diagnosing the Earth's crust. In contrast, earthquake prediction implies a much different perspective, which makes sense only by means of more detailed multiparametric monitoring. An AE array can provide real physical information only about the processes that are objectively ongoing inside different and contiguous large slabs of the crust. The purpose is to monitor the stress propagation that crosses different regions, in order to envisage where and when it can eventually trigger a catastrophe of the system. The conclusion is that continental – or planetary – scale arrays of AE monitoring stations, which record a few different AE frequencies, appear to be the likely first step for diagnosing the evolution of local structures preceding an earthquake. On the other hand, as it is well known, the magnitude of the shock is to be related to the elastic energy stored in

  11. Crustal dynamics project site selection criteria (United States)

    Allenby, R.


    The criteria for selecting site locations and constructing observing pads and monuments for the Mobile VLB1 and the satellite laser ranging systems used in the NASA/GSFC Crustal Dynamics Project are discussed. Gross system characteristics (size, shape, weight, power requirement, foot prints, etc.) are given for the Moblas, MV-1 through 3, TLRS-1 through 4 and Series instruments.

  12. New Observations of Crustal Plateau Surface Histories, Venus: Implications for Crustal Plateau Hypotheses (United States)

    Hansen, V. L.


    Geohistories documented for four crustal plateaus surface presents challenges to both downwelling and plume hypotheses of plateau formation, and lead to a third hypothesis, plateau formation involving crystallization of a huge lava pond.

  13. Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. (United States)

    Jaishankar, Aditya; Wee, May; Matia-Merino, Lara; Goh, Kelvin K T; McKinley, Gareth H


    Mamaku gum is a polysaccharide extracted from the fronds of the black tree fern found in New Zealand. The cooked pith has traditionally been used for various medicinal purposes and as a food source by the Maori people of New Zealand. It has potential applications as a thickener in the food industry and as a palliative for patients with dysphagia. Studies on the shear rheology of Mamaku gum have revealed that the gum exhibits shear thickening at a critical shear rate due to a transition from intra- to inter-molecular chain interactions upon shear-induced chain elongation. In this paper, we demonstrate that these interactions are primarily due to hydrogen bonding. We perform extensional rheology on mixtures of Mamaku gum and urea (a known disruptor of hydrogen bonds) to quantify the nature of these interactions. Capillary Breakup Extensional Rheometry (CaBER) performed on the pure Mamaku gum solutions yield plateau values of the Trouton ratio as high as ∼10(4), showing that the viscoelasticity of the gum in uniaxial elongation is much higher than in shear. For all Mamaku concentrations tested, the extensional viscosity decreases upon increasing urea concentration. Furthermore, the relaxation time decreases exponentially with increasing urea concentration. This exponential relationship is independent of the Mamaku concentration, and is identical to the relationships between urea concentration and characteristic timescales measured in nonlinear shear rheology. We show using the sticky reptation model for polymers with multiple sticker groups along the backbone how such a relationship is consistent with a linear decrease in the free energy for hydrogen bond dissociation. We then demonstrate that a time-concentration superposition principle can be used to collapse the viscoelastic properties of the Mamaku-gum/urea mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Using extensional flow to reveal diverse aggregation landscapes for three IgG1 molecules. (United States)

    Willis, Leon F; Kumar, Amit; Dobson, John; Bond, Nicholas J; Lowe, David; Turner, Richard; Radford, Sheena E; Kapur, Nikil; Brockwell, David J


    Monoclonal antibodies (mAbs) currently dominate the biopharmaceutical sector due to their potency and efficacy against a range of disease targets. These proteinaceous therapeutics are, however, susceptible to unfolding, mis-folding, and aggregation by environmental perturbations. Aggregation thus poses an enormous challenge to biopharmaceutical development, production, formulation, and storage. Hydrodynamic forces have also been linked to aggregation, but the ability of different flow fields (e.g., shear and extensional flow) to trigger aggregation has remained unclear. To address this question, we previously developed a device that allows the degree of extensional flow to be controlled. Using this device we demonstrated that mAbs are particularly sensitive to the force exerted as a result of this flow-field. Here, to investigate the utility of this device to bio-process/biopharmaceutical development, we quantify the effects of the flow field and protein concentration on the aggregation of three mAbs. We show that the response surface of mAbs is distinct from that of bovine serum albumin (BSA) and also that mAbs of similar sequence display diverse sensitivity to hydrodynamic flow. Finally, we show that flow-induced aggregation of each mAb is ameliorated by different buffers, opening up the possibility of using the device as a formulation tool. Perturbation of the native state by extensional flow may thus allow identification of aggregation-resistant mAb candidates, their bio-process parameters and formulation to be optimized earlier in the drug-discovery pipeline using sub-milligram quantities of material. © 2018 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  15. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism (United States)

    Citron, Robert I.; Zhong, Shijie


    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern

  16. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier


    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotide...... for monolayers of single stranded (ss) DNA and after hybridization with the complementary DNA strand. Our results differ from previous data obtained with bulk samples, showing the genuine behavior of these self-assembled monolayers. The hybridization cannot be inferred from the water adsorption isotherms due...... on the interaction between water and self-assembled monolayers of nucleic acids....

  17. Dynamics of Star Polymers in Fast Extensional Flow and Stress Relaxation

    DEFF Research Database (Denmark)

    Huang, Qian; Agostini, Serena; Hengeller, Ludovica


    We confirm the observation from Ianniruberto and Marrucci [ Macromolecules 2013, 46, 267-275 ] that entangled melts of branched polystyrenes behave like linear polystyrenes in the steady state of fast extensional flow, by measuring a linear, an asymmetric star, and a symmetric star polystyrene wi...... they relax in a similar way, most likely via arm retraction, at short time, but behave differently at long time due to both the length of the arm and the branch point. The terminal relaxation is described by a Doi and Edwards based model, i.e., considering pure orientational relaxation....

