WorldWideScience

Sample records for crustal extensional structures

  1. Kinematic models of extensional structures

    International Nuclear Information System (INIS)

    Groshong, R.H. Jr.

    1990-01-01

    This paper discusses kinematic models that can relate faults of different types and different positions within a single dynamic system and thereby offer the potential to explain the disparate seismic activity characteristic of extensional terrains. The major styles are full grabens, half grabens, domino blocks, and glide-block systems. Half grabens, the most likely models for Basin and Range structure, are formed above a master fault of decreasing dip with depth and a hangingwall that deforms as it passes over the curved fault. Second-order normal faults, typically domino style, accommodate the required hangingwall deformation. According to the author low-angle detachment faults are consistent with the evidence of seismicity only on high-angle faults if the hangingwall of the detachment is broken by multiple half-graben systems

  2. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    Science.gov (United States)

    Pavlis, T. L.; Miller, M.; Serpa, L.

    2008-07-01

    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  3. Crustal structure of Central Sicily

    Science.gov (United States)

    Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo

    2018-01-01

    We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.

  4. Quantitative identification and analysis of sub-seismic extensional structure system: technique schemes and processes

    International Nuclear Information System (INIS)

    Chenghua, Ou; Chen, Wei; Ma, Zhonggao

    2015-01-01

    Quantitative characterization of complex sub-seismic extensional structure system that essentially controls petroleum exploitation is difficult to implement in seismic profile interpretation. This research, based on a case study in block M of Myanmar, established a set of quantitative treatment schemes and technique processes for the identification of sub-seismic low-displacement (SSLD) extensional faults or fractures upon structural deformation restoration and geometric inversion. Firstly, the master-subsidiary inheritance relations and configuration of the seismic-scale extensional fault systems are determined by analyzing the structural pattern. Besides, three-dimensional (3D) pattern and characteristics of the seismic-scale extensional structure have been illustrated by a 3D structure model built upon seismic sections. Moreover, according to the dilatancy obtained from structural restoration on the basis of inclined shear method, as well as the fracture-flow index, potential SSLD extensional faults or fractures have been quantitatively identified. Application of the technique processes to the sub-seismic low-displacement extensional structures in block M in Myanmar is instructive to quantitatively interpret those SSLD extensional structure systems in practice. (paper)

  5. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    Science.gov (United States)

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  6. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    Energy Technology Data Exchange (ETDEWEB)

    Pavlis, T L; Serpa, L [Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 7996 (United States); Miller, M [Department of Geological Sciences, University of Oregon, Eugene, OR 97403 (United States)], E-mail: tlpavlis@utep.edu

    2008-07-01

    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  7. Death Valley turtlebacks: Mesozoic contractional structures overprinted by Cenozoic extension and metamorphism beneath syn-extensional plutons

    International Nuclear Information System (INIS)

    Pavlis, T L; Serpa, L; Miller, M

    2008-01-01

    The term turtleback was first coined to describe the curvilinear fault surfaces that produced a distinctive geomorphic form in the Black Mountains east of Death Valley, and although it was decades before their full significance was appreciated, they remain one of the most distinctive features of the extensional structure of the Death Valley region. Historically the interpretation of the features has varied markedly, and misconceptions about their character continue to abound, including descriptions in popular field guides for the area. It the 1990's, however, the full history of the systems began to be apparent from several key data: 1) the dating of the plutonic assemblage associated with the turtlebacks demonstrated that late Miocene, syn-extensional plutonism was fundamental to their formation; 2) the plutonic assemblage forms an intrusive sheet structurally above the turtlebacks, indicating a tie between much of the high grade metamorphism and Cenozoic plutonism; 3) a modern analog for the syn-extensional plutonism in the Black Mountains was recognized beneath Death Valley with the imaging of a mid-crustal magma body; 4) the Neogene structural history was worked out in the turtlebacks showing that folding of early-formed shear zones formed the turtleback anticlinoria but overprinting by brittle faults produced the final form as they cut obliquely across the older structure; and 5) the pre-extensional structural history was clarified, demonstrating that Mesozoic basement-involved thrust systems are present within the turtlebacks, but have been overprinted by the extensional system. An unresolved issue is the significance of Eocene U-Pb dates for pegmatites within the region, but presumably these relate somehow to the pre-extensional history. Miller and Pavlis (2005; E. Sci. Rev.) reviewed many features of the turtlebacks, and our working model for the region is that the turtlebacks originated as mid-crustal ductile-thrust systems within the Cordilleran fold

  8. Investigation of lunar crustal structure and isostasy. Final technical report

    International Nuclear Information System (INIS)

    Thurber, C.H.

    1987-07-01

    The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints

  9. Deformation of quartz and feldspar at mid-crustal depths in an extensional normal fault (Viveiro Fault, NW Spain)

    Science.gov (United States)

    López-Sánchez, M. A.; Llana-Fúnez, S.; Marcos, A.; Martínez, F. J.

    2012-04-01

    Metamorphic reactions, deformation mechanism and chemical changes during mylonitization and ultramylonitization of granite affected by a crustal-scale shear zone are investigated using microstructural observations and quantitative analysis. The Vivero Fault (VF) is a large extensional shear zone (>140Km) in NW of Iberia that follows the main Variscan trend dipping 60° toward the West. The movement accumulated during its tectonic history affects the major lithostratigraphic sequence of Palaeozoic and Neoproterozoic rocks and the metamorphic facies developed during Variscan orogenesis. Staurolite, and locally, andalucite plus biotite grew in the hangingwall during the development of VF, overprinted the previous regional Variscan greenschist facies metamorphism. Andalusite growth took place during the intrusion of syntectonic granitic bodies, such as the deformed granite studied here. The Penedo Gordo granite is coarse-grained two-mica biotite-rich granite intruding the VF and its hangingwall. This granite developed a localized deformation consisting of a set of narrow zones (mm to metric scales) heterogeneously distributed subsequently to its intrusion. Based on pseudosections for representative hangingwall pelites hosting the granite and the inferred metamorphic evolution, the shear zone that outcrops at present-day erosion surface was previously active at 14,7-17 km depth (390-450 MPa). Temperature estimates during deformation reach at least the range 500-600° C, implying a local gradient of 35±6°C/km. Microstructures in the mylonites are characterized by bulging (BLG) to subgrain rotation (SGR) recristallization in quartz with the increasing of deformation. Albitisation, flame-perthite and tartan twining are common in K-feldspar at the early stage of deformation. The inferred dominant deformation mechanisms are: i) intracrystalline plasticity in quartz, ii) cataclasis with syntectonic crystallisation of very fine albite-oligoclase and micas in K-feldspar, and

  10. Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania

    Directory of Open Access Journals (Sweden)

    Shimba D. Kwelwa

    2018-04-01

    Full Text Available Three major gold deposits, Matandani, Kukuluma, and Area 3, host several million ouncez (Moz of gold, along a ~5 km long, WNW trend in the E part of the Geita Greenstone Belt, NW Tanzania. The deposits are hosted in Archaean volcanoclastic sediment and intrusive diorite. The geological evolution of the deposits involved three separate stages: (1 an early stage of syn-sedimentary extensional deformation (D1 around 2715 Ma; (2 a second stage involving overprinting ductile folding (D2–4 and shearing (D5–6 events during N-S compression between 2700 and 2665 Ma, coeval with the emplacement of the Kukuluma Intrusive Complex; and (3 a final stage of extensional deformation (D7 accommodated by minor, broadly east-trending normal faults, preceded by the intrusion of felsic porphyritic dykes at ~2650 Ma. The geometry of the ore bodies at Kukuluma and Matandani is controlled by the distribution of magnetite-rich meta-ironstone, near the margins of monzonite-diorite bodies of the Kukuluma Intrusive Complex. The lithological contacts acted as redox boundaries, where high-grade mineralization was enhanced in damage zones with higher permeability, including syn-D3 hydrothermal breccia, D2–D3 fold hinges, and D6 shears. The actual mineralizing event was syn-D7, and occurred in an extensional setting that facilitated the infiltration of mineralizing fluids. Thus, whilst gold mineralization is late-tectonic, ore zone geometries are linked to older structures and lithological boundaries that formed before gold was introduced. The deformation-intrusive history of the Kukuluma and Matandani deposits is near identical to the geological history of the world-class Nyankanga and Geita Hill deposits in the central part of the Geita Greenstone Belt. This similarity suggests that the geological history of much of the greenstone belt is similar. All major gold deposits in the Geita Greenstone Belt lack close proximity to crustal-scale shear zones; they are associated

  11. Crustal structure beneath Eastern Greenland

    DEFF Research Database (Denmark)

    Reiche, Sönke; Thybo, H.; Kaip, G.

    2011-01-01

    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice...

  12. Extensional Structures on the Po Valley Side of the Northern Apennines

    Science.gov (United States)

    Bettelli, G.; Vannucchi, P.; Capitani, M.

    2001-12-01

    The present-day tectonics of the Northern Apennines is characterized by extension in the inner Tyrrhenian side and compression in the outer Po Valley-Adriatic side. The boundary separating the two domains, extensional and compressional, is still largely undetermined and mainly based on geophysical data (focal mechanisms of earthquakes). Map-scale extensional structures have been studied only along the Tyrrhenian side of the Northern Apennines (Tuscany), while along the Po Valley-Adriatic area the field studies concentrated on compressional features. A new, detailed field mapping of the Po Valley side of the Northern Apennines carried out in the last ten years within the Emilia Romagna Geological Mapping Program has shown the presence of a large extensional fault crossing the high Bologna-Modena-Reggio Emilia provinces, from the Sillaro to the Val Secchia valleys. This Sillaro-Val Secchia Normal Fault (SVSNF) is NW-SE trending, NE dipping and about 80 km long. The age, based on the younger displaced deposits, is post-Miocene. The SVSNF is a primary regional structure separating the Tuscan foredeep units from the Ligurian Units in the south-east sector of the Northern Apennines, and it is responsible for the exhumation of the Tuscan foredeep units along the Apennine water divide. The sub-vertical, SW-NE trending faults, formerly interpreted as strike slip, are transfer faults associated to the extensional structure. A geological cross-section across the SVSNF testifies a former thickness reduction and lamination of the Ligurian Units, as documented in the field, in the innermost areas of the Bologna-Modena-Reggio Emilia hills, implying the occurrence of a former extensional fault. These data indicate that the NE side of the water divide has already gone under extension reducing the compressional domain to the Po Valley foothills and plain. They can also help in interpreting the complex Apennines kinematics.

  13. Crustal Structure beneath Alaska from Receiver Functions

    Science.gov (United States)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  14. Middle Miocene E-W tectonic horst structure of Crete through extensional detachment faults

    International Nuclear Information System (INIS)

    Papanikolaou, D; Vassilakis, E

    2008-01-01

    Two east-west trending extensional detachment faults have been recognized in Crete, one with top-to-the-north motion of the hanging wall toward the Cretan Sea and one with top-to-the-south motion of the hanging wall toward the Libyan Sea. The east-west trending zone between these two detachment faults, which forms their common footwall, comprises a tectonic horst formed during Middle Miocene slip on the detachment faults. The detachment faults disrupt the overall tectono-stratigraphic succession of Crete and are localized along pre-existing thrust faults and along particular portions of the stratigraphic sequence, including the transition between the Permo-Triassic Tyros Beds and the base of the Upper Triassic-Eocene carbonate platform of the Tripolis nappe. By recognizing several different tectono-stratigraphic formations within what is generally termed the 'phyllite-quartzite', it is possible to distinguish these extensional detachment faults from thrust faults and minor discontinuities in the sequence. The deformation history of units within Crete can be summarized as: (i) compressional deformation producing arc-parallel east-west trending south-directed thrust faults in Oligocene to Early Miocene time (ii) extensional deformation along arc-parallel, east-west trending detachment faults in Middle Miocene time, with hanging wall motion to the north and south; (iii) Late Miocene-Quaternary extensional deformation along high-angle normal and oblique normal faults that disrupt the older arc-parallel structures

  15. The Cretaceous Duimiangou adakite-like intrusion from the Chifeng region, northern North China Craton: Crustal contamination of basaltic magma in an intracontinental extensional environment

    Science.gov (United States)

    Fu, Lebing; Wei, Junhao; Kusky, Timothy M.; Chen, Huayong; Tan, Jun; Li, Yanjun; Shi, Wenjie; Chen, Chong; Zhao, Shaoqing

    2012-03-01

    Zircon U-Pb ages, major and trace element and Sr, Nd and Pb isotope compositions of the Duimiangou (DMG) quartz monzonite from the Chifeng region on the northern North China Craton (NCC) were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating yields an emplacement age of 128 ± 1 Ma for this intrusion, with numerous Mesozoic inherited zircons clustering at 219 ± 12 Ma and 161 ± 3 Ma, along with some ancient zircons with ages of 2.5 Ga, 1.77 Ga and 324 Ma. Bulk-rock analyses show that this intrusion is characterized by variable SiO2 (63.4-69.4 wt.%), Al2O3 (14.5-16.3 wt.%), Na2O + K2O (8.01-8.95 wt.%), and Mg# (41.3-48.0). They are enriched in large ion lithophile elements and light rare earth elements without significant Eu anomalies (mostly between 0.89-1.10), and depleted in heavy rare earth elements and high field strength elements, with high Sr/Y (63.7-101.7) and (La/Yb)N (20.5-31.0) ratios. The DMG intrusion formed in an intracontinental extensional setting contemporaneous with the formation of pull-apart basins, metamorphic core complexes and intense magmatism, rather than in a convergent margin. It has homogeneous Sr ((87Sr/86Sr)i = 0.7059-0.7066), Nd (εNd(t) = - 6.2 to - 7.2) and Pb ((206Pb/204Pb)i = 17.289-17.375, (207Pb/204Pb)i = 15.359-15.463, (208Pb/204Pb)i = 37.130-37.472) isotope compositions. Sr-Nd isotope modeling results, plus relatively young Nd model ages (1522-1618 Ma) and the presence of relict zircons, suggest that this intrusion could have originated from crustal contamination of newly formed basaltic melts derived from asthenospheric mantle, accompanied by fractional crystallization of K-feldspar, biotite, apatite, Fe-Ti oxides and minor hornblende and plagioclase. Thus, the DMG adakite-like intrusion may record the magmatic event associated with underplating of asthenospheric magma in an intracontinental extensional

  16. Seismically constrained two-dimentional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    Cambay basin; P-wave velocity; heat flow; heat generation; 2-D modelling; crustal thermal structure; Mohodepth; Curie isotherm. ... This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin.

  17. Seismic studies of crustal structure and tectonic evolution across the central California margin and the Colorado Plateau margin

    Science.gov (United States)

    Howie, John Mark

    This thesis presents results from two integrated deep-crustal seismic-reflection and wide-angle-reflection/refraction studies that improve our understanding of crustal structure and tectonic evolution in two tectonically active areas of the western United States. A multi-faceted approach to the study of crustal structure includes the use of compressional and shear wave seismic data. Supplementing the controlled source seismic observations with seismicity, gravity, heat flow, laboratory measurements and available geologic information allows a much improved understanding of crustal structure and tectonic evolution than would be available from the seismic data alone. Chapter 1 introduces the data integration strategy applied to the studies completed. In Chapter 2, an integrated crustal-velocity model across the south-central California margin west of the San Adreas fault is presented. The crustal structure defines tectonostratigraphic terranes 15 to 20 km thick underlain by a 6-km-thick high-velocity layer (6.8-7.0 km/s) interpreted as tectonically underplated oceanic crust. Structures defined in the oceanic crust indicate significant compressional and strike-slip deformation within the oceanic crust that probably formed during the final stages of subduction from 24-16 Ma. In Chapter 3, the crustal model from Chapter 2 is used as a constraint for models of the tectonic evolution of the Pacific-North American transform plate boundary. By combining the crustal structure with thermal models for asthenospheric upwelling associated with a slab-free window, I find that the mantle lithosphere east of the coast beneath south-central California probably delaminated from the oceanic crust, stranding the oceanic crust beneath the margin. In Chapter 4, results from a high-resolution reflection experiment in central Arizona across the southwestern edge of the Colorado Plateau address the relationship between strength of the crust and localization of extensional tectonism. A low

  18. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys?

    Science.gov (United States)

    Ramos, A.; Fernández, O.; Torne, M.; Sánchez de la Muela, A.; Muñoz, J. A.; Terrinha, P.; Manatschal, G.; Salas, M. C.

    2017-05-01

    At present, the SW Iberian margin is located along the convergent Iberia-Nubia plate boundary. In Mesozoic times, the margin was located at the triple junction of the Ligurian Tethys, Central Atlantic and Northern Atlantic. The characterization of its crustal structure has allowed us to propose a configuration for this triple junction and to determine the role that this transform margin played within the plate kinematic system. In this paper we present an integrated study based on the interpretation of a 2D regional multichannel seismic survey consisting of 58 profiles, tied with onshore geology and exploratory wells, and on gravimetric modeling performed over four NW-SE trending profiles. Integrated interpretation of MCS data combined with 2D gravity modeling reveals a complex pattern in the southward crustal thinning of SW Iberia and supports the possible presence of oceanic crust under the Gulf of Cadiz. The tapering of Iberian crust is characterized by steps with rapid changes in the thickness of the crust, and thinning to Bank. Margin inversion and the pre-existing extensional crustal structure are responsible for the areal distribution and amplitude of the prominent positive gravity anomaly observed in the Gulf of Cadiz.

  19. Crustal Structure of Khövsgöl, Mongolia

    Science.gov (United States)

    Scott, A. M.; Meltzer, A.; Stachnik, J.; Russo, R.; Munkhuu, U.; Tsagaan, B.

    2017-12-01

    Mongolia is part of the Central Asian Orogenic Belt, an accretionary event that spanned 800 million years from the mid-Proterozoic to mid-Phanerozoic. As a result of the past collisional and rifting events, the modern Khövsgöl rift system of northern Mongolia contains a heterogeneous lithospheric structure. The current rift system has three parallel N-S trending basins that roughly align with terrane boundaries. Structures inherited during the accretionary events may be a factor influencing regional deformation. The forces that drive local deformation are not well understood, but varying processes have been proposed: far-field effects of India-Eurasian plate convergence, westward subduction of the Pacific plate, magmatic underplating at the base of the crust, mantle plume activity, and asthenospheric mantle convection. Determining the nature of crustal features within this poorly understood region may illuminate processes that control rifting within intracontinental settings. A network of 26 broadband seismic stations encompassing 200 square kilometers of the Khövsgöl rift system were deployed from August 2014 to June 2016. More than 2100 events were detected, and most earthquakes were concentrated near rift structures. Events between Busiin-Gol and Darkhad, the westernmost and central basins of the Khövsgöl rift system, are distributed within the crust. An active fault is outlined along the eastern border of the Darkhad basin. Khövsgöl earthquakes bound both sides of the rift. Along the northern border of Lake Khövsgöl, seismic events define a shallow active fault orthogonal to the basin. The largest event recorded within the network was a magnitude ml=5.2 located near the northeastern border of Lake Khövsgöl on 12-05-2014. The focal mechanism of this earthquake is predominantly strike-slip, but also includes an extensional component. This work focuses on earthquake relocation and calculating moment tensors and focal mechanisms of larger regional

  20. Crustal structure of the Khartoum Basin, Sudan

    CSIR Research Space (South Africa)

    El Tahir, N

    2013-05-01

    Full Text Available Basin ranges between 33 and 37 km, with an average of 35 km, and that the crustal Vp/Vs ratio ranges from 1.74 to 1.81, with an average of 1.78. From the joint inversion of receiver functions and Rayleigh wave group velocities,we obtained similar results...

  1. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  2. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Science.gov (United States)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ Technological Research Council of Turkey (TUBITAK Project No: ÇAYDAG-114Y066), and EU-HORIZON-2020: COST Actions: Earth System Science and Environmental Management: ES1401 - Time Dependent Seismology (TIDES).

  3. The Aegean/Cycladic and the Basin and Range Extensional Provinces - A Tectonic and Geochronologic Perspective

    Science.gov (United States)

    Stockli, D. F.

    2017-12-01

    The Aegean/Cycladic region (AC) and the Basin and Range Province (B&R) are two of the most famous Cenozoic extensional provinces and have greatly influenced our thinking about syn-convergent back-arc extension, core complex formation, syn-extensional magmatism, and kinematic transitions. They share numerous tectonic and structural similarities, such as a syn-convergent setting, previous contractional deformation, and core complex formation, but fundamental geological ambiguities remain, mainly centering around timing. The B&R affected a previously contractional belt (Sevier) and voluminous continental magmatic arc that created a pre-extensional orogenic highland. Extension was long-lived and complex, driven by both gravitational collapse and temporally distinct kinematic boundary condition changes. The B&R was also affected by massive, largely pre-extensional regional magmatic flare-ups that modified both the thermal and crustal composition. As the B&R occupies an elevated interior plateau, syn-extensional basin deposits are exclusively continental in character. In contrast, the AC is a classic marine back-arc extensional province that affected an active subduction margin with numerous accreted oceanic and continental ribbons, exhuming an early Cenozoic HP-LT subduction complex. Exhumation of the HP-LT complex, however, was accommodated both by vertical extrusion and crustal extension. Late Cenozoic extensional faulting was contemporaneous with S-ward sweeping arc magmatism and affected by little to no kinematic changes. As both the AC and B&R experienced contractional deformation during K-Cz subduction and J-K shortening, respectively, it is critical to differentiate between contractional and extensional structures and fabrics. The lack of temporal constraints hampers the reconstructions of pre-extensional structural anatomies and extensional strain magnitudes or even the attribution of structures to specific geodynamic settings. Novel methodologies in

  4. Deep seismic investigation of crustal extensional structures in the Danish Basin along the ESTRID-2 profile

    DEFF Research Database (Denmark)

    Sandrin, Alessandro; Thybo, Hans

    2008-01-01

    The crust and uppermost mantle in the Danish Basin are investigated by modelling the P-wave velocity distribution along the north-south trending seismic profile ESTRID-2. Seismic tomography and ray inversion modelling demonstrate a variable depth to the top of the crystalline crust, from ~10 km...

  5. Crustal structure and active tectonics in the Eastern Alps

    DEFF Research Database (Denmark)

    Brückl, E.; Behm, M.; Decker, K.

    2010-01-01

    fragment (PA), was interpreted and a triple junction was inferred. The goal of this study has been to relate these deep crustal structures to active tectonics. We used elastic plate modeling to reconsider the Moho fragmentation. We interpret subduction of EU below AD and PA from north to south......During the last decade, a series of controlled source seismic experiments brought new insight into the crustal and lithospheric structure of the Eastern Alps and their adjacent tectonic provinces. A fragmentation of the lithosphere into three blocks, Europe (EU), Adria (AD), and the new Pannonian...

  6. Upper mantle and crustal structure of the East Greenland Caledonides

    DEFF Research Database (Denmark)

    Schiffer, Christian; Balling, N.; Jacobsen, B. H.

    The East Greenland and Scandinavian Caledonides once formed a major coherent mountain range, as a consequence of the collision of the continents of Laurentia and Baltica. The crustal and upper mantle structure was furthermore influenced by several geodynamic processes leading to the formation of ...

  7. Seismically constrained two-dimensional crustal thermal structure of ...

    Indian Academy of Sciences (India)

    The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...

  8. Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory

    Science.gov (United States)

    Shinevar, W. J.; Behn, M. D.; Hirth, G.

    2014-12-01

    Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.

  9. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    Science.gov (United States)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  10. Crustal structure beneath Cameroon from EGM2008

    Directory of Open Access Journals (Sweden)

    Ngatchou Heutchi Evariste

    2014-02-01

    Full Text Available We used the Earth Gravitational Model (EGM2008 data sets to analyze the regional gravity anomalies and to study the underground structures in Cameroon. We first created a high-resolution Free-Air anomaly database, then corrected the gravity field of the topographic effect by using ETOPOl DEM with a resolution of 0.01° to obtain the Bouguer anomaly, then applied a multi-scale wavelet-analysis technique to separate the gravity-field components into different parts of shallow-to-deep origins, and finally used the logarithmic power spectrum technique to obtain detailed images and corresponding source depths as well as certain lateral inhomogeneity of structure density. The anomalies of shallow origin show successive elongated gravity “highs” and “lows” attributable to subsurface Tertiary and lower Cretaceous undulations. Our results are in good agreement with previous investigations.

  11. Seismicity and crustal structure at the Mendocino triple junction, Northern California

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, M.

    1998-12-01

    A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.

  12. The Crustal Structure and Seismicity of Eastern Venezuela

    Science.gov (United States)

    Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.

    2001-12-01

    from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.

  13. Effect of Crustal Density Structures on GOCE Gravity Gradient Observables

    Directory of Open Access Journals (Sweden)

    Robert Tenzer Pavel Novák

    2013-01-01

    Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.

  14. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    Science.gov (United States)

    Martinetti, Luca

    At service temperatures, A--B--A thermoplastic elastomers (TPEs) behave similarly to filled (and often entangled) B-rich rubbers since B block ends are anchored on rigid A domains. Therefore, their viscoelastic behavior is largely dictated by chain mobility of the B block rather than by microstructural order. Relating the small- and large-strain response of undiluted A--B--A triblocks to molecular parameters is a prerequisite for designing associated TPE-based systems that can meet the desired linear and nonlinear rheological criteria. This dissertation was aimed at connecting the chemical and topological structure of A--B--A TPEs with their viscoelastic properties, both in the linear and in the nonlinear regime. Since extensional deformations are relevant for the processing and often the end-use applications of thermoplastic elastomers, the behavior was investigated predominantly in uniaxial extension. The unperturbed size of polymer coils is one of the most fundamental properties in polymer physics, affecting both the thermodynamics of macromolecules and their viscoelastic properties. Literature results on poly(D,L-lactide) (PLA) unperturbed chain dimensions, plateau modulus, and critical molar mass for entanglement effect in viscosity were reviewed and discussed in the framework of the coil packing model. Self-consistency between experimental estimates of melt chain dimensions and viscoelastic properties was discussed, and the scaling behaviors predicted by the coil packing model were identified. Contrary to the widespread belief that amorphous polylactide must be intrinsically stiff, the coil packing model and accurate experimental measurements undoubtedly support the flexible nature of PLA. The apparent brittleness of PLA in mechanical testing was attributed to a potentially severe physical aging occurring at room temperature and to the limited extensibility of the PLA tube statistical segment. The linear viscoelastic response of A--B--A TPEs was first

  15. New constraints on the crustal structure beneath northern Tyrrhenian Sea

    Science.gov (United States)

    Levin, V. L.; Park, J. J.

    2009-12-01

    We present new seismological data on the seismic structure beneath the Tyrrhenian Sea between Corsica and the coast of Italy. Teleseismic receiver functions from two Tyrrhenian islands (Elba and Gorgona) identify clear P-to-S mode-converted waves from two distinct interfaces, at ~20 and ~45 km depth. Both interfaces are characterized by an increase of seismic wavespeed with depth. Using a summation of direct and multiply-reflected body waves within the P wave coda we estimate the mean ratio of compressional and shear wave speeds above the 45 km interface to be 1.75-1.80. Using reflectivity computations in 1D layered models we develop a model of seismic wavespeed distribution that yields synthetic seismograms very similar to those observed. We apply a Ps-multiple summation procedure to the synthetic waveforms to further verify the match between observed and predicted wavefields. The lower layer of our model, between 20 and 45 km, has Vp ~ 7.5 km/sec, a value that can be ascribed to either very fast crustal rocks or very slow upper mantle rocks. The Vp/Vs ratio is ~1.8 in this intermediate layer. On the basis of a well-constrained downward increase in seismic wave speed beneath this second layer, we interpret it as the magmatically reworked lower crust, a lithology that has been proposed to explain high-Vp layers in the crustal roots of island-arc terranes and volcanically altered continental margins, as well as lower-crustal high-Vp features sometimes seen beneath continental rifts. The presence of a thick layer of high-Vp, but crustal, lithology beneath the Tyrrhenian Sea differs considerably from previous estimates that interpreted the interface at ~20 km as the Moho. Our new interpretation obviates a need for a crustal thickness change of over 20 km at the crest of the Apennines orogen. We propose an alteration in the properties of the lower crust instead. We argue that ongoing convergent subduction of the Adriatic lithospehre is not required beneath northern

  16. Building the Pamir-Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and petrochronology of deep Asian crust

    Science.gov (United States)

    Hacker, Bradley R.; Ratschbacher, Lothar; Rutte, Daniel; Stearns, Michael A.; Malz, Nicole; Stübner, Konstanze; Kylander-Clark, Andrew R. C.; Pfänder, Jörg A.; Everson, Alexa

    2017-09-01

    Large domes of crystalline, middle to deep crustal rocks of Asian provenance make the Pamir a unique part of the India-Asia collision. Combined major-element and trace element thermobarometry, pseudosections, garnet-zoning deconstruction, and geochronology are used to assess the burial and exhumation history of five of these domes. All domes were buried and heated sufficiently to initiate garnet growth at depths of 15-20 km at 37-27 Ma. The Central Pamir was then heated at 10-20°C/Myr and buried at 1-2 km/Myr to 600-675°C at depths of 25-35 km by 22-19 Ma. The Shakhdara Dome in the South Pamir was heated at 20°C/Myr and buried at 2-8 km/Myr to reach 750-800°C at depths of ≥50 km by 20 Ma. All domes were exhumed at >3 km/Myr to 5-10 km depths and 300°C by 17-15 Ma. The pressures, temperatures, burial rates, and heating rates are typical of continental collision. Decompression during exhumation outpaced cooling, compatible with tectonic unroofing along mapped large-scale, normal-sense shear zones, and with advection of near-solidus or suprasolidus temperatures into the upper crust, triggering exhumation-related magmatism. The Shakhdara Dome was exhumed from greater depth than the Central Pamir domes perhaps due to its position farther in the hinterland of the Paleogene retrowedge and to higher heat input following Indian slab breakoff. The large-scale thickening and coincident 20 Ma switch to extension throughout a huge area encompassing the Pamir and Karakorum strengthens the idea that the evolution of orogenic plateaux is governed by catastrophic plate-scale events.

  17. Crustal Structure of the Tengchong Intra-plate Volcanic Area

    Science.gov (United States)

    Qian, Rongyi; Tong, Vincent C. H.

    2015-09-01

    We here provide an overview of our current understanding of the crustal structure of Tengchong in southwest China, a key intra-plate volcanic area along the Himalayan geothermal belt. Given that there is hitherto a lack of information about the near-surface structure of intra-plate volcanic areas, we present the first seismic reflection and velocity constraints on the shallow crust between intra-plate volcanoes. Our near-surface seismic images reveal the existence of dome-shaped seismic reflectors (DSRs) in the shallow crust between intra-plate volcanic clusters in Tengchong. The two DSRs are both ~2 km wide, and the shallowest parts of the DSRs are found at the depth of 200-300 m. The velocity model shows that the shallow low-velocity layer (<4 km/s) is anomalously thick (~1 km) in the region where the DSRs are observed. The presence of DSRs indicates significant levels of intra-plate magmatism beneath the along-axis gap separating two volcano clusters. Along-axis gaps between volcano clusters are therefore not necessarily an indicator of lower levels of magmatism. The seismic images obtained in this technically challenging area for controlled-source seismology allow us to conclude that shallow crustal structures are crucial for understanding the along-axis variations of magmatism and hydrothermal activities in intra-plate volcanic areas.

  18. Crustal structure and tectonic deformation of the southern Ecuadorian margin

    Science.gov (United States)

    Calahorrano, Alcinoe; Collot, Jean-Yves; Sage, Françoise; Ranero, César R.

    2010-05-01

    Multichannel seismic lines acquired during the SISTEUR cruise (2000) provide new constraints on the structure and deformation of the subduction zone at the southern Ecuadorian margin, from the deformation front to the continental shelf of the Gulf of Guayaquil. The pre-stack depth migrated images allows to characterise the main structures of the downgoing and overriding plates and to map the margin stratigraphy in order to propose a chronology of the deformation, by means of integrating commercial well data and industry seismic lines located in the gulf area. The 100-km-long seismic lines show the oceanic Nazca plate underthrusting the South American plate, as well as the subduction channel and inter-plate contact from the deformation front to about 90 km landward and ~20 km depth. Based on seismic structure we identify four upper-plate units, consisting of basement and overlaying sedimentary sequences A, B and C. The sedimentary cover varies along the margin, being few hundreds of meters thick in the lower and middle slope, and ~2-3 km thick in the upper slope. Exceptionally, a ~10-km -thick basin, here named Banco Peru basin, is located on the upper slope at the southernmost part of the gulf. This basin seems to be the first evidence of the Gulf of Guayaquil opening resulting from the NE escaping of the North Andean Block. Below the continental shelf, thick sedimentary basins of ~6 to 8 km occupy most of the gulf area. Tectonic deformation across most of the upper-plate is dominated by extensional regime, locally disturbed by diapirism. Compression evidences are restricted to the deformation front and surrounding areas. Well data calibrating the seismic profiles indicate that an important portion of the total thickness of the sedimentary coverage of the overriding plate are Miocene or older. The data indicate the extensional deformation resulting from the NE motion of the North Andean Block and the opening of the Gulf of Guayaquil, evolves progressively in age

  19. Correlation of Crustal Structures and Seismicity Patterns in Northern Appalachians

    Science.gov (United States)

    Yang, X.; Gao, H.

    2017-12-01

    The earthquake distributions in northern Appalachians are bounded by major geologically-defined terrane boundaries. There is a distinct seismic gap within Taconic Belt between the Western Quebec Seismic Zone (WQSZ) to the west and the seismically active Ganderia terrane to the east. It is not clear, however, what crustal structures control the characteristics of earthquake clustering in this region. Here we present a newly constructed crustal shear velocity model for the northern Appalachians using Rayleigh wave data extracted from ambient noises. Our tomographic model reveals strongly heterogeneous seismic structures in the crust. We observe multiple NW-dipping patches of high-velocity anomalies in the upper crust beneath the southeastern WQSZ. The upper crust shear velocities in the Ganderia and Avalonia region are generally lower than those beneath the WQSZ. The middle crust has relatively lower velocities in the study area. The earthquakes in the study area are constrained within the upper crust. Most of the earthquake hypocenters within the WQSZ are concentrated along the NW-dipping boundaries separating the high-velocity anomalies. In contrast, most of the earthquake hypocenters in the Ganderia and Avalonia region are diffusely distributed without clear vertical lineaments. The orientations of maximum compressive stresses change from W-E in the Ganderia and Avalonia region to SW-NE in the WQSZ. The contrasts in seismicity, velocity, and stress field across the Taconic Belt indicate that the Taconic Belt terrane may act as a seismically inactive buffer zone in northern Appalachians.

  20. Crustal structure of the Eastern Alps and their foreland

    DEFF Research Database (Denmark)

    Grad, M.; Brückl, E.; Majdanski, M.

    2009-01-01

    The subject of this paper concerns the seismic modelling of the crustal structure in the transition zone from the Bohemian Massif, across the Molasse basin and the Eastern Alps to the Southern Alps, mainly on the territory of Austria. The CEL10/Alp04 profile crosses the triple point of the European......) are distinct up to 60-90 km offset and are characterized by large variations in apparent velocity and amplitude. The contact between the Molasse basin and the Eastern Alps represents a barrier for seismic waves. Mid-crustal reflections (Pc) are usually recorded at short distance intervals (20-50 km......, was undertaken using a ray-tracing technique. The P-wave velocity in the crystalline upper crust of the Bohemian Massif and Molasse basin is about 6.15 km s-1, which is slightly higher than in the Alpine area (about 6.0 km s-1). Below the northern accretionary wedge of the Eastern Alps low-velocity sediments...

  1. Deep crustal structure of the northeastern margin of the Arabian plate from seismic and gravity data

    Science.gov (United States)

    Pilia, Simone; Ali, Mohammed; Watts, Anthony; Keats, Brook; Searle, Mike

    2017-04-01

    The United Arab Emirates-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cainozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (7060 cubic inches, 116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s and a thick sedimentary package in the offshore. Furthermore, the velocity model reveals a highly stretched crust with the Moho discontinuity lying at about 20 km. A prestack depth-migrated profile (about 50 km long) coincident with the offshore part

  2. Deep crustal structure of the UAE-Oman mountain belt from seismic and gravity data

    Science.gov (United States)

    Pilia, S.; Tanveer, M.; Ali, M.; Watts, A. B.; Searle, M. P.; Keats, B. S.

    2016-12-01

    The UAE-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cenozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s, underlain by a thin layer of slower material (about 4.5 km/s). Furthermore, the velocity model reveals a Moho depth that rises from ca 30 km in the west to ca 20 km in the east. A poststack depth-migrated profile (about 50 km long) coincident with the offshore part of the refraction

  3. Variation in the crustal structure across central Iceland

    Science.gov (United States)

    Du, Zhijun; Foulger, G. R.

    2001-04-01

    We determine the crustal structures beneath 12 broad-band seismic stations deployed in a swath across central Iceland along and around the ICEMELT explosion seismic profile by combining teleseismic receiver functions, surface wave dispersion curves and the waveforms of a large, local event in Iceland. By using teleseisms that approach from different backazimuths, we study lateral structural variability out of the line of the ICEMELT profile. Beneath Tertiary areas, the thickness of the upper crust, as defined by the 6.5kms-1 velocity horizon, is ~8km and the depth to the base of the lower crust, as defined by the 7.2kms-1 velocity horizon, is ~29-32km. Beneath the currently active rift zone the upper crust thins to ~6.0km and the depth to the base of the lower crust increases to ~35-40km. A substantial low-velocity zone underlies the Middle Volcanic Zone in the lower crust, which may indicate anomalously high geothermal gradients there. This suggests that the large-scale thermal centre of the hotspot may be more westerly than northwest Vatnajokull, where it is generally assumed to lie. Simplified description of the results notwithstanding, there is substantial variability in the overall style of crustal structure throughout Iceland, and a clear, tripartite division into upper and lower crusts and a sharp Moho is poorly supported by many of our results. The nature, distinctiveness and continuity of the Moho is variable and in many areas the crust-mantle transition is a zone with enhanced velocity gradients several kilometres thick.

  4. Crustal structure of Australia from ambient seismic noise tomography

    Science.gov (United States)

    Saygin, Erdinc; Kennett, B. L. N.

    2012-01-01

    Surface wave tomography for Australian crustal structure has been carried out using group velocity measurements in the period range 1-32 s extracted from stacked correlations of ambient noise between station pairs. Both Rayleigh wave and Love wave group velocity maps are constructed for each period using the vertical and transverse component of the Green's function estimates from the ambient noise. The full suite of portable broadband deployments and permanent stations on the continent have been used with over 250 stations in all and up to 7500 paths. The permanent stations provide a useful link between the various shorter-term portable deployments. At each period the group velocity maps are constructed with a fully nonlinear tomographic inversion exploiting a subspace technique and the Fast Marching Method for wavefront tracking. For Rayleigh waves the continental coverage is good enough to allow the construction of a 3D shear wavespeed model in a two stage approach. Local group dispersion information is collated for a distribution of points across the continent and inverted for a 1D SV wavespeed profile using a Neighbourhood Algorithm method. The resulting set of 1D models are then interpolated to produce the final 3D wavespeed model. The group velocity maps show the strong influence of thick sediments at shorter periods, and distinct fast zones associated with cratonic regions. Below the sediments the 3D shear wavespeed model displays significant heterogeneity with only moderate correlation with surface tectonic features. For example, there is no evident expression of the Tasman Line marking the eastern edge of Precambrian outcrop. The large number of available inter-station paths extracted from the ambient noise analysis provide detailed shear wavespeed information for crustal structure across the Australian continent for the first time, including regions where there was no prior sampling because of difficult logistics.

  5. Subsidence history, crustal structure and evolution of the Nogal Rift, Northern Somalia

    Science.gov (United States)

    Ali, M. Y.; Watts, A. B.

    2013-12-01

    Seismic reflection profile, gravity anomaly, and biostratigraphic data from deep exploration wells have been used to determine the tectonic subsidence, structure and evolution of the Nogal basin, Northern Somalia, one of a number of ENE-WSW trending early Mesozoic rifts that formed prior to opening of the Gulf of Aden. Backstripping of biostratigraphic data at the Nogal-1 and Kali-1 wells provides new constraints on the age of rifting, and the amount of crustal and mantle extension. The tectonic subsidence and uplift history at the wells can be generally explained as a consequence of two, possibly three, major rifting events. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr. We interpret the rift as a late stage event associated with the break-up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi-rift extensional model with a stretching factor, β, in the range 1.17-1.38. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift only developed at the centre of the basin close to Nogal-1 well, and is related to the opening of the Gulf of Aden. The amount of crustal thinning inferred at the Kali-1 well is consistent with the results of Process-Oriented Gravity and Flexure (POGM) modelling, assuming an elastic thickness of ~30 km. The thinning at the Nogal-1 well, however, is greater by ~ 7 km than predicted suggesting that the basin may be locally underplated by magmatic material. Irrespective, POGM suggests the transition between thick crust beneath Northern Somalia to thin crust beneath the Indian Ocean forms a ~500 km wide

  6. Arabian Plate Deformation: The role of inherited structures in the localization of strain in the Red Sea extensional system

    Science.gov (United States)

    Aldaajani, T.; Furlong, K.; Malservisi, R.

    2017-12-01

    The Red Sea rift structural architecture changes dramatically along strike from narrow localized spreading (with creation of new oceanic crust) in the south to asymmetrical diffuse extension north of 21 ° latitude. The region of diffuse extension falls within a triangle that is bounded to the east by the Sarhan graben, (a Cenozoic failed rift), to the west by the northern Red Sea Rift, and to the south by the Makkah-Madinah-Nafud (MMN) volcanic line. Geological observations appear to show that tectonic stresses acting on inherited structures within the NW Arabian margin are associated with the region of diffuse extension. In contrast, in the southern Red Sea, a single strong block within the SW Arabian margin led to localize the extension there. Using current velocities from more than 30 GNSS stations distributed within the Arabian plate, we are able to map its rigidity and the distribution of strain along the plate margin. The data show that the transition between the two styles of extension within the Red Sea (crustal accretion vs crustal extension) corresponds with a transition between rigid behavior and diffuse extension within the Arabian Plate. This suggests that the preexisting structures within the Arabian plate play a significant role in the style of extension along the Red Sea margin.

  7. Crustal structure of Tolfa domes complex (northern Latium - Italy) inferred from receiver functions analysis: an interplay between tectonics and magmatism

    Science.gov (United States)

    Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.

    2010-12-01

    The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above

  8. Shallow Crustal Thermal Structures of Central Taiwan Foothills Region

    Directory of Open Access Journals (Sweden)

    Shao-Kai Wu

    2013-01-01

    Full Text Available Crustal thermal structures are closely related to metamorphism, rock rheology, exhumation processes, hydrocarbon maturation levels, frictional faulting and other processes. Drilling is the most direct way to access the temperature fields in the shallow crust. However, a regional drilling program for geological investigation is usually very expensive. Recently, a large-scale in-situ investigation program in the Western Foothills of Central Taiwan was carried out, providing a rare opportunity to conduct heat flow measurements in this region where there are debates as to whether previous measured heat flows are representative of the thermal state in this region. We successfully collected 28 geothermal gradients from these wells and converted them into heat flows. The new heat flow dataset is consistent with previous heat flows, which shows that the thermal structures of Central Taiwan are different from that of other subduction accretionary prisms. We then combine all the available heat flow information to analyze the frictional parameters of the Chelungpu fault zone that ruptured during the 1999, Chi-Chi, Taiwan, earthquake. The heat flow dataset gave consistent results compared with the frictional parameters derived from another independent study that used cores recovered from the Chelungpu fault zone at depth. This study also shows that it is suitable for using heat-flow data obtained from shallow subsurface to constrain thrusting faulting parameters, similar to what had been done for the strike-slip San Andreas Fault in California. Additional fieldworks are planned to study heat flows in other mountainous regions of Taiwan for more advanced geodynamic modeling efforts.

  9. Crustal structure and tectonics of the Ninetyeast Ridge from seismic and gravity studies

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Neprochnov, Y.P.; Rao, D.G.; Grinko, B.N.

    Seismic reflection and refraction, gravity, and bathymetric data across and along the central part of the Ninetyeast Ridge were analyzed to determine the crustal structure of the ridge and to understand its tectonics. The ridge in the study area...

  10. Crustal and upper mantle structure of Siberia from teleseismic receiver functions

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Thybo, Hans; Artemieva, Irina

    2015-01-01

    ). With this method, we determine seismic P- and S-velocities that are comparable to the results of teleseismic body wave and surface wave tomography techniques. The RF model shows variations in the crustal thickness between 35 and 55 km. Intracrustal structures are identified, in particular using the high......This study presents seismic images of the crustal and lithospheric structure in Siberia based on the available broadband seismic data using teleseismic receiver functions (RFs). We invert P- and S-RFs jointly. The inversion technique is carried out by approach described by Vinnik et al. (2004....... The current results of RF analysis of the crustal and mantle structure will help to build a model for tectonic and geodynamic evolution of different provinces of Siberia. We compare our results to the recent detailed models of crustal structure in the area and with seismic models for similar geodynamic...

  11. An Amphibious Seismic Study of the Crustal Structure of the Adriatic Microplate

    Science.gov (United States)

    Dannowski, A.; Kopp, H.; Schurr, B.; Improta, L.; Papenberg, C. A.; Krabbenhoeft, A.; Argnani, A.; Ustaszewski, K. M.; Handy, M.; Glavatovic, B.

    2016-12-01

    The present-day structure of the southern Adriatic area is controlled by two oppositely-vergent fold-and-thrust belt systems (Apennines and Dinarides). The Adriatic continental domain is one of the most enigmatic segments of the Alpine-Mediterranean collision zone. It separated from the African plate during the Mesozoic extensional phase that led to the opening of the Ionian Sea. Basin widening and deepening peaked during Late Triassic-Liassic extension, resulting in the formation of the southern Adriatic basin, bounded on either side by the Dinaric and Apulian shallow water carbonate platforms. Because of its present foreland position with respect to the Dinaric part of orogenic belt, the southern Adriatic basin represents the only remnant of the Neotethyan margin and offers the unique opportunity to image a segment of Mesozoic passive margin in the Mediterranean. To study the deep crustal structure, the upper mantle and the shape of the plate margin, the German research vessel Meteor acquired 2D seismic refraction and wide-angle reflection data during an onshore-offshore experiment (cruise M86-3). We present two profiles: Profile P03 crossed Adria from the Gargano Promontory into Albania. A second profile (P01) was shot parallel to the coastlines, extending from the southern Adriatic basin to a possible mid-Adriatic strike-slip fault that purportedly segments the Adriatic microplate. Two different approaches of travel time tomography are applied to the data set: A non-linear approach is used for the shorter profile P01. A linear approach is applied to profile P03 (360 km length) and allows for the integration of the 36 ocean bottom stations and 19 land stations. First results show a good resolution of the sedimentary part of the Adriatic region. The depth of the basement as well as the depth of the Moho discontinuity vary laterally and deepen towards the North-East, consistent with the notion of flexural loading of the externally propagating orogenic wedge of the

  12. A new model of crustal structure of Siberia

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina; Thybo, Hans

    2010-01-01

    to the Verkoyansk Ridge/Lena river in the east, and from the Arctic shelf in the north to the Tien Shan and Altay-Sayans mountains in the south. The new crustal model is based on our new ("from scratch") compilation of all available reliable seismic data and includes the results of seismic reflection, refraction...... orientation. Low surface heat flow (on average around 20-22 microW/m3) and the absence of the high-velocity (Vp>7.2 km/s) lowercrustal layer in the block with the thick crust suggest that eclogitization in the crustal root was subdued, thus allowing preservation of the ultra thick, seismically distinguishable...

  13. Seismotectonics of Taiwan Shoal region in northeastern SCS: Insights from crustal structure

    Science.gov (United States)

    Kuiyuan, Wan; Jinlong, Sun; Shaohong, Xia; Xiaoling, Xie; Xiang, Zhang; Huilong, Xu; Jinghe, Cao

    2017-04-01

    A seismicity cluster and a great 16 September 1994 earthquake occur in the Taiwan Shoal region, outer rise of the Manila subduction zone. To understand what mechanisms control and generate the earthquake cluster, it is important to investigate the deep crustal structure of the Taiwan Shoal region. We present a 2-D seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean bottom seismographic (OBS) data. The structure exhibits that a high velocity anomaly in the upper crust beneath the Taiwan Shoal is flanked by lower velocity anomalies. Based on the crustal structure, we study the 765 earthquakes, which occurred in the period 1991-2015. These epicenters, combined with the regional faults, and crustal structure, allow us to better understand the nature of the active tectonics in this region. The high velocity area is interpreted as representing stronger, defining major asperities where stress is concentrated corresponding to the location of the earthquake cluster. The earthquake cluster is influenced by the fault interactions. However, the 16 September 1994 earthquake is independents of the seismic activities but associated with the reactivation of the preexisting fault. In Taiwan region, the slab-pull was resisted by the exposed pre-collision accretionary prism and the resistive force caused the in-plane compressive stress accumulation. This condition may favor the triggering of future damaging earthquakes in this region. Key words: earthquake cluster; crustal structure; fault interactions; outer rise; Taiwan Shoal

  14. Eocene extensional exhumation of basement and arc rocks along southwesternmost Peru, Central Andes.

    Science.gov (United States)

    Noury, Mélanie; Bernet, Matthias; Sempéré, Thierry

    2014-05-01

    The overthickened crust of the current Central Andes is commonly viewed as the result of tectonic shortening. However, in the present-day terrestrial forearc and arc of southwesternmost Peru, crustal thickness increases from 30 km along the coastline to >60 km below the active arc, whereas the upper crust exhibits little to no evidence of crustal shortening and, in constrast, many extensional features. How (and when) crustal overthickness was acquired in this region is thus little understood. Because crustal overthickening often results in extensional collapse and/or significant erosion, here we address this issue through a regional-scale study of exhumation using fission-track thermochronology. The limited fission-track data previously available in the area suggested that exhumation began during the Mesozoic. In this study, we present new apatite and zircon fission-track data obtained along the current terrestrial forearc of southwesternmost Peru. This relatively restricted area presents the interest of providing extensive outcrops of Precambrian to Ordovician basement and Early Jurassic to Late Cretaceous arc plutons. In order to compare the chronology of exhumation of these units, we performed extensive sampling for fission-track dating, as well as structural mapping. Our results indicate that the basement rocks and Jurassic plutons that crop out in the Arequipa region, where the crust is now >50 km-thick, experienced a rapid cooling through the 240-110°C temperature range between ~65 and ~35 Ma. This period of rapid exhumation coincided in time with the accumulation of terrestrial forearc deposits (the Lower Moquegua Group), that exhibit many syn-sedimentary extensional features and are bounded by conspicuous normal faults, specifically along the region where intense activity of the main arc between ~90 and ~60 Ma had led to voluminous magma emplacement. This close succession of (1) intense magmatic activity and (2) regional-scale exhumation associated with

  15. Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions

    Science.gov (United States)

    Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.

