WorldWideScience

Sample records for cross-sections scattering matrix

  1. Covariance Matrix of a Double-Differential Doppler-Broadened Elastic Scattering Cross Section

    Science.gov (United States)

    Arbanas, G.; Becker, B.; Dagan, R.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Williams, M. L.

    2012-05-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on 238U are computed near the 6.67 eV resonance at temperature T = 103 K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  2. Positive Scattering Cross Sections using Constrained Least Squares

    International Nuclear Information System (INIS)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-01-01

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  3. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  4. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  5. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  6. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  7. Neutron total and scattering cross sections of 6Li in the few MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file

  8. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  9. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  10. Validity of the independent-processes approximation for resonance structures in electron-ion scattering cross sections

    International Nuclear Information System (INIS)

    Badnell, N.R.; Pindzola, M.S.; Griffin, D.C.

    1991-01-01

    The total inelastic cross section for electron-ion scattering may be found in the independent-processes approximation by adding the resonant cross section to the nonresonant background cross section. We study the validity of this approximation for electron excitation of multiply charged ions. The resonant-excitation cross section is calculated independently using distorted waves for various Li-like and Na-like ions using (N+1)-electron atomic-structure methods previously developed for the calculation of dielectronic-recombination cross sections. To check the effects of interference between the two scattering processes, we also carry out detailed close-coupling calculations for the same atomic ions using the R-matrix method. For low ionization stages, interference effects manifest themselves sometimes as strong window features in the close-coupling cross section, which are not present in the independent-processes cross section. For higher ionization stages, however, the resonance features found in the independent-processes approximation are found to be in good agreement with the close-coupling results

  11. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory.

    Science.gov (United States)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  12. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  13. Scattering cross-section of an inhomogeneous plasma cylinder

    International Nuclear Information System (INIS)

    Jiaming Shi; Lijian Qiu; Ling, Y.

    1995-01-01

    Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated

  14. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1980-06-01

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  15. Self-scattering cross-section of molecules in a beam

    International Nuclear Information System (INIS)

    Lou, Y.S.

    1974-01-01

    Molecular collision cross-section has always been measured by the beam scattering method, or by the measurements of thermal conductivity and/or viscosity coefficient, etc. The cross-section thus obtained has been found to be different, qualitatively, from that of the self-scattering of the molecules moving within a molecular beam. By perturbing the zeroth order solution of the Boltzmann equation with a B-G-K kinetic model for the gas upstream to the orifice, and performing particle scattering calculation for molecules within the beam downstream to the orifice, such self-scattering collision cross-section can be determined from the experimental data of velocity distribution functions of molecules in the beam

  16. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  17. Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison.

    Science.gov (United States)

    Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim

    2017-12-15

    The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

  18. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  19. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  20. Scattering cross-sections of common calibration gases measured by IBBCEAS technique

    Directory of Open Access Journals (Sweden)

    S.I. Issac

    Full Text Available In this study, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS was used to measure scattering cross-sections of a few common gases in the 650–670 nm spectral range relative to that of dry air. Precise measurements of scattering cross-sections of these calibration gases in the visible spectral range are important. The IBBCEAS system developed in the laboratory was calibrated with a low-loss optical window. The measurements made at 660 nm were compared with previously measured cross-section values and found to be in good agreement with the existing measurements. Keywords: IBBCEAS, Rayleigh scattering, Scattering cross section

  1. Fast-neutron total and scattering cross sections of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V.

  2. Fast-neutron total and scattering cross sections of niobium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V

  3. Fast-neutron scattering cross sections of elemental silver

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-05-01

    Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160 0 . Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V

  4. Improved surface-roughness scattering and mobility models for multi-gate FETs with arbitrary cross-section and biasing scheme

    Science.gov (United States)

    Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.

    2017-06-01

    We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.

  5. Fast-neutron scattering cross sections of elemental zirconium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-12-01

    Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V

  6. Differential cross sections for neutrino scattering on 12C

    International Nuclear Information System (INIS)

    Kolbe, E.

    1996-01-01

    Differential cross sections for neutrino scattering on 12 C are calculated within the (continuum) random phase approximation model. The charged current (ν e ,e - ) and (ν μ ,μ - ) capture reactions on 12 C are measured by the LSND Collaboration at LAMPF. We investigate and discuss the merits of such studies, especially the information that can be extracted from data for differential neutrino scattering cross sections. copyright 1996 The American Physical Society

  7. Theory of the particle matrix elements for Helium atom scattering in surfaces

    International Nuclear Information System (INIS)

    Khater, A.; Toennies, J.P.

    2000-01-01

    Full text.A brief review is presented for the recent development of the theory of the particle transition matrix elements, basic to the cross section for Helium and inert particle scattering at thermal energies in solid surfaces. the Jackson and Mott matrix elements are presented and discussed for surface scattering processes, habitually classified as elastic and inelastic. Modified transition matrix elements, introduced originally to account for the cut-off effects, are presented in a direct and simple manner. the Debye-Waller factor is introduced and discussed. A recent calculation for the particle transition matrix elements is presented for the specular and inelastic transition matrix elements and the corresponding inelastic scattering cross section is compared in detail to experimental data. the specular and inelastic transition matrix elements are found to be intrinsically similar owing to the intermediate role of a proposed virtual particle squeezed state near the surface

  8. Description of elastic scattering in U-matrix method

    International Nuclear Information System (INIS)

    Edneral, V.F.; Troshin, S.M.; Tyurin, N.E.; Khrustalev, O.A.

    1975-01-01

    The elastic pp-scattering has been analyzed using a generalized reaction matrix (the U-matrix). A good agreement has been reached with the experimental total cross sections for the (pp) reaction beginning with an energy of 30 GeV and for the dsub(t)(dt)(pp) for four ISR energies [ru

  9. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  10. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  11. Dispersion corrections to the forward Rayleigh scattering amplitudes of tantalum, mercury and lead derived using photon interaction cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Appaji Gowda, S.B. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India); Umesh, T.K. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India)]. E-mail: tku@physics.uni-mysore.ac.in

    2006-01-15

    Dispersion corrections to the forward Rayleigh scattering amplitudes of tantalum, mercury and lead in the photon energy range 24-136 keV have been determined by a numerical evaluation of the dispersion integral that relates them through optical theorem to the photo effect cross sections. The photo effect cross sections have been extracted by subtracting the coherent and incoherent scattering contribution from the measured total attenuation cross section, using high-resolution high-purity germanium detector in a narrow beam good geometry set up. The real part of the dispersion correction to which the relativistic corrections calculated by Kissel and Pratt (S-matrix approach) or Creagh and McAuley (multipole corrections) have been included are in better agreement with the available theoretical values.

  12. Scattering and absorption differential cross sections for double ...

    Indian Academy of Sciences (India)

    The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent final photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin ...

  13. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    Science.gov (United States)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  14. Neutron Scattering Differential Cross Sections for 12C

    Science.gov (United States)

    Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2016-09-01

    Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).

  15. Thermal neutron scattering cross sections of beryllium and magnesium oxides

    International Nuclear Information System (INIS)

    Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah

    2016-01-01

    Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.

  16. Fast-neutron total and scattering cross sections of 103Rh

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Fast-neutron total cross sections of 103 Rh are measured with 30 to 50 keV resolutions from 0.7 to 4.5 MeV. Differential elastic- and inelastic-scattering cross sections are measured from 1.45 to 3.85 MeV. Scattered-neutron groups corresponding to excited levels at 334 +- 13, 536 +- 7, 648 +- 25, 796 +- 20, 864 +- 22, 1120 +- 22, 1279 +- 50, 1481 +- 27, 1683 +- 39, 1840 +- 79, 1991 +- 71 and 2050 (tentative) keV are observed. An optical-statistical model is derived from the elastic-scattering results. The experimental values are compared with comparable quantities given in the ENDF/B-V evaluation

  17. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Science.gov (United States)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  18. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com [Atomic and Molecular Physics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad (India)

    2016-07-21

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  19. Total cross sections for positron and electron scattering from pyrimidine

    International Nuclear Information System (INIS)

    Zecca, A; Chiari, L; Trainotti, E; GarcIa, G; Blanco, F; Brunger, M J

    2010-01-01

    In this paper we report original measurements of total cross sections for positron scattering from the important biomolecule pyrimidine. The energy range of these measurements was 0.3-45 eV, while the energy resolution was ∼260 meV. In addition, we report theoretical results, calculated within the independent atom-screened additivity rule (IAM-SCAR) formalism, for the corresponding electron impact total cross sections. In that case the energy range is 1-10 000 eV. Total cross sections are very important input data for codes that seek to simulate charged-particle tracks in matter, as they define the mean-free path between collisions. As the present data and computations are to the best of our knowledge the first total cross sections to be reported for either positron or electron scattering from pyrimidine, they fill an important void in our available knowledge in the literature.

  20. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  1. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    Science.gov (United States)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  2. Comparison of matrix methods for elastic wave scattering problems

    International Nuclear Information System (INIS)

    Tsao, S.J.; Varadan, V.K.; Varadan, V.V.

    1983-01-01

    This article briefly describes the T-matrix method and the MOOT (method of optimal truncation) of elastic wave scattering as they apply to A-D, SH- wave problems as well as 3-D elastic wave problems. Two methods are compared for scattering by elliptical cylinders as well as oblate spheroids of various eccentricity as a function of frequency. Convergence, and symmetry of the scattering cross section are also compared for ellipses and spheroidal cavities of different aspect ratios. Both the T-matrix approach and the MOOT were programmed on an AMDHL 470 computer using double precision arithmetic. Although the T-matrix method and MOOT are not always in agreement, it is in no way implied that any of the published results using MOOT are in error

  3. FAIR-DDX, Double Diffusion Cross-Sections Scattering Matrix Generated from ENDF/B-4 or JENDL-2

    International Nuclear Information System (INIS)

    Minami, Kazuyoshi; Yamano, Naoki

    2001-01-01

    1 - Description of program or function: FAIR-DDX produces double differential (energy and angle) cross sections (DDX) in the form of group-to-group scattering matrices using the evaluated nuclear data libraries JENDL-2 or ENDF/B-IV. The DDX form is useful for verification of the evaluated data, such as the inelastic scattering, through comparison with the experimental DDX values. 2 - Method of solution: DDX uses the file 4 data (angular distribution of secondary neutrons) and the energy and momentum conservation laws. For continuum region reactions, file 5 (energy spectrum of secondary neutrons) is used. To express the angular distribution of secondary neutrons in group-to-group scattering matrices FAIR-DDX adopts a direct angular representation method. 3 - Restrictions on the complexity of the problem: The maximum number of energy groups is 200

  4. New type of cross section singularity in backward scattering: the Coulomb glory

    International Nuclear Information System (INIS)

    Demkov, Y.N.; Ostrovskii, V.N.; Tel'nov, D.A.

    1984-01-01

    For classical scattering by a central potential that exhibits Coulomb behavior (i.e., that is attractive) at small distances, the scattering angle theta tends to π as the orbital angular momentum L decreases. The differential cross section for scattering through angles close to π can be characterized by the power series expansion of the difference theta(L)--π in small L, only odd powers of L being present in this expansion. Expressions are found for the coefficients in the linear (c 1 ) and cubic (c 3 ): in L: terms. It is shown that, for a broad class of screened Coulomb potentials, the coefficient c 1 vanishes at some value of the collision energy E 0 . At the energy E = E 0 the classical cross section diverges in the case of backward scattering (the Coulomb glory); in wave mechanics the cross section possesses a maximum. The behavior of the cross section for energies close to E 0 is computed. The application of the theory to electron scattering by atoms, in which the Coulomb interaction at small distances is determined by the interaction with the nucleus (charge Z) and E 0 = 0.0103Z 4 /sup // 3 keV, is discussed

  5. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.; Rimpault, G.

    2012-01-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, which better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)

  6. Effective temperatures and scattering cross sections in water mixtures determined by Deep Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Dawidowski, J.; Rodríguez Palomino, L.A.; Márquez Damián, J.I.; Blostein, J.J.; Cuello, G.J.

    2016-01-01

    Highlights: • Effective temperatures of atoms can be determined by the DINS technique. • This is the first time that such application of this experimental technique is made. • This technique is able to measure the known cross sections of the atoms. • No anomalous cross section was found, at variance with Dreissmann’s et al. claims. - Abstract: The present work shows a series of results of Deep Inelastic Neutron Scattering (DINS) experiments on light and heavy water mixtures performed at the spectrometer VESUVIO (Rutherford Appleton Laboratory, UK) employing an analysis method based on the information provided by individual detectors in forward and backward scattering positions. We investigated the effective temperatures of the different atoms composing the samples, a magnitude of considerable interest for Nuclear Engineering. The peak intensities and their relation with the bound-atom cross sections is analyzed, showing a good agreement with tabulated values which supports the use of this technique as non-destructive mass spectrometry. Previous results in the determination of scattering cross sections by this technique (known in the literature) that were at variance with the present findings are commented.

  7. Differential cross sections for e-bar CO elastic scattering

    International Nuclear Information System (INIS)

    Raj, Deo; Meetu

    2005-01-01

    In a recent investigation, Raj and Kumar modified the absorption potential of Staszewska el at al in such a way that it yielded the best agreement between theory and experiment for elastic cross sections when applied to e-bar - O 2 scattering over a wide incident energy range. In the present investigation, the same modified absorption potential of Raj and Kumar has been employed to obtain the elastic differential cross sections (EDCS) for electron scattering by CO molecules at intermediate energies (100-800 eV). The independent atom model alongwith partial waves has been used for these calculations.The present results of EDCS are in fairly good agreement with the experimental data. (author)

  8. Bound coherent and incoherent thermal neutron scattering cross sections of the elements

    International Nuclear Information System (INIS)

    Sears, V.F.

    1982-12-01

    An up-to-date table of bound coherent and incoherent thermal neutron scattering cross sections of the elements is presented. Values from two different data sources are calculated and compared. These sources are: (1) the free-atom cross sections listed in the Σbarn bookΣ and (2) the Julich scattering length tables. We also call attention to, and clarify, the confusion that exists in the literature concerning the sign of the imaginary part of the complex scattering length

  9. Precise relative cross sections for np scattering

    International Nuclear Information System (INIS)

    Goetz, J.; Brogli-Gysin, C.; Hammans, M.; Haffter, P.; Henneck, R.; Jourdan, J.; Masson, G.; Qin, L.M.; Robinson, S.; Sick, I.; Tuccillo, M.

    1994-01-01

    We present data on the differential cross section for neutron-proton scattering for an incident neutron energy of 67 MeV. These data allow a precise determination of the 1 P 1 phase which, in phase-shift analyses, is strongly correlated with the S-D amplitude which we are measuring via different observables. ((orig.))

  10. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector.

    Science.gov (United States)

    Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven

    2012-01-01

    A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.

  11. Effective response and scattering cross section of spherical inclusions in a medium

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulos, A., E-mail: Aris.Alexopoulos@dsto.defence.gov.a [Electronic Warfare and Radar Division, Defence Science and Technology Organisation (DSTO), PO Box 1500, Edinburgh 5111 (Australia)

    2009-08-24

    The Maxwell-Garnett theory for a right-handed homogeneous system is extended in order to investigate the effective response of a medium consisting of low density distributed 3-dimensional inclusions. The polarisability factor is modified to account for inclusions with binary layered volumes and it is shown that such a configuration can yield doubly negative effective permittivity and permeability. Terms representing second-order scattering interactions between binary inclusions in the medium are derived and are used to reformulate conventional effective medium theory. In the appropriate limit, the one-body theory of Maxwell-Garnett is recovered. The scattering cross section of the spherical inclusions is determined and comparison is made to homogeneous dielectric scatterers in the Rayleigh limit. It is found that the scattering resonances can be manipulated using the inclusion parameters. Furthermore, the effect that two-interacting spherical inclusions in a medium have on the scattering cross section is investigated via higher order dipole moments while the issue of reducing the scattering cross section to zero is also examined.

  12. Absolute elastic cross sections for electron scattering from SF6

    International Nuclear Information System (INIS)

    Gulley, R.J.; Uhlmann, L.J.; Dedman, C.J.; Buckman, S.J.; Cho, H.; Trantham, K.W.

    2000-01-01

    Full text: Absolute differential cross sections for vibrationally elastic scattering of electrons from sulphur hexafluoride (SF 6 ) have been measured at fixed angles of 60 deg, 90 deg and 120 deg over the energy range of 5 to 15 eV, and also at 11 fixed energies between 2.7 and 75 eV for scattering angles between 10 deg and 180 deg. These measurements employ the magnetic angle-changing technique of Read and Channing in combination with the relative flow technique to obtain absolute elastic scattering cross sections at backward angles (135 deg to 180 deg) for incident energies below 15 eV. The results reveal some substantial differences with several previous determinations and a reasonably good level of agreement with a recent close coupling calculation

  13. SFERXS, Photoabsorption, Coherent, Incoherent Scattering Cross-Sections Function for Shielding

    International Nuclear Information System (INIS)

    Legarda, F.; Mtz de la Fuente, O.; Herranz, M.

    2002-01-01

    Description of program or function: The use of electromagnetic radiation cross-sections in radiation shielding calculations and more generally in transport theory applications actually requires an interpolation between values which are tabulated for certain values of the energy. In order to facilitate this process and to reduce the computer memory requirements, we have developed, by a least squares method, a set of functions which represents the cross-sections for the photoelectric absorption, the coherent (Rayleigh) and the incoherent (Compton) scattering (1). For this purpose we have accepted as true values the ones tabulated by Storm and Israel (2) for the photoeffect, by Hubbell et Al. (3) for the incoherent scattering and by Hubbell and Overbo (4) for the coherent scattering

  14. Program POD; A computer code to calculate nuclear elastic scattering cross sections with the optical model and neutron inelastic scattering cross sections by the distorted-wave born approximation

    International Nuclear Information System (INIS)

    Ichihara, Akira; Kunieda, Satoshi; Chiba, Satoshi; Iwamoto, Osamu; Shibata, Keiichi; Nakagawa, Tsuneo; Fukahori, Tokio; Katakura, Jun-ichi

    2005-07-01

    The computer code, POD, was developed to calculate angle-differential cross sections and analyzing powers for shape-elastic scattering for collisions of neutron or light ions with target nucleus. The cross sections are computed with the optical model. Angle-differential cross sections for neutron inelastic scattering can also be calculated with the distorted-wave Born approximation. The optical model potential parameters are the most essential inputs for those model computations. In this program, the cross sections and analyzing powers are obtained by using the existing local or global parameters. The parameters can also be inputted by users. In this report, the theoretical formulas, the computational methods, and the input parameters are explained. The sample inputs and outputs are also presented. (author)

  15. Fast-neutron total and elastic-scattering cross sections of elemental indium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Broad-resolution neutron total cross sections of elemental indium were measured from 0.8 to 4.5 MeV. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 3.8 MeV at intervals of approx. = 50 to 200 keV and at scattering angles in the range 20 to 160 degrees. The experimental results are interpreted in terms of the optical-statistical model and are compared with respective values given in ENDF/B-V

  16. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    Science.gov (United States)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  17. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  18. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1998-02-01

    The authors are describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 50 GeV to √s = 500 GeV in two kinematical regions. In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , they will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|-region, |t| 2 , they plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin states Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied. The relation of pp elastic scattering to the beam polarization measurement at RHIC is also discussed

  19. Atomic form factors, incoherent scattering functions, and photon scattering cross sections

    International Nuclear Information System (INIS)

    Hubbell, J.H.; Veigele, W.J.; Briggs, E.A.; Brown, R.T.; Cromer, D.T.; Howerton, R.J.

    1975-01-01

    Tabulations are presented of the atomic form factor, F (α,Z), and the incoherent scattering function, S (x,Z), for values of x (=sin theta/2)/lambda) from 0.005 A -1 to 10 9 A -1 , for all elements A=1 to 100. These tables are constructed from available state-of-the-art theoretical data, including the Pirenne formulas for Z=1, configuration-into action results by Brown using Brown-Fontana and Weiss correlated wavefunctions for Z=2 to 6 non-relativistic Hartree-Fock results by Cromer for Z=7 to 100 and a relativistic K-shell analytic expression for F (x,Z) by Bethe Levinger for x>10 A -1 for all elements Z=2 to 100. These tabulated values are graphically compared with available photon scattering angular distribution measurements. Tables of coherent (Rayleigh) and incoherent (Compton) total scattering cross sections obtained by nummerical integration over combinations of F 2 (x,Z) with the Thomson formula and S (x,Z) with the Klum-Nishina Formual, respectively, are presented for all elements Z=1 to 100, for photon energies 100 eV (lambda=124 A) to 100 MeV (0.000124 A). The incoherent scattering cross sections also include the radiative and double-Compton corrections as given by Mork. Similar tables are presented for the special cases of terminally-bonded hydrogen and for the H 2 molecule, interpolated and extrapolated from values calculated by Stewart et al., and by Bentley and Stewart using Kolos-Roothaan wavefunctions

  20. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1995-01-01

    The author is describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 60 GeV to √s = 500 GeV in two kinematical regions .In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , we will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|, |t| ≤ 1.5 (GeV/c) 2 , we plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin stated Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied

  1. Medium modified two-body scattering amplitude from proton-nucleus total cross-sections

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.

  2. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Directory of Open Access Journals (Sweden)

    Heusch M.

    2010-10-01

    Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.

  3. Fast-neutron total and scattering cross sections of elemental palladium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-06-01

    Neutron total cross sections of palladium are measured from approx. = 0.6 to 4.5 MeV with resolutions of approx. = 30 to 70 keV at intervals of less than or equal to 50 keV. Differential neutron elastic- and inelastic-scattering cross sections are measured from 1.4 to 3.85 MeV at intervals of 50 to 100 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 0 . The experimental results are compared with respective quantities given in ENDF/B-V and used to deduce an optical potential that provides a good description of the measured values

  4. Fast-neutron total and scattering cross sections of elemental palladium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-06-01

    Neutron total cross sections of palladium are measured from approx. = 0.6 to 4.5 MeV with resolutions of approx. = 30 to 70 keV at intervals of less than or equal to 50 keV. Differential neutron elastic- and inelastic-scattering cross sections are measured from 1.4 to 3.85 MeV at intervals of 50 to 100 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160/sup 0/. The experimental results are compared with respective quantities given in ENDF/B-V and used to deduce an optical potential that provides a good description of the measured values.

  5. R-matrix analysis of the /sup 239/Pu neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Saussure, G. de; Perez, R.B.; Macklin, R.L.

    1986-03-01

    /sup 239/Pu neutron cross-section data in the resolved resonance region were analyzed with the R-Matrix Bayesian Program SAMMY. Below 30 eV the cross sections computed with the multilevel parameters are consistent with recent fission and transmission measurements as well as with older capture and alpha measurements. Above 30 eV no suitable transmission data were available and only fission cross-section measurements were analyzed. However, since the analysis conserves the complete covariance matrix, the analysis can be updated by the Bayes method as transmission measurements become available. To date, the analysis of the fission measurements has been completed up to 300 eV.

  6. Homogenization of linearly anisotropic scattering cross sections in a consistent B1 heterogeneous leakage model

    International Nuclear Information System (INIS)

    Marleau, G.; Debos, E.

    1998-01-01

    One of the main problems encountered in cell calculations is that of spatial homogenization where one associates to an heterogeneous cell an homogeneous set of cross sections. The homogenization process is in fact trivial when a totally reflected cell without leakage is fully homogenized since it involved only a flux-volume weighting of the isotropic cross sections. When anisotropic leakages models are considered, in addition to homogenizing isotropic cross sections, the anisotropic scattering cross section must also be considered. The simple option, which consists of using the same homogenization procedure for both the isotropic and anisotropic components of the scattering cross section, leads to inconsistencies between the homogeneous and homogenized transport equation. Here we will present a method for homogenizing the anisotropic scattering cross sections that will resolve these inconsistencies. (author)

  7. Electron scattering cross sections pertinent to electron microscopy

    International Nuclear Information System (INIS)

    Inokuti, M.

    1978-01-01

    Some elements of the physics that determine cross sections are discussed, and various sources of data are indicated that should be useful for analytical microscopy. Atoms, molecules, and to some extent, solids are considered. Inelastic and elastic scattering of electrons and some solid-state effects are treated. 30 references

  8. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  9. 54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV

    Science.gov (United States)

    Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.

    2018-04-01

    Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.

  10. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  11. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Science.gov (United States)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  12. TOTEM Results on Elastic Scattering and Total Cross-Section

    CERN Document Server

    Kašpar, Jan

    2015-01-01

    TOTEM is an LHC experiment dedicated to forward hadronic physics. In this contribution, two main parts of its physics programme - proton-proton elastic scattering and total cross-section - are discussed. The analysis procedures are outlined and their status is reviewed.

  13. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Science.gov (United States)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  14. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Directory of Open Access Journals (Sweden)

    Nyman Markus

    2017-01-01

    Full Text Available The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC method. Experiments for studying neutrinoless double-β decay (2β0ν or other very rare processes require greatly reducing the background radiation level (both intrinsic and external. Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  15. Signatures of projectile-nucleus scattering in three-dimensional (e,2e) cross sections for argon

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xueguang; Senftleben, Arne; Pflueger, Thomas; Dorn, Alexander; Ullrich, Joachim [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Bartschat, Klaus, E-mail: Xueguang.Ren@mpi-hd.mpg.d, E-mail: Alexander.Dorn@mpi-hd.mpg.d [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States)

    2010-02-14

    Electron impact ionization (E{sub 0} = 195 eV) of the 3p-orbital in argon is investigated experimentally and theoretically. The triple-differential cross sections (TDCS) obtained using a multi-particle momentum spectrometer (reaction microscope) cover more than 80% of the full solid angle for the slow emitted electron up to an energy of 25 eV and a range of projectile scattering angles from -5 deg. to -15 deg. Inside the projectile scattering plane the TDCS shape is in rather good agreement with a hybrid distorted-wave plus R-matrix (DWBA-RM) calculation. Outside the scattering plane relatively strong electron emission is observed which is reproduced by theory in magnitude but not in shape. A systematic study of the TDCS behaviour and structure in this region indicates that its origin lies in high-order projectile-target interaction.

  16. Total cross sections for electron scattering with halocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Naghma, Rahla; Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    2014-03-01

    Highlights: • A quantum mechanical model to find elastic, inelastic and total CS by e{sup −} impact. • Spherical complex optical potential formalism is used to find total CS. • Result shows consistency and good agreement with previous data wherever available. • Maiden attempt to find CS for CH{sub 2}Br{sub 2}, CHBr{sub 3}, CBr{sub 4} and C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules. • Interesting correlation observed between total CS and polarizability of the molecule. - Abstract: A theoretical study on electron collision with chlorinated methanes: CH{sub 2}Cl{sub 2} and CHCl{sub 3}, brominated methanes: CH{sub 2}Br{sub 2}, CHBr{sub 3} and CBr{sub 4} and some mono chloroalkanes: C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules in gaseous ground state is undertaken to report elastic, inelastic and total cross sections in the 20–5000 eV energy range. The target molecule is represented as a sum of various scattering centres, which are assumed to scatter electrons independently. The spherical complex optical potential (SCOP) is formulated to represent the interaction dynamics between the electron and the constituent scattering centres. Using SCOP, the quantum mechanical scattering problem is solved through partial wave analysis. The results obtained for CH{sub 2}Cl{sub 2} and CHCl{sub 3} are compared with the available experimental and theoretical values. The elastic cross section for CBr{sub 4} shows satisfactory agreement with the previous available data. The cross sections for CH{sub 2}Br{sub 2}, CHBr{sub 3}, and C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules presented in this work are reported for the first time.

  17. Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Dube, L.; Herzenberg, A.

    1979-01-01

    The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section

  18. Moments of the Bethe surface and total inelastic x-ray scattering cross sections for H2

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1987-01-01

    Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the Bethe surface. Apart from S(-1,K) which is related to the Waller-Hartree incoherent scattering factor, little is known about these moments for nonzero K. This paper describes high-accuracy calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made, and the utility of simple asymptotic approximations is confirmed. The moments are used to calculate differential cross sections for the inelastic scattering of x rays using the constant-momentum-transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-Hartree cross sections at large angles thus demonstrating the importance of making corrections to the Waller-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experimental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from H 2 are compared with synchrotron radiation scattering experiments. The calculations suggest that the Bonham constant-angle cross sections agree best with experiment. However, further experimental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-Hartree theory

  19. Hydrogen scattering cross section, 1H(n,n)1H

    International Nuclear Information System (INIS)

    Stewart, L.

    1979-07-01

    The status of the hydrogen scattering cross section is reviewed with particular emphasis on standards applications. The ENDF/B-V evaluation is described in detail and compared with experimental data. 58 references

  20. Scattering cross section of unequal length dipole arrays

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a detailed and systematic analytical treatment of scattering by an arbitrary dipole array configuration with unequal-length dipoles, different inter-element spacing and load impedance. It provides a physical interpretation of the scattering phenomena within the phased array system. The antenna radar cross section (RCS) depends on the field scattered by the antenna towards the receiver. It has two components, viz. structural RCS and antenna mode RCS. The latter component dominates the former, especially if the antenna is mounted on a low observable platform. The reduction in the scattering due to the presence of antennas on the surface is one of the concerns towards stealth technology. In order to achieve this objective, a detailed and accurate analysis of antenna mode scattering is required. In practical phased array, one cannot ignore the finite dimensions of antenna elements, coupling effect and the role of feed network while estimating the antenna RCS. This book presents the RCS estimati...

  1. MUTIL, Asymmetry Factor of Mott Cross-Sections for Electron, Positron Scattering

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    2002-01-01

    1 - Description of program or function: The asymmetry factor S of Mott's differential cross section for the scattering of electrons and positrons by point nuclei without screening is calculated for any energy, atomic number and angle of scattering. 2 - Method of solution: We have summed the conditionally convergent series, F and G, appearing in the asymmetry factor using two consecutive transformations: The one of Yennie, Ravenhall and Wilson and that of Euler till we have seven times six significant figures repeated in the factor S. 3 - Restrictions on the complexity of the problem: Those appearing in the use of Mott's cross section for unscreened point nuclei

  2. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    International Nuclear Information System (INIS)

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV

  3. Compton Scattering Cross Section on the Proton at High Momentum Transfer

    International Nuclear Information System (INIS)

    A. Danagoulian; V.H. Mamyan; M. Roedelbronn; K.A. Aniol; J.R.M. Annand; P.Y. Bertin; L. Bimbot; P. Bosted; J.R. Calarco; A. Camsonne; C.C. Chang; T.-H. Chang; J.-P. Chen; Seonho Choi; E. Chudakov; P. Degtyarenko; C.W. de Jager; A. Deur; D. Dutta; K. Egiyan; H. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; D.J. Hamilton; J.-O. Hansen; D. Hayes; D.W. Higinbotham; W. Hinton; T. Horn; C. Howell; T. Hunyady; C.E. Hyde-Wright; X. Jiang; M.K. Jones; M. Khandaker; A. Ketikyan; V. Koubarovski; K. Kramer; G. Kumbartzki; G. Laveissiere; J. LeRose; R.A. Lindgren; D.J. Margaziotis; P. Markowitz; K. McCormick; Z.-E. Meziani; R. Michaels; P. Moussiegt; S. Nanda; A.M. Nathan; D.M. Nikolenko; V. Nelyubin; B.E. Norum; K. Paschke; L. Pentchev; C.F. Perdrisat; E. Piasetzky; R. Pomatsalyuk; V.A. Punjabi; I. Rachek; A. Radyushkin; B. Reitz; R. Roche; G. Ron; F. Sabatie; A. Saha; N. Savvinov; A. Shahinyan; Y. Shestakov; S. Sirca; K. Slifer; P. Solvignon; P. Stoler; S. Tajima; V. Sulkosky; L. Todor; B. Vlahovic; L.B. Weinstein; K. Wang; B. Wojtsekhowski; H. Voskanyan; H. Xiang; X. Zheng; L. Zhu

    2007-01-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/- 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark

  4. Progress on calculation of direct inelastic scattering cross section of neutron

    Energy Technology Data Exchange (ETDEWEB)

    Zhenpeng, Chen [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1996-06-01

    For n+ {sup 238}U inelastic scattering cross, there exist discrepancies among the available evaluations in various libraries. This is partly duo to the difference of direct inelastic scattering cross section calculated with coupled channel optical model (CCOM). The research on the level frame used in CCOM calculation, the research on used parameters of spherical optical model in CCOM calculation and the research on the amplitude of octupole phonon {beta}{sub 3} were presented. (2 figs.).

  5. Fast-neutron elastic-scattering cross sections of elemental tin

    International Nuclear Information System (INIS)

    Budtz-Jorgensen, C.; Guenther, P.T.; Smith, A.

    1982-07-01

    Broad-resolution neutron-elastic-scattering cross sections of elemental tin are measured from 1.5 to 4.0 MeV. Incident-energy intervals are approx. 50 keV below 3.0 MeV and approx. 200 keV at higher energies. Ten to twenty scattering angles are used, distributed between approx. 20 and 160 0 . The experimental results are used to deduce the parameters of a spherical optical-statistical model and they are also compared with corresponding values given in ENDF/B-V

  6. ZZ ELAST2, Database of Cross Sections for the Elastic Scattering of Electrons and Positrons by Atoms

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: This database is an extension of the earlier database, 'Elastic Scattering of Electrons and Positrons by Atoms: Database ELAST', Report NISTIR 5188, 1993. Cross sections for the elastic scattering of electrons and positrons by atoms were calculated at energies from 1 KeV to 100 MeV. Up to 10 MeV the RELEL code of Riley was used. Above 10 MeV the ELSCAT code was used, which calculated the factored cross sections and evaluates the screening factor Kscr in WKB approximation. 2 - Application of the data: This database was developed to provide input for the transport codes, such as ETRAN, and includes differential cross sections, the total cross section, and the transport cross sections. In addition, a code TRANSX is provided that generates transport cross section of arbitrary order needed as input for the calculation of Goudsmit-Saunderson multiple-scattering angular distribution 3 - Source and scope of data: The database includes cross sections at 61 energies for electrons and 41 energies from positrons, covering the energy region from 1 KeV to 100 MeV. The number of deflection angles included in the database is 314 angles. Total and transport cross sections are also included in this package. The data files have an extension (jjj) that represents the atomic number of the target atom. The database includes auxiliary data files that enable the ELASTIC code to include the following optional modifications: (i) the inclusion of the exchange correction for electrons scattering; (ii) the conversion of the cross sections for scattering by free atoms to cross sections for scattering by atoms in solids; (iii) ti reduction of the cross sections at large angles and at high energies when the nucleus is treated as an extended rather than a point charge

  7. Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

    Science.gov (United States)

    Kostensalo, Joel; Suhonen, Jouni; Zuber, K.

    2018-03-01

    Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.

  8. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    International Nuclear Information System (INIS)

    Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.

    2015-01-01

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  9. Some remarks on the neutron elastic- and enelastic-scattering cross sections of palladium

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Smith, A.B.

    1989-05-01

    The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV neutrons from elemental palladium were measured at forty scattering angles distributed between ∼15/degree/ and 160/degree/. The inelastic-scattering cross sections for the excitation of palladium levels at energies of 260 keV to 560 keV were measured with high resolution at the same energies, and at a scattering angle of 80/degree/. The experimental results were combined with lower-energy values previously obtained by this group to provide a comprehensive data base extending from near the inelastic-scattering threshold to 8 MeV. That data base was interpreted in terms of a coupled-channel model, including the inelastic excitation of one- and two-phonon vibrational levels of the even isotopes of palladium. It was concluded that the palladium inelastic-scattering cross section, at the low energies of interest in assessment of fast-fission-reactor performance, are large (∼50% greater than given in widely used evaluated fission-product data files). They primarily involve compound-nucleus processes, with only a small direct-reaction component attributable to the excitation of the one-phonon, 2 + , vibrational levels of the even isotopes of palladium. 24 refs., 6 figs

  10. Code implementation of partial-range angular scattering cross sections: GAMMER and MORSE

    International Nuclear Information System (INIS)

    Ward, J.T. Jr.

    1978-01-01

    A partial-range (finite-element) method has been previously developed for representing multigroup angular scattering in Monte Carlo photon transport. Computer application of the method, with preliminary quantitative results is discussed here. A multigroup photon cross section processing code, GAMMER, was written which utilized ENDF File 23 point data and the Klein--Nishina formula for Compton scattering. The cross section module of MORSE, along with several execution routines, were rewritten to permit use of the method with photon transport. Both conventional and partial-range techniques were applied for comparison to calculating angular and spectral penetration of 6-MeV photons through a six-inch iron slab. GAMMER was found to run 90% faster than SMUG, with further improvement evident for multiple-media situations; MORSE cross section storage was reduced by one-third; cross section processing, greatly simplified; and execution time, reduced by 15%. Particle penetration was clearly more forward peaked, as moment accuracy is retained to extremly high order. This method of cross section treatment offers potential savings in both storage and handling, as well as improved accuracy and running time in the actual execution phase. 3 figures, 4 tables

  11. Gamow-Teller matrix elements from 00 ( p,n) cross section

    International Nuclear Information System (INIS)

    Goodman, C.D.; Goulding, C.A.; Greenfield, M.B.; Rapaport, J.; Bainum, D.E.; Foster, C.C.; Love, W.G.; Petrovich, F.

    1980-01-01

    After simple corrections for distortion effects, 120-MeV, 0 0 (p,n) cross sections are found to be proportional to the squares of the corresponding Fermi and Gamow-Teller matrix elements extracted from β-decay measurements. It is suggested that this proportionality can be used to extract Gamow-Teller matrix elements for transitions inaccessible to β decay

  12. Inversion of the total cross sections for electron-molecule and electron-atom scattering

    International Nuclear Information System (INIS)

    Lun, D.R.; Amos, K.; Allen, L.J.

    1994-01-01

    Inverse scattering theory has been applied to construct the interaction potentials from total cross sections as a function of energy for electrons scattered off of atoms and molecules. The underlying potentials are assumed to be real and energy independent and are evaluated using the Eikonal approximation and with real phase shifts determined from the total cross sections. The inversion potentials have been determined using either a high energy limit approximation or by using a fixed energy inversion method at select energies. These procedures have been used to analyse e - - CH 4 , e - - SiH 4 , e - -Kr and e - -Xe scattering data in particular. 14 refs., 1 tabs., 3 figs

  13. The investigation of the elastic photon scattering cross sections by copper atoms and ions

    International Nuclear Information System (INIS)

    Kuplyauskene, A.B.