  18. Qinghai-Tibet Plateau crustal thickness derived from EGM2008 and CRSUT2.0

    Directory of Open Access Journals (Sweden)

    Zhou Hao


    Full Text Available Qinghai-Tibet Plateau is the most complex region for crustal thickness inversion, while high-resolution earth gravity model (EGM makes it possible to obtain high precision gravity anomaly, which is a key parameter to depict the Earth’s inner structure in geodesy domain. On the basis of this principle, we calculated the Bouguer gravity anomalies in Qinghai-Tibet Plateau with EGM2008 and SRTM6. 0 by efficient high-degree spherical harmonic synthesis algorithm. In order to obtain the gravity anomaly caused by Moho density mutant, the noises caused by the topography was removed by wavelet details. Then, the crustal thickness was corrected on the basis of CRUST 2. 0 with the deep-large-scale single density interface formula. The inversion result indicates that the crustal thickness in Qinghai-Tibet Plateau is between 50 km and 75 km, which is in correspondence with the recent science research result. Compared with the 2 degree CRUST 2. 0 model, the spatial resolution of crustal thickness in our research can reach 40 arc minutes. In addition, there is a positive relationship between the inversed crustal thickness and topography, which can prove the effectiveness of Airy-Heiskanen isostatic model in gravity reduction.

  19. Crustal heterogeneity and seismotectonics of the region around Beijing, China (United States)

    Huang, Jinli; Zhao, Dapeng


    A detailed three-dimensional (3-D) P-wave velocity model of the crust and uppermost mantle under the Chinese capital (Beijing) region is determined with a spatial resolution of 25 km in the horizontal direction and 4-17 km in depth. We used 48,750 precise P-wave arrival times from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by a new digital seismic network consisting of 101 seismic stations equipped with high-sensitivity seismometers. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new insights into the geological structure and tectonics of the region, such as the lithological variations and large fault zones across the major geological terranes like the North China Basin, the Taihangshan and the Yanshan mountainous areas. The velocity images of the upper crust reflect well the surface geological and topographic features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocities, respectively. The Taihangshan and Yanshan mountainous regions are generally imaged as broad high-velocity zones, while the Quaternary intermountain basins show up as small low-velocity anomalies. Velocity changes are visible across some of the large fault zones. Large crustal earthquakes, such as the 1976 Tangshan earthquake ( M=7.8) and the 1679 Sanhe earthquake ( M=8.0), generally occurred in high-velocity areas in the upper to middle crust. In the lower crust to the uppermost mantle under the source zones of the large earthquakes, however, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids. The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.

  20. Seismic structure of the northern continental margin of Spain from ESCIN deep seismic profiles (United States)

    Alvarez-Marrón, J.; Pérez-Estaún, A.; Danñobeitia, J. J.; Pulgar, J. A.; Martínez^Catalán, J. R.; Marcos, A.; Bastida, F.; Ayarza^Arribas, P.; Aller, J.; Gallart, A.; Gonzalez-Lodeiro, F.; Banda, E.; Comas, M. C.; Córdoba, D.


    By the end of the Carboniferous, the crust of the continental shelf in northwestern Spain was made up of deeply rooted structures related to the Variscan collision. From Permian to Triassic times the tectonic setting had changed to mainly extensional and the northern Iberian continental margin underwent rifting during Late Jurassic-Early Cretaceous times, along with sea-floor spreading and the opening of the Bay of Biscay until the Late Cretaceous. Subsequently, the northern Iberian margin was active during the north-south convergence of Eurasia and Iberia in the Tertiary. A multichannel seismic experiment, consisting of two profiles, one north-south (ESCIN-4) crossing the platform margin offshore Asturias, and another (ESCIN-3) crossing the platform margin to the northwest of Galicia, was designed to study the structure of the northern Iberian margin. The ESCIN-4 stacked section reveals inverted structures in the upper crust within the Le Danois Basin. North of the steep continental slope, ESCIN-4 shows a thick sedimentary package from 6 to 9.5 s, two-way travel time (TWT). Within this latter package, a 40-km-long, north-tapering wedge of inclined, mainly south-dipping reflections is thought to represent a buried, Alpine-age accretionary prism. In the north western part of the ESCIN-3 (ESCIN-3-1) stacked section, horizontal reflections from 6.5 to 8.5 s correspond to an undisturbed package of sediments lying above oceanic-type basement. In this part of the line, a few kilometres long, strong horizontal reflection at 11.2 s within the basement may represent an oceanic Moho reflection. Also, a band of reflections dips gently towards the southeast, from the base of the gently dipping continental slope. The part of ESCIN-3 line that runs parallel to the NW-Galicia coast (ESCIN-3-2), is characterized by bright, continuous lower crustal reflections from 8 to 10 s. Beneath the lower crustal reflectivity, a band of strong reflections dips gently toward the southwest from

  1. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge (United States)

    Park, Heon-Joon; Lee, Changyeol


    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  2. Geothermal modeling along a two-dimensional crustal profile in Southern Portugal

    Czech Academy of Sciences Publication Activity Database

    Correia, A.; Šafanda, Jan


    Roč. 34, č. 1 (2002), s. 47-61 ISSN 0264-3707. [Geothermics at the turn of the century. Evora, 03.04.2000-07.04.2000] Institutional research plan: CEZ:AV0Z3012916 Keywords : geothermal modeling * Southern Portugal * surface heat flow * crustal profile Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.058, year: 2002

  3. Bathymetry, controlled source seismic and gravity observations of the Mendeleev ridge; implications for ridge structure, origin, and regional tectonics (United States)

    Dove, Dayton; Coakley, Bernard; Hopper, John; Kristoffersen, Yngve


    Multichannel seismic (MCS), seismic refraction, and gravity data collected down the flank of the Chukchi Plateau, but predominantly over the Mendeleev Ridge have been processed and interpreted to describe the crustal style of the ridge, as well as the structural history. These results provide constraints on the origin of the ridge, and the tectonic evolution of the Amerasian Basin. MCS images reveal two primary sediment sequences separated by an unconformity that persists across the entire Mendeleev Ridge. The basement and lower sediment sequence exhibit pervasive normal faulting. The upper sequence is laterally conformable and not effected by faulting, thus the regional unconformity dividing the two sequences is interpreted to mark the end of extensional deformation. Modeling of sonobuoy seismic refraction data reveals upper crustal P-wave velocities ranging from 3.5 to 6.4kms-1 approximately 5km into the basement. The velocity structure of the Mendeleev Ridge is consistent with either a volcanic rifted continental margin, or an oceanic plateau origin. Observed gravity anomalies over the ridge are reproduced by a model consisting of bathymetry, sediment and basement horizons from the MCS data and a single crustal layer of 2.86gcm-3. This result is consistent with homogeneous, mafic crust. The similar velocity and density structures of the Mendeleev and Alpha ridges is consistent with a model where the two ridges are contiguous and share a common geological origin. Gravity modelling over the transition between the Chukchi Plateau and the Mendeleev Ridge suggests the two features have differing compositions and distinct emplacement histories. Three tectonic models are presented for the origin of the Alpha Mendeleev Ridge (AMR) that satisfy constraints set by this and previous studies: (1) a rifted volcanic continental margin, (2) an oceanic plateau formed at a spreading centre-perpendicular to the AMR and (3) an oceanic plateau formed at a spreading centre

  4. Crustal scale detachment in the Himalayas: a reappraisal (United States)

    Mukhopadhyay, S.; Sharma, J.