    2016-12-01

    The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the

  16. Orphan Basin crustal structure from a dense wide-angle seismic profile - Tomographic inversion

    Science.gov (United States)

    Watremez, Louise; Lau, K. W. Helen; Nedimović, Mladen R.; Louden, Keith E.; Karner, Garry D.

    2014-05-01

    Orphan Basin is located on the eastern margin of Canada, offshore of Newfoundland and East of Flemish Cap. It is an aborted continental rift formed by multiple episodes of rifting. The crustal structure across the basin has been determined by an earlier refraction study using 15 instruments on a 550 km long line. It shows that the continental crust was extended over an unusually wide region but did not break apart. The crustal structure of the basin thus documents stages in the formation of a magma-poor rifted margin up to crustal breakup. The OBWAVE (Orphan Basin Wide-Angle Velocity Experiment) survey was carried out to image crustal structures across the basin and better understand the processes of formation of this margin. The spacing of the 89 recording stations varies from 3 to 5 km along this 500-km-long line, which was acquired along a pre-existing reflection line. The highest resolution section corresponds to the part of the profile where the crust was expected to be the thinnest. We present the results from a joint tomography inversion of first and Moho reflected arrival times. The high data density allows us to define crustal structures with greater detail than for typical studies and to improve the understanding of the processes leading to the extreme stretching of continental crust. The final model was computed following a detailed parametric study to determine the optimal parameters controlling the ray-tracing and the inversion processes. The final model shows very good resolution. In particular, Monte Carlo standard deviations of crustal velocities and Moho depths are generally Orphan Basin is the result of rifting of a non-homogeneous Avalon terrane where the lower crust is primarily ductile.

  17. Modeling the blockage of Lg waves from 3-D variations in crustal structure

    Science.gov (United States)

    Sanborn, Christopher J.; Cormier, Vernon F.

    2018-05-01

    Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.

  18. Spatial Relationship Between Crustal Structure and Mantle Seismicity in the Vrancea Seismogenic Zone of Romania

    Science.gov (United States)

    Knapp, C. C.; Enciu, D. M.; Knapp, J. H.

    2007-12-01

    Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the

  19. Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc

    Science.gov (United States)

    Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.

    2011-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore

  20. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis

    Science.gov (United States)

    Xia, B.; Thybo, H.; Artemieva, I. M.

    2017-07-01

    We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.

  1. Detailed crustal structure of the North China and its implication for seismicity

    Science.gov (United States)

    Jiang, Wenliang; Wang, Xin; Tian, Tian; Zhang, Jingfa; Wang, Donglei

    2014-02-01

    Since the Mesozoic-Cenozoic era the North China Craton has experienced an important tectonic transition and it has given rise to complicated crustal structure and strong earthquake activity. Based on the large-scale surface gravity data, we studied the detailed crustal structure and seismogenic mechanism of the North China. The results indicate that the North China presents typical characteristics of adjoining depression and uplift, alternating basins and hills, inhomogeneous density and also great differences in crustal structure and Moho topography. The upper and middle crustal structures are dominated by the NNE-striking tectonic units, with many faults cut down to the middle crust. The lower crust is characterized by the folding-structure, with high and low-density placed alternately from west to east, presenting lateral heterogeneous feature. Adjusted by the gravity isostasy, Moho topography of the North China fluctuates greatly. Compared with the North China Basin, crustal thickness in the Western Taihang, northern Yanshan and Luzhong areas are much thicker while those densities are lower than the North China Basin. The dominating tectonic direction of the Moho topography strikes NE to NNE and undulates alternately from west to east. The epicenters are mostly concentrated in the upper and middle crust, especially the transitional areas between the high and low-gravity anomalies. The Tancheng earthquake in 1668, Sanhe earthquake in 1673, Tangshan earthquake in 1976, and all other seismic tectonic zones of the North China are all distributed in area where magma moves strongly beneath the crust, which is considered to be related to the movement of the high density, unstable and heat flows along the deep passage from the uppermost and asthenosphere due to the subduction of the Pacific slab towards the Eurasian plate.

  2. Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea

    Science.gov (United States)

    Dong, Miao; Wu, Shi-Guo; Zhang, Jian

    2016-12-01

    The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.

  3. Extensional Fault Evolution and its Flexural Isostatic Response During Iberia-Newfoundland Rifted Margin Formation

    Science.gov (United States)

    Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.

    2017-12-01

    During the formation of magma-poor rifted margins, upper lithosphere thinning and stretching is achieved by extensional faulting, however, there is still debate and uncertainty how faults evolve during rifting leading to breakup. Seismic data provides an image of the present-day structural and stratigraphic configuration and thus initial fault geometry is unknown. To understand the geometric evolution of extensional faults at rifted margins it is extremely important to also consider the flexural response of the lithosphere produced by fault displacement resulting in footwall uplift and hangingwall subsidence. We investigate how the flexural isostatic response to extensional faulting controls the structural development of rifted margins. To achieve our aim, we use a kinematic forward model (RIFTER) which incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. Inputs for RIFTER are derived from seismic reflection interpretation and outputs of RIFTER are the prediction of the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. Using RIFTER we model the simultaneous tectonic development of the Iberia-Newfoundland conjugate rifted margins along the ISE01-SCREECH1 and TGS/LG12-SCREECH2 seismic lines. We quantitatively test and calibrate the model against observed target data restored to breakup time. Two quantitative methods are used to obtain this target data: (i) gravity anomaly inversion which predicts Moho depth and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling to give water and Moho depths at breakup time. We show that extensional faulting occurs on steep ( 60°) normal faults in both proximal and distal parts of rifted margins. Extensional faults together with their flexural isostatic response produce not only sub-horizontal exhumed footwall surfaces (i.e. the rolling hinge model) and highly rotated (60

  4. Crustal-scale alpine tectonic evolution of the western Pyrenees - eastern Cantabrian Mountains (N Spain) from integration of structural data, low-T thermochronology and seismic constraint

    Science.gov (United States)

    DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.

    2017-12-01

    The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the

  5. Three-dimensional Crustal Structure beneath the Tibetan Plateau Revealed by Multi-scale Gravity Analysis

    Science.gov (United States)

    Xu, C.; Luo, Z.; Sun, R.; Li, Q.

    2017-12-01

    The Tibetan Plateau, the largest and highest plateau on Earth, was uplifted, shorten and thicken by the collision and continuous convergence of the Indian and Eurasian plates since 50 million years ago, the Eocene epoch. Fine three-dimensional crustal structure of the Tibetan Plateau is helpful in understanding the tectonic development. At present, the ordinary method used for revealing crustal structure is seismic method, which is inhibited by poor seismic station coverage, especially in the central and western plateau primarily due to the rugged terrain. Fortunately, with the implementation of satellite gravity missions, gravity field models have demonstrated unprecedented global-scale accuracy and spatial resolution, which can subsequently be employed to study the crustal structure of the entire Tibetan Plateau. This study inverts three-dimensional crustal density and Moho topography of the Tibetan Plateau from gravity data using multi-scale gravity analysis. The inverted results are in agreement with those provided by the previous works. Besides, they can reveal rich tectonic development of the Tibetan Plateau: (1) The low-density channel flow can be observed from the inverted crustal density; (2) The Moho depth in the west is deeper than that in the east, and the deepest Moho, which is approximately 77 km, is located beneath the western Qiangtang Block; (3) The Moho fold, the directions of which are in agreement with the results of surface movement velocities estimated from Global Positioning System, exists clearly on the Moho topography.This study is supported by the National Natural Science Foundation of China (Grant No. 41504015), the China Postdoctoral Science Foundation (Grant No. 2015M572146), and the Surveying and Mapping Basic Research Programme of the National Administration of Surveying, Mapping and Geoinformation (Grant No. 15-01-08).

  6. Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data

    Science.gov (United States)

    Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.

    2005-05-01

    Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.

  7. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    Science.gov (United States)

    Best, John A.; Barazangi, Muawia; Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40 ±4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  8. Bouguer gravity trends and crustal structure of the Palmyride Mountain belt and surrounding northern Arabian platform in Syria

    Energy Technology Data Exchange (ETDEWEB)

    Best, J.A.; Barazangi, M. (Cornell Univ., Ithaca, NY (USA)); Al-Saad, D.; Sawaf, T.; Gebran, A. (Syrian Petroleum Company, Damascus (Syria))

    1990-12-01

    This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40{plus minus}4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.

  9. Crustal structure of the Western Carpathians and Pannonian Basin: Seismic models from CELEBRATION 2000 data and geological implications

    Science.gov (United States)

    Janik, Tomasz; Grad, Marek; Guterch, Aleksander; Vozár, Jozef; Bielik, Miroslav; Vozárova, Anna; Hegedűs, Endre; Kovács, Csaba Attila; Kovács, István; Keller, G. Randy; Celebration 2000 Working Group

    2011-08-01

    During the CELEBRATION 2000 seismic experiment, the Western Carpathians and Pannonian basin region was investigated by a dense system of deep seismic sounding profiles. In this paper, we present the results of modeling refracted and reflected waves employing 2D ray tracing for seven interlocking profiles that were jointly modeled and interpreted with the constraint that the models match at the crossing points of the profiles. The resulting P-wave velocity models reveal complex structures in the crust and large variations in the depth of the Moho discontinuity (˜25-45 km). In the southern part of the area, the relatively thin Pannonian basin crust consists of 3-7 km thick sediments and two crustal layers with velocities of 5.9-6.3 km/s in the upper crust and 6.3-6.6 km/s in the lower crust. In the central region, the upper crust of the ALCAPA (Alpine-Carpathian-Pannonian) microplate contains a high velocity body of Vp ≥ 6.4 km/s, which spatially corresponds with the Bükk Composite Terrane. The total thickness of the ALCAPA crust is 1-2 km greater than in the adjacent Tisza-Dacia microplate. To the north in the area of the Trans-European suture zone (TESZ) and Carpathian foredeep, we observe a 10-20 km thick upper crust with low velocity ( Vp ≤ 6.0 km/s). Sub-Moho velocities have average values of 7.8-8.0 km/s for the Pannonian basin, while in the Western Carpathians, the TESZ and the East European Craton (EEC) area, they are slightly higher (8.0-8.1 km/s). Lower velocities beneath the ALCAPA and Tisza-Dacia microplates could be caused by compositional variations and the significantly higher surface heat flow. Beneath some profiles, reflectors in the lithospheric mantle were found sub-parallel to the Moho but 10-20 km below it. Our integrated geophysical and geological analysis indicates that the observed structure was created by collision of two lithospheric plates with only a moderate degree of convergence. The northern plate consists of older European

  10. TopoGreenland: crustal structure in central-eastern Greenland along a new refraction profile

    Science.gov (United States)

    Shulgin, Alexey; Thybo, Hans; Field Team TopoGreenland

    2013-04-01

    We present the seismic structure in the interior of Greenland based on the first measurements by the seismic refraction/wide angle reflection method. Previous seismic surveys have only been carried out offshore and near the coast of Greenland, where the crustal structure is affected by oceanic break-up and may not be representative of the interior of the island. Acquisition of geophysical data in onshore Greenland is logistically complicated by the presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The EW-trending profile extends 310 km inland from the approximate edge of the stable ice cap near Scoresby Sund across the center of the ice cap. The planned extension of the profile by use of OBSs and air gun shooting in Scoresbysund Fjord to the east coast of Greenland was unfortunately canceled, because navigation was prevented by ice drift. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Two-dimensional velocity model based on tomographic inversion and forward ray tracing modeling shows a decrease of crustal thickness from 47 km below the center of Greenland in the western part to 40 km in the eastern part of the profile. Earlier studies show that crustal thickness further decreases eastward to ca. 30 km below the fjord system, but details of the changes are unknown. Relatively high lower crustal velocities (Vp 6.8 - 7.3) in the western part of the TopoGreenland profile may indicate past collision tectonics or may be related or to the passage of the Iceland mantle plume. The origin of the pronounced circum-Atlantic mountain ranges in Norway and eastern Greenland

  11. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    International Nuclear Information System (INIS)

    Polat, Orhan; Özer, Çaglar

    2016-01-01

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  12. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Orhan, E-mail: orhan.polat@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey (Turkey)

    2016-04-18

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  13. Crustal structure, and topographic relief in the high southern Scandes, Norway

    Science.gov (United States)

    Stratford, W.; Thybo, H.; Frassetto, A.

    2010-05-01

    Resolving the uplift history of southern Norway is hindered by the lack of constraint available from the geologic record. Sediments that often contain information of burial and uplift history have long since been stripped from the onshore regions in southern Norway, and geophysical, dating methods and geomorphological studies are the remaining means of unraveling uplift history. New constraints on topographic evolution and uplift in southern Norway have been added by a recent crustal scale refraction project. Magnus-Rex (Mantle investigation of Norwegian uplift Structure, refraction experiment) recorded three ~400 km long active source seismic profiles across the high southern Scandes Mountains. The goal of the project is to determine crustal thickness and establish whether these mountains are supported at depth by a crustal root or by other processes. The southern Scandes Mountains were formed during the Caledonian Orogeny around 440 Ma. These mountains, which reach elevations of up to ~2.5 km, are comprised of one or more palaeic (denudation) surfaces of rolling relief that are incised by fluvial and glacial erosion. Extreme vertical glacial incision of up to 1000 m cuts into the surfaces in the western fjords, while the valleys of eastern Norway are more fluvial in character. Climatic controls on topography here are the Neogene - Recent effects of rebound due to removal of the Fennoscandian ice sheet and isostatic rebound due to incisional erosion. However, unknown tectonic uplift mechanisms may also be in effect, and separating the tectonic and climate-based vertical motions is often difficult. Sediment and rock has been removed by the formation of the palaeic surfaces and uplift measurements cannot be directly related to present elevations. Estimates so far have indicated that rebound due to incisional erosion has a small effect of ~500 m on surface elevation. Results from Magnus-Rex indicate the crust beneath the high mountains is up to 40 km thick. This

  14. Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Braile, L.W.; Smith, R.B.; Ansorge, J.; Baker, M.R.; Sparlin, M.A.; Prodehl, C.; Schilly, M.M.; Healy, J.H.; Mueller, S.; Olsen, K.H.

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that the crust of the ESRP is highly anomalous. Approximately 3 to 6 km of volcanic rocks (with some interbedded sediments) overlie an upper-crustal layer (compressional velocity approx. =6.1 km/s) which thins southwestward along the ESRP from a thickness of 10 km near Island Park Caldera to 2 to 3 km beneath the central and southwestern portions of the ESRP. An intermediate-velocity (approx. =6.5 km/s) layer extends from approx. =10 to approx. =20 km depth. a thick (approx. =22 km) lower crust of compressional velocity 6.8 km/s, a total crustall thickness of approx. =42 km, and a P/sub n/ velocity of approx. =7.9 km/s is observed in the ESRP, similar to the western Snake River Plain and the Rocky Mountains Provinces. High attenuation is evident on the amplitude corrected seismic data due to low-Q values in the volcanic rocks (Q/sub p/ = 20 to 200) and throughout the crust (Q/sub p/ = 160 to 300). Based on these characteristics of the crustal structure and volcanic-age progression data, it is suggested that the ESRP has resulted from an intensitive period of intrusion of mantle-derived basaltic magma into the upper crust generating explosive silicic volcanism and associated regional uplift and caldera collapse. This activity began about 15 m.y. ago in southwestern Idaho and has migrated northeast to its present position at Yellowstone. Subsequent cooling of the intruded upper crust results in the 6.5 km/s velocity intermediate layer. Crustal subsidence and periodic basaltic volcanism as represented by the ESRP complete the sequence of crustal evolution

  15. Crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, Kwang-Hee; Park, Jung-Ho; Park, Yongcheol; Hao, Tian-Yao; Kim, Han-Joon

    2017-05-01

    The 3-D subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a 3-D velocity model of the upper crust beneath the southern Korean Peninsula using 19 935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  16. Crustal Structure and Mantle Transition Zone Thickness beneath the Central Mongolia from Teleseismic Receiver Functions

    Science.gov (United States)

    He, J.; Wu, Q.; Gao, M.; Munkhuu, U.; Demberel, S. G.

    2013-12-01

    The Mongolian Plateau (northern Asia) is situated between the Gobi-Altai range and the Siberian craton. In order to understand the crustal and mantle structure environmental characteristics, we use the teleseismic data recorded by 69 broadband stations located in the Central Mongolia(103.5°-111.5°E, 42°-50°N). The teleseismic events are selected from the global earthquakes between Aug. 2011 and Dec. 2013 with magnitude >5.5and the epicentral distance range from 30° to 95° to the center of the network. Lateral variations of the crustal thicknesses H and Vp/Vs ratios are obtained by using receiver function method. The crust thins gradually from northwest to southeast in the studying field. We found that the thinnest crust is ~37.5km in the southeast which is Gobi. The distribution of Vp/Vs ratios are between 1.68 and 1.84, which shows the heterogeneity. There are three high-anomaly areas: the Gobi range which is the Later Paleozoic Orogeny; the Khentei Mountains which is in the Jurassic-Cretaceous Reactive Continental Margin; the northwest area which is granite. Our research not only reveals the powerful evident of the crustal formation and evolution mechanism, but also provides some constraints on the mechanism of uplift of the Mongolian Plateau.This study was supported by the international cooperation project of the Ministry of Science and Technology of China (2011DFB20120).

  17. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  18. Crustal structure of the Western Carpathians and Pannonian Basin System: seismic models from CELEBRATION 2000 data and geological implication

    Science.gov (United States)

    Janik, Tomasz; Grad, Marek; Guterch, Aleksander; Vozár, Jozef; Bielik, Miroslav; Vozárova, Anna; Hegedżs, Endre; Attila Kovács, Csaba; Kovács, István.; Celebration 2000 Working Group

    2010-05-01

    During CELEBRATION 2000 experiment the area of the Western Carphathians and Pannonian Basin System on the territory of southeastern Poland, Slovak Republic and Hungary was investigated by dense system of the deep seismic sounding profiles. In this paper, we present results of modelling of refracted and reflected waves with use 2-D ray tracing technique for profiles CEL01, CEL04, CEL05, CEL06, CEL11, CEL12 and CEL28. All seven profiles were jointly interpreted with verification and control the models at crossing points. Obtained P-wave velocity models of the crust and uppermost mantle are very complex and show differentiation of the seismic structure, where the depth of the Moho discontinuity is changing from about 25 to about 45 km. In the southern part of the area the relatively thin Pannonian Basin System crust consists of 3-7 km thick sediments and two crustal layers with 5.9-6.3 km/s in the upper crust and 6.3-6.6 km/s in the lower crust. In the upper crust of ALCAPA beneath profile CEL05 a high velocity body of Vp≥ 6.4 km/s was detected in the uppermost 5 km, which corresponds to the Bükk Composite Terrane. The total thickness of the ALCAPA crust is 1-2 km bigger than in the Tisza-Dacia. In the northern part of the area we observe 10-20 km thick uppermost crust with low velocity (Vp≤6.0 km/s), connected with TESZ and Carpathian Foredeep. Together with ca. 6.2-6.5 km/s and 6.5-6.9 km/s crustal layers they have a total thickness of 30-45 km (north of the Pieniny Klippen Belt). A sub-Moho velocities have in average values of 7.8-8.0 km/s for the Pannonian basin System, while in the Western Carpathian, the Trans-European suture zone (TESZ) and the East European Craton (EEC) part they are slightly bigger, 8.0-8.1 km/s. Lower velocities beneath the microplates ALCAPA and Tisza-Dacia could be caused by the different mineralogical and petrological compositions and the significant higher surface heat flow and temperature within the upper mantle. Beneath some

  19. Grabens on Io: Evidence for Extensional Tectonics

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.

    2012-12-01

    Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture

  20. The Crustal Structure of the North-South Earthquake Belt in China Revealed from Deep Seismic Soundings and Gravity Data

    Science.gov (United States)

    Zhao, Yang; Guo, Lianghui; Shi, Lei; Li, Yonghua

    2018-01-01

    The North-South earthquake belt (NSEB) is one of the major earthquake regions in China. The studies of crustal structure play a great role in understanding tectonic evolution and in evaluating earthquake hazards in this region. However, some fundamental crustal parameters, especially crustal interface structure, are not clear in this region. In this paper, we reconstructed the crustal interface structure around the NSEB based on both the deep seismic sounding (DSS) data and the gravity data. We firstly reconstructed the crustal structure of crystalline basement (interface G), interface between upper and lower crusts (interface C) and Moho in the study area by compiling the results of 38 DSS profiles published previously. Then, we forwardly calculated the gravity anomalies caused by the interfaces G and C, and then subtracted them from the complete Bouguer gravity anomalies, yielding the regional gravity anomalies mainly due to the Moho interface. We then utilized a lateral-variable density interface inversion technique with constraints of the DSS data to invert the regional anomalies for the Moho depth model in the study area. The reliability of our Moho depth model was evaluated by comparing with other Moho depth models derived from other gravity inversion technique and receiver function analysis. Based on our Moho depth model, we mapped the crustal apparent density distribution in the study area for better understanding the geodynamics around the NSEB.

  1. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles

    Science.gov (United States)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.

    2017-10-01

    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  2. First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts

    Science.gov (United States)

    Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter

    2015-07-01

    The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these

  3. Crustal structure beneath Beijing and its surrounding regions derived from gravity data

    Science.gov (United States)

    Jiang, Wenliang; Zhang, Jingfa; Lu, Xiaocui; Lu, Jing

    2011-06-01

    In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake ( M S8.0) and Tangshan earthquake ( M S7.8).

  4. Early Jurassic extensional inheritance in the Lurestan region of the Zagros fold-and-thrust belt, Iran.

    Science.gov (United States)

    Tavani, Stefano; Parente, Mariano; Vitale, Stefano; Puzone, Francesco; Erba, Elisabetta; Bottini, Cinzia; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    It has long been recognized that the tectonic architecture of the Zagros mountain belt was strongly controlled by inherited structures previously formed within the Arabian plate. These preexisting features span in age from the pre-Cambrian to the Mesozoic, showing different trends and deformation styles. Yet, these structures are currently not fully understood. This uncertainty is partly related with the paucity of exposures, which rarely allows a direct observation of these important deformation features. The Lurestan Province of Iran provides a remarkable exception, since it is one of the few places of the Zagros mountain belt where exposures of Triassic and Jurassic rocks are widespread. In this area we carried out structural observations on Mesozoic extensional structures developed at the southern margin of the Neo-Tethyan basin. Syn-sedimentary extensional faults are hosted within the Triassic-Cretaceous succession, being particularly abundant in the Jurassic portion of the stratigraphy. Early to Middle Jurassic syn-sedimentary faults are observed in different paleogeographic domains of the area, and their occurrence is coherent with the subsequent transition from shallow-water to deep-sea basin environments, observed in a wide portion of the area. Most of the thrusts exposed in the area may indeed be interpreted as reactivated Jurassic extensional faults, or as reverse faults whose nucleation was controlled by the location of preexisting normal faults, as a result of positive inversion during crustal shortening and mountain building.

  5. Crustal structure of the Siberian craton and the West Siberian basin

    DEFF Research Database (Denmark)

    Cherepanova, Yulia; Artemieva, Irina; Thybo, Hans

    2013-01-01

    We present a digital model SibCrust of the crustal structure of the Siberian craton (SC) and the West Siberian basin (WSB), based on all seismic profiles published since 1960 and sampled with a nominal interval of 50. km. Data quality is assessed and quantitatively assigned to each profile based...... and ~. 6.2-6.6. km/s in parts of the WSB and SC. Exceptionally high basement Vp velocities (6.8-7.0. km/s) at the northern border between the SC and the WSB indicate the presence of magmatic intrusions and are proposed to mark the source zone of the Siberian LIP. The cratonic crust generally consists...

  6. Relationships between crustal structure and extension in the Basin and Range Province and East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G R [University of Oklahoma, School of Geology and Geophysics, Norman, Oklahoma, 73019 (United States)], E-mail: grkeller@ou.edu

    2008-07-01

    The Basin and Range Province of the western United States and northern Mexico is often cited as a classic example of a wide rift. It is also a region where metamorphic core complexes such as the ones observed in the Aegean region are observed. On the other hand, the eastern arm (Kenya rift) of the East African rift is considered to be the classic example of a continental rift, which is by some definitions narrow. In this paper, these two features are briefly compared in terms of crustal structure and associated manifestations of extension.

  7. Structural setting and magnetic properties of pseudotachylyte in a deep crustal shear zone, western Canadian shield

    Science.gov (United States)

    Orlandini, O. F.; Mahan, K. H.; Brown, L. L.; Regan, S.; Williams, M. L.

    2012-12-01

    Seismic slip commonly produces pseudotachylytes, a glassy vein-filling substance that is typically interpreted as either a frictional melt or an ultra-triturated cataclasite. In either form, pseudotachylytes are commonly magnetite enriched, even in magnetite-free host rocks, and therefore are potentially useful as high fidelity recorders of natural magnetic fields at the time of slip in a wide array of lithologies. Pseudotachylytes generally have high magnetic susceptibility and thus should preserve the dominant field present as the material passes the Curie temperatures of magnetic minerals, primarily magnetite. Two potential sources have been proposed for the dominant magnetic field recorded: the earth's magnetic field at the time of slip or the temporary and orders of magnitude more intense field created by the presence of coseismic currents along the failure plane. Pseudotachylytes of the Cora Lake shear zone (CLsz) in the Athabasca Granulite Terrain, western Canadian shield, are consistently hosted in high strain ultramylonitic orthogneiss. Sinistral and extensional oblique-slip in the CLsz occurred at high-pressure granulite-grade conditions of ~1.0 GPa and >800°C and may have persisted to somewhat lower P-T conditions (~0.8 GPa, 700 °C) during ductile deformation. Pseudotachylyte-bearing slip surfaces have sinistral offset, matching the larger shear zone, and clasts of wall rock in the more brecciated veins display field evidence for ductile shear along the same plane prior to brittle failure. The presence of undeformed pseudotachylyte in kinematically compatible fracture arrays localized in ultramylonite indicates that brittle failure may have occurred in the waning stages of shear zone activity and at similar deep crustal conditions. Field-documented occurrences of pseudotachylyte include 2 cm-thick veins that run subparallel to mylonitic foliation and contain small flow-aligned clasts and large, heavily brecciated foliation-crosscutting zones up to

  8. Variation in Crustal Structure of the Lesser Caucasus Region from Teleseismic Receiver Functions

    Science.gov (United States)

    Lin, C. M.; Tseng, T. L.; Huang, B. S.; Legendre, C. P.; Karakhanian, A.

    2016-12-01

    The Caucasus, including the mountains of Greater and Lesser Caucasus, is formed by the continental collision between Arabia and Eurasia. The crustal thickness for this region was mostly constrained by joint analysis of receiver functions and surface waves. Although the thickest value of 52 km was reported under the Lesser Caucasus, the resolution of earlier studies were often limited by sparse array. Large gradient across Moho also makes the definition of Moho difficult. Moreover, higher value of the Vp/Vs ratio is commonly reported in the northeastern Turkey but no estimates had been made for the Caucasus. To further investigate the detail structure around the Lesser Caucasus, we constructed a new seismic network in Georgia and Armenia. We also include other broadband stations to enhance the coverage. The average interval in the Lesser Caucasus is roughly 30 km, much denser than any previous experiments. We selected P-waveforms from teleseismic earthquakes during the operation (January 2012 - June 2016) to calculate receiver functions and then estimate the crustal thickness (H) and Vp/Vs ratio (k) with the H-k stacking technique. Our preliminary results show that Moho depth increases from 40 km under the northeastern Turkey to 50 km beneath northern Georgia, no station with Moho deeper than 50 km under the Lesser Caucasus. The Vp/Vs ratios in the northeastern Anatolian plateau are around 1.8, which is slightly higher than the average of global continents but consistent with the previous estimates. Further to the east, some stations show anomalously higher Vp/Vs ratio in central & southern Armenia that may be associated with Holocene volcanism. In the future, we plan to join locally measured dispersion curves to invert the velocity model without velocity-depth trade-off. We expect to resolve the velocity variations of the crust beneath this region in small scale that may be tied to the continental collision and surface volcanism. Keywords: Caucasus, receiver

  9. Lithospheric Structure, Crustal Kinematics, and Earthquakes in North China: An Integrated Study

    Science.gov (United States)

    Liu, M.; Yang, Y.; Sandvol, E.; Chen, Y.; Wang, L.; Zhou, S.; Shen, Z.; Wang, Q.

    2007-12-01

    The North China block (NCB) is geologically part of the Archaean Sino-Korean craton. But unusual for a craton, it was thermally rejuvenated since late Mesozoic, and experienced widespread extension and volcanism through much of the Cenozoic. Today, the NCB is characterized by strong internal deformation and seismicity, including the 1976 Tangshan earthquake that killed ~250,000 people. We have started a multidisciplinary study to image the lithospheric and upper mantle structure using seismological methods, to delineate crustal kinematics and deformation via studies of neotectonics and space geodesy, and to investigate the driving forces, the stress states and evolution, and seismicity using geodynamic modeling. Both seismic imaging and GPS results indicate that the Ordos plateau, which is the western part of the NCB and a relic of the Sino-Korean craton, has been encroached around its southern margins by mantle flow and thus is experiencing active cratonic destruction. Some of the mantle flow may be driven by the Indo-Asian collision, although the cause of the broad mantle upwelling responsible for the Mesozoic thinning of the NCB lithosphere remains uncertain. At present, crustal deformation in the NCB is largely driven by gravitational spreading of the expanding Tibetan Plateau. Internal deformation within the NCB is further facilitated by the particular tectonic boundary conditions around the NCB, and the large lateral contrasts of lithospheric strength and rheology. Based on the crustal kinematics and lithospheric structure, we have developed a preliminary geodynamic model for stress states and strain energy in the crust of the NCB. The predicted long-term strain energy distribution is comparable with the spatial pattern of seismic energy release in the past 2000 years. We are exploring the cause of the spatiotemporal occurrence of large earthquakes in the NCB, especially the apparent migration of seismicity from the Weihe-Shanxi grabens around the Ordos to

  10. Crustal Structure and Evolution of the Eastern Himalayan Plate Boundary System, Northeast India

    Science.gov (United States)

    Mitra, S.; Priestley, K. F.; Borah, Kajaljyoti; Gaur, V. K.

    2018-01-01

    We use data from 24 broadband seismographs located south of the Eastern Himalayan plate boundary system to investigate the crustal structure beneath Northeast India. P wave receiver function analysis reveals felsic continental crust beneath the Brahmaputra Valley, Shillong Plateau and Mikir Hills, and mafic thinned passive margin transitional crust (basement layer) beneath the Bengal Basin. Within the continental crust, the central Shillong Plateau and Mikir Hills have the thinnest crust (30 ± 2 km) with similar velocity structure, suggesting a unified origin and uplift history. North of the plateau and Mikir Hills the crustal thickness increases sharply by 8-10 km and is modeled by ˜30∘ north dipping Moho flexure. South of the plateau, across the ˜1 km topographic relief of the Dawki Fault, the crustal thickness increases abruptly by 12-13 km and is modeled by downfaulting of the plateau crust, overlain by 13-14 km thick sedimentary layer/rocks of the Bengal Basin. Farther south, beneath central Bengal Basin, the basement layer is thinner (20-22 km) and has higher Vs (˜4.1 km s-1) indicating a transitional crystalline crust, overlain by the thickest sedimentary layer/rocks (18-20 km). Our models suggest that the uplift of the Shillong Plateau occurred by thrust faulting on the reactivated Dawki Fault, a continent margin paleorift fault, and subsequent back thrusting on the south dipping Oldham Fault, in response to flexural loading of the Eastern Himalaya. Our estimated Dawki Fault offset combined with timing of surface uplift of the plateau reveals a reasonable match between long-term uplift and convergence rate across the Dawki Fault with present-day GPS velocities.

  11. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    Science.gov (United States)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  12. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    Science.gov (United States)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  13. Along-axis crustal structure of the Porcupine Basin from seismic refraction data modelling

    Science.gov (United States)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian; Minshull, Tim; Reston, Tim; Wagner, Gerlind; Gaws, Viola; Klaschen, Dirk; Shannon, Patrick

    2016-04-01

    The Porcupine Basin is a tongue-shaped offshore basin SW of Ireland that formed during the opening of the North Atlantic Ocean. Its history of development involved several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on subsidence analysis, showed that stretching factors (β) in the northern part of the basin are 6. However, recent studies based on seismic reflection and refraction profiles concluded that β in places along the basin axis were significantly higher, and suggested the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Constraining β and the processes related to the formation of the basin will provide insights into aspects such as the tectonic response to lithospheric extension and the thermal evolution of the basin. Here we present the tomography results of five wide-angle seismic (WAS) profiles acquired across and along the basin axis. We used a travel time inversion method to model the WAS data and obtain P-wave velocity (Vp) models of the crust and uppermost mantle, together with the geometry of the main geological interfaces along each of these lines. Coincident seismic reflection profiles to each WAS line were also used to integrate the tectonic structure with the Vp model. These results improved constrains on the location of the base of the crust and allow to estimate maximum β (βmax) along each profile. The analysis shows that βmax values in the northern part of the basin are 5-6 times larger than estimates based on subsidence analysis. Towards the south, βmax increases up to 10, but then rapidly decreases to 3.3 southwards. These values are well within the range of crustal extension at which the crust becomes entirely brittle at magma-poor margins allowing the formation of major crustal faulting and serpentinization of the mantle. In agreement with this observation, Vp

  14. A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate

    Science.gov (United States)

    Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.

    2009-12-01

    We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in

  15. Constraints on the crustal structure beneath the Sinai subplate, SE Mediterranean, from analysis of local and regional travel times

    Directory of Open Access Journals (Sweden)

    Mohamed K. Salah

    2013-03-01

    Full Text Available The Sinai Peninsula has been recognized as a subplate of the African Plate located at the triple junction of the Gulf of Suez rift, the Dead Sea Transform fault, and the Red Sea rift. The upper and lower crustal structures of this tectonically active, rapidly developing region are yet poorly understood because of many limitations. For this reason, a set of P- and S-wave travel times recorded at 14 seismic stations belonging to the Egyptian National Seismographic Network (ENSN from 111 local and regional events are analyzed to investigate the crustal structures and the locations of the seismogenic zones beneath central and southern Sinai. Because the velocity model used for routine earthquake location by ENSN is one-dimensional, the travel-time residuals will show lateral heterogeneity of the velocity structures and unmodeled vertical structures. Seismic activity is strong along the eastern and southern borders of the study area but low to moderate along the northern boundary and the Gulf of Suez to the west. The crustal Vp/Vs ratio is 1.74 from shallow (depth ≤ 10 km earthquakes and 1.76 from deeper (depth > 10 km crustal events. The majority of the regional and local travel-time residuals are positive relative to the Preliminary Reference Earth Model (PREM, implying that the seismic stations are located above widely distributed, tectonically-induced low-velocity zones. These low-velocity zones are mostly related to the local crustal faults affecting the sedimentary section and the basement complex as well as the rifting processes prevailing in the northern Red Sea region and the ascending of hot mantle materials along crustal fractures. The delineation of these low-velocity zones and the locations of big crustal earthquakes enable the identification of areas prone to intense seismotectonic activities, which should be excluded from major future development projects and large constructions in central and southern Sinai.

  16. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China

    Science.gov (United States)

    Wang, Chun-Yong; Huangfu, Gang

    2004-02-01

    Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling-Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian-Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.

  17. Crustal Structure and Subsidence of the Williston Basin: Evidence from Receiver Function Stacking and Gravity Modeling

    Science.gov (United States)

    Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.

    2017-12-01

    The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.

  18. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China

    Science.gov (United States)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju

    2017-04-01

    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly

  19. Frequency formats, probability formats, or problem structure? A test of the nested-sets hypothesis in an extensional reasoning task

    Directory of Open Access Journals (Sweden)

    William P. Neace

    2008-02-01

    Full Text Available Five experiments addressed a controversy in the probability judgment literature that centers on the efficacy of framing probabilities as frequencies. The natural frequency view predicts that frequency formats attenuate errors, while the nested-sets view predicts that highlighting the set-subset structure of the problem reduces error, regardless of problem format. This study tested these predictions using a conjunction task. Previous studies reporting that frequency formats reduced conjunction errors confounded reference class with problem format. After controlling this confound, the present study's findings show that conjunction errors can be reduced using either a probability or a frequency format, that frequency effects depend upon the presence of a reference class, and that frequency formats do not promote better statistical reasoning than probability formats.

  20. Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data

    Science.gov (United States)

    Minshull, T. A.; Edwards, R. A.; Flueh, E. R.

    2015-07-01

    The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding continents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.

  1. Crustal structure of the Central-Eastern Greenland: results from the TopoGreenland refraction profile

    Science.gov (United States)

    Shulgin, Alexey; Thybo, Hans

    2014-05-01

    Until present, seismic surveys have only been carried out offshore and near the coasts of Greenland, where the crustal structure is affected by oceanic break-up. We present the deep seismic structure of the crust of the interior of Greenland, based on the new and the only existing so far seismic refraction/wide-angle reflection profile. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass, made acquisition of geophysical data logistically complicated. The profile extends 310 km inland in E-W direction from the approximate edge of the stable ice cap near the Scoresby Sund across the center of the ice cap. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Given that the data acquisition was affected by the thick ice sheet, we questioned the quality of seismic records in such experiment setup. We have developed an automatic routine to check the amplitudes and spectra of the selected seismic phases and to check the differences/challenges in making seismic experiments on ice and the effects of ice on data interpretation. Using tomographic inversion and forward ray tracing modelling we have obtained the two-dimensional velocity model down to a 50 km depth. The model shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western part of the profile to 40 km in its eastern part. Relatively high lower crustal velocities (Vp 6.8 - 7.3 km/s) in the western part of the TopoGreenland profile may result from past collision tectonics or, alternatively, may be related to the speculated passage of the Iceland mantle plume. Comparison of our results

  2. A long-lived Late Cretaceous-early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey

    Science.gov (United States)

    Gürer, Derya; Plunder, Alexis; Kirst, Frederik; Corfu, Fernando; Schmid, Stefan M.; van Hinsbergen, Douwe J. J.

    2018-01-01

    Central Anatolia exposes previously buried and metamorphosed, continent-derived rocks - the Kırşehir and Afyon zones - now covering an area of ∼300 × 400 km. So far, the exhumation history of these rocks has been poorly constrained. We show for the first time that the major, >120 km long, top-NE 'Ivriz' Detachment controlled the exhumation of the HP/LT metamorphic Afyon Zone in southern Central Anatolia. We date its activity at between the latest Cretaceous and early Eocene times. Combined with previously documented isolated extensional detachments found in the Kırşehir Block, our results suggest that a major province governed by extensional exhumation was active throughout Central Anatolia between ∼80 and ∼48 Ma. Although similar in dimension to the Aegean extensional province to the east, the Central Anatolian extensional province is considerably older and was controlled by a different extension direction. From this, we infer that the African slab(s) that subducted below Anatolia must have rolled back relative to the Aegean slab since at least the latest Cretaceous, suggesting that these regions were underlain by a segmented slab. Whether or not these early segments already corresponded to the modern Aegean, Antalya, and Cyprus slab segments remains open for debate, but slab segmentation must have occurred much earlier than previously thought.

  3. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    Science.gov (United States)

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea

    2016-05-01

    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  4. Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen)

    Science.gov (United States)

    Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias

    2014-12-01

    Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.

  5. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-01-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  6. Crustal and uppermost mantle structure and deformation in east-central China

    Science.gov (United States)

    Li, H.; Yang, X.; Ouyang, L.; Li, J.

    2017-12-01

    We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present

  7. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-05-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  8. Interaction between mantle and crustal detachments: A nonlinear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, Gideon; Regenauer-Lieb, Klaus; Weinberg, Roberto F.

    2010-11-01

    We use numerical modeling to investigate the development of crustal and mantle detachments during lithospheric extension. Our models simulate a wide range of extensional systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles as a response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation. Crustal detachments, here referred as low-angle normal decoupling horizons, are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW m-2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate heat flow (60-70 mW m-2). Results show a nonlinear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometimes unexpected switches in extension modes (e.g., from diffuse extensional deformation to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this nonlinearity to result from the interference of doming wavelengths in the presence of multiple necking instabilities. Disharmonic crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonic crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged history of extension prior to continental breakup.

  9. Geophysical Investigations of Crustal and Upper Mantle Structure of Oceanic Intraplate Volcanoes (OIVs)

    Science.gov (United States)

    Robinson, A. H.; Peirce, C.; Funnell, M.; Watts, A. B.; Grevemeyer, I.

    2016-12-01

    Oceanic intraplate volcanoes (OIVs) represent a record of the modification of the oceanic crust by volcanism related to a range of processes including hot-spots, small scale mantle convection, and localised lithospheric extension. Geophysical studies of OIVs show a diversity in crustal and upper mantle structures, proposed to exist on a spectrum between two end-members where the main control is the age of the lithosphere at the time of volcanism. This hypothesis states that where the lithosphere is older, colder, and thicker it is more resistant to vertical magmatism than younger, hotter, thinner lithosphere. It is suggested that the Moho acts as a density filter, permitting relatively buoyant magma to vertically intrude the crust, but preventing denser magma from ascending to shallow levels. A key control may therefore be the melting depth, known to affect magma composition, and itself related to lithosphere age. Combined geophysical approaches allow us to develop robust models for OIV crustal structures with quantifiable resolution and uncertainty. As a case study, we present results from a multi-approach geophysical experiment at the Louisville Ridge Seamount Chain, believed to have formed on young (travel-time modelling of picked arrivals, is tested against reflection and gravity data. We compare our observations with studies of other OIVs to test whether lithospheric age controls OIV structure. Comparisons are limited by the temporal and spatial distribution of lithosphere and volcano ages, but suggest the hypothesis does not hold for all OIV features. While age may be the main control on OIV structure, as it determines lithosphere thermal and mechanical properties, other factors such as thermal rejuvenation, mechanical weakening, and volcano load size and distribution, may also come into play.

  10. Crustal structure along the west flank of the Cascades, western Washington

    Science.gov (United States)

    Miller, K.C.; Keller, Gordon R.; Gridley, J.M.; Luetgert, J.H.; Mooney, W.D.; Thybo, H.

    1997-01-01

    Knowledge of the crustal structure of the Washington Cascades and adjacent Puget Lowland is important to both earthquake hazards studies and geologic studies of the evolution of this tectonically active region. We present a model for crustal velocity structure derived from analysis of seismic refraction/wide-angle reflection data collected in 1991 in western Washington. The 280-km-long north-south transect skirts the west flank of the Cascades as it crosses three tectonic provinces including the Northwest Cascades Thrust System (NWCS), the Puget Lowland, and the volcanic arc of the southern Cascades. Within the NWCS, upper crustal velocities range from 4.2 to 5.7 km s-1 and are consistent with the presence of a diverse suite of Mesozoic and Paleozoic metasediments and metavolcanics. In the upper 2-3 km of the Puget Lowland velocities drop to 1.7-3.5 km s-1 and reflect the occurrence of Oligocene to recent sediments within the basin. In the southern Washington Cascades, upper crustal velocities range from 4.0 to 5.5 km s-1 and are consistent with a large volume of Tertiary sediments and volcanics. A sharp change in velocity gradient at 5-10 km marks the division between the upper and middle crust. From approximately 10 to 35 km depth the velocity field is characterized by a velocity increase from ???6.0 to 7.2 km s-1. These high velocities do not support the presence of marine sedimentary rocks at depths of 10-20 km beneath the Cascades as previously proposed on the basis of magnetotelluric data. Crustal thickness ranges from 42 to 47 km along the profile. The lowermost crust consists of a 2 to 8-km-thick transitional layer with velocities of 7.3-7.4 km s-1. The upper mantle velocity appears to be an unusually low 7.6-7.8 km s-1. When compared to velocity models from other regions, this model most closely resembles those found in active continental arcs. Distinct seismicity patterns can be associated with individual tectonic provinces along the seismic transect. In

  11. Extensional fault geometry and its flexural isostatic response during the formation of the Iberia - Newfoundland conjugate rifted margins

    Science.gov (United States)

    Gómez-Romeu, Júlia; Kusznir, Nick; Manatschal, Gianreto; Roberts, Alan

    2017-04-01

    Despite magma-poor rifted margins having been extensively studied for the last 20 years, the evolution of extensional fault geometry and the flexural isostatic response to faulting remain still debated topics. We investigate how the flexural isostatic response to faulting controls the structural development of the distal part of rifted margins in the hyper-extended domain and the resulting sedimentary record. In particular we address an important question concerning the geometry and evolution of extensional faults within distal hyper-extended continental crust; are the seismically observed extensional fault blocks in this region allochthons from the upper plate or are they autochthons of the lower plate? In order to achieve our aim we focus on the west Iberian rifted continental margin along the TGS and LG12 seismic profiles. Our strategy is to use a kinematic forward model (RIFTER) to model the tectonic and stratigraphic development of the west Iberia margin along TGS-LG12 and quantitatively test and calibrate the model against breakup paleo-bathymetry, crustal basement thickness and well data. RIFTER incorporates the flexural isostatic response to extensional faulting, crustal thinning, lithosphere thermal loads, sedimentation and erosion. The model predicts the structural and stratigraphic consequences of recursive sequential faulting and sedimentation. The target data used to constrain model predictions consists of two components: (i) gravity anomaly inversion is used to determine Moho depth, crustal basement thickness and continental lithosphere thinning and (ii) reverse post-rift subsidence modelling consisting of flexural backstripping, decompaction and reverse post-rift thermal subsidence modelling is used to give paleo-bathymetry at breakup time. We show that successful modelling of the structural and stratigraphic development of the TGS-LG12 Iberian margin transect also requires the simultaneous modelling of the Newfoundland conjugate margin, which we

  12. Spatial relationships between crustal structures and mantle seismicity in the Vrancea Seismogenic Zone of Romania: Implications for geodynamic evolution

    Science.gov (United States)

    Enciu, Dana-Mihaela

    Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.

  13. Crustal structure and inferred extension mode in the northern margin of the South China Sea

    Science.gov (United States)

    Gao, J.; Wu, S.; McIntosh, K. D.; Mi, L.; Spence, G.

    2016-12-01

    Combining multi-channel seismic reflection and satellite gravity data, this study has investigated the crustal structure and magmatic activities of the northern South China Sea (SCS) margin. Results show that a broad continent-ocean transition zone (COT) with more than 140 km wide is characterized by extensive igneous intrusion/extrusion and hyper-extended continental crust in the northeastern SCS margin, a broader COT with 220-265 km wide is characterized by crustal thinning, rift depression, structural highs with igneous rock and perhaps a volcanic zone or a zone of tilted fault blocks at the distal edge in the mid-northern SCS margin, and a narrow COT with 65 km wide bounded seawards by a volcanic buried seamount is characterized by extremely hyper-extended continental crust in the northwestern SCS margin, where the remnant crust with less than 3 km thick is bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a sub-parallel fossil ridge in the adjacent Northwest Sub-basin. Results from gravity modeling and seismic refraction data show that a high velocity layer (HVL) is present in the outer shelf and slope below extended continental crust in the eastern portion of the northern SCS margin and is thickest (up to 10 km) in the Dongsha Uplift where the HVL gradually thins to east and west below the lower slope and finally terminates at the Manila Trench and Baiyun sag of the Pearl River Mouth Basin. The magmatic intrusions/extrusions and HVL may be related to partial melting caused by decompression of passive, upwelling asthenosphere which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. The northern SCS margin is closer to those of the magma-poor margins than those of volcanic margins, but the aborted rift near the northwestern continental margin shows that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric aborted

  14. Lateral variations in the crustal structure of the Indo-Eurasian collision zone

    Science.gov (United States)

    Gilligan, Amy; Priestley, Keith

    2018-05-01

    The processes involved in continental collisions remain contested, yet knowledge of these processes is crucial to improving our understanding of how some of the most dramatic features on Earth have formed. As the largest and highest orogenic plateau on Earth today, Tibet is an excellent natural laboratory for investigating collisional processes. To understand the development of the Tibetan Plateau we need to understand the crustal structure beneath both Tibet and the Indian Plate. Building on previous work, we measure new group velocity dispersion curves using data from regional earthquakes (4424 paths) and ambient noise data (5696 paths), and use these to obtain new fundamental mode Rayleigh Wave group velocity maps for periods from 5-70 s for a region including Tibet, Pakistan and India. The dense path coverage at the shortest periods, due to the inclusion of ambient noise measurements, allows features of up to 100 km scale to be resolved in some areas of the collision zone, providing one of the highest resolution models of the crust and uppermost mantle across this region. We invert the Rayleigh wave group velocity maps for shear wave velocity structure to 120 km depth and construct a 3D velocity model for the crust and uppermost mantle of the Indo-Eurasian collision zone. We use this 3D model to map the lateral variations in the crust and in the nature of the crust-mantle transition (Moho) across the Indo-Eurasian collision zone. The Moho occurs at lower shear velocities below north eastern Tibet than it does beneath western and southern Tibet and below India. The east-west difference across Tibet is particularly apparent in the elevated velocities observed west of 84° E at depths exceeding 90 km. This suggests that Indian lithosphere underlies the whole of the Plateau in the west, but possibly not in the east. At depths of 20-40 km our crustal model shows the existence of a pervasive mid-crustal low velocity layer (˜10% decrease in velocity, Vs Vsv. The

  15. Upper crustal structure of Madeira Island revealed from ambient noise tomography

    Science.gov (United States)

    Matos, Catarina; Silveira, Graça; Matias, Luís; Caldeira, Rita; Ribeiro, M. Luísa; Dias, Nuno A.; Krüger, Frank; Bento dos Santos, Telmo

    2015-06-01

    We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

  16. Meso-cenozoic extensional tectonics and uranium metallogenesis in southeast China

    International Nuclear Information System (INIS)

    Chen Yuehui; Chen Zuyi; Cai Yuqi; Fu Jin; Feng Quanhong; Shi Zuhai

    1998-12-01

    Through a systematic study on Meso-Cenozoic extensional tectonics in Southeast China, the authors point out that there are three major types of extensional tectonics such as taphrogenic thermo-upwelling, and gravitational extensional tectonics. The characteristics of structural forms, combination patterns, movement style and syn-tectonic magmatism of different extensional tectonics are studied. Then according to the known isotope age data of uranium mineralizations in the area, the relations between the process of extensional tectonics and regional uranium metallogenesis, as well as the corresponding relations in space and time between extensional tectonics and uranium deposits of different types are analyzed. In conclusion, the authors suggest that the uranium mineralizations of different types in Southeast China are characterized by an united ore-forming mechanism due to the apparent control of extensional tectonics to the regional uranium metallogenesis

  17. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    International Nuclear Information System (INIS)

    Milnes, A.G.; Gee, D.G.; Lund, C.E.