    1976-01-01

    The differential cross sections of coherent scattering of photons on a copper atom and ions Cu + and Cu 2+ and also on ions Zn + and Ga 2+ in their ground states have been studied theoretically. The energy of an incident photon has varied in the range from 0.5 keV to 200 keV, and the scattering cross sections are given for angles of 30 deg, 60 deg, 90 deg, 120 deg, 150 deg. The calculations are performed in the formfactor approximation with the use of generalized hydrogen-like analytical radial orbitals. To clarify the contribution from individual shells the cross sections of photon scattering on individual electron of shells are calculated. It follows from the calculations that when the energies of the incident photon are less than 4 keV, the main contribution into the differential cross section is made by external electrons. Then, alongside with the increase of the energy, the contribution of the electrons decreases, and the inner shells begin to play a more important role. Therefore the photon cross sections for the energies greater than 50 keV practically coincide for atoms and ions of copper. The general regularities of the cross section variation accompanying the increase of the photon energy are similar for all the elements under study. The angular dependences of cross sections are such that they decrease first and after reaching the minimum at angles of 90 deg - 120 deg increase again

  14. On the classical and quantum scattering cross-sections on the impenetrable sphere

    International Nuclear Information System (INIS)

    Afanasiev, G.N.; Dobromyslov, M.B.; Schpakov, V.P.

    1980-01-01

    The problem of the difference of particle scattering cross sections on the impenetrable sphere is considered in the frame of quantum mechanics and classical mechanics. Using plane waves for the incident particles and the solutions of the Schroedinger equation with the definite energy and momenta for the wave functions quantum and classical cross sections are compared. It is shown that these cross sections are the same if the incident flow is defined similarly in both cases and if the measuring apparatus is ideal

  15. Absolute differential cross sections for elastic scattering of electrons by helium, neon, argon and molecular nitrogen

    International Nuclear Information System (INIS)

    Jansen, R.H.J.; De Heer, F.J.; Luyken, H.J.; Van Wingerden, B.

    1976-01-01

    An electron spectrometer has been constructed for the study of elastic and inelastic electron scattering processes. Up to now the apparatus has been used to measure differential cross sections of electrons elastically scattered by He, Ne, Ar and N 2 . Direct absolute cross section measurements were performed on N 2 at 500 eV impact energy and at scattering angles between 5 0 and 9 0 . Relative cross section measurements were done on He, Ne, Ar and N 2 at impact energies between 100 and 3000 eV and scattering angles between 5 0 and 55 0 . The relative cross sections were put on an absolute scale by means of the apparatus calibration factor derived from the absolute measurements on N 2 . The experimental apparatus and procedure are described in detail. The results are discussed and compared with those of other experimental and theoretical groups. Analysis of the exponential behaviour of the differential cross section as a function of momentum transfer yielded apparent polarizabilities of the target. (author)

  16. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  17. 14N + 10B fusion and elastic scattering cross section measurements near the interaction barrier

    International Nuclear Information System (INIS)

    Wu, S.C.; Overley, J.C.; Barnes, C.A.; Switkowski, Z.E.

    1979-01-01

    The 14 N + 10 B fusion reactions were studied at c.m. energies between 2.9 and 7.5 MeV by measuring the yields of γ-rays from the residual nuclei formed by particle evaporation from the compound system. Cross sections for formation of the evaporation residues 16 O, 19 F, 19 Ne, 20 Ne, 21 Ne, 22 Ne, 22 Na, 23 Na and 23 Mg, as well as the total cross section, were deduced from these yields with the aid of statistical model calculations. 14 N + 10 B elastic scattering differential cross sections were measured from 4.3 to 9.1 MeV at THETA 74.4 degrees, and from 3.3 to 8.3 MeV at THETA = 90.0 degrees. The elastic scattering cross sections were analyzed within the framework of the incoming-wave boundary condition (IWBC) model. The fusion cross sections calculated for the real ion-ion potential deduced from the IWBC model fit to the elastic scattering are in good agreement with the measured values

  18. Collision, scattering and absorption differential cross-sections in double-photon Compton scattering

    International Nuclear Information System (INIS)

    Dewan, R.; Saddi, M.B.; Sandhu, B.S.; Singh, B.; Ghumman, B.S.

    2005-01-01

    The collision, scattering and absorption differential cross-sections of double-photon Compton scattering are measured experimentally for 0.662 MeV incident gamma photons. Two simultaneously emitted gamma quanta are investigated using a slow-fast coincidence technique having 25 ns resolving time. The coincidence spectra for different energy windows of one of the two final photons are recorded using HPGe detector. The experimental data do not suffer from inherent energy resolution of gamma detector and provide more faithful reproduction of the distribution under the full energy peak of recorded coincidence spectra. The present results are in agreement with the currently acceptable theory of this higher order process

  19. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    Science.gov (United States)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  20. Electron and positron atomic elastic scattering cross sections

    International Nuclear Information System (INIS)

    Stepanek, Jiri

    2003-01-01

    A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01 eV to 1 MeV for atoms of Z=1-100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data. First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by 'adjusted' Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons. The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of -10 -8

  1. Atlas cross section for scattering of muonic hydrogen atoms on hydrogen isotope molecules

    International Nuclear Information System (INIS)

    Adamczak, A.; Faifman, M.P.; Ponomarev, L.I.

    1996-01-01

    The total cross sections of the elastic, spin-flip, and charge-exchange processes for the scattering of muonic hydrogen isotope atoms (pμ, dμ, tμ) in the ground state on the hydrogen isotope molecules (H 2 , D 2 , T 2 , HD, HT, DT) are calculated. The scattering cross sections of muonic hydrogen isotope atoms on hydrogen isotope nuclei obtained earlier in the multichannel adiabatic approach are used in the calculations. Molecular effects (electron screening, rotational and vibrational excitations of target molecules, etc.) are taken into account. The spin effects of the target molecules and of the incident muonic atoms are included. the cross sections are averaged over the Boltzmann distribution of the molecule rotational states and the Maxwellian distribution of the target molecule kinetic energies for temperatures 30, 100, 300, and 1000 K. The cross sections are given for kinetic energies of the incident muonic atoms ranging from 0.001 to 100 eV in the laboratory frame. 45 refs., 6 tabs

  2. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  3. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    Science.gov (United States)

    Mitri, F. G.

    2017-08-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the

  4. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    International Nuclear Information System (INIS)

    Mitri, F G

    2017-01-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the

  5. Elastic and inelastic vibrational cross sections for positron scattering by carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Tenfen, W. [Departamento de Física, Universidade Federal da Fronteira Sul, 85770-000, Realeza, Paraná (Brazil); Arretche, F., E-mail: fartch@gmail.com [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil); Michelin, S.E.; Mazon, K.T. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil)

    2015-11-01

    The vibrational cross sections of the CO molecule induced by positron impact is the focus of this work. The positron–molecule interaction is represented by the static potential plus a model potential designed to take into account the positron–target correlations. To calculate the vibrational cross sections, we applied the multichannel version of the continued fractions method in the close-coupling scheme. We present vibrational excitation cross sections and elastic ones, for the ground and excited vibrational states. The results are interpreted in terms of the vibrational coupling-scheme used in the scattering model.

  6. Quantal inversion of cross-section for the elastic scattering of 200 MeV protons from 12C

    International Nuclear Information System (INIS)

    Allen, L.J.; Amos, K.; Dortmans, P.J.

    1994-01-01

    Fixed energy quantal inverse scattering theory has been used to analyse the differential cross-section from the elastic scattering of 200 MeV protons from 12 C. Ambiguities in obtaining the scattering function from the differential cross-section are discussed and by means of example it is illustrated that not all scattering functions lead to physically reasonable potentials. 8 refs., 2 tabs., 4 figs

  7. Exotic behavior of elastic scattering differential cross-sections of weakly bound nucleus 17F at small angles

    International Nuclear Information System (INIS)

    Han Jianlong; Hu Zhengguo; Zhang Xueyin; Yuan Xiaohua; Xu Huagen; Qi Huirong; Wang Yue; Jia Fei; Wu Lijie; Ding Xianli; Gao Qi; Gao Hui; Bai Zhen

    2006-01-01

    The differential cross-sections for elastic scattering of 17 F and 17 O on 208 Pb have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degree-20 degree) for 17 F having exotic structure, while no turning point was observed in the 17 O elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon. (authors)

  8. A semi-empirical formula for total cross sections of electron scattering from diatomic molecules

    International Nuclear Information System (INIS)

    Liu Yufang; Sun Jinfeng; Henan Normal Univ., Xinxiang

    1996-01-01

    A fitting formula based on the Born approximation is used to fit the total cross sections for electron scattering by diatomic molecules (CO, N 2 , NO, O 2 and HCl) in the intermediate- and high-energy range. By analyzing the fitted parameters and the total cross sections, we found that the internuclear distance of the constituent atoms plays an important role in the e-diatomic molecule collision process. Thus a new semi-empirical formula has been obtained. There is no free parameter in the formula, and the dependence of the total cross sections on the internuclear distance has been reflected clearly. The total cross sections for electron scattering by CO, N 2 , NO, O 2 and HCl have been calculated over an incident energy range of 10-4000 eV. The results agree well with other available experimental and calculation data. (orig.)

  9. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

    2011-01-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  10. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    Science.gov (United States)

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  11. Controlling inclusive cross sections in parton shower + matrix element merging

    Energy Technology Data Exchange (ETDEWEB)

    Plaetzer, Simon

    2012-11-15

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  12. Controlling inclusive cross sections in parton shower + matrix element merging

    International Nuclear Information System (INIS)

    Plaetzer, Simon

    2012-11-01

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  13. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P. [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Chiari, L. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Buckman, S. J., E-mail: Stephen.buckman@anu.edu.au [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Garcia, G. [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, F. [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ingolfsson, O. [Department of Chemistry, Science Institute, University of Iceland, Reykjavík 107 (Iceland)

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  14. Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet

    DEFF Research Database (Denmark)

    Lefmann, K.; Hedegård, P.

    1994-01-01

    In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...

  15. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    International Nuclear Information System (INIS)

    Zhao, Hui; Chou, Dean-Yi

    2016-01-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc , the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.

  16. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 200012 (China); Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2016-05-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.

  17. Anomalous diffraction approximation for light scattering cross section: Case of random clusters of non-absorbent spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, Sandra [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 F-St. Etienne (France); Gruy, Frederic [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 F-St. Etienne (France)], E-mail: fgruy@emse.fr

    2008-11-15

    We previously [Jacquier S, Gruy F. Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. JQSRT 2008;109:789-810] reformulated the anomalous diffraction (AD) approximation to calculate the light scattering cross section of aggregates by introducing their chord length distribution (CLD). It was applied to several ordered aggregates. This new method is entitled ADr, with the r for rapid because this one is at least 100 times faster than the standard AD method. In this article, we are searching for an approximated expression for CLD suitable all at once for ordered and disordered aggregates. The corresponding scattering cross-section values are compared to the ones coming from the standard AD approximation.

  18. Anomalous diffraction approximation for light scattering cross section: Case of random clusters of non-absorbent spheres

    International Nuclear Information System (INIS)

    Jacquier, Sandra; Gruy, Frederic

    2008-01-01

    We previously [Jacquier S, Gruy F. Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. JQSRT 2008;109:789-810] reformulated the anomalous diffraction (AD) approximation to calculate the light scattering cross section of aggregates by introducing their chord length distribution (CLD). It was applied to several ordered aggregates. This new method is entitled ADr, with the r for rapid because this one is at least 100 times faster than the standard AD method. In this article, we are searching for an approximated expression for CLD suitable all at once for ordered and disordered aggregates. The corresponding scattering cross-section values are compared to the ones coming from the standard AD approximation

  19. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F. (Argonne National Lab., IL (United States)); Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1991-07-01

    The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.

  20. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)

    2011-07-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  1. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  2. Electron-collision cross sections for iodine

    International Nuclear Information System (INIS)

    Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.

    2011-01-01

    We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.

  3. The effect of background absorption on the compound cross-section in resonance scattering

    International Nuclear Information System (INIS)

    Frenkel, A.

    1976-01-01

    The effect of channel-channel correlations in the compound cross-section is studied in a model of a resonance above a compound background characterized by equal absorption in all open channels. A general rule which cannot be derived from unitarity alone is proved for the fluctuating cross-section. It provides new understanding of level-level correlations in scattering through compound nucleus states. (author)

  4. Effective inelastic scattering cross-sections for background analysis in HAXPES of deeply buried layers

    Energy Technology Data Exchange (ETDEWEB)

    Risterucci, P., E-mail: paul.risterucci@gmail.com [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Renault, O., E-mail: olivier.renault@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Zborowski, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Bertrand, D.; Torres, A. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Rueff, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Ceolin, D. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Grenet, G. [Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2017-04-30

    Highlights: • An effective approach for quantitative background analysis in HAXPES spectra of buried layer underneath complex overlayer structures is proposed. • The approach relies on using a weighted sum of inelastic scattering cross section of the pure layers. • The method is validated by the study of an advanced power transistor stack after successive annealing steps. • The depth distribution of crucial elements (Ti, Ga) is determined reliably at depths up to nearly 50 nm. - Abstract: Inelastic background analysis of HAXPES spectra was recently introduced as a powerful method to get access to the elemental distribution in deeply buried layers or interfaces, at depth up to 60 nm below the surface. However the accuracy of the analysis highly relies on suitable scattering cross-sections able to describe effectively the transport of photoelectrons through overlayer structures consisting of individual layers with potentially very different scattering properties. Here, we show that within Tougaard’s practical framework as implemented in the Quases-Analyze software, the photoelectron transport through thick (25–40 nm) multi-layer structures with widely different cross-sections can be reliably described with an effective cross-section in the form of a weighted sum of the individual cross-section of each layer. The high-resolution core-level analysis partly provides a guide for determining the nature of the individual cross-sections to be used. We illustrate this novel approach with the practical case of a top Al/Ti bilayer structure in an AlGaN/GaN power transistor device stack before and after sucessive annealing treatments. The analysis provides reliable insights on the Ti and Ga depth distributions up to nearly 50 nm below the surface.

  5. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  6. Scaling relations in elastic scattering cross sections between multiply charged ions and hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    1991-01-01

    Differential elastic scattering cross sections of bare ions from hydrogen are calculated using the eikonal approximation. The results satisfy a scaling relation involving the scattering angle, the ion charge and a factor related to the ion mass. A semiclassical explanation in terms of a distant collision hypothesis for small scattering angle is proposed. A unified picture of related scaling rules found in direct processes is discussed. (author)

  7. The Structure of Nuclei Joint Analysis of Elastic, Inelastic Scattering and Total Reactions Cross-Sections for ^{90,94}Zr-Particles Data

    CERN Document Server

    Duysebaev, A D; Kuchtina, I N; Sadykov, B M; Slusarenko, L I; Tokarevsky, V V; Fayans, S A

    2001-01-01

    A complex analysis of experimental data of elastic, inelastic scattering and total reactions cross-sections of alpha-particles on ^{90,94}Zr nuclei is performed. Values of the deformation lengths and neutron-proton multipole matrix elements relations for 2_{1}^{+}- and 3_{1}^{+}-states of ^{90,92,94,96}Zr nuclei for different types of particles are obtained. A comparative analysis is made. Experimental data for inelastic scattering of 35.4, 40.0, 50.1 and 65.0 MeV alpha-particles on ^{90,94}Zr nuclei are analysed for understanding the phase shifts in frames of the unified approach.

  8. Fast-neutron total and scattering cross sections of 58Ni

    International Nuclear Information System (INIS)

    Jorgensen, C.B.; Guenther, P.T.; Smith, A.B.; Whalen, J.F.

    1981-09-01

    Neutron total cross sections of 58 Ni were measured at 25 keV intervals from 0.9 to 4.5 MeV with 50 to 100 keV resolutions. Attention was given to self-shielding corrections to the observed total cross sections. Differential elastic- and inelastic-scattering cross sections were measured at 50 keV intervals from 1.35 to 4.0 MeV with 50 to 100 keV resolutions. Inelastic excitation of levels at 1.458 +- 0.009, 2.462 +- 0.010, 2.791 +- 0.015, 2.927 +- 0.012 and 3.059 +- 0.025 MeV was observed. The experimental results were interpreted in terms of optical-statistical and coupled-channels models. A spherical optical-statistical model was found generally descriptive of an energy-average of the experimental results. However, detailed considerations suggested significant contributions from direct-vibrational interactions, particularly associated with the excitation of the first 2+ level

  9. Measurement of differential incoherent scattering cross-sections of 145 keV photons from K-shell electrons

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, V B; Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1980-06-01

    Differential cross-sections for incoherent scattering of 145 keV photons from K-shell electrons of tin, silver and molybdenum have been measured at 110deg to investigate the effect of electron binding on differential cross-sections in the low energy region. The incoherent scattered photons are selected in coincidence with X-rays which follow the vacancies caused by the ejection of the electrons. NaI(Tl) scintillators are used for the detection of scattered photons and emitted X-rays. The experimental results are compared with the available theoretical data.

  10. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  11. Absolute total electronically elastic differential e--H2 scattering cross-section measurements from 1 to 19 eV

    International Nuclear Information System (INIS)

    Furst, J.; Mahgerefteh, M.; Golden, D.E.

    1984-01-01

    Absolute e - -H 2 total electronically elastic differential scattering cross sections have been determined from relative scattered-electron angular distribution measurements in the energy range from 1 to 19 eV by comparison to absolute e - -He elastic differential scattering cross sections measured in the same apparatus. Integrated total cross sections have been determined as well. Absolute differences as large as 50% between the present results and some previous results have been found, although the agreement as to shape is quite good in many cases. The present results are generally in excellent agreement with recent full rovibrational laboratory-frame close-coupling calculations

  12. X-ray resonant Raman scattering cross sections of Mn, Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Valentinuzzi, MarIa Cecilia; Perez, Carlos

    2006-01-01

    X-ray fluorescence spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. It constitutes an important contribution to the background of the fluorescent line. The resonant Raman scattering must be taken into account in the determination of low concentration contaminants, especially when the elements have proximate atomic numbers. The values of the mass attenuation coefficients experimentally obtained when materials are analysed with monochromatic x-ray beams under resonant conditions differ from the theoretical values (between 5% and 10%). This difference is due, in part, to the resonant Raman scattering. Monochromatic synchrotron radiation was used to study the Raman effect on pure samples of Mn, Fe, Cu and Zn. Energy scans were carried out in different ranges of energy near the absorption edge of the target element. As the Raman peak has a non-symmetric shape, theoretical models for the differential cross section, convoluted with the instrument function, were used to determine the RRS cross section as a function of the incident energy

  13. State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Witt, J.

    1980-01-01

    State-to-state differential cross sections for rotational transitions of Na 2 in collisions with He are measured in the electronic and vibrational ground state at thermal collision energies using a new laser technique. Single rotational levels j/sub i/ are labelled by modulation of their population via laser optical pumping using a dye laser. The modulation of the fluorescence induced by an Ar + laser tuned to the level j/sub f/=28 is proportional to the cross section for collisional transfer j/sub i/→j/sub f/ and is detected at the scattering angle theta. A single optical fiber and a fiber bundle provide a flexible connection between the detector and the laser and photomultiplier, respectively. Transitions as large as Δj=20 are observed. At small angles elastic scattering is dominant, but rotationally inelastic processes become increasingly important at larger scattering angles. Rotational rainbow structure causing a steep onset of the cross section with the scattering angle theta (at fixed Δj) or a sharp cutoff with Δj (at fixed theta) is found. Preliminary results on rotational energy transfer in v=1 indicates that vibrational motion of the molecule favors larger rotational quantum jumps. semiclassical picture for the scattering of a hard ellipsoid gives a

  14. Coherent photon scattering cross sections for helium near the delta resonance

    International Nuclear Information System (INIS)

    Delli Carpini, D.; Booth, E.C.; Miller, J.P.; Igarashi, R.; Bergstrom, J.; Caplan, H.; Doss, M.; Hallin, E.; Rangacharyulu, C.; Skopik, D.; Lucas, M.A.; Nathan, A.M.; Wells, D.P.

    1991-01-01

    The angular distributions for coherent photon scattering from 4 He were measured at average laboratory bremsstrahlung energies of 187, 235, and 280 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using the new high duty factor electron beam. The scattered photons were observed with a high-resolution NaI(Tl) total absorption scintillation detector. These measurements are intended to investigate modification of the Δ properties inside the nuclear medium and the treatment of nonresonant contributions to the scattering cross sections. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident at all energies, especially at 187 MeV

  15. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  16. Measurement of x-ray scattering cross sections of hydrogen and helium with synchrotron radiation

    International Nuclear Information System (INIS)

    Ice, G.E.

    1977-01-01

    Total x-ray scattering is a two-electron expectation value. The prominence of the electron correlation effect was demonstrated in recent theoretical work. Only one measurement of x-ray scattering from H 2 has been reported heretofore, nearly fifty years ago. New measurements were carried out using the virtually monochromatic, intense flux of synchrotron radiation in the SSRP EXAFS line. The targets, at 1 atm pressure, were UHP He and ultrapure H 2 that had been passed through a hot Pd--Ag alloy diffusion purifier. The scattered-photon spectra were measured with a Xe-filled proportional counter and fast multichannel analyzer. The incident flux was monitored with a parallel-plate ion chamber, calibrated by direct counting of the absorber-attenuated beam. Measurements were performed at 5, 6, and 7 keV photon energy, as a function of scattering angle (60, 90, and 135 deg) and azimuthal angle (i.e., polarization). The relative total differential photon scattering cross sections for H 2 over the range 3.0 less than or equal to x = 4πsin (theta/2)lambda less than or equal to 5.6 A -1 agree to within approx. 1% with the correlated calculations of Bentley and Stewart. The ratios of measured cross sections for H 2 to those for He at x = 3.0 and 5.6 A -1 agree to within 1% with the ratios of the Bentley--Stewart H 2 cross sections to the correlated wave-function calculations of Brown for He

  17. γ production and neutron inelastic scattering cross sections for 76Ge

    Science.gov (United States)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  18. A New Scaling Law of Resonance in Total Scattering Cross Section in Gases

    Science.gov (United States)

    Raju, Gorur Govinda

    2009-10-01

    Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns

  19. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  20. Observational constraints on dark matter-dark energy scattering cross section

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suresh [BITS Pilani, Department of Mathematics, Rajasthan (India); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)

    2017-11-15

    In this letter, we report precise and robust observational constraints on the dark matter-dark energy scattering cross section, using the latest data from cosmic microwave background (CMB) Planck temperature and polarization, baryon acoustic oscillations (BAO) measurements and weak gravitational lensing data from Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). The scattering scenario consists of a pure momentum exchange between the dark components, and we find σ{sub d} < 10{sup -29} cm{sup 2} (m{sub dm}c{sup 2}/GeV) at 95% CL from the joint analysis (CMB + BAO + CFHTLenS), where m{sub dm} is a typical dark matter particle mass. We notice that the scattering among the dark components may influence the growth of large scale structure in the Universe, leaving the background cosmology unaltered. (orig.)

  1. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  2. Laser resolution of unpolarized-electron scattering cross sections into spin-conserved and spin-flip components

    International Nuclear Information System (INIS)

    Ritchie, B.

    1981-01-01

    The theory is presented for one-photon free-free absorption by electrons scattering from high-Z atoms. The absorption cross section provides sufficient information to resolve the unpolarized-electron total cross section, Vertical Barf(theta)Vertical Bar 2 +Vertical Barg(theta)Vertical Bar 2 , into its individual components for spin-nonflip, Vertical Barf(theta)Vertical Bar 2 , and spin-flip, Vertical Barg(theta)Vertical Bar 2 , scattering. The observation of a spin-polarization effect for a spin-independent process (free-free absorption) is analogous to the Fano effect for bound-free absorption

  3. Modified automatic term selection v2: A faster algorithm to calculate inelastic scattering cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Rusz, Ján, E-mail: jan.rusz@fysik.uu.se

    2017-06-15

    Highlights: • New algorithm for calculating double differential scattering cross-section. • Shown good convergence properties. • Outperforms older MATS algorithm, particularly in zone axis calculations. - Abstract: We present a new algorithm for calculating inelastic scattering cross-section for fast electrons. Compared to the previous Modified Automatic Term Selection (MATS) algorithm (Rusz et al. [18]), it has far better convergence properties in zone axis calculations and it allows to identify contributions of individual atoms. One can think of it as a blend of MATS algorithm and a method described by Weickenmeier and Kohl [10].

  4. Topological cross sections in hadron-nucleus collisions and multiple scattering theory

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1987-01-01

    The multiple scattering theory supplemented with cutting rules of Abramovsky, V.A., Gribov, V.N., Kancheli, O.V. is applied to calculation of the hadron-nucleus interaction cross sections. In contrast to standard Glauber approach neither smalness of the interaction radius compared to the nuclear radii nor Gaussian form of the hN-interaction profile function are assumed. The theory of the supercritical pomeron are used. However all the results are more general and do not depend on the parametrization of the pomeron pole amplitude. The region of validity of the widely used approximate formulae for topological and total hA-interaction cross sections are discussed

  5. Elastic scattering and total reaction cross section for the 6He + 27Al system

    International Nuclear Information System (INIS)

    Benjamim, E.A.; Lepine-Szily, A.; Mendes Junior, D.R.; Lichtenthaeler, R.; Guimaraes, V.; Gomes, P.R.S.; Chamon, L.C.; Hussein, M.S.; Moro, A.M.; Arazi, A.; Padron, I.; Alcantara Nunez, J.; Assuncao, M.; Barioni, A.; Camargo, O.; Denke, R.Z.; Faria, P.N. de; Pires, K.C.C.

    2007-01-01

    The elastic scattering of the radioactive halo nucleus 6 He on 27 Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential (SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6 He on 27 Al are similar to those for stable, weakly bound projectiles as 6,7 Li, 9 Be and larger than stable, tightly bound projectile as 16 O on 27 Al

  6. Total cross sections and elastic scattering at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Foley, K.J.

    1985-12-05

    The need is discussed of a special purpose detector for the measurement of elastic scattering at the SSC. The detector would cover as small a solid angle as is practical. Two techniques are described briefly to measure total cross sections at hadron storage rings. The direct method is to measure the interaction rate in an IR of known luminosity - a method that gets more difficult increasing energy. A second method is to use the optical theorem. 6 refs., 1 fig. (LEW)

  7. SAMMY, Multilevel R-Matrix Fits to Neutron and Charged-Particle Cross-Section Data Using Bayes' Equations

    International Nuclear Information System (INIS)

    Larson, Nancy M.

    2007-01-01

    1 - Description of problem or function: The purpose of the code is to analyze time-of-flight cross section data in the resolved and unresolved resonance regions, where the incident particle is either a neutron or a charged particle (p, alpha, d,...). Energy-differential cross sections and angular-distribution data are treated, as are certain forms of energy-integrated data. In the resolved resonance region (RRR), theoretical cross sections are generated using the Reich-Moore approximation to R-matrix theory (and extensions thereof). Sophisticated models are used to describe the experimental situation: Data-reduction parameters (e.g. normalization, background, sample thickness) are included. Several options are available for both resolution and Doppler broadening, including a crystal-lattice model for Doppler broadening. Self-shielding and multiple-scattering correction options are available for analysis of capture cross sections. Multiple isotopes and impurities within a sample are handled accurately. Cross sections in the unresolved resonance region (URR) can also be analyzed using SAMMY. The capability was borrowed from Froehner's FITACS code; SAMMY modifications for the URR include more exact calculation of partial derivatives, normalization options for the experimental data, increased flexibility for input of experimental data, introduction of user-friendly input options. In both energy regions, values for resonance parameters and for data-related parameters (such as normalization, sample thickness, effective temperature, resolution parameters) are determined via fits to the experimental data using Bayes' method (see below). Final results may be reported in ENDF format for inclusion in the evaluated nuclear data files. The manner in which SAMMY 7 (released in 2006) differs from the previous version (SAMMY-M6) is itemized in Section I.A of the SAMMY users' manual. Details of the 7.0.1 update are documented in an errata SAMMY 7.0.1 Errata (http

  8. Neutron scattering cross sections of uranium-238

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.

    1979-01-01

    The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures

  9. Accurate calculation of the differential cross section of compton scattering with electron mixed chain propagator in SM

    International Nuclear Information System (INIS)

    Chen Xuewen; Fang Zhenyun; Shi Chengye

    2012-01-01

    By using the electroweak standard model (SM), we analyzed the framework of electron mixed chain propagator which composed of serious of different physical loops participating in electroweak interaction and completed the relevant analytical calculation. Then, we obtained the analytical result of electron mixed chain propagator. By applying our result to Compton scattering, the differential cross section of Compton scattering dσ SM (chain) /dcosθ is counted accurately. This result is compared with the lowest order differential cross section dσ (tree) /dcosθ and the electronic chain propagator Compton scattering differential cross section dσ QED (chain) /dcosθ in quantum electrodynamics (QED). It can be seen that dσ SM (chain ) /dcosθ can show the radiation correction more subtly than dσ QED (chain) /dcosθ. (authors)

  10. Total scattering cross sections and interatomic potentials for neutral hydrogen and helium on some noble gases

    International Nuclear Information System (INIS)

    Ruzic, D.N.; Cohen, S.A.

    1985-04-01

    Measurements of energy-dependent scattering cross sections for 30 to 1800 eV D incident on He, Ne, Ar, and Kr, and for 40 to 850 eV He incident on He, Ar, and Kr are presented. They are determined by using the charge-exchange efflux from the Princeton Large Torus tokamak as a source of D or He. These neutrals are passed through a gas-filled scattering cell and detected by a time-of-flight spectrometer. The cross section for scattering greater than the effective angle of the apparatus (approx. =20 mrad) is found by measuring the energy-dependent attenuation of D or He as a function of pressure in the scattering cell. The interatomic potential is extracted from the data

  11. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Science.gov (United States)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  12. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  13. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-01-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  14. Cross sections for multistep direct reactions

    International Nuclear Information System (INIS)

    Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan

    2002-01-01

    Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)

  15. Database for 238U inelastic scattering cross section evaluation

    International Nuclear Information System (INIS)

    Kanda, Yukinori; Fujikawa, Noboru; Kawano, Toshihiko

    1993-10-01

    There are discrepancies among evaluated neutron inelastic scattering cross sections for 238 U in the evaluated nuclear data files, JENDL-3, ENDF/B-VI, JEF-2, BROND-2 and CENDL-2. Re-evaluating them is internationally being discussed to obtain the best outcome which can be accepted in common at the present by experts in the world. This report has been compiled to review the discrepancies among the evaluations in the present data files and to provide a common database for the re-evaluation work (author)

  16. A new modelling of the multigroup scattering cross section in deterministic codes for neutron transport

    International Nuclear Information System (INIS)

    Calloo, A.A.

    2012-01-01

    In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law using Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy respectively). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with non-zero values for a very small range of the cosine of the scattering angle. Besides, the finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of this cross section. As such, the Legendre expansion is less suited to represent the scattering law. Furthermore, this model induces negative values which are non-physical. In this work, various scattering laws are briefly described and the limitations of the existing model are pointed out. Hence, piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. The discrete ordinates method which is widely employed to solve the transport equation has been adapted. Thus, the finite volume method for angular discretization has been developed and implemented in Paris environment which hosts the S n solver, Snatch. The angular finite volume method has been compared to the collocation method with Legendre moments to ensure its proper performance. Moreover, unlike the latter, this method is adapted for both the Legendre moments and the piecewise-constant functions representations of the scattering cross section. This hybrid-source method has been validated for different cases: fuel cell in infinite lattice

  17. Cross sections and spin polarizations of electrons elastically scattered from oriented molecules (CH3I)

    International Nuclear Information System (INIS)

    Fink, M.; Ross, A.W.; Fink, R.J.

    1989-01-01

    Elastic differential cross sections and spin polarizations for electrons elastically scattered from CH 3 I are calculated using the independent atom model. Three molecular orientations with respect to the incident electron wavevector are considered - first, the molecule is oriented randomly, second, the electron wave front and molecular bond are parallel, and third, the wavefront and the bond axis are perpendicular. It will be seen to what extent orientational averaging weakens features of the cross section and spin polarization. The calculations show that cross section and spin polarization measurements are a possible tool for determining the degree of molecular orientation. There is no degeneracy between I-C and C-I in cross section and spin polarization measurements. The results presented here for 200 eV and 600 eV electrons scattered by CH 3 I should be considered as a case study and it should be possible to find molecules and electron energies for which even more dramatic differences between the various orientations between the molecules and the electrons can be expected. (orig.)

  18. Measurements of Positronium Formation Cross Sections for Positron-Kr, Xe Scattering

    Science.gov (United States)

    Kauppila, W. E.; Kwan, C. K.; Li, H.; Stein, T. S.; Zhou, S.

    1997-04-01

    Our experimental approach(S. Zhou et al., Phys. Rev. Lett. 73, 236 (1994).) for measuring Ps formation cross sections (Q_Ps) involves passing a variable energy positron beam through a gas scattering cell and detecting the 511 keV annihilation gamma rays resulting from the decay of para-Ps and from the interaction of ortho-Ps with the walls of the scattering cell. It is found that the Q_Ps curves for both Kr and Xe rise rapidly from their formation threshold energies of 7.2 and 5.3 eV, reach maxima within about 10 eV of their thresholds and then decrease to become rather small (less than 10% of the peak heights) above 100 eV. At the maxima Q_Ps accounts for more than 50% of the total scattering cross sections. There is some evidence of possible small scale structure in the Q_Ps curves between 10 and 100 eV. The present results are consistent with the prior measurements of Diana et al.( L.M. Diana et al., in "Atomic Physics with Positrons", edited by J.W. Humberston and E.A.G. Armour (Plenum, New York and London, 1987), p. 55; and in "Positron Annihilation", edited by L. Dorikens-Vanpraet et al. (World Scientific, Singapore, 1989), p. 311.) from near threshold to 70 eV for Kr and from 15 to 100 eV for Xe.

  19. Total cross sections for slow-electron (1--20 eV) scattering in solid H2O

    International Nuclear Information System (INIS)

    Michaud, M.; Sanche, L.

    1987-01-01

    An analytical method is proposed to determine absolute total cross sections per scatterer and related mean free paths for low-energy electron scattering in disordered molecular solid films. The procedure is based on a two-stream multiple-scattering model of the thickness dependence of the film reflectivity for elastic electrons. The expected analytical behavior and accuracy are tested on a model sample whose scattering properties are generated by a Monte Carlo simulation from initially known parameters. The effects of multiple scattering inside the film and at its interfaces are taken into account and discussed. The thickness dependence of the elastic electron reflectivity of H 2 O film condensed at 14 K is reported between 1 and 20 eV incident energy with a spectrometer resolution of 10 MeV. The proposed method is applied to extract from these measurements the energy dependence of the total effective and total inelastic cross sections for electron scattering in amorphous ice

  20. A 19-state R-matrix investigation of resonances in e--He scattering at low energies. Pt. 4

    International Nuclear Information System (INIS)

    Fon, W.C.; Lim, K.P.

    1993-01-01

    The authors have previously reported the 11-state and 19-state R-matrix calculations of 1 1 S-2 3,1 S and 1 1 S-2 3 P differential cross sections at low energies. In this paper, the same R-matrix calculations are extended to obtain the differential cross sections and the electron-photon coincidence parameters λ and |Χ| for the excitation of the ground state helium to the 2 1 P state. Convergence studies are carried out between the 11-state and 19-state R-matrix calculations. Only the 19-state R-matrix results are presented in full at scattering angles of 20 o , 30 o , 60 o , 90 o , 120 o and 140 o from the excitation threshold up to 23.8 eV. (author)

  1. Measurement of Z dependence of elastic scattering cross-sections of 0. 145 MeV gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-11-01

    The Z dependence of elastic scattering cross-sections of 0.145 MeV gamma rays is investigated at large scattering angles. Measurements are made with scatterers of Pb, W, Sn, Ag, Mo, Zn, Cu, Fe and Al at scattering angles from 75 deg to 150 deg. The experimental results are compared with the available theoretical and experimental data.

  2. Estimation of neutron cross-sections for 16O up to 5.2 MeV through R-matrix analysis

    International Nuclear Information System (INIS)

    Kunieda, Satoshi; Kawano, Toshihiko; Shibata, Keiichi; Fukahori, Tokio; Paris, Mark; Hale, Gerry

    2014-01-01

    There are differences among experimental cross-sections for 16 O, which make the evaluated data still uncertain. R-matrix is rigorous and straightforward to the quantum mechanical theory. We estimate the neutron cross-sections for 16 O up to 5.2 MeV through R-matrix analysis. In this work, particular attention is paid to issues in the scale of (n,α) reaction cross-sections and hydrogen contents in some of the experimental total cross-sections. Our preliminary results suggest that those problems could be solved/reduced due to the physical constraints imposed by the theory. (authors)

  3. Study of the elastic scattering differential cross sections of a proton beam by a cesium target

    International Nuclear Information System (INIS)

    El Maddarsi, Mohamed.

    1978-01-01

    The elastic differential cross section of H + on Cs is studied experimentally and theoretically. The experimental device is described, after which the differential cross-section values obtained as a function of the laboratory angle are given for four incident energies: 13.4 eV, 15.1 eV, 17.7 eV and 24.2 eV. By means of an interaction potential of the quasi-molecule H + Cs the differential cross sections are calculated for the same incident energies; this calculation uses the semi-classical method of stationary phases which shows clearly the limits of conventional description and the changes introduced by quantum effects. Very good agreement is obtained between theoretical and experimental results, which shows that elastic scattering is very little perturbed by inelastic channels in this energy range. The estimated inelastic cross section at 24 eV is about 1.9 10 -15 cm 2 , corresponding to 1.6% of the scattering process [fr

  4. Refraction effects in 16O + 16O scattering at energy of 124-1120 MeV and S matrix model with Regge poles

    International Nuclear Information System (INIS)

    Kuznichenko, A.V.; Onishchenko, G.M.; Pilipenko, V.V.; Dem'yanova, A.S.; Burtebaev, N.