    According to the most popular tectonic model of the Himalayas proposed by a number of scientists the Indian crustal material underthrusts the Himalayas at a low angle and is relatively free of deformation compared to the overlying accreted material that makes up the Himalayan mountain chain. In this work we have carried out local earthquake tomography for the Garwhal-Kumaun Himalayas to estimate P- and S-wave velocity variations (Vp and Vs, respectively) and variation in their ratio (Vp/Vs) that would indicate the structure of the Himalayas and the underlying Indian crust in this part of the Himalayas. The results indicate that there is crustal level folding and faulting in this region indicating that the underlying Indian crustal material has also undergone deformation unlike what was postulated for the entire Himalayas by some workers before. By comparing our tomographic result with that for the eastern Nepal-southern Tibet region, it is concluded that there is variation in mode of deformation along the trend of the Himalayas. This observation matches well with the observed velocity variation in the upper mantle of these two regions reported by others. The area under investigation falls within a region where there is more oblique convergence between India and Eurasia compared to the Nepal Himalayas region. This may explain why such variation in mode of deformation is observed. The ratio Vp/Vs gets affected by strength of material. Presence or absence of fluid filled fractures or molten material affects it most strongly in the crustal region. The variation in Vp/Vs in the study area shows that almost the entire crust here have enough rheological strength such that it can store strain energy that can be released through earthquakes. A zone of low Vp/Vs beginning at the higher Himalayas and dipping towards SW is observed. This zone also has high Vp and Vs and is observed even when inversion is carried out with very high damping value. These observations do not

  5. A reverse energy cascade for crustal magma transport (United States)

    Karlstrom, Leif; Paterson, Scott R.; Jellinek, A. Mark


    Direct constraints on the ascent, storage and eruption of mantle melts come primarily from exhumed, long-frozen intrusions. These structures, relics of a dynamic magma transport network, encode how Earth's crust grows and differentiates over time. Furthermore, they connect mantle melting to an evolving distribution of surface volcanism. Disentangling magma transport processes from the plutonic record is consequently a seminal but unsolved problem. Here we use field data analyses, scaling theory and numerical simulations to show that the size distribution of intrusions preserved as plutonic complexes in the North American Cordillera suggests a transition in the mechanical response of crustal rocks to protracted episodes of magmatism. Intrusion sizes larger than about 100 m follow a power-law scaling expected if energy delivered from the mantle to open very thin dykes and sills is transferred to intrusions of increasing size. Merging, assimilation and mixing of small intrusions into larger ones occurs until irreversible deformation and solidification dissipate available energy. Mantle magma supply over tens to hundreds of thousands of years will trigger this regime, a type of reverse energy cascade, depending on the influx rate and efficiency of crustal heating by intrusions. Identifying regimes of magma transport provides a framework for inferring subsurface magmatic processes from surface patterns of volcanism, information preservation in the plutonic record, and related effects including climate.

  6. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin (United States)

    Bowen, R. L.; Sundeen, D. A.


    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  7. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans


    The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its...... centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities...... velocities around the rift structure, except for beneath the rift axis where a distinct 50-80-km wide high-velocity anomaly (7.4-7.6 ± 0.2 km/s) is observed. Reverberant or "ringing" reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non...

  8. Tectono-sedimentary evolution of an extensional basin revealed by a combined photo-geological and field-mapping approach. The Montefalco Basin (Northern Apennines, Italy) (United States)

    Bucci, Francesco; Mirabella, Francesco; Santangelo, Michele; Cardinali, Mauro; Guzzetti, Fausto


    Active extensional basins are important since their sedimentary infills and bounding tectonic structures provide: i) sinks with preservation potential for sedimentary and fossil records of past changes in climate and sediment/water supply, ii) information on the growth, activity, decay and death of normal faults, iii) vast economic reserves of hydrocarbons, water and minerals. Unfortunately, quaternary extensional basins, especially if located in humid and temperate climate environments, are often characterized by extensively cultivated areas, homogeneous terrains and quite flat morphologies. Furthermore, they commonly host human settlements, together with roads, economic and industrial infrastructures, with a consequent limited availability of good outcrops. Such a limitation can (often severely) hamper an adequate mapping of the sedimentary infill. Therefore alternative methodological approaches (such as aerial photographs interpretation, API) are needed to integrate heterogeneous and incomplete datasets. This contribution presents an updated photo-geological map of a Quaternary extensional basin in Central Italy, the Montefalco Basin. This basin developed in a continental environment characterized by clayey-sandy lacustrine and fluvial sequences (late Pliocene - early Pleistocene) underlying more recent coarse grained deposits related to alluvial fan environment (early-to-late Pleistocene) and younger palustrine deposits (late Pleistocene). Since the late Pleistocene, regional uplift and local tectonics led to the end of deposition in the Montefalco basin, which experienced a diffuse incision and the modification of the drainage network, in response to the W-to-E migration of active faulting and tectonic subsidence. The new photo-geological map represents an important improvement compared to the existing data, since it provides unprecedented and spatially distributed information on the geometry of the continental deposits and on the tectonic structures affecting

  9. Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: a setting for reactivation of asymmetric crenulation cleavage (United States)

    Marshak, Stephen; Alkmim, Fernando F.; Whittington, Alan; Pedrosa-Soares, Antônio Carlos