    1998-11-01

    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics

  18. Crustal structure and regional tectonics of SE Sweden and the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Milnes, A.G. [Bergen Univ. (Norway). Dept. of Geology; Gee, D.G.; Lund, C.E. [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    1998-11-01

    In this desk study, the available geophysical and geological data on the crustal structure and regional tectonics of the wider surroundings of the Aespoe site (SE Sweden and adjacent parts of the Baltic Sea) are compiled and assessed. The aim is to contribute to the knowledge base for long-term rock mechanical modeling, using the Aespoe site as a proxy for a high-level radioactive waste repository site in Swedish bedrock. The geophysical data reviewed includes two new refraction/wide-angle reflection seismic experiments carried out within the EUROBRIDGE project, in addition to the numerous earlier refraction seismic profiles. The BABEL normal-incidence deep seismic profile is also considered. New geological data, presented at EUROBRIDGE workshops, and in recent SGU publications, are reviewed for the same area. In combination with the seismic data, these provide a base for interpreting the present composition and structure, and the Palaeoproterozoic-Mesoproterozoic evolution, of the crustal segment within which the Aespoe site lies - the Smaaland mega-block. This is characterized by having undergone little regionally significant deformation or magmatism since Neoproterozoic times (the last 1000 million years). It is shown that, at this scale of observation (of the order of 100 km), the long-term rheology of the lithosphere can be argued from a relatively tight observational network, when combined with the results of earlier SKB studies (seismo-tectonics, uplift patterns, state of stress, heat flow) and published research. Although many uncertainties exist, the present state of knowledge would suffice for first exploratory calculations and sensitivity studies of long-term, large-scale rock mechanics 101 refs, 22 figs

  19. Crustal Structure in the Western Part of Romania from Local Seismic Tomography

    Science.gov (United States)

    Zaharia, Bogdan; Grecu, Bogdan; Popa, Mihaela; Oros, Eugen; Radulian, Mircea

    2017-12-01

    The inner part of the Carpathians in Romania belongs to the Carpathians-Pannonian system bordered by the Eastern Carpathians to the north and east, Southern Carpathians to the south and Pannonian Basin to the west. It is a complex tectonic region with differential folding mechanisms, post-collisional kinematics, rheology and thermal properties, including within its area the Apuseni Mountains and the Transylvanian Basin. The purpose of this study is to map the 3-D structure of the crust over this region on the basis of local earthquake data. Input data were recorded during the South Carpathian Project (2009-2011), a successful collaboration between the Institute of Geophysics and Tectonics of the University of Leeds and the National Institute for Earth Physics (NIEP), Romania. A temporary array of 32 broadband seismic stations (10 CMG-40T, 8 CMG-3T and 14 CMG-6TD) was installed across the western part of Romania (spaced at 40 to 50 km intervals) during the project. In addition, 25 stations deployed in the eastern Hungary and Serbia was considered. P- and S-wave arrivals are identified for all the selected events (minimum 7 phases per event with reasonable signal/noise ratio). All the events are first relocated using Joint Hypocentre Determination (JHD) technique. Then the well-located events were inverted to determine the crustal structure using LOTOS algorithm. The lateral variations of the crustal properties as resulted from the tomography image are interpreted in correlation with the station corrections estimated by JHD algorithm and with the post-collisional evolution of the Carpathians-Pannonian system.

  20. The crustal structure of the Southern Nain and Makkovik Provinces of Labrador deriverd from seismic refraction data

    DEFF Research Database (Denmark)

    Funck, T.; Hansen, A.K.; Reid, Ian Derry

    2008-01-01

    A refraction seismic profile was used to determine the crustal structure across the Nain/ Makkovik boundary, and to look for an offshore continuation of the  Nain Plutonic Suite (NPS). Velocity models were developed from forward and inverse modeling of travel times. There are. In the Saglek block...

  1. The variation of crustal structure along the Song Ma Shear Zone, Northern Vietnam

    Science.gov (United States)

    Su, Chien-Min; Wen, Strong; Tang, Chi-Chia; Yeh, Yu-Lien; Chen, Chau-Huei

    2018-06-01

    Northern Vietnam is divided into two regions by suture zone. The southwestern region belongs to the Indochina block, and the northeastern region is a portion of the South China block with distinct geological characteristics. From previous studies, the closing the Paleotethys led the collision between the Indochina and South China blocks, and this collision form the suture zone in the Middle Triassic. In the Tertiary, Indian and Eurasian plates started to collide, and this collision caused the extrusion of the Indochina block along the suture zone and a clockwise rotation. Metamorphic rocks associated with the subduction process have been found at the Song Ma Shear Zone (SMSZ) from geological surveys, which indicated that the SMSZ is a possible boundary between the South China and Indochina block. However, according to previous study, there is an argument of whether the SMSZ is a subduction zone of the South China and Indochina plates or not. In this study, we applied the H-κ and the common conversion point (CCP) stacking method using teleseismic converted waves recorded by a seismic broadband array to obtain the Moho depth, VP/VS ratio and the crustal structure along the SMSZ. The CCP results are further used to identify whether the fault extends through the entire crust or not. We have selected two profiles along the SMSZ and a profile across the SMSZ for imaging lateral variations of impedance from stacking. According to H-κ stacking results, crustal thickness vary from 26.0 to 29.3 km, and the average of VP/VS ratio is about 1.77. Finally, the CCP results also show the heterogeneity of crust among the SMSZ. These evidences might support that SMSZ is the suture zone between the South China and Indochina plates.

  2. Imaging of upper crustal structure beneath East Java-Bali, Indonesia with ambient noise tomography

    Science.gov (United States)

    Martha, Agustya Adi; Cummins, Phil; Saygin, Erdinc; Sri Widiyantoro; Masturyono

    2017-12-01

    The complex geological structures in East Java and Bali provide important opportunities for natural resource exploitation, but also harbor perils associated with natural disasters. Such a condition makes the East Java region an important area for exploration of the subsurface seismic wave velocity structure, especially in its upper crust. We employed the ambient noise tomography method to image the upper crustal structure under this study area. We used seismic data recorded at 24 seismographs of BMKG spread over East Java and Bali. In addition, we installed 28 portable seismographs in East Java from April 2013 to January 2014 for 2-8 weeks, and we installed an additional 28 seismographs simultaneously throughout East Java from August 2015 to April 2016. We constructed inter-station Rayleigh wave Green's functions through cross-correlations of the vertical component of seismic noise recordings at 1500 pairs of stations. We used the Neighborhood Algorithm to construct depth profiles of shear wave velocity (Vs). The main result obtained from this study is the thickness of sediment cover. East Java's southern mountain zone is dominated by higher Vs, the Kendeng basin in the center is dominated by very low Vs, and the Rembang zone (to the North of Kendeng zone) is associated with medium Vs. The existence of structures with oil and gas potential in the Kendeng and Rembang zones can be identified by low Vs.

  3. Crustal Structure and Deformation of the Sichuan-Yunnan Region Revealed by receiver Function Data

    Science.gov (United States)

    Zeng, S.; Zheng, Y.

    2017-12-01

    Sichuan-Yunnan and its surrounding areas locates in the southeast side to the Tibetan Plateau, due to the intrusion of the Indian Plate under the Tibetan Plateau, materials escape from the Tibetan Plateau and flow southward to southeastward. Because of such tectonic environment, the Sichuan-Yunnan region is experiencing high tectonic movement, and is capable of highly diffused seismicity. Based on dynamic simulation and field survey investigations, tectonic and geological studies proposed a decoupling model in this region and lower crustal flow may inflate in the crust. However, this idea needs more evidences, especially anisotropic structures to support it, since the anisotropic structures are usually directly related to the movement of materials, or to the tectonic distributions. In the past several years, a number of works have been done on the anisotropic structures in the Tibetan Plateau and its surroundings. In usually, previous studies were mainly carried out by two kinds of methods. First, the shear wave splitting of SKS, which mainly reflects the accumulation effect of the anisotropy of the crust to the mantle; the other way is use surface wave to investigate the anisotropic features at different azimuths and depths. In the recent years, receiver function is used to determine the inclination and anisotropy of the subsurface structure, comparing with the other two methods, receiver functions can provide higher resolution and reliable anisotropic features in the crust. Following the method of Liu and Niu(2012), we collected teleseismic data from the Himalayan first term network, and picked out high quality data based on the waveform SNR ratio, as well as the azimuthal distributions. Comparing with previous work (e.g., Sun et al.,2012), our work can provide more receiver functions results with higher reliability. We find that the crust beneath the Sichuan-Yunnan region has a thickness of 30-60 km and Vp/Vs ratio of 1.70-1.80. The Moho depth from northwest to

  4. Polymer fragmentation in extensional flow

    Energy Technology Data Exchange (ETDEWEB)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech

    2001-06-01

    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments.

  5. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China

    Science.gov (United States)

    Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie

    2001-12-01

    Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.

  6. Crustal structure at the western end of the North Anatolian Fault Zone from deep seismic sounding

    Directory of Open Access Journals (Sweden)

    B. Baier

    2001-06-01

    Full Text Available The first deep seismic sounding experiment in Northwestern Anatolia was carried out in October 1991 as part of the "German - Turkish Project on Earthquake Prediction Research" in the Mudurnu area of the North Anatolian Fault Zone. The experiment was a joint enterprise by the Institute of Meteorology and Geophysics of Frankfurt University, the Earthquake Research Institute (ERI in Ankara, and the Turkish Oil Company (TPAO. Two orthogonal profiles, each 120 km in length with a crossing point near Akyazi, were covered in succession by 30 short period tape recording seismograph stations with 2 km station spacing. 12 shots, with charge sizes between 100 and 250 kg, were fired and 342 seismograms out of 360 were used for evaluation. By coincidence an M b = 4.5 earthquake located below Imroz Island was also recorded and provided additional information on Moho and the sub-Moho velocity. A ray tracing method orginally developed by Weber (1986 was used for travel time inversion. From a compilation of all data two generalized crustal models were derived, one with velocity gradients within the layers and one with constant layer velocities. The latter consists of a sediment cover of about 2 km with V p » 3.6 km/s, an upper crystalline crust down to 13 km with V p » 5.9 km/s, a middle crust down to 25 km depth with V p » 6.5 km/s, a lower crust down to 39 km Moho depth with V p » 7.0 km/s and V p » 8.05 km/s below the Moho. The structure of the individual profiles differs slightly. The thickest sediment cover is reached in the Izmit-Sapanca-trough and in the Akyazi basin. Of particular interest is a step of about 4 km in the lower crust near Lake Sapanca and probably an even larger one in the Moho (derived from the Imroz earthquake data. After the catastrophic earthquake of Izmit on 17 August 1999 this significant heterogeneity in crustal structure appears in a new light with regard to the possible cause of the Izmit earthquake. Heterogeneities in

  7. Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.

    2015-12-01

    Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern

  8. Crustal structure of the Central-Eastern Greenland: results from the Topo Greenland refraction profile

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2014-01-01

    Until present, seismic surveys have only been carried out offshore and near the coasts of Greenland, where the crustal structure is affected by oceanic break-up. We present the deep seismic structure of the crust of the interior of Greenland, based on the new and the only existing so far seismic...... refraction/wide-angle reflection profile. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass, made...... acquisition of geophysical data logistically complicated. The profile extends 310 km inland in E-W direction from the approximate edge of the stable ice cap near the Scoresby Sund across the center of the ice cap. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along...

  9. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    International Nuclear Information System (INIS)

    Martha, Agustya Adi; Widiyantoro, Sri; Cummins, Phil; Saygin, Erdinc; Masturyono

    2015-01-01

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images

  10. Upper crustal structure beneath East Java from ambient noise tomography: A preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Martha, Agustya Adi [Meteorological, Climatological and Geophysical Agency, Jakarta (Indonesia); Graduate Research on Earthquakes and Active Tectonics, Institut Teknologi Bandung, Bandung (Indonesia); Widiyantoro, Sri [Global Geophysics Group, Institut Teknologi Bandung, Bandung (Indonesia); Center for Disaster Mitigation, Institut Teknologi Bandung, Bandung (Indonesia); Cummins, Phil; Saygin, Erdinc [Research School of Earth Sciences, Australian National University, Canberra (Australia); Masturyono [Meteorological, Climatological and Geophysical Agency, Jakarta (Indonesia)

    2015-04-24

    East Java has a fairly complex geological structure. Physiographically East Java can be divided into three zones, i.e. the Southern Mountains zone in the southern part, the Kendeng zone in the middle part, and the Rembang zone in the northern part. Most of the seismic hazards in this region are due to processes in the upper crust. In this study, the Ambient Noise Tomography (ANT) method is used to image the upper crustal structure beneath East Java. We have used seismic waveform data recorded by 8Meteorological, Climatological and Geophysical Agency (BMKG) stationary seismographic stations and 16 portable seismographs installed for 2 to 8 weeks. The data were processed to obtain waveforms fromnoise cross-correlation between pairs of seismographic stations. Our preliminary results indicate that the Kendeng zone, an area of low gravity anomaly, is associated with a low velocity zone. On the other hand, the southern mountain range, which has a high gravity anomaly, is related to a high velocity anomaly as shown by our tomographic images.

  11. Ultrasound monitoring of applied forcing, material ageing, and catastrophic yield of crustal structures

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    2007-11-01

    Full Text Available A new kind of data analysis is discussed – and a few case histories of actual application are presented – concerning the physical information attainable by acoustic emission (AE records in geodynamically active or volcanic areas. The previous analyses of such same kind of observations were reported in several papers appeared in the last few years, and here briefly recalled. They are concerned with the inference of the forcing ("F" acting on the physical system, and on the ageing ("T" or fatigue of its "solid" structures. The new analysis here discussed deals with the distinction between a state of applied stress ("hammer regime", compared to state of "recovery regime" of the system while it seeks a new equilibrium state after having been perturbed. For instance, in the case of a seismic event – and according to some kind of almost intuitive argument – the "hammer regime" is the phenomenon leading to the main shock, while the "recovery regime" deals with the well known aftershocks. Such same intuitive inference, however, can be investigated by a much more formal algorithm, aimed at envisaging the minor changes of the behaviour of the system, during its history and during its present dynamic evolution. As a demonstrative application, detailed consideration is given of AE records – each one lasting for a few years – collected on the Italian peninsula vs. records collected on the Kefallinìa Island (western Greece. Such two areas are well known being characterised by some great comparative difference in their respective tectonic setting. When considering planetary scale phenomena, they appear comparatively very close to each other. Hence, they are likely being presumably affected by similar large-scale external actions, although they ought to be expected to respond in some completely different way. Such facts are clearly manifested by some substantially different AE responses of the local crustal

  12. Barents Sea Crustal and Upper Mantle Structure from Deep Seismic and Potential Field Data

    Science.gov (United States)

    Aarseth, I.; Mjelde, R.; Breivik, A. J.; Minakov, A.; Huismans, R. S.; Faleide, J. I.

    2016-12-01

    The Barents Sea basement comprises at least two different domains; the Caledonian in the west and the Timanian in the east. Contrasting interpretations have been published recently, as the transition between these two domains is not well constrained. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea challenged previous studies of the Late Paleozoic basin configurations in the western and central Barents Sea. Two major directions of Caledonian structures have been proposed by different authors: N-S and SW-NE. Two regional ocean bottom seismic (OBS) profiles, crossing these two major directions, were acquired in 2014.The primary goal in this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. High velocity anomalies associated with Caledonian eclogites are particularly interesting as they may be related to Caledonian suture zones. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be closely linked to the deposition of Devonian erosional products, and subsequent rifting is likely to be influenced by inheritance of Caledonian trends. P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity modelling has been used to support the seismic model. The results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transect reveals areas of complex geology and velocity inversions. Strong reflections from within the crystalline crust indicate a heterogeneous basement terrain. Gravity modelling agrees with this, as several blocks with variable densities had to be introduced in order to reproduce the observed gravity anomalies. Refractions from the top of the crystalline basement together with reflections from

  13. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography

    Science.gov (United States)

    Korenaga, J.; Holbrook, W. S.; Kent, G. M.; Kelemen, P. B.; Detrick, R. S.; Larsen, H.-C.; Hopper, J. R.; Dahl-Jensen, T.

    2000-09-01

    We present results from a combined multichannel seismic reflection (MCS) and wideangle onshore/offshore seismic experiment conducted in 1996 across the southeast Greenland continental margin. A new seismic tomographic method is developed to jointly invert refraction and reflection travel times for a two-dimensional velocity structure. We employ a hybrid ray-tracing scheme based on the graph method and the local ray-bending refinement to efficiently obtain an accurate forward solution, and we employ smoothing and optional damping constraints to regularize an iterative inversion. We invert 2318 Pg and 2078 PmP travel times to construct a compressional velocity model for the 350-km-long transect, and a long-wavelength structure with strong lateral heterogeneity is recovered, including (1) ˜30-km-thick, undeformed continental crust with a velocity of 6.0 to 7.0 km/s near the landward end, (2) 30- to 15-km-thick igneous crust within a 150-km-wide continent-ocean transition zone, and (3) 15- to 9-km-thick oceanic crust toward the seaward end. The thickness of the igneous upper crust characterized by a high-velocity gradient also varies from 6 km within the transition zone to ˜3 km seaward. The bottom half of the lower crust generally has a velocity higher than 7.0 km/s, reaching a maximum of 7.2 to 7.5 km/s at the Moho. A nonlinear Monte Carlo uncertainty analysis is performed to estimate the a posteriori model variance, showing that most velocity and depth nodes are well determined with one standard deviation of 0.05-0.10 km/s and 0.25-1.5 km, respectively. Despite significant variation in crustal thickness, the mean velocity of the igneous crust, which serves as a proxy for the bulk crustal composition, is surprisingly constant (˜7.0 km/s) along the transect. On the basis of a mantle melting model incorporating the effect of active mantle upwelling, this velocity-thickness relationship is used to constrain the mantle melting process during the breakup of Greenland

  14. Lateral variation in crustal and mantle structure in Bay of Bengal based on surface wave data

    Science.gov (United States)

    Kumar, Amit; Mukhopadhyay, Sagarika; Kumar, Naresh; Baidya, P. R.

    2018-01-01

    Surface waves generated by earthquakes that occurred near Sumatra, Andaman-Nicobar Island chain and Sunda arc are used to estimate crustal and upper mantle S wave velocity structure of Bay of Bengal. Records of these seismic events at various stations located along the eastern coast of India and a few stations in the north eastern part of India are selected for such analysis. These stations lie within regional distance of the selected earthquakes. The selected events are shallow focused with magnitude greater than 5.5. Data of 65, 37, 36, 53 and 36 events recorded at Shillong, Bokaro, Visakhapatnam, Chennai and Trivandrum stations respectively are used for this purpose. The ray paths from the earthquake source to the recording stations cover different parts of the Bay of Bengal. Multiple Filtering Technique (MFT) is applied to compute the group velocities of surface waves from the available data. The dispersion curves thus obtained for this data set are within the period range of 15-120 s. Joint inversion of Rayleigh and Love wave group velocity is carried out to obtain the subsurface information in terms of variation of S wave velocity with depth. The estimated S wave velocity at a given depth and layer thickness can be considered to be an average value for the entire path covered by the corresponding ray paths. However, we observe variation in the value of S wave velocity and layer thickness from data recorded at different stations, indicating lateral variation in these two parameters. Thick deposition of sediments is observed along the paths followed by surface waves to Shillong and Bokaro stations. Sediment thickness keeps on decreasing as the surface wave paths move further south. Based on velocity variation the sedimentary layer is further divided in to three parts; on top lay unconsolidated sediment, underlain by consolidated sediment. Below this lies a layer which we consider as meta-sediments. The thickness and velocity of these layers decrease from north

  15. Crustal structure of northern Italy from the ellipticity of Rayleigh waves

    Science.gov (United States)

    Berbellini, Andrea; Morelli, Andrea; G. Ferreira, Ana M.

    2017-04-01

    Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.

  16. 2-D Crustal thermal structure along Thuadara–Sindad DSS profile ...

    Indian Academy of Sciences (India)

    Thuadara–Sindad Deep Seismic Sounding (DSS) profile which runs almost in the N–S direction ... These studies include four Deep Seis- ... Geology and tectonic frame work ..... alous high-velocity layer at shallow crustal depths in the.

  17. Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia.

    Science.gov (United States)

    Alemu, T. B.; Abdelsalam, M. G.

    2017-12-01

    The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging

  18. The Chaotic Terrains of Mercury: A History of Large-Scale Crustal Devolatilization

    Science.gov (United States)

    Rodriguez, J. A. P.; Domingue, D. L.; Berman, D. C.; Kargel, J. S.; Baker, V. R.; Teodoro, L. F.; Banks, M.; Leonard, G.

    2018-05-01

    Approximately 400 million years after the Caloris basin impact, extensive collapse formed Mercury's chaotic terrains. Collapse likely resulted from regionally elevated heat flow devolatilizing crustal materials along NE and NW extensional faults.

  19. Preliminary study of lateral variation in crustal structure of Northeast China from teleseismic receiver functions

    Science.gov (United States)

    Chen, Youlin; Liu, Ruifeng; Huang, Zhibin; Sun, Li

    2011-02-01

    We conducted comprehensive receiver function analyses for a large amount of high-quality broadband teleseismic waveforms data recorded at 19 China National Digital Seismic Network (CNDSN) stations deployed in Northeast China. An advanced H- κ domain search method was adopted to accurately estimate the crustal thickness and ν P/ ν S ratio. The crust has an average thickness of about 34.4 km. The thinnest crust occurs in the central region of Northeast China, while the thickest crust is beneath the Yanshan belt. The ν P/ ν S ratio is relatively uniform with an average of about 1.733. The highest ν P/ ν S ratio is found beneath the Changbaishan, likely associated with its volcanic activities. We found significant lateral heterogeneity beneath three stations CN2, MDJ, and MIH located along the Suolon suture from the back-zimuthal dependence of Moho depth. The velocity modeling from receiver functions indicated complicated Earth structure beneath these stations with large crust-mantle transition zone, noticeable velocity jump in upper mantle, and low velocity zone in middle crust. Dipping velocity interface in the crust with strike approximately parallel to the Suolon suture and down-dip to the south or southeast might explain the observed lateral heterogeneity.

  20. Electrical structure and its implication across the lower- and upper-crustal settings of South India

    Science.gov (United States)

    Raval, U.

    1988-01-01

    Measurements of a large scale MMA experiment covering both the granulite and greenstone terrains of Archeans in the southern part of India is re-visited and re-analyzed. The induced field variations contain the signatures of crustal and subcrustal electrical conductivities, although substantially distorted by the sea-land interfaces and cenozoic sediments. However, through a selection of some reconnaissance profiles and temporal variations, an attempt is made to deduce whether: (1) significant differences exist between the electrical structures of the high and low grade complexes (i.e., if the electrical conductivity of the lower crust is due to minerological composition or is intrinsic to the positioning at depths greater than 15 km); (2) the probable seaward extension of the continental crust and its transition to oceanic type may also contribute (through intracrustal DC-like telluric sheets) to the induction field in addition to or rather than the sharply localized zones; (3) the observed parameters are indicative of a formal anisotropy and/or undulations in the deep crust; and (4) the postulate of relatively hotter Indian shield is reflected particularly with regard to differential metamorphism. In the last case, the crust-mantle coupling in this region - unlike other similar areas - seems to be markedly affected by the evolution of Ne-plate velocity field.

  1. Modeling and Crustal Structure in the Future Reservoir of Jequitaí, Brazil

    Science.gov (United States)

    Teixeira, C. D.; Von Huelsen, M. G.; Chemale, F., Jr.; Nascimento, A. V. D. S., Sr.; do Sacramento, V., Sr.; Garcia, V. B. P., Sr.

    2017-12-01

    Integrated geophysical and geological data analysis in the state of Minas Gerais, Brazil, allowed the modeling of the subsurface framework in a region where a reservoir - the Jequitaí reservoir - will be constructed. Studies of this nature during the previous stages of the construction of large hydroelectric projects are highly important, because the regional geology understanding associated with geophysical data interpretation can help to prevent damage in the physical structure of the dam, which will aid in its preservation. The use of gravity and magnetic data in a 2D crustal model provided information on a possible framework of the area and revealed features not mapped until now, which may be useful for further studies and can contribute to the understanding of this portion of the crust. The results show the presence of high gravity anomalies in the southern part of the study area, besides extensive lineaments that cross the whole area, interpreted as possible faults and dykes. Depth estimation techniques, such as Euler deconvolution and radially averaged power spectrum, allowed the identification of continuous structures up to 400 m depth, and showed differences in the basement depth in the northern and southern portions of the study area. Inversion of the gravity data along a profile crossing a gravity anomaly yielded to information about the depth, thickness and shape of a possible intrusive body. The geological-geophysical model was consistent with the interpretations based on surface geology and in the gravity and magnetic signal, because the section could be modeled respecting the geophysical data and the pre-existing structural proposals.

  2. Crustal structural survey for the state of Minas Gerais, Brazil, utilizing geophysical and geological information

    International Nuclear Information System (INIS)

    Haralyi, N.L.E.; Hasui, Y.; Mioto, J.A.; Hamza, V.M.

    1985-01-01

    Gravity, Magnetic (airborne, Magnet and Magsat), heat flow and seismicity available data for the state of Minas Gerais and adjacent regions is here analyzed, discussed and integrated with geologic information. The Late Archean crustal structure is defined as blocks of granite-greenstone separated by belts of high-grade terrains. The belts in eastern and southern Minas Gerais represent the lower parts of the Vitoria, Sao Paulo and Parana Blocks, which were up thrusted over the Brasilia Block through low-angle ductile simple shear Zones. That regional structure is cut and somewhat displaced by NW, ENE, NE and Ns fault sets. These faults are mostly related to the Transamazonian Event, and their geological expression appears to be as high-angle ductile simple shear zones. The development of the Middle/upper proterozoic folded sequences, the incidence of the Brasiliano/Uruacuano thermo tectonic events and the geometry of the Sao Francisco Craton were highly influenced by the preexistent weakness zones. The high-grade terrains, the borders of the Brasilia Block and the Transamazonian lineaments have been preferentially affected. The tectono-magmatic manifestations of the Wealdenian Reactivation, related to the opening of the Atlantic Ocean, occurred mostly among the uplifted zones (Alto Paranaiba Uplift) that developed partially until the rift stage (Mantiqueira Uplift). These processes clearly reveal the influence of the old structures of the state of Minas Gerais. The Mantiqueira Uplift presents a more accentuated seismic activity and thermal flow regime than the neighboring regions, so corresponding to the present less stable area of Minas Gerais. (DJM) [pt

  3. Along-Axis Structure and Crustal Construction Processes of Spreading Segments in Iceland: Implications for Magmatic Rifts

    Science.gov (United States)

    Siler, D. L.; Karson, J. A.

    2017-10-01

    Magmatic rift systems are composed of discrete spreading segments defined by morphologic, structural, and volcanic features that vary systematically along strike. In Iceland, structural features mapped in the glaciated and exhumed Miocene age upper crust correlate with analogous features in the seismically and volcanically active neovolcanic zone. Integrating information from both the active rift zones and ancient crust provides a three-dimensional perspective of crustal structure and the volcanic and tectonic processes that construct crust along spreading segments. Crustal exposures in the Skagi region of northern Iceland reveal significant along-strike variations in geologic structure. The upper crust at exhumed magmatic centers (segment centers) is characterized by a variety of intrusive rocks, high-temperature hydrothermal alteration, and geologic evidence for kilometer-scale subsidence. In contrast, the upper crust along segment limbs, which extend along strike from magmatic centers, is characterized by thick sections of gently dipping lava flows, cut by varying proportions of subvertical dikes. This structure implies relatively minor upper crustal subsidence and lateral dike intrusion. The differing modes of subsidence beneath segment centers and segment limbs require along-axis mass redistribution in the underlying upper, middle, and lower crust during crustal construction. This along-axis material transport is accomplished through lateral dike intrusion in the upper crust and by along-axis flow of magmatic to high-temperature solid-state gabbroic material in the middle and lower crust. These processes, inferred from outcrop evidence in Skagi, are consistent with processes inferred to be important during active rifting in Iceland and at analogous magmatic oceanic and continental rifts.

  4. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: hadda9@gmail.com [Graduate Research on Earthquake and Active Tectonics (GREAT), Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia); Hananto, Nugroho D.; Handayani, Lina [Research Centre for Geotechnology - Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia)

    2015-04-24

    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  5. Coeval gravity-driven and thick-skinned extensional tectonics in the mid-Cretaceous of the western Pyrenees

    Science.gov (United States)

    Bodego, Arantxa; Agirrezabala, Luis M.

    2010-05-01

    , which define a horst and graben system. Rollovers (unfaulted and faulted), hangingwall synclines and central domes are present in the hangingwalls of both listric and planar faults. Also, a fault-propagation fold, a forced fold and a roller have been interpreted. Synkinematic depositional systems and sediment-filled fissures are parallel to the NW- to N-trending tectonic structures. Based on the trend of tectonic structures, the orientation of sediment-filled fissures and the paleocurrent pattern of growth strata, a thin-skinned NE-SW to E-W extension has been deduced for the interior of the Lasarte sub-basin. Both the coincidence between the directions of extension and dip of the detachment layer and the characteristics of the deformation suggest a thin-skinned gravity-driven extensional tectonics caused by the dip of the detachment layer. Recorded extensional deformation event in the Lasarte sub-basin is contemporaneous with and would have been triggered by the extreme crustal thinning and mantle exhumation processes documented recently in both the Basque-Cantabrian Basin and the Pyrenees.

  6. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments

    Science.gov (United States)

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.

    2013-01-01

    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  7. Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil

    Science.gov (United States)

    de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.

    2014-01-01

    The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.

  8. Crustal structure of north Peru from analysis of teleseismic receiver functions

    Science.gov (United States)

    Condori, Cristobal; França, George S.; Tavera, Hernando J.; Albuquerque, Diogo F.; Bishop, Brandon T.; Beck, Susan L.

    2017-07-01

    In this study, we present results from teleseismic receiver functions, in order to investigate the crustal thickness and Vp/Vs ratio beneath northern Peru. A total number of 981 receiver functions were analyzed, from data recorded by 28 broadband seismic stations from the Peruvian permanent seismic network, the regional temporary SisNort network and one CTBTO station. The Moho depth and average crustal Vp/Vs ratio were determined at each station using the H-k stacking technique to identify the arrival times of primary P to S conversion and crustal reverberations (PpPms, PpSs + PsPms). The results show that the Moho depth correlates well with the surface topography and varies significantly from west to east, showing a shallow depth of around 25 km near the coast, a maximum depth of 55-60 km beneath the Andean Cordillera, and a depth of 35-40 km further to the east in the Amazonian Basin. The bulk crustal Vp/Vs ratio ranges between 1.60 and 1.88 with the mean of 1.75. Higher values between 1.75 and 1.88 are found beneath the Eastern and Western Cordilleras, consistent with a mafic composition in the lower crust. In contrast values vary from 1.60 to 1.75 in the extreme flanks of the Eastern and Western Cordillera indicating a felsic composition. We find a positive relationship between crustal thickness, Vp/Vs ratio, the Bouguer anomaly, and topography. These results are consistent with previous studies in other parts of Peru (central and southern regions) and provide the first crustal thickness estimates for the high cordillera in northern Peru.

  9. Finite-Frequency Seismic Tomography of Body Waves and Surface Waves from Ambient Seismic Noise: Crustal and Mantle Structure Beneath Eastern Eurasia

    National Research Council Canada - National Science Library

    Ren, Yong; Zhang, Wei; Yang, Ting; Shen, Yang; Yang, Xiaoping

    2008-01-01

    To improve seismic calibration for nuclear explosion monitoring, we use 3D sensitivity kernels of finite-frequency body and surface waves to develop models of the crustal and mantle structures beneath eastern Eurasia...

  10. 3D upper crustal seismic structure across Santorini volcanic field: Constraints on magmatic and tectonic interactions

    Science.gov (United States)

    Heath, B.; Hooft, E. E. E.; Toomey, D. R.; Papazachos, C. V.; Walls, K.; Paulatto, M.; Morgan, J. V.; Nomikou, P.; Warner, M.

    2017-12-01

    To investigate magmatic-tectonic interactions at an arc volcano, we collected a dense, active-source, seismic dataset across the Santorini Volcano, Greece, with 90 ocean bottom seismometers, 65 land seismometers, and 14,300 marine sound sources. We use over 140,000 travel-time picks to obtain a P-wave tomography model of the upper crustal structure of the Santorini volcano and surrounding tectonically extended region. Regionally, the shallow (Bouguer gravity anomalies and preliminary shallow attenuation results (using waveform amplitudes and t* values). We find regional Pliocene and younger faults bounding basement grabens and horsts to be predominately oriented in a NE-SW direction with Santorini itself located in a graben bounded by faults striking in this direction. In contrast, volcanic vents and dikes expressed at the surface seem to strike about 20° clockwise relative to these regional faults. In the northern caldera of Santorini, a 4-km wide region of anomalously low velocities and high attenuation directly overlies an inferred source of 2011-2012 inflation (4-4.5 km depth), however it is located at shallower depths ( 1-2km). The imaged low-velocity anomaly may correspond to hydrothermal activity (due to increased porosity and alteration) and/or brecciation from a prior episode of caldera collapse. It is bounded by anomalously fast velocities (at 1-2 km depth) that parallel the regional fault orientation and are correspondingly rotated 20° to surface dikes. At 4-5 km depth beneath the northern caldera basin, low-velocity anomalies and attenuated seismic arrivals provide preliminary evidence for a magma body; the low-velocity anomaly is elongated in the same direction as regional volcanic vents. The difference in strike of volcanic and tectonic features indicates oblique extension and potential time-variation in the minimum stress direction.

  11. Subsidence history, crustal structure, and evolution of the Somaliland-Yemen conjugate margin

    Science.gov (United States)

    Ali, M. Y.; Watts, A. B.

    2013-04-01

    We have used biostratigraphic data from deep exploration wells to determine the tectonic subsidence history of the Somaliland (northwestern Somalia)-Yemen conjugate margin, a poorly known margin in the central part of the Gulf of Aden. Bathymetry and magnetic anomaly data suggest the Gulf of Aden is a young feature that formed following the rifting apart and breakup of the African and Arabian plates ~32 Ma. Our tectonic subsidence data suggest, however, that the present-day Gulf of Aden developed on an earlier Mesozoic rift system. The oldest episode of rifting initiated at ~156 Ma and lasted for ~10 Ma and had a NW-SE trend. We interpret the rift as a late stage event associated with the breakup of Gondwana and the separation of Africa and Madagascar. At ~80 Ma, there is evidence of an intermediate rift event which correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The combined effect of all three rifting events has been to thin the crust and upper mantle by up to a factor of 2. The amount of thinning deduced from the wells is in accord with the crustal structure inferred from available seismic refraction data and process-oriented gravity and flexure modeling. The margin is asymmetric with a steeper gradient in the Moho on the Yemen side than the Somaliland side. The main discrepancy is on the Yemen side where the gravity-derived Moho is 10 km deeper than the well-derived Moho. We attribute the discrepancy to the addition of material at the base of the crust since rifting, possibly magma sourced from the Afar plume.

  12. A Full-Wave Seismic Tomography for the Crustal Structure in the Metropolitan Beijing Region

    Science.gov (United States)

    Sun, A.; Zhao, L.; Chen, Q.

    2008-12-01

    The greater Beijing metropolitan region is located in an old cratonic block in northeast China with complex geology and several large historic earthquakes, such as the Sanhe-Pinggu earthquake (~M8.0) in 1679, the Xingtai earthquake (M7.2) in 1966, and the Tangshan earthquake (M7.8) in 1976. To enhance our understanding of the crustal structure and the seismotectonics under this region, we conduct a full-wave three-dimensional (3D) tomographic study of this region using the waveforms recorded by the newly established Beijing metropolitan digital seismic network. Since the Beijing network was put into operation in October 2001, there have been 89 local earthquakes of magnitude 3.0 and above. From these, we selected 23 events of magnitude 3.2 and above and obtained their waveform records at 50 stations within our area of interest. The types of instruments at these stations include broadband, short-period and very broadband. First-motion focal mechanisms were determined for these events. We used a regional 3D model obtained by seismic reflection surveys as the reference model and calculated the synthetic seismograms by the finite-difference method. In this first attempt at finite- frequency tomography for the Beijing region, we focus on the variation of the P-wave speed using the first- arriving P waves. We measure the frequency-dependent traveltime anomalies of the P waves by the cross- correlation between observed and synthetic P waveforms within several discrete frequency bands between 20-sec and 5-sec periods. The sensitivity or Frechet kernels of these measurements for the perturbations in P-wave speed were computed by the same finite-difference method. We will present the preliminary result in our full-wave seismic tomography for the Beijing region.

  13. Seismic crustal structure between the Transylvanian Basin and the Black Sea, Romania

    Science.gov (United States)

    Hauser, F.; Raileanu, V.; Fielitz, W.; Dinu, C.; Landes, M.; Bala, A.; Prodehl, C.

    2007-02-01

    In order to study the lithospheric structure in Romania a 450 km long WNW-ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300-1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0-5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of

  14. Crustal structure in the Kiruna area, northern Sweden, based on seismic reflection profiling

    Science.gov (United States)

    Juhojuntti, Niklas; Bergman, Stefan; Olsson, Sverker

    2013-04-01

    Northernmost Sweden is currently one of the most active mining areas in Europe. In order to better understand the regional three-dimensional crustal structure and to support deep ore exploration, we have acquired a 74 km long seismic reflection profile in the Kiruna area. The upper crust in this area is largely composed of various supracrustal units, which are dominated by metabasalts, acidic metavolcanics and clastic metasedimentary rocks, resting on an Archaean metagranitoid complex. All of these units have been intruded by plutonic rocks, and to variable degrees folded, sheared and metamorphosed, during the Svecokarelian orogeny. The profile crosses several steep ductile shear zones, some of which extend for hundreds of kilometres along strike. Many of the lithological contacts and deformation zones are expected to be seismically reflective. The profile is located only a few kilometres from the world's largest underground iron-ore mine in Kiruna, and closer to the profile there are several known ore bodies, some of which are active exploration targets. For the seismic recording we used approximately 350 geophones in split-spread configuration, at a separation of 25 m. The main seismic source was the Vibsist system (an impact source), which normally was employed at every geophone station. We also fired explosive charges (8-16 kg) at a few locations distributed along the profile to image deeper structures, although at very low resolution. Wireless seismometers were placed along and to the side of the profile, mainly in order to achieve better velocity control and to study out-of-the-plane reflections. Some mining blasts in Kiruna were also recorded. The upper crust in the area is quite reflective, most clearly demonstrated by the dynamite shot records. Some of the reflections appear to originate from steeply dipping structures. The dynamite shot records show a set of reflections at 3-4 s twt, corresponding to a depth of roughly 10 km, the explanation for which is

  15. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

    Science.gov (United States)

    Schiffer, Christian; Stephenson, Randell; Oakey, Gordon N.; Jacobsen, Bo H.

    2016-03-01

    Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (˜82°-83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (˜35-36 km) and comparable velocity-depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ˜24-30 km in the Eurekan fold and thrust belt (˜79.7°-80.6°N) to ˜16-20 km in the Hazen Stable Block (HSB; ˜80.6°-81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (˜48 km) at ˜79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1-4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.

  16. Along Arc Structural Variation in the Izu-Bonin Arc and its Implications for Crustal Evolution Processes

    Science.gov (United States)

    Kodaira, S.; Sato, T.; Takahashi, N.; Ito, A.; Kaneda, Y.

    2005-12-01

    A continental-type middle crust having Vp = 6.1 - 6.3 km/s has been imaged at several oceanic island arcs (e.g. northern Izu, Mariana, Tonga, Kyushu-Palau ridge) since Suyehiro et al. (1996) has found a felsic middle crust in the northern Izu arc. A high velocity lower crust (Vp > 7.3 km/s) underlying the felsic middle crust has been also underlined as a characteristic structure in the northern Izu arc. A bulk composition of the crust in the Izu arc may indicate more mafic than that of a typical continental crust due to a large volume of the high velocity lower crust. Since a crust becomes more mature toward the north along the Izu-Bonin arc, investigating structural variation along the volcanic front has been believed to provide a fundamental knowledge for a crustal evolution process. In 2004 and 2005, Japan Agency for Marine-Earth Science and Technology has conducted two along arc wide-angle seismic surveys from the Sagami-bay to the Kita-Iwo jima, a total profile length of about 1000 km. Although data from the Bonin-part of the profile which were acquired this year has not been processed yet, a result from the Izu-part, from the Sagami-bay to Tori shima, shows significant structural variations along the volcanic front. The crustal thickness are varied with a wavelength of several tens of km, i.e., thickened up to 25-30 km around the volcanoes (the Miyake jama, Hachijo jima, Aoga sima, Sumisu jima), while thinned down to 20 km between them. The fine seismic velocity image obtained by refraction tomography as well as a wide-angle reflection migration shows that the variation of the crustal block having 6.0 - 6.7 km/s, which is a typical continental crustal velocity, is mainly responsible for the observed variation of the crustal thickness. The thickness of the high velocity lower crust is not significantly varied along the arc. Therefore, an average crustal seismic velocity (varied 6.6 to 7.0 km/s) represents a higher velocity that that of a typical continental

  17. Framing Effects as Violations of Extensionality

    OpenAIRE

    Bourgeois-Gironde , Sacha; Giraud , Raphaël

    2009-01-01

    Framing effects occur when different descriptions of the same decision problem give rise to divergent decisions. They can be seen as a violation of the decisiontheoretic version of the principle of extensionality (PE). The PE in logic means that two logically equivalent sentences can be substituted salva veritate. We explore what this notion of extensionality becomes in decision contexts. Violations of extensionality may have rational grounds. Based on some ideas proposed by the psychologist ...

  18. 3D Crustal Velocity Structure Model of the Middle-eastern North China Craton

    Science.gov (United States)

    Duan, Y.; Wang, F.; Lin, J.; Wei, Y.

    2017-12-01

    Lithosphere thinning and destruction in the middle-eastern North China Craton (NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. Up to 42 wide-angle reflection/refraction deep seismic sounding (DSS) profiles have been completed in the middle-eastern NCC, we collect all the 2D profiling results and perform gridding of the velocity and interface depth data, and build a 3D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, using the Kriging interpolation method. In this model, four layers are divided by three interfaces: G is the interface between the sedimentary cover and crystalline crust, with velocities of 5.0-5.5 km/s above and 5.8-6.0 km/s below. C is the interface of the upper and lower crust, with velocity jump from 6.2-6.4 km/s to 6.5-6.6 km/s. M is the interface between the crust and upper mantle, with velocity 6.7-7.0 km/s at the crust bottom and 7.9-8.0 km/s on mantle top. Our results show that the first arrival time calculated from HBCust1.0 fit well with the observation. It also demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C. The depth of interface Moho varies beneath the source area of the Tangshan earth-quake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin (NCB) in the east of the craton is obviously higher than the regional average, this high-velocity probably results from longterm underplating of the mantle magma. This research is founded by the Natural Science

  19. Crustal structure of the Central Precordillera of San Juan, Argentina (31°S) using teleseismic receiver functions

    Science.gov (United States)

    Ammirati, Jean-Baptiste; Alvarado, Patricia; Perarnau, Marcelo; Saez, Mauro; Monsalvo, Guillermo

    2013-10-01

    The subduction of the Nazca plate under the South American plate around 31°S is characterized by flat slab geometry. The (Chilean) Pampean flat slab of Argentina associated with the subduction of the Juan Fernandez ridge lies in a region of a series of foreland uplifts corresponding to the thin-skinned Precordillera and basement cored Sierras Pampeanas ranges. The SIEMBRA project deployed 40 broadband stations in 2008-2009 in both the Precordillera and the Sierras Pampeanas with the aim to foster the understanding of the entire central Andean flat slab region. One of the SIEMBRA station (DOCA) located on the western flank of Sierra de la Invernada in the Central Precordillera appears particularly appropriate to study the crustal structure and eventually detect discontinuities related to terranes establishment. We thus performed a receiver function analysis using teleseismic data recorded at the DOCA station during the SIEMBRA project and from October 2011 to June 2012 using a broadband UNSJ (National University of San Juan) seismic station with the purpose to obtain crustal images with details of the intracrustal structure consistent with a mechanism that could explains both the observed earthquake depths and the uplift pattern in the Central Precordillera. Our results show that the Moho beneath the Precordillera lies at a depth of about 66 km. The Moho signal appears diminished and behaves irregularly as a function of azimuthal orientations. Although this observation could be the result of an irregular geometry it also correlates with the hypothesis of partial eclogitisation in the lower crust. Two mid-crustal discontinuities have also been revealed. The shallower one could correspond to a décollement level between the Precordilleran strata and the Cuyania basement at 21 km depth. The deeper one which the presence has been matched with a sharp decrease of the crustal seismic activity drove us to the hypothesis of a major change in crustal composition at 36 km

  20. Crustal and Upper Mantle Velocity Structure beneath Northwestern South America revealed by the CARMArray

    Science.gov (United States)

    Miao, W.; Cornthwaite, J.; Levander, A.; Niu, F.; Schmitz, M.; Dionicio, V.; Nader-Nieto, M. F.

    2017-12-01

    report the initial results of the inversion and discuss the lateral variations of crustal and upper mantle structure and their potential links with surface geology and regional tectonics.

  1. The gravity field and crustal structure of the northwestern Arabian Platform in Jordan

    Science.gov (United States)

    Batayneh, A. T.; Al-Zoubi, A. S.

    2001-01-01

    The Bouguer gravity field over the northwestern Arabian Platform in Jordan is dominated by large variations, ranging from -132 to +4 mGal. A study of the Bouguer anomaly map shows that the gravity field maintains a general north-northeasterly trend in the Wadi Araba-Dead Sea-Jordan Riff, Northern Highlands and Northeast Jordanian Limestone Area, while the remainder of the area shows north-northwesterly-trending gravity anomalies. Results of 2-D gravity modeling of the Bouguer gravity field indicate that the crustal thickness in Jordan is ˜ 38 km, which is similar to crustal thicknesses obtained from refraction data in northern Jordan and Saudi Arabia, and from gravity data in Syria.

  2. Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data

    Science.gov (United States)

    2012-09-01

    We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity data provide...relocation analysis. We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity...topographic relief this effect needs to be removed; thus, we converted free-air anomalies into Bouguer anomalies assuming a standard density for crustal rocks

  3. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    Science.gov (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  4. Seismotectonics of the Taiwan Shoal region in the northeastern South China Sea: Insights from the crustal structure

    Science.gov (United States)

    Wan, Kuiyuan; Sun, Jinlong; Xu, Huilong; Xie, Xiaoling; Xia, Shaohong; Zhang, Xiang; Cao, Jinghe; Zhao, Fang; Fan, Chaoyan

    2018-02-01

    A cluster of earthquakes occurred in the Taiwan Shoal region on the outer rise of the Manila Trench. Although most were of small to medium magnitudes, one strong earthquake occurred on September 16, 1994. Several previous studies have provided important information to progress our understanding of this single earthquake. However, little is currently known about the earthquake cluster, and it is necessary to investigate the deep crustal structure of the Taiwan Shoal region to understand the mechanisms involved in controlling and generating it. This study presents a two-dimensional seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean-bottom seismograph (OBS) data, which exhibits a high-velocity anomaly flanked by low-velocity anomalies in the upper crust beneath the Taiwan Shoal. In this study, 765 earthquakes (Richter magnitude ML > 1.5) occurring between 1991 and 2015 were studied and analyses of earthquake epicenters, regional faults, and the crustal structure provides an improved understanding of the nature of active tectonics in this region. Results of analyses indicate firstly that the high-velocity area represents major asperities that correspond to the location of the earthquake cluster and where stress is concentrated. It is also depicted that the earthquake cluster was influenced by fault interactions. However, the September 1994 earthquake occurred independently of these seismic activities and was associated with reactivation of a preexisting fault. It is also determined that slab pull is resisted by the exposed precollision accretionary prism, and the resistive force is causing accumulation of inplane compressive-stress. This may trigger a future damaging earthquake in the Taiwan Shoal region.

  5. The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway

    Science.gov (United States)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.

    2017-12-01

    Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep

  6. Anomalous Structure of Oceanic Lithosphere in the North Atlantic and Arctic Oceans: A Preliminary Analysis Based on Bathymetry, Gravity and Crustal Structure

    Science.gov (United States)

    Barantsrva, O.

    2014-12-01

    We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results

  7. The crustal thickness and lithospheric structure of active and inactive volcanic arc terrains in Fiji and Tonga

    Science.gov (United States)

    Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.

    2015-12-01

    In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.