    2003-01-01

    The analysis of the cross sections of the 16 O + 16 O nuclei elastic scattering by the energy of 124, 145, 250, 350, 480, 704 and 1120 MeV is carried out on the basis of the phenomenological S-matrix model. It is shown, that by high energy the refraction behavior of the opalescent-type cross sections is well described by the simple smooth dependence of the S-matrix on the angular moment and by the energy E ≤ 480 MeV the opalescent-type structures are strongly effected by the Regge poles and S-matrix zeroes, close to the actual axis. The comparison with the results of the cross sections by the optical model is carried out [ru

  5. R-matrix analysis of the 239Pu cross sections up to 1 keV

    International Nuclear Information System (INIS)

    Derrien, H.; de Saussure, G.; Perez, R.B.; Larson, N.M.; Macklin, R.L.

    1986-06-01

    The results are reported of an R-matrix resonance analysis of the 239 Pu neutron cross sections up to 1 keV. After a description of the method of analysis the nearly 1600 resonance parameters obtained are listed and extensive graphical and numerical comparisons between calculated and measured cross-section and transmission date are presented. 47 refs., 47 figs., 8 tabs

  6. Multi-jet cross sections in charged current e{sup {+-}}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-02-15

    Jet cross sections were measured in charged current deep inelastic e{sup {+-}}p scattering at high boson virtualities Q{sup 2} with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb{sup -1}. Differential cross sections are presented for inclusive-jet production as functions of Q{sup 2}, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e{sup {+-}}p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  7. Multi-jet cross sections in charged current e±p scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-02-01

    Jet cross sections were measured in charged current deep inelastic e ± p scattering at high boson virtualities Q 2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb -1 . Differential cross sections are presented for inclusive-jet production as functions of Q 2 , Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e ± p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  8. Measurement of high-Q2 charged current cross sections in e+p deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Rautenberg, J.

    2004-06-01

    Cross sections for charged current deep inelastic scattering have been measured in e + p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb -1 . Single differential cross sections dσ/dQ 2 , dσ/dx and dσ/dy have been measured for Q 2 >200 GeV 2 , as well as the double differential reduced cross section d 2 σ/dxdQ 2 in the kinematic range 280 GeV 2 2 2 and 0.008 - p charged current deep inelastic scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to dσ/dQ 2 . (orig.)

  9. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<cross section is valid irrespective of the magnitudes of ..omega.. and ..omega..sub(c); the forward scattering in the direction of the magnetic field by an electron in the ground state.

  10. Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van

    1984-01-01

    Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)

  11. Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA

    CERN Document Server

    Andreev, Vladimir; Begzsuren, Khurelbaatar; Belousov, Anatoli; Bolz, Arthur; Boudry, Vincent; Brandt, Gerhard; Brisson, Violette; Britzger, Daniel; Buniatyan, Armen; Bylinkin, Alexander; Bystritskaya, Lena; Campbell, Alan; Cantun Avila, Karla Beatriz; Cerny, Karel; Chekelian, Vladimir; Contreras, Guillermo; Cvach, Jaroslav; Dainton, John; Daum, Karin; Diaconu, Cristinel; Dobre, Monica; Dodonov, Vitaliy; Eckerlin, Guenter; Egli, Stephan; Elsen, Eckhard; Favart, Laurent; Fedotov, Alexandre; Feltesse, Joel; Ferencei, Jozef; Fleischer, Manfred; Fomenko, Alexander; Gabathuler, Erwin; Gayler, Joerg; Ghazaryan, Samvel; Goerlich, Lidia; Gogitidze, Nelly; Gouzevitch, Maxime; Grab, Christoph; Grebenyuk, Anastasia; Greenshaw, Timothy; Grindhammer, Guenter; Haidt, Dieter; Henderson, Rob~CW; Hladky, Jan; Hoffmann, Dirk; Horisberger, Roland; Hreus, Tomas; Huber, Florian; Jacquet, Marie; Janssen, Xavier; Jung, Hannes; Kapichine, Mikhail; Katzy, Judith; Kiesling, Christian; Klein, Max; Kleinwort, Claus; Kogler, Roman; Kostka, Peter; Kretzschmar, Jan; Kruecker, Dirk; Krueger, Katja; Landon, Murrough; Lange, Wolfgang; Laycock, Paul; Lebedev, Andrei; Levonian, Sergey; Lipka, Katerina; List, Benno; List, Jenny; Lobodzinski, Bogdan; Malinovski, Evgenij; Martyn, Hans-Ulrich; Maxfield, Steve~J; Mehta, Andrew; Meyer, Andreas; Meyer, Hinrich; Meyer, Joachim; Mikocki, Stanislav; Morozov, Anatoly; Mueller, Katharina; Naumann, Thomas; Newman, Paul~R; Niebuhr, Carsten; Nowak, Grazyna; Olsson, Jan~Erik; Ozerov, Dmitri; Pascaud, Christian; Patel, Girish; Perez, Emmanuelle; Petrukhin, Alexey; Picuric, Ivana; Pirumov, Hayk; Pitzl, Daniel; Placakyte, Ringaile; Polifka, Richard; Radescu, Voica; Raicevic, Natasa; Ravdandorj, Togoo; Reimer, Petr; Rizvi, Eram; Robmann, Peter; Roosen, Robert; Rostovtsev, Andrei; Rotaru, Marina; Salek, David; Sankey, Dave~PC; Sauter, Michel; Sauvan, Emmanuel; Schmitt, Stefan; Schoeffel, Laurent; Schoening, Andre; Sefkow, Felix; Shushkevich, Stanislav; Soloviev, Yuri; Sopicki, Pawel; South, David; Spaskov, Vladimir; Specka, Arnd; Steder, Michael; Stella, Bruno; Straumann, Ulrich; Sykora, Tomas; Thompson, Paul; Traynor, Daniel; Truoel, Peter; Tsakov, Ivan; Tseepeldorj, Baatar; Valkarova, Alice; Vallee, Claude; VanMechelen, Pierre; Vazdik, Iakov; Wegener, Dietrich; Wuensch, Eberhard; Zacek, Jozef; Zhang, Zhiqing; Zlebcik, Radek; Zohrabyan, Hamlet

    2017-04-04

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150

  12. Differential cross sections of proton Compton scattering at photon laboratory energies between 700 and 1000 MeV

    International Nuclear Information System (INIS)

    Jung, M.; Kattein, J.; Kueck, H.; Leu, P.; Marne, K.D. de; Wedemeyer, R.; Wermes, N.

    1981-05-01

    Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. 78 data points are presented as angular distributions at photon lab energies of 700, 750, 800, 850, 900, and 950 MeV. The c.m. scattering angle ranges from 40 0 to 130 0 , corresponding to a variation of the four momentum transfer squared between t = -0.10 to t = -0.96 GeV 2 at 700 and 950 MeV, respectively. Two additional differential cross sections have been measured at 1000 MeV, 35.6 0 and 47.4 0 . The angular distributions show forward peaks whose extrapolations to 0 0 are consistent with calculated forward cross sections taken from literature. The small angle data ( vertical stroke t vertical stroke approx. 2 ) together with the calculated cross sections at 0 0 are also consistent with the assumption of a slope parameter B of 5 GeV -2 . For the first time a re-rise of the angular distributions towards backward angles has been observed. It becomes less steep with increasing energy. The most interesting feature of the angular distributions is a sharp structure which appears between t = -0.55 GeV 2 at 700 MeV and t = -0.72 GeV 2 at 950 MeV. Such a rapid variation of the differential cross section with t has never been observed in elastic hadron-hadron scattering or photoproduction processes. It indicates the existence of a dynamical mechanism which could be a peculiarity of Compton scattering. (orig.)

  13. Contribution to the study of the unresolved resonance range of the neutrons cross sections

    International Nuclear Information System (INIS)

    Noguere, Gilles

    2014-01-01

    This document presents the statistical description of neutron cross sections in the unresolved resonance range. The modeling of the total cross section and of the 'shape - elastic' cross section is based on the 'average R-Matrix' formalism. The partial cross sections describing the radiative capture, elastic scattering, inelastic scattering and fission process are calculated using the Hauser-Feshbach formalism with width fluctuation corrections. In the unresolved resonance range, these models depend on the average resonance parameters (neutron strength function Sc, mean level spacing D c , average partial reaction widths Γ c , channel radius a c , effective radius R' and distant level parameter R-bar c ∞ ). The codes (NJOY, CALENDF...) dedicated to the processing of nuclear data libraries (JEFF, ENDF/B, JENDL, CENDL, BROND... ) use the average parameters to take into account the self-shielding phenomenon for the simulation of the neutron transport in Monte-Carlo (MCNP, TRIPOLI... ) and deterministic (APOLLO, ERANOS...) codes. The evaluation work consists in establishing a consistent set of average parameters as a function of the total angular momentum J of the system and of the orbital moment of the incident neutron l. The work presented in this paper aims to describe the links between the S-Matrix and the 'average R-Matrix' formalism for the calculation of Sc, R-bar c ∞ , ac and R'. (author) [fr

  14. New evaluations of neutron cross sections for 14N and 16O

    International Nuclear Information System (INIS)

    Hale, G.M.; Young, P.G.; Chadwick, M.; Chen, Z.P.

    1991-01-01

    New evaluations of the neutron cross sections for 14 N and 16 O have been made for ENDF/B=VI. The evaluations are based at low energies on R-matrix analyses of reactions in the 15 N and 17 O systems, and at higher energies on GNASH calculations and experimental data evaluations, including covariance analyses. The 15 N system R-matrix analysis includes data from reactions among the channels n+ 14 N, p+ 14 C, and α+ 11 B at energies corresponding to excitations in 15 N below E x =13 MeV. The resonance structure of all cross sections in this energy range is fairly well reproduced. New data indicate a different J-value for the first resonance, however. Sub-threshold S-wave levels required to explain the large n+ 14 N total and elastic cross sections near zero energy give scattering lengths that differ significantly from the previous values. The R-matrix analysis of the 17 O system includes many new measurements of the n+ 16 O total cross section, done primarily at Oak Ridge and at Karlsruhe. The resonance structure of all the cross sections [total, (n,n), (n,α), and (α,α)] is well represented by the fit in the region below E n = 6.5 MeV. The new total cross section information gives different positions for some of the resonances and implies a different normalization for the (n,α) cross sections than that obtained in the ENDF/B-IV analysis. The evaluations at energies above the ranges of the R-matrix analyses incorporate results from a number of experiments performed since the previous ENDF/B evaluations. Especially important are new measurements of the total cross sections and differential elastic, and gamma-ray production cross sections

  15. Measurement of proton-proton inelastic scattering cross-section at $\\sqrt{s}$= 7 TeV

    CERN Document Server

    Antchev, G; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F.S.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csanad, M.; Csörgö, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, R.A.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Mäki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.; Wyszkowski, P.

    2013-01-01

    The TOTEM experiment at the LHC has measured the inelastic proton-proton cross-section at $\\sqrt{s}$ = 7 TeV in a β* = 90 m run with low inelastic pile-up. The measurement was based on events with at least one charged particle in the T2 telescope acceptance of 5.3 < |η| < 6.5 in pseudorapidity. Combined with data from the T1 telescope, covering 3.1 < |η| < 4.7, the cross-section for inelastic events with at least one |η| < 6.5 final state particle was determined to be 70.5 2.9 mb. Based on models for low mass diffraction, the total inelastic cross-section was deduced to be 73.7 3.4 mb. An upper limit of 6.31 mb at 95 % confidence level on the cross-section for events with diffractive masses below 3.4 GeV was obtained from the difference between the overall inelastic cross-section obtained by TOTEM using elastic scattering and the cross-section for inelastic events with at least one |η| < 6.5 final state particle.

  16. STAX-2, Neutron Scattering Cross-Sections by Optical Model and Moldauer Theory with Hauser-Feshbach

    International Nuclear Information System (INIS)

    Tomita, Y.

    1972-01-01

    1 - Nature of physical problem solved: The program calculates neutron scattering cross sections by means of the optical model and Moldauer's theory, and can search for potential parameters which reproduce measured cross sections. The Hauser-Feshbach calculation is also possible. 2 - Restrictions on the complexity of the problem: The maximum number of levels is 25. The largest value of the orbital angular momentum is 10

  17. The LXCat project: Electron scattering cross sections and swarm parameters for low temperature plasma modeling

    International Nuclear Information System (INIS)

    Pancheshnyi, S.; Biagi, S.; Bordage, M.C.; Hagelaar, G.J.M.; Morgan, W.L.; Phelps, A.V.; Pitchford, L.C.

    2012-01-01

    Graphical abstract: LXCat is an open-access website containing data needed for low temperature plasma modeling as well as on-line tools useful for their manipulation. Highlights: ► LXCat: an open-access website with data for low temperature plasma modeling. ► Contains compilations of electron scattering cross sections and transport data. ► Data from different contributors for many neutral, ground-state species. ► On-line tools for browsing, plotting, up/downloading data. ► On-line Boltzmann solver for calculating electron swarm parameters. - Abstract: LXCat is a dynamic, open-access, website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature, non-equilibrium plasmas. Contributors set up individual databases, and the available databases, indicated by the contributor’s chosen title, include mainly complete sets of electron-neutral scattering cross sections, although the option for introducing partial sets of cross sections exists. A database for measured swarm parameters is also part of LXCat, and this is a growing activity. On-line tools include options for browsing, plotting, and downloading cross section data. The electron energy distribution functions (edfs) in low temperature plasmas are in general non-Maxwellian, and LXCat provides an option for execution of an on-line Boltzmann equation solver to calculate the edf in homogeneous electric fields. Thus, the user can obtain electron transport and rate coefficients (averages over the edfs) in pure gases or gas mixtures over a range of values of the reduced electric fields strength, E/N, the ratio of the electric field strength to the neutral density, using cross sections from the available databases. New contributors are welcome and anyone wishing to create a database and upload data can request a username and password. LXCat is part of a larger, community

  18. Scattering angle-integrated (total) and magnetic sublevel cross-sections and degree of linear polarization for electron and proton induced excitation [HeI (1snp) sup 1 P sup 0 (n=2-5)] of helium

    CERN Document Server

    Merabet, H; Hanni, J; Bailey, M; Godunov, A L; McGuire, J H; Fursa, D V; Bray, I; Bartschat, K; Tseng, H C; Lin, C D

    2003-01-01

    Experimental scattering-angle-integrated (total) cross-sections sigma-bar, (scattering) angle-integrated magnetic sublevel cross-sections sigma-bar sub M sub sub L , and degree of linear polarization data have been measured in the extreme ultraviolet (EUV) wavelength region following decay of HeI (1snp) sup 1 P sup 0 (n=2-5) states induced by electron and proton impact on a neutral helium target. These measurements are compared with a first Born approach as well as more sophisticated theoretical calculations. Specifically, theoretical values for electron impact include convergent close-coupling (CCC) and R-matrix with pseudo states (RMPS) methods in addition to first Born (Born 1) approximation while proton induced excitation cross-sections are compared with atomic-orbital close-coupling (AOCC) and first Born predictions.

  19. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  20. Solution of the inverse scattering problem at fixed energy with non-physical S matrix elements

    International Nuclear Information System (INIS)

    Eberspaecher, M.; Amos, K.; Apagyi, B.

    1999-12-01

    The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier method. A set of S matrix elements calculated from a realistic analytic optical model potential serves as input data. It is demonstrated that the quality of the inversion potential can be improved by including non-physical S matrix elements to half, quarter and eighth valued partial waves if the original set does not contain enough information to determine the interaction potential. We demonstrate that results can be very sensitive to the choice of those non-physical S matrix values both with the analytic potential model and in a real application in which the experimental cross section for the symmetrical scattering system of 12 C+ 12 C at E=7.998 MeV is analyzed

  1. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  2. 0.1–2000 eV electron impact cross sections for dichlorine monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Biplab; Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    2014-03-01

    Highlights: • Quantum mechanical models were used to find TCS for e-Cl{sub 2}O from 0.1 to 2000 eV. • R-matrix method at low energies (<13 eV) and SCOP at high energies (13–2000 eV). • Besides TCS, DCS, excitation cross section and momentum transfer CS also predicted. • R-matrix method identifies resonances with a possibility of DEA formation. • Resonance detected at 1.88 eV is associated with Cl{sub 2}O{sup −} anion formation. - Abstract: Scattering dynamics of dichlorine monoxide (Cl{sub 2}O) molecule by electron impact is investigated as a function of electron energy and scattering angle. Electron impact total cross sections for Cl{sub 2}O over an extensive range of impact energies from 0.1 to 2000 eV are reported in this article. Below the ionization threshold of the target, the ab initio R-matrix method and above this incident energy spherical complex optical potential formalism are used for cross section calculation. The total cross section obtained from both theories merges smoothly at the overlapping energy. The resonances obtained using DZP basis sets are located at 1.883, 3.592, 5.205 and 7.326, 8.206, 8.301, 8.452, 9.369 eV and that with 6-31G* basis sets are identified at 1.944, 3.566, 5.183, 5.261, 5.658, 8.738 and 9.187 eV with the possibility of negative ions formation. This is the first attempt to calculate the differential, and momentum transfer cross sections for Cl{sub 2}O molecule.

  3. Potentials and scattering cross sections for collisions of He atoms with adsorbed CO

    International Nuclear Information System (INIS)

    Liu, W.K.; Gumhalter, B.

    1986-05-01

    Ab initio calculations of the total scattering cross section for the collision system He → CO/Pt(111) within the renormalized distorted wave Born approximation are reported. The interaction potential for this atom-adsorbate system consists of the usual two-body gas phase-like potential as well as two additional substrate mediated van de Waals contributions, all with similar long range behaviour. Comparison of the calculated cross sections for various incident velocities and angles with available experimental data is made without using any adjustable parameters to fit the data, and the importance of including the substrate-mediated forces is emphasized. (author)

  4. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R.L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.; Katz, U.F.; Mari, S.M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, C.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G.P.; Heath, H.F.; Llewellyn, T.J.; Morgado, C.J.S.; Norman, D.J.P.; O'Mara, J.A.; Tapper, R.J.; Wilson, S.S.; Yoshida, R.; Rau, R.R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J.A.; Ritz, S.; Sciulli, F.; Straub, P.B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kotanski, A.; Przybycien, M.; Bauerdick, L.A.T.; Behrens, U.; Beier, H.; Bienlein, J.K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasinski, M.; Gilkinson, D.J.; Glasman, C.; Goettlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Koepke, L.; Koetz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Loehr, B.; Loewe, M.; Lueke, D.; Manczak, O.; Ng, J.S.T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.

    1995-01-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q 2 above 400GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ 2 are presented. From the Q 2 dependence of the CC cross section, the mass term in the CC propagator is determined to be M W =76±16±13 GeV

  5. PELINSCA, Elastic Scattering and Total Cross-Sections and Polarization by Hauser-Feshbach

    International Nuclear Information System (INIS)

    Engelbrecht, C.A.; Fiedeldey, H.; Tepel, J.W.

    1979-01-01

    1 - Nature of the physical problem solved: Calculates differential and total Cross sections as well as polarization for nuclear elastic scattering of spin 0 or spin 1/2 particles. Calculates Cross sections (differential and total) and decay gamma ray angular correlation for inelastic processes by means of standard Hauser-Feshbach (HF) theory or with modified HF theory including width fluctuation corrections. In elastic scattering optical model parameters may be optimized in a least squares procedure involving experimental measurements. 2 - Method of solution: Schroedinger equation for complex potentials is solved according to Fox-Goodwin method of numerical integration. Coulomb wave functions are calculated by using recurrence relations depending on range of Coulomb and energy parameters. Least squares fits are made using parameter grid and direction of steepest descent. Statistical model calculations are made using closed mathematical expressions. 3 - Restrictions on the complexity of the problem: Elastic scattering calculations limited to spin 0 or spin 1/2 particles. Number of partial waves limited to 51. Statistical model calculations on targets with spin less or equal to 5 and with partial waves up to l=6. Not suitable for heavy-ion Hauser- Feshbach calculations without first removing dimensional limitations. Program handles up to 3 reaction types simultaneously, e.g. (p,p), (p,n) and (p,alpha), each reaction channel having up to 33 final nuclear states

  6. Measurement of Elastic Scattering and of Total Cross-Section at the CERN $\\bar{p}p$ Collider

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure elastic scattering and the total cross-section at the $\\bar{p}p$ collider. \\\\ \\\\ Up to 1983 the experimental apparatus was composed of two parts : \\item 1) Telescopes of high accuracy drift and proportional chambers and counters inserted into vertically moveable sections of the vacuum chamber ('Roman pots'), detect elastic scattering in the angular region from .5 mrad up to about 3 mrad. \\item 2) The total inelastic rate is measured with a forward/backward system of drift chambers and counter hodoscopes and the UA2 central detector covering together @= 4@p solid angle. \\end{enumerate}\\\\ \\\\ With these two set-ups, the measured value of the total cross-section confirms extrapolation with (ln s)|2 behaviour. Elastic scattering and diffraction dissociation were measured in the range .03~$<$~-t~$<$~1.6~GeV|2. \\\\ \\\\ From 1984 on, six horizontally moveable ``Roman Pots'' have been installed farther away from the intersection region (up to 100~m). Using an especially desi...

  7. Measurement of antiproton-proton elastic scattering and total cross section at a centre-of-mass energy of 546 GeV

    International Nuclear Information System (INIS)

    Swol, R.W. van.

    1985-01-01

    The transformation of the CERN Super Proton Synchrotron (SPS) from a fixed target machine into a colliding beam facility allowed the study of antiproton-proton scattering at a centre-of-mass (CM) energy of 546 GeV. This thesis describes the measurement of antiproton-proton elastic scattering and the antiproton-proton total cross section, sigmasub(tot)(anti pp), at the CERN anti pp Collider. The aim of the experiment is to establish the considerable rise with energy of the total cross section, which was predicted after the discovery of rising proton-proton total cross sections at the CERN Intersecting Storage Rings (ISR), covering an energy range of 20-60 GeV. The experimental method used for measuring sigmasub(tot)(anti pp) with an accuracy of 1-2% consists of the simultaneous measurement of both the elastic scattering event rate at small scattering angles and the inelastic interaction rate. Using the optical theorem, the total and the elastic cross sections can then be obtained without a determination of the machine luminosity. (Auth.)

  8. Analytical calculation of the average scattering cross sections using fourier series

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro, Nilopolis, RJ (Brazil)], e-mail: dpalmaster@gmail.com; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: asilva@con.ufrj.br, e-mail: agoncalves@con.ufrj.br, e-mail: aquilino@lmp.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  9. Analytical calculation of the average scattering cross sections using fourier series

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  10. Differential cross sections of proton Compton scattering at photon laboratory energies between 1.2 and 1.7 GeV

    International Nuclear Information System (INIS)

    Duda, J.; Hoefner, F.W.; Jung, M.; Kleissler, R.; Kueck, H.; Leu, P.; Marne, K.D. de; Munk, B.; Vogl, W.; Wedemeyer, R.

    1982-11-01

    Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. The experiment covers photon laboratory energies between 1.2 GeV and 1.7 GeV and the square of the four-momentum transfer ranges from t = -0.17 GeV 2 to -0.98 GeV 2 corresponding to c.m. scattering angles between 35 0 and 80 0 . The cross sections exhibit a forward peak followed by a monotone fall-off up to the largest measured vertical stroketvertical stroke-values. Fits of the form dsigma/dt = A.exp(Bt) to the data points with vertical stroketvertical stroke 2 yield forward cross sections A, which are consistent with the 0 0 cross sections calculated from the measured total photon-proton cross section. The average slope is B = 5.6 +- 0.14 GeV 2 . (orig.)

  11. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Science.gov (United States)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  12. Measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described

  13. Differential elastic electron scattering cross sections for CCl4 by 1.5-100 eV energy electron impact

    Science.gov (United States)

    Limão-Vieira, P.; Horie, M.; Kato, H.; Hoshino, M.; Blanco, F.; García, G.; Buckman, S. J.; Tanaka, H.

    2011-12-01

    We report absolute elastic differential, integral and momentum transfer cross sections for electron interactions with CCl4. The incident electron energy range is 1.5-100 eV, and the scattered electron angular range for the differential measurements varies from 15°-130°. The absolute scale of the differential cross section was set using the relative flow technique with helium as the reference species. Comparison with previous total cross sections shows good agreement. Atomic-like behaviour in this scattering system is shown here for the first time, and is further investigated by comparing the CCl4 elastic cross sections to recent results on the halomethanes and atomic chlorine at higher impact energies [H. Kato, T. Asahina, H. Masui, M. Hoshino, H. Tanaka, H. Cho, O. Ingólfsson, F. Blanco, G. Garcia, S. J. Buckman, and M. J. Brunger, J. Chem. Phys. 132, 074309 (2010)], 10.1063/1.3319761.

  14. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Sola, Valentina

    2012-04-01

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep → eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09 2 ) and in the extended t-range vertical stroke t vertical stroke 2 . The resulting cross sections cover the region 2.5≤ Q 2 ≤200 GeV 2 in photon virtualities, 0.0003≤x P ≤0.09 in the proton fractional momentum losses and 0.0018≤ β ≤0.816 in β=x/x P , where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5≤ Q 2 ≤1600 GeV 2 , 0.0003≤x P ≤0.03 and 0.0017≤ β ≤0.8, for masses of the hadronic final state M X >4 GeV. The inclusive diffractive reduced cross section σ r D(3) was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20 2 2 , 0.05 P or similar 0.55), the inelasticity of the interaction.

  15. Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Adamczyk, L.

    2010-10-01

    Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb -1 . The measurement was performed at large values of the photon virtuality, Q 2 , between 125 and 20 000 GeV 2 . The jets were reconstructed with the k T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E jet T,B , to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M jj , was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD. (orig.)

  16. Differential cross sections for elastic scattering of electrons by atoms and solids

    International Nuclear Information System (INIS)

    Jablonski, A.; Salvat, F.; Powell, C.J.

    2004-01-01

    Differential cross sections (DCSs) for elastic scattering of electrons by neutral atoms are extensively used in studies of electron transport in solids and liquids. A new NIST database has recently been released with DCSs calculated from a relativistic Dirac partial-wave analysis in which the potentials were obtained from Dirac-Hartree-Fock electron densities computed self-consistently for free atoms. We have compared calculated DCSs with measured DCSs for argon for electron energies between 50 eV and 3 keV, and found good agreement for electron energies above about 1 keV but with increasing deviations as the energy is reduced. These deviations are due to the neglect of absorption and polarizability effects in the calculations. Nevertheless, DCSs for neutral atoms have been successfully used in simulations of elastic backscattering of electrons by solid surfaces with energies down to 300 eV as well as for many other applications. It is suggested that this success might be due at least partially to the smaller absorption correction for the DCSs in solids on account of the smaller total inelastic scattering cross sections than for the corresponding free atoms

  17. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; List, B.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Osman, S.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.

    2011-01-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The cross section is measured four-fold differentially in t,x P ,Q 2 and β=x/x P , where x is the Bjorken scaling variable. The t and x P dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared with perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q 2 ,β and x P . (orig.)

  18. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y.; Baghdasaryan, A.; Zohrabyan, H.; Begzsuren, K.; Ravdandorj, T.; Bolz, A.; Huber, F.; Sauter, M.; Schoening, A.; Boudry, V.; Specka, A.; Brandt, G.; Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F.; Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Buniatyan, A.; Newman, P.R.; Thompson, P.D.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Avila, K.B.C.; Contreras, J.G.; Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B.; Cvach, J.; Hladky, J.; Reimer, P.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Vallee, C.; Dobre, M.; Rotaru, M.; Egli, S.; Horisberger, R.; Ozerov, D.; Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van; Feltesse, J.; Schoeffel, L.; Ferencei, J.; Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P.; Gouzevitch, M.; Petrukhin, A.; Grab, C.; Henderson, R.C.W.; Jung, H.; Kapichine, M.; Morozov, A.; Spaskov, V.; Kogler, R.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Lange, W.; Naumann, T.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Perez, E.; Picuric, I.; Raicevic, N.; Polifka, R.; Radescu, V.; Rostovtsev, A.; Sankey, D.P.C.; Sauvan, E.; Shushkevich, S.; Soloviev, Y.; Stella, B.; Sykora, T.; Tsakov, I.; Tseepeldorj, B.; Wegener, D.

    2017-01-01

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q"2 < 80 GeV"2 and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb"-"1. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q"2. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q"2-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q"2 < 15,000 GeV"2 are extended to low transverse jet momenta 5 < P_T"j"e"t < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q"2, the strong coupling constant α_s(M_Z) is determined in next-to-leading order. (orig.)

  19. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Bolz, A.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Avila, K.B.C.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Ferencei, J. [Nuclear Physics Institute of the CAS, Rez (Czech Republic); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C. [Institut fuer Teilchenphysik, ETH, Zurich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics (United Kingdom); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [University of London, School of Physics and Astronomy, Queen Mary, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (CA); Radescu, V. [Oxford University, Department of Physics, Oxford (GB); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (RU); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (GB); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (FR); Universite de Savoie, LAPP, Annecy-le-Vieux (FR); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (RU); Soloviev, Y. [DESY, Hamburg (DE); Lebedev Physical Institute, Moscow (RU); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (IT); INFN Roma 3, Rome (IT); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (BE); Charles University, Faculty of Mathematics and Physics, Praha (CZ); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (BG); Tseepeldorj, B. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [Institut fuer Physik, TU Dortmund, Dortmund (DE); Collaboration: H1 Collaboration

    2017-04-15

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q{sup 2} < 80 GeV{sup 2} and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb{sup -1}. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q{sup 2}. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q{sup 2}-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q{sup 2} < 15,000 GeV{sup 2} are extended to low transverse jet momenta 5 < P{sub T}{sup jet} < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q{sup 2}, the strong coupling constant α{sub s}(M{sub Z}) is determined in next-to-leading order. (orig.)

  20. Differential cross sections for the elastic scattering of intermediate energy electrons from sodium

    International Nuclear Information System (INIS)

    Teubner, P.J.O.; Buckner, S.J.; Noble, C.J.

    1977-11-01

    Differential cross sections for the elastic scattering of electrons from sodium have been measured with high angular resolution for incident energies of 54.4, 75, 100 and 150 eV and over an angular range of 12 0 to 140 0 . The experimental data are compared with calculations based on the First Born approximation, the Glauber approximation and a close coupling impact parameter calculation. Calculations have been carried out for an optical model using the prescription of Vanderpoorten for localizing the absorptive part of the potential. Of the theoretical calculations the optical model is found to best reproduce the general features of the cross section at all energies. (Author)

  1. Combination of Differential D^{*\\pm} Cross-Section Measurements in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Abramowicz, H.; Adamczyk, L.; Adamus, M.; Andreev, V.; Antonelli, S.; Aushev, V.; Aushev, Y.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Boos, E.G.; Borras, K.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N.H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P.J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J.G.; Cooper-Sarkar, A.M.; Corradi, M.; Corriveau, F.; Cvach, J.; Dainton, J.B.; Daum, K.; Dementiev, R.K.; Devenish, R.C.E.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dolinska, G.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Figiel, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gizhko, A.; Gladilin, L.K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Haidt, D.; Hain, W.; Henderson, R.C.W.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Jacquet, M.; Janssen, X.; Januschek, F.; Jomhari, N.Z.; Jung, A.W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Kaur, M.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Kruger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O.Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F.Mohamad; Morozov, A.; Nasir, N.Muhammad; Muller, K.; Myronenko, V.; Nagano, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, R.J.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Paul, E.; Perez, E.; Perlanski, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Przybycien, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Rusakov, S.; Ruspa, M.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Saxon, D.H.; Schioppa, M.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schoning, A.; Schorner-Sadenius, T.; Sefkow, F.; Shcheglova, L.M.; Shevchenko, R.; Shkola, O.; Shushkevich, S.; Shyrma, Yu.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stern, A.; Stopa, P.; Straumann, U.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Thompson, P.D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Trofymov, A.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Wichmann, K.; Wing, M.; Wolf, G.; Wunsch, E.; Yamada, S.; Yamazaki, Y.; Zacek, J.; Zakharchuk, N.; Zarnecki, A.F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.; Zotkin, D.S.

    2015-01-01

    H1 and ZEUS have published single-differential cross sections for inclusive D^{*\\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 1.5 GeV and pseudorapidity |eta(D^*)| 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.

  2. R-matrix analysis of the 235U neutron cross sections

    International Nuclear Information System (INIS)

    Leal, L.C.; de Saussure, G.; Perez, R.B.

    1988-01-01

    The ENDFB-V representation of the 235 U neutron cross sections in the resolved resonance region is unsatisfactory: below 1 eV the cross sections are given by ''smooth files'' (file 3) rather than by resonance parameters; above 1 eV the single-level formalism used by ENDFB-V necessitates a structured file 3 contribution consisting of more than 1300 energy points; furthermore, information on level-spins has not been included. Indeed the ENDFB-V 235 U resonance region is based on an analysis done in 1970 for ENDFB-III and therefore does not include the results of high quality measurements done in the past 18 years. The present paper presents the result of an R-matrix multilevel analysis of recent measurements as well as older data. The analysis also extends the resolved resonance region from its ENDFB-V upper limit of 81 eV to 110 eV. 13 refs., 2 figs., 1 tab

  3. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L [Department of Mathematics, Aveiro University, Aveiro 3810 (Portugal)], E-mail: lakshtanov@rambler.ru

    2008-06-27

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus.

  4. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    International Nuclear Information System (INIS)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L

    2008-01-01

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus

  5. The importance of fast neutron scattering cross sections for neutron dosimetry in soft tissues

    International Nuclear Information System (INIS)

    Jahr, R.; Brede, H.J.

    1979-05-01

    Tissue equivalent plastic materials are used for the construction of accurate neutron dosemeters. As compared to real tissue, in materials most of the oxygen content is replaced by carbon. In order to determine the dose to human tissue a kerma correction factor has to be used. It is shown that the uncertainty (corresponding to 1 delta) of the correction factor at E = 14.5 MeV amounts to at least 5.2%. An important contribution to the uncertainties results from the lack of experimental data of the 12 C(n, n' 3α), 16 O(n,n'p) and 16 O(n,n'α)-cross-sections. These data are to be calculated by subtracting all other cross sections from the total cross section of ( 16 O + n) and ( 12 C + n). It is shown that the uncertainties of the kerma correction factor can be considerably reduced by an accurate measurement of the scattering cross sections of carbon and oxygen. (orig.) [de

  6. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: H1 and ZEUS Collaboration

    2012-10-15

    Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections {sigma}{sup c} {sup anti} {sup c}{sub red} for charm production are obtained in the kinematic range of photon virtuality 2.5 {<=} Q{sup 2} {<=} 2000 GeV{sup 2} and Bjorken scaling variable 3.10{sup -5}{<=}x{<=}5.10{sup -2}. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deepinelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W{sup {+-}} and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.

  7. The measurement of neutron differential scattering cross sections for 12C, 14N and 16O in the energy range 20-26 Mev

    International Nuclear Information System (INIS)

    Petler, J.S.; Finlay, R.W.; Meigooni, A.S.; Islam, M.S.; Rapaport, J.

    1985-01-01

    The Ohio University Beam Swinger provides a high resolution, low back-ground time-of-flight facility for the measurement of elastic and inelastic neutron scattering. It has been used to obtain a comprehensive set of differential scattering cross sections for 12 C, 14 N, 16 O and 40 Ca between 18 and 26 MeV. The elastic cross sections can be used directly to obtain partial kerma factors and, combined with the known total cross sections, provide accurate values for the reaction cross sections. Angular distributions have been measured for inelastic scattering from all the nuclear levels that cannot decay by particle emission thus providing (by subtraction) a limit on the sum of all charged-particle producing reactions. The integrated cross sections for inelastic scattering from some particle-unstable states in 12 C are in excellent agreement with the cross sections for three-body breakup obtained by Antolkovic et al. The differential data have been used, together with higher energy proton scattering data to produce energy-dependent optical model parameters for each of these nuclei in the energy range 20-60 MeV. It has been found that the elastic differential cross sections at theta > 100 0 for 12 C, 14 N and 16 O cannot be well described by a spherical optical model. Explicit consideration of coupled-channel effects, and in the case of 12 C, deformation of the ground state, improves the agreement between calculation and experiment. Heavy ion recoil kerma factors and reaction cross sections have been obtained for each element and compared with previous calculations and measurements

  8. New relations between lN-scattering cross sections and neutral current parameters

    International Nuclear Information System (INIS)

    Bednyakov, V.A.; Kovalenko, S.G.

    1989-01-01

    New relations which connect cross sections with neutral current parameters have been obtained in deep inelastic and (quasi-)elastic ν(ν-bar)N, e ± (μ ± )N scattering. The relations are independent of the structure functions and formfactors of the nucleon. A known example is the Paschos-Wolfenstein relation in ν(ν-bar)N scattering. The relations have been obtained with allowance for the contribution of the extra Z' bozon which makes it possible to use them both for extractions of the standard model parameters (ρ, sin 2 Θ W ) and for the search for some manifestations of new physics. 21 refs.; 1 tab

  9. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.

    Science.gov (United States)

    Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A

    2011-10-10

    The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.

  10. Determination of the potential scattering parameter and parameterization of neutron cross-sections in the low-energy region

    International Nuclear Information System (INIS)

    Novoselov, G.M.; Litvinskij, L.L

    2001-01-01

    Different cross-section parameterization methods in the low-energy region are considered. It is shown that the potential scattering parameter value derived from analysis of experimental cross-section data is dependent essentially on the method used to take account of the nearest resonances. A formula describing this dependence is obtained. The results are verified by numerical model calculations. (author)

  11. Integral cross sections for π+p scattering between 52 and 126 MeV

    International Nuclear Information System (INIS)

    Friedman, E.; Goldring, A.; Wagner, G.J.; Altman, A.; Johnson, R.R.; Meirav, O.; Hanna, M.; Jennings, B.K.

    1989-06-01

    Integral cross-sections for the elastic scattering of π + on p from 20 degrees and 30 degrees to 180 degrees were measured at seven energies between 52 and 126 MeV. These integrals are found to be in good agreement with predictions made with currently accepted phase-shifts. (Author) 15 refs., tab., 2 figs

  12. Prediction of e± elastic scattering cross-section ratio based on phenomenological two-photon exchange corrections

    Science.gov (United States)

    Qattan, I. A.

    2017-06-01

    I present a prediction of the e± elastic scattering cross-section ratio, Re+e-, as determined using a new parametrization of the two-photon exchange (TPE) corrections to electron-proton elastic scattering cross section σR. The extracted ratio is compared to several previous phenomenological extractions, TPE hadronic calculations, and direct measurements from the comparison of electron and positron scattering. The TPE corrections and the ratio Re+e- show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factors discrepancy while being consistent with the known Q2→0 limit. While my predictions are in generally good agreement with previous extractions, TPE hadronic calculations, and existing world data including the recent two measurements from the CLAS and VEPP-3 Novosibirsk experiments, they are larger than the new OLYMPUS measurements at larger Q2 values.