    The Araçuaí orogen of eastern Brazil is one of many Brasiliano/Pan African orogens formed during the Neoproterozoic assembly of Gondwana. Its western edge, bordering the São Francisco craton, is the Serra do Espinhaço fold-thrust belt, in which top-up-to-the-west (reverse-sense) faults, west-verging folds (F 1), and east-dipping spaced to phyllitic cleavage (S 1) developed. We have found that the kinematics of deformation changes markedly at the hinterland margin of this fold-thrust belt. Here, beneath a plateau known as the Chapada Acauã, metadiamictite and fine-grained pelitic schist comprise an east-dipping belt that contains an assemblage of structures indicative of top-down-to-the-east (normal-sense) shear. This assemblage includes a cascade of F 2 folds that refold F 1 folds and verge down the dip of the belt's enveloping surfaces, vertical tension gashes, and top-down-to-the-east rotated clasts. Based on the presence of these structures, we propose that the plateau exposes a regional-scale normal-sense shear zone, here called the Chapada Acauã shear zone (CASZ). Because F 2 folds refold F 1 folds, normal-sense shear in the CASZ occurred subsequent to initial west-verging thrusting. Considering this timing of motion in the CASZ, we suggest that the zone accommodated displacement of the internal zone of the Araçuaí orogen down, relative to its foreland fold-thrust belt, and thus played a role in extensional collapse of the orogen. The CASZ trends parallel to preserved thrusts to the west, and thus may represent an inverted thrust fault. Notably, throughout the CASZ, S 1 schistosity has been overprinted by a pervasive, west-dipping asymmetric crenulation cleavage (S 2). The sigmoid shape of S 1 surfaces in S 2 microlithons require that slip on each S 2 surface was top-down-to-the-west. S 2 cleavage is axial-planar to the down-dip verging F 2 folds. Based on its geometry, we suggest that S 2 cleavage initiated either as an antithetic extensional

  10. A coupled petrological-geodynamical model to investigate the evolution of crustal magmatic systems (United States)

    Kaus, B. J. P.; Rummel, L.; White, R. W.


    The evolution of crustal magmatic systems can be analyzed from different physical and chemical perspectives. Most previous work focus either on the petrological side (considering thermal effects and ignoring mechanics), or on the mechanical evolution (assuming a fixed melt chemistry). Here, we consider both by combining a 2D finite element code, MVEP2, with a thermodynamic modelling approach (Perple_X). Density, melt fraction and the chemical composition of the liquid and solid phase are computed for different starting rock compositions and the evolving chemistry is tracked on markers via 10 main oxides (SiO2-TiO2-Al2O3-Cr2O3-MgO-FeO-CaO-Na2O-K2O-H2O). As soon as the local chemistry changes due to melt extraction, new phase diagrams are computed based on the residual solid chemistry for the deflated magma chamber or on the liquid chemistry for newly generated magma filled fractures. To investigate the chemical evolution in magma chambers and magma filled fractures, we inject mafic sills periodically at varying depth levels into the continental crust. The initial sill injections are focused in either one or two main zones in the crust and may interact with each other. The formation of magma filled fractures from this partially molten zone is tracked with a semi analytical dike initiation algorithm that forms new dikes as a function of the local stress field above the partially molten region and subsequently depletes and compacts the magma source region. Dike generation is thus affected by the background strain rate, amount and depth of melt accumulations as well as parameters that control the plastic and viscous behaviour of the crust (e.g. cohesion, viscous creep flow low etc.). Results show that magma filled fractures triggered by sill injections preferentially form under extensional conditions, particularly within the middle crust (in ca. 25 km depth). Magma chambers in the lower continental crust, on the other hand, are stable over a longer period of time due a

  11. Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime (United States)

    Hogan, John P.; Price, Jonathan D.; Gilbert, M. Charles


    The level of emplacement and final form of felsic and mafic igneous rocks of the Wichita Mountains Igneous Province, southwestern Oklahoma, U.S.A. are discussed in light of magma driving pressure, lithostatic load, and crustal magma traps. Deposition of voluminous A-type rhyolites upon an eroded gabbroic substrate formed a subhorizontal strength anisotropy that acted as a crustal magma trap for subsequent rising felsic and mafic magma. Intruded along this crustal magma trap are the A-type sheet granites (length/thickness 100:1) of the Wichita Granite Group, of which the Mount Scott Granite sheet is typical, and smaller plutons of biotite bearing Roosevelt Gabbro. In marked contrast to the subhorizontal granite sheets, the gabbro plutons form more equant stocks with flat roofs and steep side walls. Late Diabase dikes cross-cut all other units, but accompanying basaltic flows are extremely rare in the volcanic pile. Based on magmastatic calculations, we draw the following conclusions concerning the level of emplacement and the shape of these intrusions. (1) Magma can rise to a depth at which the magma driving pressure becomes negligible. Magma that maintains a positive driving pressure at the surface has the potential to erupt. (2) Magma ascent may be arrested at a deeper level in the crust by a subhorizontal strength anisotropy (i.e. crustal magma trap) if the magma driving pressure is greater than or equal to the lithostatic load at the depth of the subhorizontal strength anisotropy. (3) Subhorizontal sheet-intrusions form along crustal magma traps when the magma driving pressure greatly exceeds the lithostatic load. Under such conditions, the magma driving pressure is sufficent to lift the overburden to create the necessary space for the intrusion. (4) Thicker steep-sided stocks or batholiths, with flat roofs, form at crustal magma traps when the magma driving pressure approximates that of the lithostatic load. Under these conditions, the necessary space for the

  12. Segmentation pattern and structural complexities in seismogenic extensional settings: The North Matese Fault System (Central Italy) (United States)

    Ferrarini, Federica; Boncio, Paolo; de Nardis, Rita; Pappone, Gerardo; Cesarano, Massimo; Aucelli, Pietro P. C.; Lavecchia, Giusy


    We investigated the northern slope of the Matese Mts. (Molise, Central Italy) with the aim of characterizing the N- to NE-dipping active normal fault system in the Bojano basin, a sector of primary importance from a seismic hazard perspective. We collected field data to define the geometry and segmentation pattern of two sub-systems (Patalecchia-Colle di Mezzo and Bojano-Campochiaro). New evidence of late Quaternary faulting was obtained by exploiting well log interpretations. Kinematic analysis revealed the interaction of pre-Quaternary inherited (mainly E-W-striking) and newly formed (NW-SE-striking) normal faults. Slip accommodation through linkage was clearly noted in the case of the Patalecchia-Colle di Mezzo sub-system. Detailed topographic profiles across the active fault segments provided post-LGM (15 ± 3 kyr) slip rates up to ∼2 mm/yr which agree with the high deformation rates based on different approaches in the literature. Finally, the instrumental seismicity analysis constrained the bottom of the seismogenic layer to depths of 13-14 km, and the gathered information allowed us to reconstruct the North Matese seismogenic source. Its 3D geometry and dimensions agree with both the dimension-magnitude relationships and macroseismic information available for the 1805 earthquake (Mw 6.6), the main historical earthquake to have struck the Bojano basin.