  8. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data

    Science.gov (United States)

    Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.

    2018-01-01

    This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above

  9. Crustal structure along the DESERT 2000 Transect inferred from 3-D gravity modelling

    Science.gov (United States)

    El-Kelani, R.; Goetze, H.; Rybakov, M.; Hassouneh, M.; Schmidt, S.

    2003-12-01

    A three-dimensional interpretation of the newly compiled Bouguer anomaly map is part of the DESERT 2000 Transect. That is multi-disciplinary and multinational project studying for first time the Dead Sea Transform (DST) fault system (DST) from the Mediterranean Sea to Saudi Arabia across the international border in the NW-SE direction. The negative Bouguer anomalies (with magnitude reached "C130 mGal), located into transform valley, are caused by the internal sedimentary basins filled by the light density young sediments (­Y10 km). A high-resolution 3-D model constrained with the seismic results reveals a possible crustal thickness and density distribution beneath the DST valley. The inferred zone of intrusion coincides with the maximum gravity anomaly over the eastern flank of the DST. The intrusion is displaced at different sectors along the NW-SE direction. The zone of the maximum crustal thinning (­30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness in the region (38-42 km). Linked to the left lateral movement of ~ 105 km at the boundary between the African and Arabian plate, and constrained with the DESERT 2000 seismic data, a small asymmetric topography of the Moho beneath the DST was modelled. The thickness and density of the crust suggest that a continental crust underlies the DST. The deep basins, the relatively large nature of the intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling(?) might be responsible for the thinning of the crust and subsequent rifting of the Dead Sea graben during the left lateral movement.

  10. Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review

    Science.gov (United States)

    Cemen, I.

    2017-12-01

    The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions

  11. Three-dimensional seismic model of crustal structure in Southern Norway

    DEFF Research Database (Denmark)

    Loidl, B.; Behm, M.; Thybo, Hans

    2014-01-01

    , traveltime tomography, and interpolation algorithms to the high quality inline and cross-line data. A smooth 3-D crustal velocity model is inverted from traveltimes of diving Pg waves with similar results for two initial models. Initial models include a 1-D average model and an interpolated 3-D model based...... on robust, local 1-D velocity-depth functions derived from CMP-sorted and stacked records. The depth to Moho is determined from reflected waves (PmP) by traditional exploration seismology processing routines (CMP sorting, NMO correction, stacking, depth conversion). We find that this combination of stacking...

  12. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    Science.gov (United States)

    Parsons, T.; McCarthy, J.

    1996-01-01

    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part

  13. Factors That Influence the Extensional Rheological Property of Saliva.

    Directory of Open Access Journals (Sweden)

    Amrita Vijay

    Full Text Available The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  14. Crustal structure of the Arabian plate: new constraints of receiver functions

    Science.gov (United States)

    Cui, Z.; Mai, P. M.; Pei, S.

    2013-12-01

    We perform P-wave receiver function analysis across Saudi Arabia to constrain crustal thickness and Poisson's ratio to investigate the role of Afar super plume, on-going sea-floor spreading and mechanical crustal thinning during continental breakup. We include analysis of data from 132 stations, many of them new stations to improve upon previous analysis from a sparse array (30 stations). We first select 201 earthquakes with high signal-to-noise seismogram, using IRIS-station RAYN as reference to pick the events, recorded on 101 stations operated by the Saudi Geological Survey (SGS) during 2007-2011. SGS continually deploys stations every year and we added a second data set of 96 earthquakes on 30 newly deployed stations in 2012, again station RAYN is used as reference for picking high quality recordings. Two way, 4th order band-pass Butterworth filter with pass band of 0.01 - 3 Hz is applied to eliminate low-frequency noise, then deconvolution is performed in time-domain. We deploy the slant stack method to determine both the Moho depth and Poisson's ratio at each station; this method combines the later multiples (PpPs and PpSs+PsPs) with the Moho Ps converted phase to mitigate the trade-off between the Moho depth and crustal Poisson's ratio. Average crustal P wave velocities of 6.5km/s for Arabian Shield and 6.1 km/s for Arabian Platform are assigned, respectively. In addition, we add the semblance parameter through semblance analysis into the objective function of the slant stack method to suppress the incoherent noise. Our results show that Moho depth is 38-42 km at the central boundary between the Arabian Shield and the Arabian Platform, where the crust is not extended and there is little sediment deposited. To the east beneath the Arabian Platform the crust thickens to 43-46 km, then decreases to 37-41km against the Persian Gulf. To the west the crust gradually thins to 33-35 km over a distance of approximately 400-500 km. Farther east, toward the Red Sea

  15. Crustal and mantle structure of the greater Jan Mayen-East Greenland region (NE Atlantic) from combined 3D structural, S-wave velocity, and gravity modeling

    Science.gov (United States)

    Tan, P.; Sippel, J.; Scheck-Wenderoth, M.; Meeßen, C.; Breivik, A. J.

    2016-12-01

    The study area is located between the Jan Mayen Ridge and the east coast of Greenland. It has a complex geological setting with the ultraslow Kolbeinsey and Mohn's spreading ridges, the anomalously shallow Eggvin Bank, the Jan Mayen Microcontinent (JMMC), and the tectonically active West Jan Mayen Fracture Zone (WJMFZ). In this study, we present the results of forward 3D structural, S-wave velocity, and gravity modeling which provide new insights into the deep crust and mantle structure and the wide-ranging influence of the Iceland Plume. The crustal parts of the presented 3D structural model are mainly constrained by local seismic refraction and reflection data. Accordingly, greatest crustal thicknesses (24 km) are observed on the northern boundary of the JMMC, while the average crustal thickness is 8.5 km and 4 km in the Kolbeinsey and Mohn's Ridge, respectively. The densities of the crustal parts are from previous studies. Additionally, the mantle density is derived from S-wave velocity data (between 50 and 250 km depth), while densities of the lithospheric mantle between the Moho and 50 km are calculated assuming isostatic equilibrium at 250 km depth. This is used as a starting density model which is further developed to obtain a reasonable fit between the calculated and measured (free-air) gravity fields. The observed S-wave tomographic data and the gravity modeling prove that the Iceland plume anomaly in the asthenosphere affects the lithospheric thickness and temperature, from the strongly influenced Middle Kolbeinsey Ridge, to the less affected North Kolbeinsey Ridge (Eggvin Bank), and to the little impacted Mohn's Ridge. Thus, the age-temperature relations of the different mid-ocean ridges of the study area are perturbed to different degrees controlled by the distance from the Iceland Plume. Furthermore, we find that the upper 50 km of lithospheric mantle are thermally affected by the plume only in the southwestern parts of the study area.

  16. Extensional Information Articulation from the Universe

    Directory of Open Access Journals (Sweden)

    Yasufumi Saruwatari

    2012-11-01

    Full Text Available Information must have physical support and this physical universe comprisesphysical interactions. Hence actual information processes should have a description byinteractions alone, i.e., an extensional description. In this paper, such a model of the processof information articulation from the universe is developed by generalizing the extensivemeasurement theory in metrology. Moreover, a model of the attribute creation processis presented to exemplify a step of the informational articulation process. These modelsdemonstrate the valuableness of the extensional view and are expected to enhance theunderstanding of the extensional aspects of fundamentals of information.

  17. Crustal thickness and velocity structure across the Moroccan Atlas from long offset wide-angle reflection seismic data: The SIMA experiment

    Science.gov (United States)

    Ayarza, P.; Carbonell, R.; Teixell, A.; Palomeras, I.; Martí, D.; Kchikach, A.; Harnafi, M.; Levander, A.; Gallart, J.; Arboleya, M. L.; Alcalde, J.; Fernández, M.; Charroud, M.; Amrhar, M.

    2014-05-01

    The crustal structure and topography of the Moho boundary beneath the Atlas Mountains of Morocco has been constrained by a controlled source, wide-angle seismic reflection transect: the SIMA experiment. This paper presents the first results of this project, consisting of an almost 700 km long, high-resolution seismic profile acquired from the Sahara craton across the High and the Middle Atlas and the Rif Mountains. The interpretation of this seismic data set is based on forward modeling by raytracing, and has resulted in a detailed crustal structure and velocity model for the Atlas Mountains. Results indicate that the High Atlas features a moderate crustal thickness, with the Moho located at a minimum depth of 35 km to the S and at around 31 km to the N, in the Middle Atlas. Upper crustal shortening is resolved at depth through a crustal root where the Saharan crust underthrusts the northern Moroccan crust. This feature defines a lower crust imbrication that, locally, places the Moho boundary at ˜40-41 km depth in the northern part of the High Atlas. The P-wave velocity model is characterized by relatively low velocities, mostly in the lower crust and upper mantle, when compared to other active orogens and continental regions. These low deep crustal velocities together with other geophysical observables such as conductivity estimates derived from MT measurements, moderate Bouguer gravity anomaly, high heat flow, and surface exposures of recent alkaline volcanism lead to a model where partial melts are currently emplaced at deep crustal levels and in the upper mantle. The resulting model supports the existence of a mantle upwelling as mechanism that would contribute significantly to sustain the High Atlas topography. However, the detailed Moho geometry deduced in this work should lead to a revision of the exact geometry and position of this mantle feature and will require new modeling efforts.

  18. From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data

    Czech Academy of Sciences Publication Activity Database

    Hrubcová, Pavla; Środa, P.; Grad, M.; Geissler, W.H.; Guterch, A.; Vozár, J.; Hegedüs, E.

    2010-01-01

    Roč. 183, č. 2 (2010), s. 611-633 ISSN 0956-540X R&D Projects: GA ČR GAP210/10/2063 Institutional research plan: CEZ:AV0Z30120515 Keywords : controlled source seismology * body waves * continental margins: convergent * crustal structure * Europe Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.411, year: 2010

  19. Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy)

    Science.gov (United States)

    Tavani, Stefano; Storti, Fabrizio; Bausã, Jordi; MuñOz, Josep A.

    2012-08-01

    Thrust-related anticlines exposed at the mountain front of the Cenozoic Appenninic thrust-and-fold belt share the presence of hinterlandward dipping extensional fault zones running parallel to the hosting anticlines. These fault zones downthrow the crests and the backlimbs with displacements lower than, but comparable to, the uplift of the hosting anticline. Contrasting information feeds a debate about the relative timing between thrust-related folding and beginning of extensional faulting, since several extensional episodes, spanning from early Jurassic to Quaternary, are documented in the central and northern Apennines. Mesostructural data were collected in the frontal anticline of the Sibillini thrust sheet, the mountain front in the Umbria-Marche sector of the northern Apennines, with the aim of fully constraining the stress history recorded in the deformed multilayer. Compressional structures developed during thrust propagation and fold growth, mostly locating in the fold limbs. Extensional elements striking about perpendicular to the shortening direction developed during two distinct episodes: before fold growth, when the area deformed by outer-arc extension in the peripheral bulge, and during a late to post thrusting stage. Most of the the extensional deformation occurred during the second stage, when the syn-thrusting erosional exhumation of the structures caused the development of pervasive longitudinal extensional fracturing in the crestal sector of the growing anticline, which anticipated the subsequent widespread Quaternary extensional tectonics.

  20. Extensional scientific realism vs. intensional scientific realism.

    Science.gov (United States)

    Park, Seungbae

    2016-10-01

    Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    Science.gov (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  2. Extensional rheometer based on viscoelastic catastrophes outline

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method and a device for determining viscoelastic properties of a fluid. The invention resides inter alia in the generation of viscoelastic catastrophes in confined systems for use in the context of extensional rheology. The viscoelastic catastrophe is according ...... to the invention generated in a bistable fluid system, and the flow conditions for which the catastrophe occurs can be used as a fingerprint of the fluid's viscoelastic properties in extensional flow....

  3. Crustal structure revealed by a deep seismic sounding profile of Baijing-Gaoming-Jinwan in the Pearl River Delta

    Science.gov (United States)

    Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona

    2018-02-01

    The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.

  4. Extreme Mesozoic crustal thinning in the Eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough)

    Science.gov (United States)

    Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.

    2017-12-01

    Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.

  5. The relationship between the seismic characteristics of crustal structure in Shikoku Basin and en-echelon arrangement

    Science.gov (United States)

    Yamashita, M.; Takahashi, N.; Kodaira, S.; No, T.; Takizawa, K.; Miura, S.; Kaiho, Y.; Sato, T.; Kaneda, Y.

    2007-12-01

    Detailed crustal structure information of a back-arc basin must be obtained to elucidate the mechanism of its opening. Especially, the Shikoku Basin, which occupies the northern part of the Philippine Sea Plate between the Kyushu-Palau Ridge and the Izu-Ogasawara Arc, is an important area to elucidate the evolution of the back-arc basins as a part of the growth process of the Philippine Sea. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 12,000 cu.in. air gun and streamer with 204 ch hydrophones in the Izu-Ogasawara region since 2004. The total length of survey lines is more than 10,000 km until 2006. We investigate the crustal structure beneath the Shikoku Basin along 10 survey lines, which are across to the strike of the en-echelon seamount chains in the rear arc. From the seismic profiles, some faults and intrusion structures are obtained in the Shikoku Basin. The deformation structure with acoustic basement is widely distributed between the Shikoku Basin and the Izu-Ogasawara arc. Some intrusions structure is identified in the Shikoku Basin are exposed on seafloor. The intrusions structure is assumed to locate in the extended region of the en-echelon arrangement. The strike-slip faults with flower structure cutting whole sediments are located in the arc-backarc transition zone in the northern Shikoku Basin, suggesting that this region is in share stress. On the other hand, these structures indicating the deformation and intrusions are not recognized in the eastern side of the Kyushu-Palau Ridge. The Izu-Ogasawara arc is colliding to the Japan Island arc in the Sagami Bay. In the Nankai Trough, the Philippine Sea plate is subducting to the Japan Island arc. Therefore, the strike-slip and reverse fault would be developed by the compression stress in the eastern side of Philippine Sea plate. If the en-echelon arrangement is developed along these faults, the intrusions structure obtained by

  6. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    Science.gov (United States)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  7. Heat flow, heat generation and crustal thermal structure of the northern block of the South Indian Craton

    Science.gov (United States)

    Gupta, Mohan L.; Sharma, S. R.; Sundar, A.

    1988-01-01

    Heat flow values and heat generation data calculated from the concentration of heat producing radioactive elements, U, Th and K in surface rocks were analyzed. The South Indian Craton according to Drury et al., can be divided into various blocks, separated by late Proterozoic shear belts. The northern block comprises Eastern and Western Dharwar Cratons of Rogers (1986), Naqvi and Rogers (1987) and a part of the South Indian granulite terrain up to a shear system occupying the Palghat-Cauvery low lands. The geothermal data analysis clearly demonstrates that the present thermal characteristics of the above two Archaean terrains of the Indian and Australian Shields are quite similar. Their crustal thermal structures are likely to be similar also.

  8. Crustal Structure of the Andean Foreland in Northern Argentina: Results From Data-Integrative Three-Dimensional Density Modeling

    Science.gov (United States)

    Meeßen, C.; Sippel, J.; Scheck-Wenderoth, M.; Heine, C.; Strecker, M. R.

    2018-02-01

    Previous thermomechanical modeling studies indicated that variations in the temperature and strength of the crystalline crust might be responsible for the juxtaposition of domains with thin-skinned and thick-skinned crustal deformation along strike the foreland of the central Andes. However, there is no evidence supporting this hypothesis from data-integrative models. We aim to derive the density structure of the lithosphere by means of integrated 3-D density modeling, in order to provide a new basis for discussions of compositional variations within the crust and for future thermal and rheological modeling studies. Therefore, we utilize available geological and geophysical data to obtain a structural and density model of the uppermost 200 km of the Earth. The derived model is consistent with the observed Bouguer gravity field. Our results indicate that the crystalline crust in northern Argentina can be represented by a lighter upper crust (2,800 kg/m3) and a denser lower crust (3,100 kg/m3). We find new evidence for high bulk crustal densities >3,000 kg/m3 in the northern Pampia terrane. These could originate from subducted Puncoviscana wackes or pelites that ponded to the base of the crystalline crust in the late Proterozoic or indicate increasing bulk content of mafic material. The precise composition of the northern foreland crust, whether mafic or felsic, has significant implications for further thermomechanical models and the rheological behavior of the lithosphere. A detailed sensitivity analysis of the input parameters indicates that the model results are robust with respect to the given uncertainties of the input data.

  9. Contrasting magmatic structures between small plutons and batholiths emplaced at shallow crustal level (Sierras de Córdoba, Argentina)

    Science.gov (United States)

    Pinotti, Lucio P.; D'Eramo, Fernando J.; Weinberg, Roberto F.; Demartis, Manuel; Tubía, José María; Coniglio, Jorge E.; Radice, Stefania; Maffini, M. Natalia; Aragón, Eugenio

    2016-11-01

    Processes like injection, magma flow and differentiation and influence of the regional strain field are here described and contrasted to shed light on their role in the formation of small plutons and large batholiths their magmatic structures. The final geometric and compositional arrangement of magma bodies are a complex record of their construction and internal flow history. Magma injection, flow and differentiation, as well as regional stresses, all control the internal nature of magma bodies. Large magma bodies emplaced at shallow crustal levels result from the intrusion of multiple magma batches that interact in a variety of ways, depending on internal and external dynamics, and where the early magmatic, growth-related structures are commonly overprinted by subsequent history. In contrast, small plutons emplaced in the brittle-ductile transition more likely preserve growth-related structures, having a relatively simple cooling history and limited internal magma flow. Outcrop-scale magmatic structures in both cases record a rich set of complementary information that can help elucidate their evolution. Large and small granitic bodies of the Sierra Pampeanas preserve excellent exposures of magmatic structures that formed as magmas stepped through different rheological states during pluton growth and solidification. These structures reveal not only the flow pattern inside magma chambers, but also the rheological evolution of magmas in response to temperature evolution.

  10. Crustal Structure Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania from Teleseismic Receiver Functions

    Science.gov (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.

    2013-05-01

    We present new measurements of receiver functions at 4 broadband stations temporarily deployed in the Transylvanian Basin within the Carpathian Arc, Romania. Receiver functions can reveal depths to sharp crustal seismic velocity boundaries, which in complex tectonic environments such as the study area provide a good diagnostic for the regional tectonics. As a result of Africa (Adria) collision with Europe and subduction of a part of Tethys Ocean, Tisza-Dacia and Alcapa blocks escaped the collision and were emplaced in an embayment of this ocean, and form today the basement of the Transylvanian Basin. The collision of these terranes with the European continent culminated in the formation, in the Romanian part, of the Eastern Carpathians at the contact between the Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture zone, and of Southern Carpathians at the contact with Moesian Platform. In the foreland of the Carpathian Bend Zone, connecting the two mountain chains, in a very constrained area, a high velocity seismic body was contoured by hypocenters between 70 and 200 km depth. We constructed receiver functions using teleseismic P waves generated by events located between 30 and 95 degrees epicentral angle using the method of Ligorria and Ammon (1999) for individual measurements. We used the H-K method of Zhu and Kanamori (2000) to derive boundary interfaces depths and receiver function complexity from binned stacks. Preliminary results show a relatively shallow Moho depth beneath the Transylvanian Basin.

  11. Crustal response to lithosphere evolution

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Cherepanova, Yulia

    2012-01-01

    We present a new model for the structure of the crust in an area which stretches from the North Atlantic region in the west to the Verkhoyansk Ridge in the east and encompasses Greenland, Iceland, most of Europe, West Siberian basin, and the Siberian cratons. The model is based on critically asse......, thicknesses of different crustal layers, and Pn seismic velocities....... assessed results from various seismic studies, including reflection and refraction profiles and receiver function studies. The region includes a nearly continuous age record for crustal evolution over ca. 3.6-3.8 billion years. We present an analysis of the crustal structure heterogeneity in relation...

  12. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    Science.gov (United States)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence

    2013-06-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  13. Diapir versus along-channel ascent of crustal material during plate convergence: constrained by the thermal structure of subduction zones

    Science.gov (United States)

    Liu, M. Q.; Li, Z. H.

    2017-12-01

    Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. The crustal rocks undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channel; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. Thick overriding continental plate and low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, thin overriding lithosphere and steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may corresponds to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate

  14. Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths

    Science.gov (United States)

    Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.

    2017-12-01

    A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.

  15. Crustal structure across Tancheng-Lujiang fault belt in East China

    Science.gov (United States)

    Zhang, Zhongjie; Xu, Tao; Tian, Xiaobo; Teng, Jiwen; Bai, Zhiming

    2013-04-01

    Tancheng-Lujiang (T-L) fault extends more than 3,000km in the eastern China continent. T-L fault is closely related to strong earthquake occurrences such as Ms 7.8 Tangshan earthquake in 1976, basin development with rich oil/gas reserves and mineral resource concentration. The mechanism to form this fault is still in dispute. The proposed models include: post-collisional offset model (Okay and Sengor, 1992); indenter model (Yin and Nie, 1994); thrust model (Li, 1994); North China Craton penetration into South China model (Yokoyama et al., 2001) and Scissor collision model (Zhang et al., 2002, 2006). T-L fault is characterized with its segmentation, while the south segment is favored to understand the deep continental subduction and ultra-high pressure rocks extrusion from the collision between the convergence between Yangtze and North China Craton. In order to provide constraints on the evaluation of the proposed tectonic models, we carried out a 400-km-long wide-angle seismic profiling across the southern segment of the T-L fault. Here we present seismic P-wave data and the interpretation results. Seismic events of reflection and refraction from Moho discontinuity and other intracrustal reflections are remarkably observed with high signal/noise ratio. Crustal P-wave velocity model was reconstructed with forward modelling inversion, and T-L fault penetrates the whole crust, with gentle penetration angle in the upper crust, but very steep angle in the lower crust, which are probably seismic indicators of two phases of lateral escaping to accommodate the collision and extrusion of continental crust of the Yangtze block.

  16. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.

    2014-12-01

    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  17. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions

    Science.gov (United States)

    Li, Yonghua; Wang, Xingchen; Zhang, Ruiqing; Wu, Qingju; Ding, Zhifeng

    2017-05-01

    We investigated the crustal structure at 34 stations using the H-κ stacking method and jointly inverting receiver functions with Rayleigh-wave phase and group velocities. These seismic stations are distributed along a profile extending across the Songpan-Ganzi Terrane, Qinling-Qilian terranes and southwestern Ordos Basin. Our results reveal the variation in crustal thickness across this profile. We found thick crust beneath the Songpan-Ganzi Terrane (47-59 km) that decreases to 45-47 km in the west Qinling and Qilian terranes, and reaches its local minimum beneath the southwestern Ordos Block (43-51 km) at an average crustal thickness of 46.7 ± 2.5 km. A low-velocity zone in the upper crust was found beneath most of the stations in NE Tibet, which may be indicative of partial melt or a weak detachment layer. Our observations of low to moderate Vp/Vs (1.67-1.79) represent a felsic to intermediate crustal composition. The shear velocity models estimated from joint inversions also reveal substantial lateral variations in velocity beneath the profile, which is mainly reflected in the lower crustal velocities. For the Ordos Block, the average shear wave velocities below 20 km are 3.8 km/s, indicating an intermediate-to-felsic lower crust. The thick NE Tibet crust is characterized by slow shear wave velocities (3.3-3.6 km/s) below 20 km and lacks high-velocity material (Vs ≥ 4.0 km/s) in the lower crust, which may be attributed to mafic lower crustal delamination or/and the thickening of the upper and middle crust.

  18. Barents Sea Paleozoic basement and basin configurations: Crustal structure from deep seismic and potential field data

    Science.gov (United States)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Huismans, Ritske; Faleide, Jan Inge

    2016-04-01

    The Barents Sea is underlain by at least two different basement domains; the Caledonian in the west and the Timanian in the east. The transition between these two domains is not well constrained and contrasting interpretations have been published recently. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea has challenged the Late Paleozoic basin configurations in the western and central Barents Sea as outlined in previous studies. Two regional ocean bottom seismic (OBS) profiles were acquired in 2014. This new dataset crosses the two major directions of Caledonian deformation proposed by different authors: N-S direction and SW-NE direction. Of particular importance are the high velocity anomalies related to Caledonian eclogites, revealing the location of Caledonian suture zones in the northern Barents Sea. One of the main objectives with this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be tightly linked to the deposition of large thicknesses of Devonian erosional products, and later rifting is expected to be influenced by inheritance of Caledonian trends. The P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity- and magnetic modelling will be used to augment the seismic model. The preliminary results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transects reveal areas of complex geology and velocity inversions. A low seismic impedance contrast between the sedimentary section and top crystalline basement makes identification of this interface uncertain. Depth to Moho mostly lies around 30 km, except in an area of rapid change in

  19. High resolution crustal structure for the region between the Chilenia and Cuyania terrane above the Pampean flat slab of Argentina from local receiver function and petrological analyses

    Science.gov (United States)

    Ammirati, J. B.; Alvarado, P. M.; Pérez, S. B.; Beck, S. L.; Porter, R. C.; Zandt, G.

    2015-12-01

    Jean-Baptiste Ammirati 1,Sofía Perez 1, Patricia Alvarado 1, Susan L. Beck 2, Ryan Porter 3 and George Zandt 2(1) CIGEOBIO-CONICET, Universidad Nacional de San Juan, Argentina (2) The University of Arizona, USA (3) Northern Arizona University, USA At ~31ºS, The subduction of the Nazca plate under the South American plate presents along-strike variations of its dip angle referred to the Chilean-Pampean flat slab. Geological observations suggest that the regional crustal structure is inherited from the accretion of different terranes at Ordovician times and later reactivated during Andean compression since Miocene. Geophysical observations confirmed that the structure is extending in depth with décollement levels that accommodate crustal shortening in the region. In order to get a better insight on the shallow tectonics we computed high frequency local receiver functions from slab seismicity (~100 km depth). Local earthquakes present a higher frequency content that permits a better vertical resolution. Using a common conversion point (CCP) stacking method we obtained cross sections showing high-resolution crustal structure in the western part of the Pampean flat slab region, at the transition between the Precordillera and the Frontal Cordillera. Our results show a well-defined structure and their lateral extent for both units down to 80 km depth. In good agreement with previous studies, our higher resolution images better identify very shallow discontinuities putting more constraints on the relationships with the regional structural geology. Recent petrological analyses combined with RF high-resolution structure also allow us to better understand the regional crustal composition. Interestingly, we are able to observe a shifting structure beneath the Uspallata-Calingasta Valley, highlighting the differences in terms of crustal structure between the Precordillera and the Frontal Cordillera. Previously determined focal mechanisms in the region match well this

  20. Shear and extensional properties of kefiran.

    Science.gov (United States)

    Piermaría, Judith; Bengoechea, Carlos; Abraham, Analía Graciela; Guerrero, Antonio

    2016-11-05

    Kefiran is a neutral polysaccharide constituted by glucose and galactose produced by Lactobacillus kefiranofaciens. It is included into kefir grains and has several health promoting properties. In the present work, shear and extensional properties of different kefiran aqueous dispersions (0.5, 1 and 2% wt.) were assessed and compared to other neutral gums commonly used in food, cosmetic and pharmaceutics industries (methylcellulose, locust bean gum and guar gum). Kefiran showed shear flow characteristics similar to that displayed by other representative neutral gums, although it always yielded lower viscosities at a given concentration. For each gum system it was possible to find a correlation between dynamic and steady shear properties by a master curve including both the apparent and complex viscosities. When studying extensional properties of selected gums at 2% wt. by means of a capillary break-up rheometer, kefiran solutions did not show important extensional properties, displaying a behaviour close the Newtonian. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Gravity evidence for shaping of the crustal structure of the Ameca graben (Jalisco block northern limit). Western Mexico

    Science.gov (United States)

    Alatorre-Zamora, Miguel Angel; Campos-Enríquez, José Oscar; Fregoso-Becerra, Emilia; Quintanar-Robles, Luis; Toscano-Fletes, Roberto; Rosas-Elguera, José

    2018-03-01

    The Ameca tectonic depression (ATD) is located at the NE of the Jalisco Block along the southwestern fringe of the NW-SE trending Tepic-Zacoalco Rift, in the west-central part of the Trans-Mexican Volcanic Belt, western Mexico. To characterize its shallow crustal structure, we conducted a gravity survey based on nine N-S gravity profiles across the western half of the Ameca Valley. The Bouguer residual anomalies are featured by a central low between two zones of positive gravity values with marked gravity gradients. These anomalies have a general NW-SE trend similar to the Tepic-Zacoalco Rift general trend. Basement topography along these profiles was obtained by means of: 1) a Tsuboi's type inverse modeling, and 2) forward modeling. Approximately northward dipping 10° slopes are modeled in the southern half, with south tilted down faulted blocks of the Cretaceous granitic basement and its volcano-sedimentary cover along sub-vertical and intermediate normal faults, whereas southward dipping slopes of almost 15° are observed at the northern half. According to features of the obtained models, this depression corresponds to a slight asymmetric graben. The Ameca Fault is part of the master fault system along its northern limit. The quantitative interpretation shows an approximately 500 to 1100 m thick volcano-sedimentary infill capped by alluvial products. This study has several implications concerning the limit between the Jalisco Block and the Tepic-Zacoalco Rift. The established shallow crustal structure points to the existence of a major listric fault with its detachment surface beneath the Tepic-Zacoalco Rift. The Ameca Fault is interpreted as a secondary listric fault. The models indicate the presence of granitic bodies of the Jalisco Block beneath the TMVB volcanic products of the Tepic-Zacoalco rift. This implies that the limit between these two regional structures is not simple but involves a complex transition zone. A generic model suggests that the

  2. Crustal permeability

    Science.gov (United States)

    Gleeson, Tom; Ingebritsen, Steven E.

    2016-01-01

    Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures.  The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration.  Although there are thousands of research papers on crustal permeability, this is the first book-length treatment.  This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. 

  3. Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results From a Wide-Angle Seismic Survey

    Science.gov (United States)

    Dellong, David; Klingelhoefer, Frauke; Kopp, Heidrun; Graindorge, David; Margheriti, Lucia; Moretti, Milena; Murphy, Shane; Gutscher, Marc-Andre

    2018-03-01

    In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo-Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll-back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two-dimensional P wave velocity models obtained from forward modeling of wide-angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.

  4. Development of simulator for studying formation process of crustal structure. 1; Chikaku kozo keisei simulator no kaihatsu. 1

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, J. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Murakami, Y.; Okubo, Y.; Matsubayashi, O.; Tanaka, A.; Nakajima, Y.; Morijiri, R. [Geological Survey of Japan, Tsukuba (Japan); Rokugawa, S. [The University of Tokyo, Tokyo (Japan)

    1997-05-27

    The purpose of this study is to combine seismic activity and volcanic activity by reproducing the formation process of the crustal structure from a physical viewpoint or developing as its extension a numerical simulator which can predict the future. The phenomenon to which attention is especially paid at present is a relation between the dynamic process and the thermal process in the domain including the crust or the upper mantle. Namely, to elucidate the formation process of the crust structure, diastrophism also including seismic activity, igneous activity, etc., it is important to evaluate effects of the behavior of heat supplied from the deep on the dynamic process. In the finite element method, it is not easy to make the effect of gravity reflect to the calculation for boundary conditions. Accordingly, it is general to pay attention to stress difference, considering that stress by gravity is in proportion to static rock pressure stress. Further, to realize interaction between the thermal process and the dynamic process, effects of thermal stress are expressed combining the heat conducting analysis and the plastic flow analysis. 3 refs., 7 figs.

  5. Magnitude of crustal shortening and structural framework of the easternmost Himalayan orogen, northern Indo-Burma Ranges of northeastern India

    Science.gov (United States)

    Haproff, P. J.; Yin, A.

    2016-12-01

    Along-strike variation in crustal shortening throughout the Himalayan orogen has been attributed to (1) diachronous, eastward-increasing convergence, or (2) localized controls including pre-collisional stratigraphic configuration and climate. In this study, we present new geologic maps and balanced cross-sections across the easternmost segment of the Himalayan orogen, the N-S-trending N. Indo-Burma Ranges of northeastern India. First order structures are NE-dipping, km-wide ductile thrust shear zones with mylonitic fabrics indicating top-to-the SW motion. Major structures include the Mayodia klippe and Hunli window, generated during folding of the SW-directed Tidding thrust and duplexing of Lesser Himalayan rocks (LHS) at depth. Reconstruction of two balanced cross-sections yields minimum shortening estimates of 70% (48 km) and 71% (133 km), respectively. The widths of the orogen for each transect are 21 km and 54 km, respectively. Our percent strain values are comparable to that of western Arunachal Himalaya, reflecting eastward-increasing strain due to counterclockwise rotation of India during convergence or along-strike variation in India's subduction angle. However, shortening magnitudes much less than that of the Sikkim (641 km), Bhutan (414-615 km), and western Arunachal Himalaya (515-775 km) could signal eastward increasing shortening of a unique Himalayan stratigraphic framework, evidenced by few GHC rocks, absence of Tethyan strata, and an extensive subduction mélange and forearc complex.

  6. Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data

    Science.gov (United States)

    Zhang, Z.; Bai, Z.; Mooney, W.; Wang, C.; Chen, X.; Wang, E.; Teng, J.; Okaya, N.

    2009-01-01

    We present active-source seismic data recorded along a 300??km-long profile across the Three Gorges area of the western Yangtze platform, central China. From west to east, the profile crosses the Zigui basin, Huangling dome and Jianghan basin. The derived crustal P-wave velocity structure changes significantly across the Tongchenghe fault that lies at the transition from the Huangling dome to the Jianghan basin. West of the Tongchenghe fault, beneath the Zigui basin and the Huangling dome, we observe a ~ 42??km thick crust of relatively low average velocity (6.3-6.4??km/s). In contrast, east of the Tongchenghe fault, beneath the Jianghan basin, the crust is only 30??km thick and has a high average velocity (6.6-6.7??km/s). A west-east variation in crustal composition along the Tongchenghe fault is also inferred. West of the fault, P-wave velocities suggest a felsic composition with an intermediate layer at the base of the crust, whilst, east of the fault, felsic, intermediate, and mafic crustal layers are apparent. Our results suggest that the crust beneath the Jianghan basin has been thinned by rifting, accompanied by intrusion of the lower crust by mafic dikes and sills. The west-to-east division of the crust in the Three Gorges area coincides with first-order geophysical contrasts in gravity, topography, crustal and lithospheric thickness. ?? 2009 Elsevier B.V.

  7. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    Science.gov (United States)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  8. New Interpretation of Crustal Extension Evidences on Mars

    Science.gov (United States)

    Grin, E. A.

    The record of early evolution of life on Earth has been obscured by extensive surface activity. On the opposite, large fractions of the martian surface date back to an early clement epoch favorable to the needs of biological systems [1]. The upper martian surface reflects a wide variety of modifying processes which destroy the geological context. However, due to endogenic causes acting after the end of the primordial bombardment, abundant extensional structures display vertical sequences of stratigraphic units from late Noachian to early Hesperian periods [2]. Deep structural incisions in the upper crust provide unaltered strata, open flanks, and slope deposits that favor the use of an autonomous lander-rover-penetrator The strategy for an exobiology search of such an optimum site should be guided by the recent attention devoted to extensional structures and their global significance [4]. Geological evidence supporting the martian crustal extension is suggested by abundant fractures associated with the dichotomy boundary northland-south upland, i.e., Aeolis Region, and peak igneous activity (Elysium bulge). As pointed out by [5], the system of fractures correlates with the endogenic origin of the dichotomy, as related to a major difference in the thicknessof the crust. Perpendicular to this boundary, fractures of deep graben testify to a general tectonic crust relaxation. The opening of the graben, joined with compressive wrinkles, is the signature of a dynamical pervasive stress regime that implies a large scale roll-over of the upper crust over the ductile interface of a more dense mantle. This general motion is not a transport of material, as there is no thickening on the boundary of the dichotomy. The horizontal movement is due to the gravitational mechanism and differential thermal convection cells in the upper crust over the slope of the anti-flexure rigid interface consequential to Elysium bulge. The fracturation occurs as the neutral zone of the crust rises

  9. Crustal structure and development of the SW Barents Sea and the adjacent continental margin

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Asbjoern Johan

    1998-12-31

    Because of its expected petroleum potential, the western Barents Sea has been extensively mapped and investigated. The present thesis deals with many aspects of the geological development of this area. The emphasis is on Late Paleozoic structuring, Late Mesozoic basin formation, and early Tertiary margin formation including geodynamical response to the late Cenozoic sedimentation. The thesis begins with a review of the literature on the Late Palaeozoic structural development of the south-western Barents Sea, Svalbard and eastern Greenland. A structural map is developed for the Upper Carboniferous rift system in the southwestern Barents Sea that shows the interference of the northeasterly and the northerly structural grain. A discussion of the Ottar Basin uses a combination of seismic interpretation and gravity modelling to investigate this important structural element of the Upper Palaeozoic rift system. Previous work on Late Mesozoic basin formation in the southwestern Barents Sea is extended by incorporating new seismic reflection data and gravity modelling. Finally, the focus is shifted from the Barents Sea shelf to the continental-ocean transition and the oceanic basin. Gridded free-air gravity data from the ERS-1 enables the construction of a Bouguer gravity map of unprecedented resolution. The relationship between isostacy and gravity was resolved by modelling the thermal structure across the margin. Admittance analysis of the relationship between bathymetry and free-air gravity indicates an elastic thickness of the oceanic Lithosphere of 15-20 km, which is compatible with the depth to the 450{sup o}C isotherm obtained from thermal modelling. It is concluded that the southwestern Barents Sea margin does not deviate in any significant respects from passive rifted margins, except for a very straight and narrow continent-ocean transition zone. 332 refs., 55 figs., 7 tabs.

  10. Evidence of Apulian crustal structures related to low energy seismicity (Murge, Southern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Del Gaudio, V.; Ripa, R. R.; Iurilli, V.; Moretti, M.; Pieri, P. [Bari Univ., Bari (Italy). Dipt. di Geologia e Geofisica; Festa, V. [Bari Univ., Bari (Italy). Dipt. Geomineralogico; Pierri, P. [Bari Univ., Bari (Italy). Osservatorio Sismologico; Calcagnile, G. [Bari Univ., Bari (Italy). Dipt. di Geologia e Geofisica; Bari Univ., Bari (Italy). Osservatorio Sismologico; Tropeano, M [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Scienze Geologiche

    2001-12-01

    The discovery of recent co-seismic sedimentary structures and the detection of low energy seismic activity in the Murgian plateau (Apulia, Southern Italy) motivated a more detailed examination of the tectonics in this part of the Apulian plate commonly believed to be aseismic. In particular, it was examined the north-western zone where a seismic sequence with maximum magnitude 3.2 and tensional focal mechanism occurred in 1991. The analysis of the existing gravimetric data, integrated by three new profiles carried out across the epicentral area, disclosed an anomaly possibly due to an old tensional tectonic structure located within the upper crust. Even though the depth and the age hypothesised for the anomaly source would exclude a direct causal connection with the observed seismicity, this structure could be a shallower expression of a tectonic structure extending down to the crystalline basement: it could represent a zone of relative weakness where the regional stress, due to the interactions between Apennines and Apulian plate, encounters conditions facilitating the release of seismic energy.

  11. The Unified Extensional Versioning Model

    DEFF Research Database (Denmark)

    Asklund, U.; Bendix, Lars Gotfred; Christensen, H. B.

    1999-01-01

    Versioning of components in a system is a well-researched field where various adequate techniques have already been established. In this paper, we look at how versioning can be extended to cover also the structural aspects of a system. There exist two basic techniques for versioning - intentional...

  12. Crustal block structure by GPS data using neural network in the Northern Tien Shan

    Science.gov (United States)

    Kostuk, A.; Carmenate, D.

    2010-05-01

    For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by

  13. Crustal structure of Shatsky Rise from joint refraction and reflection seismic tomography

    Science.gov (United States)

    Korenaga, J.; Sager, W. W.

    2011-12-01

    Shatsky Rise in the western Pacific is one of a few gigantic oceanic plateaus in the world, with a surface area of ˜ 4.8 ± 105~km2 (about the same size as California). In contrast to other large oceanic plateaus formed during the Cretaceous Quite Period, Shatsky Rise formed during the frequent reversals of magnetic polarity, allowing its tectonic environment to be resolved in detail. It was formed at a rapidly spreading ridge-ridge-ridge triple junction, so the effect of lithospheric lid on magma migration is expected to be minimal, thereby facilitating the petrological interpretation of its seismic structure in terms of parental mantle processes. In the summer of 2010, a seismic refraction survey combined with multichannel seismic profiling was conducted across Shatsky Rise. Twenty eight ocean-bottom seismometers were deployed along two crossing perpendicular lines, and all of the instruments were recovered successfully, yielding a large volume of high-quality wide-angle refraction and reflection data, with the source-receiver distance often exceeding 200~km. In this contribution, we present the P-wave velocity structure of the Shatsky Rise crust, which is constructed by joint refraction and reflection travel time tomography, and also discuss its implications for the origin of Shatsky Rise.

  14. Crustal structure and evolution of the Arctic Caledonides: Results from controlled-source seismology

    Science.gov (United States)

    Aarseth, Iselin; Mjelde, Rolf; Breivik, Asbjørn Johan; Minakov, Alexander; Faleide, Jan Inge; Flueh, Ernst; Huismans, Ritske S.

    2017-10-01

    The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates ;root structures; that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.

  15. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-11-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  16. Late extensional shear zones and associated recumbent folds in the Alpujarride subduction complex, Betic Cordillera, southern Spain

    International Nuclear Information System (INIS)

    Orozco, M.; Alonso-Chaves, F.; Platt, J.

    2017-01-01

    The existence in the Alpujarride Complex (Betic Cordillera, southern Spain) of a relatively continuous extensional event (following crustal thickening) is based on detailed structural studies and is consistent with the P-T paths and geochronological data established for the Alpujarride rocks. According to our research, the Alpujarride Complex contains two large-scale shear zones accommodating early Miocene extension. The shear zones contain km-scale recumbent folds, some with sheath fold geometry, and megaboudinage structures, and are closely associated with detachment faults. Large-scale folds and boudins cause dome-like undulations in the detachments, which are inferred to overlap in time with the deformation in the shear zones. One shear zone in the eastern part of the orogen is top-N; the other, in the western part, is top-E. The change in the shear direction may represent a temporal evolution in the direction of shear, possibly related to a change in the subduction direction in space and time.

  17. Isostatic and Decompensative Gravity Anomalies of the Arabian Plate and Surrounding Regions: a Key for the Crustal Structure

    Science.gov (United States)

    Kaban, M. K.; El Khrepy, S.; Al-Arifi, N. S.

    2016-12-01

    the knowledge about the crustal structure in the Middle East. Cordell, L., Zorin, Y. A., & Keller, G. R. (1991). The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift. Journal of Geophysical Research: Solid Earth (1978-2012), 96(B4), 6557-6568.

  18. Three-dimensional crustal structure for the Mendocino Triple Junction region from local earthquake travel times

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, D.; Zandt, G. [Lawrence Livermore National Lab., CA (United States)

    1994-12-10

    The large-scale, three-dimensional geometry of the Mendocino Triple Junction at Cape Mendocino, California, was investigated by inverting nearly 19,000 P wave arrival times from over 1400 local earthquakes to estimate the three-dimensional velocity structure and hypocentral parameters. A velocity grid 175 km (N-S) by 125 km (E-W) centered near Garberville, California, was constructed with 25 km horizontal and 5 km vertical node spacing. The model was well resolved near Cape Mendocino, where the earthquakes and stations are concentrated. At about 40.6{degrees}N latitude a high-velocity gradient between 6.5 and 7.5 km/s dips gently to the south and east from about 15 km depth near the coast. Relocated hypocenters concentrate below this high gradient which the authors interpret as the oceanic crust of the subducted Gorda Plate. Therefore the depth to the top of the Gorda Plate near Cape Mendocino is interpreted to be {approximately} 15 km. The Gorda Plate appears intact and dipping {approximately}8{degrees} eastward due to subduction and flexing downward 6{degrees}-12{degrees} to the south. Both hypocenters and velocity structure suggest that the southern edge of the plate intersects the coastline at 40.3{degrees}N latitude and maintains a linear trend 15{degrees} south of east to at least 123{degrees}W longitude. The top of a large low-velocity region at 20-30 km depth extends about 50 km N-S and 75 km E-W (roughly between Garberville and Covelo) and is located above and south of the southern edge of the Gorda Plate. The authors interpret this low velocity area to be locally thickened crust (8-10 km) due to either local compressional forces associated with north-south compression caused by the northward impingement of the rigid Pacific Plate or by underthrusting of the base of the accretionary subduction complex at the southern terminous of the Cascadia Subduction Zone. 66 refs., 11 figs., 3 tabs.

  19. Upper crustal structure of the Hawaiian Swell from seafloor compliance measurements

    Science.gov (United States)

    Doran, A. K.; Laske, G.

    2017-12-01

    We present new constraints on elastic properties of the marine sediments and crust surrounding the Hawaiian Islands derived from seafloor compliance measurements. We analyze long-period seismic and pressure data collected during the Plume-Lithosphere Undersea Mantle Experiment [Laske et al, 2009], a deployment consisting of nearly 70 broadband ocean-bottom seismometers with an array aperture of over 1000 kilometers. Our results are supported by previous reflection & refraction studies and by direct sampling of the crust from regional drilling logs. We demonstrate the importance of simultaneously modeling density, compressional velocity, and shear velocity, the former two of which are often ignored during compliance investigations. We find variable sediment thickness and composition across the Hawaiian Swell, with the thickest sediments located within the Hawaiian Moat. Improved resolution of near-surface structure of the Hawaiian Swell is crucially important to improve tomographic images of the underlying lithosphere and asthenosphere and to address outstanding questions regarding the size, source, and location of the hypothesized mantle plume.

  20. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  1. 3-D crustal structure beneath the southern Korean Peninsula from local earthquakes

    Science.gov (United States)

    Kim, K. H.; Park, J. H.; Park, Y.; Hao, T.; Kang, S. Y.; Kim, H. J.

    2017-12-01

    Located at the eastern margin of the Eurasian continent, the geology and tectonic evolution of the Korean Peninsula are closely related to the rest of the Asian continent. Although the widespread deformation of eastern Asia and its relation to the geology and tectonics of the Korean Peninsula have been extensively studied, the answers to many fundamental questions about the peninsula's history remain inconclusive. The three-dimensional subsurface structure beneath the southern Korean Peninsula is poorly known, even though such information could be key in verifying or rejecting several competing models of the tectonic evolution of East Asia. We constructed a three-dimensional velocity model of the upper crust beneath the southern Korean Peninsula using 19,935 P-wave arrivals from 747 earthquakes recorded by high-density local seismic networks maintained by Korea Meteorological Administration and Korea Institute of Geosciences and Mineral Resources. Results show significant lateral and vertical variations: velocity increases from northwest to southeast at shallow depths, and significant velocity variations are observed across the South Korea Tectonic Line between the Okcheon Fold Belt and the Youngnam Massif. Collision between the North China and South China blocks during the Early Cretaceous might have caused extensive deformation and the observed negative velocity anomalies in the region. The results of the tomographic inversion, combined with the findings of previous studies of Bouguer and isostatic gravity anomalies, indicate the presence of high-density material in the upper and middle crust beneath the Gyeongsang Basin in the southeastern Korean Peninsula. Although our results partially support the indentation tectonic model, it is still premature to discard other tectonic evolution models because our study only covers the southern half of the peninsula.

  2. Frontal compression along the Apennines thrust system: The Emilia 2012 example from seismicity to crustal structure

    Science.gov (United States)

    Chiarabba, Claudio; De Gori, Pasquale; Improta, Luigi; Lucente, Francesco Pio; Moretti, Milena; Govoni, Aladino; Di Bona, Massimo; Margheriti, Lucia; Marchetti, Alessandro; Nardi, Anna

    2014-12-01

    The evolution of the Apennines thrust-and-fold belt is related to heterogeneous process of subduction and continental delamination that generates extension within the mountain range and compression on the outer front of the Adria lithosphere. While normal faulting earthquakes diffusely occur along the mountain chain, the sparse and poor seismicity in the compressional front does not permit to resolve the ambiguity that still exists about which structure accommodates the few mm/yr of convergence observed by geodetic data. In this study, we illustrate the 2012 Emilia seismic sequence that is the most significant series of moderate-to-large earthquakes developed during the past decades on the compressional front of the Apennines. Accurately located aftershocks, along with P-wave and Vp/Vs tomographic models, clearly reveal the geometry of the thrust system, buried beneath the Quaternary sediments of the Po Valley. The seismic sequence ruptured two distinct adjacent thrust faults, whose different dip, steep or flat, accounts for the development of the arc-like shape of the compressional front. The first shock of May 20 (Mw 6.0) developed on the middle Ferrara thrust that has a southward dip of about 30°. The second shock of May 29 (Mw 5.8) ruptured the Mirandola thrust that we define as a steep dipping (50-60°) pre-existing (Permo-Triassic) basement normal fault inverted during compression. The overall geometry of the fault system is controlled by heterogeneity of the basement inherited from the older extension. We also observe that the rupture directivity during the two main-shocks and the aftershocks concentration correlate with low Poisson ratio volumes, probably indicating that portions of the fault have experienced intense micro-damage.

  3. Crustal Structure Picture of Deception Island [western Bransfield Strait] From Gravimetric and Magnetic Data.

    Science.gov (United States)

    Catalán, M.; Carbó, A.; Martín, Davila; Muñoz, A.; Agudo, L.

    Bransfield Strait constitutes a marginal basin that separates the South Shetland archipielago from the Antarctic Peninsula. Since the beginning of its geological record, due to the presence of several submarine and above sea surface volcanoes, eruptions could be appointed easily. All these aspects turn the area as one of the most active at Antarctic region. During 1999 austral summer a seismic crisis was developed. It caused the organisation of a geophysical campaign called DECVOL, where several Spanish scientific institutions participated. Along this, several kinds of studies were carried out. Onland: geodesic GPS and gravity measurements, sampling and gases analysis, continuous seismic recording and geomagnetic measurements. Additionally a geophysical marine campaign [inside and outside Deception island] was carried out. Bathymetry and geopotential information [earth gravity field and geomagnetis m data] were acquired. The multi-disciplinar campaign goal was to perform a fast geophysical evaluation of the volcanic risk. This aspect was important particularly, because the emplacement of Spanish and Argentinean semi -permanent stations around its inner bay. In this study, potential field data recorded along this cruise have been used, together with satellite borne altimetry derived data for gravity, seismic bibliography information of the area, and finally magnetic data compiled in previous campaigns, that were processed until homogeneity could be guaranteed. All these gives a deep detail vision of the structure of the crust at Deception surroundings. In this communication the Bouguer gravity anomaly and scalar magnetic maps are presented, compared and discussed, as well as three gravity and magnetic marine profiles are 2D 1/2 modelled.