  13. Paramagnetic scattering cross-sections of Nd and Dy at neutron wavelength between 0.5 A0 - 4 A0

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; Abdelkawy, A.; Adib, M.; Hamouda, I.

    1984-01-01

    The paramagnetic scattering cross-sections of Nd and Dy are calculated, for neutron wavelengths between 0.5-4 A, theoretically and deduced from available experimental data. The theoretical calculations are carried out using magnetic form factors deduced from Hartree-Fock radial wave functions for the 4 f electrons. The resulting theoretical curves of the paragnetic scattering cross-sections are compared with those deduced from data obtained using the transmission measurements. Both theoretical and experimental values found to be consistant

  14. Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-08-15

    Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q{sup 2}>125 GeV{sup 2} with the ZEUS detector at HERA using an integrated luminosity of 82 pb{sup -1}. Jets were identified in the Breit frame using the k{sub T} cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q{sup 2}. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions. (orig.)

  15. Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-08-01

    Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q 2 >125 GeV 2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb -1 . Jets were identified in the Breit frame using the k T cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q 2 . Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions. (orig.)

  16. Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Univ. College London (United Kingdom); Cracow Univ. of Technology (Poland). Faculty of Physics, Mathematics and Applied Computer Science; Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-10-15

    Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb{sup -1}. The measurement was performed at large values of the photon virtuality, Q{sup 2}, between 125 and 20 000 GeV{sup 2}. The jets were reconstructed with the k{sub T} cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E{sup jet}{sub T,B}, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M{sub jj}, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD. (orig.)

  17. Determination of the potential and coherent scattering cross-sections of the elements Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Hamouda, I.

    1976-01-01

    The potential scattering cross-sections for slow neutrons have been measured for Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta in order to determine the nuclear potential radius and to investigate the prediction of nuclear optical model. The coherent scattering cross-sections for these elements have been measured from the obtained values of the Bragg cut-offs observed in the behaviour of the total cross-sections at cold neutron energies. The measurements were based on the total neutron cross-sections resulting from transmission experiments performed with the neutron chopper at ET-RR-1 reactor

  18. Measure of back angle cross sections of antiproton-nucleus elastic scattering at 48 and 180 MeV

    International Nuclear Information System (INIS)

    Berrada, M.

    1986-04-01

    Antiproton-nucleus elastic scattering was studied in the LEAR ring at CERN. The scattering cross section at back angles (θ LAB = 142 to 164 deg inclusive) was measured using plastic scintillation detectors. Analysis of experimental data at 47 MeV for a CH target and at 182 MeV for CH, C12, 016, and 018 targets produces differential cross sections for back angles less than or equal to a few dozen microbarns. These results agree with theoretical microscopic predictions. The analysis improves understanding of antiproton-nucleus interaction and introduces a constraint on the construction of optical potentials. The antiproton-nucleus potential is shown to be highly absorbing, thereby excluding S type potentials, and removing the ambiguity arising from the analysis of antiprotonic atoms. The results also show that there is no attractive pocket in the real potential likely to lead to an increase of the back angle cross sections [fr

  19. Measurement of the diffractive cross section in deep inelastic scattering

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-02-01

    Diffractive scattering of γ*p→X+N, where N is either a proton or a nucleonic system with M N X of the system X up to 15 GeV at average Q 2 values of 14 and 31 GeV 2 . The diffractive cross section dσ diff /dM X is, within errors, found to rise linearly with W. Parameterizing the W dependence by the form dσ diff /dM X ∝(W 2 )sup((2 anti α IP -2)) the DIS data yield for the pomeron trajectory anti α IP =1.23±0.02(stat)±0.04(syst) averaged over t in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than anti α IP extracted from soft interactions. The value of anti α IP measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates form processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton F 2 D(3) (β, Q 2 , x IP ) has been determined, where β is the momentum fraction of the struck quark in the pomeron. The form F 2 D(3) =constant. (1/x IP ) a gives a good fit to the data in all β and Q 2 intervals with a=1.46±0.04(stat)±0.08(syst). (orig.)

  20. Re-evaluation of the neutron scattering dynamics in heavy water, generation of multigroup cross sections for THERM-126

    International Nuclear Information System (INIS)

    Keinert, J.

    1982-06-01

    In providing THERM-126 with cross section matrices for deuterium bound in heavy water the IKE phonon spectrum was reevaluated. The changes are modifications in the acoustic part and in the frequency of the second oscillator. Contrary to the phonon spectrum model for D in D 2 O in ENDF/B-IV the broad band of hindered rotations is assumed to be temperature dependent taking into account the diffusive motion of the molecule. With the new model scattering law data S (α, β) are generated in the temperature range 293.6 K-673.6 K. The THERM-126 scattering cross section matrices are calculated up to P 3 . As a validity check a lot of differential and integral cross sections are compared to experiments and benchmarks are recalculated. (orig.) [de

  1. Jet cross sections in γ*γ-scattering at e+e- colliders in NLO QCD

    International Nuclear Information System (INIS)

    Poetter, B.

    1999-01-01

    Recent results from NLO QCD calculations for inclusive jet cross sections in γ*γ-scattering at e + e - colliders, especially for LEP, are reported. The virtuality Q 2 of the virtual photon is non-zero and can be unlimited large. The virtuality of the second photon is zero and the spectrum is calculated with the Weizsaecker-Williams approximation. Four components of the cross sections have to be distinguished, involving direct and resolved real and virtual photon contributions. Since Q 2 is non-zero, the virtual photon structure function is needed to calculate the contributions involving a resolved virtual photon

  2. Measurement of the diffractive deep-inelastic scattering cross section with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2010-06-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P} < 0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4cross section is measured four-fold differentially in t, x{sub P},Q{sup 2} and {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The t and x{sub P} dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared to perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2}, {beta} and x{sub P}. (orig.)

  3. Elastic differential cross sections for small-angle scattering of 25-, 40-, and 60-keV protons by atomic hydrogen

    International Nuclear Information System (INIS)

    Rille, E.; Peacher, J.L.; Redd, E.; Kvale, T.J.; Seely, D.G.; Blankenship, D.M.; Olson, R.E.; Park, J.T.

    1984-01-01

    Elastic angular differential cross sections for small-angle scattering of protons by atomic hydrogen have been measured. The technique utilized unambigously distinguishes the elastically and inelastically scattered ions. The cross sections fall monotonically by 3 orders of magnitude in the angular range from 0.5 to 3.0 mrad, in the center-of-mass system. The experimental data obtained are in very good agreement with a multistate calculation and in fair agreement with both our Glauber-approximation and classical-trajectory Monte Carlo results

  4. The effective cross section for double parton scattering within a holographic AdS/QCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Traini, Marco, E-mail: marcoclaudio.traini@unitn.it [Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento (Italy); Rinaldi, Matteo [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Vento, Vicente [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain)

    2017-05-10

    A first attempt to apply the AdS/QCD framework for a bottom–up approach to the evaluation of the effective cross section for double parton scattering in proton–proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.

  5. Total electron scattering cross section from pyridine molecules in the energy range 10-1000 eV

    Science.gov (United States)

    Dubuis, A. Traoré; Costa, F.; da Silva, F. Ferreira; Limão-Vieira, P.; Oller, J. C.; Blanco, F.; García, G.

    2018-05-01

    We report on experimental total electron scattering cross-section (TCS) from pyridine (C5H5N) for incident electron energies between 10 and 1000 eV, with experimental uncertainties within 5-10%, as measured with a double electrostatic analyser apparatus. The experimental results are compared with our theoretical calculations performed within the independent atom model complemented with a screening corrected additivity rule (IAM-SCAR) procedure which has been updated by including interference effects. A good level of agreement is found between both data sources within the experimental uncertainties. The present TCS results for electron impact energy under study contribute, together with other scattering data available in the literature, to achieve a consistent set of cross section data for modelling purposes.

  6. Measurement of the inelastic neutron scattering cross section of 56Fe

    Directory of Open Access Journals (Sweden)

    Nolte R.

    2010-10-01

    Full Text Available At the superconducting electron linear accelerator ELBE at Forschungszentrum Dresden-Rossendorf the neutron time-of-flight facility nELBE has become operational. Fast neutrons in the energy range from 200 keV to 10 MeV are produced by the pulsed electron beam from ELBE impinging on a liquid lead circuit as a radiator. The short beam pulses of 10 ps provide the basis for an excellent time resolution for neutron time-of-flight experiments, giving an energy resolution of about <1% at 1 MeV with a short flight path of 5 m. By means of a “double-time-of-flight” setup the (n,nâγ cross section to the first excited state of 56Fe has been measured over the whole energy range without knowledge about cross sections of higher-lying levels. Plastic scintillators were used to detect the inelastically scattered neutron and BaF2 detectors to detect the correlated γ-ray.

  7. Neutron scattering differential cross sections of carbon and bismuth at 37 MeV

    International Nuclear Information System (INIS)

    Zhou Zuying; Tang Hongqing; Qi Bujia; Zhou Chenwei; Du Yanfeng; Xia Haihong; Walter, R.L.; Tornow, W.; Howell, C.; Braun, R.; Roper, C.; Chen Zemin; Chen Zhengpeng; Chen Yingtang

    1997-01-01

    Elastic differential cross sections of 37 MeV neutrons scattered from carbon and bismuth were measured in the angular range 11 to 160 degrees by means of the multi-detector TOF facility. The 37 MeV neutrons were produced via the T(d,n) 4 He reaction in a tritium gas target. The pulsed 20 MeV deuteron beam was provided by the HI-13 tandem accelerator. The angular distribution of scattered neutrons from carbon and bismuth were measured in the angular range 11 degree to 145 degree and 11 degree to 160 degree respectively in steps of about 3 degree

  8. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    Science.gov (United States)

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  9. Basic scattering theory

    International Nuclear Information System (INIS)

    Queen, N.M.

    1978-01-01

    This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)

  10. The effect of the new nucleon-nucleus elastic scattering data in LAHET trademark Version 2.8 on neutron displacement cross section calculations

    International Nuclear Information System (INIS)

    Pitcher, E.J.; Ferguson, P.D.; Russell, G.J.; Prael, R.E.; Madland, D.G.; Court, J.D.; Daemen, L.L.; Wechsler, M.S.

    1997-01-01

    The latest release of the medium-energy Monte Carlo transport code LAHET includes a new nucleon-nucleus elastic scattering treatment based on a global medium-energy phenomenological optical-model potential. Implementation of this new model in LAHET allows nuclear elastic scattering for neutrons with energies greater than 15 MeV and for protons with energies greater than 50 MeV. Previous investigations on the impact of the new elastic scattering data revealed that the addition of the proton elastic scattering channel can lead to a significant increase in the calculated damage energy under certain conditions. The authors report here results on the impact of the new elastic scattering data on calculated displacement cross sections in various elements for neutrons with energies in the range 16 to 3,160 MeV. Calculated displacement cross sections at 20 MeV in low-mass materials are in better agreement with SPECTER-calculated cross sections

  11. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    Measurements of the cross sections for charged current deep inelastic scattering in e - p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb -1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dσ/dQ 2 , dσ/dx and dσ/dy are presented for Q 2 >200 GeV 2 . The double-differential cross-section d 2 σ/dxdQ 2 is presented in the kinematic range 280 2 and 0.015< x<0.65. The measured cross sections are compared with the predictions of the Standard Model. (orig.)

  12. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Sola, Valentina

    2012-04-15

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep {yields} eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09< vertical stroke t vertical stroke <0.55 GeV{sup 2}) and in the extended t-range vertical stroke t vertical stroke <1 GeV{sup 2}. The resulting cross sections cover the region 2.5{<=} Q{sup 2} {<=}200 GeV{sup 2} in photon virtualities, 0.0003{<=}x{sub P}{<=}0.09 in the proton fractional momentum losses and 0.0018{<=} {beta} {<=}0.816 in {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5{<=} Q{sup 2} {<=}1600 GeV{sup 2}, 0.0003{<=}x{sub P}{<=}0.03 and 0.0017{<=} {beta} {<=}0.8, for masses of the hadronic final state M{sub X}>4 GeV. The inclusive diffractive reduced cross section {sigma}{sub r}{sup D(3)} was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20< Q{sup 2} <130 GeV{sup 2}, 0.05< {beta} <0.85 and 0.00063or similar 0.55), the inelasticity of the interaction.

  13. Measurement of the Inclusive ep Scattering Cross Section at Low Q^2 and x at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lastovicka, T.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Naroska, B.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.

  14. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared, Q 2 , between 400 GeV 2 and the kinematic limit of 87500 GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, dσ/dQ 2 , are presented. For Q 2 ∝M W 2 , where M W is the mass of the W boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high Q 2 . The Q 2 dependence of the CC cross section determines the mass term in the CC propagator to be M W =76±16±13 GeV. (orig.)

  15. SCATLAW: a code of scattering law and cross sections calculation for liquids and solids

    International Nuclear Information System (INIS)

    Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.

    1978-11-01

    A code for calculation of the scattering law S(Q,ω), differential and double differential cross sections and scattering kernels in the energy range E(0 - 683 meV) and wave-vector transfer Q(0 - 40 A -1 ) is presented. The code can be used both for solids and liquids which are coherent or incoherent scatterer. For liquids the calculations are based on the most recent theoretical models involving the correlation functions and generalized field approach. The phonon expansion model and the free gas model are also analysed in term of frequency spectra obtained from inelastic neutron scattering using time-of-flight technique. Several results on liquid sodium at T = 233 deg C and on liquid bismuth at T = 286 deg C and T = 402 deg C are presented. (author)

  16. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  17. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Cvach, Jaroslav; Ferencei, Jozef; Hladký, Jan; Reimer, Petr

    2017-01-01

    Roč. 77, č. 4 (2017), s. 1-41, č. článku 215. ISSN 1434-6044 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : jet cross sections * neutral current deep-inelastic scattering * perturbative QCD Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  18. Measurement and QCD analysis of diffractive jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Mozer, M.U.

    2006-07-24

    Differential cross sections for the production of two jets in diffractive deep inelastic scattering (DIS) at HERA are presented. The process studied is of the type ep{yields}eXY, where the central hadronic system X contains at least two jets and is separated from the system Y by a gap in rapidity. The forward system Y consists of an elastically scattered proton or a low mass dissociation system. The data were taken with the H1 detector during the years of 1999 and 2000 and correspond to an integrated luminosity of 51.5 pb{sup -1}. The measured cross sections are compared to fixed order NLO QCD predictions, that use diffractive parton densities which have previously been determined by a NLO QCD analysis of inclusive diffractive DIS at H1. The prediction and the data show significant differences. However, the dijet cross section is dominated by the diffractive gluon density, which can be extracted by the above mentioned analysis only with considerable uncertainty. Hence a combined QCD analysis of the previously published inclusive diffractive data and the dijet data is performed. This combined fit analysis allows the determination of diffractive quark and gluon densities with comparable precision. The common description of inclusive diffractive data and the dijet data confirms QCD factorization. (orig.)

  19. R-matrix analysis of 235U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    International Nuclear Information System (INIS)

    Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.

    1997-11-01

    This document describes a new R-matrix analysis of 235 U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which 235 U is present

  20. Differential and integral electron scattering cross sections from tetrahydrofuran (THF) over a wide energy range: 1-10.000 eV

    International Nuclear Information System (INIS)

    Fuss, M.C.; Sanz, A.G.; Blanco, F.; Limao-Vieira, P.; Brunger, M.J.; Garcia, G.

    2014-01-01

    Tetrahydrofuran (THF, C 4 H 8 O) has a molecular structure that is similar to the ribose in the DNA backbone and is used as a surrogate of ribose to get electron scattering cross sections. Total, integral inelastic and integral and differential elastic cross sections have been calculated with the screening-corrected additivity rule (SCAR) method based on the independent atom model (IAM) for electron scattering from THF. Since the permanent dipole moment of THF enhances rotational excitation particularly at low energies and for small angles, an estimate of the rotational excitation cross section was also computed by assuming the interaction with a free electric dipole as an independent, additional process. Our theoretical results compare very favourably to the existing experimental data. Finally, a self-consistent set of integral and differential interaction cross-sections for the incident energy range 1 eV - 10 keV is established for use in our low energy particle track simulation (LEPTS). All cross section data are supplied numerically in tabulated form. (authors)

  1. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, Birmingham (United Kingdom)

    2011-03-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P}<0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4cross section is measured four-fold differentially in t,x{sub P},Q {sup 2} and {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The t and x{sub P} dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared with perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2},{beta} and x{sub P}. (orig.)

  2. Behavior of partial cross sections and branching ratios in the neighborhood of a resonance

    International Nuclear Information System (INIS)

    Starace, A.F.

    1977-01-01

    Starting from the treatment of Fano for the behavior of the total cross section in a photoionization (or electron-ion scattering) experiment in the vicinity of a resonance, we present a theoretical formula for the behavior of an individual final-state channel in the neighborhood of a resonance. This result is then used to derive another theoretical formula for the behavior of the ratio of two partial cross sections (i.e., the branching ratio) in the vicinity of a resonance. This branching-ratio formula depends on the profile parameters q, GAMMA, and rho 2 for the resonance, on the branching ratio outside the resonance, and on two new parameters which are explicitly related to scattering-matrix elements and phase shifts

  3. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, IL (US)] (and others)

    2008-12-15

    Measurements of the cross sections for charged current deep inelastic scattering in e{sup -}p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb{sup -1} collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy are presented for Q{sup 2}>200 GeV{sup 2}. The double-differential cross-section d{sup 2}{sigma}/dxdQ{sup 2} is presented in the kinematic range 280cross sections are compared with the predictions of the Standard Model. (orig.)

  4. Neutron scattering cross sections for 204,206Pb and neutron and proton amplitudes of E2 and E3 excitations

    International Nuclear Information System (INIS)

    Hicks, S.F.; Hanly, J.M.; Hicks, S.E.; Shen, G.R.; McEllistrem, M.T.

    1994-01-01

    Differential elastic and inelastic scattering cross sections have been measured for neutrons incident on 204 Pb and 206 Pb at energies of 2.5, 4.6, and 8.0 MeV and total cross sections in 100-keV steps from 250 keV to 4.0 MeV. Both spherical and coupled-channels analyses have been used to interpret this large set of data, together with other cross sections extending to 8 MeV. Several purposes motivate this work. The first is to establish the dispersion-corrected mean field appropriate for these nuclei. A consistent description of the energy dependent neutron scattering potential includes a dispersion relation connecting the real and imaginary parts of the potential; the resultant potential relates the energy dependent scattering field to one representing bound single particle levels. Dispersion relations using both the single channel and coupled-channels models have been examined; both give very similar results. The second motivation is to deduce neutron and proton excitation strengths of the lowest-energy quadrupole and octupole excitations seen via neutron scattering, and to compare those strengths with similar values derived from electromagnetic exciton, heavy-ion and pion scattering. The role of target neutrons in both collective excitations was found to be enhanced compared to the proton role

  5. Measurement of the inclusive ep scattering cross section at low Q2 and x at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Aplin, S.; Bartel, W.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Asmone, A.; Stella, B.; Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Behnke, O.; Behrendt, O.; South, D.; Wegener, D.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Gouzevitch, M.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Del Degan, M.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Dodonov, V.; Lytkin, L.; Povh, B.; Eckstein, D.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Lastovicka, T.; Lobodzinska, E.; Naumann, T.; Piec, S.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Hansson, M.; Joensson, L.; Osman, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Meier, K.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Schoening, A.; Tsakov, I.

    2009-01-01

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV 2 ≤Q 2 ≤12 GeV 2 , and low Bjorken x, 5.10 -6 ≤x≤0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q 2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering. (orig.)

  6. Accurate single-scattering simulation of ice cloud using the invariant-imbedding T-matrix method and the physical-geometric optics method

    Science.gov (United States)

    Sun, B.; Yang, P.; Kattawar, G. W.; Zhang, X.

    2017-12-01

    The ice cloud single-scattering properties can be accurately simulated using the invariant-imbedding T-matrix method (IITM) and the physical-geometric optics method (PGOM). The IITM has been parallelized using the Message Passing Interface (MPI) method to remove the memory limitation so that the IITM can be used to obtain the single-scattering properties of ice clouds for sizes in the geometric optics regime. Furthermore, the results associated with random orientations can be analytically achieved once the T-matrix is given. The PGOM is also parallelized in conjunction with random orientations. The single-scattering properties of a hexagonal prism with height 400 (in units of lambda/2*pi, where lambda is the incident wavelength) and an aspect ratio of 1 (defined as the height over two times of bottom side length) are given by using the parallelized IITM and compared to the counterparts using the parallelized PGOM. The two results are in close agreement. Furthermore, the integrated single-scattering properties, including the asymmetry factor, the extinction cross-section, and the scattering cross-section, are given in a completed size range. The present results show a smooth transition from the exact IITM solution to the approximate PGOM result. Because the calculation of the IITM method has reached the geometric regime, the IITM and the PGOM can be efficiently employed to accurately compute the single-scattering properties of ice cloud in a wide spectral range.

  7. Simple systematization of vibrational excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models.

    Science.gov (United States)

    Sarma, Manabendra; Adhikari, S; Mishra, Manoj K

    2007-01-28

    Vibrational excitation (nu(f), where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

  8. Combination of differential D*± cross-section measurements in deep-inelastc ep scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2015-03-01

    H1 and ZEUS have published single-differential cross sections for inclusive D *± -meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q 2 >5 GeV 2 , electron inelasticity 0.021.5 GeV and pseudorapidity vertical stroke η(D * ) vertical stroke <1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d 2 σ/dQ 2 dy are combined with earlier D *± data, extending the kinematic range down to Q 2 >1.5 GeV 2 . Perturbative next-to-leadingorder QCD predictions are compared to the results.

  9. Non-Rutherford cross-sections for alpha elastic scattering off Z = 28-38 elements in the energy range up to 10 MeV

    Science.gov (United States)

    Gurbich, A. F.; Bokhovko, M. V.

    2018-04-01

    The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.

  10. Measurement of high-Q{sup 2} charged current cross sections in e{sup +}p deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Rautenberg, J

    2004-06-01

    Cross sections for charged current deep inelastic scattering have been measured in e{sup +}p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb{sup -1}. Single differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy have been measured for Q{sup 2}>200 GeV{sup 2}, as well as the double differential reduced cross section d{sup 2}{sigma}/dxdQ{sup 2} in the kinematic range 280 GeV{sup 2}scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to d{sigma}/dQ{sup 2}. (orig.)

  11. Absolute values of inelastic neutron scattering cross-sections calculated with account taken of the pre-equilibrium mechanism

    International Nuclear Information System (INIS)

    Jahn, H.

    1980-01-01

    Absolute values of secondary energy-dependent inelastic neutron scattering cross sections can be calculated either with the master equation pre-equilibrium formalism of Cline and Blann or with Blann's more recent geometry-dependent hybrid model. The master equation formalism was used at Dubna and Dresden to reproduce experimental results for 14 MeV incident energy. The geometry-dependent hybrid model was used at Karlsruhe to cover for a number of materials the whole range from 5 to 14 MeV incident energy and to reproduce smoothed experimental spectra at 7.45 and 14 MeV. Only the geometry-dependent hybrid model accounts for scattering in the diffuse nuclear surface and thus for a certain average over the direct interaction. It is also free of any fit parameters other than those of the usual optical model. The master equation calculations, on the other hand, are based on nucleon-nucleon scattering cross sections inserted into the high-energy approximation of Kikuchi and Kawai for the intranuclear transition rate. Other approaches require either mass- or energy-dependent or more global fit parameters for a satisfactory reproduction of experimental results, but a genuine prediction of the incident-energy dependence of the inelastic neutron cross section, especially below 14 MeV, is needed for transport and shielding calculations for instance in connection with fusion reactor design studies. (author)

  12. How strong is the strong interaction? The πNN coupling constant and the shape and normalization of np scattering cross sections

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.; Rahm, J.

    2000-01-01

    The world data base on np scattering differential cross section data from 100 to 1000 MeV incident neutron energy has been reviewed. In addition, the status of the np total cross section and the pp → dπ + total cross section is discussed, as these have frequently been used to normalize np scattering data. It appears that the shapes of the largest np data sets tend to fall into two groups, with different steepness at backward angles. Also, it seems as the two major techniques for normalizing data yield incompatible results. Both these effects have consequences when using np data to determine the pion-nucleon coupling constant, g 2 πNN , which is currently under debate. (orig.)

  13. Cross sections for inelastic scattering of electrons by atoms: selected topics related to electron microscopy

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1982-01-01

    We begin with a resume of the Bethe theory, which provides a general framework for discussing the inelastic scattering of fast electrons and leads to powerful criteria for judging the reliability of cross-section data. The central notion of the theory is the generalized oscillator strength as a function of both the energy transfer and the momentum transfer, and is the only non-trivial factor in the inelastic-scattering cross section. Although the Bethe theory was initially conceived for free atoms, its basic ideas apply to solids, with suitable generalizations; in this respect, the notion of the dielectric response function is the most fundamental. Topics selected for discussion include the generalized oscillator strengths for the K-shell and L-shell ionization for all atoms with Z less than or equal to 30, evaluated by use of the Hartree-Slater potential. As a function of the energy transfer, the generalized oscillator strength most often shows a non-monotonic structure near the K-shell and L-shell thresholds, which has been interpreted as manifestations of electron-wave propagation through atomic fields. For molecules and solids, there are additional structures due to the scattering of ejected electrons by the fields of other atoms

  14. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  15. Interference effects on the photoionization cross sections between two neighbouring atoms: nitrogen as an example

    International Nuclear Information System (INIS)

    Jian-Hua, Wu; Jian-Min, Yuan

    2009-01-01

    Interference effects on the photoionization cross sections between two neighbouring atoms are considered based on the coherent scattering of the ionized electrons by the two nuclei when their separation is less than or comparable to the de Broglie wave length of the ionized electrons. As an example, the single atomic nitrogen ionization cross section and the total cross sections of two nitrogen atoms with coherently added photoionization amplitudes are calculated from the threshold to about 60 Å (1 Å = 0.1 nm) of the photon energy. The photoionization cross sections of atomic nitrogen are obtained by using the close-coupling R-matrix method. In the calculation 19 states are included. The ionization energy of the atomic nitrogen and the photoionization cross sections agree well with the experimental results. Based on the R-matrix results of atomic nitrogen, the interference effects between two neighbouring nitrogen atoms are obtained. It is shown that the interference effects are considerable when electrons are ionized just above the threshold, even for the separations between the two atoms are larger than two times of the bond length of N 2 molecules. Therefore, in hot and dense samples, effects caused by the coherent interference between the neighbours are expected to be observable for the total photoionization cross sections. (atomic and molecular physics)

  16. Electron scattering cross sections for SF6 and SF5CF3 at intermediate and high energies (100-10000 eV)

    International Nuclear Information System (INIS)

    Limao-Vieira, P.; Blanco, F.; Oller, J.C.; Munoz, A.; Perez, J.M.; Vinodkumar, M.; Garcia, G.; Mason, N.J.

    2005-01-01

    A modified experimental apparatus with improved angular resolution and stability has been used to measure the total electron scattering cross sections for SF 6 and SF 5 CF 3 in the energy range of 100-5000 eV. A detailed analysis of the experimental error sources is provided. The experimental results are compared with integral elastic and inelastic cross sections calculated using the independent atom model approximation and a modified single-center additivity rule for electron energies ranging from 1 to 10,000 eV. The accuracy of these approximations method is discussed through a comparison with the experimental results. Previous cross-sectional data for SF 6 are compared with the present theoretical and experimental results. For SF 5 CF 3 , we present the first electron scattering cross-sectional data for the 100-10,000 eV energy range, as well as the first empirical determination of the molecular polarizability

  17. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-12-01

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q 2 >125 GeV 2 with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb -1 . Jets were identified in the Breit frame using the k T cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q 2 and the jet transverse energy, E T,B jet . The dependence on R of the inclusive-jet cross section has been measured for Q 2 > 125 and 500 GeV 2 and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5 s (M Z ) has been extracted from the measurements of the inclusive-jet cross-section dσ/dQ 2 with R=1 for Q 2 > 500 GeV 2 : α s (M Z )=0.1207±0.0014(stat.) -0.0028 +0.0030 (exp.) -0.0 023 +0.0022 (th.). The variation of α s with E T,B jet is in good agreement with the running of α s as predicted by QCD. (orig.)

  18. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  19. Electron re-scattering from aligned linear molecules using the R-matrix method

    International Nuclear Information System (INIS)

    Harvey, A G; Tennyson, J

    2009-01-01

    Electron re-scattering in a strong laser field provides an important probe of molecular structure and processes. The laser field drives the ionization of the molecule, followed by acceleration and subsequent recollision of the electron with the parent molecular ion, the scattered electrons carry information about the nuclear geometry and electronic states of the molecular ion. It is advantageous in strong field experiments to work with aligned molecules, which introduces extra physics compared to the standard gas-phase, electron-molecule scattering problem. The formalism for scattering from oriented linear molecules is presented and applied to H 2 and CO 2 . Differential cross sections are presented for (re-)scattering by these systems concentrating on the most common, linear alignment. In H 2 these cross sections show significant angular structure which, particularly for a scattering angle of 90 deg., are predicted to vary significantly between re-collisions stimulated by an even or an odd number of photons. In CO 2 these cross sections are zero indicating the necessity of using non-parallel alignment with this molecule.

  20. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, Mark Edward [Univ. College London, Bloomsbury (United Kingdom)

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  1. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    International Nuclear Information System (INIS)

    Dorman, Mark Edward

    2008-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented

  2. R-Matrix Evaluation of 16O neutron cross sections up to 6.3 MeV

    International Nuclear Information System (INIS)

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; Wright, R.Q.

    2000-01-01

    In this paper the authors describe an evaluation of 16 O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique

  3. Measurement of the inclusive ep scattering cross section at low Q{sup 2} and x at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev (P.N.) Physical Inst., Moscow (RU)] (and others)

    2009-02-15

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV{sup 2}{<=}Q{sup 2}{<=}12 GeV{sup 2}, and low Bjorken x, 5.10{sup -6}cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q{sup 2} and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering. (orig.)

  4. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  5. Hauser-Feshbach cross-section calculations for elastic and inelastic scattering of alpha particles-program CORA

    International Nuclear Information System (INIS)

    Hartman, A.; Siemaszko, M.; Zipper, W.

    1975-01-01

    The program CORA was prepared on the basis of Hauser and Feshbach compound reaction formalism. It allows the differential cross-section distributions for the elastic and inelastic scattering of alpha particles (via compound nucleus state) to be calculated. The transmission coefficients are calculated on the basis of a four parameter optical model. The search procedure is also included. (author)

  6. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  7. Differential cross sections for carbon neutron elastic and inelastic scattering from 8.0 to 14.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Haouat, G.; Lachkar, J.; Patin, Y.; Sigaud, J.; Cocu, F.

    1975-06-01

    Differential elastic and inelastic cross sections for fast neutrons scattered by carbon have been measured between 8.0 and 14.5 MeV. No experimental results on {sup 12}C seem to have been reported, at this time, between 9 and 14 MeV. A complete and consistent set of data on carbon, including total, elastic and inelastic, (n,α) and (n,n'3α) cross sections, is now available for energies below 14.5MeV.

  8. Real part of amplitude and hadron scattering cross section at superhigh energies

    International Nuclear Information System (INIS)

    Troshin, S.M.; Tyurin, N.E.

    1987-01-01

    New data on measuring the ratio of the real to imaginary part of the forward scattering amplitude: ρ pp-bar (√s=546 GeV)=0.24±0.04 have been considered. This result is shown to agree with the behaviour of σ tot (s), predicted by the U-matrix model. A possibility of transition to antishadow scattering mode at superhigh energies is stated

  9. Neutrino-carbon cross section in QRPA models

    International Nuclear Information System (INIS)

    Samana, Arturo R.; Krmpotic, Francisco; Bertulani, Carlos A.; Paar, Nils

    2009-01-01

    Full text follows. The ν/ν-bar - 12 C cross sections are calculated in the projected quasiparticle random phase approximation (PQRPA) [1,2] and the relativistic quasiparticle random phase approximation (RQRPA) [3,4]. We compare these cross section as a function of the incident neutrino energy and the number of shells used in the nuclear structure calculation. Additional comparison with other RPA models are performed. A guide to find an upper limit of the incident neutrino energy as a function of the number of shell is implemented. Important consequences on the extrapolation of the cross section to higher neutrino energies is discussed. The formalism obtained in Ref. [1] for the neutrino interaction is extended for antineutrino scattering. This formalism includes the effect of the violation of the Conserved Vector Current by the Coulomb field. It is furthermore simplified by classifying the nuclear matrix elements in natural and unnatural parities. The distribution of cross sections averaged with the Michel spectrum as well as with other estimated fluxes for future experiments are compared for ν e and ν-bar e . Some astrophysical implications are addressed. References [1] F. Krmpotic, A. Mariano and A. Samana, Phys.Lett. B541, 298 (2002). [2] F. Krmpotic, A. Mariano and A. Samana, Phys. Rev. C 71, 044319 (2005). [3] N. Paar, T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 69, 054303 (2004). [4] N. Paar, D. Vretenar, T. Marketin and P. Ring, Phys. Rev. C 77, 024608 (2008)

  10. Cross section measurements of the elastic electron - deuteron scattering at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Yvonne [Universitaet Mainz, Institut fuer Kernphysik (Germany); Collaboration: A1-Collaboration

    2015-07-01

    The electromagnetic form factors of light nuclei provide a sensitive test of our understanding of nuclei. Because the deuteron has spin one, three form factors are needed to fully describe the electromagnetic structure of the deuteron. Especially the deuteron charge radius is a favourite observable to compare experiment and calculation. Recently, an extensive measurement campaign has been performed at MAMI (Mainzer Microtron) to determine the deuteron charge radius using elastic electron scattering - with the aim to halve the error compared to previous such experiments. The experiment took place at the 3-spectrometer facility of the A1-collaboration. Cross section measurements of the elastic electron-deuteron scattering have been performed for 180 different kinematic settings in the low momentum transfer region. From these, the charge form factor can precisely be determined. Fitting the form factor with an appropiate fit function, the radius can then be determined from the slope at zero momentum transfer. The determined radius could then be used as a counterweight to the value obtained from the advanced atomic Lamb shift measurements, thus providing additional insight to the proton radius puzzle.

  11. Revision of the inelastic scattering cross section evaluation of 238U for CENDL-2.1

    International Nuclear Information System (INIS)

    Tang Guoyou; Zhang Guohui; Shi Zhaomin; Chen Jinxiang

    1995-11-01

    Revised evaluated data for the inelastic neutron scattering cross-section and the secondary neutron spectrum are presented for U-238 in graphical form, compared with the earlier data that exist in the evaluated nuclear data libraries ENDF/B-6 and JENDL-3. The new data will be included in the Chinese evaluated nuclear data library CENDL-2.1. (author). 14 refs, 9 figs

  12. Comparison of inelastic electron and positron scattering cross sections on 12C and 27Al

    International Nuclear Information System (INIS)

    Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Bleckwenn, J.

    1977-06-01

    The +/- ratio R of the cross sections for inelastic positron and electron scattering on 12 C and 27 Al has been measured for four momentum transfers (0.08 - 0.45) GeV 2 /c 2 of the virtual photon and invariant masses 0.95 GeV +- 0.0007), no q 2 respectively W dependence of the ratio is observed. (orig.) [de

  13. Measurement of dijet cross sections in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Theedt, Thorben

    2009-11-15

    Dijet cross sections have been measured in deep inelastic neutral current electron-proton scattering at HERA. Cross sections have been measured differentially as functions of the photon virtuality, Q{sup 2}, the scaling variable, Bjorken x, the mean transverse jet energy, E{sub T}, the invariant dijet mass, M{sub jj}, the difference in jet pseudorapidity, {eta}'= vertical stroke {eta}{sup jet{sub 1}}-{eta}{sup jet{sub 2}} vertical stroke and the momentum fraction, {xi}. Cross sections as function of {xi} have also been measured in different regions of the photon virtuality. The analysed data were recorded at a centre-of-mass energy of 318 GeV with the ZEUS detector in the years 1998, 1999, and 2000 and correspond to an integrated luminosity of 81.74 pb{sup -1}. The phase space of the analysis is defined by 125

  14. Quality Quantification of Evaluated Cross Section Covariances

    International Nuclear Information System (INIS)

    Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.

    2015-01-01

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations

  15. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  16. Combination of differential D{sup *±} cross-section measurements in deep-inelastc ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science; Collaboration: The H1 and ZEUS Collaborations; and others

    2015-03-15

    H1 and ZEUS have published single-differential cross sections for inclusive D{sup *±}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q{sup 2}>5 GeV{sup 2}, electron inelasticity 0.021.5 GeV and pseudorapidity vertical stroke η(D{sup *}) vertical stroke <1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d{sup 2}σ/dQ{sup 2}dy are combined with earlier D{sup *±} data, extending the kinematic range down to Q{sup 2}>1.5 GeV{sup 2}. Perturbative next-to-leadingorder QCD predictions are compared to the results.

  17. Regge-pole description of potential scattering by means of the phase-integral method

    International Nuclear Information System (INIS)

    Amaha, A.

    1992-01-01

    The application of Regge-pole theory to different atomic and molecular scattering has shown to have promising interpretational power in the differential cross sections. Differential cross sections can be analysed in terms of interference between the 'background' amplitude and a few Regge-pole positions of the scattering matrix (S matrix) representing surface waves around the interaction region. By the analytic continuation of the radial Schroedinger differential equation into the complex plane of angular momentum one can determine the analytic properties of the S matrix which contains the physical information in the scattering processes. For interaction potentials fulfilling certain properties, the study of the S matrix leads to the study of the F matrix introduced by Froeman and Froeman for the treatment of connection problems for phase-integral solutions of the differential equation. In this thesis the quantum mechanical scattering problem is analysed in the framework of Regge-pole theory with the use of the complex-angular-momentum formalism. To determine the S matrix, the relevant F matrix elements which give the stokes constants are derived and their properties are studied. The poles of the S matrix for particular complex values of the angular momentum quantum number are the Regge-poles. Using the Regge-pole positions and residues together with the background integral, the differential cross sections are calculated and compared with corresponding partial-wave representations

  18. Partial wave analysis for folded differential cross sections

    Science.gov (United States)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  19. VITAMIN-J/COVA/EFF-3 cross-section covariance matrix library and its use to analyse benchmark experiments in sinbad database

    International Nuclear Information System (INIS)

    Kodeli, Ivan-Alexander

    2005-01-01

    The new cross-section covariance matrix library ZZ-VITAMIN-J/COVA/EFF3 intended to simplify and encourage sensitivity and uncertainty analysis was prepared and is available from the NEA Data Bank. The library is organised in a ready-to-use form including both the covariance matrix data as well as processing tools:-Cross-section covariance matrices from the EFF-3 evaluation for five materials: 9 Be, 28 Si, 56 Fe, 58 Ni and 60 Ni. Other data will be included when available. -FORTRAN program ANGELO-2 to extrapolate/interpolate the covariance matrices to a users' defined energy group structure. -FORTRAN program LAMBDA to verify the mathematical properties of the covariance matrices, like symmetry, positive definiteness, etc. The preparation, testing and use of the covariance matrix library are presented. The uncertainties based on the cross-section covariance data were compared with those based on other evaluations, like ENDF/B-VI. The collapsing procedure used in the ANGELO-2 code was compared and validated with the one used in the NJOY system

  20. Finite-difference time-domain analysis on radar cross section of conducting cube scatterer covered with plasmas

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhang Guangfu; Yuan Naichang

    2004-01-01

    A PLJERC-FDTD algorithm is applied to the study of the scattering of perfectly conducting cube covered with homogeneous isotropic plasmas. The effects of plasma thickness, density and collision frequency on the radar cross section (RCS) of the conducting cube scatterer have been obtained. The results illustrate that the plasma cloaking can greatly reduce the RCS of radar targets, and the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness when the plasma frequency is greatly less than the electromagnetic (EM) wave frequency; the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness and plasma collision frequency when the plasma frequency is almost half as much as the EM wave frequency; the effects of plasma thickness and collision frequency on the RCS of the perfectly conducting cube scatterer is small when the plasma frequency is close to the EM wave frequency

  1. Multiphoton effects in electron-ion scattering: A limitation of the cross-section treatment

    International Nuclear Information System (INIS)

    Torres Silva, H.; Sakanaka, P.H.; Braga, L.C.

    1991-07-01

    The differential cross-section for inelastic scattering in the presence of an intense laser field, when applied to the calculation of energy balance and heating by multiphoton process, is a problem which is not completely solved yet. One of the main difficulties is the calculation of the absorption coefficients α-bar for a monoenergetic beam of electrons scattered by a static potential. There are contradictory results shown by different authors. Here we have derived α-bar starting under the framework of quantum mechanics and then making the classical correspondence (h/2π → 0) according to the kinetic theory, and show that the absorption coefficient is always positive for all values of the particle incoming velocity, v-vector i . Furthermore, we show that in the calculation of α-bar we recover the Coulomb logarithm term. (author). 18 refs, 5 figs, 2 tabs

  2. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-12-15

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q{sup 2}>125 GeV{sup 2} with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb{sup -1}. Jets were identified in the Breit frame using the k{sub T} cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q{sup 2} and the jet transverse energy, E{sub T,B}{sup jet}. The dependence on R of the inclusive-jet cross section has been measured for Q{sup 2} > 125 and 500 GeV{sup 2} and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5<=R<=1. A value of {alpha}{sub s}(M{sub Z}) has been extracted from the measurements of the inclusive-jet cross-section d{sigma}/dQ{sup 2} with R=1 for Q{sup 2} > 500 GeV{sup 2}: {alpha}{sub s}(M{sub Z})=0.1207{+-}0.0014(stat.){sub -0.0028}{sup +0.0030}(exp.){sub -0.0023}{sup +0.0022}(th.). The variation of {alpha}{sub s} with E{sub T,B}{sup jet} is in good agreement with the running of {alpha}{sub s} as predicted by QCD. (orig.)

  3. Diffraction in nuclear scattering

    International Nuclear Information System (INIS)

    Wojciechowski, H.

    1986-01-01

    The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)

  4. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  5. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  6. Neutron inelastic-scattering cross sections of 232Th, 233U, 235U, 238U, 239Pu and 240Pu

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-01-01

    Differential-neutron-emission cross sections of 232 Th, 233 U, 235 U, 238 U, 239 Pu and 240 Pu are measured between approx. = 1.0 and 3.5 MeV with the angle and magnitude detail needed to provide angle-integrated emission cross sections to approx. 232 Th, 233 U, 235 U and 238 U inelastic-scattering values, poor agreement is observed for 240 Pu, and a serious discrepancy exists in the case of 239 Pu

  7. Lower bounds on the total cross section and the slope parameter for some measurable sequences of s→infinity

    International Nuclear Information System (INIS)

    Uchiyama, T.

    1978-01-01

    The lower bounds on the total cross section and the slope parameter are obtained on the basis of the analyticity and polynomial upper boundedness of the scattering amplitude and the unitarity of the S matrix: sigma/sub tot/> or =Cs -6 (logs) -2 , B> or =Cs -5 (logs) -4 for some measurable sequences of s→infinity. These bounds hold for any t in 0 2 /sub π/It is unnecessary in order to obtain our bounds that the scattering amplitude has the crossing even property. If we assume this property, we can suppress the logarithmic factors of our bounds. Also we obtain our lower bounds for any sequence of s→infinity, if we take the average scattering amplitude

  8. A critical comparison of electron scattering cross sections measured by single collision and swarm techniques

    International Nuclear Information System (INIS)

    Buckman, S.J.; Brunger, M.J.

    1996-07-01

    Electron scattering cross sections (elastic, rotational and vibrational excitation) for a number of atomic and (relatively) single molecular systems are examined. Particular reference is made to the level of agreement which is obtained from the application of the completely different measurement philosophies embodied in 'beam' and 'swarm' techniques. The range of energies considered is generally restricted to the region below 5 eV. 142 refs., 1 tab., 12 figs

  9. Quasinormal-Mode Expansion of the Scattering Matrix

    Directory of Open Access Journals (Sweden)

    Filippo Alpeggiani

    2017-06-01

    Full Text Available It is well known that the quasinormal modes (or resonant states of photonic structures can be associated with the poles of the scattering matrix of the system in the complex-frequency plane. In this work, the inverse problem, i.e., the reconstruction of the scattering matrix from the knowledge of the quasinormal modes, is addressed. We develop a general and scalable quasinormal-mode expansion of the scattering matrix, requiring only the complex eigenfrequencies and the far-field properties of the eigenmodes. The theory is validated by applying it to illustrative nanophotonic systems with multiple overlapping electromagnetic modes. The examples demonstrate that our theory provides an accurate first-principles prediction of the scattering properties, without the need for postulating ad hoc nonresonant channels.

  10. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  11. Intermolecular potential for Ar + D2O from differential scattering cross sections, and its implications for the water pair potential

    International Nuclear Information System (INIS)

    Brooks, R.; Porter, R.A.R.; Kalos, F.; Grosser, A.E.

    1975-01-01

    A velocity selected molecular beam of D 2 O was crossed with a nozzle beam of Ar and the angular distribution of the scattered D 2 O was measured mass spectrometrically. By varying the velocity of the D 2 O beam, the differential cross section was measured at two collision energies. The experimental results were compared with synthetic differential cross sections calculated from Lennard-Jones and Kihara-Stockmayer trial potentials to determine potential parameters. Implications for the H 2 O pair potential are discussed

  12. Analysis of Sodium-23 Data Cross-Sections for Coolant on Generation IV Reactor - SFR

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2009-01-01

    The integral tests of sodium-23 neutron cross-sections for coolant contained in JENDL-3.3, ENDF/B-VII.0, BROND-2.2 and JEFF-3.1 files have been performed. Cross-sections analysis of sodium-23 such as total cross-sections, elastic scattering, in-elastic scattering and radiative capture cross-sections for several temperature i.e. 300K, 800K and 1500K. The sodium-23 total cross-sections analysis based on MAEKER, R.E. experimental result through Broomstick experiment calculation. Differences between among other evaluated nuclear data file for elastic scattering, in-elastic scattering and radiative capture cross-sections were done analyzed and compared to ENDF/B-VII.0 as standard reference. Analysis of total cross-sections sodium-23 through broomstick calculation show JENDL-3.3 file give the best result on C/E statistical average value is 1.1043 compared to another nuclear data files. Differences sodium-23 total cross-sections on JEFF-3.1 file for all temperature work specially for energy 40keV and 1MeV-2MeV is about 0.2%. Meanwhile, relative small differences on in-elastic total scattering cross-sections are shown for all temperatures are about ±0.1% in JENDL-3.3. On the other hand, BROND-2.2 file give ±6% higher on sodium-23 in-elastic total scattering cross sections for energy range 450keV-550keV. Clearly significant differences on sodium-23 radiative capture cross sections for BROND-2.2 file especially in energy 109.659keV is somewhat higher than 446%, otherwise JENDL-3.3 and JEFF-3.1 give 16% higher than ENDF/B-VII.0 file. Overall result show that JENDL-3.3, ENDFB-VII.0, BROND-2.2 and JEFF-3.1 have little bit differences in total, elastic scattering, in-elastic scattering total cross sections, except BROND-2.2 file due to radiative capture cross-sections with larger discrepancies. (author)

  13. High-energy behaviour of e--H scattering cross section

    International Nuclear Information System (INIS)

    Saha, B.C.; Chaudhuri, J.; Ghosh, A.S.

    1976-01-01

    An integral form of the close coupling equation has been employed to investigate the high energy behaviour of the elastic and 2s excitation cross sections of hydrogen atom by electron impact retaining the 1s and 2s states. The results, with and without exchange, for both the total and the differential cross sections are presented. The effects of exchange as well as of couplings to the 1s-2s states on the elastic cross section have been studied. The FBA results for the elastic cross section differ from the present results appreciably in the energy range 100 to 200 eV where FBA is considered to be valid. On the other hand, the present 1s-2s excitation results are very close to the corresponding FBA results in the said energy region. (auth.)

  14. Positron scattering by atomic hydrogen including positronium formation

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.

    1993-01-01

    Positron scattering by atomic hydrogen including positronium formation has been formulated using the R-matrix method and a general computer code written. Partial wave elastic and ground state positronium formation cross sections have been calculated for L ≤ 6 using a six-state approximation which includes the ground state and the 2s and 2p pseudostates of both hydrogen and positronium. The elastic scattering results obtained are in good agreement with those derived from a highly accurate calculation based upon the intermediate energy R-matrix approach. As in a previous coupled-channel static calculation, resonance effects are observed at intermediate energies in the S-wave positronium formation cross section. However, in the present results, the dominant resonance arises in the P-wave cross sections at an energy of 2.73 Ryd and with a width of 0.19 Ryd. (author)

  15. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  16. Combination of differential D{sup ∗±} cross-section measurements in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv (Israel); Abt, I. [Max-Planck-Institut für Physik, München (Germany); Adamczyk, L. [AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Adamus, M. [National Centre for Nuclear Research, Warsaw (Poland); Collaboration: The H1 and ZEUS collaboration; and others

    2015-09-22

    H1 and ZEUS have published single-differential cross sections for inclusive D{sup ∗±}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q{sup 2}>5 GeV{sup 2}, electron inelasticity 0.021.5 GeV and pseudorapidity |η(D{sup ∗})|<1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d{sup 2}σ/dQ{sup 2}dy are combined with earlier D{sup ∗±} data, extending the kinematic range down to Q{sup 2}>1.5 GeV{sup 2}. Perturbative next-to-leading-order QCD predictions are compared to the results.

  17. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  18. Formalism for neutron cross section covariances in the resonance region using kernel approximation

    Energy Technology Data Exchange (ETDEWEB)

    Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.

    2010-04-09

    We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).

  19. Scattering on magnetic monopoles

    International Nuclear Information System (INIS)

    Petry, H.R.

    1980-01-01

    The time-dependent scattering theory of charged particles on magnetic monopoles is investigated within a mathematical frame-work, which duely pays attention to the fact that the wavefunctions of the scattered particles are sections in a non-trivial complex line-bundle. It is found that Moeller operators have to be defined in a way which takes into account the peculiar long-range behaviour of the monopole field. Formulas for the scattering matrix and the differential cross-section are derived, and, as a by-product, a momentum space picture for particles, which are described by sections in the underlying complex line-bundle, is presented. (orig.)

  20. Elastic scattering of. pi. /sup -/ mesons on protons in the Coulomb-nuclear interference region at 33-60 GeV/c. [Total and differential cross sections,scattering amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Apokin, V D; Vasiliev, A N; Derevshchikov, A A; Matulenko, Yu A; Meschanin, A P; Mysnik, A I; Nurushev, S B; Saraykin, A I; Siksin, V V; Smirnov, E V [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1976-04-19

    Differential cross sections for the elastic scattering of negative pions on protons, as well as total cross sections have been measured for the incident momentum range from 33 up to 60 GeV/c. The values for four-momentum transfer were within the limits of -(10/sup -3/-8x10/sup -2/) (GeV/c)/sup 2/. The energy dependence of the ratio rho(0) of the real part of the forward elastic scattering amplitude to the imaginary part has been determined from the experimental data. The magnitude rho(0) smoothly increases from (-10.9+-1.2)% at momenta 33.52 GeV/c up to (-1.8+-1.8)% at 59.4 GeV/c. The results obtained are compared with the predictions of theoretical models.

  1. AXMIX, ANISN Cross-Sections Mixing, Transport Corrections, Data Library Management

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Nature of physical problem solved: Mixing, changing table length, adjoining, making scattering order adjustments (PN delta function subtraction), and transport corrections of ANISN-type cross sections, and management of cross section data sets and libraries. 2 - Method of solution: The number of energy groups which will fit into the core allocated is determined first. If all groups will fit, the solution is straightforward. If not, then the maximum number of groups which will fit is processed repeatedly using direct access I/O and storage disks. 3 - Restrictions on the complexity of the problem: Some flexibility in applying AXMIX is lost when cross sections to be processed contain up-scatter. A special section on up-scatter is therefore included in the report

  2. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  3. Tables of RCN-2 fission-product cross section evaluation

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1979-05-01

    This report (continuation of ECN-13 and ECN-33) describes the third part of the RCN-2 evaluation of neutron cross sections for fission product nuclides in KEDAK format. It contains evaluated data for nine nuclides, i.e. 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 147 Nd, 148 Nd, 150 Nd and 147 Pm. Most emphasis has been given to the evaluation of the radiative capture cross section, in order to provide a data base for adjustment calculations using results of integral measurements. Short evaluation reports are given for this cross section. The evaluated capture cross sections are compared with recent experimental differential and integral data. Graphs are given of the capture cross sections at neutron energies above 1 keV, in which also adjusted point cross sections, based upon integral STEK and CFRMF data have been plotted. Moreover, the results are compared with those of the well-known ENDF/B-IV evaluation for fission product nucleides. Finally, evaluation summaries are given, which include tables of other important neutron cross sections, such as the total, elastic scattering and inelastic scattering cross sections

  4. Regularized unfolding of jet cross sections in deep-inelastic ep scattering at HERA and determination of the strong coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Britzger, Daniel Andreas

    2013-10-15

    In this thesis double-differential cross sections for jet production in neutral current deep-inelastic e{sup {+-}}p scattering (DIS) are presented at the center-of-mass energy of {radical}(s)=319 GeV, and in the kinematic range of the squared four-momentum transfer 150< Q{sup 2}<15 000 GeV{sup 2} and the inelasticity 0.2matrix based unfolding corrects the neutral current DIS, the inclusive jet, the dijet and the trijet measurements simultaneously, and it considers migrations in up to eight variables. The simultaneous unfolding enables to constrain contributions from jet multiplicities differing between detector and hadron level using the neutral current DIS kinematics of such events. Furthermore, jet cross sections normalized to the inclusive neutral current DIS cross section and ratios of jet cross sections are obtained, since the statistical correlations between these observables are known. The jet cross sections are used to determine the strong coupling constant {alpha}{sub s}(M{sub Z}) at the scale of the mass of the Z{sup 0} boson in the framework of perturbative quantum chromodynamics in next-to-leading order. Values are derived separately for the absolute

  5. Extraction of astrophysical cross sections in the Trojan-Horse method

    CERN Document Server

    Typel, S

    2000-01-01

    The Trojan-horse method has been proposed to extract S-matrix elements of a two-body reaction at astrophysical energies from a related reaction with three particles in the final case. This should be useful in cases where the direct measurement of the two-body reaction at the necessary low energie is experimentally difficult. The formalism of the Trojan-horse method for nuclear reactions is developed in detail from basic scattering theory including spin degrees of freedom of the nuclei and we specify the necessary approximations. The energy dependence of the three-body reaction is determined by characteristic functions that represent the theoretical ingredients for the method. In a plane-wave Born approximation of the T-matrix the differential cross section assumes a simple structure. Refs. 17 (author)

  6. Scattering-angle dependence of doubly differential cross sections for fragmentation of H2 by proton impact

    International Nuclear Information System (INIS)

    Egodapitiya, K. N.; Sharma, S.; Laforge, A. C.; Schulz, M.

    2011-01-01

    We have measured double differential cross sections (DDCS) for proton fragment formation for fixed projectile energy losses as a function of projectile scattering angle in 75 keV p + H 2 collisions. An oscillating pattern was observed in the angular dependence of the DDCS with a frequency about twice as large as what we found earlier for nondissociative ionization. Possible origins for this frequency doubling are discussed.

  7. Differential cross section for neutron scattering from 209Bi at 37 MeV and the weak particle-core coupling

    International Nuclear Information System (INIS)

    Zhou Zuying; Ruan Xichao; Du Yanfeng; Qi Bujia; Tang Hongqing; Xia Haihong; Walter, R. L.; Braun, R. T.; Howell, C. R.; Tornow, W.; Weisel, G. J.; Dupuis, M.; Delaroche, J. P.; Chen Zemin; Chen Zhenpeng; Chen Yingtang

    2010-01-01

    Differential scattering cross-section data have been measured at 43 angles from 11 deg. to 160 deg. for 37-MeV neutrons incident on 209 Bi. The primary motivation for the measurements is to address the scarcity of neutron scattering data above 30 MeV and to improve the accuracy of optical-model predictions at medium neutron energies. The high-statistics measurements were conducted at the China Institute of Atomic Energy using the 3 H(d,n) 4 He reaction as the neutron source, a pulsed deuteron beam, and time-of-flight (TOF) techniques. Within the resolution of the TOF spectrometer, the measurements included inelastic scattering components. The sum of elastic and inelastic scattering cross sections was computed in joint optical-model and distorted-wave Born approximation calculations under the assumption of the weak particle-core coupling. The results challenge predictions from well-established spherical optical potentials. Good agreement between data and calculations is achieved at 37 MeV provided that the balance between surface and volume absorption in a recent successful model [A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003)] is modified, thus suggesting the need for global optical-model improvements at medium neutron energies.

  8. Analysis of K/sup -/K/sup +/ and. pi. /sup -/. pi. /sup +/ final states in 13 GeV K/sup -/p interactions. [Differential cross sections, density matrix elements, branching ratio

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, G W; Carnegie, R K; Cashmore, R J; Davier, M; Lasinski, T A; Leith, D W.G.S.; Mathews, J A.J.; Walden, P; Williams, S H [Stanford Linear Accelerator Center, Calif. (USA)

    1976-03-01

    The differential cross sections and density matrix elements for the phi and rho/sup 0/ mesons have been measured in the reactions K/sup -/p..-->..K/sup -/K/sup +/(..lambda..,..sigma../sup 0/) and K/sup -/p..--> pi../sup -/..pi../sup +/(..lambda..,..sigma../sup 0/) at 13 GeV using a wire chamber spectrometer. The analysis shows that while the vector meson production is dominated by the natural parity exchange amplitude, some unnatural parity exchange is also required. Furthermore the phi and rho natural exchange cross sections are identical in shape and have the 2:1 relative strength expected in the quark model with K* and K** exchange degeneracy. The analysis of the clear peak-dip rho/sup 0/-..omega.. interference pattern observed in the ..pi../sup -/..pi../sup +/ data indicates that the ..omega.. production is in phase with the rho and of similar magnitude. Both the S* and f' meson are clearly observed in this experiment. The S* data are found to be consistent with S* parameters deduced from ..pi pi.. scattering analyses. The f' density matrix elements and a new limit on the f'..--> pi../sup -/..pi../sup +/ branching ratio are presented.

  9. R matrix analysis of 239Pu neutron cross sections in the energy range up to 1000 eV

    International Nuclear Information System (INIS)

    de Saussure, G.; Perez, R.B.

    1990-01-01

    This paper reports on the results of an R matrix analysis of the 239 Pu neutron cross sections up to 1000-eV neutron energy. The analysis was performed with the multilevel multichannel Reich-Moore code SAMMY. The method of analysis is describe, and the selection of experimental data is discussed. Some tabular and graphical comparisons between calculated and measured cross sections and transmissions are presented. The statistical properties of the resonance parameters are examined. The resonance parameters are proposed for the new evaluated data files ENDF/B-VI and JEF2

  10. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  11. Calculation of total cross sections for electron and positron scattering on sodium and potassium

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Zhou, Y.

    1993-02-01

    Total cross sections for electron and positron scattering on sodium and potassium are calculated at various energies and compared with experiment. The method use is the coupled-channels-optical method with the equivalent-local polarisation potential, which takes all channels into account. For electrons the calculations are checked by comparison with coupled-channels-optical calculations using a detailed polarisation potential that makes only one approximation, that of weak coupling in the ionisation space. The polarisation potential for positrons includes effects of ionisation and positronium formation. 13 refs., 2 tabs

  12. R-matrix and RR-matrix calculations for cross sections for photoionization of outermost subshell in nobile gas atoms

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    2000-02-01

    Photon impact integral ionization cross section (σ) as well as photoelectron asymmetry parameter (β) for the reactions hν+Ne(1s 2 2s 2 2p 6 ) → Ne + (1s 2 2s 2 2p 5 ) + e - , hν+Ar(1s 2 2s 2 2p 6 3s 2 3p 6 ) → Ar + (1s 2 2s 2 2p 6 3s 2 3p 5 ) + e - , hν+Kr(1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 ) → Kr + (1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 ) + e - and hν+Xe(1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 ) → Xe + (1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 5 ) + e - have been calculated in the L-S and j-j coupling schemes using Hartree-Fock (HF) wavefunctions within the reliable non-relativistic R-matrix as well as relativistic R-matrix (RR-matrix) methods in both the length and velocity gauges in the energy range of experimental data available. Comparison is made with all available experimental data as well as other theoretical results. Our present theoretical investigation clearly demonstrates that there is a good agreement between our present R-matrix results and RR-matrix results as well as with other results in the case of neon which reflects that the correlation and relativity are not important in this case, in the energy range of present consideration. Whereas in the case of xenon (Z=54), the independent-particle approximation completely breaks down, i.e., HF cross sections are both qualitatively as well as quantitatively incorrect in the entire energy range which exhibit that the multielectron correlation as well as relativity are both important but interchannel interactions are more important than the intrachannel interaction and relativity for obtaining high precision results. (author)

  13. Measurement of the cross section for forward Compton scattering by /sup 4//sub 2/ He nuclei at energies E/sub. gamma. / = 1. 8--3. 8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.S.; Babayan, G.E.; Voskanyan, A.V.; Gasparyan, A.D.; Gevorkyan, S.R.; Karapetyan, S.N.; Ketikyan, A.Z.; Megrabyan, G.K.; Movsisyan, K.A.; Oganesyan, G.A.; and others

    1987-04-01

    The differential cross sections for Compton scattering by nuclei of /sup 4//sub 2/ He have been measured at the momentum transfers 0.02less than or equal tochemically bondtchemically bond<0.14 (GeV/c)/sup 2/ in the energy region E/sub ..gamma../ = 1.8--3.8 GeV. On the basis of the diffraction theory of multiple scattering the values of the differential cross sections at t = 0, of the slope parameters of the diffraction cone, and of the /sup 4//sub 2/ He nucleus radius have been determined. Experimental values are given for the phase of the scattering amplitude by nucleons, ..cap alpha..( f/sup 0//sub i/) = Re f/sup 0//sub i// Im f/sup 0//sub i/. On the basis of the differential cross sections at t = 0 the total photoabsorption cross section and the photon screening coefficient are determined for the /sup 4//sub 2/ He nucleus.

  14. Scattering of polarized electrons from polarized targets: Coincidence reactions and prescriptions for polarized half-off-shell single-nucleon cross sections

    International Nuclear Information System (INIS)

    Caballero, J.A.; Massachusetts Inst. of Tech., Cambridge, MA; Donnelly, T.W.; Massachusetts Inst. of Tech., Cambridge, MA; Poulis, G.I.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-01-01

    Coincidence reactions of the type vector A( vector e, e'N)B involving the scattering of polarized electrons from polarized targets are discussed within the context of the plane-wave impulse approximation. Prescriptions are developed for polarized half-off single-nucleon cross sections; the different prescriptions are compared for typical quasi-free kinematics. Illustrative results are presented for coincidence polarized electron scattering from typical polarized nuclei. (orig.)

  15. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, T.

    2006-05-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-x P >0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies t 2 . Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 ≤Q 2 ≤1600 GeV 2 , triple differentially in x P , Q 2 and β=x/x P , where x is the Bjorken scaling variable. At low x P , the data are consistent with a factorisable x P dependence, which can be described by the exchange of an effective pomeron trajectory with intercept α P (0)=1.118 ±0.008(exp.) +0.029 -0.010 (model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q 2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q 2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e + p → anti ν e XY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q 2 at fixed x P and x or on x at fixed Q 2 and β. (Orig.)

  16. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-xIP>0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t|<1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5≤Q2≤1600 GeV2, triple differentially in xIP, Q2 and β=x/xIP, where x is the Bjorken scaling variable. At low xIP, the data are consistent with a factorisable xIP dependence, which can be described by the exchange of an effective pomeron trajectory with intercept αIP(0)=1.118±0.008(exp.)+0.029 -0.010(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e+p→ν¯eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q2 at fixed xIP and x or on x at fixed Q2 and β.

  17. Measurement of high-Q2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Kooijman, P.

    2006-01-01

    The cross sections for charged and neutral current deep inelastic scattering in e+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb−1 at , are given for both

  18. Poster - 18: New features in EGSnrc for photon cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, David W.O. [The Ottawa Hospital Cancer Centre, National Research Council Canada, Carleton University (Canada)

    2016-08-15

    Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministic calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.

  19. Molecular dynamical and structural studies for the bakelite by neutron cross section measurements

    International Nuclear Information System (INIS)

    Voi, D.L.

    1992-05-01

    Neutron reaction cross sections were determined by transmission and scattering measurements, to study the dynamics and molecular structure of calcined bakelites. Total cross sections were determined, with a deviation smaller than 5%, from the literature values, by neutron transmission method and a specially devised approximation. These cross sections were then correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. Double differential scattering cross sections, scattering law values and frequency distributions were determined with 15% error using the neutron inelastic scattering method. The frequency distributions as well as the overall results from all experimental techniques used in this work allowed to suggest a structural model like polycyclic hydrocarbons, for calcined bakelite at 800 0 C. (author)

  20. The R-matrix theory

    International Nuclear Information System (INIS)

    Descouvemont, P; Baye, D

    2010-01-01

    The different facets of the R-matrix method are presented pedagogically in a general framework. Two variants have been developed over the years: (i) The 'calculable' R-matrix method is a calculational tool to derive scattering properties from the Schroedinger equation in a large variety of physical problems. It was developed rather independently in atomic and nuclear physics with too little mutual influence. (ii) The 'phenomenological' R-matrix method is a technique to parametrize various types of cross sections. It was mainly (or uniquely) used in nuclear physics. Both directions are explained by starting from the simple problem of scattering by a potential. They are illustrated by simple examples in nuclear and atomic physics. In addition to elastic scattering, the R-matrix formalism is applied to inelastic and radiative-capture reactions. We also present more recent and more ambitious applications of the theory in nuclear physics.

  1. Determination of integral K-shell Compton scattering cross-sections in elements 41>=Z>=51 for 1250 keV photons

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1978-04-01

    Integral K-shell Compton scattering cross-sections in elements Nb, Mo, Ag, Cd, In, Sn and Sb have been determined for 1250 keV photons. The results when compared with theory suggest that K-shell electrons in the elements under investigation behave as free electrons.

  2. Maxima of the scattering cross section, the wave vector being quasi orthogonal to the confining magnetic field

    International Nuclear Information System (INIS)

    Meyer, R.-L.

    1975-01-01

    The evolution of the scattering cross section maximas of an electromagnetic wave by a magnetoplasma, the angle between the wave vector and the confining magnetic field approaching π/2 were computed. It is shown that the maximas are shifted toward the roots of the electrostatic dispersion relation in perpendicular propagation. These roots are not exactly the electron cyclotron harmonics [fr

  3. Two-dimensional cross-section and SED uncertainty analysis for the Fusion Engineering Device (FED)

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Urban, W.T.; Dudziak, D.J.

    1982-01-01

    The theory of two-dimensional cross-section and secondary-energy-distribution (SED) sensitivity was implemented by developing a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D. Analyses of the Fusion Engineering Design (FED) conceptual inboard shield indicate that, although the calculated uncertainties in the 2-D model are of the same order of magnitude as those resulting from the 1-D model, there might be severe differences. The more complex the geometry, the more compulsory a 2-D analysis becomes. Specific results show that the uncertainty for the integral heating of the toroidal field (TF) coil for the FED is 114.6%. The main contributors to the cross-section uncertainty are chromium and iron. Contributions to the total uncertainty were smaller for nickel, copper, hydrogen and carbon. All analyses were performed with the Los Alamos 42-group cross-section library generated from ENDF/B-V data, and the COVFILS covariance matrix library. The large uncertainties due to chromium result mainly from large convariances for the chromium total and elastic scattering cross sections

  4. Effect of different electron elastic-scattering cross sections on inelastic mean free paths obtained from elastic-backscattering experiments

    International Nuclear Information System (INIS)

    Jablonskiz, A.; Salvatz, F.; Powellz, C.J.

    2004-01-01

    Inelastic mean free paths (IMFPs) of electrons with energies between 100 eV and 5,000 eV have been frequently obtained from measurements of elastic-backscattering probabilities for different specimen materials. A calculation of these probabilities is also required to determine IMFPs. We report calculations of elastic-backscattering probabilities for gold at energies of 100 eV and 500 eV with differential elastic-scattering cross sections obtained from the Thomas-Fermi-Dirac potential and the more reliable Dirac-Hartree-Fock potential. For two representative experimental configurations, the average deviation between IMFPs obtained with cross sections from the two potentials was 11.4 %. (author)

  5. Constraints on the double-parton scattering cross section from same-sign W boson pair production in proton-proton collisions at √{s}=8 TeV

    Science.gov (United States)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Mahmoud, M. A.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Benettoni, M.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Baginyan, A.; Golunov, A.; Golutvin, I.; Karjavin, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Voytishin, N.; Yuldashev, B. S.; Zarubin, A.; Zhiltsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-02-01

    A first search for same-sign WW production via double-parton scattering is performed based on proton-proton collision data at a center-of-mass energy of 8 TeV using dimuon and electron-muon final states. The search is based on the analysis of data corresponding to an integrated luminosity of 19.7 fb-1. No significant excess of events is observed above the expected single-parton scattering yields. A 95% confidence level upper limit of 0.32 pb is set on the inclusive cross section for same-sign WW production via the double-parton scattering process. This upper limit is used to place a 95% confidence level lower limit of 12.2 mb on the effective double-parton cross section parameter, closely related to the transverse distribution of partons in the proton. This limit on the effective cross section is consistent with previous measurements as well as with Monte Carlo event generator predictions.

  6. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    International Nuclear Information System (INIS)

    Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco

    2014-01-01

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions

  7. On measurement of cross sections for scattering of pμ - and d μ -atoms in hydrogen and deuterium

    International Nuclear Information System (INIS)

    Bystritskij, V.M.

    1993-01-01

    The paper is a brief review of all experiments on measurement of cross sections for scattering of pμ - atoms in hydrogen and dμ - atoms in hydrogen and deuterium. The experimental results are analysed and compared both with one another and with calculated results. A program for further investigation of scattering of muonic atoms of hydrogen isotopes is proposed in order to clarify the nature of discrepancies between some experimental results and to get more precise information about the above processes. (author.). 24 refs.; 4 figs.; 3 tabs

  8. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  9. Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean-field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high-energy region where the relativistic impulse approximation is applicable

  10. Measurement and QCD Analysis of the Diffractive Deep-Inelastic Scattering Cross Section at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Coppens, Y.R.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.L.; Johnson, D.P.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \\xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \\leq Q^2 \\leq 1600 \\rm GeV^2$, triple differentially in $\\xpom$, $Q^2$ and $\\beta = x / \\xpom$, where $x$ is the Bjorken scaling variable. At low $\\xpom$, the data are consistent with a factorisable $\\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\\alphapom(0)= 1.118 \\pm 0.008 {\\rm (exp.)} ^{+0.029}_{-0.010} {\\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\\beta$ dependences of the cross section. The res...

  11. Direct measurement of the cross section of neutron-neutron scattering at the YAGUAR reactor. Substantiation of the experiment technique

    International Nuclear Information System (INIS)

    Chernukhin, Yu.G.; Kandiev, Ya.Z.; Lartsev, V.D.; Levakov, B.G.; Modestov, D.G.; Simonenko, V.A.; Streltsov, S.I.; Khmel'nitskij, D.V.

    2006-01-01

    The main stage of experiment for direct measurement of cross section of neutron-neutron scattering σ nn at low energies (E nn determination. It was shown, that for achieving the criterion ε ∼ 4% it will be necessary to have 40-50 pulses of a reactor [ru

  12. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  13. Measurements of differential cross sections with electrons of intermediate energy (300-1000 eV) scattered by atom and molecule

    International Nuclear Information System (INIS)

    Barbieri, R.S.

    1985-01-01

    Differential Elastic Cross Sections for electrons scattered by osub(2) and Ar in the angular range 5 sup(0)- 140 sup(0) were measured in the energy range between 300 and 1000 eV. The Relative Flow Technique proposed by SRIVASTAVA et alii (1975) was used. Absolute Differential Elastic Cross Section data from DuBOIS and RUDD (1976) for Nsub(2) were stablished as a secondary standard. Our obtained results for Ar at 400, 800 and 1000 eV were compared against experimental and theoretical results available in the literature. For molecular Oxygen at 300, 400, 800 and 1000 eV our experimental data were compared with values from other authors and also theoretical values from Independent Atom Model including Multiple Intramolecular Scattering. Results for Ar at 1000 eV in the angular range between 60 sup(0) and 140 sup(0) and for osub(2) at 800 and 100 eV, between 5 sup(0) and 120 sup(0), were reported for the first time. (author)

  14. Measurement of neutral current deep inelastic e+p scattering cross sections with longitudinally polarized positrons with ZEUS at HERA

    International Nuclear Information System (INIS)

    Wlasenko, Michal

    2009-05-01

    Measurements of neutral current deep inelastic scattering of protons colliding with longitudinally polarized positrons, performed with data recorded in years 2006 and 2007 with the ZEUS detector, corresponding to an integrated luminosity of L=113.3 pb -1 , are presented. The single-differential cross sections dσ/dQ 2 , dσ/dx, dσ/dy and the double-differential reduced cross section σ were measured in the kinematic region of 185 2 2 and y + and the generalized structure function x F 3 were extracted. All measurements agree well with the predictions of the Standard Model. (orig.)

  15. The measurement of antiproton-proton total cross sections and small-angle elastic scattering at low momentum

    International Nuclear Information System (INIS)

    Linssen, L.H.A.J.

    1986-01-01

    In this thesis two low-momentum antiproton-proton (anti pp) experiments are described. The first one is a set of 24 high statistics anti pp total cross section measurements as a function of the incoming antiproton momentum between p=388 MeV/c and p=599 MeV/c. These measurements simultaneously yield the charge exchange cross section (anti pp → anti nn). The second one comprises two high statistics anti pp small-angle elastic scattering measurements at p=233 MeV/c and p=272 MeV/c. The measurements were carried out using the high quality antiproton beam extracted from the Low Energy Antiproton Ring (LEAR) at CERN. The physics motivation for these experiments is a search for anti pp resonances or bound states on one hand, and a detailed study of the anti pp interaction on the other hand. (orig.)

  16. Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field

    International Nuclear Information System (INIS)

    Philipp, W.

    1975-01-01

    The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de

  17. Cross-channel coupling in positron-atom scattering

    International Nuclear Information System (INIS)

    McAlinden, M.T.; Kernoghan, A.A.; Walters, H.R.J.

    1994-01-01

    Coupled-state calculations including positronium channels are reported for positron scattering by atomic hydrogen, lithium and sodium. Integrated cross sections and total cross sections are presented for all three atoms. For lithium differential cross sections are also given. Throughout, comparison is made between results calculated with and without inclusion of the positronium channels. S-wave cross sections for positron scattering by atomic hydrogen in the Ps(1s, 2s, 2p) + H(1s, 2s, 2p) approximation show the high energy resonance first observed by Higgins and Burke in the coupled-static approximation. This resonance has now moved up to 51.05 eV and narrowed in width to 2.92 eV. Other pronounced structure is seen in the S-wave cross sections between 10 and 20 eV; it is tentatively suggested that this structure may be due to the formation of a temporary pseudo-molecular collision complex. Results calculated in the Ps(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) + H(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) approximation show convergence towards accurate values in the energy region below and in the Ore gap. Contrary to previous work on lithium using only an atomic basis, it is found that coupling to the 3d state of lithium is not so important when positronium channels are included; this is because a mixed basis of atom and positronium states gives a more rapidly convergent approximation than an expansion based on atom states alone. The threshold behaviour of the elastic cross section and the Ps(1s) formation cross section for lithium is investigated. Results in the Ps(1s, 2s, 2p) + Na(3s, 3p) approximation for sodium show good agreement with the total cross section measurements of Kwan et al. (orig.)

  18. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  19. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  20. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  1. Comparison of models and measurements of angle-resolved scatter from irregular aerosols

    International Nuclear Information System (INIS)

    Milstein, Adam B.; Richardson, Jonathan M.

    2015-01-01

    We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 µm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement. - Highlights: • We model elastic scattering of biological and inert aerosols of irregular shape. • We calculate cross sections and Mueller matrix using random particle shape model. • Scatter models employ refractive index and measured size distribution as inputs. • Discrete dipole approximation (DDA) with parallelization enables model calculations. • DDA-modeled cross section and Mueller matrix agree well with measurements at 1.55 μm

  2. A Precision Measurement of the Inclusive ep Scattering Cross Section at HERA

    CERN Document Server

    Aaron, F.D.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Asmone, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naroska, B.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wallny, R.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.

    2009-01-01

    A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12<=Q^2<=150 GeV^2, and Bjorken x, 2x10^-4<=x<=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.

  3. Neutron cross sections in the unresolved resonance region

    International Nuclear Information System (INIS)

    Janeva, N.; Lukyanov, A.; Koyumdjieva, N.; Volev, K.

    2005-01-01

    In this work a development of the characteristic function model, created to reveal the resonance cross section structure in the unresolved resonance region is presented. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. To determine average values of the cross sections and their functionals the function of joint statistical distribution of the R-matrix real and imaginary parts should be used. The characteristic function of such distribution is determined and the resonance ladder for the unresolved region is optimized to calculate the group averaged functionals in the same way as it is in the resolved resonance region. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. The neutron width energy dependence leads to some deformation in the shape of resonances. This deformation is most apparent near the inelastic scattering threshold. For the case when the inelastic channel momentum is zero we present the formula for level shape bellow and over the inelastic threshold and the calculated resonance deformation in dependence of the position of the resonance in respect to the threshold. (authors)

  4. Absolute differential cross sections for π±p elastic scattering at 30 ≤ Tπ ≤ 67 MeV

    International Nuclear Information System (INIS)

    Brack, J.T.; Ristinen, R.A.; Kraushaar, J.J.

    1989-11-01

    Absolute π±p differential cross sections have been measured at incident pion energies of 30.0, 45.0, and 66.8 MeV, using active targets of scintillator plastic (CH 1.1 ) to detect recoil protons in coincidence with scattered pions. Statistical uncertainties are typically ±3%; systematic uncertainties are ±2%. The results are consistent with two earlier measurements by this group employing different experimental techniques at 67 MeV and higher incident pion energies. The π - p cross sections are in good agreement with currently accepted phase-shift analyses, but the corresponding π + p predictions are typically 15% higher at large angles than the π + p data reported here

  5. Scattering of photons from atomic electrons

    International Nuclear Information System (INIS)

    Pratt, R.H.; Zhou, B.; Bergstrom, P.M. Jr.; Pisk, K.; Suric, T.

    1990-01-01

    Validity of simpler approaches for elastic and inelastic photon scattering by atoms and ions is assessed by comparison with second-order S-matrix predictions. A simple scheme for elastic scattering based on angle-independent anomalous scattering factors has been found to give useful predictions near and below photoeffect thresholds. In inelastic scattering, major deviations are found from A 2 -based calculations. Extension of free-atom and free-ion cross sections to the dense plasma regime is discussed. 20 refs., 6 figs

  6. Measurement of the absolute differential cross section of proton-proton elastic scattering at small angles, using ANKE-COSY facility

    Energy Technology Data Exchange (ETDEWEB)

    Bagdasarian, Zara [Forschungszentrum Juelich (Germany)

    2016-07-01

    The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA). The goal of many experiments held at COSY-Juelich has been to provide PWA with valuable precision measurements at different energies aiming to cover the full angular range. This contribution reports on the differential cross section for proton-proton elastic scattering that has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV at centre-of-mass angles between about 10 and 30 degrees. The ANKE collaboration and the COSY machine crew have jointly developed a very accurate method for determining the absolute luminosity in an experiment at an internal target position. The technique relies on measuring the energy losses due to the electromagnetic interactions of the beam as it passes repeatedly through the thin target and measuring the shift of the revolution frequency by studying the Schottky spectrum. This powerful technique allows one to measure the absolute differential cross section for elastic pp scattering with the accuracy of typically 3%. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations. Finally, it is shown that the data have a significant impact on the partial wave analysis.

  7. On the application of the theory of the translational Brownian movement to the calculation of the differential cross-sections for the incoherent scattering of slow neutrons

    International Nuclear Information System (INIS)

    Coffey, W.T.

    1978-01-01

    It is shown how three models (based on the theory of the Brownian movement) for the translational motion of an atom in a fluid may be used to calculate explicitly the intermediate scattering functions and differential cross-sections for the incoherent scattering of slow neutrons. In the first model the translational motion of the atom is represented by the motion of a particle in space subjected to no forces other than those arising from the thermal motion of its surroundings. The differential scattering cross-section for this model is then obtained as a continued fraction similar to that given by Sack (Proc. Phys. Soc.; B70:402 and 414 (1957)) for the electric polarisability in his investigation of the role of inertial effects in dielectric relaxation. The second model is a corrected version of the itinerant oscillator model of Sears (Proc. Phys. Soc.; 86:953 (1965)). Here the differential cross-section is obtained in the form of a series and a closed-form expression is found for the intermediate scattering function. The last model to be considered is the harmonically bound particle where again a closed form expression is obtained for the intermediate scattering function. In each case the intermediate scattering function has a mathematical form which is similar to the after-effect function describing the decay of electric polarisation for the rotational versions of the models. (author)

  8. Scattering of thermal He beams by crossed atomic and molecular beams. I. Sensitivity of the elastic differential cross section to the interatomic potential

    International Nuclear Information System (INIS)

    Keil, M.; Kuppermann, A.

    1978-01-01

    The ability of diffraction oscillations in atomic beam scattering experiments to uniquely determine interatomic potentials for highly quantal systems is examined. Assumed but realistic potentials are used to generate, by scattering calculations and incorporation of random errors, differential cross sections which are then treated as if they were ''experimental'' data. From these, attempts are made to recover the initial potential by varying the parameters of assumed mathematical forms different from the original one, until a best fit to the ''experimental'' results is obtained. It is found that the region of the interaction potential around the van der Waals minimum is accurately determined by the ''measured'' differential cross sections over a range of interatomic separations significantly wider than would be expected classically. It is also found, for collision energies at which the weakly repulsive wall is appreciably sampled, that the SPF--Dunham and double Morse--van der Waals types of potentials lead to accurate determinations of the interatomic potential, whereas many other mathematical forms do not. Analytical parameterizations most appropriate for obtaining accurate interatomic potentials from thermal DCS experiments, for a given highly quantal system, may depend on the collision energy used

  9. t matrix of metallic wire structures

    International Nuclear Information System (INIS)

    Zhan, T. R.; Chui, S. T.

    2014-01-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures

  10. Problem of summing up ladder diagrams in quantum electrodynamics. [Cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, S A; Livashvili, A I [Azerbajdzhanskij Gosudarstvennyj Univ., Baku (USSR)

    1975-03-01

    A class of ladder diagrams in an asymptotic mode is considered, and a series of the perturbation theory for the given class of diagrams reduces to an integral equation obtained without approximations whatsoever. As applications of the method proposed, two electrodynamic processes are considered: the two-photon annihilation of an e/sup +/e/sup -/-pair and scattering of electons in Coulomb field. Matrix elements are provided. To derive the equations, Dirac equations and commutation relations are used. A conclusion is drawn that for the process, the log-log asymptotics and polar approximation lead to the fact that as the energy grows the cross-section of the process drops and the solution obtained indicates that such a drop occurs up to an energy of 10/sup 5/ GeV. For the second process, the region of large pulses transmitted by an electron to the external field does not lead to an increase in amplitude and cross-section.

  11. Determination of the total cross section in proton-proton collisions at the LHC at √(s) = 8 TeV from elastic scattering using the ALFA sub-detector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Christian; Dueren, Michael; Kreutzfeldt, Kristof; Stenzel, Hasko [JLU Giessen (Germany)

    2015-07-01

    The ALFA (Absolute Luminosity for ATLAS) Roman Pot detector system is part of the forward instrumentation of ATLAS located about 240 m away from the interaction point in the LHC tunnel. ALFA consists of a scintillating fibre tracker housed in vertical Roman Pots which enables the measurement of elastic proton-proton scattering at small scattering angles. In 2012 data were recorded at a centre-of-mass energy of √(s) = 8 TeV during a fill with special beam optics of the LHC with β* = 90 m and parallel-to-point focusing. The four-momentum transfer t is measured for elastically scattered protons and the differential elastic cross section is measured. In this talk a preliminary determination of the total cross section and of the slope of the elastic cross section at small vertical stroke t vertical stroke obtained from a fit to the differential cross section using the optical theorem is reported.

  12. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  13. The second-order S-matrix element for the elastic scattering of photons by K-shell bound electrons: the nonrelativistic limit

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Spanulescu, S [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania)

    2007-08-14

    The right expressions of the nonrelativistic K-shell Rayleigh scattering amplitudes and cross-sections are obtained by using the Coulomb Green's function method. Our analytical result does not have the spurious poles that occur in the old nonrelativistic result with retardation (Gavrila and Costescu 1970 Phys. Rev. A 2 1752). Starting from the expression of the second-order S-matrix element for the case of the elastic scattering of photons by K-shell bound electrons, we obtain the correct nonrelativistic Rayleigh angular distribution (valid for photon energies {omega} up to {alpha}Zm) by removing the relativistic higher order terms in {alpha}Z and {omega}/m. The imaginary part of the Rayleigh amplitudes is obtained for any scattering angles in a closed form in terms of elementary functions. Thereby a simple formula for the exact nonrelativistic photoeffect total cross-section is obtained via the optical theorem, giving significantly better predictions than Fischer's nonrelativistic photoeffect formula. Comparing the predictions given by our formulae with the full relativistic numerical calculations of Kissel et al (Phys. Rev. 1980 A 22 1970), and with experimental results, a fairly good agreement within 10% is found for the angular distribution of Rayleigh scattering for photon energies up to 200 keV and both below and above the first resonance.

  14. Partial cross sections near the higher resonances

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-07-01

    As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961

  15. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  16. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.; Sankarasubramanian, K., E-mail: megha@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sankar@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions using the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.

  17. A precision measurement of the inclusive ep scattering cross section at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Alimujiang, K. [DESY Hamburg (DE)] (and others)

    2009-03-15

    A measurement of the inclusive deep-inelastic neutral current e{sup +}p scattering cross section is reported in the region of four-momentum transfer squared, 12 GeV{sup 2} {<=} Q{sup 2} {<=} 150 GeV{sup 2}, and Bjorken x, 2. 10{sup -4} {<=} x {<=}0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E{sub e}=27.6 GeV and E{sub p}=920 GeV, respectively. The data are combined with previously published data, taken at E{sub p} = 820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data. (orig.)

  18. A precision measurement of the inclusive ep scattering cross section at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Zus, R.; Alimujiang, K.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Asmone, A.; Stella, B.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Pokorny, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Degan, M. del; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Wallny, R.; Schoening, A.; South, D.; Wegener, D.; Tsakov, I.

    2009-01-01

    A measurement of the inclusive deep inelastic neutral current e + p scattering cross section is reported in the region of four-momentum transfer squared, 12 GeV 2 ≤Q 2 ≤150 GeV 2 , and Bjorken x, 2 x 10 -4 ≤x≤0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E e =27.6 GeV and E p =920 GeV, respectively. The data are combined with previously published data, taken at E p =820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data. (orig.)

  19. Determination of the total cross section in proton-proton collisions at the LHC at √(s) = 8 from elastic scattering using the ALFA sub-detector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Christian; Stenzel, Hasko; Dueren, Michael [2. Physikalisches Institut, Universitaet Giessen (Germany)

    2016-07-01

    The ALFA (Absolute Luminosity for ATLAS) Roman Pot detector system is part of the forward instrumentation of ATLAS located about 240 m away from the interaction point in the LHC tunnel in both directions. ALFA consists of a scintillating fibre tracker housed in vertical Roman Pots which enables the measurement of elastic proton-proton scattering at small scattering angles. In 2012 data were recorded at a centre-of-mass energy of √(s) = 8 TeV during a fill with special beam optics of the LHC with β* = 90 m and parallel-to-point focusing. The four-momentum transfer t is measured for elastically scattered protons and used to extract the differential elastic cross section. In this talk a preliminary determination of the total cross section and of the slope of the elastic cross section at small vertical stroke t vertical stroke obtained from a fit to the differential cross section using the optical theorem is reported. In addition a second run at √(s) = 8 TeV with a special beam optics of β* = 1 km, providing access to the Coulomb-nuclear interference region, is being analysed. Preliminary analysis results from this run are presented as well.

  20. Measurements of prompt fission neutron spectra and double-differential neutron inelastic-scattering cross sections for 238U and 232Th

    International Nuclear Information System (INIS)

    Baba, Mamoru; Itoh, Nobuo; Maeda, Kazuto; Hirakawa, Naohiro; Wakabayashi, Hidetaka.

    1989-10-01

    This report presents the summary of experimental studies of prompt fission neutron spectra and double-differential neutron inelastic-scattering cross sections of 238 U and 232 Th. The experiments were performed at Tohoku University Fast Neutron Laboratory employing a time-of-flight technique and Dynamitron accelerator as the pulsed neutron generator. From the experiments, we obtained the following data for both nuclei; 1. prompt fission neutron spectrum for 2 MeV neutrons, 2. double-differential neutron inelastic-scattering cross sections for 1.2, 2.0, 4.2, 6.1 and 14.1 MeV incident neutrons. Both in experiments and data processing, cares were taken to obtain reliable data by avoiding systematic uncertainty. The experimental data were compared with those by other experiments, evaluations and model calculations. Through the data comparison, some fundamental problems were found in the experiments by previous authors and the evaluations. The present data will provide useful data base for refinement of the evaluated data and theoretical models. (author)

  1. Neutron cross section measurement using the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Winters, R.R.

    1991-08-01

    This report discusses: argon-40 -- neutron reaction total cross sections from 6.9 kev to 50 kev; The maxwellian averaged neutron capture cross section of oxygen-16; r-matrix parameter analysis of the lead-208 -- neutron reaction cross section measurement; r-matrix parameter analysis of the ORELA neutron transmission zirconium-90 low energy measurement; porting computer codes from the HP9000 to the IBM RISC/6000;and measurements of neutron reactions with strontium-88, zirconium-90, and calcium-40

  2. Analytic amplitudes for hadronic forward scattering and the Heisenberg ln{sup 2} s behaviour of total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Basarab [LPNHE, Unite de Recherche des Universites Paris 6 et Paris 7, associee au CNRS, Theory Group, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2004-07-01

    We consider several classes of analytic parametrizations of hadronic scattering amplitudes (the COMPETE analysis), and compare their predictions to all available forward data (pp, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp colliders, and on total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for it{gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV. The ln{sup 2} s behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-sections data, in agreement with the COMPETE analysis.

  3. Statistical Modelling of Resonant Cross Section Structure in URR, Model of the Characteristic Function

    International Nuclear Information System (INIS)

    Koyumdjieva, N.

    2006-01-01

    A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006

  4. Pion photoproduction cross section at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, Johan [Univ. of Glasgow, Scotland, United Kingdom

    2015-02-27

    The Real Compton Scattering experiment was performed in Hall A at the Thomas Jefferson National Accelerator Facility. It was designed to measure, for Compton scattering and π0-photoproduction, the differential cross section over a range of kinematic points and the polarisation transfer to the proton at a single kinematic point. The full range of the experiment in Mandelstam variables t and s was 1.6-6.46 GeV2 and 4.82-10.92 GeV2 respectively with beam energies of 2-6 GeV. The motivation for the experiment is to test the cross section and polarisation transfer predictions of perturbative QCD versus that of predictions from Generalised Parton Distribution models. This thesis will give an overview of the pertinent theory, experimental setup in Hall A and the extracting of the π0-photoproduction cross section.

  5. Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA

    CERN Document Server

    Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E.G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bold, T.; Brummer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P.J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Delcourt, B.; Delvax, J.; Dementiev, R.K.; Derrick, M.; Devenish, R.C.E.; De Pasquale, S.; De Wolf, E.A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dolinska, G.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Huttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, X.; Januschek, F.; Jones, T.W.; Jonsson, L.; Jungst, M.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Kaur, P.; Kaur, M.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O.Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Idris, F.Mohamad; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Morris, J.D.; Mujkic, K.; Muller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Sloan, T.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A.D.; Tassi, E.; Terron, J.; Theedt, T.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Truol, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vazquez, M.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N.N.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Zacek, J.; Zalesak, J.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zhokin, A.; Zichichi, A.; Zlebcik, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D.S.; Zarnecki, A.F.

    2012-10-10

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy sqrt(s) = 318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6% for the most precise points. The combined data cover the range 2.5 < Q2 < 200 GeV2 in photon virtuality, 0.00035 < xIP < 0.09 in proton fractional momentum loss, 0.09 < |t| < 0.55 GeV2 in squared four-momentum transfer at the proton vertex and 0.0018 < beta < 0.816 in beta = x/xIP, where x is the Bjorken scaling variable.

  6. Measurement of the cross-section of electron-positron scattering at high energy and quantum electrodynamics testing

    International Nuclear Information System (INIS)

    Lalanne, D.

    1970-01-01

    The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10 -14 cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e + e - → e + e - γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10 -31 cm 2 . The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV

  7. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  8. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  9. Asymptotic behaviour of pion-pion total cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Greynat, David [Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”,Via Cintia, 80126 Napoli (Italy); Rafael, Eduardo de [Aix-Marseille Université, CNRS,CPT, UMR 7332, 13288 Marseille (France); Université de Toulon, CNRS,CPT, UMR 7332, 83957 La Garde (France); Vulvert, Grégory [Departament de Física Teórica, IFIC,CSIC - Universitat de València, Apt. Correus 22085, E-46071 València (Spain)

    2014-03-24

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log{sup 2} s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π{sup +}π{sup −}, π{sup ±}π{sup 0} and π{sup 0}π{sup 0} scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N{sub c} and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N{sub c} QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N{sub c} counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ{sub π{sup ±}π{sup 0total}}(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N{sub c} Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections.

  10. Asymptotic behaviour of pion-pion total cross-sections

    International Nuclear Information System (INIS)

    Greynat, David; Rafael, Eduardo de; Vulvert, Grégory

    2014-01-01

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log 2  s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π + π − , π ± π 0 and π 0 π 0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N c and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N c QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ π ± π 0 total (s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  11. Covariances for neutron cross sections calculated using a regional model based on local-model fits to experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Guenther, P.T.

    1983-11-01

    We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references.

  12. Covariances for neutron cross sections calculated using a regional model based on local-model fits to experimental data

    International Nuclear Information System (INIS)

    Smith, D.L.; Guenther, P.T.

    1983-11-01

    We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references

  13. Measurement of high-Q{sup 2} charged current deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Faculty of Exact Sciences, School of Physics; Max-Planck-Inst., Munich (Germany); Abt, I. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-08-15

    Measurements of the cross sections for charged current deep inelastic scattering in e{sup +}p collisions with a longitudinally polarised positron beam are presented. The measurements are based on a data sample with an integrated luminosity of 132 pb{sup -1} collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is presented at positive and negative values of the longitudinal polarisation of the positron beams. The single-differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy are presented for Q{sup 2}>200 GeV{sup 2}. The reduced cross-section {sigma} is presented in the kinematic range 200

  14. Effect of hyperon channels in low-energy k-d scattering

    International Nuclear Information System (INIS)

    Schick, L.H.; Gibson, B.F.

    1978-01-01

    Within the framework of a Faddeev formalism and an implicit hyperon channel approximation, we have calculated K - d elastic, total, and reaction cross sections for incident kaon laboratory momenta up to 120 Mev/c. We have used as input two different (slightly modified) multichannel M matrix fits to low-energy anti KN scattering, each of which contains explicitly the πY channels, as well as a single channel representation of the anti KN interaction in which the hyperon channels appear only through their contributions to the imaginary parts of the anti KN scattering lengths. The K - d cross sections obtained with the single channel anti KN input differ by only some 10% from those for which we used the multichannel anti KN input. The D - d cross sections calculated using anti KN input parameters from each of the two separate M matrix fits differ across the entire momentum range investigated by 25-35%. (orig.) [de

  15. Definition and calculation of bottom quark cross-sections in deep-inelastic scattering at HERA and determination of their uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Carli, T.; Chiochia, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Klimek, K. [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik

    2003-05-01

    The uncertainties involved in the calculation of bottom quark (b-quark) cross-sections in deep-inelastic scattering at HERA are studied in different phase space regions. Besides the inclusive b-quark cross-section, definitions closer to the detector acceptance requiring at least one high energetic muon from the semi-leptonic b-quark decay or a jet with high transverse energy are investigated. For each case the uncertainties due to the choice of the renormalisation and factorisation scale as well as the b-quark mass are estimated in the perturbative NLO QCD calculation and furthermore uncertainties in the fragmentation of the b-quark to a B-meson and in its semi-leptonic decay are discussed. (orig.)

  16. Kaon-nucleon scattering in three-dimensional technique

    International Nuclear Information System (INIS)

    Salam, Agus; Fachruddin, Imam

    2016-01-01

    Kaon-nucleon (KN) scattering is formulated in the three-dimensional (3D) momentum space, in which the basis state is not expanded into partial waves. Based on this basis the Lippmann-Schwinger equation for the T-matrix is evaluated. We obtain as final equation for the T-matrix elements a set of two coupled integral equations in two variables, which are the momentum’s magnitude and the scattering angle. Calculations for the differential cross section and some spin observables are shown, for which we employ a hadrons exchange model with the second order contributions only.

  17. Kaon-nucleon scattering in three-dimensional technique

    Energy Technology Data Exchange (ETDEWEB)

    Salam, Agus, E-mail: agus.salam@sci.ui.ac.id; Fachruddin, Imam [Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424 (Indonesia)

    2016-03-11

    Kaon-nucleon (KN) scattering is formulated in the three-dimensional (3D) momentum space, in which the basis state is not expanded into partial waves. Based on this basis the Lippmann-Schwinger equation for the T-matrix is evaluated. We obtain as final equation for the T-matrix elements a set of two coupled integral equations in two variables, which are the momentum’s magnitude and the scattering angle. Calculations for the differential cross section and some spin observables are shown, for which we employ a hadrons exchange model with the second order contributions only.

  18. Regularization of the Coulomb scattering problem

    International Nuclear Information System (INIS)

    Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.

    2004-01-01

    The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers

  19. Scattering chamber facility for double-differential cross-section

    Indian Academy of Sciences (India)

    inducedcharged-particle productions is very important for estimating the nuclear heating and radiation damage of a fusion reactor. Only a few experimental data are available even though the nuclear reaction cross-section data of structural materials are ...

  20. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Rakotondravohitra, Laza [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence, MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X1020 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θmu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dxbj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.

  1. Radar cross sections for mesospheric echoes at Jicamarca

    Directory of Open Access Journals (Sweden)

    G. A. Lehmacher

    2009-07-01

    Full Text Available Radar cross sections (RCS of mesospheric layers at 50 MHz observed at Jicamarca, Peru, range from 10−18 to 10−16 m−1, three orders of magnitudes smaller than cross sections reported for polar mesospheric winter echoes during solar proton events and six orders of magnitude smaller than polar mesospheric summer echoes. Large RCS are found in thick layers around 70 km that also show wide radar spectra, which is interpreted as turbulent broadening. For typical atmospheric and ionospheric conditions, volume scattering RCS for stationary, homogeneous, isotropic turbulence at 3 m are also in the range 10−18 to 10−16 m−1, in reasonable agreement with measurements. Moreover, theory predicts maximum cross sections around 70 km, also in agreement with observations. Theoretical values are still a matter of order-of-magnitude estimation, since the Bragg scale of 3 m is near or inside the viscous subrange, where the form of the turbulence spectrum is not well known. In addition, steep electron density gradients can increase cross-sections significantly. For thin layers with large RCS and narrow spectra, isotropic turbulence theory fails and scattering or reflection from anisotropic irregularities may gain relevance.

  2. Elastic scattering and total reaction cross section for the 6He +58Ni system

    Science.gov (United States)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.

    2014-11-01

    Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  3. Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA

    CERN Document Server

    Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aldaya Martin, M.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Antunovic, B.; Arneodo, M.; Aushev, V.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bold, T.; Boos, E.G.; Borodin, M.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Boutle, S.K.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Brock, I.; Brownson, E.; Brugnera, R.; Brummer, N.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Buschhorn, G.; Bussey, P.J.; Butterworth, J.M.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Catterall, C.D.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Cholewa, A.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Deak, M.; de Favereau, J.; Delcourt, B.; del Peso, J.; Delvax, J.; Dementiev, R.K.; De Pasquale, S.; Derrick, M.; Devenish, R.C.E.; De Wolf, E.A.; Diaconu, C.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Falkiewicz, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Fourletov, S.; Gabathuler, E.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grell, B.R.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hochman, D.; Hoffmann, D.; Holm, U.; Hori, R.; Horisberger, R.; Horton, K.; Hreus, T.; Huttmann, A.; Iacobucci, G.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, X.; Januschek, F.; Jimenez, M.; Jones, T.W.; Jonsson, L.; Jung, A.W.; Jung, H.; Jungst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Katzy, J.; Kaur, M.; Kaur, P.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Koffeman, E.; Kogler, R.; Kollar, D.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kulinski, P.; Kuprash, O.; Kutak, K.; Kuze, M.; Kuzmin, V.A.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Li, G.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Liptaj, A.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Loizides, J.H.; Loktionova, N.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukasik, J.; Lukina, O.Yu.; Luzniak, P.; Maeda, J.; Magill, S.; Makankine, A.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Marage, P.; Margotti, A.; Marini, G.; Marti, Ll.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Matsumoto, T.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.D.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Nicholass, D.; Niebuhr, C.; Nigro, A.; Nikiforov, A.; Nikitin, D.; Ning, Y.; Noor, U.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Olsson, J.E.; Onishchuk, Yu.; Osman, S.; Ota, O.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pejchal, O.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piec, S.; Piotrzkowski, K.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roland, B.; Roloff, P.; Ron, E.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Salii, A.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shaw-West, R.N.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Sloan, T.; Slominski, W.; Smiljanic, I.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sorokin, Iu.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Sunar, D.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk, J.; Szuba, D.; Szuba, J.; Tapper, A.D.; Tassi, E.; Tchoulakov, V.; Terron, J.; Theedt, T.; Thompson, G.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Toll, T.; Tomasz, F.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turnau, J.; Tymieniecka, T.; Urban, K.; Uribe-Estrada, C.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vazquez, M.; Verbytskyi, A.; Viazlo, V.; Vinokurova, S.; Vlasov, N.N.; Volchinski, V.; Volynets, O.; von den Driesch, M.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Whyte, J.; Wiggers, L.; Wing, M.; Wissing, Ch.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zacek, J.; Zalesak, J.; Zarnecki, A.F.; Zawiejski, L.; Zeniaev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhokin, A.; Zhou, C.; Zichichi, A.; Zimmermann, T.; Zohrabyan, H.; Zolko, M.; Zomer, F.; Zotkin, D.S.

    2010-01-01

    A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

  4. Measurement of the t-channel single-top-quark-production cross section and the CKM-matrix element Vtb with the CMS experiment

    International Nuclear Information System (INIS)

    Klingebiel, Dennis

    2014-01-01

    The electroweak production of single top quarks offers a unique access to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V tb , which is a fundamental parameter of the Standard Model of particle physics (SM). In this thesis, measurements of the inclusive t-channel single-top-quark-production cross section, the CKM-matrix element V tb , and the ratio of t-channel top-quark-production and top-antiquark-production cross sections are presented. Proton-proton collisions with a center-of-mass energy of 7 TeV are analyzed. These collisions were recorded with the Compact Muon Solenoid (CMS) experiment at the particle-accelerator complex Large Hadron Collider (LHC), which is operated by the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The analyzed data correspond to an integrated luminosity of 1.6/fb. This analysis uses events with at least two jets and either an electron or muon. Each event is classified according to the flavor and charge of the electron or muon, the number of jets, and the number of b-tagged jets. Signal and background processes are discriminated using Boosted Decision Trees (BDTs). The signal cross section is simultaneously measured in twelve orthogonal categories. A Bayesian approach is used to infer the signal cross section from data. Particular emphasis is placed on the modeling of systematic uncertainties and the evaluation of their impact on the measurement. Systematic uncertainties are incorporated as additional nuisance parameters into the likelihood function. Marginalization is used to eliminate the nuisance parameters. The single-top-quark t-channel production cross section is measured to be (66.6 +6.7 -6.2 ) pb. The measured value is in agreement with the next-to-next-to-leading order SM prediction. With a relative uncertainty of -9.3% +10.1%, this measurement is significantly more precise than previous measurements in proton-proton und proton-antiproton collisions. The absolute value of the CKM-matrix element

  5. The effective differential cross section for elastic scattering of electrons by atoms and its use for Monte Carlo simulation of electron passage through matter

    International Nuclear Information System (INIS)

    Sheikin, E G

    2010-01-01

    The effective differential cross section (DCS) for elastic scattering of electrons by atoms is proposed that reproduces known energy dependences for the first and second transport cross sections but provides a total elastic cross section that is significantly small compared with the known energy dependences. The number of elastic collisions of electrons in matter when using the effective DCS in Monte Carlo simulations is significantly lower than that when using the real DCS. The results of our Monte Carlo simulation of electron propagation in aluminium using the proposed DCS are in good agreement with experimental data.

  6. The difference between the classical and quantum mechanical definitions of scattering cross sections and the problem of the classical limit

    International Nuclear Information System (INIS)

    Sen, D.; Basu, A.N.; Sengupta, S.

    1994-01-01

    A critical analysis of the difference between the classical and quantum mechanical definitions of scattering cross sections for particles is presented. This leads to a clarification of the classical limit problem and suggests precise criteria for its validity. In particular these criteria are derived for both finite and infinite range potentials. (orig.)

  7. Description of nuclear structure and cross sections for nucleon-nucleus scattering on the basis of effective Skyrme forces

    International Nuclear Information System (INIS)

    Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.

    2009-01-01

    The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.

  8. Combined inclusive diffractive cross sections measured with foreward proton spectrometers in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (DE)] (and others)

    2012-07-15

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy {radical}(s)=318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6% for the most precise points. The combined data cover the range 2.5

  9. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration

    International Nuclear Information System (INIS)

    Khakoo, M. A.; Wrkich, J.; Larsen, M.; Kleiban, G.; Kanik, I.; Trajmar, S.; Brunger, M.J.; Teubner, P.J.O.; Crowe, A.; Fontes, C.J.; Clark, R.E.H.; Zeman, V.; Bartschat, K.; Madison, D.H.; Srivastava, R.; Stauffer, A.D.

    2002-01-01

    Electron-impact differential cross-section measurements for the excitation of the 2p 5 3s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n=2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We also present results from calculations of these differential cross sections using the R-matrix and unitarized first-order many-body theory, the distorted-wave Born approximation, and relativistic distorted-wave methods. Comparison with available experimental differential cross sections and differential cross-section ratios is also presented

  10. Integral bounds for N-body total cross sections

    International Nuclear Information System (INIS)

    Osborn, T.A.; Bolle, D.

    1979-01-01

    We study the behavior of the total cross sections in the three- and N-body scattering problem. Working within the framework of the time-dependent two-Hilbert space scattering theory, we give a simple derivation of integral bounds for the total cross section for all processes initiated by the collision of two clusters. By combining the optical theorem with a trace identity derived by Jauch, Sinha, and Misra, we find, roughly speaking, that if the local pairwise interaction falls off faster than r -3 , then sigma/sub tot/(E) must decrease faster than E/sup -1/2/ at high energy. This conclusion is unchanged if one introduces a class of well-behaved three-body interactions

  11. Drell-Yan cross section in the jet calculus scheme

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu; Kobayashi, Hirokazu

    2009-01-01

    We calculate factorized cross sections for lepton pair production mediated by a virtual photon in hadron-hadron collisions using the jet calculus scheme, in which a kinematical constraint due to parton radiation is taken into account. This method guarantees a proper phase space boundary for subtraction terms. Some properties of the calculated cross sections are examined. We also discuss matching between the hard scattering cross sections and parton showers at the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). (author)

  12. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  13. Argon intermolecular potential from a measurement of the total scattering cross-section

    International Nuclear Information System (INIS)

    Wong, Y.W.

    1975-01-01

    An inversion method to obtain accurate intermolecular potentials from experimental total cross section measurements is presented. This method is based on the high energy Massey--Smith approximation. The attractive portion of the potential is represented by a multi-parameter spline function and the repulsive part by a Morse function. The best fit potential is obtained by a least squares minimization based on comparison of experimental cross sections with those obtained by a Fourier transform of the reduced Massey--Smith phase shift curve. An experimental method was developed to obtain the total cross sections needed for the above inversion procedure. In this technique, integral cross sections are measured at various resolutions and the total cross section is obtained by extrapolating to infinite resolution. Experimental results obtained for the Ar--Ar system are in excellent agreement with total cross sections calculated using the Barker-Fisher-Watts potential. Inversion of the data to obtain a potential distinguishable from the BFW-potential requires an extension of the method based on the Massey--Smith approximation to permit use of JWKB phase shifts and was not attempted

  14. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  15. Some problem areas in capture cross-section measurements

    International Nuclear Information System (INIS)

    Moxon, M.C.; Gayther, D.B.; Sowerby, M.G.

    1975-01-01

    This paper outlines some of the problems that have been encountered and are envisaged in the measurement and evaluation of capture cross-sections. Particular emphasis is placed on the cross-sections of the structural materials (Fe, Ni, Cr) used in fast reactors. The topics considered are the influence of scattered neutrons in capture detectors, the determination of background, sample thickness corrections, and the theoretical representation of resonance parameters. (author)

  16. Low energy total cross section of 36Ar

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Magurno, B.A.

    1975-01-01

    To compare the predictions of the valence model with measured partial radiative widths of 36 Ar an accurate knowledge of the bound-level parameters is required. This is achieved by carrying out a Breit-Wigner parameter fit to the total cross section of 36 Ar measured by Chrien et al and renormalized to the recommended values of the thermal capture and scattering cross sections. (1 figure, 1 table) (U.S.)

  17. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the 15N(p,n) reaction as neutron source

    International Nuclear Information System (INIS)

    Poenitz, Erik

    2010-01-01

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The 15 N(p,n) 15 O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the 15 N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure 209 Bi and 181 Ta samples at 4 MeV incident neutron energy. Results are compared with other

  18. Differential cross-section measurements at the University of Kentucky - Adventures in analysis

    International Nuclear Information System (INIS)

    Vanhoy, J.R.; Garza, E.A.; Steves, J.L.; Hicks, S.F.; Henderson, S.L.; Sidwell, L.C.; Champine, B.R.; Crider, B.P.; Liu, S.H.; Peters, E.E.; Prados-Estevez, F.M.; McEllistrem, M.T.; Ross, T.J.; Yates, S.W.

    2014-01-01

    Elastic and inelastic neutron scattering cross-sections are determined at the University of Kentucky Accelerator Laboratory (UKAL) 1 using time-of-flight techniques at incident energies in the fast neutron region. Measurements have been completed for scattering from 23 Na and for the 23 Na(n,n'γ) reaction; similar measurements are in progress for 54 Fe. Commencing in the summer of 2014, measurements will address 56 Fe. An overview of the facilities and instrumentation at UKAL is given, and our measurement and analysis procedures are outlined. Of particular concern are portions of the analysis which limit the accuracy and precision of the measurements. We briefly examine detector efficiencies derived from the 3 H(p,n) cross-sections, attenuation and multiple scattering corrections, and neutron and γ-ray cross-sections standardizations. (authors)

  19. High transverse momentum dijet cross section measurements in photoproduction at HERA

    International Nuclear Information System (INIS)

    Dossanov, Aziz

    2013-06-01

    The measurement of high transverse momentum differential dijet cross sections in photoproduction at HERA in the γp center-of-mass energy 101 γp + p mode during the year 2006, collecting an integrated luminosity of 92.4 pb -1 . The results correspond to a kinematic range of photon virtualities Q 2 2 and inelasticities 0.1 perpendicular to algorithm, and a minimum transverse momentum of the two leading jets, P T,1st,2nd >15.0 GeV and pseudorapidities in the range of -0.5 1st,2nd 12 >40.0 GeV is required. Single differential dijet cross sections are measured, including cross sections in the direct and resolved photon enhanced regions. In order to study the contribution of partons interacting in the hard process, which are sensitive to the jet pseudorapidities, three different topologies of jets pseudorapidities are investigated. Single differential cross sections as a function of proton momentum fraction, taken by the interacting parton, x P , the fraction of photon momentum, x γ , the angle between the incoming and outgoing partons in the hard scatter, vertical stroke cos θ * vertical stroke are presented. Additionally, the cross sections as a function of the invariant mass of dijets, M 12 , anti η=(η 1st +η 2nd )/2, anti P T =(P T,1st +P T,2nd )/2 and P T,1st are also presented. The data are compared to predictions from the Pythia event generator, based on the LO matrix elements and parton showers, and to the NLO QCD calculations corrected for hadronization effects.

  20. Resonance capture cross section of 207Pb

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.

  1. Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Energy Technology Data Exchange (ETDEWEB)

    M. Williams, D. Applegate, M. Bellis, C.A. Meyer

    2009-12-01

    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

  2. Measurement of proton-proton elastic scattering and total cross-section at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Antchev, G; Atanassov, I; Avati, V; Baechler, J; Berardi, V; Berretti, M; Bossini, E; Bozzo, M; Brogi, P; Brucken, E; Buzzo, A; Cafagna, F S; Calicchio, M; Catanesi, M G; Covault, C.; Csanad, M.; Csorgo, T.; Deile, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, R.A.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajıcek, M.; Lo Vetere, M.; Macrı, M.; Maki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Rodrıguez, F.L.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vıtek, M.; Welti, J.; Whitmore, J.

    2013-01-01

    At the LHC energy of $\\sqrt{s}$ = 7 TeV, under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center ( around 5 $\\sigma$ beam) in a dedicated run with $\\beta$* = 90m, abs(t)-values down to 5 10**-3 GeV**2 were reached. The exponential slope of the differential elastic cross-section in this newly explored abs(t)-region remained unchanged and thus an exponential fit with only one constant B = (19.90+/-0.3)GeV-2 over the large abs(t)-range from 0.005 to 0.2GeV**2 describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to p...

  3. Angle-averaged Compton cross sections

    International Nuclear Information System (INIS)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV

  4. Angle-averaged Compton cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.

  5. Definition and calculation of bottom quark cross-sections in deep-inelastic scattering at HERA and De termination of their uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Carli, T. E-mail: tancredi.carli@cern.ch; Chiochia, V.; Klimek, K

    2003-09-01

    The uncertainties involved in the calculation of bottom quark cross-sections in deep-inelastic scattering at HERA are studied in different phase space regions. Besides the inclusive bottom quark cross-section, definitions closer to the detector acceptance requiring at least one high energetic muon from the semi-leptonic bottom quark decay or a jet with high transverse energy are investigated. For each case the uncertainties due to the choice of the renormalisation and factorisation scale as well as the bottom quark mass are estimated in the perturbative NLO QCD calculation and furthermore uncertainties in the fragmentation of the bottom quark to a B-meson and in its semi-leptonic decay are discussed. (author)

  6. A mathematical formulation of the Mahaux-Weidenmueller formula for the scattering matrix

    International Nuclear Information System (INIS)

    Christiansen, T J; Zworski, M

    2009-01-01

    This paper gives a mathematical exposition of a formula for the scattering matrix for a manifold with infinite cylindrical ends or a waveguide. This formula is well known in the physics literature and we show that a variant of this formula gives the scattering matrix of the mathematics literature. Moreover, we bound the difference between the scattering matrix and an approximation of it computed using a finite rank approximation of the interaction matrix.

  7. Nuclear transparency and effective kaon-nucleon cross section from the A(e,e'K+) reaction

    International Nuclear Information System (INIS)

    Nuruzzaman; Dutta, D.; Arrington, J.; Fassi, L. El; Zheng, X. C.; Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Benmokhtar, F.; Boeglin, W.; Markowitz, P.; Bosted, P.; Bruell, A.; Chudakov, E.; Ent, R.; Fenker, H. C.; Gaskell, D.; Jones, M. K.; Lung, A. F.

    2011-01-01

    We have determined the transparency of the nuclear medium to kaons from A(e,e ' K + ) measurements on 12 C, 63 Cu, and 197 Au targets. The measurements were performed at the Jefferson Laboratory and span a range in four-momentum-transfer squared Q 2 =1.1-3.0 GeV 2 . The nuclear transparency was defined as the ratio of measured kaon electroproduction cross sections with respect to deuterium (σ A /σ D ). We further extracted the atomic number (A) dependence of the transparency as parametrized by T=(A/2) α-1 and, within a simple model assumption, the in-medium effective kaon-nucleon cross sections. The effective cross sections extracted from the electroproduction data were found to be smaller than the free cross sections determined from kaon-nucleon scattering experiments, and the parameter α was found to be significantly larger than those obtained from kaon-nucleus scattering. We have included similar comparisons between pion- and proton-nucleon effective cross sections as determined from electron-scattering experiments and pion-nucleus and proton-nucleus scattering data.

  8. Differential Single-Capture Cross Sections for Fast Alpha–Helium Collisions

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, Ebrahim; Ghavaminia, Hoda

    2014-01-01

    A four-body theoretical study of the single charge transfer process in collision of energetic alpha ions with helium atoms in their ground states is presented. The model utilizes the Coulomb–Born distorted wave approximation with correct boundary conditions to calculate the single-electron capture differential and integral cross sections. The influence of the dynamic and static electron correlations on the capture probability is investigated. The results of the calculations are compared with the recent experimental measurements for differential cross sections and with the other theoretical manipulations. The results for scattering at extreme forward angles are in good agreement with the experimental measurements, but in other scattering angles the agreement is poor. However, the present four-body results for integral cross sections are in excellent agreement with the experimental data. (author)

  9. A dependence of quasielastic charged-current neutrino-nucleus cross sections

    Science.gov (United States)

    Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T.

    2018-04-01

    Background: 12C has been and is still widely used in neutrino-nucleus scattering and oscillation experiments. More recently, 40Ar has emerged as an important nuclear target for current and future experiments. Liquid argon time projection chambers (LArTPCs) possess various advantages in measuring electroweak neutrino-nucleus cross sections. Concurrent theoretical research is an evident necessity. Purpose: 40Ar is larger than 12C , and one expects nuclear effects to play a bigger role in reactions. We present inclusive differential and total cross section results for charged-current neutrino scattering on 40Ar and perform a comparison with 12C , 16O , and 56Fe targets, to find out about the A -dependent behavior of model predictions. Method: Our model starts off with a Hartree-Fock description of the nucleus, with the nucleons interacting through a mean field generated by an effective Skyrme force. Long-range correlations are introduced by means of a continuum random phase approximation approach. Further methods to improve the accuracy of model predictions are also incorporated in the calculations. Results: We present calculations for 12C , 16O , 40Ar , and 56Fe , showcasing differential cross sections over a broad range of kinematic values in the quasielastic regime. We furthermore show flux-folded results for 40Ar and we discuss the differences between nuclear responses. Conclusions: At low incoming energies and forward scattering we identify an enhancement in the 40Ar cross section compared to 12C , as well as in the high ω (low Tμ) region across the entire studied Eν range. The contribution to the folded cross section of the reaction strength at values of ω lower than 50 MeV for forward scattering is sizable.

  10. Partial dissociative emission cross sections and product state distributions of the resulting photofragments

    Energy Technology Data Exchange (ETDEWEB)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    2016-12-20

    This paper relates the partial cross section of a continuous optical emission into a given scattering channel of the lower electronic state to the photofragment population. This allows one to infer partial emission cross sections ‘non-optically’ from product state distributions; in computations, explicit construction of exact scattering states is therefore avoided. Applications to the emission spectra of NaI, CO{sub 2}, and pyrrole are given. It is also demonstrated that a similar relationship holds between partial cross sections of dissociative photoionization and distributions of ionic fragments over final product channels.

  11. Total Cross Sections at current/Future Colliders, conventional models and QCD

    CERN Document Server

    Fazal-e-Aleem, M

    1999-01-01

    Rise in total cross sections for elastic scattering generated immense interest both for experimental measurements and theoretical investigations. How will total cross section behave at LHC and Cosmic Ray energies is therefore in the limelight of our future measurements. Theoretical studies become even more interesting when we take into consideration the ratio of real and imaginary parts of the scattering amplitudes. We will briefly undertake the current results and future prospects in the light of conventional as well as QCD-based phenomenology.

  12. Structure of 14C via elastic and inelastic neutron scattering from 13C: Measurement, R-matrix analysis, and shell model calculations

    International Nuclear Information System (INIS)

    Resler, D.A.

    1987-03-01

    The specific purpose of this work is to provide a better understanding of the 14 C level structure; the general purpose is to provide the details for using shell model calculations in R-matrix analyses. Using the TOF facilities of the Ohio University Accelerator Laboratory, the elastic and first 3 inelastic differential scattering cross sections for 13 C + n were measured at 69 energies for 4.5 ≤ E/sub n/ ≤ 11 MeV. A multiple scattering code was developed which provided a simulation of the experimental scattering process allowing accurate corrections to the small inelastic data. The integrated 13 C(n,α) 10 Be cross section is estimated. The sequential 2n-decay of 14 C states populated by 13 C + n was observed. A shell model code was developed. Normal and nonnormal parity calculations were made for the lithium isotopes using a new two-body interaction. The results for 5 Li predict the 2s/sub 1/2/ and 1d/sub 5/2/ single-particle states to be located below the 3/2 + state. Similar calculations were made for 13 C, 13 N, and 14 C. Results for 13 C and 13 N show for E/sub x/ 7 Li and 14 C, 2 h-barω calculations were done. Shell model calculations generated the R-matrix parameters for the elastic and first 3 inelastic channels of 13 C + n. After adjusting some energies, the predicted structure generally agrees with experiment for E/sub n/ 13 C + n data were refit to replace R 0 background terms by more realistic broad states and to get better agreement with model calculations. R-matrix fitting of the full data set produced new 14 C level information. For E/sub n/ > 4 MeV (E/sub x/ > 12 MeV), 5 states are given definite J/sup π/ assignments; 3, tentative assignments. 122 refs., 91 figs., 30 tabs

  13. Effect of Beam Scanning on Target Polarization Scattering Matrix Observed by Fully Polarimetric Phased-array Radar

    Directory of Open Access Journals (Sweden)

    Li Mianquan

    2016-04-01

    Full Text Available The polarization feature of a fully Polarimetric Phased-Array Radar (PPAR antenna varies according to the beam-scanning angle, thereby introducing two problems on the target Polarization Scattering Matrix (PSM measurement. First, the antenna polarization basis is defined within the vertical cross-section of an electromagnetic wave propagation direction, and the polarization basis of each beam direction angle is not identical, resulting in the PSM of a fixed-posture target observed by PPAR being not identical for different beam-scanning angles. Second, the cross polarization of the PPAR antenna increases with increasing beamscanning angle, resulting in a crosstalk among the elements of PSM observed by PPAR. This study focuses on the analysis of the abovementioned two aspects of the effect of beam scanning on target PSM observed by PPAR. The results will establish a more accurate observation of the equation for the precision PSM measurement of PPAR.

  14. Improved treatment for determining the group cross section for elastic down-scattering into the adjacent group

    International Nuclear Information System (INIS)

    Woll, D.

    1985-04-01

    In the group cross section libraries usually applied for reactor calculations, the energy dependent probabilities of interactions between neutrons and the materials existing in the reactor are represented by weighted average values over certain energy ranges with a neutron energy spectrum regarded as representative. The influence of the resonance structure of the cross sections via the neutron spectrum and the resultant effect on the averaged group cross sections is taken into account in an approximate way by so-called resonance self-shielding factors. The approximations indicated are of considerable importance for the elastic down scattering. They can be improved by the so-called REMO correction, which takes into account the neutron energy distribution existing in the reactor model. Because such detailed neutron distributions are very expensive to prepare, especially in multi-dimensional models, automatic program runs were established which, in some cases by simplifications of the model, allow collision densities to be made available at relatively little expenditure which permit many nuclear quantities to be calculated with a sufficient degree of accuracy. This report describes the program runs set up and the experience acquired in testing them by the examples of the MASURCA 3B experiment and the SNEAK 11B2 assembly. This report deals especially with the influence of the collision density used for the REMO correction on the ksub(eff) value and other parameters of the reactor models considered. (orig.) [de

  15. Circumstances under which various approximate relativistic and nonrelativistic theories yield accurate Compton scattering doubly differential cross sections at high photon energy

    International Nuclear Information System (INIS)

    LaJohn, L A; Pratt, R H

    2009-01-01

    We discuss the increase in error with increasing nuclear charge Z in the use of the relativistic impulse approximation (RIA) for the calculation of Compton K-shell scattering doubly differential cross sections (DDCS). We also show that nonrelativistic (nr) expressions can be used to obtain accurate peak region DDCS at scattering angles less than about 35 0 even at incident photon energies ω i exceeding 1 MeV, if Z<30. This is possible because in the Compton peak region, as θ→0, a low momentum transfer limit is being approached.

  16. Scattering and absorption differential cross sections for double ...

    Indian Academy of Sciences (India)

    degraded gamma quanta at the same time as the recoil electron. ... [2–4] are confined to energy, angular distribution, collision differential cross section and ... The positions of the two detectors are adjusted in such a way that they do not ... the energy values weighted in proportion to the probability for occurrence of this ...

  17. Analysis of neutron cross sections using the coupled-channel theory

    International Nuclear Information System (INIS)

    Tanaka, Shigeya

    1975-01-01

    Fast neutron total and scattering cross sections calculated with the coupled-channel theory and the spherical optical model are compared with experimental data. The optical-potential parameters used in both the calculations were obtained from comparison of calculations with scattering data for 209 Bi. The calculations for total cross sections were made for thirty-five nuclides from 23 Na to 239 Pu in the energy range of 0.25 to 15 MeV, and good results were obtained with the coupled-channel calculations. The comparisons of the calculations with the elastic data for about twenty nuclides were made at incident energies of 8 and 14 MeV. In general, the coupled-channel calculations at 8 MeV have given better agreements with the experimental data than the spherical optical-model calculations. At 14 MeV, differences between both the calculations were small. The analysis was also made for the elastic and inelastic scattering by several nuclei such as Fe, Ni, 120 Sn, Pu in the low energy region, and good results have been given by the coupled-channel calculations. Thus, it is demonstrated that the coupled-channel calculations with one set of the optical parameters well reproduce the total and scattering cross sections over a wide energy and mass region. (auth.)

  18. Calculation of the flux attenuation and multiple scattering correction factors in time of flight technique for double differential cross section measurements

    International Nuclear Information System (INIS)

    Martin, G.; Coca, M.; Capote, R.

    1996-01-01

    Using Monte Carlo method technique , a computer code which simulates the time of flight experiment to measure double differential cross section was developed. The correction factor for flux attenuation and multiple scattering, that make a deformation to the measured spectrum, were calculated. The energy dependence of the correction factor was determined and a comparison with other works is shown. Calculations for Fe 56 at two different scattering angles were made. We also reproduce the experiment performed at the Nuclear Analysis Laboratory for C 12 at 25 celsius degree and the calculated correction factor for the is measured is shown. We found a linear relation between the scatter size and the correction factor for flux attenuation

  19. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.

    1980-04-01

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  20. Expected anomalies of the neutron cross section near the liquid-glass transition

    International Nuclear Information System (INIS)

    Gotze, W.

    1987-01-01

    In the frameworks of a microscopic theory the anomalies of the neutron cross section near the liquid-glass transition are discussed. The central concept of the theory is the correlation function for density fluctuations of wave vector q and frequency ω. Its absorptive part is proportional to the dynamical structure factor S(q, ω), this is the scattering law for coherent neutron scattering. Tagged particle motion is evaluated as well and it yields the incoherent neutron scattering cross section S i (q, ω) in. The predictions of the theory for S(q, ω) and Si (q, ω) a q-ω domain are given

  1. Neutron inelastic scattering cross sections of 232Th obtained from (n,n/prime/sub gamma/) measurements

    International Nuclear Information System (INIS)

    Egan, J.J.; Menachery, J.D.; Kegel, G.H.R.; Pullen, D.J.

    1980-01-01

    The /sup 232/Th(n,n/prime/sub gamma/) reaction has been studied up to 2.1 MeV bombarding energy for states with excitation energies from 700 to 1700 keV. Seventy-five gamma-ray transitions from forty-three above the first excited state have been observed from a disk scatterer with a 40-cm/sup 3/ Ge(Li) detector surrounded by an anti-Compton annulus of NaI(Tl). The time-of-flight technique was employed to further reduce background. Cross sections for twenty-two states are reported here. The data have been corrected for the finite sample effects of neutron and gamma-ray attenuation, and neutron multiple scattering. The results are compared to those of McMurray et al. and to the predictions of the compound nucleus statistical model. A compound nucleus plus direct interaction calculation is also shown for the 1/sup -/ state at 714 kev. 7 refs

  2. Thermal Neutron Capture and Thermal Neutron Burn-up of K isomeric state of 177mLu: a way to the Neutron Super-Elastic Scattering cross section

    International Nuclear Information System (INIS)

    Roig, O.; Belier, G.; Meot, V.; Daugas, J.-M.; Romain, P.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Letourneau, A.; Marie, F.; Veyssiere, Ch.

    2006-01-01

    Thermal neutron radiative capture and burn-up measurements of the K isomeric state in 177Lu form part of an original method to indirectly obtain the neutron super-elastic scattering cross section at thermal energy. Neutron super-elastic scattering, also called neutron inelastic acceleration, occurs during the neutron collisions with an excited nuclear level. In this reaction, the nucleus could partly transfer its excitation energy to the scattered neutron

  3. Incoherent scattering of gamma rays by K-shell electrons. [Differential cross sections, 145 to 662 KeV

    Energy Technology Data Exchange (ETDEWEB)

    Spitale, G.C.; Bloom, S.D.

    1976-05-12

    Differential cross sections for incoherent scattering by K-shell electrons were measured, using coincidence techniques, for incident photons having energies of 662 keV, 320 keV, and 145 keV. The spectral distributions of the scattered photons emerging at scattering angles from 20/sup 0/ to about 140/sup 0/ are reported. Target materials were iron, tin, holmium, and gold at 320 keV; tin and gold at 662 keV; and iron and tin at 145 keV. A typical energy spectrum consists of a scattered peak that is much narrower than would be expected from the bound state electron motion. The peak also, typically, reaches a broad maximum width for scattering angles between 45/sup 0/ and 60/sup 0/. Rather than monotonically increasing with atomic number the peak width reaches a broad maximum, generally, between Z = 50 and Z = 67, and then decreases with increasing atomic number. No Compton defect appears in any of the peaks to within +- 20 keV. A discussion of the expected magnitude of the Compton defect is included. The peak is superimposed on a continuum that diverges at the low end of the scattered photon spectrum for the following cases: gold, holmium, and tin targets for 320-keV incident photons; gold and possibly tin targets for 662-keV photons incident. This infrared divergence is expected on theoretical grounds and has been predicted. It is very nearly isotropic.

  4. Cross section data for ionization of important cyanides

    International Nuclear Information System (INIS)

    Kaur, Jaspreet; Antony, Bobby

    2015-01-01

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  5. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  6. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  7. Measurement of neutral current deep inelastic e{sup +}p scattering cross sections with longitudinally polarized positrons with ZEUS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wlasenko, Michal

    2009-05-15

    Measurements of neutral current deep inelastic scattering of protons colliding with longitudinally polarized positrons, performed with data recorded in years 2006 and 2007 with the ZEUS detector, corresponding to an integrated luminosity of L=113.3 pb{sup -1}, are presented. The single-differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx, d{sigma}/dy and the double-differential reduced cross section {sigma} were measured in the kinematic region of 185

  8. Scattering kernels and cross sections working group

    International Nuclear Information System (INIS)

    Russell, G.; MacFarlane, B.; Brun, T.

    1998-01-01

    Topics addressed by this working group are: (1) immediate needs of the cold-moderator community and how to fill them; (2) synthetic scattering kernels; (3) very simple synthetic scattering functions; (4) measurements of interest; and (5) general issues. Brief summaries are given for each of these topics

  9. The cross-section dividing method and a stochastic interpretation of the moliere expansion

    International Nuclear Information System (INIS)

    Nakatsuka, T.; Okei, K.

    2004-01-01

    Properties of Moliere scattering process are investigated through the cross-section dividing method. We divide the single-scattering at an adequate angle into the moderate scattering and the large-angle scattering. We have found the expansion parameter or the shape parameter B of Moliere, which corresponds to the splitting angle of the single scattering at e B/2 times the screening angle, acts as the probability parameter to receive the large-angle scattering. A mathematical formulation to derive the angular distribution through the cross-section dividing method is proposed. Small distortions from the gaussian distribution were found in the central distribution produced by the moderate scattering of Moliere, due to the higher Fourier components. Smaller splitting angles than Moliere, e.g. the one-scattering angle χ C , will be effective for rapid sampling sequences of Moliere angular distribution, giving almost gaussian central distributions as the product of moderate scattering and low-frequent single-scatterings as the product of large-angle scatterings. (author)

  10. Regularized unfolding of jet cross sections in deep-inelastic ep scattering at HERA and determination of the strong coupling constant

    International Nuclear Information System (INIS)

    Britzger, Daniel Andreas

    2013-10-01

    In this thesis double-differential cross sections for jet production in neutral current deep-inelastic e ± p scattering (DIS) are presented at the center-of-mass energy of √(s)=319 GeV, and in the kinematic range of the squared four-momentum transfer 150 2 2 and the inelasticity 0.2 T -algorithm and are constrained to the pseudorapidity range -1.0 lab jet T jet T jet s (M Z ) at the scale of the mass of the Z 0 boson in the framework of perturbative quantum chromodynamics in next-to-leading order. Values are derived separately for the absolute and normalized jet cross section measurements. A higher sensitivity to α s (M Z ) is obtained in a simultaneous least-square-minimization procedure to the three jet cross sections, taking the statistical correlations and correlations due to other experimental uncertainties into account. The most precise value is obtained from all normalized jet cross sections, yielding α s (M Z )=0.1165±0.0008, which benefits from the high statistical precision of the inclusive jet measurement, the increased sensitivity to α s (M Z ) of the trijet cross section, and from the cancellation of normalization uncertainties. However, the value of the strong coupling constant is currently only determinable from this measurement with a precision of 3 to 4% due to the limited precision of the theoretical predictions at next-to-leading order.

  11. Positron scattering by atomic hydrogen at intermediate energies

    International Nuclear Information System (INIS)

    Higgins, K.; Burke, P.G.; Walters, H.R.J.

    1990-01-01

    Results of an accurate calculation based upon the intermediate energy R-matrix theory are reported for elastic scattering of positrons by atomic hydrogen. T-matrix elements for both low and intermediate energy scattering are evaluated for the S e , P o , D e and F o partial wave symmetries. The low-energy elastic phaseshifts are found to be in good agreement with previous accurate variational calculations. Using an optical potential approach to include the effect of the higher partial waves, elastic and total cross sections are presented for energies ranging from near threshold to 3.7 Rydbergs. (author)

  12. Dependence of radar auroral scattering cross section on the ambient electron density and the destabilizing electric field

    International Nuclear Information System (INIS)

    Haldoupis, C.; Nielsen, E.; Schlegel, K.

    1990-01-01

    By using a data set that includes simultaneous STARE and EISCAT measurements made at a common magnetic flux tube E region in the ionosphere, we investigate the dependence of relative scattering cross section of 1-meter auroral irregularities on the destabilizing E x B electron drift, or alternatively the electric field, and the E region ambient electron density. The analysis showed that both, the E field and mean electron density are the decisive factors in determining the strength of radar auroral echoes at magnetic aspect angles near perpendicularity. We have found that at instability threshold, i.e., when the E field strength is in the 15 to 20 mV/m range, the backscatter power level is affected strongly by the mean electron density. Above threshold, the wave saturation amplitudes are determined mainly by the combined action of electron drift velocity magnitude, V d , and mean electron density, N e , in a way that the scattering cross section, or the electron density fluctuation level, increases with electric field magnitude but at a rate which is larger when the ambient electron density is lower. The analysis enabled us to infer an empirical functional relationship which is capable of predicting reasonably well the intensity of STARE echoes from EISCAT E field and electron density data. In this functional relationship, the received power at threshold depends on N e 2 whereas, from threshold to perhaps more than 50 mV/m, the power increases nonlinearly with drift velocity as V d n where the exponent n is approximately proportional to N e -1/2 . The results support the Farley-Bunemann instability as the primary instability mechanism, but the existing nonlinear treatment of the theory, which includes wave-induced cross field diffusion, cannot account for the observed role of electron density in the saturation of irregularity amplitudes

  13. CASTHY, Statistical Model for Neutron Cross-Sections and Gamma-Ray Spectra

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Fukahori, Tokio

    1998-01-01

    Description of program or function: CASTHY calculates neutron cross sections of total, shape elastic scattering and compound nucleus formation with the optical model, and compound elastic, inelastic and capture cross sections by the statistical model. The other cross sections, such as (n,2n), (n,p), (n,f) reactions are treated as cross sections of competing processes, and their sum is given through input data. Capture gamma-ray spectra can also be calculated. The branching ratio for primary transition can be treated in a particular way, if required

  14. Measurement of the doubly differential cross section for π-p → π+π-n near threshold

    International Nuclear Information System (INIS)

    Walter, J.B.

    1980-05-01

    The doubly differential cross sections for the π + from the reaction π - p → π + π - n were measured at about twenty points for each of five energies between 245 MeV and 356 MeV. The experiment was carried out at the Clinton P. Anderson Meson Physics Facility, where a double focusing magnetic spectrometer detected the π + mesons produced in a liquid hydrogen target. The measurements were normalized by comparison with π - p elastic scattering measured with the same apparatus. These are the first such measurements in this energy range, and have an accuracy between 4.7% and 39%. The integrated reaction cross section was determined at each energy with an accuracy of about 5%. These agree with but are an improvement over previous measurements in this energy range. Comparison of the extrapolated threshold value of the mean square modulus of the matrix element with the soft pion calculations favors the symmetry breaking mechanism of Weinberg (xi = 0). It also demonstrates the futility of attempting to determine the symmetry breaking parameter xi from a single measurement of the integrated reaction cross section

  15. Averaged electron collision cross sections for thermal mixtures of β-alanine conformers in the gas phase

    Science.gov (United States)

    Fujimoto, Milton M.; de Lima, Erik V. R.; Tennyson, Jonathan

    2017-10-01

    A theoretical study of elastic electron scattering by gas-phase amino acid molecule β-alanine (NH2-CH2-CH2-COOH) is presented. R-matrix calculations are performed for each of the ten lowest-lying, thermally-accessible conformers of β-alanine. Eigenphase sums, resonance features, differential and integral cross sections are computed for each conformer. The positions of the low-energy shape resonance associated with the unoccupied {π }* orbital of the -COOH group are found to vary from 2.5 to 3.3 eV and the resonance widths from 0.2 to 0.5 eV depending on the conformation. The temperature-dependent population ratios are derived, based on temperature-corrected Gibbs free energies. Averaged cross sections for thermal mixtures of the 10 conformers are presented. A comparison with previous results for the α-alanine isomer is also presented.

  16. Measurement of the Cross Section for High-$p_T$ Hadron Production in Scattering of 160 GeV/c Muons off Nucleons

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hoheneschedu, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d'Hose, N; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W -D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J -F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmitt, L; Schönning, K; Schopferer, S; Schott, M; Schröder, W; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2013-01-01

    The cross section for production of charged hadrons with high transverse momenta in scattering of 160 GeV/c muons off nucleons at low photon virtualities has been measured at the COMPASS experiment at CERN. The results, which cover transverse momenta from 1.1 to 3.6 GeV/c, are compared to a next-to-leading order perturbative Quantum Chromodynamics (NLO pQCD) calculation in order to evaluate the applicability of pQCD to this process in the kinematic domain of the experiment. The shape of the calculated differential cross section as a function of transverse momentum is found to be in good agreement with the experimental data, but the normalization is underestimated by NLO pQCD. This discrepancy may point towards the relevance of terms beyond NLO in the pQCD framework. The dependence of the cross section on the pseudo-rapidity and on the charge of the hadrons is also discussed.

  17. An Ada environment for relativistic cross section calculations

    International Nuclear Information System (INIS)

    Nilsson, E.

    1990-01-01

    We have developed an Ada environment adapted to relativistic cross section calculations. Objects such as four-vectors, γ- matrices and propagators are defined as well as operations between these objects. In this environment matrix elements can be expressed in a compact and readable way as Ada code. Unpolarized cross sections are calculated numerically by explicitly summing and averaging over spins and polarizations. A short presentation of the technique is given

  18. Charged-current inclusive neutrino cross sections in the SuperScaling model

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, M. V., E-mail: martin.inrne@gmail.com [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Megias, G. D.; Caballero, J. A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); González-Jiménez, R. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); Moreno, O.; Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Barbaro, M. B. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Moya de Guerra, E.; Udías, J. M. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain)

    2016-03-25

    SuperScaling model (SuSA) predictions to neutrino-induced charged-current π{sup +} production in the Δ-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current π{sup +} results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.

  19. New light on the Kr-(4p55s2) Feshbach resonances: high-resolution electron scattering experiments and B-spline R-matrix calculations

    International Nuclear Information System (INIS)

    Hoffmann, T H; Ruf, M-W; Hotop, H; Zatsarinny, O; Bartschat, K; Allan, M

    2010-01-01

    In a joint experimental and theoretical effort, we carried out a detailed study of electron scattering from Kr atoms in the energy range of the low-lying Kr - (4p 5 5s 2 ) Feshbach resonances. Absolute angle-differential cross sections for elastic electron scattering were measured over the energy range 9.3-10.3 eV with an energy width of about 13 meV at scattering angles between 10 deg. and 180 deg. Using several sets of elastic scattering phase shifts, a detailed analysis of the sharp Kr - (4p 5 5s 2 2 P 3/2 ) resonance was carried out, resulting in a resonance width of Γ 3/2 3.6(2) meV. By direct comparison with the position of the Ar - (3p 5 4s 2 2 P 3/2 ) resonance, the energy for the Kr - (4p 5 5s 2 2 P 3/2 ) resonance was determined as E 3/2 = 9.489(3) eV. A Fano-type fit of the higher lying Kr - (4p 5 5s 2 2 P 1/2 ) resonance yielded the resonance parameters Γ 1/2 = 33(5) meV and E 1/2 = 10.126(4) eV. In order to obtain additional insights, B-spline R-matrix calculations were performed for both the elastic and the inelastic cross sections above the threshold for 4p 5 5s excitation. They provide the total and angle-differential cross sections for excitation of long-lived and short-lived levels of the 4p 5 5s configuration in Kr and branching ratios for the decay of the Kr - (4p 5 5s 2 2 P 1/2 ) resonance into the three available exit channels. The results are compared with selected experimental data.

  20. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  1. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Cheryl [Northwestern U.

    2016-01-01

    Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.

  2. Summary Report of the Technical Meeting on Inelastic Scattering and Capture Cross-section Data of Major Actinides in the Fast Neutron Region

    International Nuclear Information System (INIS)

    Plompen, Arjan; Kawano, Toshihiko; Capote Noy, Roberto

    2012-05-01

    Recently, tight target uncertainties on the capture and inelastic scattering data for major actinides were derived from advanced reactor sensitivity studies. A Technical Meeting on 'Inelastic Scattering and Capture Cross-section Data of Major Actinides in the Fast Neutron Region' was held at IAEA Headquarters, Vienna, Austria to review the status of nuclear data libraries for these cross sections, the status of the experimental results by which these can be tested and to evaluate what advances in nuclear modeling and measurement technique may bring to improve the knowledge of these cross sections. The participants compared recent evaluations with various modeling approaches that have not yet been adopted in data libraries. Several points of interest were found. First, different evaluations may show very similar performance for macroscopic benchmarks. Second, recent modeling improvements from different communities and using different codes tend to converge on the principles in the case of coupled channel calculations. In particular, it was shown that meaningful results require convergence with respect to the number of coupled channels and the use of the dispersive coupled channels potential based with an isospin dependent term to treat neutrons and protons in a coherent manner appears to be uncontested. Also, the issue regarding the use of transmission coefficients from coupled channels calculations in the Hauser Feshbach model was tackled. Recent and ongoing experimental efforts were presented for capture and inelastic scattering on the major actinides. Results from these are likely to become available in a period from 2 to 5 years. A discussion on the representation of the data in EXFOR revealed that care must be taken interpreting the numbers given in the case of inelastic scattering. It has been a long time since capture data were obtained for fissile nuclei and it is exciting to find new efforts are being considered at LANL, CERN and CENBG/IRMM. It was finally

  3. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    Science.gov (United States)

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  4. The S-wave model for electron-hydrogen scattering revisited

    International Nuclear Information System (INIS)

    Bartschat, K.; Bray, I.

    1996-03-01

    The R-matrix with pseudo-states (RMPS) and convergent close-coupling (CCC) methods are applied to the calculation of elastic, excitation, and total as well as single-differential ionization cross sections for the simplified S-wave model of electron-hydrogen scattering. Excellent agreement is obtained for the total cross section results obtained at electron energies between 0 and 100 eV. The two calculations also agree on the single-differential ionization cross section at 54.4 eV for the triplet spin channel, while discrepancies are evident in the singlet channel which shows remarkable structure. 18 refs., 3 figs

  5. FIZCON, ENDF/B Cross-Sections Redundancy Check

    International Nuclear Information System (INIS)

    Dunford, Charles L.

    2007-01-01

    1 - Description of program or function: FIZCON is a program for checking that an evaluated data file has valid data and conforms to recommended procedures. Version 7.01 (April 2005): set success flag after return from beginning; fixed valid level check for an isomer; fixed subsection energy range test in ckf9; changed lower limit on potential scattering test; fixed error in j-value test when l=0 and i=0; added one more significant figure to union grid check and sum up output messages; partial fission cross sections mt=19,20,21 and 38 did not require secondary energy distributions in file 5; corrected product test for elastic scattering; moved potential scattering test to psyche. Version 7.02 (May 2005): Fixed resonance parameter sum test. 2 - Method of solution: FIZCON can recognise the difference between ENDF-6 and ENDF-5 formats and performs its tests accordingly. Some of the tests performed include: data arrays are in increasing energy order; resonance parameter widths add up to the total; Q-values are reasonable and consistent; no required sections are missing and all cover the proper energy range; secondary distributions are normalized to 1.0; energy conservation in decay spectra. Optional tests can be performed to check the redundant cross sections, and algorithms can be used to check for possible incorrect entry of data values (Deviant Point test)

  6. Total cross section of furfural by electron impact: Experiment and theory

    Science.gov (United States)

    Traoré Dubuis, A.; Verkhovtsev, A.; Ellis-Gibbings, L.; Krupa, K.; Blanco, F.; Jones, D. B.; Brunger, M. J.; García, G.

    2017-08-01

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  7. Total cross section of furfural by electron impact: Experiment and theory.

    Science.gov (United States)

    Traoré Dubuis, A; Verkhovtsev, A; Ellis-Gibbings, L; Krupa, K; Blanco, F; Jones, D B; Brunger, M J; García, G

    2017-08-07

    We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.

  8. S-matrix formulation of thermodynamics with N-body scatterings

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Pok Man [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Extreme Matter Institute EMMI, GSI, Darmstadt (Germany)

    2017-08-15

    We apply a phase space expansion scheme to incorporate the N-body scattering processes in the S-matrix formulation of statistical mechanics. A generalized phase shift function suitable for studying the thermal contribution of N → N processes is motivated and examined in various models. Using the expansion scheme, we revisit how the hadron resonance gas model emerges from the S-matrix framework, and consider an example of structureless scattering in which the phase shift function can be exactly worked out. Finally we analyze the influence of dynamics on the phase shift function in a simple example of 3- and 4-body scattering. (orig.)

  9. Total electron scattering cross sections of molecules containing H, C, N, O and F in the energy range 0.2–6.0 keV

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, Meera Devi; Ariyasinghe, W.M., E-mail: wickram_ariyasinghe@baylor.edu

    2017-03-15

    Based on the effective atomic total electron scattering cross sections (EATCS) of atoms in a molecular environment, a simple model is proposed to predict the total electron scattering cross sections (TCS) of H, C, N, O, and F containing molecules. The EATCS for these five atoms are reported for 0.2–6.0 keV energies. The predicted TCS by this model are compared with experimental TCS in the literature. The experimental TCS of CHF{sub 3}, C{sub 2}F{sub 4}, C{sub 2}F{sub 2}H{sub 2}, C{sub 4}F{sub 6}, and c-C{sub 4}F{sub 8} have been obtained for 0.2–4.5 keV electrons by measuring the attenuation of the electron beam through a gas cell.

  10. K+ nucleus total cross sections

    International Nuclear Information System (INIS)

    Sawafta, R.

    1990-01-01

    The scattering of K + mesons from nuclei has attracted considerable interest in the last few years. The K + holds a very special position as the weakest of all strongly interaction probes. The average cross section is not larger than about 10 mb at lab momenta below 800 MeV/c, corresponding to a mean free path in the nucleus larger than 5 fm. Thus the K + is capable of probing the entire volume of the nucleus. Single scattering of the K + with a nucleon in the nucleus dominates the nuclear scattering, and only small and calculable higher order corrections are needed. The nucleon is a dynamical entity and its internal structure can, in principle, be altered by its surrounding nuclear environment. This work reports an experiment in which the K + is used to compare the nucleon in the nucleus with a free nucleon

  11. Porosity effects in the neutron total cross section of graphite

    International Nuclear Information System (INIS)

    Santisteban, J. R; Dawidowski, J; Petriw, S. N

    2009-01-01

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es

  12. Absolute partial photoionization cross sections of ethylene

    Science.gov (United States)

    Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.

    1991-07-01

    Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.

  13. Absolute total cross sections for noble gas systems

    International Nuclear Information System (INIS)

    Kam, P. van der.

    1981-01-01

    This thesis deals with experiments on the elastic scattering of Ar, Kr and Xe, using the molecular beam technique. The aim of this work was the measurement of the absolute value of the total cross section and the behaviour of the total cross section, Q, as function of the relative velocity g of the scattering partners. The author gives an extensive analysis of the glory structure in the total cross section and parametrizes the experimental results using a semiclassical model function. This allows a detailed comparison of the phase and amplitude of the predicted and measured glory undulations. He indicates how the depth and position of the potential well should be changed in order to come to an optimum description of the glory structure. With this model function he has also been able to separate the glory and attractive contribution to Q, and using the results from the extrapolation measurements he has obtained absolute values for Qsub(a). From these absolute values he has calculated the parameter C 6 that determines the strength of the attractive region of the potential. In two of the four investigated gas combinations the obtained values lie outside the theoretical bounds. (Auth.)

  14. Time delay correlations in chaotic scattering and random matrix approach

    International Nuclear Information System (INIS)

    Lehmann, N.; Savin, D.V.; Sokolov, V.V.; Sommers, H.J.

    1994-01-01

    We study the correlations in the time delay a model of chaotic resonance scattering based on the random matrix approach. Analytical formulae which are valid for arbitrary number of open channels and arbitrary coupling strength between resonances and channels are obtained by the supersymmetry method. The time delay correlation function, through being not a Lorentzian, is characterized, similar to that of the scattering matrix, by the gap between the cloud of complex poles of the S-matrix and the real energy axis. 28 refs.; 4 figs

  15. Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2

    International Nuclear Information System (INIS)

    Tkáč, Ondřej; Orr-Ewing, Andrew J.; Ma, Qianli; Dagdigian, Paul J.; Rusher, Cassandra A.; Greaves, Stuart J.

    2014-01-01

    Comparisons are presented of experimental and theoretical studies of the rotationally inelastic scattering of CD 3 radicals with H 2 and D 2 collision partners at respective collision energies of 680 ± 75 and 640 ± 60 cm −1 . Close-coupling quantum-mechanical calculations performed using a newly constructed ab initio potential energy surface (PES) provide initial-to-final CD 3 rotational level (n, k → n′, k′) integral and differential cross sections (ICSs and DCSs). The DCSs are compared with crossed molecular beam and velocity map imaging measurements of angular scattering distributions, which serve as a critical test of the accuracy of the new PES. In general, there is very good agreement between the experimental measurements and the calculations. The DCSs for CD 3 scattering from both H 2 and D 2 peak in the forward hemisphere for n′ = 2–4 and shift more to sideways and backward scattering for n′ = 5. For n′ = 6–8, the DCSs are dominated by backward scattering. DCSs for a particular CD 3 n → n′ transition have a similar angular dependence with either D 2 or H 2 as collision partner. Any differences between DCSs or ICSs can be attributed to mass effects because the PES is unchanged for CD 3 −H 2 and CD 3 –D 2 collisions. Further comparisons are drawn between the CD 3 –D 2 scattering and results for CD 3 –He presented in our recent paper [O. Tkáč, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma, and M. H. Alexander, Chem. Sci. 4, 4199 (2013)]. These systems have the same reduced mass, but are governed by different PESs

  16. A Time of flight spectrometer for measurements of double differential neutron scattering cross sections

    International Nuclear Information System (INIS)

    Padron, I.; Dominguez, O.; Sarria, P. Sandin, C.

    1996-01-01

    The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle α detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained

  17. Improved resonance formulas for cross sections of fissile elements

    International Nuclear Information System (INIS)

    Segev, M.

    1978-01-01

    The Adler--Adler cross-section formalism with energy-dependent parameters is a practical approximation to the R-matrix formalism, on the basis of the smallness of the s-wave neutron width in fissile elements. Attempts were made to represent experimental cross sections by the Adler--Adler formulas through an initial representation by the Reich--Moore approximation of R-matrix and a subsequent conversion of the Reich--Moore formulas to the Adler--Adler formulas. Adler and Adler foresaw difficulties in associating their formulas with approximate R-matrix theories such as those of Reich and Moore. Indeed, it is shown that, due to the nonunitarity of the Adler--Adler formalism on the one hand and the unitarity, by definition, of the Reich--Moore formalism on the other hand, the conversion from the latter to the former is ambiguous. Examples are shown to demonstrate that this ambiguity results in numerical inaccuracies, sometimes very large ones, for neutron widths that are not extremely small. Improved Adler--Adler-type formulas have been derived from the R-matrix formalism. In these formulas, the multipliers of the Breit--Wigner resonance lines exhibit more explicit energy dependence than their original counterparts, mainly in the form of additional terms in the formula for the total cross section. The conversion from Reich--Moore cross sections to the improved resonance formulas is shown to be much less ambiguous and to produce very accurate cross sections. In particular, the inaccuracies encountered with the Reich--Moore to Adler--Adler conversion are eliminated. A computer code, PEDRA, was written to perform the conversion from a given set of Reich--Moore parameters to the parameters required in the improved formulas. The numerical algorithm of this code is based on an adaptation with modifications of the numerical approach of de Saussure--Perez in the POLLA code, which converts Reich--Moore parameters to Adler--Adler parameters. 7 figures, 1 table

  18. Use of total cross sections for obtaining the anisotropic interaction potential in atom--diatom system

    International Nuclear Information System (INIS)

    Eccles, J.; Secrest, D.

    1977-01-01

    A study is made of the ''conservation of the total cross section'' and the ''equivalence of the total cross section'' rules for scattering from H 2 . It is shown that these rules are a better approximation than the random phase approximation would indicate. Cross section formulas are given for scattering atoms from m/sub j/ state selected molecules and it is shown that total cross sections for state selected molecules depend on the anisotropic part of the interaction potential, while the spin-averaged total cross section often depends only on the spherically symmetric part of the interaction potential. The total spin-averaged cross section is thus independent of the initial rotation state of the molecule and depends only on the relative collision energy. It is further demonstrated that isotopic substitution, which shifts the center of mass changing the symmetric part of the interaction potential, has too small an effect on the total cross section to be useful as a means of determining the anisotropy of the potential

  19. Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV

    International Nuclear Information System (INIS)

    Parker, J.C.; Reynaud, G.W.; Botto, D.J.; Pratt, R.H.

    1979-01-01

    An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references

  20. Quasiclassical R-matrix theory of inelastic processes in collisions of electrons with HCl molecules

    International Nuclear Information System (INIS)

    Fabrikant, I.I.

    1991-01-01

    The R-matrix theory for the vibrational excitation and dissociative attachment in e-HCl collisions is developed. Only one pole in the R-matrix expansion is included. This allows for making a connection between the R-matrix and the nonlocal-complex-potential theories, and for obtaining the expression for the dissociative-attachment cross section without using the R-matrix radius in the internuclear coordinate. All matrix elements in the equation for the vibrational-excitation and dissociative-attachment amplitudes are calculated using the quasiclassical approach. We study how the results depend on the number of vibrational levels of the neutral molecule included in the theory and show how to exclude the vibrational continuum by a modification of the nonlocal-complex potential. The results for the vibrational-excitation cross sections are extremely sensitive to the behavior of the R-matrix potential curve near the point of crossing this curve with the potential curve of the neutral molecule. Particularly in some cases the cross section at the threshold peak exhibits the boomerang oscillations earlier found for HCl by Domcke [in Aspects of Electron-Molecule Scattering and Photoionization, edited by A. Herzenberg (AIP, New Haven, 1989), p. 169]. The dissociative-attachment cross sections are in reasonable agreement with experiment and with other theories

  1. Coulomb interaction in multiple scattering theory

    International Nuclear Information System (INIS)

    Ray, L.; Hoffmann, G.W.; Thaler, R.M.

    1980-01-01

    The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+ 208 Pb elastic scattering and compared with experimental data

  2. The H(n,n) cross section in the 20 MeV to 350 MeV range

    International Nuclear Information System (INIS)

    1997-01-01

    The differential H(n,n) cross section has been used as a standard relative to which other neutron emission cross sections, e.g., elastic or inelastic scattering, have been measured in several Mev region and these measured values are compared with the VL40 solution of R. Arndt, and R.L. Workman, Nuclear Data Standards for Nuclear Measurements, H. Conde (ed.). NEANDC-311, INDC (SEC)-101, 1992, p. 17. For hydrogen, the differential elastic scattering cross section can be directly related to the total cross section, since no other channels of importance are open below the pion production threshold at about 280 MeV (the capture and Bremsstrahlung cross section are very small). 16 refs, 3 figs

  3. Measured and evaluated fast neutron cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Guenther, P.; Smith, A.; Smith, D.; Whalen, J.; Howerton, R.

    1975-07-01

    Fast neutron total and scattering cross sections of elemental nickel are measured. Differential elastic scattering cross sections are determined from incident energies of 0.3 to 4.0 MeV. The cross sections for the inelastic neutron excitation of states at: 1.156 +- 0.015, 1.324 +- 0.015, 1.443 +- 0.015, 2.136 +- 0.013, 2.255 +- 0.030, 2.449 +- 0.030, 2.614 +- 0.020 and 2.791 +- 0.025 MeV are measured to incident neutron energies of 4.0 MeV. The total neutron cross sections are determined from 0.25 to 5.0 MeV. The experimental results are discussed in the context of optical and statistical models. It is shown that resonance width-fluctuation and correlation effects are significant. The present experimental and theoretical results, together with previously reported values, are used to construct a comprehensive evaluated elemental data file in the ENDF format. Some comparisons are made with previously reported evaluated files. In addition, some selected reactions which are widely used in dosimetry and other applications are presented as supplemental evaluated isotopic-data files. The numerical quantities are presented in tabular form. (3 tables, 29 figures)

  4. Measurement of elastic pp scattering at √(s) = 8 TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section

    International Nuclear Information System (INIS)

    Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z.; Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J.; Avati, V.; Berardi, V.; Quinto, M.; Berretti, M.; Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N.; Bozzo, M.; Lo Vetere, M.; Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E.; Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E.; Campanella, C.E.; De Leonardis, F.; D'Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F.; Csanad, M.; Nemes, F.; Sziklai, J.; Csoergo, T.; Deile, M.; Doubek, M.; Vacek, V.; Eggert, K.; Niewiadomski, H.; Taylor, C.; Garcia, F.; Heino, J.; Lauhakangas, R.; Grzanka, L.; Wyszkowski, P.; Zielinski, K.; Kaspar, J.; Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J.; Lami, S.; Scribano, A.; Lippmaa, E.; Lippmaa, J.; Minafra, N.; Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J.

    2016-01-01

    The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10"-"4 to 0.2 GeV"2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ_t_o_t = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)

  5. Measurements of Electron Proton Elastic Cross Sections for 0.4

    International Nuclear Information System (INIS)

    Christy, M.E.; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin Mcilhany; David Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q2 < 5.5 (GeV/c)2. These measurements represent a significant contribution to the world's cross section data set in the Q2 range, where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a heretofore unknown systematic error does exist in the cross section measurements, then it is intrinsic to all such measurements

  6. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  7. Inclusive cross sections in AA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-01-01

    Inclusive cross sections in AA collisions at high energies are considered in the Glauber multiple scattering theory taking into account many-nucleon collisions. Correspondence is found between the AA amplitude and the effective action of the two-dimensional quantum field theory with exponential interaction. The tree and one-loop contributions are calculated in this formalism. The rules are derived, which relate the absorption part of the AA-collision amplitudes associated with various inclusive cross sections to the absorption parts of NN amplitudes. These rules generalize the well-known Agranowsky-Gribov-Kanchelli rules for hh and hA collisions. Formulas are written for single and double inclusive cross sections in AA collisions

  8. Diffractive scattering on nuclei in multiple scattering theory with inelastic screening

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1988-01-01

    The cross sections for the diffractive scattering of hadrons on nuclei are calculated in the two-channel approximation of multiple scattering theory. In contrast to the standard Glauber approach, it is not assumed that the nucleon scattering profile is a Gaussian or that the Regge radius of the hadron is small compared to the nuclear radius. The AGK Reggeon diagrammatic technique is used to calculate the topological cross sections and the cross sections for coherent and incoherent diffractive dissociation and quasielastic scattering. The features of hadron-nucleus scattering at superhigh energies are discussed

  9. Inelastic scattering of quasifree electrons on O7+ projectiles

    International Nuclear Information System (INIS)

    Toth, G.; Grabbe, S.; Richard, P.; Bhalla, C.P.

    1996-01-01

    Absolute doubly differential cross sections (DDCS close-quote s) for the resonant inelastic scattering of quasifree target electrons on H-like projectiles have been measured. Electron spectra for 20.25-MeV O 7+ projectiles on an H 2 target were measured. The spectra contain a resonant contribution from the 3l3l ' doubly excited states of O 6+ , which decay predominantly to the 2l states of the O 7+ via autoionization, and a nonresonant contribution from the direct excitation of the projectiles to the O 7+ (2l) state by the quasifree target electrons. Close-coupling R-matrix calculations for the inelastic scattering of free electrons on O 7+ ions were performed. The relation between the electron-ion inelastic scattering calculation and the electron DDCS close-quote s for the ion-atom collision was established by using the inelastic scattering model (ISM). We found excellent agreement between the theoretical and measured resonant peak positions and relative peak heights. The calculated absolute double differential cross sections for the resonance processes are also in good agreement with the measured data. The implication is that collisions of highly charged ions on hydrogen can be used to obtain high-resolution, angle- resolved differential inelastic electron-scattering cross section. copyright 1996 The American Physical Society

  10. Measurement of 76Se and 78Se (γ, n) cross sections

    International Nuclear Information System (INIS)

    Kitatani, Fumito; Harada, Hideo; Goko, Shinji; Utsunomiya, Hiroaki; Akimune, Hidetoshi; Toyokawa, Hiroyuki; Yamada, Kawakatsu

    2011-01-01

    The (γ, n) cross sections of Se isotopes ( 76 Se, 78 Se) were measured to supply fundamental data for estimating the inverse reaction cross section, i.e., the 79 Se(n, γ) 80 Se cross section. The enriched samples and a reference 197 Au sample were irradiated with laser-Compton scattering (LCS) γ-rays. The excitation function of each (γ, n) cross section was determined for the energy range from each near neutron separation energy to the threshold energy of (γ, 2n) reaction. The energy point corresponding to each cross section was deduced using the accurately determined energy distribution of LCS γ-rays. Systematic (γ, n) cross sections for Se isotopes including 80 Se were compared with those calculated by using a statistical model calculation code TALYS. (author)

  11. Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances

    Energy Technology Data Exchange (ETDEWEB)

    Sigeti, David Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Brian J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parsons, D. Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    Algorithms and software have been developed for producing variations in plutonium-239 neutron cross sections based on experimental uncertainties and covariances. The varied cross-section sets may be produced as random samples from the multi-variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin-Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances do not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.

  12. Angle-correlated cross sections in the framework of the continuum shell model

    International Nuclear Information System (INIS)

    Moerschel, K.P.

    1984-01-01

    In the present thesis in the framework of the continuum shell modell a concept for the treatment of angle-correlated cross sections was developed by which coincidence experiments on electron scattering on nuclei are described. For this the existing Darmstadt continuum-shell-model code had to be extended to the calculation of the correlation coefficients in which nuclear dynamics enter and which determine completely the angle-correlated cross sections. Under inclusion of the kinematics a method for the integration over the scattered electron was presented and used for the comparison with corresponding experiments. As application correlation coefficients for the proton channel in 12 C with 1 - and 2 + excitations were studied. By means of these coefficients finally cross sections for the reaction 12 C (e,p) 11 B could be calculated and compared with the experiment whereby the developed methods were proved as suitable to predict correctly both the slope and the quantity of the experimental cross sections. (orig.) [de

  13. On the radiative corrections of deep inelastic scattering of muon neutrino on nucleon

    International Nuclear Information System (INIS)

    So Sang Guk

    1986-01-01

    The radiative corrections of deep inelastic scattering process VΜP→ ΜN are considered. Matrix element which takes Feynman one photon exchange diagrams into account at high transfer momentum are used. Based on calculation of the matrix element one can obtain matrix element for given process. It is shown that the effective cross section which takes one photon exchange into account is obtained. (author)

  14. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  15. Combined measurement and QCD analysis of the inclusive e{sup {+-}}p scattering cross sections at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics; Max-Planck-Institute, Muenchen (Germany); Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (DE)] (and others)

    2009-10-15

    A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e{sup {+-}}p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q{sup 2}, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result. (orig.)

  16. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  17. Failure of the n3 scaling law in the Temkin-Poet model of e-H scattering

    International Nuclear Information System (INIS)

    Shakletron, T.; Stelbovics, A.T.

    2000-01-01

    Full text: We have carried out a study of the Temkin-Poet model of e-H scattering. This model has been of considerable interest to scattering theorists because it is a subset of the full e-H problem and has been used many times to test methods of solution of the full problem. Recently it was shown by Ihra and Macek that the ionisation cross section should be suppressed near threshold. The reason for this is that, classically, ionisation is forbidden in a small region above threshold and hence quantum mechanically we expect a manifestation of quantum mechanical tunnelling. Because the total ionisation cross section can be found using the optical theorem for total cross section and then subtracting off the discrete inelastic scattering cross sections, one might expect interesting behaviour of the inelastic cross sections. Indeed this is confirmed by our extensive numerical simulations using a solution method based on Poet's Fredholm equation of the first kind for the scattering matrix. We conclude that the cross sections fall off at a rate faster than the n 3 scaling law in a region of about 2eV below and above the ionisation threshold. The rate varies with nearness to the threshold

  18. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  19. Low-momentum-transfer nonrelativistic limit of the relativistic impulse approximation expression for Compton-scattering doubly differential cross sections and characterization of their relativistic contributions

    International Nuclear Information System (INIS)

    LaJohn, L. A.

    2010-01-01

    The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.

  20. The underlying event and the total cross section from Tevatron to the LHC

    International Nuclear Information System (INIS)

    Baehr, Manuel; Butterworth, Jonathan M.; Seymour, Michael H.

    2009-01-01

    Multiple partonic interactions are widely used to simulate the hadronic final state in high energy hadronic collisions, and successfully describe many features of the data. It is important to make maximum use of the available physical constraints on such models, particularly given the large extrapolation from current high energy data to LHC energies. In eikonal models, the rate of multiparton interactions is coupled to the energy dependence of the total cross section. Using a Monte Carlo implementation of such a model, we study the connection between the total cross section, the jet cross section, and the underlying event. By imposing internal consistency on the model and comparing to current data we constrain the allowed range of its parameters. We show that measurements of the total proton-proton cross-section at the LHC are likely to break this internal consistency, and thus to require an extension of the model. Likely such extensions are that hard scatters probe a denser matter distribution inside the proton in impact parameter space than soft scatters, a conclusion also supported by Tevatron data on double-parton scattering, and/or that the basic parameters of the model are energy dependent.

  1. Nuclear Data Processing for Generation of Stainless Steel Cross-Sections Data

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2007-01-01

    Stainless steel has been used as important material in nuclear reactor and also in non nuclear industries. Nuclear data processing for generation of composite mixture cross-sections from several nuclides have been made. Provided evaluated nuclear data file (ENDF) such as ENDF/B- VI.8, JEFF-3.1 and JENDL-3.3 files were employed. Raw nuclear data cross-sections on file ENDF should be prepared and processed before it used in calculation. Sequence of nuclear data processing for generation of mixture cross-sections data from several nuclides is started from LINEAR, RECENT, SIGMA1 and MIXER codes taken from PREPR02000 utility code. Nuclear data processing is started from linearization of nuclear cross-sections data by using LINEAR code and counting background contribution of resonance parameter (MF2) with RECENT code (0 K) at energy ranges from 10 -5 to 10 7 eV. Afterward, the neutron cross-sections data should be processed and broadened to desire temperature (300 K) by using SIGMA1 code. Consistency of each cross-sections which used in nuclear data processing is checked and verified using FIXUP code. The next step is to define the composite mixture density (gr/cm 3 ) of stainless steel SUS-310 and weight fraction of each nuclide composition prior used it in MIXER code. All of the stainless steel SUS-310 cross sections are condensed to 650 energy groups structure (TART-energy structure) by using GROUPIE code to evaluate, analysis and review it more easily. The total, elastic scattering, non-elastic scattering and capture cross- sections of stainless steel SUS-310 have been made of ENDF/B-VI.8, JEFF-3.1 and JENDL-3.3 files. The stainless steel cross-sections made of ENDF/B- VI.8 file was taken as reference during validation process. The validation result of total cross-sections for stainless steel SUS-310 is clearly observed that the differences of total cross-sections error in nuclear data processing is relatively low than 0.01%. (author)

  2. Measurement of the uranium-235 fission cross section over the neutron energy range 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the fission cross section of 235 U to the scattering cross section of 1 H was measured in the 1- to 6-MeV range using monoenergetic neutrons from a pulsed 3 H(p,n) 3 He source. In this measurement, solid-state detectors determined fission fragment and recoil proton emissions from back-to-back U(99.7%) and polyethylene disks. Timing permitted discrimination against room-scattered neutron backgrounds. Absolute values for 235 U(n,f) are obtained using the Hopkins-Breit evaluation of the hydrogen-scattering cross section

  3. Cross sections measurements for the forward elastic scattering of 13 MeV 6,7 Li and 24 MeV 16 O by 9 Be, 12 C, 16 O and 28 Si

    International Nuclear Information System (INIS)

    Liendo, J.A.; Gonzalez, A.C.; Fletcher, N.R.; Caussyn, D.D.

    2001-01-01

    Full text: Absolute elastic cross sections have been measured for targets of 9 Be, 12 C 16 O, 28 Si and 197 Au being bombarded by beams of 13 MeV 6 7 Li and 24 MeV 16 O. The relevant yields were collected simultaneously at 12.450, 16.450, 20.450 and 280. The confidence of a forward elastic scattering method proposed previously to carry out multi-elemental analysis of evaporated liquid samples depends on the precision and accuracy of the cross sections reported in this work.The 24 MeV 16 0 + 197 Au reaction was used to determine the detector solid angles with uncertainties of approximately 3%. Some of the 16 O-beam reactions Some of the 16 O beam reactions have been shown to be consistent with the Rutherford formula predictions at several angles. This allowed us to obtain target thickness independent cross sections for the lithium beam initiated reactions with uncertainties close to 7%. In general, the 6 7 Li-beam reaction cross sections were found not to be consistent with the Coulomb scattering formula. In order to test the internal consistency of our measured cross sections, they were used to determine the elemental densities of several selected targets containing beryllium, carbon, oxygen and silicon. These targets were bombarded with the same beam types and energies used to measure the cross sections and, for every element of interest contained in each target, elemental density values were obtained at some of the scattering angles quoted above. Agreements between some of our results and those of a previous work support the validity of our measurements. (Author)

  4. 14O+p elastic scattering in a microscopic cluster model

    International Nuclear Information System (INIS)

    Descouvemont, P.; Baye, D.; Leo, F.

    2006-01-01

    The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed

  5. Studying the ωN elastic and inelastic cross section with nucleons

    International Nuclear Information System (INIS)

    Golubeva, Ye.S.; Kondratyuk, L.A.; Buescher, M.

    2000-01-01

    We explore the possibility to measure the elastic and inelastic ωN cross section in p+d→d+ω+p sp and p+A reactions. Our studies indicate that the elastic scattering cross sections can be determined for ω momenta above 1 GeV/c in p+d reactions by gating on high proton spectator momenta whereas the ωN absorption cross section down to low relative ω momenta is most effectively studied in p+A reactions at beam energies 2.0-2.7 GeV. (orig.)

  6. J-matrix method of scattering in one dimension: The nonrelativistic theory

    International Nuclear Information System (INIS)

    Alhaidari, A.D.; Bahlouli, H.; Abdelmonem, M.S.

    2009-01-01

    We formulate a theory of nonrelativistic scattering in one dimension based on the J-matrix method. The scattering potential is assumed to have a finite range such that it is well represented by its matrix elements in a finite subset of a basis that supports a tridiagonal matrix representation for the reference wave operator. Contrary to our expectation, the 1D formulation reveals a rich and highly nontrivial structure compared to the 3D formulation. Examples are given to demonstrate the utility and accuracy of the method. It is hoped that this formulation constitutes a viable alternative to the classical treatment of 1D scattering problem and that it will help unveil new and interesting applications.

  7. Measurement of doubly differential collision cross-sections for double-photon Compton scattering of 0.662 MeV gamma rays

    International Nuclear Information System (INIS)

    Datta, Gulshan; Saddi, M.B.; Singh, B.; Sandhu, B.S.

    2007-01-01

    The doubly differential collision cross-sections of the double-photon Compton process have been measured experimentally for 0.662 MeV incident gamma photons. The measurements are carried out using a single gamma detector, a technique avoiding the use of the complicated slow-fast coincidence set-up used till now for observing this higher order QED process. The energy spectra of detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The measured values of the cross-section for different independent energy levels of one of the two final photons are of the same magnitude but show deviation from the corresponding values obtained from the theory. However, the present measurements are first of its kind and in view of the nature and order of deviations, the agreement of measured values with theory is quite satisfactory

  8. Significance of matrix diagonalization in modelling inelastic electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Z. [University of Ulm, Ulm 89081 (Germany); Hambach, R. [University of Ulm, Ulm 89081 (Germany); University of Jena, Jena 07743 (Germany); Kaiser, U.; Rose, H. [University of Ulm, Ulm 89081 (Germany)

    2017-04-15

    Electron scattering is always applied as one of the routines to investigate nanostructures. Nowadays the development of hardware offers more and more prospect for this technique. For example imaging nanostructures with inelastic scattered electrons may allow to produce component-sensitive images with atomic resolution. Modelling inelastic electron scattering is therefore essential for interpreting these images. The main obstacle to study inelastic scattering problem is its complexity. During inelastic scattering, incident electrons entangle with objects, and the description of this process involves a multidimensional array. Since the simulation usually involves fourdimensional Fourier transforms, the computation is highly inefficient. In this work we have offered one solution to handle the multidimensional problem. By transforming a high dimensional array into twodimensional array, we are able to perform matrix diagonalization and approximate the original multidimensional array with its twodimensional eigenvectors. Our procedure reduces the complicated multidimensional problem to a twodimensional problem. In addition, it minimizes the number of twodimensional problems. This method is very useful for studying multiple inelastic scattering. - Highlights: • 4D problems are involved in modelling inelastic electron scattering. • By means of matrix diagonalization, the 4D problems can be simplified as 2D problems. • The number of 2D problems is minimized by using this approach.

  9. Neutral pion electroproduction and virtual Compton scattering on proton with four-momentum transfer squared Q2 = 1 GeV2. Measurement of cross-sections and of generalized polarizabilities

    International Nuclear Information System (INIS)

    Laveissiere, G.

    2001-11-01

    In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focussed on the VCS experiment performed at Jefferson Lab in 1998. The 4 GeV electron beam is scattered off a cryogenic hydrogen target, and the scattered electron and recoiled proton are detected in coincidence in the twin hall A spectrometers. The photon (pion) is reconstructed using a missing particle technique. The data analysis allowed to extract the cross sections relative to both process at four-momentum transfer squared Q 2 = 1 GeV 2 . The VCS cross section has been extracted for the first time in the proton resonance region (W between 1.O and 2.0 GeV) through the photon electroproduction reaction. Around the pion-production threshold up to the Delta(1232) resonance region, these results lead to the measurement of the generalized polarizabilities, that describe the proton structure in the same way as the elastic form factors. Moreover, the neutral pion electroproduction cross section measurement in the resonance region has brought new constraints on the existing phenomenological models. (author)

  10. Rainbows, supernumerary rainbows and interference effects in the angular scattering of chemical reactions: an investigation using Heisenberg's S matrix programme.

    Science.gov (United States)

    Shan, Xiao; Xiahou, Chengkui; Connor, J N L

    2018-01-03

    In earlier research, we have demonstrated that broad "hidden" rainbows can occur in the product differential cross sections (DCSs) of state-to-state chemical reactions. Here we ask the question: can pronounced and localized rainbows, rather than broad hidden ones, occur in reactive DCSs? Further motivation comes from recent measurements by H. Pan and K. Liu, J. Phys. Chem. A, 2016, 120, 6712, of a "bulge" in a reactive DCS, which they conjecture is a rainbow. Our theoretical approach uses a "weak" version of Heisenberg's scattering matrix program (wHSMP) introduced by X. Shan and J. N. L. Connor, Phys. Chem. Chem. Phys., 2011, 13, 8392. This wHSMP uses four general physical principles for chemical reactions to suggest simple parameterized forms for the S matrix; it does not employ a potential energy surface. We use a parameterization in which the modulus of the S matrix is a smooth-step function of the total angular momentum quantum number, J, and (importantly) its phase is a cubic polynomial in J. We demonstrate for a Legendre partial wave series (PWS) the existence of pronounced rainbows, supernumerary rainbows, and other interference effects, in reactive DCSs. We find that reactive rainbows can be more complicated in their structure than the familiar rainbows of elastic scattering. We also analyse the angular scattering using Nearside-Farside (NF) PWS theory and NF PWS Local Angular Momentum (LAM) theory, including resummations of the PWS. In addition, we apply full and NF asymptotic (semiclassical) rainbow theories to the PWS - in particular, the uniform Airy and transitional Airy approximations for the farside scattering. This lets us prove that structure in the DCSs are indeed rainbows, supernumerary rainbows as well as other interference effects.

  11. State-to-state integral cross sections for the inelastic scattering of CH(X 2Pi)+He: Rotational rainbow and orbital alignment

    International Nuclear Information System (INIS)

    Macdonald, R.G.; Liu, K.

    1989-01-01

    The state-to-state integral cross sections for the inelastic scattering of CH(X 2 Pi) with He were measured in a newly constructed crossed molecular beam machine. Use of laser-induced fluorescence in an unconventional flux mode of detection provided single fine-structure state specific detection of the products. Two types of measurements were performed to further our understanding of the collision dynamics of open shell systems: (1) the product state distribution at a fixed and well-defined collision energy and (2) the dependence on collision energy of product state-resolved cross sections. A qualitative understanding of the collision dynamics can be obtained by properly factoring out features dependent on the fine-structure states, i.e., effects involving individual Λ-doublet states and features dependent on the rotational level alone, i.e., effects remaining after summing over all four fine-structure states associated with a given rotational quantum number. As for the fine-structure effects, a preferential population of product Λ-doublet states with reflection symmetry Pi(A'') was observed. The physical origin of this observed electronic orbital alignment can be attributed to a quantum interference phenomenon, as detailed in the accompanying paper. At the rotational level, the dominance of rotational rainbow scattering is unambiguously identified from both the existence of dynamical thresholds and a strong correlation between rotational level distributions at fixed translational energy and level specific excitation functions. These effects combined with other experimental observations lead us to visualize the CH+He scattering dynamics in a novel fashion. The collision can be regarded as a series of approximately independent sequential events each mediated by different regions of the interaction potential during the course of the whole encounter

  12. Kerma factors and reaction cross sections for n + 12C between 15 and 18 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Chen, Z.M.; Baird, K.; Walter, R.L.

    1988-01-01

    Differential elastic and inelastic (4.44 MeV) neutron scattering cross sections from 12 C are presented at 15.6, 16.8 and 17.3 MeV. The existing 18.2 MeV differential cross-section data were combined with newly measured analysing power data to parametrise neutron scattering at this energy. The 12 C recoil kerma factors were calculated and reaction cross sections were obtained from a phase-shift analysis and coupled channel analyses in the 15.6-18.2 MeV energy range. (author)

  13. Measurement of elastic pp scattering at √(s) = 8 TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Antchev, G.; Atanassov, I.; Broulim, P.; Eremin, V.; Georgiev, V.; Hammerbauer, J.; Linhart, R.; Oriunno, M.; Palocko, L.; Peroutka, Z. [University of West Bohemia, Pilsen (Czech Republic); Aspell, P.; Baechler, J.; Burkhardt, H.; Giani, S.; Karev, A.; Lucas Rodriguez, F.; Oliveri, E.; Palazzi, P.; Radermacher, E.; Ravotti, F.; Redaelli, S.; Ropelewski, L.; Ruggiero, G.; Salvachua, B.; Smajek, J.; Snoeys, W.; Valentino, G.; Wenninger, J. [CERN, Geneva (Switzerland); Avati, V. [AGH University of Science and Technology, Krakow (Poland); CERN, Geneva (Switzerland); Berardi, V.; Quinto, M. [INFN Sezione di Bari, Bari (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Berretti, M. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); CERN, Geneva (Switzerland); Bossini, E.; Bottigli, U.; Latino, G.; Losurdo, L.; Turini, N. [Universita degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena (Italy); Bozzo, M.; Lo Vetere, M. [INFN Sezione di Genova, Genoa (Italy); Universita degli Studi di Genova, Genoa (Italy); Buzzo, A.; Ferro, F.; Macri, M.; Minutoli, S.; Robutti, E. [INFN Sezione di Genova, Genoa (Italy); Cafagna, F.S.; Catanesi, M.G.; Fiergolski, A.; Mercadante, A.; Radicioni, E. [INFN Sezione di Bari, Bari (Italy); Campanella, C.E.; De Leonardis, F.; D' Orazio, A.; Guaragnella, C.; Passaro, V.; Petruzzelli, V.; Politi, T.; Prudenzano, F. [INFN Sezione di Bari, Bari (Italy); Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Csanad, M.; Nemes, F.; Sziklai, J. [Wigner Research Centre for Physics, Budapest (Hungary); Csoergo, T. [Wigner Research Centre for Physics, Budapest (Hungary); KRF University College, Gyoengyoes (Hungary); Deile, M. [Dipartimento di Ingegneria Elettrica e dell' Informazione - Politecnico di Bari, Bari (Italy); Doubek, M.; Vacek, V. [Czech Technical University, Prague (Czech Republic); Eggert, K.; Niewiadomski, H.; Taylor, C. [Case Western Reserve University, Department of Physics, Cleveland, OH (United States); Garcia, F.; Heino, J.; Lauhakangas, R. [Helsinki Institute of Physics, Helsinki (Finland); Grzanka, L.; Wyszkowski, P.; Zielinski, K. [AGH University of Science and Technology, Krakow (Poland); Kaspar, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); CERN, Geneva (Switzerland); Kopal, J.; Kundrat, V.; Lokajicek, M.V.; Prochazka, J. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Lami, S.; Scribano, A. [INFN Sezione di Pisa, Pisa (Italy); Lippmaa, E.; Lippmaa, J. [National Institute of Chemical Physics and Biophysics NICPB, Tallinn (Estonia); Minafra, N. [Dipartimento Interateneo di Fisica di Bari, Bari (Italy); CERN, Geneva (Switzerland); Naaranoja, T.; Oljemark, F.; Orava, R.; Oesterberg, K.; Saarikko, H.; Welti, J. [Helsinki Institute of Physics, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland)

    2016-12-15

    The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy √(s) = 8 TeV and four-momentum transfers squared, vertical stroke t vertical stroke, from 6 x 10{sup -4} to 0.2 GeV{sup 2}. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12 ± 0.03. The results for the total hadronic cross-section are σ{sub tot} = (102.9 ± 2.3) mb and (103.0 ± 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements. (orig.)

  14. Cross section for inelastic neutron acceleration by 178Hfm2

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Carroll, J.J.

    2009-01-01

    The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called Inelastic Neutron Acceleration (INNA) and occurs when the final nucleus after emission of the neutron is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomeric population to the ground state. A cascade of several gammas must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases and the associated cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was σ INNA = (258 ± 58) b for neutron scattering by 177 Lu m . In the present work, an INNA cross section of σ INNA = 152 -36 +51 b was deduced from measurements of the total burn-up of the high-spin, four-quasiparticle isomer 178 Hf m2 during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced σ INNA is compared to the theoretically predicted cross section

  15. The impact of intermediate structure on the average fission cross sections

    International Nuclear Information System (INIS)

    Bouland, O.; Lynn, J.E.; Talou, P.

    2014-01-01

    This paper discusses two common approximations used to calculate average fission cross sections over the compound energy range: the disregard of the W II factor and the Porter-Thomas hypothesis made on the double barrier fission width distribution. By reference to a Monte Carlo-type calculation of formal R-matrix fission widths, this work estimates an overall error ranging from 12% to 20% on the fission cross section in the case of the 239 Pu fissile isotope in the energy domain from 1 to 100 keV with very significant impact on the competing capture cross section. This work is part of a recent and very comprehensive formal R-matrix study over the Pu isotope series and is able to give some hints for significant accuracy improvements in the treatment of the fission channel. (authors)

  16. High resolution measurements of the He-He total scattering cross section for reduced collision energies between 0.2 and 200

    International Nuclear Information System (INIS)

    Feltgen, R.; Koehler, K.A.; Pauly, H.; Torello, F.; Vehmeyer, H.

    1974-01-01

    The energy dependence of the total scattering cross section is measured for the isotopic systems He 4 -He 4 and He 3 -He 3 using a velocity selected He primary beam and a He target in a scattering chamber maintained at 1.57 deg K. In the low energy region both systems show a pronounced atomic Ramsauer-Townsend effect. At higher energies 13 backward glory extrema in the case of He 4 -He 4 and 10 extrema for He 3 -He 3 are observed. From these extrema the energy dependence of the s-phase shift can be derived. Applying the semiclassical inversion method proposed by Miller it is possible to compute the repulsive potential in the energy range of the measurement

  17. Evolution from the coplanar to the perpendicular plane geometry of helium (e,2e) differential cross sections symmetric in scattering angle and energy

    International Nuclear Information System (INIS)

    Murray, A.J.; Read, F.H.

    1993-01-01

    Experimentally determined differential cross sections are presented for the (e,2e) process in helium, in which the two outgoing electrons have the same energy and the same scattering angle with respect to the incident beam. At four incident energies from 20 to 50 eV above the ionization threshold the detection plane defined by the outgoing electrons was varied from being coplanar with the incident beam to being perpendicular to the beam. The differential cross section evolves from a two-peak structure in coplanar geometry to a three-peak structure in the perpendicular plane. At the lowest energy the forward-scattering coplanar peak is smaller than the backscatter peak, in contrast to the results at higher energies. A deep minimum is seen at an intermediate plane angle of 67.5 degree, this minimum being deepest at 40 eV above the ionization threshold. The results are normalized to an absolute scale using previous coplanar measurements as discussed in the text. The spectrometer used to collect these results is fully computer controlled and real-time computer optimized

  18. Inclusive cross sections in ME+PS merging

    International Nuclear Information System (INIS)

    Plaetzer, Simon

    2013-07-01

    We discuss an extension of matrix element plus parton shower merging at leading and next-to-leading order. The algorithm does preserve inclusive cross sections at the respective input order. This constraint avoids potentially large logarithmic contributions, which would require approximate (N)NLO contributions to cancel against.

  19. Measurement of the nitrogen total cross section from 0.5 eV to 50 MeV, and analysis of the 433-keV resonance

    International Nuclear Information System (INIS)

    Harvey, J.A.; Hill, N.W.; Larson, N.M.; Larson, D.C.

    1991-01-01

    High-resolution neutron transmission measurements have been made on several thicknesses of nitrogen gas samples from 0.5 eV to 50 MeV at the Oak Ridge Electron Linear Accelerator (ORELA). A preliminary R-matrix analysis has been done for resonances up to 800 keV. An R-matrix analysis of previous data was done by LANL and ENDF/B-VI, including the lowest energy resonance in 14 N at 433 keV. They found a spin of 3/2 (with ell = 1) and a peak cross section of 7.0 b. Analysis of the present data yield a spin of 7/2 (requiring ell ≥ 2) and a peak cross section of 11.5 b for this resonance. These results are important for transport calculations of neutrons through air. Scattering measurements are planned to determine the parity of this resonance. 6 refs., 2 figs

  20. Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Morcelle, V. [Instituto de Física - Universidade Federal Fluminense, 24210-346, Rio de Janeiro, Brazil and Universidade Federal de Itajubá, 35900-030, Itabira (Brazil); Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Gasques, L.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E. [Depto de Física Nuclear, Universidade de São Paulo, C.P. 66318, 05389-970, São Paulo (Brazil); Mendes Jr, D. R.; Faria, P. N. de [Instituto de Física - Universidade Federal Fluminense, 24210-346, Rio de Janeiro (Brazil); Pires, K. C. C. [Universidade Tecnológica Federal do Paraná, 86300-000, Cornélio Procópio (Brazil); Barioni, A. [Instituto de Física, Universidade Federal da Bahia, 40210-340, Bahia (Brazil); Morais, M. C. [Centro Brasileiro de Pesquisas Físicas, 22290-180, Rio de Janeiro (Brazil); Shorto, J. M. B. [Instituto de Pesquisas Energéticas e Nucleares- IPEN, 05508-000, São Paulo (Brazil); Zamora, J. C. [Departament of Physics, Technische Universität Darmstadt (Germany)

    2014-11-11

    Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.