  13. Crustal extension and magmatism during the mid-Cenozoic ignimbrite flare-up in the Guazapares Mining District and Cerocahui basin regions, northern Sierra Madre Occidental, western Chihuahua, Mexico (United States)

    Murray, Bryan Patrick

    formation, composed of silicic vent to proximal facies ignimbrites, lavas, plugs, and reworked equivalents that record the initiation of explosive and effusive silicic fissure magmatism in the study area during the Early Miocene pulse of the mid-Cenozoic ignimbrite flare-up. The Guazapares Mining District and Cerocahui basin regions share this stratigraphy, but the rocks in the Cerocahui basin consist of a much higher proportion of alluvial deposits. The main geologic structures in the Guazapares Mining District and Cerocahui basin regions are NNW-trending normal faults, with an estimated minimum of 20% total horizontal extension. Many normal faults bound half-graben basins that show evidence of syndepositional extension. Normal faulting began by ca. 27.5 Ma during deposition of the youngest ignimbrites of the Parajes formation, concurrent with the end of the Early Oligocene silicic ignimbrite pulse of the ignimbrite flare-up to the east and before magmatism began in the study area. Preexisting normal faults localized mafic-intermediate volcanic vents of the Temoris formation and silicic vents of the Sierra Guazapares formation, and were active during deposition of these formations. In addition, the localization and timing of epithermal mineralization in the Guazapares Mining District appears to be favored where pre-to-synvolcanic extensional structures are in close association with Sierra Guazapares formation rhyolite plugs. The timing of extensional faulting and magmatism in the Guazapares Mining District and Cerocahui regions is consistent with regional-scale Middle Eocene to Early Miocene southwestward migration of active volcanism and extension in the northern Sierra Madre Occidental. Extension accompanied mafic-intermediate and silicic volcanism in the study area, and overlapped with the peak of mid-Cenozoic ignimbrite flare-up in the Sierra Madre Occidental; this supports the interpretation that there is likely a relationship between lithospheric extension and

  14. Extensional basin evolution in the presence of small-scale convection

    DEFF Research Database (Denmark)

    Petersen, Kenni Dinesen; Nielsen, S.B.; Clausen, O.R.


    The plate model of Parsons & Sclater provides a generally accepted, quantitative framework for the thermal subsidence-evolution in extensional basins. It predicts an asymptotic evolution of the geotherm towards a steady state, featuring a constant lithospheric thickness and ceased subsidence......-steady-state. Extension of the convecting equilibrium model causes the formation of rifts or continental margins which, posterior to extension, cools and subsides as predicted by the plate model. However, in contrast to the plate model, the ascended asthenosphere is not instantaneously decoupled from the convecting upper...... mantle below, and cooling is thus not entirely conductive above the former base of the lithosphere. This causes significantly protracted cooling and subsidence.We show that our model features improved consistency with subsidence data from several rifted margins and intracontinental basins. Furthermore...

  15. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository



    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified \\'Trouton ratio\\'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  16. Crustal tomographic imaging and geodynamic implications toward south of Southern Granulite Terrain (SGT), India (United States)

    Behera, Laxmidhar


    The crustal structure toward southern part of SGT is poorly defined leaving an opportunity to understand the tectonic and geodynamic evolution of this high-grade granulite terrain surrounded by major shear and tectonically disturbed zones like Achankovil Shear Zone (AKSZ) and Palghat Cauvery Shear Zone (PCSZ). To develop a geologically plausible crustal tectonic model depicting major structural elements, a comprehensive tomographic image was derived using deep-seismic-sounding data corroborated by Bouguer gravity modeling, coincident-reflection-seismic, heat-flow and available geological/geochronological informations along the N-S trending Vattalkundu-Kanyakumari geotransect. The final tectonic model represents large compositional changes of subsurface rocks accompanied by velocity heterogeneities with crustal thinning (44-36 km) and Moho upwarping from north to south. This study also reveals and successfully imaged anomalous zone of exhumation near AKSZ having transpression of exhumed rocks at mid-to-lower crustal level (20-30 km) with significant underplating and mantle upwelling forming a complex metamorphic province. The presence of shear zones with high-grade charnockite massifs in the upper-crust exposed in several places reveal large scale exhumation of granulites during the Pan-African rifting (~ 550 Ma) and provide important insights of plume-continental lithosphere interaction with reconstruction of the Gondwanaland.

  17. Electrical imaging of deep crustal features of Kutch, India (United States)

    Sastry, R. S.; Nagarajan, Nandini; Sarma, S. V. S.


    A regional Magnetotelluric (MT) study, was carried out with 55 MT soundings, distributed along five traverses, across the Kutch Mainland Unit (KMU), on the west coast of India, a region characterized by a series of successive uplifts and intervening depressions in the form of half graben, bounded by master faults. We obtain the deeper electrical structure of the crust beneath Kutch, from 2-D modelling of MT data along the 5 traverses, in order to evaluate the geo-electrical signatures, if any, of the known primary tectonic structures in this region. The results show that the deeper electrical structure in the Kutch region presents a mosaic of high resistive crustal blocks separated by deep-rooted conductive features. Two such crustal conductive features spatially correlate with the known tectonic features, viz., the Kutch Mainland Fault (KMF), and the Katrol Hill Fault (KHF). An impressive feature of the geo-electrical sections is an additional, well-defined conductive feature, running between Jakhau and Mundra, located at the southern end of each of the five MT traverses and interpreted to be the electrical signature of yet another hidden fault at the southern margin of the KMU. This new feature is named as Jakhau-Mundra Fault (JMF). It is inferred that the presence of JMF together with the Kathiawar Fault (NKF), further south, located at the northern boundary of the Saurashtra Horst, would enhance the possibility of occurrence of a thick sedimentary column in the Gulf of Kutch. The region between the newly delineated fault (JMF) and the Kathiawar fault (NKF) could thus be significant for Hydrocarbon Exploration.

  18. The origin of tectonic lineation in extensional basins: Combined neutron texture and magnetic analyses on "undeformed" clays

    Czech Academy of Sciences Publication Activity Database

    Cifelli, F.; Mattei, M.; Chadima, Martin; Hirt, A. M.; Hansen, A.