  4. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    Science.gov (United States)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  5. Investigation of the crustal and deep structure in Vrancea seismic zone

    International Nuclear Information System (INIS)

    Popa, Mihaela; Radulian, Mircea; Popescu, Emilia; Bazacliu, Olivia; Grecu, Bogdan; Ardeleanu Luminita; Ionescu, Constantin; Ivan, Marian; Dumitru, Ion; Rizescu, Mihaela

    2002-01-01

    The Vrancea zone, located at the sharp bend of the Southeast Carpathians, is characterized by an unusually narrow volume of intense seismicity (four shocks with magnitude greater than 7 occurred during the past century) in the depth range of 60 km to 220 km, resulting in significant seismic risk of the densely populated Bucharest area. The oceanic lithosphere slab beneath Vrancea area moved into an almost vertical position when convergence of plates come to a halt and suction force of the subducting plate vanished. In addition, since subduction occurred in an arcuate geometry, the slab is likely to be segmented as suggested by hypocenter distribution. Wortel and Spakman pioneered the idea of slab detachment, based on tomographic images of the upper mantle beneath the Mediterranean. The detachment hypothesis appears to be compatible with the magmatic evolution and the metamorphic patterns in Vrancea collisional orogenic region. Uniform high-precision hypocentre locations of the whole data set are very important in a seismically active area like Vrancea, where the seismic database is a prerequisite for tectonic interpretation and seismic hazard assessment. Well-constrained earthquake data are also extremely useful for studies focused on high-resolution imaging of the complex continental subduction process in Vrancea. To obtain a better image of the structure beneath Vrancea zone it is necessary to have a good velocity model, a well constrained topography model and detailed geological information. To compute a good velocity model we need a data base containing a large number of local, regional and teleseismic well-located events. The recent international tomographic experiment CALIXTO (Carpathian Arc Lithosphere X-Tomography) carried out in 1999, was designed to determine a 3D snapshot of the geodynamic evolution of the Carpathian arc beneath SE-Romania, and in particular, the ongoing slab break-off in the upper mantle beneath Vrancea region. A network consisting of

  6. Crustal structure and sedimentation history over the Alleppey platform, southwest continental margin of India: Constraints from multichannel seismic and gravity data

    Directory of Open Access Journals (Sweden)

    P. Unnikrishnan

    2018-03-01

    Full Text Available The Alleppey Platform is an important morphological feature located in the Kerala-Konkan basin off the southwest coast of India. In the present study, seismic reflection data available in the basin were used to understand the sedimentation history and also to carry out integrated gravity interpretation. Detailed seismic reflection data in the basin reveals that: (1 the Alleppey Platform is associated with a basement high in the west of its present-day geometry (as observed in the time-structure map of the Trap Top (K/T boundary, (2 the platform subsequently started developing during the Eocene period and attained the present geometry by the Miocene and, (3 both the Alleppey platform and the Vishnu fracture zone have had significant impact on the sedimentation patterns (as shown by the time-structure and the isochron maps of the major sedimentary horizons in the region. The 3-D sediment gravity effect computed from the sedimentary layer geometry was used to construct the crustal Bouguer anomaly map of the region. The 3-D gravity inversion of crustal Bouguer anomaly exhibits a Moho depression below the western border of the platform and a minor rise towards the east which then deepens again below the Indian shield. The 2-D gravity modelling across the Alleppey platform reveals the geometry of crustal extension, in which there are patches of thin and thick crust. The Vishnu Fracture Zone appears as a crustal-scale feature at the western boundary of the Alleppey platform. Based on the gravity model and the seismic reflection data, we suggest that the basement high to the west of the present day Alleppey platform remained as a piece of continental block very close to the mainland with the intervening depression filling up with sediments during the rifting. In order to place the Alleppey platform in the overall perspective of tectonic evolution of the Kerala-Konkan basin, we propose its candidature as a continental fragment.

  7. High-Resolution Aeromagnetic Survey over the Yucatan Peninsula - Implications for Chicxulub Impact, Secondary Craters and Regional Crustal Structures

    Science.gov (United States)

    Fucugauchi, J. U.; Lopez-Loera, H.; Rebolledo-Vieyra, M.

    2011-12-01

    followed by a low outside, which extend to the north and northwest. The regional broad anomalies crossing the peninsula and shelf are interpreted as crustal structures on the Yucatan block related to pre- and rifting deformation, which include basement uplift. The southward elongated magnetic anomaly and gravity low may correspond to a pre-impact structure. From analysis of residual anomalies, we found no clear indication of secondary craters or multiple impacts.

  8. Three-dimensional Upper Crustal Velocity and Attenuation Structures of the Central Tibetan Plateau from Local Earthquake Tomography

    Science.gov (United States)

    Zhou, B.; Liang, X.; Lin, G.; Tian, X.; Zhu, G.; Mechie, J.; Teng, J.

    2017-12-01

    A series of V-shaped conjugate strike-slip faults are the most spectacular geologic features in the central Tibetan plateau. A previous study suggested that this conjugate strike-slip fault system accommodates the east-west extension and coeval north-south contraction. Another previous study suggested that the continuous convergence between the Indian and Eurasian continents and the eastward asthenospheric flow generated lithospheric paired general-shear (PGS) deformation, which then caused the development of conjugate strike-slip faults in central Tibet. Local seismic tomography can image three dimensional upper-crustal velocity and attenuation structures in central Tibet, which will provide us with more information about the spatial distribution of physical properties and compositional variations around the conjugate strike-slip fault zone. Ultimately, this information could improve our understanding of the development mechanism of the conjugate strike-slip fault system. In this study, we collected 6,809 Pg and 2,929 Sg arrival times from 414 earthquakes recorded by the temporary SANDWICH and permanent CNSN networks from November 2013 to November 2015. We also included 300 P and 17 S arrival times from 12 shots recorded by the INDEPTH III project during the summer of 1998 in the velocity tomography. We inverted for preliminary Vp and Vp/Vs models using the SIMUL2000 tomography algorithm, and then relocated the earthquakes with these preliminary velocity models. After that, we inverted for the final velocity models with these improved source locations and origin times. After the velocity inversion, we performed local attenuation tomography using t* measurements from the same dataset with an already existing approach. There are correlated features in the velocity and attenuation structures. From the surface to 10 km depth, the study area is dominated by high Vp and Qp anomalies. However, from 10 km to 20 km depth, there is a low Vp and Qp zone distributed along the

  9. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow

    Science.gov (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong

    2018-02-01

    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  10. Recent crustal movements

    Science.gov (United States)

    Maelzer, H.

    Calculation of temporal height changes for the determination of recent vertical crustal movements in northern, western, and southern Germany is described. Precise geodetic measurements and their analysis for the determination of recent crustal movements in north-eastern Iceland, western Venezuela, and central Peru are described. Determination of recent vertical crustal movements by leveling and gravity data; geodetic modeling of deformations and recent crustal movements; geodetic modeling of plate motions; and instrumental developments in geodetic measuring are discussed.

  11. Seismological observations at the Northern Andean region of Colombia: Evidence for a shallowly subducting Caribbean Slab and an extensional regime in the upper plate

    Science.gov (United States)

    Monsalve, G.; Cardona, A.; Yarce, J.; Alvira, D.; Poveda, E.

    2013-05-01

    A number of seismological observations, among which we can mention teleseismic travel time residuals, P to S receiver functions and Pn velocity quantification, suggest a clear distinction between the seismic structure of the crust and uppermost mantle between the plains on the Caribbean coast of Colombia and the mountains at the Northern Andean region. Absolute and relative travel time residuals indicate the presence of a seismically fast material in the upper mantle beneath northern Colombia; preliminary results of Pn studies show a region of relatively slow Pn velocities (between 7.8 and 7.9 km/s) underneath the Caribbean coast, contrasting with values greater than 8 km/s beneath the Central and Western cordilleras of Colombia, and the Pacific coast; receiver functions suggest a significantly thinner crust beneath the Caribbean coast, with a crustal thickness between 25 and 30 km, than beneath the Northern Andean zone at the cordilleras of Colombia, where it exceeds 40 km and reaches about 57 km at the location of Bogota. Besides the obviuos discrepancies that appear in response to different topography, we think that the seismological observations are a consequence of the presence of two very distinct slab segments beneath Colombia and contrasting behaviors of the upper plate, which correspond to Caribbean and Nazca subductions. Our seismic observations can be explained by a shallowly subducting Caribbean Plate, in the absence of an asthenospheric wedge, that steepens at about the location of the Bucaramanga nest, and a thinned continental crust that reflects an extensional component linked to oblique convergence of the Caribbean, which contrasts with the crustal thickening in the Andean Cordillera linked to crustal shortening and Nazca plate subuction. These new data are consistent with the idea of of a relatively warm Nazca slab of Neogene age which seems to have a relatively frontal convergence, and a colder, more buoyant Caribbean slab which represents an

  12. Improved images of crustal structures in the Bergslagen, central Sweden, through seismic reprocessing of BABEL lines 1, 6 and 7

    Science.gov (United States)

    Buntin, Sebastian; Malehmir, Alireza; Malinowski, Michał; Högdahl, Karin; Juhlin, Christopher; Buske, Stefan

    2017-04-01

    In a joint effort through the BABEL project, geoscientists from five countries acquired marine seismic data in the Baltic Sea with a total length of 2268 km in the year 1989. These consisted of near-vertical reflection and wide-angle refraction seismic data, providing insights into the subsurface down to the Moho and suggesting the existence of plate tectonics already during the Paleoproterozoic. The seismic data were acquired using a receiver group interval of 50 m and a total cable length of 3 km. In total, 60 groups of 64 hydrophones at 15 m depth were used. An airgun array consisting of six equal subarrays towed at 7.5 m depth was used to generate the seismic signal. The shot interval and the corresponding record lengths were different among the lines. A record length of 25 s and 75 m shot spacing for lines 1 and 7, respectively and 23 s and 62.5 m for line 6, respectively was used. The sampling rate was 4 ms for all three profiles. Lines 1, 6 and 7 are located at the boundary to the world-class and historical Bergslagen mineral district, and are being revisited in this study. Improved images can be used to refine previous interpretations, particularly at shallower depths (stack deconvolutions and coherency enhancements were applied. The reprocessing revealed reflections in the shallow part of the profiles, likely from major deformation (multi-phase) zones extending down to the lower crust, which were not present in the previous images. Also the images of the reflections in the deeper parts are remarkably improved. This also includes a few sub-Moho reflections. The three reprocessed profiles help constrain the nature of the northern boundary of Bergslagen and associated crustal structures. Furthermore they should assist in the planning of an onshore refraction and reflection profile, to be acquired in 2017, crossing the northern boundary of the Bergslagen district. Acknowledgments: This work is supported by the Swedish Research Council (VR) grant number 2015

  13. Receiver function and gravity constraints on crustal structure and vertical movements of the Upper Mississippi Embayment and Ozark Uplift

    Science.gov (United States)

    Liu, Lin; Gao, Stephen S.; Liu, Kelly H.; Mickus, Kevin

    2017-06-01

    The Upper Mississippi Embayment (UME), where the seismically active New Madrid Seismic Zone resides, experienced two phases of subsidence commencing in the Late Precambrian and Cretaceous, respectively. To provide new constraints on models proposed for the mechanisms responsible for the subsidence, we computed and stacked P-to-S receiver functions recorded by 49 USArray and other seismic stations located in the UME and the adjacent Ozark Uplift and modeled Bouguer gravity anomaly data. The inferred thickness, density, and Vp/Vs of the upper and lower crustal layers suggest that the UME is characterized by a mafic and high-density upper crustal layer of ˜30 km thickness, which is underlain by a higher-density lower crustal layer of up to ˜15 km. Those measurements, in the background of previously published geological observations on the subsidence and uplift history of the UME, are in agreement with the model that the Cretaceous subsidence, which was suggested to be preceded by an approximately 2 km uplift, was the consequence of the passage of a previously proposed thermal plume. The thermoelastic effects of the plume would have induced wide-spread intrusion of mafic mantle material into the weak UME crust fractured by Precambrian rifting and increased its density, resulting in renewed subsidence after the thermal source was removed. In contrast, the Ozark Uplift has crustal density, thickness, and Vp/Vs measurements that are comparable to those observed on cratonic areas, suggesting an overall normal crust without significant modification by the proposed plume, probably owing to the relatively strong and thick lithosphere.

  14. An Extensional CPS Transform (Preliminary Report)

    DEFF Research Database (Denmark)

    Filinski, Andrzej

    2001-01-01

    We shoe that, in a language wihg general continuation-effects, the syntactic, or intensional, CPS transform is mirrored by a semantic, or extensional, functional term. In other words, form only the observable behavior any direct-style term (possibly containing the usual first-class continuation...... primitives), we can uniformly extract the observable behavior of its CPS counterpart. As a consequence of this result, we show that the computational lambda-calculus is complete for observational equivalence of pure, simply typed lambda-terms in Scheme-like contexts....

  15. Joint inversion of ambient noise surface wave and gravity data to image the upper crustal structure of the Tanlu fault zone to the southeast of Hefei, China

    Science.gov (United States)

    Wang, K.; Gu, N.; Zhang, H.; Zhou, G.

    2017-12-01

    The Tanlu fault is a major fault located in the eastern China, which stretches 2400 km long from Tancheng in the north to Lujiang in the south. It is generally believed that the Tanlu fault zone was formed in Proterozoic era and underwent a series of complicated processes since then. To understand the upper crustal structure around the southern segment of the Tanlu fault zone, in 2017 we deployed 53 short period seismic stations around the fault zone to the southeast of Hefei, capital city of Anhui province. The temporary array continuously recorded the data for about one month from 17 March to 26 April 2017. The seismic array spans an area of about 30km x 30Km with an average station spacing of about 5-6km. The vertical component data were used for extracting Rayleigh wave phase and group velocity dispersion data for the period of 0.2 to 5 seconds. To improve imaging the upper crustal structure of the fault zone, we jointly inverted the surface wave dispersion data and the gravity data because they have complementary strengths. To combine surface wave dispersion data and gravity observations into a single inversion framework, we used an empirical relationship between seismic velocity and density of Maceira and Ammon (2009). By finding the optimal relative weighting between two data types, we are able to find a shear wave velocity (Vs) model that fits both data types. The joint inversion can resolve the upper crustal fault zone structure down to about 7 km in depth. The Vs model shows that in this region the Tanlu fault is associated with high velocity anomalies, corresponding well to the Feidong complex seen on the surface. This indicates that the Tanlu fault zone may provide a channel for the intrusion of hot materials.

  16. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    Science.gov (United States)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    determined from the borehole logging data and core samples. These results were also compared with in situ stress data by the hydraulic fracturing stress measurements in the boreholes. We obtained characteristic states on crustal stress and strength of the fault from these investigations. Our findings are as follows: (1) The fracture zone around the Atera fault shows a very wide and complex fracture structure, from approximately 1 km to 4 km wide. The average slip rate was estimated to be 5.3 m /1000 yrs. by the distribution of basalt in age of 1.5 Ma by radioactive dating. We inferred that the Atera fault has been repeatedly active in recent geologic time; however, it is in a very weak state at present. (2) The stress magnitude decreases in the area closer to the center of the fracture zone. Furthermore the orientation of the maximum horizontal compressive stress was almost in a North-South direction, just reverse of the fault moving direction. These are important results to evaluate fault activity. We argue that the stress state observed in these sites exists only when the faults are quite "weak," and thus does not reach to a critical level of fault activation in the present situation.

  17. Effects of lateral variations of crustal rheology on the occurrence of post-orogenic normal faults: The Alto Tiberina Fault (Northern Apennines, Central Italy)

    Science.gov (United States)

    Pauselli, Cristina; Ranalli, Giorgio

    2017-11-01

    The Northern Apennines (NA) are characterized by formerly compressive structures partly overprinted by subsequent extensional structures. The area of extensional tectonics migrated eastward since the Miocene. The youngest and easternmost major expression of extension is the Alto Tiberina Fault (ATF). We estimate 2D rheological profiles across the NA, and conclude that lateral rheological crustal variations have played an important role in the formation of the ATF and similar previously active faults to the west. Lithospheric delamination and mantle degassing resulted in an easterly-migrating extension-compression boundary, coinciding at present with the ATF, where (i) the thickness of the upper crust brittle layer reaches a maximum; (ii) the critical stress difference required to initiate faulting at the base of the brittle layer is at a minimum; and (iii) the total strengths of both the brittle layer and the whole lithosphere are at a minimum. Although the location of the fault is correlated with lithospheric rheological properties, the rheology by itself does not account for the low dip ( 20°) of the ATF. Two hypotheses are considered: (a) the low dip of the ATF is related to a rotation of the stress tensor at the time of initiation of the fault, caused by a basal shear stress ( 100 MPa) possibly related to corner flow associated with delamination; or (b) the low dip is associated to low values of the friction coefficient (≤ 0.5) coupled with high pore pressures related to mantle degassing. Our results establishing the correlation between crustal rheology and the location of the ATF are relatively robust, as we have examined various possible compositions and rheological parameters. They also provide possible general indications on the mechanisms of localized extension in post-orogenic extensional setting. The hypotheses to account for the low dip of the ATF, on the other hand, are intended simply to suggest possible solutions worthy of further study.

  18. Modeling of dual cylinder wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Marin, Jose; Jensen, Mette

    measurements are useful for polymer characterization. The Sentmanat extensional Rheometer[1] is an new testing platform for the study of polymers and elastomers in extensional flow. This technique employs a dual wind-up drum technique to perform an uni-axial extensional deformation during experiments......). *The title of this submission has been modified to remove the name of a commercial product or company to bring the title into compliance with SOR policy....

  19. Extensional rheometry with a handheld mobile device

    Science.gov (United States)

    Marshall, Kristin A.; Liedtke, Aleesha M.; Todt, Anika H.; Walker, Travis W.

    2017-06-01

    The on-site characterization of complex fluids is important for a number of academic and industrial applications. Consequently, a need exists to develop portable rheometers that can provide in the field diagnostics and serve as tools for rapid quality assurance. With the advancement of smartphone technology and the widespread global ownership of smart devices, mobile applications are attractive as platforms for rheological characterization. The present work investigates the use of a smartphone device for the extensional characterization of a series of Boger fluids composed of glycerol/water and poly(ethylene oxide), taking advantage of the increasing high-speed video capabilities (currently up to 240 Hz capture rate at 720p) of smartphone cameras. We report a noticeable difference in the characterization of samples with slight variations in polymer concentration and discuss current device limitations. Potential benefits of a handheld extensional rheometer include its use as a point-of-care diagnostic tool, especially in developing communities, as well as a simple and inexpensive tool for assessing product quality in industry.

  20. Crustal structure of the Ionian basin and eastern Sicily margin : results from a wide angle seismic survey and implication for the crustal nature and origin of the basin, and the recent tear fault location

    Science.gov (United States)

    Gutscher, M. A.; Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Moretti, M.

    2017-12-01

    In the Ionian Sea (Central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust and lithosphere of the subducting plate remain debated and could represent the last remnants of the Neo-Tethys ocean. The rifting mechanism that produced the Ionian basin are also still under discussion with the Malta escarpment representing a possible remnant of this opening. At present, this subduction is still retreating to the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian Basin. In order to accommodate slab roll-back, a major lateral slab tear fault is required. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the Eastern-Sicily margin and the Malta Escarpment by presenting two wide-angle velocity profiles crossing these structures roughly orthogonally. The data used for the forward velocity modeling were acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened in between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.

  1. Seismically imaged shallow and deep crustal structure and potential field anomalies across the Eastern Dharwar Craton, south Indian shield: Possible geodynamical implications

    Science.gov (United States)

    Pandey, O. P.; Chandrakala, K.; Vasanthi, A.; Kumar, K. Satish

    2018-05-01

    The time-bound crustal evolution and subsequent deformation of the Cuddapah basin, Nellore Schist Belt and Eastern Ghats terrain of Eastern Dharwar Craton, which have undergone sustained geodynamic upheavals since almost 2.0 billion years, remain enigmatic. An attempt is made here to integrate newly available potential field data and other geophysical anomalies with deep seismic structure, to examine the generative mechanism of major crustal features, associated with this sector. Our study indicates that the initial extent of the Cuddapah basin sedimentation may have been much larger, extending by almost 50-60 km west of Tadipatri during Paleoproterozoic period, which subsequently shrank due to massive erosion following thermal uplift, caused by SW Cuddapah mantle plume. Below this region, crust is still quite warm with Moho temperatures exceeding 500 °C. Similarly, Nallamalai Fold Belt rocks, bounded by two major faults and extremely low gravity, may have occupied a large terrain in western Cuddapah basin also, before their abrasion. No geophysical signatures of thrusting are presently seen below this region, and thus it could not be an alien terrain either. In contrast, Nellore Schist Belt is associated with strikingly high positive gravity, possibly caused by a conspicuous horst structure and up dipping mafic crustal layers underneath, that resulted due to India-east Antarctica collision after the cessation of prolonged subduction (1.6-0.95 Ga). Further, the crustal seismic and gravity signatures would confirm presence of a totally distinct geological terrain east of the Cuddapah basin, but the trace of Eastern Ghats Belt is all together missing. Instead, all the geophysical signatures, point out to presence of a Proterozoic sedimentary terrain, east of Nellore Schist Belt. It is likely that the extent of Prorerozoic sedimentation was much larger than thought today. In addition, presence of a seismically detected Gondwana basin over Nellore Schist Belt, apart

  2. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings

    Science.gov (United States)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.

    2017-09-01

    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  3. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    Many commercial materials derived from synthetic polymers exhibit a complex response under different processing operations such as fiber formation, injection moulding,film blowing, film casting or coatings. They can be processed both in the solid or in the melted state. Often they may contain two...... or more different polymers in addition to additives, fillers or solvents in order to modify the properties of the final product. Usually, it is also desired to improve the processability. For example the supplement of a high molecular weight component improves the stability in elongational flows....... Understanding the behaviour of polymer melts and solutions in complex non-linearflows is crucial for the design of polymeric materials and polymer processes. Through rheological characterization, in shear and extensional flow, of model polymer systems,i.e. narrow molar mass distribution polymer melts...

  4. Recent advances in extensional rheology: controlled flows and fracture

    DEFF Research Database (Denmark)

    Hassager, Ole; Huang, Qian

    Extensional deformation and flow occur in a number of polymer processing operations such as fiber spinning and film blowing. To understand and analyze material behavior in such operations, accurate and quantitative measurements of the rheological properties in well-defined extensional deformation...

  5. Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative

    DEFF Research Database (Denmark)

    Støvring, Kristian

    2006-01-01

    We answer Klop and de Vrijer's question whether adding surjective-pairing axioms to the extensional lambda calculus yields a conservative extension. The answer is positive. As a byproduct we obtain a "syntactic" proof that the extensional lambda calculus with surjective pairing is consistent....

  6. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  7. The Upper- to Middle-Crustal Section of the Alisitos Oceanic Arc, (Baja, Mexico): an Analog of the Izu-Bonin-Marianas (IBM) Arc

    Science.gov (United States)

    Medynski, S.; Busby, C.; DeBari, S. M.; Morris, R.; Andrews, G. D.; Brown, S. R.; Schmitt, A. K.

    2016-12-01

    The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, because it is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous work1, done in the pre-digital era, used geologic mapping to define two phases of arc evolution, with normal faulting in both phases: (1) extensional oceanic arc, with silicic calderas, and (2) oceanic arc rifting, with widespread diking and dominantly mafic effusions. Our new geochemical data match the extensional zone immediately behind the Izu arc front, and is different from the arc front and rear arc, consistent with geologic relations. Our study is developing a 3D oceanic arc crustal model, with geologic maps draped on Google Earth images, and GPS-located outcrop information linked to new geochemical, geochronological and petrographic data, with the goal of detailing the relationships between plutonic, hypabyssal, and volcanic rocks. This model will be used by scientists as a reference model for past (IBM-1, 2, 3) and proposed IBM (IBM-4) drilling activities. New single-crystal zircon analysis by TIMS supports the interpretation, based on batch SIMS analysis of chemically-abraded zircon1, that the entire upper-middle crustal section accumulated in about 1.5 Myr. Like the IBM, volcanic zircons are very sparse, but zircon chemistry on the plutonic rocks shows trace element compositions that overlap to those measured in IBM volcanic zircons by A. Schmitt (unpublished data). Zircons have U-Pb ages up to 20 Myr older than the eruptive age, suggesting remelting of older parts of the arc, similar to that proposed for IBM (using different evidence). Like IBM, some very old zircons are also present, indicating the presence of old crustal fragments, or sediments derived from them, in the basement. However, our geochemical data show that the magmas are

  8. The crustal thickness of Australia

    Science.gov (United States)

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  9. Basement characterization and crustal structure beneath the Arabia-Eurasia collision (Iran): A combined gravity and magnetic study

    Science.gov (United States)

    Mousavi, Naeim; Ebbing, Jörg

    2018-04-01

    We present a study on the depth to basement and magnetic crustal domains beneath the Iranian Plateau by modeling aeromagnetic and gravity data. First, field processing of the aeromagnetic data was undertaken to estimate the general characteristics of the magnetic basement. Afterwards, inverse modeling of aeromagnetic data was carried out to estimate the depth to basement. The obtained model of basement was refined using combined gravity and magnetic forward modeling. Hereby, we were able to distinguish different magnetic domains in the uppermost crust (10-20 km depths) influencing the medium to long wavelength trends of the magnetic anomalies. Magnetic basement mapping shows that prominent shallow magnetic features are furthermore located in the volcanic areas, e.g. the Urumieh Dokhtar Magmatic Assemblage. The presence of ophiolite outcrops in SE Iran implies that shallow oceanic crust (with high magnetization) is the main source of one of the biggest magnetic anomalies in entire Iran area located north of the Makran.

  10. Bouguer gravity and crustal structure of the Dead Sea transform fault and adjacent mountain belts in Lebanon

    Science.gov (United States)

    Kamal; Khawlie, Mohamad; Haddad, Fuad; Barazangi, Muawia; Seber, Dogan; Chaimov, Thomas

    1993-08-01

    The northern extension of the Dead Sea transform fault in southern Lebanon bifurcates into several faults that cross Lebanon from south to north. The main strand, the Yammouneh fault, marks the boundary between the Levantine (eastern Mediterranean) and Arabian plates and separates the western mountain range (Mount Lebanon) from the eastern mountain range (Anti-Lebanon). Bouguer gravity contours in Lebanon approximately follow topographic contours; i.e., positive Bouguer anomalies are associated with the Mount Lebanon and Anti-Lebanon ranges. This suggests that the region is not in simple isostatic compensation. Gravity observations based on 2.5-dimensional modeling and other available geological and geophysical information have produced the following interpretations. (1) The crust of Lebanon thins from ˜35 km beneath the Anti-Lebanon range, near the Syrian border, to ˜27 km beneath the Lebanese coast. No crustal roots exist beneath the Lebanese ranges. (2) The depth to basement is ˜3.5-6 km below sea level under the ranges and is ˜8-10 km beneath the Bekaa depression. (3) The Yammouneh fault bifurcates northward into two branches; one passes beneath the Yammouneh Lake through the eastern part of Mount Lebanon and another bisects the northern part of the Bekaa Valley (i.e., Mid-Bekaa fault). The Lebanese mountain ranges and the Bekaa depression were formed as a result of transtension and later transpression associated with the relative motion of a few crustal blocks in response to the northward movement of the Arabian plate relative to the Levantine plate.

  11. Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central)

    Science.gov (United States)

    Faure, M.; Grolier, J.; Pons, J.

    1993-09-01

    In the Northern part of the Variscan French Massif Central, the Sioule series, from top to bottom, consists of a pre-Viséan granite, migmatite, gneiss and mica schist. Two ductile deformations have been recognized. The earlier phase is characterized by a north-east-south-west trending stretching lineation; the second phase, characterized by a north-west-south-east trending mineral, stretching and crenulation lineation, is better marked in the lower mica schist part than in the upper granito-gneissic part. This second phase occurred during retrogression of the metamorphic rocks; related shear criteria indicate a top to the south-west shear. The Namurian-Westphalian magmatic bodies such as the Echassières leucogranite, Pouzol-Servant microgranite and numerous north-east -south-west trending microgranite dykes are emplaced in extensional fractures related to the same north-west-south-east maximum stretching direction. The asymmetrical shapes of the two granitic massifs indicate that they intruded towards the south-east. The synkinematic retrogression of the metamorphic rocks, the shape of the magmatic bodies and a re-examination of the numerous available data support the interpretation that the deformation is due to the extensional tectonic regime related to the Variscan crustal re-quilibration. This interpretation is in agreement with the correlation of the Sioule series with the Chavanon series. The two series belong to a unique tectono-metamorphic unit left-laterally offset by the Stephanian motion of the Sillon Houiller fault. This study also shows that the Sillon Houiller did not play a significant part during the Namurian-Westphalian extensional tectonics of the Massif Central.

  12. Extensional Seismogenic Stress and Tectonic Movement on the Central Region of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiren Xu

    2009-01-01

    Full Text Available Various earthquake fault types, mechanism solutions and stress fields, as well as GPS and geothermal data are analyzed for the study of the crustal movements on the Tibetan plateau and their tectonic implications. The results show that a lot of the normal faulting type-event concentrated at altitudes greater than 4000 m on the central Tibetan plateau. The altitudes concentrating normal faulting type-events can be zoned two parts: the western part, the Lhasa block, and the eastern part, the Qiangtang-Changdu region. The azimuths of T-axes are in a general E-W direction in the Lhasa block and NW-SE or NNW-SSE in the Qiangtang-Changdu region at the altitudes of the Tibetan plateau. The tensional stresses in E-W direction and NW-SE direction predominate normal faulting earthquake occurrence in the Lhasa block and the Qiangtang-Changdu region, respectively. The slipping displacements of the normal-faulting-type events have great components in near E-W direction and NW-SE direction in the Lhasa block and the Qiangtang-Changdu region, respectively. The extensions are probably an eastward or southeastward extensional motion, being mainly tectonic activity phenomena in the plateau altitudes. The extensional motions due to normal-fault earthquakes are important tectonic activity regimes on the high altitudes of the plateau. The easterly crustal extensions on the plateau are attributable to the gravitational collapse of the high plateau and eastward extrusion of hotter mantle materials beneath the eastern boundary of the plateau. Numbers of thrust-fault and strike-slip-fault earthquakes with strong compressive stress in a general NNE-SSW direction occur on the edges of the plateau.

  13. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    Science.gov (United States)

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  14. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    Science.gov (United States)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2017-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D

  15. 3D modeling of dual wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.

    2010-01-01

    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape...... is attached onto two drums, followed by a rotation of both drums in opposite direction. The numerical modeling is based on integral constitutive equations of the K-BKZ type. Generally, to ensure a proper uni-axial extensional deformation in dual wind-up drum rheometers the simulations show that a very small...

  16. A Crustal Cross Section over the Central North Iberian Margin: New Insights into the Bay of Biscay Inverted Hyperextended Rift

    Science.gov (United States)

    Cadenas Martínez, P.; Fernandez Viejo, G.; Pulgar, J. A.; Minshull, T. A.

    2015-12-01

    The Bay of Biscay is a V-shape failed arm of the Atlantic rift which was opened during the Mesozoic and partially closed during the Alpine orogeny in the Cenozoic, when the convergence of the Iberian and European Plates drove to the formation of the Pyrenean-Cantabrian realm in the North Iberian peninsula. A complete crustal cross section through the central part of the North Iberian Margin, representing the southern margin of the Bay of Biscay, is presented here from the interpretation of a high quality deep seismic reflection profile together with boreholes and well logs, acquired for oil and gas exploration purposes. The studied segment of this margin includes a basement high so called Le Danois Bank, and the Asturian basin, one of the sedimentary basins developed during the Mesozoic extensional processes, which was subsequently inverted during the Alpine orogeny. Most of the compression seems to have taken place through uplift of the continental platform and slope and the formation of an accretionary wedge at the bottom of the slope, so it is still possible to elucidate both extensional and compressional features. The basin appears as an asymmetric bowl bounded by synsedimentary normal faults with a maximum thickness of about 6 s TWT, which has been estimated to be equivalent to about 7 km. Depth migration of the seismic profile has revealed the presence of a deeper trough, with a maximum thickness of 13. 5 km at its main depocenter, which closely resembles the sedimentary thickness proposed for other contemporaneous proximal basins. These results support the high degree of extension and the exhumation processes proposed for this margin, deduced from refraction velocities and from the upper crustal and mantle rocks dredged at the slopes of Le Danois High. They will bring new insights to, and further constraints on, geodynamical models for this margin, where the amount of shortening linked with Cenozoic compression and the role of the rift structure during the

  17. Using aerogravity and seismic data to model the bathymetry and upper crustal structure beneath the Pine Island Glacier ice shelf, West Antarctica

    Science.gov (United States)

    Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.

    2013-12-01

    Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.

  18. Crustal Seismic Anisotropy: Implications for Understanding Crustal Dynamics

    Science.gov (United States)

    Meltzer, A.; Christensen, N.; Okaya, D.

    2003-12-01

    The Nanga Parbat - Haramosh massif, in the core of the western syntaxis of the Himalaya, represents a unique exposure of mid-lower continental crust from beneath a collisional orogen. The exhumed core of the massif forms a large scale antiformal structure with axial orientation of N10E and associated lineation directed north-south with near-vertical dips. Laboratory measurements of seismic velocity on a suite of quartzofeldspathic gneisses from the massif show a relatively strong degree of anisotropy, up to 12.5% for compressional waves and up to 21% for shear waves. The degree of velocity anisotropy is primarily a function of mica content and rock fabric strength. The strong anisotropy measured in these rocks should be observable in recorded seismic field data and provides a means of mapping rock fabric at depth provided the rock fabric is coherent over appropriate length scales. An IRIS/PASSCAL deployment of 50 short period instruments recorded local and regional earthquakes to characterize seismicity and determine crustal structure beneath the massif as part of a multidisciplinary NSF Continental Dynamics study investigating the active tectonic processes responsible for exhumation and crustal reworking at Nanga Parbat. Microseismicity at Nanga Parbat is distributed along strike beneath the massif but exhibits a sharp drop-off laterally into adjacent terranes and with depth. This data set is ideal for studying crustal seismic anisotropy because the raypaths are restricted to the crust, sharp onsets in P and S allow for clear identification of arrivals, and source-receiver geometries sample a range of azimuths with respect to structure. Preliminary analysis indicates that the majority of local events exhibit some degree of splitting and that splitting patterns, while complicated, are coherent. While splitting delay normally increases with distance traveled through anisotropic material, the range of delay times can be due to heterogeneity in composition, lateral

  19. A portable and affordable extensional rheometer for field testing

    OpenAIRE

    Hallmark, Bart; Bryan, Matthew; Bosson, E; Butler, S; Hoier, T; Magens, Ole; Pistre, N; Pratt, L; Ward, B-A; Wibberley, S; Wilson, David Ian

    2016-01-01

    Extensional shear testing is often needed to characterise the behaviour of complex fluids found in industry and nature. Traditional extensional rheometers are typically expensive, fragile and heavy and are only suited to making measurements in a laboratory environment. For some applications, it is necessary to make in situ rheological measurements where, for example, fluid properties change rapidly over time or where laboratory facilities are unavailable. This paper reports the development an...

  20. Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data

    Science.gov (United States)

    Klingelhoefer, Frauke; Biari, Youssef; Sahabi, Mohamed; Aslanian, Daniel; Schnabel, Michael; Matias, Luis; Benabdellouahed, Massinissa; Funck, Thomas; Gutscher, Marc-André; Reichert, Christian; Austin, James A.

    2016-04-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from four study regions along the margin located in the south offshore DAKHLA, on the central continental margin offshore Safi, in the northern Moroccan salt basin, and in the Gulf of Cadiz. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. Crustal thinning takes place over a region of 150 km in the north and only 70 km in the south. The North Moroccan Basin is underlain by highly thinned continental crust of only 6-8 km thickness. The ocean-continent transition zone shows a variable width between 40 and 70 km and is characterized by seismic velocities in between those of typical oceanic and thinned continental crust. The neighbouring oceanic crust is characterized by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganization. Volcanic activity seems to be mostly confined to the region next to the Canary Islands, and is thus not related to the initial opening of the ocean, which was associated to only weak volcanism. Comparison with the conjugate margin off Nova Scotia shows comparable continental crustal structures, but 2-3 km thinner oceanic crust on the American side than on the African margin.

  1. Upper crustal stress and seismotectonics of the Garhwal Himalaya using small-to-moderate earthquakes: Implications to the local structures and free fluids

    Science.gov (United States)

    Prasath, R. Arun; Paul, Ajay; Singh, Sandeep

    2017-03-01

    The work presents new focal-mechanism data of small-to-moderate (3.0 ⩾ ML ⩽ 5.0) upper crustal earthquakes for the Garhwal Himalaya from a local seismic network installed in July 2007. Majority of the epicenters of these earthquakes are located close to the Main Central Thrust (MCT) zone. We retrieved Moment Tensor (MT) solutions of 26 earthquakes by waveform inversion. The MT results and 11 small-to-moderate earthquakes from the published records are used for stress inversions. The MT solutions reveal dominatingly thrust mechanisms with few strike slip earthquakes near Chamoli. The seismic cross sections illustrate that, these earthquakes are located around the Mid-Crustal-Ramp (MCR) in the detachment. The optimally oriented faults from stress inversions suggest that, the seismogenic fault in this region is similar to a fault plane having dip angle between 12 and 25 degrees, which is compatible with the dip angle of the MCR (∼16°) in this region. P-axes and the maximum horizontal compressive stress are NE-SW oriented; the direction of the relative motion of Indian plate with respect to the Eurasian plate. The Friction Coefficient estimated from stress inversions show that the Chamoli region having low friction in comparison to the overall values. The free fluids trapped beneath the detachment are penetrating into the local faults, hence, decreasing the frictional strength and altering the prevailing stress conditions of the surroundings. The present study reveals that the MCR structure is seismogenically active and producing the small-moderate earthquakes in the region, while the MCT is probably dormant at present.

  2. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.

    2016-01-01

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  3. The effects of lower crustal strength and preexisting midcrustal shear zones on the formation of continental core complexes and low-angle normal faults

    KAUST Repository

    Wu, Guangliang

    2016-08-22

    To investigate the formation of core complexes and low-angle normal faults, we devise thermomechanical simulations on a simplified wedge-like orogenic hinterland that has initial topography, Moho relief, and a preexisting midcrustal shear zone that can accommodate shear at very low angles (<20°). We mainly vary the strength of the lower crust and the frictional strength of the preexisting midcrustal shear zone. We find that the strength of the lower crust and the existence and strength of a preexisting shear zone significantly affect the formation and evolution of core complexes. With increasing lower crustal strength, we recognize varying extensional features with decreasing exhumation rate: these are characterized by bivergent metamorphic massifs, classic Cordilleran metamorphic core complexes, multiple consecutive core complexes (or boudinage structures), and a flexural core complex underlined by a large subsurface low-angle detachment fault with a small convex curvature. Topographic loading and mantle buoyancy forces, together with divergent boundaries, drive a regional lower crustal flow that leads to the exhumation of the lower crust where intensive upper crustal faulting induces strong unloading. The detachment fault is a decoupling zone that accommodates large displacement and accumulates sustained shear strain at very low angle between upper and lower crust. Though the regional stress is largely Andersonian, we find non-Andersonian stress in regions adjacent to the preexisting shear zone and those with high topographic gradient. Our new models provide a view that is generally consistent with geological and geophysical observations on how core complexes form and evolve.

  4. Numerically Calculated 3D Space-Weighting Functions to Image Crustal Volcanic Structures Using Diffuse Coda Waves

    Directory of Open Access Journals (Sweden)

    Edoardo Del Pezzo

    2018-05-01

    Full Text Available Seismic coda measurements retrieve parameters linked to the physical characteristics of rock volumes illuminated by high frequency scattered waves. Space weighting functions (SWF and kernels are different tools that model the spatial sensitivity of coda envelopes to scattering and absorption anomalies in these rock matrices, allowing coda-wave attenuation ( Q c o d a imaging. This note clarifies the difference between SWF and sensitivity kernels developed for coda wave imaging. It extends the SWF previously developed in 2D to the third dimension by using radiative transfer and the diffusion equation, based on the assumption that variations of Q c o d a depend solely on variations of the extinction length. When applied to active data (Deception Island, Antarctica, 3D SWF images strongly resemble 2D images, making this 3D extension redundant. On the other hand, diffusion does not efficiently model coda waveforms when using earthquake datasets spanning depths between 0 and 20 km, such as at Mount St. Helens volcano. In this setting, scattering attenuation and absorption suffer tradeoffs and cannot be separated by fitting a single seismogram energy envelope for SWF imaging. We propose that an approximate analytical 3D SWF, similar in shape to the common coda kernels used in literature, can still be used in a space weighted back-projection approach. While Q c o d a is not a physical parameter of the propagation medium, its spatially-dependent modeling allows improved reconstruction of crustal-scale tectonic and geological features. It is even more efficient as a velocity independent imaging tool for magma and fluid storage when applied to deep volcanism.

  5. Extensional Tectonic Regime of Garut Basin based on Magnetotelluric Analysis

    Directory of Open Access Journals (Sweden)

    Lina Handayani

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.162Garut Basin are is part of Bandung-Garut Greater Basin (Bandung Zone characterized by a large basin surrounded by mountain ranges. Active volcanoes had distributed their material as pyroclastic deposits around the outer border of the zone and as lava flow deposit separating the two basins. Bouguer gravity anomaly data had also indicated the presence of several low anomaly closures at about the area of Bandung and Garut Basins that were surrounded by high gravity anomaly zones. Two magnetotelluric surveys were completed to acquire the subsurface model that might explain the tectonic evolution of studied area. The first stage was characterized sby the presence of horst - graben structures that might imply an extensional regime of the area. The next stage of evolutionwas indicated by the horizontal layering correlated to the relative non-active tectonic. In addition, a most recent structure that appeared near the surface might suggest a possible extension force as the current stage.

  6. The evolution of shallow crustal structures in early rift-transform interaction: a case study in the northern Gulf of California.

    Science.gov (United States)

    Farangitakis, Georgios-Pavlos; van Hunen, Jeroen; Kalnins, Lara M.; Persaud, Patricia; McCaffrey, Kenneth J. W.

    2017-04-01

    The Gulf of California represents a young oblique rift/transtensional plate boundary in which all of the transform faults are actively shearing the crust, separated by active rift segments. Previous workers have shown that in the northern Gulf of California, the relative plate motion between the Pacific and North American plates is distributed between: a) the Cerro Prieto Fault (CPF) in the NE b) the Ballenas Transform Fault (BTF) in the SW and c) a pull-apart structure located between these two faults consisting of a number of extensional basins (the Wagner, Consag, and Upper and Lower Delfin basins). A plate boundary relocation at approximately 2 Ma, continued to separate Isla Angel de la Guarda from the Baja California peninsula and created the 200x70 km2 NE-SW pull-apart structure located northeast of the BTF. Here we use seismic stratigraphy analysis of the UL9905 high resolution reflection seismic dataset acquired by the Lamont-Doherty Earth Observatory, Caltech, and the Centro de Investigación Científica y de Educación Superior de Ensenada to build on previous structural interpretations and seek to further understand the processes that formed the structural and sedimentary architecture of the pull-apart basin in the northern Gulf of California. We examine the formation of depositional and deformation structures in relation to the regional tectonics to provide insight into the development of structural patterns and related seismic-stratigraphic features in young rift-transform interactions. Using bathymetric data, characteristic seismic-stratigraphic packages, and seismic evidence of faulting, we confirm the existence of three major structural domains in the northern Gulf of California and examine the interaction of the seismic stratigraphy and tectonic processes in each zone. The first and most distinctive is an abrupt NE-SW 28x5 km2 depression on the seabed of the Lower Delfin Basin. This is aligned orthogonally to the BTF, is situated at its northern

  7. Entangled Polymer Melts in Extensional Flow - Characterization by Combined Rheology and Small-Angle Neutron Scattering

    DEFF Research Database (Denmark)

    Mortensen, Kell; Kirkensgaard, Jacob JK; Hassager, Ole

    Liquid bridges occur in a variety of situations in nature - yet our understanding of the dynamics and stability is very limited. Examples of liquid bridges are the process used byspiders to form draglines and the process used by cats lapping milk. We have an extendedprogram aiming to provide...... generic knowledge about the process in which macromolecular fluidfilaments are extended and stretched and show how the extensional properties are related to theproperties on individual molecules. We combine structural and rheological studies of a series ofmodel polymers with different composition...... and architectures. The project entails synthesizingmodel polymer systems of precisely known molecular architecture, subjecting these materials tocontrolled extensional flows and to measure the molecular deformation under controlled flowsituation by SANS. Neutron contrast is obtained using specific deuterium labeled...

  8. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    Science.gov (United States)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by

  9. Crustal temperature structure derived from a ground temperature gradient chart of Hokkaido; Hokkaido no chion kobaizu kara motometa chikakunai ondo kozo

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Y. [Geological Survey of Japan, Tsukuba (Japan); Akita, F. [Hokkaido Geological Survey, Sapporo (Japan); Nagumo, S. [Oyo Corp., Tokyo (Japan)

    1997-05-27

    The Hokkaido Underground Resources Investigation Institute has prepared in 1995 a detailed temperature gradient chart that shows local anomalies around volcanoes. This paper describes an attempt to derive crustal temperature structure of Hokkaido from the above data. The model was hypothesized as a primary model in which no thermal convection exists. In volcanic and geothermal areas which show a temperature gradient of more than 100 {degree}C km {sup -1}, a solidus temperature is reached at a depth shallower than 10 km. Below the volcanic chain forming the Chishima arc, a partially melted region exists in a width of about 100 km. Most of the areas in the southern Hokkaido have the temperature reached the solidus temperature in the crust. On the other hand, in most of the areas of the forefront side, no solidus temperature is reached in the crust. In the temperature structure of a cross section crossing almost orthogonally with the volcanic front passing through Mt. Daisetsu, a high temperature area reaches to a shallow portion beneath Mt. Daisetsu, where the depth at which the solidus temperature is reached is 10 km or shallower. The range of area where the solidus depth is shallower than 10 km has a south-west width of about 40 km. This means that a partially melted area with a size of 40 km in the horizontal direction exists at a depth of several kilometers. 20 refs., 3 figs.

  10. The geophysical character of southern Alaska - Implications for crustal evolution

    Science.gov (United States)

    Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.

    2007-01-01

    The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth

  11. The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data

    Science.gov (United States)

    Kalberg, Thomas; Gohl, Karsten

    2014-07-01

    The Amundsen Sea Embayment of West Antarctica represents a key component in the tectonic history of Antarctic-New Zealand continental breakup. The region played a major role in the plate-kinematic development of the southern Pacific from the inferred collision of the Hikurangi Plateau with the Gondwana subduction margin at approximately 110-100 Ma to the evolution of the West Antarctic Rift System. However, little is known about the crustal architecture and the tectonic processes creating the embayment. During two `RV Polarstern' expeditions in 2006 and 2010 a large geophysical data set was collected consisting of seismic-refraction and reflection data, ship-borne gravity and helicopter-borne magnetic measurements. Two P-wave velocity-depth models based on forward traveltime modelling of nine ocean bottom hydrophone recordings provide an insight into the lithospheric structure beneath the Amundsen Sea Embayment. Seismic-reflection data image the sedimentary architecture and the top-of-basement. The seismic data provide constraints for 2-D gravity modelling, which supports and complements P-wave modelling. Our final model shows 10-14-km-thick stretched continental crust at the continental rise that thickens to as much as 28 km beneath the inner shelf. The homogenous crustal architecture of the continental rise, including horst and graben structures are interpreted as indicating that wide-mode rifting affected the entire region. We observe a high-velocity layer of variable thickness beneath the margin and related it, contrary to other `normal volcanic type margins', to a proposed magma flow along the base of the crust from beneath eastern Marie Byrd Land-West Antarctica to the Marie Byrd Seamount province. Furthermore, we discuss the possibility of upper mantle serpentinization by seawater penetration at the Marie Byrd Seamount province. Hints of seaward-dipping reflectors indicate some degree of volcanism in the area after break-up. A set of gravity anomaly data

  12. A portable and affordable extensional rheometer for field testing

    Science.gov (United States)

    Hallmark, Bart; Bryan, Matthew; Bosson, Ed; Butler, Simon; Hoier, Tom; Magens, Ole; Pistre, Nicolas; Pratt, Lee; Ward, Betsy-Ann; Wibberley, Sam; Wilson, D. Ian

    2016-12-01

    Extensional shear testing is often needed to characterise the behaviour of complex fluids found in industry and nature. Traditional extensional rheometers are typically expensive, fragile and heavy and are only suited to making measurements in a laboratory environment. For some applications, it is necessary to make in situ rheological measurements where, for example, fluid properties change rapidly over time or where laboratory facilities are unavailable. This paper reports the development and validation of an inexpensive, lightweight and robust ‘open source’ extensional rheometer, Seymour II. Validation was carried out experimentally and computationally. Measurements on a Newtonian fluid (492 mPa s Brookfield silicone oil) yielded results of 510  ±  51 mPa s; these are comfortably within the range of  ±10% which other authors have quoted for extensional techniques using laboratory rheometers. Comparison of the observed filament thinning dynamics to those obtained using computational fluid dynamics (CFD) gave good qualitative agreement. Use of Seymour II at the University of Cambridge Botanic Gardens revealed that the mucilage of the ‘crane flower’, Strelitzia reginae, was a viscoelastic fluid whose extensional response could be described by a two-mode Giesekus equation. Engineering drawings and image analysis code for Seymour II are available for download at the project website, www.seymourII.org/.