    Roč. 235, 1-2 (2005), s. 62-78 ISSN 0012-821X Institutional research plan: CEZ:AV0Z30130516 Keywords : anisotropy of magnetic susceptibility * extensional tectonic * neutron texture analysis Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.434, year: 2005

  19. Prediction of bending set, wave efficacy, and hair damage using an extensional permanent waving treatment and the 20% index value. (United States)

    Ueno, Yuzo; Namiki, Hideo


    To predict "wave efficacy" as evaluated by hairdressers, an extensional permanent waving treatment was performed on human hair fibers using various wave lotions manufactured in Japan. Glass columns devised for the purpose were equipped with a tensile tester in order to increase the measurement accuracy. Notably, the observed set agreed with the theoretical set. In addition, the data for the extensional set exhibited good correlation with the bending set and the wave efficacy assessed in a beauty parlor, and hair damage was estimated by the characteristic change in the 20% index. The following facts were experimentally determined. First, the Young's modulus of the hair fibers after extensional permanent waving treatment continually decreased with an increase in the reduction of the fibers and then abruptly decreased at 80% reduction. Second, the reduction of hair treated with the ammonium salt of thioglycolic acid followed pseudo first-order kinetics only during the initial stage of the reaction, independent of the pH level. Third, the 20% index of the individual virgin hairs remained constant in water at 30°C and also correlated with the Young's modulus of the hair after extensional permanent waving treatment.

  20. Constant interchain pressure effect in extensional flows of oligomer diluted polystyrene and poly(methyl methacrylate) melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Huang, Qian


    pressure assumption. Furthermore, the maximal extensibility based on the number of Kuhn steps in an entanglement has been used based on the relative Padé inverse Langevin function. The model predictions agree with the extensional measurements on all previously published poly(methyl methacrylate)s...

  1. A study on physical property of crustal material and seismogenic environment in northeastern Pamir (United States)

    Liu, Zhi; Zhang, Xian-Kang; Zhou, Xue-Song; Zhao, Jin-Ren; Zhang, Cheng-Ke; Pan, Ji-Shun


    2-D crustal structure and velocity ratio are obtained by processing S-wave data from two wide-angle reflection/refraction profiles in and around Jiashi in northeastern Pamir, with the result of P-wave data taken into consideration. The result shows that: 1) Average crustal velocity ratio is obviously higher in Tarim block than in West Kunlun Mts. and Tianshan fold zone, which reflects its crustal physical property of “hardness” and stability. The relatively low but normal velocity ratio (Poisson’s ratio) of the lower crust indicates that the “downward thrusting” of Tarim basin is the main feature of crustal movement in this area. 2) The rock layer in the upper crust of Tianshan fold zone is relatively “soft”, which makes it prone to rupture and stress energy release. This is the primary tectonic factor for the concentration of small earthquakes in this area. 3) Jiashi is located right over the apex or the inflection point of the updoming lower crustal interface C and the crust-mantle boundary, which is the deep structural background for the occurrence of strong earthquakes. The alternate variation of v p/v S near the block boundaries and the complicated configuration of the interfaces in the upper and middle part of the upper crust form a particular structural environment for the Jiashi strong earthquake swarm. v p/v s is comparatively high and shear modulus is low at the focal region, which may be the main reason for the low stress drop of the Jiashi strong earthquake swarm.

  2. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang


    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  3. Combined Gravimetric-Seismic Crustal Model for Antarctica (United States)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad


    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  4. Zircon dating of oceanic crustal accretion. (United States)

    Lissenberg, C Johan; Rioux, Matthew; Shimizu, Nobumichi; Bowring, Samuel A; Mével, Catherine


    Most of Earth's present-day crust formed at mid-ocean ridges. High-precision uranium-lead dating of zircons in gabbros from the Vema Fracture Zone on the Mid-Atlantic Ridge reveals that the crust there grew in a highly regular pattern characterized by shallow melt delivery. Combined with results from previous dating studies, this finding suggests that two distinct modes of crustal accretion occur along slow-spreading ridges. Individual samples record a zircon date range of 90,000 to 235,000 years, which is interpreted to reflect the time scale of zircon crystallization in oceanic plutonic rocks.

  5. Crustal Growth: In Defense of the Dogma (United States)

    Albarede, F.; Blichert-Toft, J.; Guitreau, M.


    Plate tectonics was not even in its teens when Armstrong suggested that mantle and crust have interacted at steady-state over Earth's history. With the help of new geochemical tools and large-scale compilations, the concept of steady-state crust (as opposed to continuous crustal growth) is being revived with the implications that the equivalent of several volumes of present-day crust (PDCV) may have been subducted through geological times. Here we argue --or recall-- that four different lines of evidence invalidate this model. (i) The subduction filter must be particularly efficient for argon, even more so than for LILE and most other volatile elements. Atmosphere collects 40Ar degassed from both the extant crust and the crust dragged down at subduction zones over geological time. Regardless of the residence time of the crust at the surface, the amount of atmospheric 40Ar limits subduction of continental crust into the mantle to < 30% of the PDCV [1]. (ii) EM II, the only component that undoubtedly represents subducted continental crust in oceanic basalts, is extremely uncommon. (iii) Crustal age histograms are irrepressibly episodic. It has been argued that erosion selectively removes the crust with the elusive ages [2]. Ages of detrital zircons, which in the selective erosion conjecture should fill the voids, do not support this view [3]. Episodicity is difficult to reconcile with a continental protolith isolated by the common geological processes working either at mid-ocean ridges or subduction zones. A role may be recognized for Wilson cycles, if they can be shown to have prevailed for the entire history of the Earth. Geochemistry demonstrates that superplume material makes up the crustal protolith of all the major juvenile provinces. (iv) The residence time in the mantle of the elements distinctive of the crust is similar to the age of the Earth or even longer [4]. Continental crust finds its source in the instabilities of the lower mantle and the irreversible

  6. Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey (United States)

    Boztuğ, Durmuş; Arehart, Greg B.