  13. A portable and affordable extensional rheometer for field testing

    International Nuclear Information System (INIS)

    Hallmark, Bart; Bryan, Matthew; Bosson, Ed; Butler, Simon; Hoier, Tom; Magens, Ole; Pratt, Lee; Ward, Betsy-Ann; Wibberley, Sam; Wilson, D Ian; Pistre, Nicolas

    2016-01-01

    Extensional shear testing is often needed to characterise the behaviour of complex fluids found in industry and nature. Traditional extensional rheometers are typically expensive, fragile and heavy and are only suited to making measurements in a laboratory environment. For some applications, it is necessary to make in situ rheological measurements where, for example, fluid properties change rapidly over time or where laboratory facilities are unavailable. This paper reports the development and validation of an inexpensive, lightweight and robust ‘open source’ extensional rheometer, Seymour II. Validation was carried out experimentally and computationally. Measurements on a Newtonian fluid (492 mPa s Brookfield silicone oil) yielded results of 510  ±  51 mPa s; these are comfortably within the range of  ±10% which other authors have quoted for extensional techniques using laboratory rheometers. Comparison of the observed filament thinning dynamics to those obtained using computational fluid dynamics (CFD) gave good qualitative agreement. Use of Seymour II at the University of Cambridge Botanic Gardens revealed that the mucilage of the ‘crane flower’, Strelitzia reginae , was a viscoelastic fluid whose extensional response could be described by a two-mode Giesekus equation. Engineering drawings and image analysis code for Seymour II are available for download at the project website, www.seymourII.org/. (paper)

  14. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea

    Science.gov (United States)

    Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao

    2018-02-01

    The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.

  15. Geophysical reassessment of the role of ancient crustal structures on the development of western Laurentia and Selwyn Basin, Yukon and Northwest Territories, Canada.

    Science.gov (United States)

    Hayward, N.

    2017-12-01

    The structure of the western margin of the North American craton (Laurentia) in the northern Canadian Cordillera and its role in the development of the Neoproterozoic-Early Paleozoic Selwyn Basin are reassessed through 3D inversion of a new compilation of aeromagnetic data and archival Bouguer gravity data. The region's tectonic history is obscured by partial burial beneath Selwyn Basin, and a tectonic overprint that includes terrane accretion, regional plutonism, and strike-slip faults with displacements of 100s and perhaps 1000s of kilometers. Despite the implied complexity, preliminary geological and geophysical based interpretations of the structure of the western margin of Laurentia, have been adopted with few refinements in over two decades. Regionally continuous, NE-trending, crustal lineaments, including the Fort Norman line and Leith Ridge fault, were interpreted as having had long-standing influence on the craton development, its western margin, and overlapping sedimentary basin. New results reveal limited evidence for the regional continuity of the NE-trending lineaments. Instead, models suggest that the structure of the Laurentian margin is characterised by segmentation on numerous shorter structures of varied strike. The western margin of the craton and its structures are bound by a NW-trending structure that connects with the Richardson Trough to the north and may have been active during rifting of the Misty Creek embayment. This boundary also marks the easternmost limit of both granitic intrusions in Selwyn Basin, which gravity models suggest are of greater extent than reflected on geological maps, and SEDEX occurrences. An ENE-trending structure beneath northern Selwyn Basin is interpreted as marking the southern edge of a previously unidentified cratonic promontory, akin to the Liard line that marks a transfer fault that bounds the promontory of the Macdonald Platform, south of Selwyn Basin. The ENE-trending structure is traced from the Tintina

  16. Verification of the shallow seismic crustal structure of the western Krušné Hory crystalline unit, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Novotný, O.; Málek, Jiří; Žanda, Libor

    2013-01-01

    Roč. 57, č. 3 (2013), s. 507-519 ISSN 0039-3169 R&D Projects: GA ČR GAP210/12/2336; GA AV ČR IAA300120905 Institutional support: RVO:67985891 Keywords : West Bohemia * Krušné hory * crystalline unit * shallow structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.752, year: 2013

  17. Insights on the seismotectonics of the western part of northern Calabria (southern Italy) by integrated geological and geophysical data: Coexistence of shallow extensional and deep strike-slip kinematics

    Science.gov (United States)

    Ferranti, L.; Milano, G.; Pierro, M.

    2017-11-01

    We assess the seismotectonics of the western part of the border area between the Southern Apennines and Calabrian Arc, centered on the Mercure extensional basin, by integrating recent seismicity with a reconstruction of the structural frame from surface to deep crust. The analysis of low-magnitude (ML ≤ 3.5) events occurred in the area during 2013-2017, when evaluated in the context of the structural model, has revealed an unexpected complexity of seismotectonics processes. Hypocentral distribution and kinematics allow separating these events into three groups. Focal mechanisms of the shallower (kinematics. These results are consistent with the last kinematic event recorded on outcropping faults, and with the typical depth and kinematics of normal faulting earthquakes in the axial part of southern Italy. By contrast, intermediate ( 9-17 km) and deep ( 17-23 km) events have fault plane solutions characterized by strike- to reverse-oblique slip, but they differ from each other in the orientation of the principal axes. The intermediate events have P axes with a NE-SW trend, which is at odds with the NW-SE trend recorded by strike-slip earthquakes affecting the Apulia foreland plate in the eastern part of southern Italy. The intermediate events are interpreted to reflect reactivation of faults in the Apulia unit involved in thrust uplift, and appears aligned along an WNW-ESE trending deep crustal, possibly lithospheric boundary. Instead, deep events beneath the basin, which have P-axis with a NW-SE trend, hint to the activity of a deep overthrust of the Tyrrhenian back-arc basin crust over the continental crust of the Apulia margin, or alternatively, to a tear fault in the underthrust Apulia plate. Results of this work suggest that extensional faulting, as believed so far, does not solely characterizes the seismotectonics of the axial part of the Southern Apennines.

  18. Crystallinity of polyethylene in uni-axial extensional flow

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; van Drongelen, Martin; Mortensen, Kell

    Flow history of polymer melts in processing greatly influences the crystallinity and hence the solid properties of the final material. A wide range of polymer processes involve extensional flows e.g. fiber spinning, blow moulding etc. However, due to instrumental difficulties, experimental studies...... on polymer crystallization in controlled uniaxial extension are quite rare compared to studies of crystallization in shear. Inherently uniaxial extensional flows are strong and simple relative to shear flows, in the sense that chain stretch is easily obtained and that the molecules experience no tumbling...... such that crystallization from a stretched state can take place. In this work we explore this feature in the attempt to link the nonlinear extensional rheology to the final morphology. We investigate polyethylenes (PE) of various chain architectures and observe that, even for complex architectures like long chain branched...

  19. Implications for Crustal Structures and Heat Fluxes from Depth-to-the-Bottom of the Magnetic Source Estimates in West Antarctica, Amundsen Sea Sector

    Science.gov (United States)

    Dziadek, R.; Ferraccioli, F.; Gohl, K.; Spiegel, C.; Kaul, N. E.

    2017-12-01

    The West Antarctic Rift System is one of the least understood rift systems on earth, but displays a unique coupled relationship between tectonic processes and ice sheet dynamics. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 Ma to reach long-term thermal equilibrium. We discuss airborne, high-resolution magnetic anomaly data from the Amundsen Sea Sector, to provide additional insight into deeper crustal structures related to the West Antarctic Rift System in the Amundsen/Bellingshausen sector. With the depth-to-the-bottom of the magnetic source (DBMS) estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM thermal models in 2D and 3D.

  20. Crustal-scale pop-up structure in cratonic lithosphere: DOBREdeep seismic reflection study of the Donbas fold belt, Ukraine.

    NARCIS (Netherlands)

    Maystrenko, Yu.; Stovba, S.; Stephenson, R.A.; Bayer, U.; Menyoli, E.; Gajewski, D.; Huebscher, Ch.; Rabbel, W.; Saintot, A.N.; Starostenko, V.I.; Thybo, H.; Tolkunov, A.P.

    2003-01-01

    The DOBRE project investigated the interplay of geologic and geodynamic processes that controlled the evolution of the Donbas fold belt, Ukraine, as an example of an inverted intracratonic rift basin. A deep seismic reflection profile provides an excellent image of the structure of the Donbas fold

  1. Crustal structure across the Møre margin, mid-Norway, from wide-angle seismic and gravity data

    DEFF Research Database (Denmark)

    Kvarven, Trond; Ebbing, Jörg; Mjelde, R.

    2014-01-01

    The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection and re...... by the Jan Mayen Lineament, suggesting that the lineament represents a pre-Caledonian structural feature in the basement....

  2. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    Content-Type text/plain; charset=UTF-8 202 Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep... will undertake either regional, reconnaissance or detail gravity surveys. We generally deal with free air gravity anomalies in oceans. The free air gravity anomalies mostly mimic the seabed configuration and at times, the deviation observed in the free air...

  3. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    Science.gov (United States)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We

  4. Crustal structure of the southeastern Tibetan Plateau from gravity data: New evidence for clockwise movement of the Chuan-Dian rhombic block

    Science.gov (United States)

    Xuan, Songbai; Shen, Chongyang; Shen, Wenbin; Wang, Jiapei; Li, Jianguo

    2018-06-01

    The crustal deformation beneath the Chuan-Dian rhombic block (CDB) and surrounding regions has been studied in geological and geodetic methods, and provide important insights into the kinematics and dynamics about the clockwise movement of this tectonic block. In this work, we present images of the normalized full gradient (NFG) of the Bouguer gravity anomalies from five gravity profiles across the boundary faults of the CDB measured in recent years, and investigate the distribution characteristics of the crustal anomalous bodies along the profiles. Firstly, an anomalous body with eastward dipping exist beneath the Xianshuihe fault, suggesting that crustal mass move to east. Secondly, near the Xiaojiang fault, two anomalous bodies dip westward with depth increasing. The inferred movement direction of the north one is from west to east, and the south one is from east to west. Thirdly, anomalous bodies on the northeast and southwest sides of the Red River fault suggest the directions of crustal movement is from northeast to southwest. These results are also consistent with GPS solutions, and provide gravity evidence for crustal deformation of the CDB with clockwise rotation.

  5. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  6. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  7. Fine crustal and uppermost mantle S-wave velocity structure beneath the Tengchong volcanic area inferred from receiver function and surface-wave dispersion: constraints on magma chamber distribution

    Science.gov (United States)

    Li, Mengkui; Zhang, Shuangxi; Wu, Tengfei; Hua, Yujin; Zhang, Bo

    2018-03-01

    The Tengchong volcanic area is located in the southeastern margin of the collision zone between the Indian and Eurasian Plates. It is one of the youngest intraplate volcano groups in mainland China. Imaging the S-wave velocity structure of the crustal and uppermost mantle beneath the Tengchong volcanic area is an important means of improving our understanding of its volcanic activity and seismicity. In this study, we analyze teleseismic data from nine broadband seismic stations in the Tengchong Earthquake Monitoring Network. We then image the crustal and uppermost mantle S-wave velocity structure by joint analysis of receiver functions and surface-wave dispersion. The results reveal widely distributed low-velocity zones. We find four possible magma chambers in the upper-to-middle crust and one in the uppermost mantle. The chamber in the uppermost mantle locates in the depth range from 55 to 70 km. The four magma chambers in the crust occur at different depths, ranging from the depth of 7 to 25 km in general. They may be the heat sources for the high geothermal activity at the surface. Based on the fine crustal and uppermost mantle S-wave velocity structure, we propose a model for the distribution of the magma chambers.

  8. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    Science.gov (United States)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  9. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    Science.gov (United States)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  10. Extensional tectonics on continents and the transport of heat and matter

    Science.gov (United States)

    Neugebauer, H. J.

    1985-01-01

    Intracontinental zones of extensional tectonic style are commonly of finite width and length. Associated sedimentary troughs are fault-controlled. The evolution of those structures is accompanied by volcanic activity of variable intensity. The characteristic surface structures are usually underlaid by a lower crust of the transitional type while deeper subcustal areas show delayed travel times of seismic waves especially at young tectonic provinces. A correspondence between deep-seated processes and zones of continental extension appears obvious. A sequential order of mechanisms and their importance are discussed in the light of modern data compilations and quantitative kinematic and dynamic approaches. The Cenozoic exensional tectonics related with the Rhine River are discussed.

  11. Shallow Crustal Structure in the Northern Salton Trough, California: Insights from a Detailed 3-D Velocity Model

    Science.gov (United States)

    Ajala, R.; Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2017-12-01

    The Coachella Valley is the northern extent of the Gulf of California-Salton Trough. It contains the southernmost segment of the San Andreas Fault (SAF) for which a magnitude 7.8 earthquake rupture was modeled to help produce earthquake planning scenarios. However, discrepancies in ground motion and travel-time estimates from the current Southern California Earthquake Center (SCEC) velocity model of the Salton Trough highlight inaccuracies in its shallow velocity structure. An improved 3-D velocity model that better defines the shallow basin structure and enables the more accurate location of earthquakes and identification of faults is therefore essential for seismic hazard studies in this area. We used recordings of 126 explosive shots from the 2011 Salton Seismic Imaging Project (SSIP) to SSIP receivers and Southern California Seismic Network (SCSN) stations. A set of 48,105 P-wave travel time picks constituted the highest-quality input to a 3-D tomographic velocity inversion. To improve the ray coverage, we added network-determined first arrivals at SCSN stations from 39,998 recently relocated local earthquakes, selected to a maximum focal depth of 10 km, to develop a detailed 3-D P-wave velocity model for the Coachella Valley with 1-km grid spacing. Our velocity model shows good resolution ( 50 rays/cubic km) down to a minimum depth of 7 km. Depth slices from the velocity model reveal several interesting features. At shallow depths ( 3 km), we observe an elongated trough of low velocity, attributed to sediments, located subparallel to and a few km SW of the SAF, and a general velocity structure that mimics the surface geology of the area. The persistence of the low-velocity sediments to 5-km depth just north of the Salton Sea suggests that the underlying basement surface, shallower to the NW, dips SE, consistent with interpretation from gravity studies (Langenheim et al., 2005). On the western side of the Coachella Valley, we detect depth-restricted regions of

  12. Crustal structure beneath Liaoning province and the Bohai Sea and its adjacent region in China based on ambient noise tomography

    Science.gov (United States)

    Pang, Guang-hua; Feng, Ji-Kun; Lin, Jun

    2017-02-01

    The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phase-velocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequency-time analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at 8-35 s periods and the Love wave at 9-32 s periods, respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps, respectively, were inverted simultaneously to determine the 3D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and the Tangshan region are mainly clustered in the transition zone between the low- and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.

  13. Rayleigh waves from correlation of seismic noise in Great Island of Tierra del Fuego, Argentina: Constraints on upper crustal structure

    Directory of Open Access Journals (Sweden)

    Carolina Buffoni

    2018-01-01

    Full Text Available In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego (TdF, Argentina, by the analysis of short-period Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5–16 s using a time-frequency analysis. Although ambient noise sources are distributed inhomogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise. The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained. According to the inversion results, the S-wave velocity ranges between 1.75 and 3.7 km/s in the first 10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region. It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.

  14. Modifying the pom-pom model for extensional viscosity overshoots

    DEFF Research Database (Denmark)

    Hawke, L. D. G.; Huang, Qian; Hassager, Ole

    2015-01-01

    We have developed a variant of the pom-pom model that qualitatively describes two surprising features recently observed in filament stretching rheometer experiments of uniaxial extensional flow of industrial branched polymer resins: (i) Overshoots of the transient stress during steady flow and (i...

  15. Entangled Polymer Melts in Extensional Flow: Synthesis, Rheology, Neutron Scattering

    DEFF Research Database (Denmark)

    Dorokhin, Andriy

    This thesis contains 5 chapters and reprints in Appendices, combined of both published and unpublished materials. The first chapter is an introduction to the goals, methods and problem identification of the project of the entangled polymer melts in extensional flow, which is aimed to shed some li...

  16. Free Surface Flows and Extensional Rheology of Polymer Solutions

    Science.gov (United States)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  17. A tomographic image of upper crustal structure using P and S wave seismic refraction data in the southern granulite terrain (SGT), India

    Science.gov (United States)

    Rajendra Prasad, B.; Behera, Laxmidhar; Rao, P. Koteswara

    2006-07-01

    We present a 2-D tomographic P and S wave velocity (Vp and Vs) image with Vp/Vs ratios along N-S trending 220 km long deep seismic profile acquired in 2005, which traverses across major shear and tectonically disturbed zones in southern granulite terrain (SGT), India. The 2-D velocity model constrained down to maximum 8 km depth shows velocity anomalies (>0.2 km/s) beneath major shear zones with good spatial resolution (>0.05 km/s). The presence of high Vp (6.3-6.5 km/s), Vs (3.5-3.8 km/s), Vp/Vs (>1.75) and Poisson's ratio (0.25-0.29) indicate significant compositional changes of rocks at shallow depths (0.5 to 8 km) reveal rapid crustal exhumation of mid to lower crustal rocks. This crustal exhumation could be responsible due to Pan-African tectonothermal activity during Neoproterozoic period.

  18. Insights into crustal structure of the Eastern North American Margin from community multichannel seismic and potential field data

    Science.gov (United States)

    Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.

    2017-12-01

    In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.

  19. Familiarity of Alpine magnitude and geometry as a critical pedagogic element in student visualisation of basin- & crustal-scale sub-surface structure

    Science.gov (United States)

    Edwards, M. A.

    2004-12-01

    A geoscience education stumbling block that typically re-currs throughout the early years of student progress is bringing three dimensional spatial scales of Earth's features in perspective. This far more so than temporal scales; the concept of geological timescale is normally quickly adopted into a students perception. Providing a sense of proportion for three dimensional objects is two fold: the first, the actual "thinking in 3D" while often depicting in 2D (e.g. seismic moment "beachballs", stereonets, cross-sections, atmospheric circulation cells) has been dramatically assisted by accelerated graphics imaging software. The second, proportion across all scales, is subtle yet crucial and not necessarily better-conveyed to students exclusively via computer-assisted learning. My experiences teaching students from a range of geographical backgrounds strongly indicates a much firmer grasp overall, by students from Alpine regions, of magnitudes and scales of crustal features. The intensity of topography in these regions, where cablecar and steep walking are the primary accesses, is a unique opportunity to illustrate the km-scale of structures in 3D, a lesson far beyond one of simply illustrating the appearance of typical rocks "in the great outdoors" and very tricky to convery through "virtual" field trips alone. Examples include; 1. the embodiment of a shallow seismic reflection profile to a several hundrend metre cliff of intercalated (i.e. switching impedance contrast) turbidites whose km-long overthrust line is traceable along a valley floor far below. 2. the weight of the thrust pile underfoot and corresponding amounts of lithosphere bending and foreland basin growth - a perspective often lost with beam engineering-only approaches. 3. fluid-volumes: intensely solution-strained &/or vein-bearing masses can be estimated for volume percentage and total cubic amount across a mountain region. 4. instantaneous river bedload versus yearly versus m.y. total volumes. Such

  20. Crustal structure beneath discovery bank in the South Scotia Sea from group velocity tomography and seismic reflection data

    International Nuclear Information System (INIS)

    Vuan, A.; Lodolo, E.; Panza, G.F.

    2003-09-01

    Bruce, Discovery, Herdman and Jane Banks, all located along the central-eastern part of the South Scotia Ridge (i.e., the Antarctica-Scotia plate boundary), represent isolated topographic reliefs surrounded by relatively young oceanic crust, whose petrological and structural nature is still the subject of speculations due to the lack of resolving data. In the Scotia Sea and surrounding regions negative anomalies of about 34% are reported in large-scale group velocity tomography maps. The spatial resolution (∼500 km) of these maps does not warrant any reliable interpretation of such anomalies. A recent surface wave tomography in the same area, performed using broad band seismic stations and 300 regional events, shows that in the period range from 15 s to 50 s the central-eastern part of the South Scotia Ridge is characterized by negative anomalies of the group velocities as large as 6. The resolution of our data set (∼300 km) makes it possible to distinguish an area (centered at 61 deg S and 36 deg W) with a crust thicker than 25 km, and a shear wave velocity vs. depth profile similar to that found beneath the northern tip of the Antarctic Peninsula and southern South America. Rayleigh and Love wave dispersion curves are inverted in the period range from 15 s to 80 s to obtain shear wave velocity profiles that suggest a continental nature of Discovery Bank. The continental-type crust of this topographic relief is in agreement with the interpretation of a multi-channel seismic reflection profile acquired across this rise. Peculiar acoustic facies are observed in this profile and are interpreted as thinned and faulted continental plateau. The boundaries of the negative group velocity anomalies are marked by a high seismicity rate. Historical normal faulting earthquakes with magnitude around 7 are localised between the low velocity anomaly region in the eastern South Scotia Ridge and the high velocity anomaly region associated with the surrounding oceanic crust

  1. Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.

    2015-12-01

    The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.

  2. Application of FE software Elmer to the modeling of crustal-scale processes

    Science.gov (United States)

    Maierová, Petra; Guy, Alexandra; Lexa, Ondrej; Cadek, Ondrej

    2010-05-01

    We extended Elmer (the open source finite element software for multiphysical problems, http://www.csc.fi/english/pages/elmer) by user-written procedures for the two-dimensional modeling of crustal-scale processes. The standard version of Elmer is an appropriate tool for modeling of thermomechanical convection with non-linear viscous rheology. In geophysics, it might be suitable for some type of mantle convection modeling. Unlike the mantle, the crust is very heterogeneous. It consists of materials with distinct rheological properties that are subject to highly varied conditions: low pressure and temperature near the surface of the Earth and relatively high pressure and temperature at a depth of several tens of kilometers. Moreover, the deformation in the upper crust is mostly brittle and the strain is concentrated into narrow shear zones and thrusts. In order to simulate the brittle behavior of the crust, we implemented pressure-dependent visco-plastic rheology. The material heterogeneity and chemical convection is implemented in terms of active markers. Another special feature of the crust, the moving free surface, is already included in Elmer by means of a moving computational grid. Erosion can easily be added in this scheme. We tested the properties of our formulation of plastic flow on several numerical experiments simulating the deformation of material under compressional and extensional stresses. In the first step, we examined angles of shear zones that form in a plastically deforming material for different material parameters and grid resolutions. A more complex setting of "sandbox-type" experiments containing heterogeneous material, strain-softening and boundary friction was considered as a next testing case. To illustrate the abilities of the extended Elmer software in crustal deformation studies, we present two models of geological processes: diapirism of the lower crust and a channel flow forced by indentation. Both these processes are assumed to take

  3. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1999-01-01

    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  4. An Extensional Characterization of Lambda-Lifting and Lambda-Dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier

    1998-01-01

    Lambda-lifting and lambda-dropping respectively transform a block-structured functional program into recursive equations and vice versa. Lambda-lifting was developed in the early 80’s, whereas lambda-dropping is more recent. Both are split into an analysis and a transformation. Published work......, however, has only concentrated on the analysis parts. We focus here on the transformation parts and more precisely on their correctness, which appears never to have been proven. To this end, we define extensional versions of lambda-lifting and lambda-dropping and establish their correctness with respect...

  5. Subduction initiation and recycling of Alboran domain derived crustal components prior to the intra-crustal emplacement of mantle peridotites in the Westernmost Mediterranean: isotopic evidence from the Ronda peridotite

    Science.gov (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel

    2014-05-01

    During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic

  6. Late Miocene extensional systems in northern Tunisia and their relation with SE directed delamination of the African subcontinental mantle lithosphere

    Science.gov (United States)

    Booth-Rea, Guillermo; Gaidi, Seif; Melki, Fetheddine; Pérez-Peña, Vicente; Marzougui, Wissem; Azañón, Jose Miguel; Galve, Jorge Pedro

    2017-04-01

    Recent work has proposed the delamination of the subcontinental mantle lithosphere under northern Tunisia during the late Miocene. This process is required to explain the present location of the Tunisian segment of the African slab, imaged by seismic tomography, hanging under the Gulf of Gabes to the south of Tunisia. Thus, having retreated towards the SE several hundred km from its original position under the Tellian-Atlas nappe contact that crops out along the north of Tunisia. However, no tectonic structures have been described which could be related to this mechanism of lithospheric mantle peeling. Here we describe for the first time extensional fault systems in northern Tunisia that strongly thinned the Tellian nappes, exhuming rocks from the Tunisian Atlas in the core of folded extensional detachments. Two normal fault systems with sub-orthogonal extensional transport occur. These were active during the late Miocene associated to the extrusion of 13 Ma granodiorite and 9 Ma rhyodacite in the footwall of the Nefza detachment. We have differentiated an extensional system formed by low-angle normal faults with NE- and SW-directed transport cutting through the Early to Middle Miocene Tellian nappen stack and a later system of low and high-angle normal faults that cuts down into the underlying Tunisian Atlas units with SE-directed transport, which root in the Nefza detachment. Both normal fault systems have been later folded and cut by thrusts during Plio-Quaternary NW-SE directed compression. These findings change the interpretation of the tectonic evolution of Tunisia that has always been framed in a transpressive to compressive setting, manifesting the extensional effects of Late Miocene lithospheric mantle delamination under northern Tunisia.

  7. Crustal structure and composition to the S of the Spanish Central System: Effect of Alpine reactivation in an internal Variscan domain

    Science.gov (United States)

    Ayarza, Puy; Carbonell, Ramón; Ehsan, Siddique; Martí, David; Palomeras, Immaculada; Martínez Poyatos, David

    2016-04-01

    The ALCUDIA Project has acquired vertical incidence and wide-angle reflection seismic data in the Variscan Central Iberian Zone of Spain. The NE-SW, ~300 km long profiles sample an area going from the suture between the Variscan Central Iberian and the Ossa-Morena Zones in the S to the boundary between the former and the Alpine Central System to the N. Although crustal thickness appears to be fairly constant along most of the Central Iberian Zone, a gradual increase of 3-5 km in the northern half of the profile is clearly imaged by the wide-angle data. This increase in the Moho depth is accompanied by a decrease in the thickness of the layered lower crust from the Toledo Anatectic Complex to the N. Right in this area, the amount of Variscan metasediments diminish and the surface geology is characterized by granites, migmatites and by the Madrid Basin, a foreland basin of the Alpine Central System that is part of the bigger Tagus Basin. The increase in crustal thickness identified in the neighborhood of the Central System is also accompanied by a slight increase in the Poisson ratio values, which even though still below 0.25, they are higher than those observed in the southern part of the profile, far from the influence of the late Variscan melting episode and of that of the Alpine tectonics. Two scenarios are considered to take part in the Moho deepening near the Central System: Firstly, the Alpine reactivation causing this mountain belt has increased the crustal load giving rise to a foreland basin and a moderate crustal thickening. Also, a gradual change in crustal composition to the N, incorporating denser and more basic rocks, might also play a role in the average crustal density and contribute to Moho deepening by isostatic readjustment. The importance of each of these process is, as yet, unknown. However, the next acquisition of the CIMDEF project wide-angle reflection dataset across the central part of the Iberian Peninsula, crossing the Central System, will

  8. Crustal structure and evolution of the NW Zagros Mountains (Iran): Insights from numerical modeling of the interplay between surface and tectonic processes

    Science.gov (United States)

    Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Vergés, Jaume

    2014-05-01

    Protracted Arabia-Eurasia convergence resulted in the closure of the >2000 km wide Neo-Tethys Ocean from early Late Cretaceous to Recent. This process was controlled by the structure of the NE margin of the Arabian plate, the NE-dipping oceanic subduction beneath Eurasia, the obduction of oceanic lithosphere and the collision of small continental and volcanic arc domains of the SW margin of Eurasia. The evolution of the Zagros Amiran and Mesopotamian foreland basins is studied in this work along a ~700 km long transect in NW Zagros constrained by field, seismic and published data. We use the well-defined geometries and ages of the Amiran and Mesopotamian foreland basins to estimate the elastic thickness of the lithosphere and model the evolution of the deformation to quantitatively link the topographic, tectonic and sedimentary evolution of the system. Modelling results show two major stages of emplacement. The obduction (pre-collision) stage involves the thin thrust sheets of the Kermanshah complex together with the Bisotun basement. The collision stage corresponds to the emplacement of the basement duplex and associated crustal thickening, coeval to the out of sequence emplacement of Gaveh Rud and Imbricated Zone in the hinterland. The geodynamic model is consistent with the history of the foreland basins, with the regional isostasy model, and with a simple scenario for the surface process efficiency. The emplacement of Bisotun basement during obduction tectonically loaded and flexed the Arabian plate triggering deposition in the Amiran foreland basin. The basement units emplaced during the last 10 My, flexed the Arabian plate below the Mesopotamian basin. During this stage, material eroded from the Simply Folded belt and the Imbricated zone was not enough to fill the Mesopotamian basin, which, according to our numerical model results, required a maximum additional sediment supply of 80 m/Myr. This additional supply had to be provided by an axial drainage system

  9. Modeling and Inversion of three-dimensional crustal structures beneath the Pyrenees and their foreland basins based upon geological, gravimetric and seismological data

    Science.gov (United States)

    Spangenberg, Hannah; Chevrot, Sébastien; Courrioux, Gabriel; Guillen, Antonio

    2017-04-01

    yields detailed information about the sedimentary foreland basins and the crustal structures beneath the Pyrenees. We will present and discuss different key steps of the construction of the 3D model of the Pyrenees. We will also compare selected cross-sections extracted from this model to the ECORS profiles, as well as CCP stacks of receiver functions along several PYROPE transects. Keywords: Pyrenees, 3D modeling, gravity, seismic tomography, joint inversion

  10. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    Science.gov (United States)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip

  11. Crustal parameters in the Iberian Peninsula

    Science.gov (United States)

    Banda, E.

    1988-06-01

    The structure of the crust in the Iberian Peninsula has been investigated for the last 15 years by Spanish and Portuguese groups in close collaboration with other European institutions. The first experiments were carried out in Portugal (Mueller et al., 1973) with the aim of investigating the crustal structure of the Hercynian belt in the southwest corner of the Iberian peninsula. Other experiments have been subsequently realized to study different aspects of the crust in various regions of Portugal. In Spain the main effort has been focused in Alpine areas, with the first experiments in the Alboran Sea and the Betic Cordilleras (Working Group for Deep Seismic Sounding in Spain, 1974-1975, 1977; Working Group for Deep Seismic Sounding in the Alboran Sea, 1974-1975, 1978). Follow-up experiments until 1981 completed the work in the Betic Cordillera. Extensive experiments were carried out in the Pyrenees in 1978. Further surveys covered the Balearic Islands in 1976, the Valencia Trough in 1976 and 1983, and the Celtiberian Chain (or Iberic system) in 1981. The Hercynian belt has only been studied in detail in the northwest corner of Spain in 1982, with smaller studies in the central Iberian Massif in 1976 and 1986. Mostaanpour (1984) has compiled some crustal parameters (crustal thickness, average crustal velocity and Pn velocity) for western Europe. Meanwhile, more complete data are available for the Iberian Peninsula. The results presented here were derived from a large number of seismic refraction experiments which have been carried out mostly along or close to coastal areas of the Iberian Peninsula. Offshore explosions of various sizes were used as the energy source in most cases, in addition to some quarry blasts. Unfortunately this leaves most of the inner part of the Iberian Peninsula unsurveyed. Our purpose is to summarize some of the crustal parameters obtained so far and to detail the appropriate literature for the interested reader.

  12. Caledonian and late Caledonian Europe: a working hypothesis involving two contrasted compressional/extensional scenarios

    Directory of Open Access Journals (Sweden)

    Oyarzun, R.

    1990-08-01

    Full Text Available The tectonomagmatic and metamorphic structuration of the European Caledonian realm suggests that two mutually perpendicular compressional/extensional scenarios developed during the Ordovician-Devonian time-span. As a result of the mid Ordovician Grampian compressional scheme (Caledonian s.s., a major extensional province developed further east from the Caledonian foldbelt in continental Europe. This scenario ended by early/mid Devonian, with the complete locking of North America, Baltica and Gondwana into a Pangaea supercontinent, thus triggering a contrasted tectonic environment which might be termed La estructuración tectonomagmática y metamórfica del dominio caledónico europeo sugiere que dos escenarios, compresional y extensional, mutuamente perpendiculares, se desarrollaron durante el Ordovícico-Devónico. Como resultado del esquema compresional del Ordovícico medio (Grampian, caledónico s.s., en el O de Europa continental se desarrolló una provincia extensional localizada al E de la faja de plegamiento caledónica. Esta situación finalizó hacia el Devónico inferior/medio, cuando la convergencia de América del Norte, Báltica y Gondwana dió origen al supercontinente Pangea. Esta colisión generó un ambiente tectónico caracterizado por: 1. plegamiento y plutonismo en Europa continental occidental, y 2. extensión y volcanismo en la parte N de la faja de plegamiento caledónica (Escocia, SO de Noruega y E de Groenlandia. Este evento puede ser tentativamente denominado «Tardicaledónico». En términos globales, la evolución del dominio caledónico puede ser explicada en términos de «tectónica de inversión» (s.l., esto es, períodos de adelgazamiento cortical (extensionales seguidos por períodos de engrosamiento cortical (compresionales y viceversa

  13. ASSESSMENT OF THE INFLUENCE OF MODERN CRUSTAL MOVEMENTS AND THE RECENTLY ACTIVATED PRECAMBRIAN STRUCTURAL PLAN ON THE RELIEF OF THE LAKE LADOGA REGION (THE SOUTHEASTERN BALTIC SHIELD

    Directory of Open Access Journals (Sweden)

    A. O. Agibalov

    2017-01-01

    Full Text Available This paper describes the influence of modern crustal movements and the recently activated Precambrian structural plan on the relief of theLakeLadogaregion. It presents the results of comprehensive studies, including processing of the regional geological and geomorphological data by the modern methods, as the major novelty of our work. The solutions of earthquake focal mechanisms suggest the current subhorizontal NW compression in the study area. Based on the computer simulation by the Roxar software, we have identified areas wherein new fractures are most likely to occur, determined the dominant directions of such fractures, and revealed the areas of intense vertical movements in the given stress state. The input database included a digital model of the relief and the spatial patterns of ancient faults represented by large-size inhomogeneities influencing the stress field. Strain values were estimated from the horizontal displacements recorded by the International GPS Service for Geodynamics (IGS and the GPS networks in theRepublicofKareliaand the southeastern regions ofFinland. Using the LESSA software, we have estima­ted the relief orientation characteristics: the density of lineaments, and elongation lines, which are indicative of the changes in the dominant directions of the strike of the lineaments (‘hatches’ in the study area. By interpreting the satellite images and the topographic maps (scale 1:20000, we reveal a number of geological structures, such as gra­nite-gneiss domes and large-size faults, which are directly reflected in the relief. The study results give grounds to establish an indirect relationship between the relief and the modern field of deformation: the areas with high strain values correspond to the areas with steep slopes. The computer simulation data show a NE-trending linear zone with the increased amplitudes of vertical movements. This zone occupies the region along the NW shoreLakeLadoga. In the block

  14. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    International Nuclear Information System (INIS)

    Cemen, I; Catlos, E J; Gogus, O; Diniz, E; Hancer, M

    2008-01-01

    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Bueyuek Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Bueyuek Menderes, and Simav grabens, containing high

  15. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  16. Late Cretaceous-recent tectonic assembly of diverse crustal blocks in Central America, the Nicaraguan Rise, the Colombian Basin and northern South America as seen on a 1600-km-long, geologic and structural transect

    Science.gov (United States)

    Sanchez, J.; Mann, P.

    2015-12-01

    We have constructed a 1600-km-long transect from northern Honduras to northern Colombia that crosses northeastward-striking crustal blocks using a combination of offshore seismic data, gravity and magnetic data, well subsidence information, nearby outcrop information, and results from previous thermochronological, geochronological, geochemical and paleostress studies. The transect defines three major crustal and structural provinces: 1) Precambrian-Paleozoic, Chortis continental block whose northern edge is defined by the North America-Caribbean plate boundary. Events in this ~20-25-km-thick province include two major unconformities at the top of the Cretaceous and Eocene, associated southeast-dipping thrust faults related to collision of the Great Arc of the Caribbean (GAC) and Caribbean Large Igneous Province (CLIP) with the Chortis continental block. A third event is Eocene to recent subsidence and transtensional basins formed during the opening of the Cayman trough; 2) Late Cretaceous GAC and CLIP of oceanic arc and plateau origin, whose northern, deformed edge corresponds to the mapped Siuna belt of northern Nicaragua. This crustal province has a ~15-20-km-thick crust and is largely undeformed and extends across the Lower Nicaraguan Rise, Hess fault, to the southern limit of the Colombian basin where about 300 km of this province has been subducted beneath the accretionary wedge of the South Caribbean deformed belt of northwestern South America; and 3) Eocene to recent accretionary prism and intramontane basins on continental crust of northern South America, where Miocene accelerated exhumation and erosion of Paleogene and Cretaceous rocks reflect either shallow subduction of the CLIP or the Panama collisional event to the southwest.

  17. Seismotectonics and Crustal Thickness of Northwest Mindoro, Philippines

    Science.gov (United States)

    Chen, P. F.; Olavere, E. A.; Lee, K. M.; Bautista, B.; Solidum, R., Jr.; Huang, B. S.

    2015-12-01

    Mindoro Island locates where the Palawan Continental Block (PCB) indented into the Philippine Mobile Belt (PMB) during the Early Miocene and where the Manila Trench terminates, having ceased convergence due to collision. On the transition from subduction to collision, Northwest Mindoro exhibits vigorous seismic activity and has been debated about its affiliation being PCB or PMB. Here, we use data from both the EHB and Global Centroid Moment Tensor catalogues to study the regional seismotectonics. We also deployed five broadband stations to probe the crustal thickness beneath NW Mindoro using receiver function analysis. Results show that, following the southeasterly reduction of convergence rates at the southern termination of the Manila Trench, the slab dipping angles steepen, were initiated at depth (~200 km) and propagate upwards. The horizontal distances of the trench and slab, as measured from the Wadati-Benioff zone at 200 km depth, also reduce in a southeasterly direction. Observations of intermediate-depth earthquakes that exhibit predominantly down-dip extensional stress patterns attest that the steepening of slab dipping angles is due to the negative buoyancy of the slab. Preliminary results of receiver function analysis suggest that the crustal thickness beneath NW Mindoro is about 40 km and is probably PCB affiliated.

  18. Density heterogeneity of the upper mantle beneath Siberia from satellite gravity and a new regional crustal model

    DEFF Research Database (Denmark)

    Herceg, Matija; Thybo, Hans; Artemieva, Irina

    2013-01-01

    We present a new regional model for the density structure of the upper mantle below Siberia. The residual mantle gravity anomalies are based on gravity data derived from the GOCE gravity gradients and geopotential models, with crustal correction to the gravity field being calculated from a new...... on regional and global crustal models. We analyze how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. The new regional density model for the Siberian craton and the West Siberian Basin complements...... regional crustal model. This newly compiled database on the crustal seismic structure, complemented by additional constraints from petrological analysis of near-surface rocks and lower crustal xenoliths, allows for a high-resolution correction of the crustal effects as compared to previous studies based...

  19. Dispersion of extensional waves in fluid-saturated porous cylinders at ultrasonic frequencies

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1983-01-01

    Ultrasonic dispersion of extensional waves in fluid-saturated porous cylinders is studied by analyzing generalized Pochhammer equations derived using Biot's theory. Cases with open-pore surface and closed-pore surface boundary conditions are considered. For both cases, the dispersion of the fast extensional wave does not differ much qualitatively from the dispersion expected for extensional waves in isotropic elastic cylinders. A slow extensional wave propagates in the case with a closed-pore surface but not in the case with an open-pore surface. The propagating slow wave has very weak dispersion and its speed is always lower than, but close to, the bulk slow wave speed

  20. Regional magnetic anomalies, crustal strength, and the location of the northern Cordilleran fold-and-thrust belt

    Science.gov (United States)

    Saltus, R.W.; Hudson, T.L.

    2007-01-01

    The northern Cordilleran fold-and-thrust belt in Canada and Alaska is at the boundary between the broad continental margin mobile belt and the stable North American craton. The fold-and-thrust belt is marked by several significant changes in geometry: cratonward extensions in the central Yukon Territory and northeastern Alaska are separated by marginward re-entrants. These geometric features of the Cordilleran mobile belt are controlled by relations between lithospheric strength and compressional tectonic forces developed along the continental margin. Regional magnetic anomalies indicate deep thermal and compositional characteristics that contribute to variations in crustal strength. Our detailed analysis of one such anomaly, the North Slope deep magnetic high, helps to explain the geometry of the fold-and-thrust front in northern Alaska. This large magnetic anomaly is inferred to reflect voluminous mafic magmatism in an old (Devonian?) extensional domain. The presence of massive amounts of malic material in the lower crust implies geochemical depletion of the underlying upper mantle, which serves to strengthen the lithosphere against thermal erosion by upper mantle convection. We infer that deep-source magnetic highs are an important indicator of strong lower crust and upper mantle. This stronger lithosphere forms buttresses that play an important role in the structural development of the northern Cordilleran fold-and-thrust belt. ?? 2007 The Geological Society of America.

  1. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  2. The case for pre-Middle Cretaceous extensional faulting in northern Yucca Flat, southwestern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Lanphere, M.A.; Barker, C.E.; Warren, R.G.

    1993-01-01

    Extremely complex low-angle fault relationships within the Late Proterozoic to Pennsylvania sedimentary rocks near Yucca Flat, Nevada Test Site, have been previously ascribed to Mesozoic compression during the Sevier orogeny, or to middle Tertiary extension of a pre-existing thrust stack. New field evidence and detailed studies of a 3,500-foot drillhole show that this structural complexity results from post-thrust regional extension that may be much older than previously recognized. The interpreted age constraint is inferred from thermal disturbances recorded by rocks above the altered monzodiorite(?) porphyry border phase of an intrusion penetrated in the bottom of the drillhole. The pluton intrudes middle Devonian dolomite that forms the lowermost of at least seven structural sheets. Each sheet is bounded by breccia zones and consists of an identifiable slice of the local Paleozoic section without ordered sequence. The intervening structural sheets of carbonaceous siltstone appear to have been thermally disturbed because they yield essentially no volatile hydrocarbons during pyrolysis. All observed features are consistent with thermal overprinting by the 102 Ma intrusion and permit an interpretation that the complicated fault/stratigraphy relationships also predate 102 Ma. Outcrop studies of numerous low-angle faults within the Paleozoic and late Proterozoic rocks in this region indicate that many are extensional, whether they involve younger-over-older or older-over-younger age relations. The authors infer a dominantly extensional origin for the structural sheets encountered in the drillhole on the basis of similarities with the outcrop faults, but the sheets must have been derived from the upper plate of the nearby CP thrust fault

  3. Crustal and mantle structure and anisotropy beneath the incipient segments of the East African Rift System: Preliminary results from the ongoing SAFARI

    Science.gov (United States)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; moidaki, M.; Mutamina, D. M.; Atekwana, E. A.; Ingate, S. F.; Reusch, A.; Barstow, N.

    2013-12-01

    Despite the vast wealth of research conducted toward understanding processes associated with continental rifting, the extent of our knowledge is derived primarily from studies focused on mature rift systems, such as the well-developed portions of the East African Rift System (EARS) north of Lake Malawi. To explore the dynamics of early rift evolution, the SAFARI (Seismic Arrays for African Rift Initiation) team deployed 50 PASSCAL broadband seismic stations across the Malawi, Luangwa, and Okavango rifts of the EARS during the summer of 2012. The cumulative length of the profiles is about 2500 km and the planned recording duration is 2 years. Here we present the preliminary results of systematic analyses of data obtained from the first year of acquisition for all 50 stations. A total of 446 high-quality shear-wave splitting measurements using PKS, SKKS, and SKS phases from 84 teleseismic events were used to constrain fast polarization directions and splitting times throughout the region. The Malawi and Okavango rifts are characterized by mostly NE trending fast directions with a mean splitting time of about 1 s. The fast directions on the west side of the Luangwa Rift Zone are parallel to the rift valley, and those on the east side are more N-S oriented. Stacking of approximately 1900 radial receiver functions reveals significant spatial variations of both crustal thickness and the ratio of crustal P and S wave velocities, as well as the thickness of the mantle transition zone. Stations situated within the Malawi rift demonstrate a southward increase in observed crustal thickness, which is consistent with the hypothesis that the Malawi rift originated at the northern end of the rift system and propagated southward. Both the Okavango and Luangwa rifts are associated with thinned crust and increased Vp/Vs, although additional data is required at some stations to enhance the reliability of the observations. Teleseismic P-wave travel-time residuals show a delay of about

  4. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39'E): a supplementary study based on passive seismic receiver functions

    Science.gov (United States)

    Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing

    2017-06-01

    As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

  5. Crustal thinning and exhumation along a fossil magma-poor distal margin preserved in Corsica: A hot rift to drift transition?

    Science.gov (United States)

    Beltrando, Marco; Zibra, Ivan; Montanini, Alessandra; Tribuzio, Riccardo

    2013-05-01

    Rift-related thinning of continental basement along distal margins is likely achieved through the combined activity of ductile shear zones and brittle faults. While extensional detachments responsible for the latest stages of exhumation are being increasingly recognized, rift-related shear zones have never been sampled in ODP sites and have only rarely been identified in fossil distal margins preserved in orogenic belts. Here we report evidence of the Jurassic multi-stage crustal thinning preserved in the Santa Lucia nappe (Alpine Corsica), where amphibolite facies shearing persisted into the rift to drift transition. In this nappe, Lower Permian meta-gabbros to meta-gabbro-norites of the Mafic Complex are separated from Lower Permian granitoids of the Diorite-Granite Complex by a 100-250 m wide shear zone. Fine-grained syn-kinematic andesine + Mg-hornblende assemblages in meta-tonalites of the Diorite-Granite Complex indicate shearing at T = 710 ± 40 °C at P Lucia basement. These results imply that middle to lower crustal rocks can be cooled and exhumed rapidly in the last stages of rifting, when significant crustal thinning is accommodated in less than 5 Myr through the consecutive activity of extensional shear zones and detachment faults. High thermal gradients may delay the switch from ductile shear zone- to detachment-dominated crustal thinning, thus preventing the exhumation of middle and lower crustal rocks until the final stages of rifting.

  6. Crustal structure of the Churchill-Superior boundary zone between 80 and 98 deg W longitude from Magsat anomaly maps and stacked passes

    Science.gov (United States)

    Hall, D. H.; Millar, T. W.; Noble, I. A.

    1985-01-01

    A modeling technique using spherical shell elements and equivalent dipole sources has been applied to Magsat signatures at the Churchill-Superior boundary in Manitoba, Ontario, and Ungava. A large satellite magnetic anomaly (12 nT amplitude) on POGO and Magsat maps near the Churchill-Superior boundary was found to be related to the Richmond Gulf aulacogen. The averaged crustal magnetization in the source region is 5.2 A/m. Stacking of the magnetic traces from Magsat passes reveals a magnetic signature (10 nT amplitude) at the Churchill-Superior boundary in an area studied between 80 deg W and 98 deg W. Modeling suggests a steplike thickening of the crust on the Churchill side of the boundary in a layer with a magnetization of 5 A/m. Signatures on aeromagnetic maps are also found in the source areas for both of these satellite anomalies.

  7. Crustal structure in the southern part of Central Java based on analysis of tele-seismic receiver function using a neighbourhood algorithm

    Science.gov (United States)

    Ariyanto, P.; Syuhada; Rosid, S.; Anggono, T.; Januarti, Y.

    2018-03-01

    In this study, we applied receiver functions analysis to determine the crustal thickness, the ratio of Vp/Vs and the S wave velocity in the southern part of the Central Java. We selected tele-seismic data with magnitude more than 6 (M>6) and epicenter distance 30°-90° recorded from 3 broadband stations: UGM, YOGI, and WOJI station, as part of Indonesia-Geophone Network (IA-GE). Inversions were performed using nonlinear Neighborhood Algorithm (NA). We observed Ps phase conversion on the receiver functions corresponding to Moho depth at around 36-39 km. We also observed strong negative phase arrivals at around 10-12 s which might be associated with Indo-Australian subducting slab underneath the stations. The inversion results show the presence of low velocity zone with high Vp/Vs ratio (>1.78) in the middle crust around the study area which could be related to the Merapi-Lawu Anomaly (MLA).

  8. Investigation from Japanese MAGSAT Team. Part A. Crustal structure near Japan and in Antarctic station. Part B. Electric currents and hydromagnetic waves in the ionosphere and the magnetosphere

    Science.gov (United States)

    Fukushima, N. (Principal Investigator)

    1981-01-01

    Preliminary results of MAGSAT data analysis are described. Regional anomaly maps (deviations from the MGST model field) for X,Y,Z, and F in the area of 115 to 155 deg E and 20 to 60 deg N were obtained. A similar map for the geomagnetic total force anomaly in the vicinity of Japan showed that the observed anomaly can be explained by the difference in crustal magnetization between the Japan Sea and the Japan Island, which reflects a difference of 25 km in the thickness of the magnetized layer. The MAGSAT record of a sudden commencement of a magnetic storm above the South Atlantic Ocean showed a reverse impulse particularly in the D-component. Results relating to toroidal currents in the ionosphere, transverse and parallel perturbations over the polar regions, the relationship between field aligned currents and precipitating electrons, and the calculation of the subsatellite electric field are also discussed.

  9. Constitutive equations for extensional flow of wormlike micelles : stability analysis of the Bautista-Manero model

    NARCIS (Netherlands)

    Boek, E.S.; Padding, J.T.; Anderson, V.J.; Tardy, P.M.J.; Crawshaw, J.P.; Pearson, J.R.A.

    2005-01-01

    We carry out a stability analysis of the Bautista-Manero (B-M) constitutive equations for extensional flow of wormlike micelles. We show that all solutions for the steady-state extensional viscosity ¿E are unstable when the elongational rates e exceed some critical value. In some cases the only real

  10. Dynamic evolution of shear - extensional tectonics in South China and uranium resource exploration strategic analysis

    International Nuclear Information System (INIS)

    Fang Shiyi; Tao Zhijun; Han Qiming

    2012-01-01

    A variety of multi- types, multi-level, multi-era shear - extensional tectonics in south China is developed, the main form of shear-extensional tectonics, and developmental characteristics and metallogenic geodynamic evolution is discovered, and thus uranium resource exploration strategic analysis is conducted

  11. Transient extensional viscosity of polymer melts in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders; Bastian, Heike

    2002-01-01

    In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process.......In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process....

  12. A new look at extensional rheology of low-density polyethylene

    DEFF Research Database (Denmark)

    Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.

    2016-01-01

    The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co...

  13. Analyzing regional geological setting of DS uranium deposit based on the extensional research of remote sensing information

    International Nuclear Information System (INIS)

    Liu Dechang; Ye Fawang; Zhao Yingjun

    2006-01-01

    Through analyzing remote sensing image, a special geological environment for uranium ore-formation in Dongsheng-Hangjinqi area consisting of fault-uplift, southern margin fault and annular structure is discovered in this paper. Then the extensional researches on fault-uplift, southern margin fault as well as annular structure are made by using the information-integrated technologies to overlap the remote sensing information with other geoscientific information such as geophysics, geology and so on. Finally, the unusual regional geological setting is analyzed in the view of uranium ore formation, and its influences on the occurrence of DS uranium deposit are also discussed. (authors)

  14. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust

    Science.gov (United States)

    Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan

    2017-11-01

    The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late

  15. Crustal structure variations along the NW-African continental margin: a comparison of new and existing models from wide angle and reflection seismic data

    Science.gov (United States)

    Biari, Y.; Klingelhoefer, F.; Sahabi, M.; Aslanian, D.; Philippe, S.; Louden, K. E.; Berglar, K.; Moulin, M.; Mehdi, K.; Graindorge, D.; Evain, M.; Benabellouahed, M.; Reichert, C. J.

    2014-12-01

    Deep seismic data represent a key to understand the geometry and mechanism of continental rifting. The passive continental margin of NW-Africa is one of the oldest on earth, formed during the Upper Triassic-Lower Liassic rifting of the central Atlantic Ocean over 200 Ma. We present new and existing wide-angle and reflection seismic data from three study regions along the margin located in the North Moroccan salt basin, on the central continental margin offshore Safi and in the south, offshore Dakhla. In each of the study areas several combined wide-angle and reflection seismic profiles perpendicular and parallel to the margin have been acquired and forward modelled using comparable methods. The thickness of unthinned continental crust decreases from 36 km in the North to about 27 km in the South. In the North Moroccan Basin continental crust thins from originally 36 km to about 8 km in a 150 km wide zone. The basin itself is underlain by highly thinned continental crust. Offshore safi thinning of the continental crust is confined to a 130 km wide zone with no neighboring sedimentary basin underlain by continental crust. In both areas the zone of crustal thinning is characterised by the presence of large blocks and abundant salt diapirs. In the south crustal thinning is more rapid in a zone of 90 km and asymmetric with the upper crust thinning more closely to the continent than the lower crust, probably due to depth-dependent stretching and the presence of the precambrian Reguibat Ridge on land. Oceanic crust is characterised by a thickness of 7-8 km along the complete margin. Relatively high velocities of up to 7.5 km/s have been imaged between magnetic anomalies S1 and M25, and are probably related to changes in the spreading velocities at the time of the Kimmeridgian/Tithonian plate reorganisation. Volcanic activity seems to be confined to the region next to the Canary Islands, and is thus not related to the initial opening of the oceanic, which was related to no

  16. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33° 36°S.L.)

    Science.gov (United States)

    Charrier, R.; Baeza, O.; Elgueta, S.; Flynn, J. J.; Gans, P.; Kay, S. M.; Muñoz, N.; Wyss, A. R.; Zurita, E.

    2002-04-01

    as an inverted normal fault associated with initial basin development and deposition. High-angle thrust faults observed elsewhere on the eastern outcrop margin of the Abanico Formation (i.e. the Chacayes-Yesillo Fault in the Maipo section and the Espinoza Fault in the Cachapoal-Las Leñas section) also have been interpreted as inverted normal faults. The irregular folding style of the Abanico Formation, with its highly variable amplitude, longitude, tightness, and vergency, suggests that deformation is attributable to the inversion of faults associated with basin development. Geochemical characteristics of the Abanico Formation indicate a relatively thin crust during early basin development. Thermal maturity data reflect a deep burial of the deposits during accumulation, and thermal modeling indicates high heat flow conditions during burial. These data support a major extensional episode of the crust and the development of a large depositional space (basin) in this region. On the basis of this evidence, we suggest that deposition of the Abanico Formation is related mostly to crustal extension and its deformation to tectonic inversion. In the western Las Leñas river valley, a growth structure indicates that deformation occurred between 20.8 and 16.1 Ma, while the Abanico Formation was still being deposited. Deformation apparently did not occur coevally throughout the region; however, sedimentation and volcanic deposition in the basin apparently occurred uninterrupted. This argues against a single, obvious unconformity separating the Abanico and Farellones Formations. Instead, it supports the existence of local angular unconformities where fault inversion affected the basin fill. Comparison of the timing of extensional basin development and subsequent contraction (inversion) with the convergence rates between the Nazca and South American plates during the Cenozoic period shows a correspondence with periods of decreasing and increasing convergence rates, respectively

  17. The role of long-term strain history on the generation and amplification of inherited heterogeneities in continental lithosphere extensional settings

    Science.gov (United States)

    Morena Salerno, V.; Capitanio, Fabio A.

    2017-04-01

    The Earth's lithosphere is characters by various types of heterogeneities, at different scales and located at variable depth. They can be represented at crustal level by remnants of earlier tectonics evolution, such as previous orogenetic structures, remains of passive margins and magmatic bodies intrusion, or at deeper level by mantle anisotropies. These heterogeneities can severely affect the stress and strain localization in subsequent continental lithospheric extension and rift basins evolution, hence contributing to the formation of diverse and complex rift basin types and architectures. In order to explain the difference in rift basin and passive margin types, their subsidence patterns and melt production, previous studies have exanimated the role of initial heterogeneities, rheological layering, geothermal gradients, and extension rates during a single rifting event. However, this approach does not consider the previous strain history of many basins that are characterized by multiple rifting events. In this study we use numerical models of a pristine lithosphere undergoing two rifting events separated by cooling, to show the effect of early events on later evolution. The strain histories are controlled by the variation of velocity of boundary displacement during two rifting events. We use both fast and slow first rifting events, followed by a cooling period, producing diverse mechanical heterogeneities at Moho level that represent inherited initial conditions for the second rifting event. These inherited heterogeneities range from several small perturbations distributed along the numerical domain at the end of the slowest first rifting event, to a single large perturbation at the end of first fastest rifting event. In the second rifting event, the inherited heterogeneities are amplified at different degree and time, depending on the velocity of boundary displacement used. To highlight the role of previous strain history, we parametrize the inherited

  18. Gravity in extensional regimes: A case study in the Central Volcanic Region, New Zealand

    Science.gov (United States)

    Greve, A.; Stern, T. A.

    2017-12-01

    Using the interpretation of a large crustal seismic experiment conducted in 2009 as boundary model, we produced a sequence of new 2D gravity models for the central North Island in New Zealand. The Bouguer gravity field in the region ranges from -100 to 60 mGal and is dominated by the long wavelength signals of the subduction of the Pacific beneath the Australian plate along the Hikurangi margin and the transition from continental to oceanic lithosphere about the Bay of Plenty coast (NE New Zealand). Removal of these broad regional trends reveals the presence of a triangular shaped area, within the lines Taranaki-Coromandel and Taranaki - White Island, with negative anomalies between -30 and 60 mGal and positive anomalies around 10 mGal along the margins. This area, commonly referred to as the Central Volcanic Region (CVR) represents the continental continuation of the Lau-Havre, oceanic, back-arc rift basin. The Taupo Volcanic Zone forms the active eastern half of the CVR, where anomalously high heat output, geothermal activity and active volcanism occur. The new gravity model includes the presence of a 90km wide, ca. 10 km thick rift pillow of new underplated, lower crust between the depths of 15 and 25 km. A positive density contrast of 300 kg/m3 for this body is consistent with the observed seismic velocities (6.8 ≤ Vp ≤ 7.1 km/s). A ca. 2.5 km deep basin dominates the upper crustal structure and is about 50 km wide, infilled by low density volcaniclastics, with adopted average negative densities of -425 kg/m3. In the mid-crustal region, between 2.5 and 15 km depth, isostatic compensation requires a small density contrast of -110 kg/m3. This density contrast, with respect to a standard crustal model, can be ascribed to the presence of low density intrusives, within the old and now stretched crust. On the basis of this new crustal structure model we estimate a stretching factor (ß) for the old crust of 2-2.4. The intruded mid crust and the underplated new

  19. An Andean tectonic cycle: From crustal thickening to extension in a thin crust (34°–37°SL

    Directory of Open Access Journals (Sweden)

    Victor A. Ramos

    2014-05-01

    Full Text Available Several orogenic cycles of mountain building and subsequent collapse associated with periods of shallowing and steepening of subduction zones have been recognized in recent years in the Andes. Most of them are characterized by widespread crustal delamination expressed by large calderas and rhyolitic flare-up produced by the injection of hot asthenosphere in the subduction wedge. These processes are related to the increase of the subduction angle during trench roll-back. The Payenia paleoflat-slab, in the southern Central Andes of Argentina and Chile (34°–37°S recorded a complete cycle from crustal thickening and mountain uplift to extensional collapse and normal faulting, which are related to changes in the subduction geometry. The early stages are associated with magmatic expansion and migration, subsequent deformation and broken foreland. New ages and geochemical data show the middle to late Miocene expansion and migration of arc volcanism towards the foreland region was associated with important deformation in the Andean foothills. However, the main difference of this orogenic cycle with the previously described cycles is that the steepening of the oceanic subducted slab is linked to basaltic flooding of large areas in the retroarc under an extensional setting. Crustal delamination is concentrated only in a narrow central belt along the cordilleran axis. The striking differences between the two types of cycles are interpreted to be related to the crustal thickness when steepening the subducting slab. The crustal thickness of the Altiplano is over 60–80 km, whereas Payenia is less than 42 km in the axial part, and near 30 km in the retroarc foothills. The final extensional regime associated with the slab steepening favors the basaltic flooding of more than 8400 km3 in an area larger than 40,000 km2, through 800 central vents and large fissures. These characteristics are unique in the entire present-day Andes.

  20. Upper and Middle Crustal Velocity Structure of the Colombian Andes From Ambient Noise Tomography: Investigating Subduction-Related Magmatism in the Overriding Plate

    Science.gov (United States)

    Poveda, Esteban; Julià, Jordi; Schimmel, Martin; Perez-Garcia, Nelson

    2018-02-01

    New maps of S velocity variation for the upper and middle crust making up the northwestern most corner of South America have been developed from cross correlation of ambient seismic noise at 52 broadband stations in the region. Over 1,300 empirical Green's functions, reconstructing the Rayleigh wave portion of the seismic wavefield, were obtained after time and frequency-domain normalization of the ambient noise recordings and stacking of 48 months of normalized data. Interstation phase and group velocity curves were then measured in the 6-38 s period range and tomographically inverted to produce maps of phase and group velocity variation in a 0.5° × 0.5° grid. Velocity-depth profiles were developed for each node after simultaneously inverting phase and group velocity curves and combined to produce 3-D maps of S velocity variation for the region. The S velocity models reveal a 7 km thick sedimentary cover in the Caribbean region, the Magdalena Valley, and the Cordillera Oriental, as well as crustal thicknesses in the Pacific and Caribbean region under 35 km, consistent with previous studies. They also display zones of slow velocity at 25-35 km depth under regions of both active and inactive volcanism, suggesting the presence of melts that carry the signature of segmented subduction into the overriding plate. A low-velocity zone in the same depth range is imaged under the Lower Magdalena Basin in the Caribbean region, which may represent either sublithospheric melts ponding at midcrustal levels after breaching through a fractured Caribbean flat slab or fluid migration through major faults within the Caribbean crust.

  1. Crustal Ages of the Ocean Floor - Poster

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crustal Ages of the Ocean Floor Poster was created at NGDC using the Crustal Ages of the Ocean Floor database draped digitally over a relief of the ocean floor...

  2. Propagation of extensional waves in a piezoelectric semiconductor rod

    Directory of Open Access Journals (Sweden)

    C.L. Zhang

    2016-04-01

    Full Text Available We studied the propagation of extensional waves in a thin piezoelectric semiconductor rod of ZnO whose c-axis is along the axis of the rod. The macroscopic theory of piezoelectric semiconductors was used which consists of the coupled equations of piezoelectricity and the conservation of charge. The problem is nonlinear because the drift current is the product of the unknown electric field and the unknown carrier density. A perturbation procedure was used which resulted in two one-way coupled linear problems of piezoelectricity and the conservation of charge, respectively. The acoustic wave and the accompanying electric field were obtained from the equations of piezoelectricity. The motion of carriers was then determined from the conservation of charge using a trigonometric series. It was found that while the acoustic wave was approximated by a sinusoidal wave, the motion of carriers deviates from a sinusoidal wave qualitatively because of the contributions of higher harmonics arising from the originally nonlinear terms. The wave crests become higher and sharper while the troughs are shallower and wider. This deviation is more pronounced for acoustic waves with larger amplitudes.

  3. New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques

    Science.gov (United States)

    Dugda, Mulugeta; Bililign, Solomon

    2008-10-01

    Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).

  4. Upper crustal structure of the northern part of the Bohemian ­Massif in ­rel­ation­ t­o geological, potential field data and new deep seismic data (Eger/Ohře Rift, Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Skácelová, Z.; Mlčoch, B.; Novotný, Miroslav; Mrlina, Jan

    2011-01-01

    Roč. 39, č. 1 (2011), s. 1-18 ISSN 0303-4534 R&D Projects: GA AV ČR IAA300460602; GA MŽP SB/630/3/02 Institutional research plan: CEZ:AV0Z30120515 Keywords : upper crustal structure * Bohemian Massif * Eger/Ohře Rift * Saxothuringian Zone * Teplá-Barrandian Unit * Moldanubian Zone Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  5. Experimental Investigation of Extensional Deformation of Immiscible Droplets in a Laminar, Converging Flow

    Science.gov (United States)

    Sangli, Aditya; Arispe-Guzman, Marcelo; Armstrong, Connor; Bigio, David

    2017-11-01

    The deformation of an immiscible droplet in an extensional flow has been widely studied by researchers using experimental four-roll mills where the bulk liquid imposes a stagnation extensional deformation on the droplet. However, it is of vital interest to study the behavior of an immiscible droplet in a non-stagnant extensional flow which can be produced using a converging channel. A hyperbolic converging channel was built, which could produce a constant extensional rate in the center of the channel, and deformation of droplets of Castor oil injected in a matrix of Silicone oil was observed. Droplets injected in the center of the channel experienced a pure extensional deformation while the droplets injected at an offset position attained the affine state. The nature of the droplet deformation and the critical Capillary numbers are compared with the four-roll mill experiments. Additional experiments were performed with the initial position of the droplet being vertically off center. Higher strain rates were exhibited compared to the pure extensional flow condition. An analysis of the flow field helps explaining the phenomenon and provides insight into the droplet behavior.

  6. Analysis of gravity anomalies in the Ulleung Basin (East Sea/Sea of Japan) and its implications for the crustal structure of rift-dominated back-arc basin

    Science.gov (United States)

    Kim, Yoon-Mi; Lee, Sang-Mook

    2018-01-01

    The Ulleung Basin (UB), one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental-rifting end-member of back-arc basin system, but is much less understood compared to the nearby Yamato Basin (YB) and Japan Basin (JB). This study examines the gravity anomalies of the UB since the variation in crustal thickness can provide important insights on the mode of extension during basin opening. Our analysis shows that the Moho depth (from the sea surface) varies from 16 km at the basin center to 22 km at the edges. However, within the central part of the basin, the crustal thickness (not including sediment) is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. Our finding of anomalous but uniformly thick crust is consistent with the recent seismic results from the YB (14 km on average). A mantle residual gravity anomaly high (∼20 mGal) exists in the northeastern part of the UB. This feature is interpreted as the location of maximum extension (slightly thinner crust by ∼1 km). Together with another moderate gravity high to the southwest, the two anomalies form a NNE-SSW line, which corresponds to the direction of the major tectonic structures of the Korean Peninsula. We argue that the a massive magmatic emplacement took place extensively in the lower crust of the UB during the opening, significantly increasing its overall thickness to almost twice as that of the JB where a mid-ocean-ridge style seafloor spreading occurred. Two important post-opening processes took place after the formation of uniformly thick crust: post-rift volcanic intrusions in the north, especially in its northeast sections but had little effect on the residual gravity anomaly itself, and the deflection of crust in response to differential sediment loading towards the south, producing the median high in the basement in response to the flexural bending. We also conducted a simple test to

  7. Crustal structure and rift tectonics across the Cauvery–Palar basin, eastern continental margin of India based on seismic and potential field modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Twinkle, D.; Rao, G.S.; Radhakrishna, M.; Murthy, K.S.R.

    . The presence of pull-apart basin geometry and the structural high observed in section MCS1 further support the characteristics of sheared mar- gin (Edwards et al. 1997; Krishna et al. 2009). In the onshore Cauvery basin, Rangaraju et al. (1993) have mapped a...

  8. Density heterogeneity of the North American upper mantle from satellite gravity and a regional crustal model

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2014-01-01

    -density conversion and (ii) uncertainties in knowledge of the crustal structure (thickness and average Vp velocities of individual crustal layers, including the sedimentary cover). In this study, we address both sources of possible uncertainties by applying different conversions from velocity to density...... and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by highquality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. Given a relatively small range of expected density...

  9. Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters

    Directory of Open Access Journals (Sweden)

    Zinan Zhao

    2016-01-01

    Full Text Available This paper presents the thickness-extensional vibration of a rectangular piezoelectric thin film bulk acoustic wave filter with two pairs of electrodes symmetrically deposited on the center of the zinc oxide film. The two-dimensional scalar differential equations which were first derived to describe in-plane vibration distribution by Tiersten and Stevens are employed. The Ritz method with trigonometric functions as basis functions is used based on a variational formulation developed in our previous paper. Free vibration resonant frequencies and corresponding modes are obtained. The modes may separate into symmetric and antisymmetric ones for such a structurally symmetric filter. Trapped modes with vibrations mainly under the driving electrodes are exhibited. The six corner-type regions of the filter neglected by Tiersten and Stevens for an approximation are taken into account in our analysis. Results show that their approximation can lead to an inaccuracy on the order of dozens of ppm for the fundamental mode, which is quite significant in filter operation and application.

  10. Microbial Communities of Terrestrial Springs in Extensional Settings of the Western U.S.A.

    Science.gov (United States)

    Takacs-Vesbach, C.; Hall, J.; Crossey, L. J.; Karlstrom, K. E.; Fischer, T.; Cron, B.

    2008-12-01

    Gas and water chemistry from hot springs, gas vents, travertine-bearing cool springs, and high-pCO2 groundwaters of the western U.S. indicate a regionally extensive flux of deeply sourced volatiles through spring vents. We use the term "continental smokers" to emphasize and test analogs to mid-ocean vent systems, and are currently concentrating on vents in the Rocky Mountain/Colorado Plateau region as part of the Colorado Rockies and Experiment and Seismic transects (CREST). Measurable mantle-derived helium components (3He/4He = 0.10 to 2.1 RA) occur in nearly all springs in Colorado and New Mexico suggesting direct fast fluid pathways from the mantle to the surface hydrologic system. Important components of the CO2 are also derived from the mantle. We surveyed the geochemistry and microbial diversity of more than forty deeply sourced terrestrial springs that ranged in temperatures from 9° to 70°C. We hypothesize that degassing in continental extensional settings supports microbial assemblages that are analogous to chemolithotrophic communities at mid-ocean ridges and continental volcanic hydrothermal systems. Geochemical characteristics of the fluids and gases structure and sustain distinctive geomicrobiological communities as indicated by the widespread presence of archaea and thermophilic organisms in cool as well as hot springs.

  11. Vertical and Horizontal Analysis of Crustal Structure of Southeastern Mediterranean and the Egyptian Coastal Zone, from Bouguer and Satellite Mission Data

    Science.gov (United States)

    Saleh, Salah

    2016-07-01

    The present Tectonic system of Southeastern Mediterranean is driven by the collision of the African and Eurasian plates, the Arabian Eurasian convergence and the displacement of the Anatolian Aegean microplate, which generally represents the characteristic of lithospheric structure of the region. In the scope of this study, Bouguer and the satellite gravity (satellite altimetry) anomalies of southeastern Mediterranean and North Eastern part of Egypt were used for investigating the lithospheric structures. Second order trend analyses were applied firstly to Bouguer and satellite altimetry data for examining the characteristic of the anomaly. Later, the vertical and horizontal derivatives applications were applied to the same data. Generally, the purpose of the applying derivative methods is determining the vertical and horizontal borders of the structure. According to the results of derivatives maps, the study area could mainly divided into important four tectonic subzones depending on basement and Moho depth maps. These subzones are distributed from south to the north as: Nile delta-northern Sinai zone, north Egyptian coastal zone, Levantine basin zone and northern thrusting (Cyprus and its surroundings) zone. These zones are separated from each other by horizontal tectonic boundaries and/or near-vertical faults that display the block-faulting tectonic style of this belt. Finally, the gravity studies were evaluated together with the seismic activity of the region. Consequently, the geodynamical structure of the region is examined with the previous studies done in the region. Thus, the current study indicates that satellite gravity mission data is a valuable source of data in understanding the tectonic boundary behavior of the studied region and that satellite gravity data is an important modern source of data in the geodynamical studies.

  12. Analysis and Simulation of 3D Scattering due to Heterogeneous Crustal Structure and Surface Topography on Regional Phases; Magnitude and Discrimination

    Science.gov (United States)

    2009-07-07

    inversion technique that is based on different weights for relatively high frequency waveform modeling of Pnl and relatively long period surface waves (Tan...et al., 2006). Pnl and surface waves are also allowed to shift in time to take into account of uncertainties in velocity structure. Joint...inversion of Pnl and surface waves provides better constraints on focal depth as well as source mechanisms. The pure strike-slip mechanism of the earthquake

  13. A Comparison of the Crustal Deformation Predicted by Glacial Isostatic Adjustment to Seismicity in the Baffin Region of Northern Canada

    Science.gov (United States)

    James, T. S.; Schamehorn, T.; Bent, A. L.; Allen, T. I.; Mulder, T.; Simon, K.

    2016-12-01

    The horizontal crustal strain-rates induced by glacial isostatic adjustment (GIA) in northern Canada and western Greenland region are compared to the spatial pattern of seismicity. For the comparison, an updated seismicity catalogue was created from the 2010 version of the NRCan Seismic Hazard Earthquake Epicentre File (SHEEF2010) catalogue and the Greenland Ice Sheet Monitoring Network (GLISN) catalogue of the Geological Survey of Denmark and Greenland (GEUS). Crustal motion rates were computed with the Innu/Laur16 ice-sheet history and the VM5a viscosity profile (Simon et al., 2015; 2016). This GIA model optimizes the fit to relative sea-level and vertical crustal motion measurements around Hudson Bay and in the Canadian Arctic Archipelago (CAA). A region in Baffin Bay with historically high seismicity, including the 1933 M 7.4 and the 1934 and 1945 M 6.5 earthquakes, features high predicted GIA strain-rates. Elsewhere, agreement is not strong, with zones of seismicity occurring where predicted horizontal crustal strain-rates are small and large crustal strain-rates predicted where earthquake occurrence is muted. For example, large compressional crustal strain-rates are predicted beneath seismically quiescent portions of the Greenland ice sheet. Similarly, large predicted extensional strain-rates occur around southern Hudson Bay and the Foxe Basin, which are also regions of relative seismic quiescence. Additional factors to be considered include the orientation of the background stress field, relative to the predicted stress changes, and potential pre-existing zones of lithospheric weakness.

  14. Improved H-κ Method by Harmonic Analysis on Ps and Crustal Multiples in Receiver Functions with respect to Dipping Moho and Crustal Anisotropy

    Science.gov (United States)

    Li, J.; Song, X.; Wang, P.; Zhu, L.

    2017-12-01

    The H-κ method (Zhu and Kanamori, 2000) has been widely used to estimate the crustal thickness and Vp/Vs ratio with receiver functions. However, in regions where the crustal structure is complicated, the method may produce uncertain or even unrealistic results, arising particularly from dipping Moho and/or crustal anisotropy. Here, we propose an improved H-κ method, which corrects for these effects first before stacking. The effect of dipping Moho and crustal anisotropy on Ps receiver function has been well studied, but not as much on crustal multiples (PpPs and PpSs+PsPs). Synthetic tests show that the effect of crustal anisotropy on the multiples are similar to Ps, while the effect of dipping Moho on the multiples is 5 times that on Ps (same cosine trend but 5 times in time shift). A Harmonic Analysis (HA) method for dipping/anisotropy was developed by Wang et al. (2017) for crustal Ps receiver functions to extract parameters of dipping Moho and crustal azimuthal anisotropy. In real data, the crustal multiples are much more complicated than the Ps. Therefore, we use the HA method (Wang et al., 2017), but apply separately to Ps and the multiples. It shows that although complicated, the trend of multiples can still be reasonably well represented by the HA. We then perform separate azimuthal corrections for Ps and the multiples and stack to obtain a combined receiver function. Lastly, the traditional H-κ procedure is applied to the stacked receiver function. We apply the improved H-κ method on 40 CNDSN (Chinese National Digital Seismic Network) stations distributed in a variety of geological setting across the Chinese continent. The results show apparent improvement compared to the traditional H-κ method, with clearer traces of multiples and stronger stacking energy in the grid search, as well as more reliable H-κ values.

  15. Crustal and upper mantle velocity structure of Southern Iberia, the sea of Alboran, and the Gibraltar arc determined by local earthquake tomography

    Directory of Open Access Journals (Sweden)

    M. J. Blanco

    1997-06-01

    Full Text Available A "local earthquake tomography" of a large area encompassing the South of Iberia, the sea of Alboran, the Gibraltar arc, and Northern Morrocco, has been performed using first arrival times recorded at various Spanish and Morroccan seismic networks. A total of 52 stations and 639 earthquakes provided over 6300 first P arrivals and 4400 S arrivals. Three features of interest appear in the results: i a continuous low velocity structure which correlates with the Betics, the Gibraltar arc and the Rif; ii a high velocity feature which persists to a depth of approximately 30 km, positioned near the coast of Malaga on the northern margin of the Alboran sea; iii a low velocity feature, extending to a minimum depth of approximately 40 km, which coincides with the Granada basin and a strong negative Bouguer gravity anomaly.

  16. Effects of three-dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L'Aquila earthquake

    KAUST Repository

    Gallovič, František; Imperatori, Walter; Mai, Paul Martin

    2015-01-01

    Earthquake slip inversions aiming to retrieve kinematic rupture characteristics typically assume 1-D velocity models and a flat Earth surface. However, heterogeneous nature of the crust and presence of rough topography lead to seismic scattering and other wave propagation phenomena, introducing complex 3-D effects on ground motions. Here we investigate how the use of imprecise Green's functions - achieved by including 3-D velocity perturbations and topography - affect slip-inversion results. We create sets of synthetic seismograms, including 3-D heterogeneous Earth structure and topography, and then invert these synthetics using Green's functions computed for a horizontally layered 1-D Earth model. We apply a linear inversion, regularized by smoothing and positivity constraint, and examine in detail how smoothing effects perturb the solution. Among others, our tests and resolution analyses demonstrate how imprecise Green's functions introduce artificial slip rate multiples especially at shallow depths and that the timing of the peak slip rate is hardly affected by the chosen smoothing. The investigation is extended to recordings of the 2009 Mw6.3 L'Aquila earthquake, considering both strong motion and high-rate GPS stations. We interpret the inversion results taking into account the lessons learned from the synthetic tests. The retrieved slip model resembles previously published solutions using geodetic data, showing a large-slip asperity southeast of the hypocenter. In agreement with other studies, we find evidence for fast but subshear rupture propagation in updip direction, followed by a delayed propagation along strike. We conjecture that rupture was partially inhibited by a deep localized velocity-strengthening patch that subsequently experienced afterslip.

  17. Effects of three-dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L'Aquila earthquake

    KAUST Repository

    Gallovič, František

    2015-01-01

    Earthquake slip inversions aiming to retrieve kinematic rupture characteristics typically assume 1-D velocity models and a flat Earth surface. However, heterogeneous nature of the crust and presence of rough topography lead to seismic scattering and other wave propagation phenomena, introducing complex 3-D effects on ground motions. Here we investigate how the use of imprecise Green\\'s functions - achieved by including 3-D velocity perturbations and topography - affect slip-inversion results. We create sets of synthetic seismograms, including 3-D heterogeneous Earth structure and topography, and then invert these synthetics using Green\\'s functions computed for a horizontally layered 1-D Earth model. We apply a linear inversion, regularized by smoothing and positivity constraint, and examine in detail how smoothing effects perturb the solution. Among others, our tests and resolution analyses demonstrate how imprecise Green\\'s functions introduce artificial slip rate multiples especially at shallow depths and that the timing of the peak slip rate is hardly affected by the chosen smoothing. The investigation is extended to recordings of the 2009 Mw6.3 L\\'Aquila earthquake, considering both strong motion and high-rate GPS stations. We interpret the inversion results taking into account the lessons learned from the synthetic tests. The retrieved slip model resembles previously published solutions using geodetic data, showing a large-slip asperity southeast of the hypocenter. In agreement with other studies, we find evidence for fast but subshear rupture propagation in updip direction, followed by a delayed propagation along strike. We conjecture that rupture was partially inhibited by a deep localized velocity-strengthening patch that subsequently experienced afterslip.

  18. Analysis of Neogene deformation between Beaver, Utah and Barstow, California: Suggestions for altering the extensional paradigm

    Science.gov (United States)

    Anderson, R. Ernest; Beard, Sue; Mankinen, Edward A.; Hillhouse, John W.

    2013-01-01

    For more than two decades, the paradigm of large-magnitude (~250 km), northwest-directed (~N70°W) Neogene extensional lengthening between the Colorado Plateau and Sierra Nevada at the approximate latitude of Las Vegas has remained largely unchallenged, as has the notion that the strain integrates with coeval strains in adjacent regions and with plate-boundary strain. The paradigm depends on poorly constrained interconnectedness of extreme-case lengthening estimated at scattered localities within the region. Here we evaluate the soundness of the inferred strain interconnectedness over an area reaching 600 km southwest from Beaver, Utah, to Barstow, California, and conclude that lengthening is overestimated in most areas and, even if the estimates are valid, lengthening is not interconnected in a way that allows for published versions of province-wide summations.We summarize Neogene strike slip in 13 areas distributed from central Utah to Lake Mead. In general, left-sense shear and associated structures define a broad zone of translation approximately parallel to the eastern boundary of the Basin and Range against the Colorado Plateau, a zone we refer to as the Hingeline shear zone. Areas of steep-axis rotation (ranging to 2500 km2) record N-S shortening rather than unevenly distributed lengthening. In most cases, the rotational shortening and extension-parallel folds and thrusts are coupled to, or absorb, strike slip, thus providing valuable insight into how the discontinuous strike-slip faults are simply parts of a broad zone of continuous strain. The discontinuous nature of strike slip and the complex mixture of extensional, contractional, and steep-axis rotational structures in the Hingeline shear zone are similar to those in the Walker Lane belt in the west part of the Basin and Range, and, together, the two record southward displacement of the central and northern Basin and Range relative to the adjacent Colorado Plateau. Understanding this province

  19. LA CALIDAD EDUCATIVA Y LA SATISFACCIÓN DE LOS ESTUDIANTES EN EXTENSIONES MANABITAS

    OpenAIRE

    Villacís Zambrano, Lilia Moncerrate

    2017-01-01

    THE EDUCATIONAL QUALITY AND THE SATISFACTION OF THE STUDENTS IN MANABITAS EXTENSIONSRESUMENLa presente indagación se desarrolló en tres Extensiones de la Provincia de Manabí (Ecuador), se logró como objetivo explicar la relación entre la calidad de la educación y el grado de satisfacción de los estudiantes en las Extensiones objeto de estudio. En el tratado se utilizaron herramientas cualitativas y cuantitativas, entre las esenciales, se pueden mencionar: el muestreo, las encuestas, modelo Se...

  20. GPS-derived crustal deformation in Azerbaijan

    Science.gov (United States)

    Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin

    2017-04-01

    Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  1. Fractal behavior in continental crustal heat production

    Directory of Open Access Journals (Sweden)

    N. Vedanti

    2011-02-01

    Full Text Available The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India, Kaapvaal craton (South Africa, Baltic shield (Kola, Russia, Hidaka metamorphic belt (Japan, Nissho pluton (Japan and Continental Deep Drilling site (KTB, Germany. The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  2. Fractal behavior in continental crustal heat production

    Science.gov (United States)

    Vedanti, N.; Srivastava, R. P.; Pandey, O. P.; Dimri, V. P.

    2011-02-01

    The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India), Kaapvaal craton (South Africa), Baltic shield (Kola, Russia), Hidaka metamorphic belt (Japan), Nissho pluton (Japan) and Continental Deep Drilling site (KTB, Germany). The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  3. S-type granite generation and emplacement during a regional switch from extensional to contractional deformation (Central Iberian Zone, Iberian autochthonous domain, Variscan Orogeny)

    Science.gov (United States)

    Pereira, M. F.; Díez Fernández, R.; Gama, C.; Hofmann, M.; Gärtner, A.; Linnemann, U.

    2018-01-01

    Zircon grains extracted from S-type granites of the Mêda-Escalhão-Penedono Massif (Central Iberian Zone, Variscan Orogen) constrain the timing of emplacement and provide information about potential magma sources. Simple and composite zircon grains from three samples of S-type granite were analyzed by LA-ICP-MS. New U-Pb data indicate that granites crystallized in the Bashkirian (318.7 ± 4.8 Ma) overlapping the proposed age range of ca. 321-317 Ma of the nearby S-type granitic rocks of the Carrazeda de Anciães, Lamego and Ucanha-Vilar massifs. The timing of emplacement of such S-type granites seems to coincide with the waning stages of activity of a D2 extensional shear zone (i.e. Pinhel shear zone) developed in metamorphic conditions that reached partial melting and anatexis (ca. 321-317 Ma). Dykes of two-mica granites (resembling diatexite migmatite) are concordant and discordant to the compositional layering and S2 (main) foliation of the high-grade metamorphic rocks of the Pinhel shear zone. Much of the planar fabric in these dykes was formed during magmatic crystallization and subsequent solid-state deformation. Field relationships suggest contemporaneity between the ca. 319-317 Ma old magmatism of the study area and the switch from late D2 extensional deformation to early D3 contractional deformation. Inherited zircon cores are well preserved in these late D2-early D3 S-type granite plutons. U-Pb ages of inherited zircon cores range from ca. 2576 to ca. 421 Ma. The spectra of inherited cores overlap closely the range of detrital and magmatic zircon grains displayed by the Ediacaran to Silurian metasedimentary and metaigneous rocks of the Iberian autochthonous and parautochthonous domains. This is evidence of a genetic relationship between S-type granites and the host metamorphic rocks. There is no substantial evidence for the addition of mantle-derived material in the genesis of these late D2-early D3 S-type granitic rocks. The ɛNd arrays of heterogeneous

  4. P-T data from central Bhutan imply distributed extensional shear at the Black Mountain "klippe"

    Science.gov (United States)

    Corrie, S. L.; Kohn, M. J.; Long, S. P.; McQuarrie, N.; Tobgay, T.

    2011-12-01

    The Southern Tibetan Detachment system (STDS) occurs along the entire length of the Himalayan orogen, and extensionally emplaces low-grade to unmetamorphosed Tethyan Himalayan (TH) rocks over highly metamorphosed Greater Himalayan sequence (GH) rocks. The base of TH remnants preserved in northern Bhutan all have top-to-the-north shear sense indicators (C'-type shear bands, asymmetric folds, and boudinaged leucogranite dikes) that are interpreted to reflect a discrete shear zone. In contrast, the GH-TH contact in the southernmost TH remnant (the Black Mountain region, central Bhutan) has been interpreted as depositional. A depositional contact limits the magnitude of displacement along the early STDS to 10's of km. If the GH-TH contact in the Black Mountain region is instead a discrete shear zone, as observed farther north, displacement on the STDS could be as high as 100's of km. To discriminate between these two interpretations, we determined peak metamorphic P-T conditions through the GH and TH sections, reasoning that a discrete shear zone would produce a distinct jump in metamorphic temperature, pressure or both. Thin section-scale kinematic indicators reveal pervasive top-to-the-north shear from 2-3 km structurally above the Main Central thrust (MCT) through the rest of the 11 km thick GH and TH sections. P-T conditions were determined from immediately above the MCT to 4 km above the GH-TH contact, with 19 samples from the GH, 6 from the overlying Chekha Fm (TH), and 9 from the overlying Maneting Fm (TH). We applied standard Fe-Mg exchange thermometers and Ca net-transfer barometers involving garnet. P-T conditions range from 700 °C and 11 kbar in migmatitic GHS to 600 °C and 8 kbar at the GH-Chekha contact, and 500 °C and 5 kbar at the top of the Maneting. We found no jumps in either temperature or pressure at any level, but a steeper than lithostatic pressure gradient, which we interpret to result from distributed extensional shear. The average thermal

  5. Measuring the Extensional Properties of linear and branched Polymer Melts using Membrane Inflation into a Cylinder

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eggen, Svein; Kjær, Erik Michael

    2001-01-01

    The bubble inflation technique has been used for some time as a rheological characterization method for polymeric materials. Recently, this technique has been modified to the inflation of a polymeric sheet into a circular cylinder. In this work, the experimental inflation of sheets (or membranes......) of polymeric melts into a circular cylinder is modelled numerically to obtain the general extensional properties of the material....

  6. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier

    2012-01-01

    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotid...

  7. Non-linear Shear and Uniaxial Extensional Rheology of Polyether-Ester-Sulfonate Copolymer Ionomer Melts

    DEFF Research Database (Denmark)

    Shabbir, Aamir; Huang, Qian; P. Baeza, Guilhem

    2017-01-01

    We present unique nonlinear shear and extensional rheology data of unentan-gled amorphous polyester ionomers based on polyethers and sulphonated phthalates with sodium/ lithium counterions. Previous linear viscoelastic (LVE) measurements1 showed significant elasticity in these ionomers due...

  8. The transition between undiluted and oligomer-diluted states of nearly monodisperse polystyrenes in extensional flow

    DEFF Research Database (Denmark)

    Huang, Qian; Rasmussen, Henrik K.

    2017-01-01

    , proposed by Rasmussen and Huang (Rheol Acta 53(3):199–208 (2014a)), predicts the extensional viscosity well for the dilutions with lower concentrations. However, for the 70 and 90% 545 kg/mole samples which represent the transition between the diluted and undiluted states, the model predictions are less...

  9. Insights on the structural control of a Neogene forearc basin in Northern Chile: A geophysical approach

    Science.gov (United States)

    García-Pérez, Tiaren; Marquardt, Carlos; Yáñez, Gonzalo; Cembrano, José; Gomila, Rodrigo; Santibañez, Isabel; Maringue, José

    2018-06-01

    The comprehensive study of intramountain basins located in the Coastal Cordillera of the continental emergent Andean forearc in Northern Chile, enables the better understanding of the nature and evolution of the upper crustal deformation during the Neogene and Quaternary. A case study is the extensive extensional half-graben Alto Hospicio basin. The basin is cut by the Coastal Cliff, which exposes the deformed Neogene basin fill. Also exposed are several structural systems, some of which affect Quaternary surfaces. The results of the integrated geophysical surveys (Electromagnetic Transient and Gravity) allow us to fully constrain the geometry of the Alto Hospicio basin and the lithological relationship between the subsurface geological units. The structural geology analysis assesses the deformation regimes affecting the faults present in the basin and surrounding area. Altogether evidence a change in the deformation regime from an EW extensional deformation during the Miocene-Pliocene to a NS compression in the Quaternary as is presented in this study. We suggest this deformation change is related to a small change in the convergence vector orientation during the Pliocene.

  10. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  11. NASA plan for international crustal dynamics studies

    Science.gov (United States)

    1979-01-01

    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  12. Crustal balance and crustal flux from shortening estimates in the Central Andes

    Science.gov (United States)

    Hindle, David; Kley, Jonas; Oncken, Onno; Sobolev, Stephan

    2005-01-01

    The Central Andes of South America form the second largest high elevation plateau on earth. Extreme elevations have formed on a noncollisional margin with abundant associated arc magmatism. It has long been thought that the crustal thickness necessary to support Andean topography was not accounted for by known crustal shortening alone. We show that this may in part be due to a two-dimensional treatment of the problem. A three-dimensional analysis of crustal shortening and crustal thickness shows that displacement of material towards the axis of the bend in the Central Andes has added a significant volume of crust not accounted for in previous comparisons. We find that present-day crustal thickness between 12°S and 25°S is accounted for (∼-10% to ∼+3%)with the same shortening estimates, and the same assumed initial crustal thickness as had previously led to the conclusion of a ∼25-35% deficit in shortening relative to volume of crustal material. We suggest that the present-day measured crustal thickness distribution may not match that predicted due to shortening, and substantial redistribution of crust may have occurred by both erosion and deposition at the surface and lower crustal flow in regions of the thermally weakened middle and lower crust.

  13. Crustal Stretching Style and Lower Crust Flow of the South China Sea Northern Margin

    Science.gov (United States)

    Bai, Y.; Dong, D.; Runlin, D.

    2017-12-01

    There is a controversy about crustal stretching style of the South China Sea (SCS) northern margin mainly due to considerable uncertainty of stretching factor estimation, for example, as much as 40% of upper crust extension (Walsh et al., 1991) would be lost by seismic profiles due to poor resolution. To discover and understand crustal stretching style and lower crustal flow on the whole, we map the Moho and Conrad geometries based on gravity inversion constrained by deep seismic profiles, then according to the assumption of upper and lower crust initial thickness, upper and lower crust stretching factors are estimated. According to the comparison between upper and lower crust stretching factors, the SCS northern margin could be segmented into three parts, (1) sediment basins where upper crust is stretched more than lower crust, (2) COT regions where lower crust is stretched more than upper crust, (3) other regions where the two layers have similar stretching factors. Stretching factor map shows that lower crust flow happened in both of COT and sediment basin regions where upper crust decouples with lower crust due to high temperature. Pressure contrast by sediment loading in basins and erosion in sediment-source regions will lead to lower crust flow away from sediment sink to source. Decoupled and fractured upper crust is stretched further by sediment loading and the following compensation would result in relatively thick lower crust than upper crust. In COT regions with thin sediment coverage, low-viscosity lower crust is easier to thin in extensional environment, also the lower crust tends to flow away induced by magma upwelling. Therefore, continental crust on the margin is not stretching in a constant way but varies with the tectonic setting changes. This work is supported by National Natural Science Foundation of China (Grant No. 41506055, 41476042) and Fundamental Research Funds for the Central Universities China (No.17CX02003A).

  14. The nature of crustal reflectivity at the southwest Iberian margin

    Science.gov (United States)

    Buffett, G. G.; Torne, M.; Carbonell, R.; Melchiorre, M.; Vergés, J.; Fernàndez, M.

    2017-11-01

    Reprocessing of multi-channel seismic reflection data acquired over the northern margin of the Gulf of Cádiz (SW Iberian margin) places new constraints on the upper crustal structure of the Guadalquivir-Portimão Bank. The data presented have been processed with optimized stacking and interval velocity models, a better approach to multiple attenuation, preserved amplitude information to derive the nature of seismic reflectivity, and accurate time-to-depth conversion after migration. The reprocessed data reveal a bright upper crustal reflector just underneath the Paleozoic basement that spatially coincides with the local positive free-air gravity high called the Gulf of Cádiz Gravity High. To investigate the nature of this reflector and to decipher whether it could be associated with pieces of mantle material emplaced at upper crustal levels, we calculated its reflection coefficient and compared it to a buried high-density ultramafic body (serpentinized peridotite) at the Gorringe Bank. Its reflection coefficient ratio with respect to the sea floor differs by only 4.6% with that calculated for the high-density ultramafic body of the Gorringe Bank, while it differs by 35.8% compared to a drilled Miocene limestone unconformity. This means that the Gulf of Cádiz reflector has a velocity and/or density contrast similar to the peridotite at the Gorringe Bank. However, considering the depth at which it is found (between 2.0 and 4.0 km) and the available geological information, it seems unlikely that the estimated shortening from the Oligocene to present is sufficient to emplace pieces of mantle material at these shallow levels. Therefore, and despite the similarity in its reflection coefficient with the peridotites of the Gorringe Bank, our preferred interpretation is that the upper crustal Gulf of Cádiz reflector represents the seismic response of high-density intracrustal magmatic intrusions that may partially contribute to the Gulf of Cádiz Gravity High.

  15. Parallel Fast Multipole Boundary Element Method for crustal dynamics

    International Nuclear Information System (INIS)

    Quevedo, Leonardo; Morra, Gabriele; Mueller, R Dietmar

    2010-01-01

    Crustal faults and sharp material transitions in the crust are usually represented as triangulated surfaces in structural geological models. The complex range of volumes separating such surfaces is typically three-dimensionally meshed in order to solve equations that describe crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We show here how the Boundary Element Method, combined with the Multipole approach, can revolutionise the calculation of stress and strain, solving the problem of computational scalability from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM) tackles the difficulty of handling the intricate volume meshes and high resolution of crustal data that has put classical Finite 3D approaches in a performance crisis. The two main performance enhancements of this method: the reduction of required mesh elements from cubic to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory and runtime requirements allowing the treatment of a new scale of geodynamic models. This approach was recently tested and applied in a series of papers by [1, 2, 3] for regional and global geodynamics, using KD trees for fast identification of near and far-field interacting elements, and MPI parallelised code on distributed memory architectures, and is now in active development for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer to geological visualisation tools where only changes in boundaries and material properties are required as input parameters. In addition, easy volume mesh sampling of physical quantities enables direct integration with existing FD/FEM code.

  16. Inherited discontinuities and fault kinematics of a multiphase, non-colinear extensional setting: Subsurface observations from the South Flank of the Golfo San Jorge basin, Patagonia

    Science.gov (United States)

    Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia

    2018-01-01

    We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations

  17. Sensitivity analysis of crustal correction for calculation of lithospheric mantle density from gravity data

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2016-01-01

    for the crust and (ii) uncertainties in the seismic crustal structure (thickness and average VP velocities of individual crustal layers, including the sedimentary cover). We examine the propagation of these uncertainties into determinations of lithospheric mantle density and analyse both sources of possible......We investigate how uncertainties in seismic and density structure of the crust propagate to uncertainties in mantle density structure. The analysis is based on interpretation of residual upper-mantle gravity anomalies which are calculated by subtracting (stripping) the gravitational effect...... mantle, knowledge on uncertainties associated with incomplete information on crustal structure is of utmost importance for progress in gravity modelling. Uncertainties in the residual upper-mantle gravity anomalies result chiefly from uncertainties in (i) seismic VP velocity-density conversion...

  18. Sensitivity analysis of crustal correction and its error propagation to upper mantle residual gravity and density anomalies

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2013-01-01

    ) uncertainties in the velocity-density conversion and (ii) uncertainties in knowledge of the crustal structure (thickness and average Vp velocities of individual crustal layers, including the sedimentary cover). In this study, we address both sources of possible uncertainties by applying different conversions...... from velocity to density and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by high-quality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. The residual...

  19. Evaluation of the crustal deformations in the northern region of Lake Nasser (Egypt) derived from 8 years of GPS campaign observations

    Science.gov (United States)

    Rayan, A.; Fernandes, R. M. S.; Khalil, H. A.; Mahmoud, S.; Miranda, J. M.; Tealab, A.

    2010-04-01

    The proper evaluation of crustal deformations in the Aswan (Egypt) region is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction induced the creation of one of the major artificial lakes: Lake Nasser, which has a surface area of about 5200 km 2 with a maximum capacity of 165 km 3. The lake is nearly 550 km long (more than 350 km within Egypt and the remainder in Sudan) and 35 km across at its widest point. Great attention has focused on this area after the November 14, 1981 earthquake ( ML = 5.7), with its epicenter southwest of the High Dam. In order to evaluate the present-day kinematics of the region, its relationship with increasing seismicity, and the possible influence of the Aswan High Dam operation, a network of 11 GPS sites was deployed in the area. This network has been reobserved every year since 2000 in campaign style. We present here the results of the analysis of the GPS campaign time-series. These time-series are already long enough to derive robust solutions for the motions of these stations. The computed trends are analyzed within the framework of the geophysical and geological settings of this region. We show that the observed displacements are significant, pointing to a coherent intraplate extensional deformation pattern, where some of the major faults (e.g., dextral strike-slip Kalabsha fault and normal Dabud fault) correspond to gradients of the surface deformation field. We also discuss the possible influence of the water load on the long-term deformation pattern.

  20. Extensional-wave stopband broadening across the joint of pipes of different thickness.

    Science.gov (United States)

    Su, Yuanda; Tang, Xiaoming; Liu, Yukai; Xu, Song; Zhuang, Chunxi

    2015-11-01

    The stopband of pipe extensional waves is an interesting natural phenomenon. This study demonstrates an important extension of this phenomenon. That is, the stopband can be effectively broadened by transmitting the waves across the joint of pipes of different thickness. The theoretical and experimental results reveal the detailed process of stopband forming along the pipe and the band broadening across the pipe joint. The result can be utilized to provide a method for logging while drilling acoustic isolation design.

  1. Fluvial Connectivity and Sediment Dispersal within Continental Extensional Basins; Assessment of Controlling Factors using Numerical Modelling

    Science.gov (United States)

    Geurts, A., Jr.; Cowie, P. A.; Gawthorpe, R.; Huismans, R. S.; Pedersen, V. K.