    Late Cretaceous granitoid rocks from central Anatolia comprise S-I-A-type plutons derived from the collisional stages of the Neo-Tethyan convergence system in central Turkey. These granitoids intrude the tectonic imbrication zone consisting of blocks of supra-subduction zone-type (SSZ-type) central Anatolian ophiolite and crustal metasediments which are present in the İzmir-Ankara-Erzincan suture zone. The plutons are overlain by Late Palaeocene-Early Eocene or younger detrital sediments. Granitoid formation is thought to be related to magma generation processes occurring in a post-collisional lithospheric detachment-related geodynamic setting that resulted from slab break-off or lithospheric delamination. Whole-rock S and quartz/feldspar O isotope data from these plutons yields a broad range of values, and both parameters indicate a nearly exclusively supracrustal origin for the S-type granites, as well as a significant crustal contribution in the genesis of the hybrid I-type and A-type granitoids. The more mafic I-type and A-type granitoid rocks of any given suite have lower S and O values, indicative of their larger degree of mantle component. The combined stable isotope geochemical compositions, when coupled with major, trace and REE geochemistry and regional geology, provide evidence that the significant crustal contribution originated from a metasomatized mantle layer which was affected by earlier SSZ-derived fluids, and then accreted into the subcontinental lithosphere as collision occurred. The partial melting of such a metasomatized mantle layer in a post-collisional extensional geodynamic setting, supplied either by the slab break-off or lithospheric delamination mechanisms, provided the significant crustal signature in the hybrid magmas of the Late Cretaceous I-type and A-type granitoids in central Anatolia, Turkey.

  7. The oceanic segment of the southern Brazilian margin: Morpho-structural domains and their tectonic significance (United States)

    Bassetto, Marcelo; Alkmim, Fernando F.; Szatmari, Peter; Mohriak, Webster U.

    A descriptive and evolutionary analysis of the main morpho-structural features of the oceanic domain of the southern portion of the Brazilian Continental Margin is supported by regional seismic profiles and potential field data from the Brazilian governmental LEPLAC (Plano de Levantamento da Plataforma Continental Brasileira) Project. The several morpho-structural elements can be differentiated, as for example: the dominant structural pattern of the acoustic basement, including extensional faulting and long-wavelength folding, crustal thickness changes, fracture zones location, distribution of volcanic centers, and development of wedges of seaward-dipping reflectors. Four broad distinct morpho-structural domains, separated by fracture zones and oceanic lineaments. Domain I is located south of the Porto Alegre Lineament; Domain II corresponds to the area between the Porto Alegre Lineament and the Rio Grande Fracture Zone; Domain III spans the area of the São Paulo Plateau; and Domain IV is located to the east of this plateau, towards the abyssal portions of the oceanic crust. These domains are defined by their distinct regional morphologic and structural characteristics. Sometimes these elements are well imaged in the seismic profiles, corroborated by gravity and magnetic anomalies, and eventually identified as prominent features at the sea bottom physiography. Using a multidisciplinary approach based on bathymetric maps, regional seismic interpretation, magnetic data analysis, and gravity models, this work attempts to characterize these elements in a descriptive and evolutionary view, identifying their role in the tectonic development of this portion of the South Atlantic.

  8. Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation (United States)

    Licciardi, A.; Eken, T.; Taymaz, T.; Piana Agostinetti, N.; Yolsal-Çevikbilen, S.


    We investigate the crustal seismic structure and anisotropy around the central portion of the North Anatolian Fault Zone, a major plate boundary, using receiver function analysis. The characterization of crustal seismic anisotropy plays a key role in our understanding of present and past deformation processes at plate boundaries. The development of seismic anisotropy in the crust arises from the response of the rocks to complicated deformation regimes induced by plate interaction. Through the analysis of azimuthally-varying signals of teleseismic receiver functions, we map the anisotropic properties of the crust as a function of depth, by employing the harmonic decomposition technique. Although the Moho is located at a depth of about 40 km, with no major offset across the area, our results show a clear asymmetric distribution of crustal properties between the northern and southern blocks, divided by the North Anatolian Fault Zone. Heterogeneous and strongly anisotropic crust is present in the southern block, where complex intra-crustal signals are the results of strong deformation. In the north, a simpler and weakly anisotropic crust is typically observed. The strongest anisotropic signal is located in the first 15 km of the crust and is widespread in the southern block. Stations located on top of the main active faults in the area indicate the highest amplitudes, together with fault-parallel strikes of the fast plane of anisotropy. We interpret the origin of this signal as due to structure-induced anisotropy, and roughly determine its depth extent up to 15-20 km for these stations. Away from the faults, we suggest the contribution of previously documented uplifted basement blocks to explain the observed anisotropy at upper and middle crustal depths. Finally, we interpret coherent NE-SW orientations below the Moho as a result of frozen-in anisotropy in the upper mantle, as suggested by previous studies.

  9. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data (United States)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.


    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  10. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa (United States)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.


    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  11. Crustal permeability: Introduction to the special issue (United States)

    Ingebritsen, Steven E.; Gleeson, Tom


    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  12. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India (United States)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.


    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  13. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming


    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  14. Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey) (United States)

    Rossetti, Federico; Asti, Riccardo; Faccenna, Claudio; Gerdes, Axel; Lucci, Federico; Theye, Thomas


    The Menderes Massif of western Turkey is a key area to study feedback relationships between magma generation/emplacement and activation of extensional detachment tectonics. Here, we present new textural analysis and in situ U-(Th)-Pb titanite dating from selected samples collected in the transition from the undeformed to the mylonitized zones of the Salihli granodiorite at the footwall of the Neogene, ductile-to-brittle, top-to-the-NNE Gediz-Alaşheir (GDF) detachment fault. Ductile shearing was accompanied by the fluid-mediated sub-solidus transformation of the granodiorite to orthogneiss, which occurred at shallower crustal levels and temperatures compatible with the upper greenschist-to-amphibolite facies metamorphic conditions (530-580 °C and P < 2 GPa). The syn-tectonic metamorphic overgrowth of REE-poor titanite on pristine REE-rich igneous titanite offers the possibility to constrain the timing of magma crystallisation and solid-state shearing at the footwall of the Gediz detachment. The common Pb corrected 206Pb/238U (206Pb*/238U) ages and the REE re-distribution in titanite that spatially correlates with the Th/U zoning suggests that titanite predominantly preserve open-system ages during fluid-assisted syn-tectonic re-crystallisation in the transition from magma crystallization and emplacement (at 16-17 Ma) to the syn-tectonic, solid-state shearing (at 14-15 Ma). A minimum time lapse of ca. 1-2 Ma is then inferred between the crustal emplacement of the Salihli granodiorite and nucleation of the ductile extensional shearing along the Gediz detachment. The reconstruction of the cooling history of the Salihli granodiorite documents a punctuated evolution dominated by two episodes of rapid cooling, between 14 Ma and 12 Ma ( 100 °C/Ma) and between 3 and 2 Ma ( 105 °C/Ma). We relate the first episode to nucleation and development of post-emplacement of ductile shearing along the GDF and the second to brittle high-angle faulting, respectively. Our dataset

  15. Variations of the crustal thickness in the Betic-Rif domain and their foreland regions, by P-Receiver Functions (United States)

    Stich, D.; Mancilla, F.; Morales, J.; Martin, R.; Diaz, J.; Pazos, A.; Cordoba, D.; Pulgar, J. A.; Ibarra, P.; Harnafi, M.; Gonzalez-Lodeiro, F.


    To image the crustal structure of the Betic-Rif Range and the surrounding area we perform a P-receiver function study (PRF). We calculate PRFs at 110 broadband stations located in South Iberia Peninsula and North Morocco to obtain thickness and average Vp/Vs ratio for the Crust. The Crustal thickness values show strong lateral variations throughout the region. Crustal thicknesses vary between ~19 km and ~46 km. The Betic and Rif ranges are underlined by a thickened crust with crustal thicknesses between ~35 km and ~46 km, reaching the highest values in the contact between the Alboran Domain and External Zones. Southeast Iberia and Northeast Morocco are affected by significant crustal thinning, with crustal thicknesses ranging from ~19 km to ~30 km, with the shallowest Moho along the Mediterranean coast. The transition from thick to thin crust is coincident with the faults system of the Trans-Alboran Shear Zone. Toward the North, the Iberian Massif is an homogeneous domain of average 30-31 km crustal thickness and flat Moho discontinuity with low average Vp/Vs ratios ~1.72. Further south an extended domain, which includes the Atlas domain and its foreland regions, presents crustal thickness of 27-34km. Vp/Vs ratios in north Morocco show normal values of ~1.75 for most stations except for the Atlas domain, where several stations present low Vp/Vs ratios around 1.71. The obtained PRFs are migrated to depth building cross-section images to delineate the crustal mantle discontinuity (Moho) along the study area. In the migrated images, we include altogether ~11.200 PFRs to follow the Moho discontinuity from the Iberian Massif, in the North, along the Gribraltar arc towards the Moroccan Massif in the South. These images show how, in the North, the Iberian crust underthrust the Alboran domain along their contact with the observation of a slab, from the western limit until the 3°W longitude, reaching the maximum depth of ~70 km under the coast coincide with the

  16. Crustal thickness estimates for Baja California, Sonora, and Sinaloa, Mexico, using disperse surface waves (United States)

    López-Pineda, Leobardo; Rebollar, Cecilio J.; Quintanar, Luis


    Dispersed surface waves of regional events recorded at Network of Autonomously Recording Seismographs (NARS)-Baja and Red Sísmica de Banda Ancha (RESBAN) networks located over the Baja California Peninsula, Sonora, and Sinaloa, Mexico, were used to estimate shear wave elastic models and crustal thickness. We analyzed fundamental modes of surface waves with period between 10 and 40 s. Multiple filter analysis and the inversion method described by Herrmann and Ammon (2003) was used. Crustal thickness estimates for the Peninsular Ranges of Northern Baja California agree with those obtained by previous studies in the Peninsular Ranges of Northern Baja California. We analyzed dispersion of surface waves with northwest-southeast travel paths along the east and west sides of the Baja California Peninsula as well as a northwest-southeast travel path along the western sides of the Mexican states of Sonora and Sinaloa. It was found that the crustal structure east of the Baja California Peninsula is similar to the structure of Sonora and Sinaloa. The correlation between those two structures suggests dextral offset of the order of 275 ± 25 km if we consider Baja California Peninsula as a rigid body moving toward the northwest relative to the North America plate. This displacement between the structures is in agreement with the displacement determined by the dating of Miocene deposits located in San Felipe on the Baja California Peninsula (Pacific plate), and Isle Tiburon located west of Sonora (North America plate).

  17. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau (United States)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.


    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  18. Experimental Methods to Observe Asymmetric Instability of Intermediate-Reduced-Volume Vesicles in Extensional Flow (United States)

    Dahl, Joanna; Narsimhan, Vivek; Gouveia, Bernardo; Kumar, Sanjay; Shaqfeh, Eric; Muller, Susan


    Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These enclosed lipid bilayer membranes are suitable for complementary theoretical and experimental analysis. A recent study (Narsimhan et al., J. Fluid Mech. 750, 144 (2014)) predicted that intermediate-aspect-ratio vesicles break up asymmetrically in extensional flow. Upon infinitesimal perturbation to its shape, the vesicle stretches into an asymmetric dumbbell. In this work, we present preliminary results from cross-slot microfluidic experiments observing this instability. The onset of breakup depends on two non-dimensional parameters: reduced volume (vesicle asphericity) and capillary number (ratio of viscous to bending forces). We will present strategies for accurately measuring these quantities in order to plot a stability diagram. Specifically, we will describe our synthesis of floppy, intermediate-reduced-volume vesicles and our measurement of their bending moduli by analyzing membrane thermal fluctuations. We will discuss coupling particle-image velocimetry (PIV) with cross-slot trapping of vesicles to ensure that breakup occurs at the stagnation point. A preliminary phase diagram for asymmetric breakup will be reported.

  19. Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.


    We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.

  20. On ice rifts and the stability of non-Newtonian extensional flows on a sphere (United States)

    Sayag, Roiy


    Rifts that form at the fronts of floating ice shelves that spread into the ocean can trigger major calving events in the ice. The deformation of ice can be modeled as a thin viscous film driven by buoyancy. The front of such a viscous film that propagates over a flat surface with no-slip basal conditions is known to have stable axisymmetric solutions. In contrast, when the fluid propagates under free-slip conditions at the substrate, the front can become unstable to small perturbations if the fluid is sufficiently strain-rate softening. Consequently, the front will develop tongues with a characteristic wavelength that coarsens over time, a pattern that is reminiscent of ice rifts. Here we investigate the stability of a spherical sheet of power-law fluids under free-slip basal conditions. The fluid is discharged at constant flux and axisymmetrically with respect to the pole, and propagates towards the equator. The propagating front in such a situation may become unstable due to its failure to sustain large extensional forces, resulting in the formation of rifts. This study has implications to understanding the cause of patterns that are observed on shells of floating ice in a range of planetary objects, and whether open rifts that sustain life were feasible in snowball earth. Israel Science Foundation 1368/16.