    2017-12-01

    Progressive integration of drainage networks has been documented in many regional-scale studies of extensional continental systems. While endorheic drainage and lake sedimentation are common features observed in basin stratigraphy, they often disappear from the record due to the development of a through-going river network. Because changes in the fluvial connectivity of extensional basins have profound impact on erosion and sediment dispersal, and thus the feedback between surface processes and tectonics, it is of great importance to understand what controls them. Headward erosion (also called headward capture or river piracy) is often suggested to be the main mechanism causing basins to become interconnected over time with one another and with the regional/coastal drainage network. We show that overspill mechanisms (basin over-filling or lake over-spilling) play a key role in the actively extending central Italian Apennines, even though this area is theoretically favorable for headward erosion (short distances to the coast in combination with rapid surface uplift). In other tectonic settings (e.g. contractional basins and high plateaux) the role of headward erosion in transverse drainage development and integrating endorheic basins has also been increasingly questioned. These two mechanisms predict very different spatio-temporal patterns of sediment dispersal and thus timing of sediment loading (or erosional unloading) along active normal faults, which in turn may influence the locus of subsequent extensional deformation. By means of surface process modelling we develop a process-based understanding of the controls on fluvial connectivity between extensional basins in the central Italian Apennines. We focus on which conditions (tectonic and erosional) favour headward erosion versus overspill and compare our model results with published field evidence for drainage integration and the timing of basin sedimentation/incision.

  2. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  3. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    Science.gov (United States)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or

  4. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    Science.gov (United States)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  5. Risk of shear failure and extensional failure around over-stressed excavations in brittle rock

    Directory of Open Access Journals (Sweden)

    Nick Barton

    2017-04-01

    Full Text Available The authors investigate the failure modes surrounding over-stressed tunnels in rock. Three lines of investigation are employed: failure in over-stressed three-dimensional (3D models of tunnels bored under 3D stress, failure modes in two-dimensional (2D numerical simulations of 1000 m and 2000 m deep tunnels using FRACOD, both in intact rock and in rock masses with one or two joint sets, and finally, observations in TBM (tunnel boring machine tunnels in hard and medium hard massive rocks. The reason for ‘stress-induced’ failure to initiate, when the assumed maximum tangential stress is approximately (0.4–0.5σc (UCS, uniaxial compressive strength in massive rock, is now known to be due to exceedance of a critical extensional strain which is generated by a Poisson's ratio effect. However, because similar ‘stress/strength’ failure limits are found in mining, nuclear waste research excavations, and deep road tunnels in Norway, one is easily misled into thinking of compressive stress induced failure. Because of this, the empirical SRF (stress reduction factor in the Q-system is set to accelerate as the estimated ratio σθmax/σc >> 0.4. In mining, similar ‘stress/strength’ ratios are used to suggest depth of break-out. The reality behind the fracture initiation stress/strength ratio of ‘0.4’ is actually because of combinations of familiar tensile and compressive strength ratios (such as 10 with Poisson's ratio (say 0.25. We exceed the extensional strain limits and start to see acoustic emission (AE when tangential stress σθ ≈ 0.4σc, due to simple arithmetic. The combination of 2D theoretical FRACOD models and actual tunnelling suggests frequent initiation of failure by ‘stable’ extensional strain fracturing, but propagation in ‘unstable’ and therefore dynamic shearing. In the case of very deep tunnels (and 3D physical simulations, compressive stresses may be too high for extensional strain fracturing, and

  6. Extensional Detachment faulting in melange rocks. Plurikilometres migration by W the External Zone (Cordillera Bética, Spain)

    Science.gov (United States)

    Roldán, Francisco Javier; Azañon, Jose Miguel; Rodríguez, Jose; Mateos, Rosa Maria

    2014-05-01

    The synthesis and correlation of units carried out in the continuous geological map (Roldán et al., 2012), has revealed a fragmentation of the carbonate outcrops belong to the Subbetic Domain (García-Hernández et al., 1980). Subbetic NW verging thrust and fold axial traces have not lateral continuity and Jurassic carbonate outscrops appear as klippes on the olistotromic unit. These ductile structures that can be observed in the internal structure of these jurassic blocks are unrelated to the brittle-ductile deformation bands observed at the basal pelitic levels. Basal detachments are rooted in: a) the Olistostromic unit, a Upper Langhian-Lower Serravallian breccia constituted by gypsum-bearing clay and marls; b) Cretaceous-Tertiary marly sedimentary rocks (Rodríguez-Fernández, et al., 2013) . In both kind of rocks, cataclastic structures allows to infer a top-to-the WSW displacement. Paleostress measurements, made on these detachments levels, are compatible with a extensional regime (Roldán et al., 2012). At the same time, the analysis and interpretation of subsurface data (seismic surveys and borehole testing) shows that the Subbetic Domain (External Subbetic, Molina 1987) are affected by westward low-angle normal faults. A balanced cross-section, based on morphological and cartographic data in the area between Sierra de Cabra and Sierra de Alta Coloma (Valdepeñas de Jaén), shows plurikilometric displacements which has been produced during Late Serravallian-Early Tortonian times. References: García-Hernández, M., López-Garrido, A.C., Rivas, P., Sanz de Galdeano, C., Vera, J.A. (1980): Mesozoic paleogeographic evolution of the zones of the Betic Cordillera. Geol. Mijnb. 59 (2). 155-168. Molina, J.M. (1987). Análisis de facies del Mesozoico en el Subbético. Tesis Doctoral, Univ. Granada. 518 p. Rodríguez-Fernández, J., Roldán, F. J., Azañón, J.M. y García-Cortés, A. (2013). El colapso gravitacional del frente orogénico a lpino en el Dominio Subb

  7. Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey)

    Science.gov (United States)

    Rossetti, Federico; Asti, Riccardo; Faccenna, Claudio; Gerdes, Axel; Lucci, Federico; Theye, Thomas

    2017-06-01

    The Menderes Massif of western Turkey is a key area to study feedback relationships between magma generation/emplacement and activation of extensional detachment tectonics. Here, we present new textural analysis and in situ U-(Th)-Pb titanite dating from selected samples collected in the transition from the undeformed to the mylonitized zones of the Salihli granodiorite at the footwall of the Neogene, ductile-to-brittle, top-to-the-NNE Gediz-Alaşheir (GDF) detachment fault. Ductile shearing was accompanied by the fluid-mediated sub-solidus transformation of the granodiorite to orthogneiss, which occurred at shallower crustal levels and temperatures compatible with the upper greenschist-to-amphibolite facies metamorphic conditions (530-580 °C and P system ages during fluid-assisted syn-tectonic re-crystallisation in the transition from magma crystallization and emplacement (at 16-17 Ma) to the syn-tectonic, solid-state shearing (at 14-15 Ma). A minimum time lapse of ca. 1-2 Ma is then inferred between the crustal emplacement of the Salihli granodiorite and nucleation of the ductile extensional shearing along the Gediz detachment. The reconstruction of the cooling history of the Salihli granodiorite documents a punctuated evolution dominated by two episodes of rapid cooling, between 14 Ma and 12 Ma ( 100 °C/Ma) and between 3 and 2 Ma ( 105 °C/Ma). We relate the first episode to nucleation and development of post-emplacement of ductile shearing along the GDF and the second to brittle high-angle faulting, respectively. Our dataset suggests that in the Menderes Massif the activation of ductile extension was a consequence, rather than the cause, of magma emplacement in the extending crust.

  8. Full 40 km crustal reflection seismic datasets in several Indonesian basins

    Science.gov (United States)

    Dinkelman, M. G.; Granath, J. W.; Christ, J. M.; Emmet, P. A.; Bird, D. E.

    2010-12-01

    Long offset, deep penetration regional 2D seismic data sets have been acquired since 2002 by GX Technology in a number of regions worldwide (www.iongeo.com/Data_Libraries/Spans/). Typical surveys consist of 10+ lines located to image specific critical aspects of basin structure. Early surveys were processed to 20 km, but more recent ones have extended to 40-45 km from 16 sec records. Pre-stack time migration is followed by pre-stack depth migration using gravity and in some cases magnetic modeling to constrain the velocity structure. We illustrate several cases in the SE Asian and Australasian area. In NatunaSPAN™ two generations of inversion can be distinguished, one involving Paleogene faults with Neogene inversion and one involving strike slip-related uplift in the West Natuna Basin. Crustal structure in the very deep Neogene East Natuna Basin has also been imaged. The JavaSPAN™ program traced Paleogene sediments onto oceanic crust of the Flores Sea, thus equating back arc spreading there to the widespread Eocene extension. It also imaged basement in the Makassar Strait beneath as much as 6 km of Cenozoic sedimentary rocks that accumulated Eocene rift basins (the North and South Makassar basins) on the edge of Sundaland, the core of SE Asia. The basement is seismically layered: a noisy upper crust overlies a prominent 10 km thick transparent zone, the base of which marks another change to slightly noisier reflectivity. Eocene normal faults responsible for the opening of extensional basins root in the top of the transparent layer which may be Moho or a brittle-ductile transition within the extended continental crust. Of particular significance is the first image of thick Precambrian basins comprising the bulk of continental crust under the Arafura Sea in the ArafuraSPAN™ program. Four lines some 1200 km long located between Australia and New Guinea on the Arafura platform image a thin Phanerozoic section overlying a striking Precambrian basement composed of

  9. Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell

    International Nuclear Information System (INIS)

    Schenk, P.M.; Mckinnon, W.B.

    1989-01-01

    An examination is conducted of Europa's cross-cutting structural relationships between various lineament types, in order to constrain the type of structure involved in each such case and, where possible, to also constrain the degree of extension across the lineaments. Evidence is adduced for significant lateral crustal movement, allowing alternative models and mechanisms for lineament formation to be discussed, as well as plausible lithospheric and crustal models. The question as to whether any of the water-ice layer has been, or currently is, liquid, is also treated in light of the evidence obtained. 53 refs

  10. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities....../s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine...

  11. The temporal and spatial distribution of upper crustal faulting and magmatism in the south Lake Turkana rift, East Africa

    Science.gov (United States)

    Muirhead, J.; Scholz, C. A.

    2017-12-01

    During continental breakup extension is accommodated in the upper crust largely through dike intrusion and normal faulting. The Eastern branch of the East African Rift arguably represents the premier example of active continental breakup in the presence magma. Constraining how faulting is distributed in both time and space in these regions is challenging, yet can elucidate how extensional strain localizes within basins as rifting progresses to sea-floor spreading. Studies of active rifts, such as the Turkana Rift, reveal important links between faulting and active magmatic processes. We utilized over 1100 km of high-resolution Compressed High Intensity Radar Pulse (CHIRP) 2D seismic reflection data, integrated with a suite of radiocarbon-dated sediment cores (3 in total), to constrain a 17,000 year history of fault activity in south Lake Turkana. Here, a set of N-S-striking intra-rift faults exhibit time-averaged slip-rates as high as 1.6 mm/yr, with the highest slip-rates occurring along faults within 3 km of the rift axis. Results show that strain has localized into a zone of intra-rift faults along the rift axis, forming an approximately 20 km-wide graben in central parts of the basin. Subsurface structural mapping and fault throw profile analyses reveal increasing basin subsidence and fault-related strain as this faulted graben approaches a volcanic island in the center of the basin (South Island). The long-axis of this island trends north-south, and it contains a number of elongate cones that support recent emplacement of N-S-striking dike intrusions, which parallel recently active intra-rift faults. Overall, these observations suggest strain localization into intra-rift faults in the rift center is likely a product of both volcanic loading and the mechanical and thermal effects of diking along the rift axis. These results support the establishment of magmatic segmentation in southern Lake Turkana, and highlight the importance of magmatism for focusing upper

  12. Tracing crustal contamination along the Java segment of the Sunda Arc, Indonesia

    Science.gov (United States)

    Jolis, E. M.; Troll, V.; Deegan, F.; Blythe, L.; Harris, C.; Freda, C.; Hilton, D.; Chadwick, J.; Van Helden, M.

    2012-04-01

    Arc magmas typically display chemical and petrographic characteristics indicative of crustal input. Crustal contamination can take place either in the mantle source region or as magma traverses the upper crust (e.g. [1]). While source contamination is generally considered the dominant process (e.g. [2]), late-stage crustal contamination has been recognised at volcanic arcs too (e.g. [3]). In light of this, we aim to test the extent of upper crustal versus source contamination along the Java segment of the Sunda arc, which, due its variable upper crustal structure, is an exemplary natural laboratory. We present a detailed geochemical study of 7 volcanoes along a traverse from Anak-Krakatau in the Sunda strait through Java and Bali, to characterise the impact of the overlying crust on arc magma composition. Using rock and mineral elemental geochemistry, radiogenic (Sr, Nd and Pb) and, stable (O) isotopes, we show a correlation between upper crustal composition and the degree of upper crustal contamination. We find an increase in 87Sr/86Sr and δ18O values, and a decrease in 143Nd/144Nd values from Krakatau towards Merapi, indicating substantial crustal input from the thick continental basement present. Volcanoes to the east of Merapi and the Progo-Muria fault transition zone, where the upper crust is thinner, in turn, show considerably less crustal input in their isotopic signatures, indicating a stronger influence of the mantle source. Our new data represent a systematic and high-resolution arc-wide sampling effort that allows us to distinguish the effects of the upper crust on the compositional spectrum of individual volcanic systems along the Sunda arc. [1] Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A 2005. Crustal Forensics in Arc Magmas. J. Geotherm. Res. 140, 157-170; [2] Debaille, V., Doucelance, R., Weis, D., & Schiano, P. 2005. Geochim. Cosmochim. Acta, 70,723-741; [3] Gasparon, M., Hilton, D.R., & Varne, R. 1994. Earth Planet. Sci. Lett., 126, 15-22.

  13. "Storms of crustal stress" and AE earthquake precursors

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    2010-02-01

    Colfiorito – and (maybe in 2002 also the Molise earthquake can be reckoned to this "storm". During the "storm", started in 2008, the l'Aquila earthquake occurred.

    Additional logical analysis envisages the possibility of distinguishing some kind of "elementary" constituents of a "crustal storm", which can be briefly called "crustal substorms". The concept of "storm" and "substorm" is a common logical aspect, which is shared by several phenomena, depending on their common intrinsic and primary logical properties that can be called lognormality and fractality. Compared to a "crustal storm", a "crustal substorm" is likely to be reckoned to some specific seismic event. Owing to brevity purposes, however, the discussion of "substorms" is given elsewhere.

    AE is an effective tool for monitoring these phenomena, and other processes that are ongoing within the crust. Eventually they result to be precursors of some more or less violent earthquake. It should be stressed, however, that the target of AE monitoring is diagnosing the Earth's crust. In contrast, earthquake prediction implies a much different perspective, which makes sense only by means of more detailed multiparametric monitoring. An AE array can provide real physical information only about the processes that are objectively ongoing inside different and contiguous large slabs of the crust. The purpose is to monitor the stress propagation that crosses different regions, in order to envisage where and when it can eventually trigger a catastrophe of the system. The conclusion is that continental – or planetary – scale arrays of AE monitoring stations, which record a few different AE frequencies, appear to be the likely first step for diagnosing the evolution of local structures preceding an earthquake. On the other hand, as it is well known, the magnitude of the shock is to be related to the elastic energy stored in

  14. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  15. Nd isotopes and crustal growth rate

    International Nuclear Information System (INIS)

    Albarede, F.

    1988-01-01

    Sm/Nd isotopic constraints on crustal growth is discussed. In order to constrain Sm/Nd fractionation between continental crust and depleted mantle, an extensive data base of isotopic measurements (assumed to be adequately representative of continental crust) was compiled. The results imply that the evolution of depleted mantles was roughly linear, with no major discontinuities over the course of geologic time. This is different from other determinations of depleting mantle evolution, which show nonlinear behavior. The Sm/Nd evolution lines for continental crust and depleted mantle intersect between 3.8 to 4.0 Ga, which may indicate that the onset of continental growth was later than 4.5 Ga. A mathematical model is described, the results of which imply that time integrated crustal additions from the mantle are about 1.8 to 2.5 cu km/a, whereas crustal subtractions by sediment recycling are about 0.6 to 1.5 cu km/a. This results in a net time integrated crustal growth rate of about 1 cu km/a, which is similar to present day rates determined, for example, by Reymer and Schubert

  16. Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum

    Science.gov (United States)

    Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.

    2000-01-01

    The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.

  17. Geodynamic evolution of the Pan-African lower crust in Sri Lanka : structural and petrological investigations into a high-grade gneiss terrain

    NARCIS (Netherlands)

    Kriegsman, L.

    1993-01-01

    Some main objectives of present-day geological research are to assess the role of the lower crust in collision and extensional tectonics and to unravel the mechanism and timing of crustal growth. Both objectives require input from the study of high-grade gneiss terrains, notably data concerning

  18. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism

    Science.gov (United States)

    Citron, Robert I.; Zhong, Shijie

    2012-12-01

    The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20-25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5° E and 84.5° S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern

  19. The mechanism of fracture for entangled polymer liquids in extensional flow

    DEFF Research Database (Denmark)

    Huang, Qian; Yu, Liyun; Wingstrand, Sara Lindeblad

    In uniaxial extensional flow of entangled polymer liquids, different rupture modes may happen, including necking and fracture. Malkin andPetrie [1] proposed a ''master curve'' dividing the flow behavior into four zones based on the stretch rate: (I) Flow zone; (II) Transition zone; (III) Rubbery...... curve in Zone IV. However, with faster rate, a constant critical strain is observed, which is not shown in the original master curve. The value of the constant critical strain seems to be related to themaximum stretch ratio of the polymer chain (determined by Me), but not influenced by Z. The results...

  20. Les marqueurs structuraux et magmatiques de l'extension crustale au Protérozoïque terminal-Cambrien basal autour du massif de Kerdous (Anti-Atlas occidental, Maroc)

    Science.gov (United States)

    Soulaimani, Abderrahmane; Essaifi, Abderrahim; Youbi, Nassrddine; Hafid, Ahmid

    2004-12-01

    During the Late Precambrian-Early Cambrian times, the borders of the Kerdous inlier were affected by normal faults where thick conglomerates (Ouarzazate Group: PIII), grading progressively upwards into Cambrian marine sediments, were accumulated along their hanging walls. This tectonic activity persisted during the Early Cambrian and was accompanied by a magmatic activity resulting mainly in the emplacement of continental tholeiitic basalts. These tectono-sedimentary and magmatic events are related to the crustal extensional episode that affected the northwestern Gondwana margin during the opening of the Iapetus Ocean during Late Proterozoic times. To cite this article: A. Soulaimani et al., C. R. Geoscience 336 (2004).

  1. Comparison of quartz tuning forks and AlN-based extensional microresonators for viscosity measurements in oil/fuel mixtures

    Science.gov (United States)

    Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.

    2013-05-01

    In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.

  2. Qinghai-Tibet Plateau crustal thickness derived from EGM2008 and CRSUT2.0

    Directory of Open Access Journals (Sweden)

    Zhou Hao

    2014-11-01

    Full Text Available Qinghai-Tibet Plateau is the most complex region for crustal thickness inversion, while high-resolution earth gravity model (EGM makes it possible to obtain high precision gravity anomaly, which is a key parameter to depict the Earth’s inner structure in geodesy domain. On the basis of this principle, we calculated the Bouguer gravity anomalies in Qinghai-Tibet Plateau with EGM2008 and SRTM6. 0 by efficient high-degree spherical harmonic synthesis algorithm. In order to obtain the gravity anomaly caused by Moho density mutant, the noises caused by the topography was removed by wavelet details. Then, the crustal thickness was corrected on the basis of CRUST 2. 0 with the deep-large-scale single density interface formula. The inversion result indicates that the crustal thickness in Qinghai-Tibet Plateau is between 50 km and 75 km, which is in correspondence with the recent science research result. Compared with the 2 degree CRUST 2. 0 model, the spatial resolution of crustal thickness in our research can reach 40 arc minutes. In addition, there is a positive relationship between the inversed crustal thickness and topography, which can prove the effectiveness of Airy-Heiskanen isostatic model in gravity reduction.

  3. Influence of crustal layering and thickness on co-seismic effects of Wenchuan earthquake

    Directory of Open Access Journals (Sweden)

    Tan Hongbo

    2011-02-01

    Full Text Available Using the PSGRN/PSCMP software and the fault model offered by USGS and on the basis of finite rectangular dislocation theory and the local layered wave velocity structures of the crust-upper-mantle, the influences of crustal layering and thickness on co-seismic gravity changes and deformation of Wenchuan earthquake have been simulated. The results indicate that; the influences have a relationship with the attitude of faults and the relative position between calculated points and fault. The difference distribution form of simulated results between the two models is similar to that of co-seismic effect. For the per centum distribution, it’s restricted by the zero line of the co-seismic effects obviously. Its positive is far away from the zero line. For the crustal thickness, the effect is about 10% – 20%. The negative and the effect over 30% focus around the zero line. The average influences of crustal layering and thickness for the E-W displacement, N-S displacement, vertical displacement and gravity changes are 18.4%,18.0%, 15.8% and 16.2% respectively, When the crustal thickness is 40 km, they are 4.6%, 5.3%, 3.8% and 3.8%. Then the crustal thickness is 70 km, the average influences are 3.5%, 4.6%, 3.0% and 2.5% respectively.

  4. Crustal heterogeneity and seismotectonics of the region around Beijing, China

    Science.gov (United States)

    Huang, Jinli; Zhao, Dapeng

    2004-07-01

    A detailed three-dimensional (3-D) P-wave velocity model of the crust and uppermost mantle under the Chinese capital (Beijing) region is determined with a spatial resolution of 25 km in the horizontal direction and 4-17 km in depth. We used 48,750 precise P-wave arrival times from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by a new digital seismic network consisting of 101 seismic stations equipped with high-sensitivity seismometers. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new insights into the geological structure and tectonics of the region, such as the lithological variations and large fault zones across the major geological terranes like the North China Basin, the Taihangshan and the Yanshan mountainous areas. The velocity images of the upper crust reflect well the surface geological and topographic features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocities, respectively. The Taihangshan and Yanshan mountainous regions are generally imaged as broad high-velocity zones, while the Quaternary intermountain basins show up as small low-velocity anomalies. Velocity changes are visible across some of the large fault zones. Large crustal earthquakes, such as the 1976 Tangshan earthquake ( M=7.8) and the 1679 Sanhe earthquake ( M=8.0), generally occurred in high-velocity areas in the upper to middle crust. In the lower crust to the uppermost mantle under the source zones of the large earthquakes, however, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids. The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.

  5. Prediction of long-term crustal movement for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasaki, Takeshi; Morikawa, Seiji; Tabei, Kazuto; Koide, Hitoshi; Tashiro, Toshiharu

    2000-01-01

    Long-term stability of the geological environment is essential for the safe geological disposal of radioactive waste, for which it is necessary to predict the crustal movement during an assessment period. As a case study, a numerical analysis method for the prediction of crustal movement in Japan is proposed. A three-dimensional elastic analysis by FEM for the geological block structure of the Kinki region and the Awaji-Rokko area is presented. Stability analysis for a disposal cavern is also investigated. (author)

  6. Sedimentary Record of the Back-Arc Basins of South-Central Mexico: an Evolution from Extensional Basin to Carbonate Platform.

    Science.gov (United States)

    Sierra-Rojas, M. I.; Molina-Garza, R. S.; Lawton, T. F.

    2015-12-01

    The Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were controlled by tectonic processes related to the instauration of a continental arc and the accretion of the Guerrero arc to mainland Mexico. The Atzompa Formation refers to a succession of conglomerate, sandstone, siltstone, and limestone that crop out in southwestern Mexico with Early Cretaceous fauna and detrital zircon maximum depositional ages. The sedimentary record shows a transition from early fluvial/alluvial to shallow marine depositional environments. The first stage corresponds to juvenile fluvial/alluvial setting followed by a deep lacustrine depositional environment, suggesting the early stages of an extensional basin. The second stage is characterized by anabranched deposits of axial fluvial systems flowing to the NE-SE, showing deposition during a period of rapid subsidence. The third and final stage is made of tidal deposits followed, in turn, by abrupt marine flooding of the basin and development of a Barremian-Aptian carbonate ramp. We interpret the Tentzo basin as a response to crustal extension in a back-arc setting, with high rates of sedimentation in the early stages of the basin (3-4 mm/m.y), slower rates during the development of starved fluvial to tidal systems and carbonate ramps, and at the top of the Atzompa Formation an abrupt deepening of the basin due to flexural subsidence related to terrane docking and attendant thrusting to the west. These events were recorded in the back-arc region of a continental convergent margin (Zicapa arc) where syn-sedimentary magmatism is indicated by Early Cretaceous detrital and volcanic clasts from alluvial fan facies west of the basin. Finally, and as a response to the accretion of the Guerrero superterrane to Oaxaquia during the Aptian, a carbonate platform facing toward the Gulf of Mexico was established in central to eastern Oaxaquia.

  7. Modelling of crustal rock mechanics for radioactive waste storage in Fennoscandia - problem definition

    International Nuclear Information System (INIS)

    Stephansson, O.

    1987-05-01

    Existing knowledge of crustal stresses for Fennoscandia is presented. Generic, two-dimensional models are proposed for vertical and planar sections of a traverse having a direction NW-SE in Northern Fennoscandia. The proposed traverse will include the major neotectonic structures at Lansjaerv and Paervie, respectively, and also the study site for storage of spent nuclear fuel at Kamlunge. The influence of glaciation, deglaciation, glacial rebound on crustal rock mechanics and stability is studied for the modelling work. Global models, with a length of roughly 100 km, will increase our over all understanding of the change in stresses and deformations. These can provide boundary conditions for regional and near-field models. Properties of strength and stiffness of intact granitic rock masses, faults and joints are considered in the modelling of the crustal rock mechanics for any of the three models described. (orig./HP)

  8. Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge

    Science.gov (United States)

    Park, Heon-Joon; Lee, Changyeol

    2017-04-01

    Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).

  9. Timing of mid-crustal ductile extension in the northern Snake Range metamorphic core complex, Nevada: Evidence from U/Pb zircon ages

    Science.gov (United States)

    Lee, J.; Blackburn, T.; Johnston, S. M.

    2016-12-01

    Metamorphic core complexes (Mccs) within the western U.S. record a history of Cenozoic ductile and brittle extensional deformation, metamorphism, and magmatism, and exhumation within the footwall of high-angle Basin and Range normal faults. Documenting these histories within Mccs have been topics of research for over 40 years, yet there remains disagreement about: 1) whether the detachment fault formed and moved at low angles or initiated at high angles and rotated to a low angle; 2) whether brittle and ductile extensional deformation were linked in space and time; and 3) the temporal relationship of both modes of extension to the development of the detachment fault. The northern Snake Range metamorphic core complex (NSR), Nevada has been central to this debate. To address these issues, we report new U/Pb dates from zircon in deformed and undeformed rhyolite dikes emplaced into ductilely thinned and horizontally stretched lower plate rocks that provide tight bounds on the timing of ductile extension at between 38.2 ± 0.3 Ma and 22.50 ± 0.36 Ma. The maximum age constraint is from the Northern dike swarm (NDS), which was emplaced in the northwest part of the range pre- to syn-tectonic with ductile extension. The minimum age constraint is from the Silver Creek dike swarm (SDS) that was emplaced in the southern part of the range post ductile extensional deformation. Our field observations, petrography, and U/Pb zircon ages on the dikes combined with published data on the geology and kinematics of extension, moderate and low temperature thermochronology on lower plate rocks, and age and faulting histories of Cenozoic sedimentary basins adjacent to the NSR are interpreted as recording an episode of localized upper crustal brittle extension during the Eocene that drove upward ductile extensional flow of hot middle crustal rocks from beneath the NSR detachment soon after, or simultaneous with, emplacement of the NDS. Exhumation of the lower plate continued in a rolling

  10. Geothermal modeling along a two-dimensional crustal profile in Southern Portugal

    Czech Academy of Sciences Publication Activity Database

    Correia, A.; Šafanda, Jan

    2002-01-01

    Roč. 34, č. 1 (2002), s. 47-61 ISSN 0264-3707. [Geothermics at the turn of the century. Evora, 03.04.2000-07.04.2000] Institutional research plan: CEZ:AV0Z3012916 Keywords : geothermal modeling * Southern Portugal * surface heat flow * crustal profile Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.058, year: 2002

  11. Rheological and physical characteristics of crustal-scaled materials for centrifuge analogue modelling

    Science.gov (United States)

    Waffle, Lindsay; Godin, Laurent; Harris, Lyal B.; Kontopoulou, M.

    2016-05-01

    We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.

  12. MAGNETAR FIELD EVOLUTION AND CRUSTAL PLASTICITY

    International Nuclear Information System (INIS)

    Lander, S. K.

    2016-01-01

    The activity of magnetars is believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which internal field evolution in magnetars generates a twisted corona, from which energy may be released suddenly in a single giant flare, or more gradually through smaller outbursts and persistent emission. Given the ages of magnetars and the energy of their giant flares, we suggest that their evolution is driven by a novel mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. The star’s superconducting core may also play a role in magnetar field evolution, depending on the star’s spindown history and how rotational vortices and magnetic fluxtubes interact.

  13. PROCESO DE EVALUACIÓN DE LAS EXTENSIONES DE MARCAS: UN ANÁLISIS APLICADO A MARCAS DEPORTIVAS /

    OpenAIRE

    Buil Carrasco, I.; Pina Pérez, J. M.

    2008-01-01

    Las extensiones de marca se han convertido en una de las estrategias más utilizadas por las empresas para el lanzamiento de nuevos productos. El éxito de las extensiones va a depender fundamentalmente de cómo son aceptadas por los consumidores, por ello, este trabajo propone un modelo que analiza cómo variables relacionadas con la marca madre, el producto extendido y la personalidad del consumidor influyen en la actitud que los consumidores desarrollan hacia la extensión. Para validar el mode...

  14. Crustal inheritance and arc magmatism: Magnetotelluric constraints from the Washington Cascades on top-down control

    Science.gov (United States)

    Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.

    2017-12-01

    Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc

  15. A coupled petrological-geodynamical model to investigate the evolution of crustal magmatic systems

    Science.gov (United States)

    Kaus, B. J. P.; Rummel, L.; White, R. W.

    2017-12-01

    The evolution of crustal magmatic systems can be analyzed from different physical and chemical perspectives. Most previous work focus either on the petrological side (considering thermal effects and ignoring mechanics), or on the mechanical evolution (assuming a fixed melt chemistry). Here, we consider both by combining a 2D finite element code, MVEP2, with a thermodynamic modelling approach (Perple_X). Density, melt fraction and the chemical composition of the liquid and solid phase are computed for different starting rock compositions and the evolving chemistry is tracked on markers via 10 main oxides (SiO2-TiO2-Al2O3-Cr2O3-MgO-FeO-CaO-Na2O-K2O-H2O). As soon as the local chemistry changes due to melt extraction, new phase diagrams are computed based on the residual solid chemistry for the deflated magma chamber or on the liquid chemistry for newly generated magma filled fractures. To investigate the chemical evolution in magma chambers and magma filled fractures, we inject mafic sills periodically at varying depth levels into the continental crust. The initial sill injections are focused in either one or two main zones in the crust and may interact with each other. The formation of magma filled fractures from this partially molten zone is tracked with a semi analytical dike initiation algorithm that forms new dikes as a function of the local stress field above the partially molten region and subsequently depletes and compacts the magma source region. Dike generation is thus affected by the background strain rate, amount and depth of melt accumulations as well as parameters that control the plastic and viscous behaviour of the crust (e.g. cohesion, viscous creep flow low etc.). Results show that magma filled fractures triggered by sill injections preferentially form under extensional conditions, particularly within the middle crust (in ca. 25 km depth). Magma chambers in the lower continental crust, on the other hand, are stable over a longer period of time due a

  16. Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: a setting for reactivation of asymmetric crenulation cleavage

    Science.gov (United States)

    Marshak, Stephen; Alkmim, Fernando F.; Whittington, Alan; Pedrosa-Soares, Antônio Carlos

    2006-01-01

    The Araçuaí orogen of eastern Brazil is one of many Brasiliano/Pan African orogens formed during the Neoproterozoic assembly of Gondwana. Its western edge, bordering the São Francisco craton, is the Serra do Espinhaço fold-thrust belt, in which top-up-to-the-west (reverse-sense) faults, west-verging folds (F 1), and east-dipping spaced to phyllitic cleavage (S 1) developed. We have found that the kinematics of deformation changes markedly at the hinterland margin of this fold-thrust belt. Here, beneath a plateau known as the Chapada Acauã, metadiamictite and fine-grained pelitic schist comprise an east-dipping belt that contains an assemblage of structures indicative of top-down-to-the-east (normal-sense) shear. This assemblage includes a cascade of F 2 folds that refold F 1 folds and verge down the dip of the belt's enveloping surfaces, vertical tension gashes, and top-down-to-the-east rotated clasts. Based on the presence of these structures, we propose that the plateau exposes a regional-scale normal-sense shear zone, here called the Chapada Acauã shear zone (CASZ). Because F 2 folds refold F 1 folds, normal-sense shear in the CASZ occurred subsequent to initial west-verging thrusting. Considering this timing of motion in the CASZ, we suggest that the zone accommodated displacement of the internal zone of the Araçuaí orogen down, relative to its foreland fold-thrust belt, and thus played a role in extensional collapse of the orogen. The CASZ trends parallel to preserved thrusts to the west, and thus may represent an inverted thrust fault. Notably, throughout the CASZ, S 1 schistosity has been overprinted by a pervasive, west-dipping asymmetric crenulation cleavage (S 2). The sigmoid shape of S 1 surfaces in S 2 microlithons require that slip on each S 2 surface was top-down-to-the-west. S 2 cleavage is axial-planar to the down-dip verging F 2 folds. Based on its geometry, we suggest that S 2 cleavage initiated either as an antithetic extensional

  17. Segmentation pattern and structural complexities in seismogenic extensional settings: The North Matese Fault System (Central Italy)

    Science.gov (United States)

    Ferrarini, Federica; Boncio, Paolo; de Nardis, Rita; Pappone, Gerardo; Cesarano, Massimo; Aucelli, Pietro P. C.; Lavecchia, Giusy

    2017-02-01

    We investigated the northern slope of the Matese Mts. (Molise, Central Italy) with the aim of characterizing the N- to NE-dipping active normal fault system in the Bojano basin, a sector of primary importance from a seismic hazard perspective. We collected field data to define the geometry and segmentation pattern of two sub-systems (Patalecchia-Colle di Mezzo and Bojano-Campochiaro). New evidence of late Quaternary faulting was obtained by exploiting well log interpretations. Kinematic analysis revealed the interaction of pre-Quaternary inherited (mainly E-W-striking) and newly formed (NW-SE-striking) normal faults. Slip accommodation through linkage was clearly noted in the case of the Patalecchia-Colle di Mezzo sub-system. Detailed topographic profiles across the active fault segments provided post-LGM (15 ± 3 kyr) slip rates up to ∼2 mm/yr which agree with the high deformation rates based on different approaches in the literature. Finally, the instrumental seismicity analysis constrained the bottom of the seismogenic layer to depths of 13-14 km, and the gathered information allowed us to reconstruct the North Matese seismogenic source. Its 3D geometry and dimensions agree with both the dimension-magnitude relationships and macroseismic information available for the 1805 earthquake (Mw 6.6), the main historical earthquake to have struck the Bojano basin.

  18. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  19. Developing a Crustal and Upper Mantle Velocity Model for the Brazilian Northeast

    Science.gov (United States)

    Julia, J.; Nascimento, R.

    2013-05-01

    Development of 3D models for the earth's crust and upper mantle is important for accurately predicting travel times for regional phases and to improve seismic event location. The Brazilian Northeast is a tectonically active area within stable South America and displays one of the highest levels of seismicity in Brazil, with earthquake swarms containing events up to mb 5.2. Since 2011, seismic activity is routinely monitored through the Rede Sismográfica do Nordeste (RSisNE), a permanent network supported by the national oil company PETROBRAS and consisting of 15 broadband stations with an average spacing of ~200 km. Accurate event locations are required to correctly characterize and identify seismogenic areas in the region and assess seismic hazard. Yet, no 3D model of crustal thickness and crustal and upper mantle velocity variation exists. The first step in developing such models is to refine crustal thickness and depths to major seismic velocity boundaries in the crust and improve on seismic velocity estimates for the upper mantle and crustal layers. We present recent results in crustal and uppermost mantle structure in NE Brazil that will contribute to the development of a 3D model of velocity variation. Our approach has consisted of: (i) computing receiver functions to obtain point estimates of crustal thickness and Vp/Vs ratio and (ii) jointly inverting receiver functions and surface-wave dispersion velocities from an independent tomography study to obtain S-velocity profiles at each station. This approach has been used at all the broadband stations of the monitoring network plus 15 temporary, short-period stations that reduced the inter-station spacing to ~100 km. We expect our contributions will provide the basis to produce full 3D velocity models for the Brazilian Northeast and help determine accurate locations for seismic events in the region.

  20. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    Science.gov (United States)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  1. Crustal thickness and Vp/Vs beneath the southeastern United States: Constraints from receiver function stacking

    Science.gov (United States)

    Yang, Q.; Gao, S. S.; Liu, K. H.

    2017-12-01

    To provide new constraints on crustal structure and evolution models beneath a collage of tectonic provinces in the southeastern United States, a total of 10,753 teleseismic receiver functions recorded by 125 USArray and other seismic stations are used to compute crustal thickness and Vp/Vs values. The resulting crustal thicknesses range from 25 km at the coast to 51 km beneath the peak of the southern Appalachians with an average of 36.2 km ± 5.5 km. The resulting crustal thicknesses correlate well with surface elevation and Bouguer gravity anomalies. Beneath the Atlantic Coastal Plain, the crustal thicknesses show a clear eastward thinning with a magnitude of 10 km, from about 40 km beneath the western margin to 30 km beneath the coast. The Vp/Vs values for the entire study area range from 1.71 to 1.90 with a mean value of 1.80 ± 0.04. The mean Vp/Vs value is 1.82±0.035 in the southern Appalachian Mountain. The slightly larger than normal crustal Vp/Vs for this area might be the result of significant erosion of the felsic upper crust over the past 300 million years. Alternatively, it could also suggest the existence of pervasive magmatic intrusion into the Appalachian crust. The Vp/Vs measurements in the Atlantic Coastal Plain increase toward the east, ranging from 1.75 to 1.82, probably indicating a gradual increase of mafic magmatic intrusion into thinner crust during the development of the passive continental margin.

  2. Testing the Extensional Detachment Paradigm: A Borehole Observatory in the Sevier Desert Basin

    OpenAIRE

    Gianreto Manatschal; Brian P. Wernicke; Mark H. Anders; Nicholas Christie-Blick

    2009-01-01

    Low-angle normal faults or detachments are widely regarded as playing an important role in crustal extension and the development of rifted continental margins (Manatschal et al., 2007). However, no consensus exists on how to resolve the mechanical paradox implied by the gentledips of these faults and by the general absence of evidence for associated seismicity (Sibson, 1985; Wernicke, 1995; Axen, 2004). As part of a new initiative to rationalize geological and geophysical evidence and our the...

  3. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.; LOW, J.; MYERS, T. G.

    2013-01-01

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified 'Trouton ratio'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  4. Extensional flow of nematic liquid crystal with an applied electric field

    KAUST Repository

    CUMMINGS, L. J.

    2013-10-17

    Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified \\'Trouton ratio\\'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.

  5. Crustal tomographic imaging and geodynamic implications toward south of Southern Granulite Terrain (SGT), India

    Science.gov (United States)

    Behera, Laxmidhar

    2011-09-01

    The crustal structure toward southern part of SGT is poorly defined leaving an opportunity to understand the tectonic and geodynamic evolution of this high-grade granulite terrain surrounded by major shear and tectonically disturbed zones like Achankovil Shear Zone (AKSZ) and Palghat Cauvery Shear Zone (PCSZ). To develop a geologically plausible crustal tectonic model depicting major structural elements, a comprehensive tomographic image was derived using deep-seismic-sounding data corroborated by Bouguer gravity modeling, coincident-reflection-seismic, heat-flow and available geological/geochronological informations along the N-S trending Vattalkundu-Kanyakumari geotransect. The final tectonic model represents large compositional changes of subsurface rocks accompanied by velocity heterogeneities with crustal thinning (44-36 km) and Moho upwarping from north to south. This study also reveals and successfully imaged anomalous zone of exhumation near AKSZ having transpression of exhumed rocks at mid-to-lower crustal level (20-30 km) with significant underplating and mantle upwelling forming a complex metamorphic province. The presence of shear zones with high-grade charnockite massifs in the upper-crust exposed in several places reveal large scale exhumation of granulites during the Pan-African rifting (~ 550 Ma) and provide important insights of plume-continental lithosphere interaction with reconstruction of the Gondwanaland.

  6. Electrical imaging of deep crustal features of Kutch, India

    Science.gov (United States)

    Sastry, R. S.; Nagarajan, Nandini; Sarma, S. V. S.

    2008-03-01

    A regional Magnetotelluric (MT) study, was carried out with 55 MT soundings, distributed along five traverses, across the Kutch Mainland Unit (KMU), on the west coast of India, a region characterized by a series of successive uplifts and intervening depressions in the form of half graben, bounded by master faults. We obtain the deeper electrical structure of the crust beneath Kutch, from 2-D modelling of MT data along the 5 traverses, in order to evaluate the geo-electrical signatures, if any, of the known primary tectonic structures in this region. The results show that the deeper electrical structure in the Kutch region presents a mosaic of high resistive crustal blocks separated by deep-rooted conductive features. Two such crustal conductive features spatially correlate with the known tectonic features, viz., the Kutch Mainland Fault (KMF), and the Katrol Hill Fault (KHF). An impressive feature of the geo-electrical sections is an additional, well-defined conductive feature, running between Jakhau and Mundra, located at the southern end of each of the five MT traverses and interpreted to be the electrical signature of yet another hidden fault at the southern margin of the KMU. This new feature is named as Jakhau-Mundra Fault (JMF). It is inferred that the presence of JMF together with the Kathiawar Fault (NKF), further south, located at the northern boundary of the Saurashtra Horst, would enhance the possibility of occurrence of a thick sedimentary column in the Gulf of Kutch. The region between the newly delineated fault (JMF) and the Kathiawar fault (NKF) could thus be significant for Hydrocarbon Exploration.

  7. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    Science.gov (United States)

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased

  8. Sub-crustal seismic activity beneath Klyuchevskoy Volcano

    Science.gov (United States)

    Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.

    2013-12-01

    Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep

  9. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang

    2015-07-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  10. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-01-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  11. Crustal insights from gravity and aeromagnetic analysis: Central North Slope, Alaska

    Science.gov (United States)

    Saltus, R.W.; Potter, C.J.; Phillips, J.D.

    2006-01-01

    Aeromagnetic and gravity data are processed and interpreted to reveal deep and shallow information about the crustal structure of the central North Slope, Alaska. Regional aeromagnetic anomalies primarily reflect deep crustal features. Regional gravity anomalies are more complex and require detailed analysis. We constrain our geophysical models with seismic data and interpretations along two transects including the Trans-Alaska Crustal Transect. Combined geophysical analysis reveals a remarkable heterogeneity of the pre-Mississippian basement. In the central North Slope, pre-Mississippian basement consists of two distinct geophysical domains. To the southwest, the basement is dense and highly magnetic; this basement is likely mafic and mechanically strong, possibly acting as a buttress to basement involvement in Brooks Range thrusting. To the northeast, the central North Slope basement consists of lower density, moderately magnetic rocks with several discrete regions (intrusions?) of more magnetic rocks. A conjugate set of geophysical trends, northwest-southeast and southwest-northeast, may be a factor in the crustal response to tectonic compression in this domain. High-resolution gravity and aeromagnetic data, where available, reflect details of shallow fault and fold structure. The maps and profile models in this report should provide useful guidelines and complementary information for regional structural studies, particularly in combination with detailed seismic reflection interpretations. Future challenges include collection of high-resolution gravity and aeromagnetic data for the entire North Slope as well as additional deep crustal information from seismic, drilling, and other complementary methods. Copyrights ?? 2006. The American Association of Petroleum Geologists. All rights reserved.

  12. Combined Gravimetric-Seismic Crustal Model for Antarctica

    Science.gov (United States)

    Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad

    2018-01-01

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24

  13. Physics of Earthquake Disaster: From Crustal Rupture to Building Collapse

    Science.gov (United States)

    Uenishi, Koji

    2018-05-01

    Earthquakes of relatively greater magnitude may cause serious, sometimes unexpected failures of natural and human-made structures, either on the surface, underground, or even at sea. In this review, by treating several examples of extraordinary earthquake-related failures that range from the collapse of every second building in a commune to the initiation of spontaneous crustal rupture at depth, we consider the physical background behind the apparently abnormal earthquake disaster. Simple but rigorous dynamic analyses reveal that such seemingly unusual failures actually occurred for obvious reasons, which may remain unrecognized in part because in conventional seismic analyses only kinematic aspects of the effects of lower-frequency seismic waves below 1 Hz are normally considered. Instead of kinematics, some dynamic approach that takes into account the influence of higher-frequency components of waves over 1 Hz will be needed to anticipate and explain such extraordinary phenomena and mitigate the impact of earthquake disaster in the future.

  14. Crustal Growth: In Defense of the Dogma

    Science.gov (United States)

    Albarede, F.; Blichert-Toft, J.; Guitreau, M.

    2012-12-01

    Plate tectonics was not even in its teens when Armstrong suggested that mantle and crust have interacted at steady-state over Earth's history. With the help of new geochemical tools and large-scale compilations, the concept of steady-state crust (as opposed to continuous crustal growth) is being revived with the implications that the equivalent of several volumes of present-day crust (PDCV) may have been subducted through geological times. Here we argue --or recall-- that four different lines of evidence invalidate this model. (i) The subduction filter must be particularly efficient for argon, even more so than for LILE and most other volatile elements. Atmosphere collects 40Ar degassed from both the extant crust and the crust dragged down at subduction zones over geological time. Regardless of the residence time of the crust at the surface, the amount of atmospheric 40Ar limits subduction of continental crust into the mantle to < 30% of the PDCV [1]. (ii) EM II, the only component that undoubtedly represents subducted continental crust in oceanic basalts, is extremely uncommon. (iii) Crustal age histograms are irrepressibly episodic. It has been argued that erosion selectively removes the crust with the elusive ages [2]. Ages of detrital zircons, which in the selective erosion conjecture should fill the voids, do not support this view [3]. Episodicity is difficult to reconcile with a continental protolith isolated by the common geological processes working either at mid-ocean ridges or subduction zones. A role may be recognized for Wilson cycles, if they can be shown to have prevailed for the entire history of the Earth. Geochemistry demonstrates that superplume material makes up the crustal protolith of all the major juvenile provinces. (iv) The residence time in the mantle of the elements distinctive of the crust is similar to the age of the Earth or even longer [4]. Continental crust finds its source in the instabilities of the lower mantle and the irreversible

  15. The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data

    Directory of Open Access Journals (Sweden)

    Horng-Yuan Yen

    2015-01-01

    Full Text Available We constructed a new free-air gravity anomaly map of the Philippine Sea Plate (PSP using ship-tracked gravity data from the National Geophysical Data Center (NGDC. Our results show that the isogals trend correlates well with the tectonic structures in the PSP. After removing the gravity induced by sea water from the free-air gravity data, we obtained the regional Bouguer gravity anomaly, which is later used to compute the Moho geometry in the PSP by applying the Parker-Oldenburg iterative method. Our results indicate that in the southern part of the West Philippine Basin (WPB the crustal thickness is nearly homogeneous with a value of about 5 km, which implies that the WPB is quite stable. The low-amplitude and near-zero free-air gravity anomalies clearly indicate that the whole WPB, except at trenches and island arcs, is nearly in a state of isostatic equilibrium. The average crustal thickness of the Palau Kyushu Ridge (PKR is more than 10 km. In the eastern PSP the crustal thickness gradually increases eastward. Our results also imply that a relatively thin and low density mantle exists beneath the Parece Vela Basin (PVB as a consequence of back-arc spreading and serpentinized upwells of the thin crustal thickness.

  16. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    Science.gov (United States)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  17. Cratonic roots and lower crustal seismicity: Investigating the role of deep intrusion in the Western rift, Africa

    Science.gov (United States)

    Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.

    2017-12-01

    Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to

  18. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  19. Extensional Tectonics of SW Anatolia In relation to Slab Edge Processes in the Eastern Mediterranean

    Science.gov (United States)

    Kaymakci, N.; Özacar, A.; Langereis, C. G.; Ozkaptan, M.; Koç, A.; Uzel, B.; Gulyuz, E.; Sözbilir, H.

    2017-12-01

    The tectonics of SW Anatolia is expressed in terms of emplacement of Lycian Nappes during the Eocene to Middle Miocene and synconvergent extension as part of the Aegean-West Anatolian extensional tectonic regime. Recent studies identified that there is a tear in the northwards subducting African Oceanic lithosphere along the Pliny-Strabo Trenches (PST). Such tears are coined as Subduction Transform-Edge Propagator (STEP) faults developed high angle to trenches. Hypothetically, the evolution of a STEP fault is somewhat similar to strike-slip fault zones and resultant asymmetric role-back of the subducting slab leads to differential block rotations and back arc type extension on the overriding plate. Recent studies claimed that the tear along the PST propagated NE on-land and developed Fethiye-Burdur Fault/Shear Zone (FBFZ) in SW Turkey. We have conducted a rigorous paleomagnetic study containing more than 3000 samples collected from 88 locations and 11700 fault slip data sets from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene to test if FBFZ ever existed. The results show that there is slight (20°) counter-clockwise rotation distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, constructed paleostress configurations, along the so-called FBFZ and within the 300 km diameter of the proposed fault zone, indicated that almost all the faults that are parallel to subparallel to the zone are almost pure normal faults similar to earthquake focal mechanisms suggesting active extension in the region. It is important to note that we have not encountered any significant strike-slip motion parallel to so-called "FBFZ" to support presence and transcurrent nature of it. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the

  20. Extensional Tectonics and Sedimentary Architecture Using 3-D Seismic Data: An Example from Hydrocarbon-Bearing Mumbai Offshore Basin, West Coast of India

    Science.gov (United States)

    Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.

    2016-12-01

    In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.

  1. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast