WorldWideScience

Sample records for cross-sectional ct image

  1. Cross-sectional imaging with CT and/or MRI of pediatric chest tumors

    International Nuclear Information System (INIS)

    Wyttenbach, R.; Vock, P.; Tschaeppeler, H.

    1998-01-01

    The purpose of this study was to provide an overview of the spectrum of pediatric chest masses, to present the results of cross-sectional imaging with CT and/or MRI, and to define diagnostic criteria to limit differential diagnosis. Seventy-eight children with thoracic mass lesions were retrospectively evaluated using CT (72 patients) and/or MR imaging (12 patients). All masses were evaluated for tissue characteristics (attenuation values or signal intensity, enhancement, and calcification) and were differentiated according to age, gender, location, and etiology. Twenty-eight of 38 (74 %) mediastinal masses were malignant (neuroblastoma, malignant lymphoma). Thirty of 38 (79 %) pulmonary masses were metastatic in origin, all with an already known primary tumor (osteosarcoma, Wilms tumor). With one exception, all remaining pulmonary lesions were benign. Seventeen of 21 (81 %) chest wall lesions were malignant (Ewing sarcoma, primitive neuroectodermal tumor). The majority of mediastinal and chest wall tumors in children is malignant. Lung lesions are usually benign, unless a known extrapulmonary tumor suggests pulmonary metastases. Cross-sectional imaging with CT and/or MRI allows narrowing of the differential diagnosis of pediatric chest masses substantially by defining the origin and tissue characteristics. Magnetic resonance imaging is preferred for posterior mediastinal lesions, whereas CT should be used for pulmonary lesions. For the residual locations both modalities are complementary. (orig.)

  2. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  3. The optimal parameter for radiation dose in pediatric low dose abdominal CT: cross-sectional dimensions versus body weight

    International Nuclear Information System (INIS)

    Jung, Yoon Young; Goo, Hyun Woo

    2008-01-01

    To investigate the best parameter between cross-sectional dimensions and body weight in pediatric low dose abdominal CT. One hundred and thirty six children consecutively underwent weight-based abdominal CT. The subjects consisted of group 1 (79 children, weight range 10.0-19.9 kg) and group 2 (57 children, weight range 20.0-39.9 kg). Abdominal cross-sectional dimensions including circumference, area, anteroposterior diameters and transverse diameters were calculated. Image noise (standard deviation of CT density) was measured by placing a region of interest in the posterior segment of the right hepatic lobe on a CT image at the celiac axis. The measured image noise was correlated with the cross-sectional abdominal dimensions and body weight for subjects in each group. In group 1 subjects,area, circumference, transverse diameter, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order(γ = 0.63, 0.62, 0.61, 0.51, and 0.49; ρ < 0.0001). In group 2 subjects, transverse diameter, circumference, area, anteroposterior diameter, and body weight showed a significant positive correlation with image noise in descending order (γ = 0.83, 0.82, 0.78, 0.71, and 0.71; ρ < 0.0001). Cross-sectional dimensions such as area, circumference, and transverse diameter showed a higher positive correlation with image noise than body weight for pediatric low dose abdominal CT

  4. Cross-sectional imaging in pediatric neck masses

    International Nuclear Information System (INIS)

    Koenigsberg, R.A.; Patel, M.; Horowitz, C.

    1990-01-01

    This paper reports on US, CT, and MR imaging that demonstrates unique roles in the evaluation of pediatric neck masses. The causes of these masses range from infections/abscesses to primary and secondary tumors. The purpose of this paper is to review pediatric neck masses and the current role of cross-sectional imaging. Seventy-one examinations of the neck by means of CT, US, and MR imaging on 62 patients aged 1-21 y were retrospectively reviewed. Diseases were categorized according to benign versus malignant causes. Benign: 9 abscesses/cellulitis, 5 thyroglossal duct cysts, 3 branchial cleft cysts, 2 parotid cysts, 2 benign enlarged lumphadenopathies, 2 cystic hydromas, 1 ranula, and 1 hematoma

  5. Cardiac drugs used in cross-sectional cardiac imaging: what the radiologist needs to know

    International Nuclear Information System (INIS)

    McParland, P.; Nicol, E.D.; Harden, S.P.

    2010-01-01

    The demand for cross-sectional imaging of the heart is increasing dramatically and in many centres these imaging techniques are being performed by radiologists. Although radiologists are familiar with the computed tomography (CT) and magnetic resonance imaging (MRI) techniques to generate high-quality images and with using contrast agents, many are less familiar with administering the drugs necessary to perform CT coronary angiography and cardiac MR reliably. The aim of this article is to give an overview of the indications for and the contraindications to administering cardiac drugs in cross-sectional imaging departments. We also outline the complications that may be encountered and provide advice on how to treat these complications when they occur.

  6. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation

    International Nuclear Information System (INIS)

    Goo, Hyun Woo

    2011-01-01

    A practical body-size adaptive protocol providing uniform image noise at various kV levels is not available for pediatric CT. To develop a practical contrast-enhanced pediatric chest CT protocol providing uniform image noise by using an individualized volume CT dose index (CTDIvol) determined by the cross-sectional area and density of the body at variable kV levels and with combined tube current modulation. A total of 137 patients (mean age, 7.6 years) underwent contrast-enhanced pediatric chest CT based on body weight. From the CTDIvol, image noise, and area and mean density of the cross-section at the lung base in the weight-based group, the best fit equation was estimated with a very high correlation coefficient (γ 2 = 0.86, P 2 vs. 326.3 ± 124.8 cm 2 ), mean density (-212.9 ± 53.1 HU vs. -221.1 ± 56.3 HU), and image noise (13.8 ± 2.3 vs. 13.6 ± 1.7 HU) between the weight-based and the CTDIvol groups (P > 0.05). Contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the cross-sectional area and density of the body provides more uniform noise and better dose adaptation to body habitus than does weight-based CT at variable kV levels and with combined tube current modulation. (orig.)

  7. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  8. 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images

    International Nuclear Information System (INIS)

    Rodt, T.; Ratiu, P.; Kacher, D.F.; Anderson, M.; Jolesz, F.A.; Kikinis, R.; Becker, H.; Bartling, S.

    2002-01-01

    The 3D imaging of the middle ear facilitates better understanding of the patient's anatomy. Cross-sectional slices, however, often allow a more accurate evaluation of anatomical structures, as some detail may be lost through post-processing. In order to demonstrate the advantages of combining both approaches, we performed computed tomography (CT) imaging in two normal and 15 different pathological cases, and the 3D models were correlated to the cross-sectional CT slices. Reconstructed CT datasets were acquired by multi-slice CT. Post-processing was performed using the in-house software ''3D Slicer'', applying thresholding and manual segmentation. 3D models of the individual anatomical structures were generated and displayed in different colours. The display of relevant anatomical and pathological structures was evaluated in the greyscale 2D slices, 3D images, and the 2D slices showing the segmented 2D anatomy in different colours for each structure. Correlating 2D slices to the 3D models and virtual endoscopy helps to combine the advantages of each method. As generating 3D models can be extremely time-consuming, this approach can be a clinically applicable way of gaining a 3D understanding of the patient's anatomy by using models as a reference. Furthermore, it can help radiologists and otolaryngologists evaluating the 2D slices by adding the correct 3D information that would otherwise have to be mentally integrated. The method can be applied to radiological diagnosis, surgical planning, and especially, to teaching. (orig.)

  9. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    Science.gov (United States)

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.

  10. The in vivo relationship between cross-sectional area and CT dose index in abdominal multidetector CT with automatic exposure control

    Energy Technology Data Exchange (ETDEWEB)

    Meeson, S; Alvey, C M; Golding, S J, E-mail: stuart.meeson@nds.ox.ac.u [Radiology Group, Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU (United Kingdom)

    2010-06-15

    The relationship between patient cross-sectional area and both volume CT dose index (CTDI) and dose length product was explored for abdominal CT in vivo, using a 16 multidetector row CT (MDCT) scanner with automatic exposure control. During a year-long retrospective survey of patients with MDCT for symptoms of abdominal sepsis, cross-sectional areas were estimated using customised ellipses at the level of the middle of vertebra L3. The relationship between cross-sectional area and the exposure parameters was explored. Scans were performed using a LightSpeed 16 (GE Healthcare Medical Systems, Milwaukee, WI) operated with tube current modulation. From a survey of 94 patients it was found that the CTDI increased with the increase in patient cross-sectional area. The relationship was logarithmic rather than linear, with a least-squares fit to the data (R{sup 2} = 0.80). For abdominal CT the cross-sectional area gave a measure of patient size based on the region of the body to be exposed. Exposure parameters increased with increasing cross-sectional area and the greater radiation exposure of larger patients was partly a consequence of their size. Given increasing obesity levels we believe that cross-sectional area and scan length should be added to future dose surveys, allowing patient size to be considered as a factor of relevance when examining population doses.

  11. Computed tomographic, magnetic resonance imaging, and cross-sectional anatomic features of the manus in a normal American black bear (Ursus americanus).

    Science.gov (United States)

    Ober, C P; Freeman, L E

    2010-06-01

    The purpose of this study was to provide a detailed description of cross-sectional anatomic structures of the manus of a black bear cadaver and correlate anatomic findings with corresponding features in computed tomographic (CT) and magnetic resonance (MR) images. CT, MR imaging, and transverse sectioning were performed on the thoracic limb of a cadaver female black bear which had no evidence of lameness or thoracic limb abnormality prior to death. Features in CT and MR images corresponding to clinically important anatomic structures in anatomic sections were identified. Most of the structures identified in transverse anatomic sections were also identified using CT and MR imaging. Bones, muscles and tendons were generally easily identified with both imaging modalities, although divisions between adjacent muscles were rarely visible with CT and only visible sometimes with MR imaging. Vascular structures could not be identified with either imaging modality.

  12. Cross-sectional imaging of adult crystal and inflammatory arthropathies

    International Nuclear Information System (INIS)

    Soldatos, Theodoros; Pezeshk, Parham; Ezzati, Fatemeh; Karp, David R.; Taurog, Joel D.; Chhabra, Avneesh

    2016-01-01

    This article highlights the key aspects and current perspectives of the role of cross-sectional imaging in adult crystal and inflammatory arthropathies in adults, briefly discussing CT, and particularly focusing on MRI and US imaging as it supplements the conventional radiography. The role of conventional and advanced MR imaging techniques and imaging findings in this domain is discussed and illustrated with case examples. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article contains images and data, which were collected from patients as a part of a retrospective IRB from the institutional teaching files and informed consent was waived. (orig.)

  13. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  14. Comparative Three-Dimensional Morphology of Baleen: Cross-Sectional Profiles and Volume Measurements Using CT Images.

    Science.gov (United States)

    Jensen, Megan M; Saladrigas, Amalia H; Goldbogen, Jeremy A

    2017-11-01

    Baleen whales are obligate filter feeders, straining prey-laden seawater through racks of keratinized baleen plates. Despite the importance of baleen to the ecology and natural history of these animals, relatively little work has been done on baleen morphology, particularly with regard to the three-dimensional morphology and structure of baleen. We used computed tomography (CT) scanning to take 3D images of six baleen specimens representing five species, including three complete racks. With these images, we described the three-dimensional shape of the baleen plates using cross-sectional profiles from within the gum tissue to the tip of the plates. We also measured the percentage of each specimen that was composed of either keratinized plate material or was void space between baleen plates, and thus available for seawater flow. Baleen plates have a complex three-dimensional structure with curvature that varies across the anterior-posterior, proximal-distal, and medial-lateral (lingual-labial) axes. These curvatures also vary with location along the baleen rack, and between species. Cross-sectional profiles resemble backwards-facing airfoils, and some specimens display S-shaped, or reflexed, camber. Within a baleen specimen, the intra-baleen void volume correlates with the average bristle diameter for a species, suggesting that essentially, thinner plates (with more space between them for flow) have thinner bristles. Both plate curvature and the relative proportions of plate and void volumes are likely to have implications for the mechanics of mysticete filtration, and future studies are needed to determine the particular functions of these morphological characters. Anat Rec, 300:1942-1952, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  15. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of)

    2011-07-15

    A practical body-size adaptive protocol providing uniform image noise at various kV levels is not available for pediatric CT. To develop a practical contrast-enhanced pediatric chest CT protocol providing uniform image noise by using an individualized volume CT dose index (CTDIvol) determined by the cross-sectional area and density of the body at variable kV levels and with combined tube current modulation. A total of 137 patients (mean age, 7.6 years) underwent contrast-enhanced pediatric chest CT based on body weight. From the CTDIvol, image noise, and area and mean density of the cross-section at the lung base in the weight-based group, the best fit equation was estimated with a very high correlation coefficient ({gamma}{sup 2} = 0.86, P < 0.001). For the next study, 177 patients (mean age, 7.9 years; the CTDIvol group) underwent contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the best fit equation. CTDIvol values on the dose report after CT scanning, noise differences from the target noise, areas, and mean densities were compared between these two groups. The CTDIvol values (mean{+-}standard deviation, 1.6 {+-} 0.7 mGy) and the noise differences from the target noise (1.1 {+-} 0.9 HU) of the CTDIvol group were significantly lower than those of the weight-based group (2.0 {+-} 1.0 mGy, 1.8 {+-} 1.4 HU) (P < 0.001). In contrast, no statistically significant difference was found in area (317.0 {+-} 136.8 cm{sup 2} vs. 326.3 {+-} 124.8 cm{sup 2}), mean density (-212.9 {+-} 53.1 HU vs. -221.1 {+-} 56.3 HU), and image noise (13.8 {+-} 2.3 vs. 13.6 {+-} 1.7 HU) between the weight-based and the CTDIvol groups (P > 0.05). Contrast-enhanced pediatric chest CT with the CTDIvol determined individually by the cross-sectional area and density of the body provides more uniform noise and better dose adaptation to body habitus than does weight-based CT at variable kV levels and with combined tube current modulation. (orig.)

  16. A study on preparation of cross sectional anatomy specimen of cadaver

    International Nuclear Information System (INIS)

    Im, C. K.; Choi, B. I.; Park, J. H.; Chang, K. H.; Yeon, K. M.; Han, M. C.; Kim, C. W.

    1984-01-01

    With the advent of cross sectional image of CT, ultrasound and magnetic resonance, the need for knowledge of cross sectional anatomy is stranger than ever. To meet this need, preparation of cross sectional anatomy specimen using cadaver is indispensable, not only because it tis the real cut surface anatomy but also because overt limitations of radiographic image in both contrast and special resolution. Authors prepared cross sectional anatomy specimen using a male cadaver, comprising photographs and slides of the 60 cross cut slices from the head to the pelvis. After photography, each slices was embedded using transparent resin allowing permanent preservation of specimen without altering its original architecture. Author's unique method of preparation is presented and 4 representative specimens are illustrated comparing cadaver's CT image, cross cut surface photography, and photography of resin embedded slice of the same cut surface.

  17. Routine Cross-Sectional Head Imaging Before Electroconvulsive Therapy: A Tertiary Center Experience.

    Science.gov (United States)

    Sajedi, Payam I; Mitchell, Jason; Herskovits, Edward H; Raghavan, Prashant

    2016-04-01

    Electroconvulsive therapy (ECT) is generally contraindicated in patients with intracranial mass lesions or in the presence of increased intracranial pressure. The purpose of this study was to determine the prevalence of incidental abnormalities on routine cross-sectional head imaging, including CT and MRI, that would preclude subsequent ECT. This retrospective study involved a review of the electronic medical records of 105 patients (totaling 108 imaging studies) between April 27, 2007, and March 20, 2015, referred for cranial CT or MRI with the primary indication of pre-ECT evaluation. The probability of occurrence of imaging findings that would preclude ECT was computed. A cost analysis was also performed on the practice of routine pre-ECT imaging. Of the 105 patients who presented with the primary indication of ECT clearance (totaling 108 scans), 1 scan (0.93%) revealed findings that precluded ECT. None of the studies demonstrated findings that indicated increased intracranial pressure. A cost analysis revealed that at least $18,662.70 and 521.97 relative value units must be expended to identify one patient with intracranial pathology precluding ECT. The findings of this study demonstrate an extremely low prevalence of findings that preclude ECT on routine cross-sectional head imaging. The costs incurred in identifying a potential contraindication are high. The authors suggest that the performance of pre-ECT neuroimaging be driven by the clinical examination. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  18. Aorta cross-section calculation and 3D visualization from CT or MRT data using VRML

    Science.gov (United States)

    Grabner, Guenther; Modritsch, Robert; Stiegmaier, Wolfgang; Grasser, Simon; Klinger, Thomas

    2005-04-01

    Quantification of vessel diameters of artherosclerotic or congenital stenosis is very important for the diagnosis of vascular diseases. The aorta extraction and cross-section calculation is a software-based application that offers a three-dimensional, platform-independent, colorized visualization of the extracted aorta with augmented reality information of MRT or CT datasets. This project is based on different types of specialized image processing algorithms, dynamical particle filtering and complex mathematical equations. From this three-dimensional model a calculation of minimal cross sections is performed. In user specified distances, the aorta is cut in differently defined directions which are created through vectors with varying length. The extracted aorta and the derived minimal cross-sections are then rendered with the marching cube algorithm and represented together in a three-dimensional virtual reality with a very high degree of immersion. The aim of this study was to develop an imaging software that delivers cardiologists the possibility of (i) furnishing fast vascular diagnosis, (ii) getting precise diameter information, (iii) being able to process exact, local stenosis detection (iv) having permanent data storing and easy access to former datasets, and (v) reliable documentation of results in form of tables and graphical printouts.

  19. Collagenous sprue cross-sectional imaging: a comparative blinded study.

    Science.gov (United States)

    Al-Bawardy, Badr; Sheedy, Shannon P; Herberts, Michelle B; Murray, Joseph A; Rubio-Tapia, Alberto; Rajan, Elizabeth; Bruining, David H; Hansel, Stephanie L; Barlow, John M; Fletcher, Joel G; Fidler, Jeff L

    2017-02-01

    Collagenous sprue (CS) is a rare enteropathy characterized by villous atrophy and a thickened subepithelial collagen band. The aim of this study is to describe the cross-sectional imaging findings of CS. A case-control, retrospective study with cases of all CS patients from January 2000 to 2015 was performed. Inclusion criteria were (1) Histopathologic diagnosis and (2) Imaging with computed tomography abdomen/pelvis (CT A/P), CT enterography (CTE), or magnetic resonance enterography within 6 months of small bowel (SB) biopsy. Control subjects were irritable bowel syndrome (IBS) patients who underwent CTE. Imaging studies were examined by two GI radiologists, blinded to patient data. 108 patients (54 CS; 54 IBS) were included. Mean age was 56.7 ± 16.5 years, and 68% were female (72% in CS group vs. 63% in IBS group; p = 0.3). CS patients were significantly older (67 ± 12 vs. 47 ± 15 year; p reversal (46% vs. 6%; p < 0.001), SB dilation (28% vs. 0%; p < 0.001), SB conformational change (28% vs. 6%; p = 0.002), SB wall thickening (13% vs. 2%; p = 0.03), and ulcerative jejunoileitis (4% vs. 0%; p = 0.01). Radiologists suspected malabsorption in 72% in the CS group and 2% in the IBS group (p < 0.001). Imaging findings suggestive of mucosal malabsorption are commonly demonstrated in CS.

  20. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  1. Imaging and PET - PET/CT imaging

    International Nuclear Information System (INIS)

    Von Schulthess, G.K.; Hany, Th.F.

    2008-01-01

    PET/CT has grown because the lack of anatomic landmarks in PET makes 'hardware-fusion' to anatomic cross-sectional data extremely useful. Addition of CT to PET improves specificity, but also sensitivity, and adding PET to CT adds sensitivity and specificity in tumor imaging. The synergistic advantage of adding CT is that the attenuation correction needed for PET data can also be derived from the CT data. This makes PET-CT 25-30% faster than PET alone, leading to higher patient throughput and a more comfortable examination for patients typically lasting 20 minutes or less. FDG-PET-CT appears to provide relevant information in the staging and therapy monitoring of many tumors, such as lung carcinoma, colorectal cancer, lymphoma, gynaecological cancers, melanoma and many others, with the notable exception of prostatic cancer. for this cancer, choline derivatives may possibly become useful radiopharmaceuticals. The published literature on the applications of FDG-PET-CT in oncology is still limited but several designed studies have demonstrated the benefits of PET-CT. (authors)

  2. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    Science.gov (United States)

    Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo

    2017-01-01

    The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  3. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Patricia Das Neves Borges

    Full Text Available The degradation of articular cartilage, which characterises osteoarthritis (OA, is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods.OA was induced by destabilisation of the medial meniscus (DMM in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed.Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments.Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  4. Cross-Sectional Transport Imaging in a Multijunction Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham; Guthrey, Harvey; Fetzer, C. M.; King, Richard

    2015-06-14

    Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.

  5. Visibility of the mandibular canal on cross-sectional CBCT images at impacted mandibular third molar sites

    International Nuclear Information System (INIS)

    Alkhader, Mustafa; Jarab, Fadi

    2016-01-01

    The aim of the present study was to assess visibility of the mandibular canal (MC) on cross-sectional cone beam CT (CBCT) images at impacted mandibular third molar (IMTM) sites. CBCT images for 150 IMTMs were selected for the study. The type of tooth impaction (horizontal, vertical, mesial and distal) and location of the MC (inferior in contact and superimposed) were evaluated on pseudo panoramic images. Cross-sectional images were generated and two observers evaluated the location of the MC (buccal, lingual, inter-radicular and inferior) and its visibility using 3-point scoring scale: (1-3, good-excellent). Kruskal-Wallis test was used to examine the differences in the visibility of the MC according to its location and the type of tooth impaction. The visibility scores of the MC were good, very good and excellent at 3, 25 and 122 IMTM sites, respectively. There were no statistically significant differences in the visibility scores of the MC according to its location or the type of tooth impaction (P < 0.05). Therefore, despite the different locations of the MC and different types of tooth impaction at IMTM sites, the visibility of the MC was excellent on most of the cross-sectional CBCT images. CBCT is considered a valuable diagnostic tool for achieving these results

  6. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... images or pictures of the inside of the body. The cross-sectional images generated during a CT scan can be reformatted ... of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT ...

  7. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... images or pictures of the inside of the body. The cross-sectional images generated during a CT scan can be reformatted ... of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT ...

  8. Abdominal and Pelvic CT

    Medline Plus

    Full Text Available ... images or pictures of the inside of the body. The cross-sectional images generated during a CT scan can be reformatted ... of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT ...

  9. Leiomyosarcomas of the inferior vena cava: diagnostic features on cross-sectional imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshalingam, S., E-mail: skandadas.ganeshalingam@nhs.ne [Department of Clinical Radiology, The Royal Marsden NHS Foundation Trust, London (United Kingdom); Rajeswaran, G. [Department of Clinical Radiology, The Royal Marsden NHS Foundation Trust, London (United Kingdom); Jones, R.L. [Department of Clinical Oncology, University of Washington and Hutchinson Cancer Research Center, Seattle, WA (United States); Thway, K. [Department of Histopathology, The Royal Marsden NHS Foundation Trust, London (United Kingdom); Moskovic, E. [Department of Clinical Radiology, The Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2011-01-15

    Aim: To evaluate the cross-sectional radiological appearances and to review the clinical presentation and outcome of patients with leiomyosarcomas of the inferior vena cava (IVC LMS). These are rare aggressive tumours that present late with non-specific symptoms and have a poor prognosis. Materials and Methods: From January 2002 to December 2008, the radiological images of 23 sequential patients with pathologically proven IVC LMS were independently reviewed by two experienced radiologists. The clinical presentation, treatment including surgical details, and outcome were recorded. Results: There were 19 females and four males with a mean age of 53 years. CT typically demonstrated a large, lobulate, non-calcified heterogeneous mass with peripheral enhancement. T1-weighted magnetic resonance imaging (MRI) images demonstrated a mass with a low signal intensity and T2-weighted MRI images demonstrated a mass with a high signal intensity. Clinical presentation included leg oedema, back and abdominal pain with almost 50% of patients presenting with metastases. Eleven patients underwent ablative surgery. The mean survival time of all patients in the study was 34 months and that of the 11 post-surgical patients was 56 months. Conclusion: There are a variety of diagnostic features on both computed tomography (CT) and MRI which aid the diagnosis of this unusual vascular neoplasm. CT is vital in determining the location of the tumour within the IVC and MRI accurately depicts its extent and the potential for surgical resectability, which offers the only chance of survival.

  10. Leiomyosarcomas of the inferior vena cava: diagnostic features on cross-sectional imaging

    International Nuclear Information System (INIS)

    Ganeshalingam, S.; Rajeswaran, G.; Jones, R.L.; Thway, K.; Moskovic, E.

    2011-01-01

    Aim: To evaluate the cross-sectional radiological appearances and to review the clinical presentation and outcome of patients with leiomyosarcomas of the inferior vena cava (IVC LMS). These are rare aggressive tumours that present late with non-specific symptoms and have a poor prognosis. Materials and Methods: From January 2002 to December 2008, the radiological images of 23 sequential patients with pathologically proven IVC LMS were independently reviewed by two experienced radiologists. The clinical presentation, treatment including surgical details, and outcome were recorded. Results: There were 19 females and four males with a mean age of 53 years. CT typically demonstrated a large, lobulate, non-calcified heterogeneous mass with peripheral enhancement. T1-weighted magnetic resonance imaging (MRI) images demonstrated a mass with a low signal intensity and T2-weighted MRI images demonstrated a mass with a high signal intensity. Clinical presentation included leg oedema, back and abdominal pain with almost 50% of patients presenting with metastases. Eleven patients underwent ablative surgery. The mean survival time of all patients in the study was 34 months and that of the 11 post-surgical patients was 56 months. Conclusion: There are a variety of diagnostic features on both computed tomography (CT) and MRI which aid the diagnosis of this unusual vascular neoplasm. CT is vital in determining the location of the tumour within the IVC and MRI accurately depicts its extent and the potential for surgical resectability, which offers the only chance of survival.

  11. 3D Interpolation Method for CT Images of the Lung

    Directory of Open Access Journals (Sweden)

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  12. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    International Nuclear Information System (INIS)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki

    2000-01-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  13. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki [Nagasaki Univ. (Japan). School of Medicine

    2000-07-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  14. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 2

    International Nuclear Information System (INIS)

    Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter; Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof; Arnegger, Florian U.

    2011-01-01

    To compose diagnostic standard operating procedures for both clinical and imaging assessment for vulvar and vaginal cancer, for vaginal sarcoma, and for ovarian cancer. The literature was reviewed for diagnosing the above mentioned malignancies in the female pelvis. Special focus herein lies in tumor representation in MRI, followed by the evaluation of CT and PET/CT for this topic. MRI is a useful additional diagnostic complement but by no means replaces established methods of gynecologic diagnostics and ultrasound. In fact, MRI is only implemented in the guidelines for vulvar cancer. According to the current literature, CT is still the cross-sectional imaging modality of choice for evaluating ovarian cancer. PET/CT appears to have advantages for staging and follow-up in sarcomas and cancers of the ovaries. (orig.)

  15. CT and MRI techniques for imaging around orthopedic hardware

    Energy Technology Data Exchange (ETDEWEB)

    Do, Thuy Duong; Skornitzke, Stephan; Weber, Marc-Andre [Heidelberg Univ. (Germany). Dept. of Clinical Radiology; Sutter, Reto [Uniklinik Balgrist, Zurich (Switzerland). Radiology

    2018-01-15

    Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

  16. Computed tomographic and cross-sectional anatomy of the normal pacu (Colossoma macroponum).

    Science.gov (United States)

    Carr, Alaina; Weber, E P Scott; Murphy, Chris J; Zwingenberger, Alison

    2014-03-01

    The purpose of this study was to compare and define the normal cross-sectional gross and computed tomographic (CT) anatomy for a species of boney fish to better gain insight into the use of advanced diagnostic imaging for future clinical cases. The pacu (Colossoma macropomum) was used because of its widespread presence in the aquarium trade, its relatively large body size, and its importance in the research and aquaculture settings. Transverse 0.6-mm CT images of three cadaver fish were obtained and compared to corresponding frozen cross sections of the fish. Relevant anatomic structures were identified and labeled at each level; the Hounsfield unit density of major organs was established. The images presented good anatomic detail and provide a reference for future research and clinical investigation.

  17. CT-based postimplant dosimetry of prostate brachytherapy. Comparison of 1-mm and 5-mm section CT

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Hayashi, Shinya; Kanematsu, Masayuki; Matsuo, Masayuki; Hoshi, Hiroaki; Nakano, Masahiro; Maeda, Sanaho; Deguchi, Takashi; Hoshi, Hiroaki

    2007-01-01

    The aim of this study was to compare the outcomes between 1-mm and 5-mm section computed tomography (CT)-based postimplant dosimetry. A series of 21 consecutive patients underwent permanent prostate brachytherapy. The postimplant prostate volume was calculated using 1-mm and 5-mm section CT. One radiation oncologist contoured the prostate on CT images to obtain the reconstructed prostate volume (pVol), prostate V 100 (percent of the prostate volume receiving at least the full prescribed dose), and prostate D 90 (mean dose delivered to 90% of the prostate gland). The same radiation oncologist performed the contouring three times to evaluate intraobserver variation and subjectively scored the quality of the CT images. The mean ±1 standard deviation (SD) postimplant pVol was 20.17±6.66 cc by 1-mm section CT and 22.24±8.48 cc by 5-mm section CT; the difference in the mean values was 2.06 cc (P 100 was 80.44%±7.06% by 1-mm section CT and 77.33%±10.22% by 5-mm section CT. The mean postimplant prostate D 90 was 83.28%±10.81% by 1-mm section CT and 78.60%±15.75% by 5-mm section CT. In the evaluation of image quality, 5-mm section CT was assigned significantly higher scores than 1-mm section CT. In regard to intraobserver variation, 5-mm section CT revealed less intraobserver variation than 1-mm section CT. Our current results suggested that the outcomes of postimplant dosimetry using 1-mm section CT did not improved the results over those obtained using 5-mm section CT in terms of the quality of the CT image or reproducibility. (author)

  18. Automatic segmentation of liver structure in CT images

    International Nuclear Information System (INIS)

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  19. Reversing the established order: Should adrenal venous sampling precede cross-sectional imaging in the evaluation of primary aldosteronism?

    Science.gov (United States)

    Asmar, Melissa; Wachtel, Heather; Yan, Yan; Fraker, Douglas L; Cohen, Debbie; Trerotola, Scott O

    2015-08-01

    Adrenal venous sampling (AVS) is the definitive evaluation for primary aldosteronism (PA). Pre-AVS cross-sectional imaging does not reduce the need for AVS. The goal of this study was to examine whether performing AVS prior to imaging could decrease the use of imaging in the evaluation of PA at a high volume, experienced center. We performed a retrospective analysis of all AVS procedures (n = 337) done for PA from 2001-2013. Patients whose cross-sectional imaging reports were unavailable (n = 90) or AVS was non-diagnostic (n = 12) were excluded. AVS was performed using modified Mayo technique. Univariate analysis utilized the χ² test and fisher's exact test. Of the 235 patients analyzed, 63% (n = 148) were male. The mean age was 55 ± 11 years. AVS was non-lateralizing in 43% (n = 101); these patients might have avoided imaging with an AVS-first approach. Imaging and AVS were concordant in 52% (n = 123). In patients ≤40yo (n = 23), 35% (n = 8) had no lateralization on AVS, and might have avoided imaging in an AVS-first approach. Imaging and AVS were concordant in 52% (n = 12) of patients ≤ 40yo, versus 52% (n = 111) of patients > 40 yo (P = 0.987). An AVS-first, imaging-second approach could have avoided CT/MRI in 43% of patients. At a high volume, experienced center, performing AVS first on patients with PA may reduce unnecessary cross-sectional imaging studies. © 2015 Wiley Periodicals, Inc.

  20. Three-section expiratory CT

    DEFF Research Database (Denmark)

    Loeve, Martine; de Bruijne, Marleen; Hartmann, Ieneke C. J.

    2012-01-01

    . Longitudinal follow-up was performed with three sections. All images were deidentified and randomized, and TA was scored with the Brody II system and a new quantitative system. Statistical analysis included the Wilcoxon signed rank test, calculation of Spearman and intraclass correlation coefficients, and use......Purpose: To estimate the effect of the number of computed tomography (CT) sections on trapped air (TA) assessment in patients with cystic fibrosis (CF) by using an established scoring system and a new quantitative scoring system and to compare CT and pulmonary function test (PFT) estimates of TA...

  1. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  2. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  3. Sectional depiction of the pelvic floor by CT, MR imaging and sheet plastination: computer-aided correlation and 3D model

    Energy Technology Data Exchange (ETDEWEB)

    Beyersdorff, D.; Taupitz, M.; Hamm, B. [Dept. of Radiology, Humboldt Univ., Berlin (Germany); Schiemann, T. [Inst. for Mathematics and Computer Science in Medicine, University of Hamburg (Germany); Kooijman, H. [Philips Medical Systems, Hamburg (Germany); Nicolas, V. [Dept. of Radiology and Nuclear Medicine, BG Kliniken Bergmannsheil, Bochum (Germany)

    2001-04-01

    The structures of the pelvic floor are clinically important but difficult to assess. To facilitate the understanding of the complicated pelvic floor anatomy on sectional images obtained by CT and MR imaging, and to make the representation more vivid, a computer-aided 3D model was created from a male and a female torso to develop a teaching tool. A male and a female cadaver torso were investigated by means of CT, MR imaging, and serial-section sheet plastination. A 3D reconstruction of the pelvic floor and adjacent structures was performed by fusion of CT and MR imaging data sets with sheet plastination sections. Corresponding sections from all three methods could be compared and visualized in their 3D context. Sheet plastination allows distinction of connective tissue, muscles, and pelvic organs down to a microscopic level. In combination with CT, MR imaging, and sheet plastination a 3D model of the pelvic floor offers a better understanding of the complex pelvic anatomy. This knowledge may be applied in the diagnostic imaging of urinary incontinence or prolapse and prior to prostate surgery. (orig.)

  4. A Rare Presentation of Lymphoma of the Cervix with Cross-Sectional Imaging Correlation

    Directory of Open Access Journals (Sweden)

    Brinda Rao Korivi

    2014-01-01

    Full Text Available Non-Hodgkin’s lymphoma of the cervix is an extremely uncommon entity, with no standard established treatment protocol. A 43-year-old asymptomatic female with a history of dual hit blastic B-cell lymphoma/leukemia in complete remission presented with an incidental cervical mass, which was initially felt to represent a cervical fibroid on computed tomography (CT. It was further evaluated with ultrasound, biopsy, and positron emission tomography-computed tomography (PET-CT, which demonstrated a growing biopsy-proven lymphomatous mass and new humeral head lesion. The patient was started on chemotherapy to control the newly diagnosed humeral head lesion, which then regressed. She then underwent radiation to the cervix with significant improvement in the cervical lymphoma. A review of cross-sectional imaging findings of lymphoma of the cervix is provided, including how to differentiate it from other more common diseases of the cervix. Clinical awareness of rare cervical masses such as lymphoma is very important in order to achieve timely diagnosis and appropriate treatment.

  5. Coronary Stent Artifact Reduction with an Edge-Enhancing Reconstruction Kernel - A Prospective Cross-Sectional Study with 256-Slice CT.

    Science.gov (United States)

    Tan, Stéphanie; Soulez, Gilles; Diez Martinez, Patricia; Larrivée, Sandra; Stevens, Louis-Mathieu; Goussard, Yves; Mansour, Samer; Chartrand-Lefebvre, Carl

    2016-01-01

    Metallic artifacts can result in an artificial thickening of the coronary stent wall which can significantly impair computed tomography (CT) imaging in patients with coronary stents. The objective of this study is to assess in vivo visualization of coronary stent wall and lumen with an edge-enhancing CT reconstruction kernel, as compared to a standard kernel. This is a prospective cross-sectional study involving the assessment of 71 coronary stents (24 patients), with blinded observers. After 256-slice CT angiography, image reconstruction was done with medium-smooth and edge-enhancing kernels. Stent wall thickness was measured with both orthogonal and circumference methods, averaging thickness from diameter and circumference measurements, respectively. Image quality was assessed quantitatively using objective parameters (noise, signal to noise (SNR) and contrast to noise (CNR) ratios), as well as visually using a 5-point Likert scale. Stent wall thickness was decreased with the edge-enhancing kernel in comparison to the standard kernel, either with the orthogonal (0.97 ± 0.02 versus 1.09 ± 0.03 mm, respectively; pkernel generated less overestimation from nominal thickness compared to the standard kernel, both with the orthogonal (0.89 ± 0.19 versus 1.00 ± 0.26 mm, respectively; pkernel was associated with lower SNR and CNR, as well as higher background noise (all p kernel. Stent visual scores were higher with the edge-enhancing kernel (pkernel generates thinner stent walls, less overestimation from nominal thickness, and better image quality scores than the standard kernel.

  6. Cross-sectional imaging to evaluate the extent of regional nodal disease in breast cancer patients undergoing neoadjuvant systemic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Tara L., E-mail: anderson.tara@mayo.edu [Mayo Clinic, Department of Radiology, 200 First Street SW, Rochester, MN, 55905 (United States); Glazebrook, Katrina N., E-mail: glazebrook.katrina@mayo.edu [Mayo Clinic, Department of Radiology, 200 First Street SW, Rochester, MN, 55905 (United States); Murphy, Brittany L., E-mail: murphy.brittany@mayo.edu [Mayo Clinic, Department of Surgery, 200 First Street SW, Rochester, MN, 55905 (United States); Viers, Lyndsay D., E-mail: viers.lyndsay@mayo.edu [Mayo Clinic, Department of Radiology, 200 First Street SW, Rochester, MN, 55905 (United States); Hieken, Tina J, E-mail: hieken.tina@mayo.edu [Mayo Clinic, Department of Surgery, 200 First Street SW, Rochester, MN, 55905 (United States)

    2017-04-15

    Purpose: Cross-sectional imaging often is performed in breast cancer patients undergoing neoadjuvant systemic therapy (NST) and may identify level III axillary and extra-axillary nodal disease. Our aim was to investigate associations of radiologic nodal staging with pathological N (pN) stage at operation and to explore how this might aid surgical and radiotherapy treatment planning. Materials and methods: With IRB approval, we reviewed pre-treatment breast MRI, PET/CT, and CT imaging and clinicopathologic data on 348 breast cancer patients with imaging available for review undergoing NST followed by operation at our institution 1/2008-9/2013. We defined abnormal lymph node findings on MRI, CT, and PET/CT to include cortical thickening, FDG-avidity and loss of fatty hilum. Patients were assigned a radiologic nodal (rN) stage based on imaging findings. Statistical analysis was performed using JMP 10.1 software Results: Pre-NST imaging included axillary ultrasound in 338 patients (97%), breast MRI in 305 (88%) and PET/CT or CT in 215 (62%). 213 patients (61%) were biopsy-proven axillary lymph node-positive (LN+) pre-treatment. cT stage was T1 in 9%, T2 in 49%, T3 in 29%, T4 in 12%; median tumor size was 4 cm. Pre-treatment rN stage across all the patients was rN0 in 86 (25%), rN1 in 173 (50%), and rN3 in 89 (26%). rN3 disease included level III axillary, supraclavicular and suspicious internal mammary lymph nodes in 47 (53%), 32 (37%) and 45 (52%), respectively. Of patients LN+ at diagnosis, 78 (37%) were rN3. After NST, 162 patients (47%) were node-positive at operation with a median (mean) of 3 (5.9 ± 0.4) positive lymph nodes including 128 of 213 (60%) LN+ at diagnosis. Pre-NST rN stage correlated with the likelihood and extent of axillary disease at operation, p = 0.002. Fifty four of 89 rN3 patients (61%) were node-positive at operation with a median (mean) of 5 (8 ± 1) positive nodes. rN3 patients had larger nodal metastases (median 9 vs 6 mm) and more

  7. Cross-sectional imaging to evaluate the extent of regional nodal disease in breast cancer patients undergoing neoadjuvant systemic therapy

    International Nuclear Information System (INIS)

    Anderson, Tara L.; Glazebrook, Katrina N.; Murphy, Brittany L.; Viers, Lyndsay D.; Hieken, Tina J

    2017-01-01

    Purpose: Cross-sectional imaging often is performed in breast cancer patients undergoing neoadjuvant systemic therapy (NST) and may identify level III axillary and extra-axillary nodal disease. Our aim was to investigate associations of radiologic nodal staging with pathological N (pN) stage at operation and to explore how this might aid surgical and radiotherapy treatment planning. Materials and methods: With IRB approval, we reviewed pre-treatment breast MRI, PET/CT, and CT imaging and clinicopathologic data on 348 breast cancer patients with imaging available for review undergoing NST followed by operation at our institution 1/2008-9/2013. We defined abnormal lymph node findings on MRI, CT, and PET/CT to include cortical thickening, FDG-avidity and loss of fatty hilum. Patients were assigned a radiologic nodal (rN) stage based on imaging findings. Statistical analysis was performed using JMP 10.1 software Results: Pre-NST imaging included axillary ultrasound in 338 patients (97%), breast MRI in 305 (88%) and PET/CT or CT in 215 (62%). 213 patients (61%) were biopsy-proven axillary lymph node-positive (LN+) pre-treatment. cT stage was T1 in 9%, T2 in 49%, T3 in 29%, T4 in 12%; median tumor size was 4 cm. Pre-treatment rN stage across all the patients was rN0 in 86 (25%), rN1 in 173 (50%), and rN3 in 89 (26%). rN3 disease included level III axillary, supraclavicular and suspicious internal mammary lymph nodes in 47 (53%), 32 (37%) and 45 (52%), respectively. Of patients LN+ at diagnosis, 78 (37%) were rN3. After NST, 162 patients (47%) were node-positive at operation with a median (mean) of 3 (5.9 ± 0.4) positive lymph nodes including 128 of 213 (60%) LN+ at diagnosis. Pre-NST rN stage correlated with the likelihood and extent of axillary disease at operation, p = 0.002. Fifty four of 89 rN3 patients (61%) were node-positive at operation with a median (mean) of 5 (8 ± 1) positive nodes. rN3 patients had larger nodal metastases (median 9 vs 6 mm) and more

  8. Pulmonary function-morphologic relationships assessed by SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2012-01-01

    Pulmonary single photon emission computed tomography-computed tomography (SPECT-CT) fusion images provide objective and comprehensive assessment of pulmonary function and morphology relationships at cross-sectional lungs. This article reviewed the noteworthy findings of lung pathophysiology in wide-spectral lung disorders, which have been revealed on SPECT-CT fusion images in 8 years of experience. The fusion images confirmed the fundamental pathophysiologic appearance of lung low CT attenuation caused by airway obstruction-induced hypoxic vasoconstriction and that caused by direct pulmonary arterial obstruction as in acute pulmonary thromboembolism (PTE). The fusion images showed better correlation of lung perfusion distribution with lung CT attenuation changes at lung mosaic CT attenuation (MCA) compared with regional ventilation in the wide-spectral lung disorders, indicating that lung heterogeneous perfusion distribution may be a dominant mechanism of MCA on CT. SPECT-CT angiography fusion images revealed occasional dissociation between lung perfusion defects and intravascular clots in acute PTE, indicating the importance of assessment of actual effect of intravascular colts on peripheral lung perfusion. Perfusion SPECT-CT fusion images revealed the characteristic and preferential location of pulmonary infarction in acute PTE. The fusion images showed occasional unexpected perfusion defects in normal lung areas on CT in chronic obstructive pulmonary diseases and interstitial lung diseases, indicating the ability of perfusion SPECT superior to CT for detection of mild lesions in these disorders. The fusion images showed frequent ''steal phenomenon''-induced perfusion defects extending to the surrounding normal lung of arteriovenous fistulas and those at normal lungs on CT in hepatopulmonary syndrome. Comprehensive assessment of lung function-CT morphology on fusion images will lead to more profound understanding of lung pathophysiology in wide-spectral lung

  9. Display of cross sectional anatomy by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hinshaw, W.S.; Andrew, E.R.; Bottomley, P.A.; Holland, G.N.; Moore, W.S.; Worthington, B.S.

    1978-01-01

    High definition cross-sectional images produced by a new nuclear magnetic resonace (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique. (author)

  10. Display of cross sectional anatomy by nuclear magnetic resonance imaging.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1978-04-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  11. Health IT and inappropriate utilization of outpatient imaging: A cross-sectional study of U.S. hospitals.

    Science.gov (United States)

    Appari, Ajit; Johnson, M Eric; Anthony, Denise L

    2018-01-01

    To determine whether the use of information technology (IT), measured by Meaningful Use capability, is associated with lower rates of inappropriate utilization of imaging services in hospital outpatient settings. A retrospective cross-sectional analysis of 3332 nonfederal U.S. hospitals using data from: Hospital Compare (2011 outpatient imaging efficiency measures), HIMSS Analytics (2009 health IT), and Health Indicator Warehouse (market characteristics). Hospitals were categorized for their health IT infrastructure including EHR Stage-1 capability, and three advanced imaging functionalities/systems including integrated picture archiving and communication system, Web-based image distribution, and clinical decision support (CDS) with physician pathways. Three imaging efficiency measures suggesting inappropriate utilization during 2011 included: percentage of "combined" (with and without contrast) computed tomography (CT) studies out of all CT studies for abdomen and chest respectively, and percentage of magnetic resonance imaging (MRI) studies of lumbar spine without antecedent conservative therapy within 60days. For each measure, three separate regression models (GLM with gamma-log link function, and denominator of imaging measure as exposure) were estimated adjusting for hospital characteristics, market characteristics, and state fixed effects. Additionally, Heckman's Inverse Mills Ratio and propensity for Stage-1 EHR capability were used to account for selection bias. We find support for association of each of the four health IT capabilities with inappropriate utilization rates of one or more imaging modality. Stage-1 EHR capability is associated with lower inappropriate utilization rates for chest CT (incidence rate ratio IRR=0.72, p-value value value value value value value use of Stage-1 Meaningful Use capable EHR systems along with advanced imaging related functionalities could have a beneficial impact on reducing some of the inappropriate utilization of

  12. Medical Therapies for Stricturing Crohn's Disease: Efficacy and Cross-Sectional Imaging Predictors of Therapeutic Failure.

    Science.gov (United States)

    Campos, Cécile; Perrey, Antoine; Lambert, Céline; Pereira, Bruno; Goutte, Marion; Dubois, Anne; Goutorbe, Felix; Dapoigny, Michel; Bommelaer, Gilles; Hordonneau, Constance; Buisson, Anthony

    2017-06-01

    Medical therapy efficacy remains controversial in stricturing Crohn's disease. Cross-sectional imaging, especially magnetic resonance imaging, has been suggested as very helpful to guide therapeutic decision making. To assess efficacy and predictors of therapeutic failure in patients receiving medical treatments for stricturing Crohn's disease. In this retrospective study, therapeutic failure was defined as symptomatic stricture leading to surgical or endoscopic therapeutics, hospitalization, treatment discontinuation or additional therapy and short-term clinical response as clinical improvement assessed by two physicians. The 55 cross-sectional imaging examinations (33 magnetic resonance imaging and 22 CT scan) before starting medical therapy were analyzed independently by two radiologists. Results were expressed as hazard ratio (HR) or odds ratio (OR) with 95% confidence intervals (95% CI). Among 84 patients, therapeutic failure rate within 60 months was 66.6%. In multivariate analysis, Crohn's disease diagnosis after 40 years old (HR 3.9, 95% CI [1.37-11.2], p = 0.011), small stricture luminal diameter (HR 1.34, 95% CI [1.01-1.80], p = 0.046), increased stricture wall thickness (HR 1.23, 95% CI [1.04-1.46], p = 0.013) and fistula with abscess (HR 5.63, 95% CI [1.64-19.35], p = 0.006) were associated with therapeutic failure, while anti-TNF combotherapy (HR 0.17, 95% CI [0.40-0.71], p = 0.015) prevented it. Considering 108 therapeutic sequences, the short-term clinical response rate was 65.7%. In multivariate analysis, male gender (OR 0.15, 95% CI [0.03-0.64], p = 0.011), fistula with abscess (OR 0.09, 95% CI [0.01-0.77], p = 0.028) and comb sign (OR 0.23, 95% CI [0.005-0.97], p = 0.047) were associated with short-term clinical failure. Anti-TNF combotherapy seemed to prevent therapeutic failure, and cross-sectional imaging should be systematically performed to help medical management in stricturing Crohn's disease.

  13. Determination of tire cross-sectional geometric characteristics from a digitally scanned image

    Science.gov (United States)

    Danielson, Kent T.

    1995-08-01

    A semi-automated procedure is described for the accurate determination of geometrical characteristics using a scanned image of the tire cross-section. The procedure can be useful for cases when CAD drawings are not available or when a description of the actual cured tire is desired. Curves representing the perimeter of the tire cross-section are determined by an edge tracing scheme, and the plyline and cord-end positions are determined by locations of color intensities. The procedure provides an accurate description of the perimeter of the tire cross-section and the locations of plylines and cord-ends. The position, normals, and curvatures of the cross-sectional surface are included in this description. The locations of the plylines provide the necessary information for determining the ply thicknesses and relative position to a reference surface. Finally, the locations of the cord-ends provide a means to calculate the cord-ends per inch (epi). Menu driven software has been developed to facilitate the procedure using the commercial code, PV-Wave by Visual Numerics, Inc., to display the images. From a single user interface, separate modules are executed for image enhancement, curve fitting the edge trace of the cross-sectional perimeter, and determining the plyline and cord-end locations. The code can run on SUN or SGI workstations and requires the use of a mouse to specify options or identify items on the scanned image.

  14. Evaluation of aortocoronary bypass graft patency by reconstructed CT image

    International Nuclear Information System (INIS)

    Kawakita, Seizaburo; Koide, Takashi; Saito, Yoshio; Yamamoto, Tadao; Iwasaki, Tadaaki

    1982-01-01

    Ten patients were examined in the period of three months from January to March 1981. The patients were operated from 1 month to 7 years before CT. A bypass to the left anterior descending artery (LAD) was grafted in 10 cases, 2 to the right coronary artery (RCA), 4 to an obtuse marginal artery (OM), and 1 to a diagonal artery. Image reconstruction was performed in 10 cases by using an image analytical computer Evaluskop. Appropriate planes for reconstruction were selected by trial and error methods upon observation of CT images. When gained picture of a graft course coincided with surgical records or angiography, the work of building images was concluded. On cross section, grafts to LAD were visualized in all 10 cases: 9 in the entire course and 1 in a proximal part of the graft. Two to RCA, 4 to OM and 1 to a diagonal were also successfully visualized. Reconstruction of graft images succeeded in 9 grafts of 6 cases. The course of a graft could be pursued from the proximal to the distal end adjacent to the cardiac chamber. The picture of a bypass to LAD was visualized in 6 of 10 grafts. Two bypass to RCA could be depicted, and 1 to OM was also found. However 3 to OM and 1 to a diagonal failed to be visualized throughout their courses in reconstructed images. I think that the causes of faillure mainly depended upon the course of the graft. When a graft was running arc-like surrounding the heart chamber, it was very difficult to depict its entire length in reconstructed images, though the graft could be detected in cross sections. These preliminary studies indicated that reconstruction of CT images had some benefits for the pursuit of graft courses. (J.P.N.)

  15. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  16. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... images or pictures of the inside of the body. The cross-sectional images generated during a CT ... be performed to evaluate blood vessels throughout the body. With CT, it is possible to obtain very ...

  17. Spinal trauma: first aid from cross-sectional imaging; Trauma der Wirbelsaeule: erste Hilfe durch Schnittbildverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Schueller, G.; Schueller-Weidekamm, C. [Emergency Radiology Schueller, Neerach (Switzerland)

    2014-09-15

    The diagnosis of the traumatized spine is one of the key issues for trauma radiologists. The cross-sectional imaging procedures, computed tomography (CT) and magnetic resonance imaging (MRI) are the essential methods in spinal trauma radiology. These modalities are of great help in accurately assessing injury patterns and extent and in providing indications of patient outcome. In contrast to cross-sectional imaging, radiography has a role in the evaluation of minor spinal trauma only. It is generally accepted that trauma radiologists do not use typical classifications to evaluate the spine partly because such an ideal classification system does not yet exist. Not least because of this classification difficulty, eponyms and synonyms are widely used to describe traumatology of the spine as a high level of specific information is included in these various terms. The members of the trauma team should be aware of the strengths and limitations of the methods used in the assessment of the spine. This article provides a brief outline of fundamental knowledge about the diagnosis of spinal trauma. (orig.) [German] Die Beurteilung der verletzten Wirbelsaeule nimmt fuer Traumaradiologen eine zentrale Stellung ein. Die Schnittbildverfahren CT und MRT sind ihre wesentlichen Arbeitsmethoden. Sie helfen dabei, schnell und mit hoher Zuverlaessigkeit Aussagen ueber Art und Ausmass von Verletzungen zu treffen sowie Hinweise auf die Prognose der Patienten zu geben. Die Projektionsradiographie hat ihre Bedeutung lediglich in der Diagnostik des Bagatelltraumas und ist in ihrer Aussagekraft auch dort nicht unumstritten. Traumaradiologen bedienen sich nicht ausschliesslich typischer Klassifikationen des Wirbelsaeulentraumas, z. T. auch deshalb, da es die ideale Klassifikation aus heutiger Sicht nicht gibt. Vielmehr ist es wichtig, auch ueber Eponyme und Synonyme Bescheid zu wissen, da sie ein hohes Mass an spezifischen Informationen der spinalen Verletzungen verinnerlichen. Alle

  18. Scalar properties of transversely isotropic tuff from images of orthogonal cross sections

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Blair, S.C.; Pena, C.

    1997-01-01

    Image processing methods have been used very effectively to estimate physical properties of isotropic porous earth materials such as sandstones. Anisotropic materials can also be analyzed in order to estimate their physical properties, but additional care and a larger number of well-chosen images of cross sections are required to obtain correct results. Although low-symmetry anisotropic media present difficulties for two-dimensional image processing methods, geologic materials are often transversely isotropic. Scalar properties of porous materials such as porosity and specific surface area can be determined with only minor changes in the analysis when the medium is transversely isotropic rather than isotropic. For example, in a rock that is transitively isotropic due to thin layers or beds, the overall porosity may be obtained by analyzing images of cross sections taken orthogonal to the bedding planes, whereas cross sections lying within the bedding planes will determine only the local porosity of the bed itself. It is known for translationally invariant anisotropic media that the overall specific surface area can be obtained from radial averages of the two-point correlation function in the full three-dimensional volume. Layered materials are not translationally invariant in the direction of the layering, but we show nevertheless how averages of cross sections may be used to obtain the specific surface area for a transversely isotropic rock. We report values of specific surface area obtained for thin sections of Topopah Spring Tuff from Yucca Mountain, Nevada. This formation is being evaluated as a potential host rock for geologic disposal of nuclear waste. Although the present work has made use of thin sections of tuff for the images, the same methods of analysis could also be used to simplify quantitative analysis of three-dimensional volumes of pore structure data obtained by means of x-ray microtomography or other methods, using only a few representative cross

  19. Display of cross sectional anatomy by nuclear magnetic resonance imaging. 1978.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1995-12-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  20. CT images of gossypiboma

    International Nuclear Information System (INIS)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee

    1994-01-01

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment

  1. CT images of gossypiboma

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hae Jeong; Lim, Jong Nam; Choi, Young Chil; Park, Jeong Hee [College of Medicine, Kon-Kuk University, Seoul (Korea, Republic of)

    1994-04-15

    Surgical sponges retained after laparotomy can cause serious problem if they were not be identified in early state. In these circumstances abdominal CT yields the accurate diagnostic images. The purpose of this report is to present highly indicative findings permitting correct preoperative diagnosis of the gossypiboma. We experienced three cases in which CT showed the images sufficiently characteristic to suggest the correct preoperative diagnosis. We evaluated retrospectively the radiological images of gossypiboma confirmed by operation. Three patients were admitted due to palpable masses. Two female patients had medical histories of cesarean sections and a male patient had been operated due to malignant fibrous histiocytoma, previously. Abdominal CT scan of one case revealed huge ovoid hypodense mass with enhanced peripheral rim. Calcific spots and whirl-like stripes were noted within the lesion. Towel was found in pathologic specimen. CT images of two patients showed well-encapsulated, mixed fluid and soft tissue density mass with several gas bubbles. Surgical sponges were found within abscesses. The authors conclude that these characteristic CT findings and careful histories of surgery are very useful for correct pre-operative diagnosis and permit the guideline for the optimal plan of the surgical treatment.

  2. Dynamic multidetector CT and non-contrast-enhanced MR for right adrenal vein imaging: comparison with catheter venography in adrenal venous sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Hideki; Seiji, Kazumasa; Kawabata, Masahiro; Satani, Nozomi; Matsuura, Tomonori; Tominaga, Junya; Takase, Kei [Tohoku University Hospital, Department of Diagnostic Radiology, Sendai (Japan); Omata, Kei; Ono, Yoshikiyo; Iwakura, Yoshitsugu; Morimoto, Ryo; Kudo, Masataka; Satoh, Fumitoshi; Ito, Sadayoshi [Tohoku University Hospital, Division of Nephrology, Endocrinology and Vascular Medicine, Sendai (Japan)

    2016-03-15

    To evaluate visualization of the right adrenal vein (RAV) with multidetector CT and non-contrast-enhanced MR imaging in patients with primary aldosteronism. A total of 125 patients (67 men) scheduled for adrenal venous sampling (AVS) were included. Dynamic 64-detector-row CT and balanced steady-state free precession-based non-contrast-enhanced 3-T MR imaging were performed. RAV visualization based on a four-point score was documented. Both anatomical location and variation on cross-sectional imaging were evaluated, and the findings were compared with catheter venography as the gold standard. The RAV was visualized in 93.2 % by CT and 84.8 % by MR imaging (p = 0.02). Positive predictive values of RAV visualization were 100 % for CT and 95.2 % for MR imaging. Imaging score was significantly higher in CT than MR imaging (p < 0.01). The RAV formed a common trunk with an accessory hepatic vein in 16 % of patients. The RAV orifice level on cross-sectional imaging was concordant with catheter venography within the range of 1/3 vertebral height in >70 % of subjects. Success rate of AVS was 99.2 %. Dynamic CT is a reliable way to map the RAV prior to AVS. Non-contrast-enhanced MR imaging is an alternative when there is a risk of complication from contrast media or radiation exposure. (orig.)

  3. Laser radar cross-section estimation from high-resolution image data.

    Science.gov (United States)

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  4. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  5. Computed tomography and cross-sectional anatomy of the metatarsus and digits of the one-humped camel (Camelus dromedarius) and buffalo ( Bos bubalis).

    Science.gov (United States)

    El-Shafey, A; Kassab, A

    2013-04-01

    The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.

  6. [Landmark-based automatic registration of serial cross-sectional images of Chinese digital human using Photoshop and Matlab software].

    Science.gov (United States)

    Su, Xiu-yun; Pei, Guo-xian; Yu, Bin; Hu, Yan-ling; Li, Jin; Huang, Qian; Li, Xu; Zhang, Yuan-zhi

    2007-12-01

    This paper describes automatic registration of the serial cross-sectional images of Chinese digital human by projective registration method based on the landmarks using the commercially available software Photoshop and Matlab. During cadaver embedment for acquisition of the Chinese digital human images, 4 rods were placed parallel to the vertical axis of the frozen cadaver to allow orientation. Projective distortion of the rod positions on the cross-sectional images was inevitable due to even slight changes of the relative position of the camera. The original cross-sectional images were first processed using Photoshop software firstly to obtain the images of the orientation rods, and the centroid coordinate of every rod image was acquired with Matlab software. With the average coordinate value of the rods as the fiducial point, two-dimensional projective transformation coefficient of each image was determined. Projective transformation was then carried out and projective distortion from each original serial image was eliminated. The rectified cross-sectional images were again processed using Photoshop to obtain the image of the first orientation rod, the coordinate value of first rod image was calculated using Matlab software, and the cross-sectional images were cut into images of the same size according to the first rod spatial coordinate, to achieve automatic registration of the serial cross-sectional images. sing Photoshop and Matlab softwares, projective transformation can accurately accomplish the image registration for the serial images with simpler calculation processes and easier computer processing.

  7. Changes in measured size of atherosclerotic plaque calcifications in dual-energy CT of ex vivo carotid endarterectomy specimens: effect of monochromatic keV image reconstructions

    International Nuclear Information System (INIS)

    Mannelli, Lorenzo; Mitsumori, Lee M.; Ferguson, Marina; Xu, Dongxiang; Chu, Baocheng; Branch, Kelley R.; Shuman, William P.; Yuan, Chun

    2013-01-01

    The aim of this study was to compare the size of the calcifications measured on the different keV images to a histological standard. Five ex vivo carotid endarterectomy (CEA) specimens were imaged with a dual-energy CT. CT images were reconstructed at different monochromatic spectral energies (40, 60, 77, 80, 100, 120, 140 keV). Cross-sectional area of the plaque calcifications present on each CT image was measured. The histological calcium areas on each corresponding CEA specimen were traced manually on digitised images of Toluidine Blue/Basic Fuchsin stained plastic sections. The CT images and corresponding histology sections were matched. The CT-derived calcium areas on each keV image were compared to the calcified area measurements by histology. A total of 107 histology sections were matched to corresponding CT images. The average calcified area per section by histology was 7.6 ± 7 mm 2 (range 0-26.4 mm 2 ). There was no significant difference between the calcified areas measured by histology and those measured on CT-virtual monochromatic spectral (VMS) reconstructed images at 77 keV (P = 0.08), 80 keV (P = 0.20) and 100 keV (P = 0.14). Calcium area measured on the 80 keV image set was most comparable to the amount of calcium measured by histology. (orig.)

  8. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  9. Cross Sectional Imaging of Solitary Lesions of the Neurocranium.

    Science.gov (United States)

    Schäfer, Max-Ludwig; Koch, Arend; Streitparth, Florian; Wiener, Edzard

    2017-12-01

    Background  Although a wide range of processes along the neurocranium are of a benign nature, there are often difficulties in the differential diagnosis. Method  In the review CT/MRI scans of the head were evaluated retrospectively regarding solitary lesions along the neurocranium. The majority of the lesions were histologically proven. Results  The purpose of the review is to present typical pathologies of the neurocranium and provide a systematic overview based on 12 entities, their locations, prevalence and radiological characteristics. Conclusion  Processes, which primarily originate from the neurocranium have to be differentiated from secondary processes infiltrating the neurocranium. For this important diagnostic feature, MRI is typically essential, while the definitive diagnosis is often made on the basis of the medical history and the typical appearance on computer tomography. Key Points   · There are often difficulties in the precise differential diagnosis of solitary lesions along the neurocranium. Typical solitary pathologies of the neurocranium based on 12 entities were presented. Both magnetic resonance imaging and computed tomography are often essential for an exact differential diagnosis.. Citation Format · Schäfer M, Koch A, Streitparth F et al. Cross Sectional Diagnosis of Solitary Lesions of the Neurocranium. Fortschr Röntgenstr 2017; 189: 1135 - 1144. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Imaging of jaw with dental CT software program: Normal Anatomy

    International Nuclear Information System (INIS)

    Kim, Myong Gon; Seo, Kwang Hee; Jung, Hak Young; Sung, Nak Kwan; Chung, Duk Soo; Kim, Ok Dong; Lee, Young Hwan

    1994-01-01

    Dental CT software program can provide reformatted cross-sectional and panoramic images that cannot be obtained with conventional axial and direct coronal CT scan. The purpose of this study is to describe the method of the technique and to identify the precise anatomy of jaw. We evaluated 13 mandibles and 7 maxillae of 15 subjects without bony disease who were being considered for endosseous dental implants. Reformatted images obtained by the use of bone algorithm performed on GE HiSpeed Advantage CT scanner were retrospectively reviewed for detailed anatomy of jaw. Anatomy related to neurovascular bundle(mandibular foramen, inferior alveolar canal, mental foramen, canal for incisive artery, nutrient canal, lingual foramen and mylohyoid groove), muscular insertion(mylohyoid line, superior and inferior genial tubercle and digastric fossa) and other anatomy(submandibular fossa, sublingual fossa, contour of alveolar process, oblique line, retromolar fossa, temporal crest and retromolar triangle) were well delineated in mandible. In maxilla, anatomy related to neurovascular bundle(greater palatine foramen and groove, nasopalatine canal and incisive foramen) and other anatomy(alveolar process, maxillary sinus and nasal fossa) were also well delineated. Reformatted images using dental CT software program provided excellent delineation of the jaw anatomy. Therefore, dental CT software program can play an important role in the preoperative assessment of mandible and maxilla for dental implants and other surgical conditions

  11. Assessing apical transportation in curved canals: comparison between cross-sections and micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Laila Gonzales Freire

    2012-06-01

    Full Text Available The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (µCT. Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections, teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (µCT, teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF system (SybronEndo, Orange, USA, and mesiolingual canals, with the EndoSequence (ES system (Brasseler, Savannah, USA. Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05. The canal transportation results were significantly lower (0.056 mm in G2 than in G1 (0.089 mm (p = 0.0012. The µCT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.

  12. Imaging of head and neck tumors -- methods: CT, spiral-CT, multislice-spiral-CT

    International Nuclear Information System (INIS)

    Baum, Ulrich; Greess, Holger; Lell, Michael; Noemayr, Anton; Lenz, Martin

    2000-01-01

    Spiral-CT is standard for imaging neck tumors. In correspondence with other groups we routinely use spiral-CT with thin slices (3 mm), a pitch of 1.3-1.5 and an overlapping reconstruction increment (2-3 mm). In patients with dental fillings a short additional spiral parallel to the corpus of the mandible reduces artifacts behind the dental arches and improves the diagnostic value of CT. For the assessment of the base of the skull, the orbital floor, the palate and paranasal sinuses an additional examination in the coronal plane is helpful. Secondary coronal reconstructions of axial scans are helpful in the evaluation of the crossing of the midline by small tumors of the tongue base or palate. For an optimal vascular or tissue contrast a sufficient volume of contrast medium and a start delay greater than 70-80 s are necessary. In our opinion the best results can be achieved with a volume of 150 ml, a flow of 2.5 ml/s and a start delay of 80 s. Dynamic enhanced CT is only necessary in some special cases. There is clear indication for dynamic enhanced CT where a glomus tumor is suspected. Additional functional CT imaging during i-phonation and/or Valsalva's maneuver are of great importance to prove vocal cords mobility. Therefore, imaging during i-phonation is an elemental part of every thorough examination of the hypopharynx and larynx region. Multislice-spiral-CT allows almost isotropic imaging of the head and neck region and improves the assessment of tumor spread and lymph node metastases in arbitrary oblique planes. Thin structures (the base of the skull, the orbital floor, the hard palate) as well as the floor of the mouth can be evaluated sufficiently with multiplanar reformations. Usually, additional coronal scanning is not necessary with multislice-spiral-CT. Multislice-spiral-CT is especially advantageous in defining the critical relationships of tumor and lymph node metastases and for functional imaging of the hypopharynx and larynx not only in the

  13. The construction of trunk voxel phantom by using CT images and application to 3 dimensional radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. S.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    2001-10-01

    Trunk voxel phantom was constructed by using whole body CT images and tumor doses were calculated by using Monte Carlo method after simulating situation of radiotheraphy treatment planning. The whole body CT images of VHP (Visual Human Project) man were acquired from National Library of Medicine of USA. 153 slices of trunk part were extracted from whole body CT images and MCNP4B, a general purpose Monte Carlo code, was used for dose calculation. Gray scale of CT images were converted into density of medium and processed into trunk voxel phantom ported to MCNP4B input deck. The conversion method was verified by comparing cross sectional images of voxel phantom with original CT images. Tumor volumes with diameter of 3 cm were defined in liver, stomach and right lung and irradiated with 5, 10 and 15 MeV gamma beam with diameter of 6 cm. The technical basis for 3D dose calculation was established through this study for localization of 3D RTP system.

  14. The first joint ESGAR/ ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging

    International Nuclear Information System (INIS)

    Taylor, S.A.; Torkzad, M.R.; Bhatnagar, G.; Avni, F.; Cronin, C.G.; Hoeffel, C.; Kim, S.H.; Laghi, A.; Napolitano, M.; Petit, P.; Rimola, J.; Tolan, D.J.; Zappa, M.; Puylaert, C.A.J.; Stoker, J.

    2017-01-01

    To develop guidelines describing a standardised approach to patient preparation and acquisition protocols for magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) of the small bowel and colon, with an emphasis on imaging inflammatory bowel disease. An expert consensus committee of 13 members from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) and European Society of Paediatric Radiology (ESPR) undertook a six-stage modified Delphi process, including a detailed literature review, to create a series of consensus statements concerning patient preparation, imaging hardware and image acquisition protocols. One hundred and fifty-seven statements were scored for agreement by the panel of which 129 statements (82 %) achieved immediate consensus with a further 19 (12 %) achieving consensus after appropriate modification. Nine (6 %) statements were rejected as consensus could not be reached. These expert consensus recommendations can be used to help guide cross-sectional radiological practice for imaging the small bowel and colon. (orig.)

  15. The first joint ESGAR/ ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.A.; Torkzad, M.R.; Bhatnagar, G. [University College London, Centre for Medical Imaging, London (United Kingdom); Avni, F. [Lille University Hospitals, Department of Paediatric Imaging, Jeanne de Flandre Hospital, Lille (France); Cronin, C.G. [Mater Misericordiae University Hospital, Department of Radiology, Dublin (Ireland); Hoeffel, C. [Hopital Robert Debre, Department of Radiology, Reims (France); Kim, S.H. [Inje University College of Medicine, Haeundae Paik Hospital, Department of Radiology, Busan (Korea, Republic of); Laghi, A. [Sapienza University of Rome, I.C.O.T. Hospital, Department of Radiological Sciences, Oncology and Pathology, Latina (Italy); Napolitano, M. [V. Buzzi Children' s Hospital, Department of Radiology and Neuroradiology, Milan (Italy); Petit, P. [Timone Enfant Hospital, Department of Paediatric Radiology, Marseille (France); Rimola, J. [University of Barcelona, Radiology Department, Hospital Clinic Barcelona, Catalonia (Spain); Tolan, D.J. [St James' s University Hospital, Leeds Teaching Hospitals NHS Trust (United Kingdom); Zappa, M. [Hopital Beaujon, AP-HP, Universite Paris 7, INSERM CRI U1149, Department of Radiology, Clichy (France); Puylaert, C.A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Centre, Amsterdam (Netherlands)

    2017-06-15

    To develop guidelines describing a standardised approach to patient preparation and acquisition protocols for magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) of the small bowel and colon, with an emphasis on imaging inflammatory bowel disease. An expert consensus committee of 13 members from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) and European Society of Paediatric Radiology (ESPR) undertook a six-stage modified Delphi process, including a detailed literature review, to create a series of consensus statements concerning patient preparation, imaging hardware and image acquisition protocols. One hundred and fifty-seven statements were scored for agreement by the panel of which 129 statements (82 %) achieved immediate consensus with a further 19 (12 %) achieving consensus after appropriate modification. Nine (6 %) statements were rejected as consensus could not be reached. These expert consensus recommendations can be used to help guide cross-sectional radiological practice for imaging the small bowel and colon. (orig.)

  16. Brain neuroimaging of domestic cats: correlation between computed tomography and cross-sectional anatomy

    International Nuclear Information System (INIS)

    Nepomuceno, A.C.; Zanatta, R.; Chung, D.G.; Costa, P.F.; Feliciano, M.A.R.; Avante, M.L.; Canola, J.C.; Lopes, L.S.

    2016-01-01

    Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT) examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20 deg C then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species. (author)

  17. Brain neuroimaging of domestic cats: correlation between computed tomography and cross-sectional anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Nepomuceno, A.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Zanatta, R. [Universidade de Cuiaba, MT (Brazil); Chung, D.G.; Costa, P.F.; Feliciano, M.A.R.; Avante, M.L.; Canola, J.C., E-mail: marcusfeliciano@yahoo.com.br [Faculdade de Ciencias Agrarias e Veterinarias, Jaboticabal, SP (Brazil); Lopes, L.S. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil)

    2016-09-15

    Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT) examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20 deg C then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species. (author)

  18. Ultrasound and PET-CT image fusion for prostate brachytherapy image guidance

    International Nuclear Information System (INIS)

    Hasford, F.

    2015-01-01

    Fusion of medical images between different cross-sectional modalities is widely used, mostly where functional images are fused with anatomical data. Ultrasound has for some time now been the standard imaging technique used for treatment planning of prostate cancer cases. While this approach is laudable and has yielded some positive results, latest developments have been the integration of images from ultrasound and other modalities such as PET-CT to compliment missing properties of ultrasound images. This study has sought to enhance diagnosis and treatment of prostate cancers by developing MATLAB algorithms to fuse ultrasound and PET-CT images. The fused ultrasound-PET-CT image has shown to contain improved quality of information than the individual input images. The fused image has the property of reduced uncertainty, increased reliability, robust system performance, and compact representation of information. The objective of co-registering the ultrasound and PET-CT images was achieved by conducting performance evaluation of the ultrasound and PET-CT imaging systems, developing image contrast enhancement algorithm, developing MATLAB image fusion algorithm, and assessing accuracy of the fusion algorithm. Performance evaluation of the ultrasound brachytherapy system produced satisfactory results in accordance with set tolerances as recommended by AAPM TG 128. Using an ultrasound brachytherapy quality assurance phantom, average axial distance measurement of 10.11 ± 0.11 mm was estimated. Average lateral distance measurements of 10.08 ± 0.07 mm, 20.01 ± 0.06 mm, 29.89 ± 0.03 mm and 39.84 ± 0.37 mm were estimated for the inter-target distances corresponding to 10 mm, 20 mm, 30 mm and 40 mm respectively. Volume accuracy assessment produced measurements of 3.97 cm 3 , 8.86 cm 3 and 20.11 cm 3 for known standard volumes of 4 cm 3 , 9 cm 3 and 20 cm 3 respectively. Depth of penetration assessment of the ultrasound system produced an estimate of 5.37 ± 0.02 cm

  19. Cross-sectional Imaging Review of Tuberous Sclerosis.

    Science.gov (United States)

    Krishnan, Anant; Kaza, Ravi K; Vummidi, Dharshan R

    2016-05-01

    Tuberous sclerosis complex (TSC) is a multisystem, genetic disorder characterized by development of hamartomas in the brain, abdomen, and thorax. It results from a mutation in one of 2 tumor suppressor genes that activates the mammalian target of rapamycin pathway. This article discusses the origins of the disorder, the recently updated criteria for the diagnosis of TSC, and the cross-sectional imaging findings and recommendations for surveillance. Familiarity with the diverse radiological features facilitates diagnosis and helps in treatment planning and monitoring response to treatment of this multisystem disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Short linear shadows connecting pulmonary segmental arteries to oblique fissures in volumetric thin-section CT images: comparing CT, micro-CT and histopathology

    International Nuclear Information System (INIS)

    Guan, Chun-Shuang; Ma, Da-Qing; Chen, Jiang-Hong; Chen, Bu-Dong; Cui, Dun; Zhang, Yan-Song; Liu, Wei-Hua

    2016-01-01

    To retrospectively evaluate short linear shadows connecting pulmonary segmental arteries to oblique fissures in thin-section CT images and determine their anatomical basis. CT scanning was performed on 108 patients and 11 lung specimens with no lung diseases around the oblique fissures or hilar. Two radiologists evaluated the imaging. The parameters included length, thickness of short linear shadows, pulmonary segmental artery variations, and traction interlobar fissures, etc. The short linear shadows were not related to sex, age, or smoking history. The lengths of the short linear shadows were generally within 10 mm. The thicknesses of the short linear shadows ranged from 1 to 2 mm. Of the patients, 26.9 % showed pulmonary segmental artery variations; 66.7 % of short linear shadows pulled oblique fissures. In three-dimensional images, the short linear shadows appeared as arc planes, with one side edge connected to the oblique fissure, one side edge connected to a pulmonary segmental artery. On the tissue slices, the short linear shadow exhibited a band structure composed of connective tissues, small blood vessels, and small lymphatic vessels. Short linear shadows are a type of normal intrapulmonary membranes and can maintain the integrity of the oblique fissures and hilar structure. (orig.)

  1. Comparison of the image quality between volumetric and conventional high-resolution CT with 64-slice row CT

    International Nuclear Information System (INIS)

    Gao Yanli; Zhang Lei; Zhao Xia; Ma Min; Zhai Renyou

    2008-01-01

    Objective: To compare the image quality between volumetric high-resolution CT (VHRCT) and conventional high-resolution CT (CHRCT), and investigate the feasibility of VHRCT. Methods: Catphan 412 phantom was scanned with protocols of CHRCT and VHRCT on a set of GE Lightspeed VCT. The spatial-resolution (LP/cm), noise (standard deviation in an ROI) and radiation close (CTDI) were recorded for each CT scan. Difference of noise between CHRCT and VHRCT were evaluated by paired t test. In clinical study, 32 patients were scanned with VHRCT and CHRCT protocols. The image quality of CHRCT and VHRCT was rated and compared. The quality difference between CHRCT and VHRCT was assessed by Wilcoxon paired signed rank sum test. Results: In phantom study, the in-plane spatial-resolution of both VHRCT and CHRCT was 11 LP/cm for axial images and 12 LP/cm for coronal reformatted images. The noise of VHRCT and CHRCT was (69.18±2.77)HU and (54.62±2.12) HU respectively (t=-15.929, P 0.05). The quality assessment scores of VHRCT coronal reformatted images and CHRCT coronal reformatted images were 3.05 and 1.88 respectively with significant difference (Z= -5.088, P<0.01). Conclusion: The image quality of VHRCT cross-sectional image is similar to that of CHRCT. Multiplanar images with high resolution of VHRCT are recommended. The radiation dose of VHRCT remains to be optimized. (authors)

  2. Correlative 3D-imaging of Pipistrellus penis micromorphology: Validating quantitative microCT images with undecalcified serial ground section histomorphology.

    Science.gov (United States)

    Herdina, Anna Nele; Plenk, Hanns; Benda, Petr; Lina, Peter H C; Herzig-Straschil, Barbara; Hilgers, Helge; Metscher, Brian D

    2015-06-01

    Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D-microtomographic (microCT, µCT) images of bacula and iodine-stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface-stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT-images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y-shaped baculum in all studied Pipistrellus species has a proximal base with two club-shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum-surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT-images from all four Pipistrellus species. © 2015 Wiley Periodicals, Inc.

  3. Abdominal and Pelvic CT

    Medline Plus

    Full Text Available ... special computer program processes this large volume of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT imaging is sometimes compared to looking into ...

  4. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... special computer program processes this large volume of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT imaging is sometimes compared to looking into ...

  5. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... special computer program processes this large volume of data to create two-dimensional cross-sectional images of your body, which are then displayed on a monitor. CT imaging is sometimes compared to looking into ...

  6. Abdominal and Pelvic CT

    Medline Plus

    Full Text Available ... images or pictures of the inside of the body. The cross-sectional images generated during a CT ... very much like other x-ray examinations. Different body parts absorb the x-rays in varying degrees. ...

  7. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... images or pictures of the inside of the body. The cross-sectional images generated during a CT ... very much like other x-ray examinations. Different body parts absorb the x-rays in varying degrees. ...

  8. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... images or pictures of the inside of the body. The cross-sectional images generated during a CT ... very much like other x-ray examinations. Different body parts absorb the x-rays in varying degrees. ...

  9. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients

    Energy Technology Data Exchange (ETDEWEB)

    Le Faivre, Julien; Khung, Suonita; Faivre, Jean-Baptiste; Remy, Jacques; Remy-Jardin, Martine [University of Lille, Department of Thoracic Imaging, Hospital Calmette, Lille (France); Duhamel, Alain [University of Lille, Department of Biostatistics, Lille (France); Lamblin, Nicolas [University of Lille, Department of Cardiology, Cardiology Hospital, Lille (France)

    2016-11-15

    To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. (orig.)

  10. Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator

    International Nuclear Information System (INIS)

    Kanamori, Takahiro; Kamata, Shouji; Ito, Shinichi.

    1989-01-01

    A prototype high energy X-ray CT (computed tomography) system has been developed which employs a linear accelerator as the X-ray source (max. photon energy: 12 MeV). One problem encountered in development of this CT system was to reduce the scattered photons from adjacent detectors, i.e. crosstalk, due to high energy X-rays. This crosstalk was reduced to 2% by means of detector shields using tungsten spacers. Spatial resolution was not affected by such small crosstalk as confirmed by numerical simulations. A second problem was to reduce the scattered photons from the test object. This was done using collimators. A third concern was to realize a wide dynamic range data processing which would allow applications to large and dense objects. This problem was solved by using a sample and hold data acquisition method to reduce the dark current of the photo detectors. The dynamic range of this system was experimentally confirmed over 60 dB. It was demonstrated that slits (width: 2 mm) in an iron object (diameter: 25 cm) could be imaged by this prototype CT system. (author)

  11. Development of a 3-dimensional CT using an image intensifier

    International Nuclear Information System (INIS)

    Toyofuku, Fukai

    1992-01-01

    A prototype of three-dimensional CT (Fluoroscopic CT) has been developed using an image intensifier as a two-dimensional X-ray detector. A patient on a rotating table is projected onto an image intensifier by a cone beam of X-ray from the X-ray tube. A total of 390 projection images covering 180 degrees are acquired in a single scan (13 sec) and stored on a digital frame recorder (512 x 256 x 8-bit x 480). The transverse axial images are reconstructed by using the usual CT reconstruction algorithm, while longitudinal section images such as sagittal, coronal, oblique, and panoramic images are obtained by directly back-projecting the filtered projection image onto the sections. The radiation exposure was measured with an ionization chamber, and the exposure of the present fluoroscopic CT is about 10 to 20 times less than that of conventional X-ray CT. A similar monochromatic X-ray CT system has also been developed using synchrotron radiation. Large area parallel X-rays are obtained from a wiggler beam using a silicon crystal with [311] asymmetric reflection. By taking two images above and below iodine K-absorption edge (33.17 keV), iodine image is obtained. (author)

  12. Atlas of axial, sagittal and coronal anatomy with CT and MRI

    International Nuclear Information System (INIS)

    Christoforidis, A.J.

    1988-01-01

    This book correlates CT scans and nuclear magnetic resonance images with cross sections of all parts of the body-head and neck, thorax, abdomen, male and female pelvis and extremities. Cross sections are fixed, and images are made from the sections to provide exact section-to-scan correlation. Shows all three cross-sectional axes. Includes selected pathologic cases to demonstrate technique

  13. Piriformis muscle syndrome. A cross-sectional imaging study in 116 patients and evaluation of therapeutic outcome

    Energy Technology Data Exchange (ETDEWEB)

    Vassalou, Evangelia E. [Heraklion University Hospital, Department of Medical Imaging, Voutes, Crete (Greece); Katonis, Pavlos [University Hospital of Heraklion, Department of Orthopaedics, Voutes, Crete (Greece); Karantanas, Apostolos H. [Heraklion University Hospital, Department of Medical Imaging, Voutes, Crete (Greece); University of Crete, Department of Radiology, Voutes, Crete (Greece)

    2018-02-15

    To increase the clinical awareness of piriformis muscle syndrome (PMs) by reporting cross-sectional imaging findings, the clinical impact of imaging studies and treatment outcome. Within a 10-year-period, 116 patients referred for radiological evaluation of clinically suspected PMs, with excluded lumbar pathology related to symptomatology, were prospectively studied with MRI and/or computed tomography (CT). Piriformis muscle (PM), sciatic nerve (SN), piriformis region and sacroiliac joints were evaluated. PMs was categorised into primary/secondary, according to a reported classification system. Treatment decisions were recorded. Outcome was categorised using a 3-point-scale. Seventy-four patients (63.8%) exhibited pathologies related to PMs. Primary causes were detected in 12 and secondary in 62 patients. PM enlargement was found in 45.9% of patients, abnormal PM signal intensity/density in 40.5% and sciatic neuritis in 25.7%. Space-occupying lesions represented the most common related pathology. Treatment proved effective in 5/8 patients with primary and 34/51 patients with secondary PMs. In 34 patients, imaging revealed an unknown underlying medical condition and altered treatment planning. Secondary PMs aetiologies appear to prevail. In suspected PMs, PM enlargement represented the most common imaging finding and space-occupying lesions the leading cause. Imaging had the potential to alter treatment decisions. (orig.)

  14. Piriformis muscle syndrome. A cross-sectional imaging study in 116 patients and evaluation of therapeutic outcome

    International Nuclear Information System (INIS)

    Vassalou, Evangelia E.; Katonis, Pavlos; Karantanas, Apostolos H.

    2018-01-01

    To increase the clinical awareness of piriformis muscle syndrome (PMs) by reporting cross-sectional imaging findings, the clinical impact of imaging studies and treatment outcome. Within a 10-year-period, 116 patients referred for radiological evaluation of clinically suspected PMs, with excluded lumbar pathology related to symptomatology, were prospectively studied with MRI and/or computed tomography (CT). Piriformis muscle (PM), sciatic nerve (SN), piriformis region and sacroiliac joints were evaluated. PMs was categorised into primary/secondary, according to a reported classification system. Treatment decisions were recorded. Outcome was categorised using a 3-point-scale. Seventy-four patients (63.8%) exhibited pathologies related to PMs. Primary causes were detected in 12 and secondary in 62 patients. PM enlargement was found in 45.9% of patients, abnormal PM signal intensity/density in 40.5% and sciatic neuritis in 25.7%. Space-occupying lesions represented the most common related pathology. Treatment proved effective in 5/8 patients with primary and 34/51 patients with secondary PMs. In 34 patients, imaging revealed an unknown underlying medical condition and altered treatment planning. Secondary PMs aetiologies appear to prevail. In suspected PMs, PM enlargement represented the most common imaging finding and space-occupying lesions the leading cause. Imaging had the potential to alter treatment decisions. (orig.)

  15. The reliability of AO classification for distal radius fracture, using CT findings

    International Nuclear Information System (INIS)

    Nakanishi, Yasuaki; Ono, Hiroshi; Furuta, Kazuhiko; Fujitani, Ryoutarou; Ota, Hiroyoshi

    2006-01-01

    The purpose of this study was to assess the reliability of the AO (Association for the Study of Internal Fixation) classification of distal radius fracture, using plain radiographs and 2 cross-sectional computed tomographic (CT) surface images. Five observers independently classified 32 distal radius fractures into 9 groups under AO classification. We established 4 methods for observation. First, using only two-directional radiographs; second, four-directional radiographs; third, CT (axial view) with four-directional radiographs; and fourth, CT (axial and sagittal views) with four-directional radiographs. Kappa statistics were used to establish the relative level of agreement between the observers. Interobserver reliability was poor in both first and second methods in which only plain radiographs were used (κ=0.30 and 0.23, respectively). Furthermore, reliability did not increase in the third method with the addition of 1 CT surface image (κ=0.29). In the fourth method, with the addition of 2 cross-sectional CT surface images, the reliability increased to a moderate level (κ=0.44). Interobserver reliability of the AO system of the classification of distal radius fractures was observed on using 2 cross-sectional CT surface images with four-directional radiographs. (author)

  16. Breast multidetector-row CT with histopathologic correlation

    International Nuclear Information System (INIS)

    Takeuchi, Makiko; Yamashita, Akiyoshi; Ohgi, Kazuyuki; Kobori, Kenichi; Furukawa, Takashi

    2004-01-01

    The purpose of this study was to evaluate the correlation between multidetector-row CT (MDCT) and histopathologic findings using the same MDCT image as the histopathologic cross-section. MDCT with contrast enhancement was performed in 10 patients with breast cancers (8 invasive ductal carcinomas, one invasive lobular carcinoma, and one non-invasive ductal carcinoma). We tried to reconstruct multiplanar reconstructions (MPR) in the same plane as the histopathologic cross-section, and we evaluated the histopathologic findings of the false-positive lesions. In all cases, we obtained the same MDCT image as the histopathologic cross-section. There were 10 main lesions and 18 other lesions. In the other lesions, we found no false-negative lesions and 11 false-positive lesions. False-positive lesions included periductal fibrosis, cystic change, duct papillomatosis, sclerosing adenosis, fibroadenoma, and others. Using MDCT of the breast, it is possible to obtain good correlation between CT images and histopathologic findings. MDCT is thought to be useful in the evaluation CT findings on the basis of histopathologic evidence. (author)

  17. Three-rooted premolar analyzed by high-resolution and cone beam CT.

    Science.gov (United States)

    Marca, Caroline; Dummer, Paul M H; Bryant, Susan; Vier-Pelisser, Fabiana Vieira; Só, Marcus Vinicius Reis; Fontanella, Vania; Dutra, Vinicius D'avila; de Figueiredo, José Antonio Poli

    2013-07-01

    The aim of this study was to analyze the variations in canal and root cross-sectional area in three-rooted maxillary premolars between high-resolution computed tomography (μCT) and cone beam computed tomography (CBCT). Sixteen extracted maxillary premolars with three distinct roots and fully formed apices were scanned using μCT and CBCT. Photoshop CS software was used to measure root and canal cross-sectional areas at the most cervical and the most apical points of each root third in images obtained using the two tomographic computed (CT) techniques, and at 30 root sections equidistant from both root ends using μCT images. Canal and root areas were compared between each method using the Student t test for paired samples and 95 % confidence intervals. Images using μCT were sharper than those obtained using CBCT. There were statistically significant differences in mean area measurements of roots and canals between the μCT and CBCT techniques (P < 0.05). Root and canal areas had similar variations in cross-sectional μCT images and became proportionally smaller in a cervical to apical direction as the cementodentinal junction was approached, from where the area then increased apically. Although variation was similar in the roots and canals under study, CBCT produced poorer image details than μCT. Although CBCT is a strong diagnosis tool, it still needs improvement to provide accuracy in details of the root canal system, especially in cases with anatomical variations, such as the three-rooted maxillary premolars.

  18. Review of Extraskeletal Activity on Tc-99m Methylene Diphosphonate Bone Scintigraphy and Value of Cross-Sectional and SPECT-CT Imaging Correlation.

    Science.gov (United States)

    Bermo, Mohammed; Behnia, Sanaz; Fair, Joanna; Miyaoka, Robert S; Elojeimy, Saeed

    2017-07-31

    Recognizing the different mechanisms and imaging appearance of extraskeletal Tc-99m methylene diphosphonate uptake enhances the diagnostic value of bone scan interpretation. In this article, we present a pictorial review of the different mechanisms of extraskeletal Tc-99m methylene diphosphonate uptake on bone scintigraphy including neoplastic, inflammatory, ischemic, traumatic, excretory, and iatrogenic. We also illustrate through case examples the added value of correlation with cross-sectional and single photon emission computed tomography and computed tomography imaging in localizing and characterizing challenging cases of extraskeletal uptake. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    International Nuclear Information System (INIS)

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru; Nishimura, Michihiko

    2001-01-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  20. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  1. Extranodal lymphoma in the thorax: cross-sectional imaging findings

    International Nuclear Information System (INIS)

    Lee, W.-K.; Duddalwar, V.A.; Rouse, H.C.; Lau, E.W.F.; Bekhit, E.; Hennessy, O.F.

    2009-01-01

    The purpose of this review is to discuss and illustrate the spectrum of appearances of extranodal lymphoma in the thorax, including the lungs, pleura, heart, thymus, chest wall, thoracic spine, and breast, using current cross-sectional imaging techniques, such as multidetector computed tomography, positron-emission tomography/computed tomography, magnetic resonance imaging, and sonography. Extranodal lymphoma can affect any organ or tissue in the thorax, and can be mistaken for other inflammatory or neoplastic conditions. This review should alert the radiologist to consider extranodal lymphoma in the appropriate clinical setting to ensure timely diagnosis, correct staging, and accurate post-treatment evaluation to optimize treatment regimens.

  2. A simple method to approximate liver size on cross-sectional images using living liver models

    International Nuclear Information System (INIS)

    Muggli, D.; Mueller, M.A.; Karlo, C.; Fornaro, J.; Marincek, B.; Frauenfelder, T.

    2009-01-01

    Aim: To assess whether a simple. diameter-based formula applicable to cross-sectional images can be used to calculate the total liver volume. Materials and methods: On 119 cross-sectional examinations (62 computed tomography and 57 magnetic resonance imaging) a simple, formula-based method to approximate the liver volume was evaluated. The total liver volume was approximated measuring the largest craniocaudal (cc), ventrodorsal (vd), and coronal (cor) diameters by two readers and implementing the equation: Vol estimated =ccxvdxcorx0.31. Inter-rater reliability, agreement, and correlation between liver volume calculation and virtual liver volumetry were analysed. Results: No significant disagreement between the two readers was found. The formula correlated significantly with the volumetric data (r > 0.85, p < 0.0001). In 81% of cases the error of the approximated volume was <10% and in 92% of cases <15% compared to the volumetric data. Conclusion: Total liver volume can be accurately estimated on cross-sectional images using a simple, diameter-based equation.

  3. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    Science.gov (United States)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical

  4. Micron-CT using quasi-monochromatic x-rays produced in micro-PIXE

    International Nuclear Information System (INIS)

    Ishii, K.

    2009-01-01

    In ion-atom collision, characteristic X-rays are intensively produced and can be considered as a monochromatic X-ray source. We apply this feature to X-ray CT. By using micro-beams, cross sectional images can be provided with a spatial resolution of about 1 μm. On the basis of this idea, we developed a micron-CT consisting of a micro-beam system and an X-ray CCD camera. A tube holding samples was rotated by a stepping motor and the transmission images of the sample were taken with characteristic K-X-rays of Ti (4.558 keV) produced by 3 MeV proton micro-beams. After image reconstruction, images of cross sections of small objects were obtained with a spatial resolution of 3 μm. Using an absorption edge, we can identify an element in a sample. It is expected that our micron-CT can provide cross sectional images of in-vivo cellular samples and can be applied to a wide range of researches in biology and medicine. (author)

  5. Advanced imaging of the musculoskeletal system: Standard, three-dimensional, and contrast-enhanced CT and MR imaging, and quantitative bone densitometry

    International Nuclear Information System (INIS)

    Resnick, D.; Sartoris, D.J.

    1987-01-01

    This course reviews the application of advanced imaging techniques to a broad spectrum of musculoskeletal disorders. The indications for and utility of standard CT in both the axial and the appendicular skeleton is explored. The combined use of CT with air and contrast arthrography at sites including the hip, knee, and shoulder is discussed. A summary of the proved and potential applications of MR imaging in osseous, articular, bone marrow, and soft-tissue disorders is provided. The utility of intraarticular contrast agents in enhancing the diagnostic capabilities of MR imaging for disorders of hyaline cartilage and and fibrocartilage is demonstrated. The advantages of multiplanar reformation and three-dimensional image reconstruction of cross-sectional imaging data are described in conjunction with the fundamental technological principles of these strategies. Accepted methods as well as investigative techniques for the diagnosis and follow-up of metabolic bone disease are contrasted with regard to relative indications, advantages, and limitations

  6. Impact of CT perfusion imaging on the assessment of peripheral chronic pulmonary thromboembolism: clinical experience in 62 patients.

    Science.gov (United States)

    Le Faivre, Julien; Duhamel, Alain; Khung, Suonita; Faivre, Jean-Baptiste; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine

    2016-11-01

    To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. • Dual-energy computed tomography generates standard diagnostic imaging and lung perfusion analysis. • Depiction of CPE on central arteries relies on standard diagnostic imaging. • Detection of peripheral CPE is improved by perfusion imaging.

  7. Thin-section CT imaging that correlates with pulmonary function tests in obstructive airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hiroaki, E-mail: arakawa@dokkyomed.ac.jp [Department of Radiology, Dokkyo Medical University, 880 Kita-Kobayashi, Mibu, Tochigi 321-0293 (Japan); Fujimoto, Kiminori [Department of Radiology, Kurume University School of Medicine (Japan); Fukushima, Yasutugu [Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University (Japan); Kaji, Yasushi [Department of Radiology, Dokkyo Medical University, 880 Kita-Kobayashi, Mibu, Tochigi 321-0293 (Japan)

    2011-11-15

    Purpose: The purpose of this study was to identify independent CT findings that correlated with pulmonary function tests (PFTs) in patients with obstructive airway diseases. Materials and methods: Sixty-eight patients with obstructive airway disease and 29 normal subjects (mean age, 52 years; 36 men and 61 women) underwent inspiratory and expiratory thin-section CT and PFTs. Patient with obvious emphysema was excluded. Two radiologists independently reviewed the images and semi-quantitatively evaluated lung attenuation (mosaic perfusion, air trapping) and airway abnormalities (extent and severity of bronchial wall thickening and bronchiectasis, bronchiolectasis or centrilobular nodules, mucous plugging). Univariate, multivariate and receiver operating characteristic (ROC) analyses were performed with CT findings and PFTs. Results: Forty-two patients showed obstructive PFTs, 26 symptomatic patients showed near-normal PFTs. On univariate analysis, air trapping and bronchial wall thickening showed highest correlation with obstructive PFTs such as FEV1.0/FVC, MMEF and FEF75 (r ranged from -0.712 to -0.782; p < 0.001), while mosaic perfusion and mucous plugging showed moderate correlation, and bronchiectasis, bronchiolectasis and nodules showed the least, but significant, correlation. Multiple logistic analyses revealed air trapping and bronchial wall thickening as the only significant independent determinants of obstructive PFTs. ROC analysis revealed the cut-off value of air trapping for obstructive PFTs to be one-third of whole lung (area under curve, 0.847). Conclusions: Our study confirmed air trapping and bronchial wall thickening are the most important observations when imaging obstructive PFTs. The cut-off value of air trapping for identifying obstructive PFTs was one-third of lung irrespective of inspiratory CT findings.

  8. A Novel Procedure for Rapid Imaging of Adult Mouse Brains with MicroCT Using Iodine-Based Contrast.

    Directory of Open Access Journals (Sweden)

    Ryan Anderson

    Full Text Available High-resolution Magnetic Resonance Imaging (MRI has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT, especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.

  9. Patterns of Hepatosplenic Brucella Abscesses on Cross-Sectional Imaging: A Review of Clinical and Imaging Features

    NARCIS (Netherlands)

    Heller, Tom; Bélard, Sabine; Wallrauch, Claudia; Carretto, Edoardo; Lissandrin, Raffaella; Filice, Carlo; Brunetti, Enrico

    2015-01-01

    While diffuse involvement of liver and spleen is frequently seen in brucellosis, suppurative abscesses caused by Brucella are less common but well described. With the increased availability of cross-sectional imaging techniques, reports have become more frequent. Four patients with hepatosplenic

  10. Intrathoracic kidney. Diagnostic value of CT scan imaging

    International Nuclear Information System (INIS)

    Baillet, A.M.; Escure, M.N.

    1988-01-01

    Two cases are reported of an ectopic right kidney that was partially intrathoracic in position. Diagnosis was simple from CT scan imaging appearances, the examination being performed to investigate an intrathoracic mass. Images showed a tissular mass within a fatty zone in sections without contrast and the typical appearance of the kidney on sections with contrast [fr

  11. Development of planar CT system for multi-layer PCB inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Youn, Hanbean; Kam, Soohwa; Park, Eunpyeong; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    X-ray defect inspection apparatus can be used in the production line to inspect the PCB. However, a simple X-ray radiography cannot discriminate defects from the multi-layer PCBs because the layers of them overlays the defects. To complement this issue, computed tomography (CT) technology is applied to the NDT system which can offer 3-dimensional information of object. However, CT requires hundreds of projection images to examine a single PCB, hence real-time inspection is nearly impossible. In this study, we develop a planar computed tomography (pCT) system appropriate for the multi-layer PCB inspection. For the image reconstruction of planar cross-section images, we use the digital tomosynthesis (DTS) concept in association with the limited angle scanning. and performance characterization of the pCT system for the PCB inspection. The 3-d Fourier characteristics and more quantitative performance, such as contrast, uniformity, depth resolution will be presented. The cross-sectional images of multi-layer PCBs will also be demonstrated.

  12. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... therapy for brain cancer. In emergency cases, it can reveal internal injuries and bleeding quickly enough to ... cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even ...

  13. Abdominal and Pelvic CT

    Medline Plus

    Full Text Available ... painless, noninvasive and accurate. In emergency cases, it can reveal internal injuries and bleeding quickly enough to ... cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even ...

  14. Thin-section multiplanar reformats from multidetector-row CT data: Utility for assessment of regional tumor extent in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Higashino, Takanori; Ohno, Yoshiharu; Takenaka, Daisuke; Watanabe, Hirokazu; Nogami, Munenobu; Ohbayashi, Chiho; Yoshimura, Masahiro; Satouchi, Miyako; Nishimura, Yoshihiro; Fujii, Masahiko; Sugimura, Kazuro

    2005-01-01

    Purpose: To determine the clinical utility of thin-section multiplanar reformats (MPRs) from multidetector-row CT (MDCT) data sets for assessing the extent of regional tumors in non-small cell lung cancer (NSCLC) patients. Materials and methods: Sixty consecutive NSCLC patients, who were considered candidates for surgical treatment, underwent contrast-enhanced MDCT examinations, surgical resection and pathological examinations. All MDCT examinations were performed with a 4-detector row computed tomography (CT). From each raw CT data set, 5 mm section thickness CT images (routine CT), 1.25 mm section thickness CT images (thin-section CT) and 1.25 mm section thickness sagittal (thin-section sagittal MPR) and coronal images (thin-section coronal MPR) were reconstructed. A 4-point visual score was used to assess mediastinal, interlobar and chest wall invasions on each image set. For assessment of utility in routine clinical practice, mean reading times for each image set were compared by means of Fisher's protected least significant difference (PLSD) test. A receiver operator characteristic (ROC) analysis was performed to determine the diagnostic capability of each of the image data sets. Finally, sensitivity, specificity and accuracy of the reconstructed images were compared by McNemar test. Results: Mean reading times for thin-section sagittal and coronal MPRs were significantly shorter than those for routine CT and thin-section CT (p < 0.05). Areas under the curve (Azs) showing interlobar invasion on thin-section sagittal and coronal MPRs were significantly larger than that on routine CT (p = 0.03), and the Az on thin-section sagittal MPR was also significantly larger than that on routine CT (p = 0.02). Accuracy of chest wall invasion by thin-section sagittal MPR was significantly higher than that by routine CT (p = 0.04). Conclusion: Thin-section multiplanar reformats from multidetector-row CT data sets are useful for assessing the extent of regional tumors in non

  15. Cardiodiagnostic imaging. MRT, CT, echocardiography and other methods

    International Nuclear Information System (INIS)

    Erbel, R.; Kreitner, K.F.; Barkhausen, J.; Thelen, M.

    2007-01-01

    The book presents a differentiated approach to cardiac imaging. The focus is n cardio-MR/-CT and echocardiography. These are highly complex methods involving new equipment, new protocols and indications. The techniques are new and difficult to learn for everybody concerned. MR, CT and echocardiography must always be viewed in the context of other diagnostic methods. The interdisciplinary approach of the book addresses both radiologists and cardiologists and relies on the vast experience of the authors. The book offers more than 500 large high-quality reference images reflecting the latest state of the art. It has amethodological section in which the current methods are described (X-ray, echocardiography, nuclear medicine, angiography, CT, MRT etc.) along with their advantages and shortcomings, and a clinical section in which the main indications are described in the common standardized way (anatomy, clinical picture, interpretation, differential diagnosis). (orig.)

  16. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  17. Clinical and CT imaging features of abdominal fat necrosis

    International Nuclear Information System (INIS)

    Zhao Jinkun; Bai Renju

    2013-01-01

    Fat necrosis is a common pathological change at abdominal cross-sectional imaging, and it may cause abdominal pain, mimic pathological change of acute abdomen, or be asymptomatic and accompany other pathophysiologic processes. Fat necrosis is actually the result of steatosis by metabolism or mechanical injury. Common processes that are present in fat necrosis include epiploic appendagitis, infarction of the greater omentum, pancreatitis, and fat necrosis related to trauma or ischemia. As a common fat disease, fat necrosis should be known by clinicians and radiologists. Main content of this text is the clinical symptoms and CT findings of belly fat necrosis and related diseases. (authors)

  18. Dynamic CT Perfusion Imaging for the Detection of Crossed Cerebellar Diaschisis in Acute Ischemic Stroke

    International Nuclear Information System (INIS)

    Jeon, Young Wook; Kim, Seo Hyun; Lee, Ji Young; Whang, Kum; Kim, Myung Soon; Kim, Young Ju; Lee, Myeong Sub; Brain Reserch Group

    2012-01-01

    Although the detection of crossed cerebellar diaschisis (CCD) by means of different imaging modalities is well described, little is known about its diagnosis by computed tomography perfusion (CTP) imaging. We investigated the detection rate of CCD by CTP imaging and the factors related to CCD on CTP images in patients with acute ischemic stroke. CT perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time-to-peak (TTP) obtained from 81 consecutive patients affected by an acute ischemic stroke were retrospectively reviewed. Whole-brain perfusion maps were obtained with a multichannel CT scanner using the toggling-table technique. The criteria for CCD was a unilateral supratentorial ischemic lesion and an accompanying decrease in perfusion of the contralateral cerebellar hemisphere on the basis of CTP maps by visual inspection without a set threshold. Maps were quantitatively analyzed in CCD positive cases. The criteria for CCD were fulfilled in 25 of the 81 cases (31%). Detection rates per CTP map were as follows: MTT (31%) > TTP (21%) > CBF (9%) > CBV (6%). Supratentorial ischemic volume, degree of perfusion reduction, and infratentorial asymmetry index correlated strongly (R, 0.555-0.870) and significantly (p < 0.05) with each other in CCD-positive cases. It is possible to detect CCD on all four of the CTP-based maps. Of these maps, MTT is most sensitive in detecting CCD. Our data indicate that CTP imaging is a valid tool for the diagnosis of CCD in patients affected by an acute hemispheric stroke.

  19. Cross-sectional imaging of complicated urinary infections affecting the lower tract and male genital organs

    Directory of Open Access Journals (Sweden)

    Massimo Tonolini

    2016-06-01

    Full Text Available Abstract Complicated urinary tract infections (C-UTIs are those associated with structural or functional genitourinary abnormalities or with conditions that impair the host defence mechanisms, leading to an increased risk of acquiring infection or failing therapy. C-UTIs occur in patients with risk factors such as neurogenic dysfunction, bladder outlet obstruction, obstructive uropathy, bladder catheterisation, urologic instrumentation or indwelling stent, urinary tract post-surgical modifications, chemotherapy- or radiation-induced damage, renal impairment, diabetes and immunodeficiency. Multidetector CT and MRI allow comprehensive investigation of C-UTIs and systemic infection from an unknown source. Based upon personal experience at a tertiary care hospital focused on the treatment of infectious illnesses, this pictorial essay reviews with examples the clinical features and cross-sectional imaging findings of C-UTIs affecting the lower urinary tract and male genital organs. The disorders presented include acute infectious cystitis, bladder mural abscesses, infections of the prostate and seminal vesicles, acute urethritis and related perineal abscesses, funiculitis, epididymo-orchitis and scrotal abscesses. Emphasis is placed on the possible differential diagnoses of lower C-UTIs. The aim is to provide radiologists greater familiarity with these potentially severe disorders which frequently require intensive in-hospital antibiotic therapy, percutaneous drainage or surgery. Teaching Points • Complicated urinary tract infections occur in patients with structural or functional risk factors. • CT and MRI comprehensively investigate complicated urinary infections and sepsis from unknown sources. • Infections of the urinary bladder, prostate, seminal vesicles, urethra and scrotum are presented. • Emphasis is placed on differential diagnoses of complicated lower urogenital infections. • Unsuspected urinary infections may be detected on CT

  20. The relationship between image quality and CT dose index of multi-slice low-dose chest CT

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Shao Jiang; Shi Jingyun; You Zhengqian; Li Shijun; Xue Yongming

    2003-01-01

    Objective: To explore the rationality and possibility of multi-slice low-dose CT scan in the examination of the chest. Methods: (1) X-ray dose index measurement: 120 kV tube voltage, 0.75 s rotation, 8 mm and 3 mm slice thickness, and the tube current setting of 115.0, 40.0, 25.0, and 7.5 mAs were employed in every section. The X-ray radiation dose was measured and compared statistically. (2) phantom measurement of homogeneity and noise: The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm sections, and every slice was scanned using tube current of 115.0, 40.0, 25.0, and 7.5 mAs. Five same regions of interest were measured on every image. The homogeneity and noise level of CT were appraised. (3) The multi-slice low-dose CT in patients: 30 patients with mass and 30 with patch shadow in the lung were selected randomly. The technical parameters were 120 kV, 0.75 s, 8 mm and 3 mm slice thickness. 115.0, 40.0, 25.0, 15.0, and 7.5 mAs tube current were employed in each same slice. Otherwise, 15 cases with helical scan were examined using 190, 150, 40, 25, and 15 mAs tube current. The reconstruction images of MIP, MPR, CVR, HRCT, 3D, CT virtual endoscopy, and variety of interval reconstruction were compared. (4) Evaluation of image quality: CT images were evaluated by four doctors using single-blind method, and 3 degrees including normal image, image with few artifact, and image with excessive artifact, were employed and analyzed statistically. Results: (1) The CT dose index with 115.0 mAs tube current exceeded those of 40.0, 25.0, and 7.5 mAs by about 60%, 70%, and 85%, respectively. (2) The phantom measurement showed that the lower of CT dose the lower of homogeneity, the lower of CT dose the higher of noise level. (3) Result of image quality evaluation: The percentage of the normal image had no significant difference between 8 and 3 mm in 115, 40, and 25 mAs (P>0.05). Conclusion: Multi-slice low-dose chest CT technology may protect the patients and guarantee the

  1. Cross-sectional imaging of the Fontan circuit in adult congenital heart disease

    International Nuclear Information System (INIS)

    Lewis, G.; Thorne, S.; Clift, P.; Holloway, B.

    2015-01-01

    The Fontan circuit is the result of a palliative surgical procedure that is performed in patients with a functionally single ventricle cardiac anomaly. The success of this operation has resulted in an increasing population of adults with this anatomy and physiology. The purpose of this article is to familiarize the general radiologist with the expected anatomy and cross-sectional imaging findings, highlight special imaging considerations, and examine the common complications that are encountered in this group of patients

  2. Transconvolution and the virtual positron emission tomograph—A new method for cross calibration in quantitative PET/CT imaging

    International Nuclear Information System (INIS)

    Prenosil, George A.; Weitzel, Thilo; Hentschel, Michael; Klaeser, Bernd; Krause, Thomas

    2013-01-01

    Gaussian distribution were introduced. Furthermore, simulation of a virtual PET system provided a standard imaging system with clearly defined properties to which the real PET systems were to be matched. A Hann window served as the modulation transfer function for the virtual PET. The Hann's apodization properties suppressed high spatial frequencies above a certain critical frequency, thereby fulfilling the above-mentioned boundary conditions. The determined point spread functions were subsequently used by the novel Transconvolution algorithm to match different PET/CT systems onto the virtual PET system. Finally, the theoretically elaborated Transconvolution method was validated transforming phantom images acquired on two different PET systems to nearly identical data sets, as they would be imaged by the virtual PET system. Results: The proposed Transconvolution method matched different PET/CT-systems for an improved and reproducible determination of a normalized activity concentration. The highest difference in measured activity concentration between the two different PET systems of 18.2% was found in spheres of 2 ml volume. Transconvolution reduced this difference down to 1.6%. In addition to reestablishing comparability the new method with its parameterization of point spread functions allowed a full characterization of imaging properties of the examined tomographs. Conclusions: By matching different tomographs to a virtual standardized imaging system, Transconvolution opens a new comprehensive method for cross calibration in quantitative PET imaging. The use of a virtual PET system restores comparability between data sets from different PET systems by exerting a common, reproducible, and defined partial volume effect.

  3. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami

    1998-01-01

    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  4. Lung cancer mimicking lung abscess formation on CT images.

    Science.gov (United States)

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  5. CT image reconstruction of steel pipe section from few projections using the method of rotating polar-coordinate

    International Nuclear Information System (INIS)

    Peng Shuaijun; Wu Zhifang

    2008-01-01

    Fast online inspection in steel pipe production is a big challenge. Radiographic CT imaging technology, a high performance non-destructive testing method, is quite appropriate for inspection and quality control of steel pipes. The method of rotating polar-coordinate is used to reconstruct the steel pipe section from few projections with the purpose of inspecting it online. It reduces the projection number needed and the data collection time, and accelerates the reconstruction algorithm and saves the inspection time evidently. The results of simulation experiment and actual experiment indicate that the image quality and reconstruction time of rotating polar-coordinate method meet the requirements of inspecting the steel tube section online basically. The study is of some theoretical significance and the method is expected to be widely used in practice. (authors)

  6. Measurements of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner

    International Nuclear Information System (INIS)

    Fujii, Naoko; Katada, Kazuhiro; Yoshioka, Satoshi; Takeuchi, Kenji; Takasu, Akihiko; Naito, Kensei

    2005-01-01

    Using high-resolution isotropic volume data obtained by 0.5 mm, 4-row multislice CT, cross-sectional observation of the auditory ossicles is possible from any desired direction without difficulty in high-resolution multiplanar reconstruction (HR-MPR) images, also distortion-free three-dimensional images of the ossicles are generated in three-dimensional CT (3D-CT) images. We measured angles of fifty normal ossicles relative to the reference plane, which has been defined as a plane through the bilateral infraorbital margins to the middle portion of the external auditory canal. Based on the results of angle measurement, four optimal sections of the ossicles for efficient viewing to the ossicular chain were identified. To understand the position of the angle measurement and the four sections, the ossicles and the reference plane were reconstructed in the 3D-CT images. As the result of observation of the ossicles and the reference plane, the malleus was parallel to the incudal long process and perpendicular to the reference plane. As the results of angle measurement, the mean angle of the tympanic portion of the facial nerve relative to the reference plane in the sagittal plane was found to be 17 deg, and the mean angle of the stapedial crura relative to the reference plane in the sagittal plane was found to be 6 deg. The mean angle of the stapes relative to the reference plane in the coronal plane was 44 deg, and the mean angle of the incudal long process relative to the stapes in the coronal plane was 89 deg. In 80% of ears, the stapes extended straight from the incudal long process. Image reconstruction technique for viewing four sections of the ossicles was investigated. Firstly, the image of the malleal head and the incudal short process was identified in the axial plane. Secondly, an image of the malleus along the malleal manubrium was reconstructed in the coronal plane. Thirdly, the image of the incudal long process was seen immediately behind the malletis image

  7. Mediastinal and hilar lymphadenopathy: cross-referenced anatomy on axial and coronal images displayed by using multi-detector row CT

    International Nuclear Information System (INIS)

    Lee, Ju Hyun; Lee, Kyung Soo; Kim, Tae Sung; Yi, Chin A; Cho, Jae Min; Lee, Min Hee

    2003-01-01

    The accurate evaluation of mediastinal and pulmonary hilar lymphadenopathy, especially in patients with lung cancer, is important for determining treatment options and evaluating the response to therapy. To indicate nodal location in detail, mediastinal and hilar lymph nodes have been assigned to one of 14 nodal stations. Mediastinal nodes of greater than 10 mm short-axis diameter are regarded as abnormal, irrespective of their nodal station, while hilar nodes are considered abnormal if their diameter is greater than 10 mm in any axis or they are convex compared to surrounding lung. By providing multiplanar images, multi-detector row CT allows detailed evaluation of thoracic anatomic structures more easily than in the past, when axial images only were available. At cross-referenced imaging, a lymph node depicted at axial imaging in one anatomical location can be visualized simultaneously and automatically at coronal imaging at the exactly corresponding anatomical location. Cross-referenced coincidental axial and coronal images help assess both the size and morphology of mediastinal and hilar lymph nodes

  8. Localized thin-section CT with radiomics feature extraction and machine learning to classify early-detected pulmonary nodules from lung cancer screening

    Science.gov (United States)

    Tu, Shu-Ju; Wang, Chih-Wei; Pan, Kuang-Tse; Wu, Yi-Cheng; Wu, Chen-Te

    2018-03-01

    Lung cancer screening aims to detect small pulmonary nodules and decrease the mortality rate of those affected. However, studies from large-scale clinical trials of lung cancer screening have shown that the false-positive rate is high and positive predictive value is low. To address these problems, a technical approach is greatly needed for accurate malignancy differentiation among these early-detected nodules. We studied the clinical feasibility of an additional protocol of localized thin-section CT for further assessment on recalled patients from lung cancer screening tests. Our approach of localized thin-section CT was integrated with radiomics features extraction and machine learning classification which was supervised by pathological diagnosis. Localized thin-section CT images of 122 nodules were retrospectively reviewed and 374 radiomics features were extracted. In this study, 48 nodules were benign and 74 malignant. There were nine patients with multiple nodules and four with synchronous multiple malignant nodules. Different machine learning classifiers with a stratified ten-fold cross-validation were used and repeated 100 times to evaluate classification accuracy. Of the image features extracted from the thin-section CT images, 238 (64%) were useful in differentiating between benign and malignant nodules. These useful features include CT density (p  =  0.002 518), sigma (p  =  0.002 781), uniformity (p  =  0.032 41), and entropy (p  =  0.006 685). The highest classification accuracy was 79% by the logistic classifier. The performance metrics of this logistic classification model was 0.80 for the positive predictive value, 0.36 for the false-positive rate, and 0.80 for the area under the receiver operating characteristic curve. Our approach of direct risk classification supervised by the pathological diagnosis with localized thin-section CT and radiomics feature extraction may support clinical physicians in determining

  9. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  10. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    International Nuclear Information System (INIS)

    Sattler, Bernhard; Lee, John A.; Lonsdale, Markus; Coche, Emmanuel

    2010-01-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and

  11. CT of the heart

    International Nuclear Information System (INIS)

    Lipton, M.J.

    1986-01-01

    Advances based upon the detector elements instead of X-ray film have greatly increased the power of X-ray imaging. Computed tomography (CT) creates cross sectional rather than projected images. Recently, high speed CT devices have been developed for cardiovascular studies. The Cine-CT scanner employs a scanning electron beam deflected on an extended tungsten target ring. Fast scans of 50 millisecond exposures at multiple levels can provide information concerning blood flow in vessels and tissues, myocardial wall motion, valve integrity, coronary bypass graft patency and proximal coronary artery anatomy. Cine-CT dynamic scanning can also provide volume imaging with small quantities (0.05 - 1.5 ml/kg) of contrast medium administered via peripheral vein injections. Cine-CT provides simultaneous measurements of cardiac dimensions and function and is rapidly becoming a new tool for quantitating myocardial blood flow, cardiac chamber volumes and wall mechanics. The future outlook is very promising for this three-dimensional cine-CT technique with high spatial resolution. High speed CT should provide unique diagnostic information and as the technology continues to improve at a rapid speed, this new imaging modality could be a challenge for angiography. (Auth.)

  12. Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT

    Directory of Open Access Journals (Sweden)

    Baojun Li

    2013-01-01

    Full Text Available Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR method without causing cross-contamination artifacts. Methods. The proposed algorithm diffuses both basis material density images (e.g., water and iodine at the same time using a novel correlated diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the percent noise reduction. Results. Both algorithms have significantly reduced the noises of basis material density images in all cases. The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively. However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18 mg/cc with a maximum of 58.7% (or 8.97 mg/cc in this study. This is evident in the water density images as massive cross-contaminations are seen in all five clinical cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69 mg/cc with a maximum of 7.6% (or 1.31 mg/cc. The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. Conclusion. The proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging, with minimized cross-contaminations compared to the ACNR algorithm.

  13. Volumetric CT-images improve testing of radiological image interpretation skills

    Energy Technology Data Exchange (ETDEWEB)

    Ravesloot, Cécile J., E-mail: C.J.Ravesloot@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Schaaf, Marieke F. van der, E-mail: M.F.vanderSchaaf@uu.nl [Department of Pedagogical and Educational Sciences at Utrecht University, Heidelberglaan 1, 3584 CS Utrecht (Netherlands); Schaik, Jan P.J. van, E-mail: J.P.J.vanSchaik@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Cate, Olle Th.J. ten, E-mail: T.J.tenCate@umcutrecht.nl [Center for Research and Development of Education at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Gijp, Anouk van der, E-mail: A.vanderGijp-2@umcutrecht.nl [Radiology Department at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, Room E01.132 (Netherlands); Mol, Christian P., E-mail: C.Mol@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands); Vincken, Koen L., E-mail: K.Vincken@umcutrecht.nl [Image Sciences Institute at University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht (Netherlands)

    2015-05-15

    Rationale and objectives: Current radiology practice increasingly involves interpretation of volumetric data sets. In contrast, most radiology tests still contain only 2D images. We introduced a new testing tool that allows for stack viewing of volumetric images in our undergraduate radiology program. We hypothesized that tests with volumetric CT-images enhance test quality, in comparison with traditional completely 2D image-based tests, because they might better reflect required skills for clinical practice. Materials and methods: Two groups of medical students (n = 139; n = 143), trained with 2D and volumetric CT-images, took a digital radiology test in two versions (A and B), each containing both 2D and volumetric CT-image questions. In a questionnaire, they were asked to comment on the representativeness for clinical practice, difficulty and user-friendliness of the test questions and testing program. Students’ test scores and reliabilities, measured with Cronbach's alpha, of 2D and volumetric CT-image tests were compared. Results: Estimated reliabilities (Cronbach's alphas) were higher for volumetric CT-image scores (version A: .51 and version B: .54), than for 2D CT-image scores (version A: .24 and version B: .37). Participants found volumetric CT-image tests more representative of clinical practice, and considered them to be less difficult than volumetric CT-image questions. However, in one version (A), volumetric CT-image scores (M 80.9, SD 14.8) were significantly lower than 2D CT-image scores (M 88.4, SD 10.4) (p < .001). The volumetric CT-image testing program was considered user-friendly. Conclusion: This study shows that volumetric image questions can be successfully integrated in students’ radiology testing. Results suggests that the inclusion of volumetric CT-images might improve the quality of radiology tests by positively impacting perceived representativeness for clinical practice and increasing reliability of the test.

  14. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    Science.gov (United States)

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  15. Multislice CT imaging of pulmonary embolism

    International Nuclear Information System (INIS)

    Schoepf, J.U.; Kessler, M.A.; Rieger, C.T.; Herzog, P.; Wiesgigl, S.; Becker, C.R.; Exarhos, D.N.; Reiser, M.F.

    2001-01-01

    In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses. (orig.)

  16. Spatial variation of the section sensitivity profile in helical CT

    International Nuclear Information System (INIS)

    Katsuta, Shoichi; Hanai, Kouzou; Kunii, Takeo; Kimura, Haruki; Imabayashi, Wataru; Muramatsu, Yoshihisa

    1999-01-01

    The section sensitivity profile (SSP) is adequate to express the properties of helical CT images. Although SSP measurement has been performed only at the center of the imaging field, we applied it to off-center positions using a metal bead and controlled tracking technique. The experimental results indicated that SSP curves vary in the imaging field according to the relative position of the x-ray focus. The results were in agreement with computer simulations. (author)

  17. Optimal reconstructed section thickness for the detection of liver lesions with multidetector CT

    International Nuclear Information System (INIS)

    Soo, G.; Lau, K.K.; Yik, T.; Kutschera, P.

    2010-01-01

    Aim: To evaluate the impact of different reconstructed section thicknesses on liver lesion detection using multidetector computed tomography (CT). Methods: Fifty-three patients were examined using a 16-section CT machine with axial reconstructions provided at 2.5, 5, 7.5, and 10 mm section thicknesses. Images of different reconstructed section thicknesses from different patients were presented in random order to three independent, blinded radiologists for review at multiple sessions. All images were then reviewed by three radiologists in a common session. Consensus was reached following review of the previous interpretation results and results of follow-up imaging regarding the number of true liver lesions (n = 101) for comparison. Results: Mean detection rates were as follows: 93/101 lesions detected with the 2.5 mm section thickness, 98/101 lesions detected at the 5 mm section thickness, 78/101 lesions detected at the 7.5 mm section thickness, and 54/101 lesions detected at the 10 mm section thickness. Lesions missed at the 2.5 mm section thickness were due to masking by image noise. There was particular difficulty detecting subcapsular lesions and lesions adjacent to fissures or the gall bladder at the 7.5 mm and 10 mm section thicknesses. Conclusion: The optimal reconstructed section thickness for lesion detection in the liver was 5 mm.

  18. Prevalence of ligamentum arteriosum calcification on multi-section spiral CT and digital radiography.

    Science.gov (United States)

    Hong, Gil-Sun; Goo, Hyun Woo; Song, Jae-Woo

    2012-06-01

    To investigate the prevalence of ligamentum arteriosum calcification (LAC) on multi-section spiral CT and digital radiography. Five hundred and eight children and 232 adults who performed multi-section chest CT were included in this study and were divided into nine age groups: A (0-5 years), B (6-10 years), C (11-15 years), D (16-20 years), E (21-30 years), F (31-40 years), G (41-50 years), H (51-60 years), and I (61-70 years). Two radiologists assessed the presence of LAC on axial and coronal CT images, defined as focal calcific density on both or on one plane with attenuation >100 Hounsfield unit. The prevalence of LAC on CT was compared between children and adults, and between unenhanced and enhanced CT in children. The prevalence of LAC on digital radiography was evaluated in 476 children. The prevalence of definite LAC on unenhanced multi-section CT was significantly higher in children (37.8 %) than in adults (11.2 %) (P CT were 4.5, 12.8, 8.1, 19.0, 0.0, 0.0, 0.0, 2.0, and 1.9 %. In children, the prevalence of LAC was significantly higher on unenhanced than on enhanced CT (37.8 vs. 16.4 %, P children. LAC is frequently observed in children and adults on multi-section spiral CT, more frequently than previously reported. Compared with that on multi-section spiral CT, the prevalence of LAC on digital radiography is substantially low.

  19. Integrating imaging FTIR and secondary ion mass spectrometry for the analysis of embedded paint cross-sections

    DEFF Research Database (Denmark)

    Heeren, Ron M.A.; Boon, Jaap J.; Noble, Petria

    1999-01-01

    Novel chemical imaging techniques provide new insight in the organic chemistry of embedded paint cross-sections. FTIR imaging microscopy delivers a two-dimensional image of the functional group distribution, revealing chemical aspects of the binding medium in each individual paint layer. Secondar...... and identity of various lead soaps and lead hydroxychloride in these inclusions....

  20. Appropriate use of medical imaging in two Spanish public hospitals: a cross-sectional analysis

    Science.gov (United States)

    Vilar-Palop, Jorge; Hernandez-Aguado, Ildefonso; Pastor-Valero, María; Vilar, José; González-Alvarez, Isabel; Lumbreras, Blanca

    2018-01-01

    Objectives To determine the appropriateness of medical imaging examinations involving radiation and to estimate the effective radiation dose and costs associated. Design Cross-sectional retrospective study. Setting Two Spanish public tertiary hospitals. Participants 2022 medical imaging tests were extracted from the radiology information system in February and March of 2014. MRI and ultrasound examinations were excluded. Primary and secondary outcome measures Five outcomes were set independently by at least two researchers according to four guidelines: (1) appropriate; (2) inappropriate; (3) inappropriate due to repetition, if the timing to carry out next diagnostic tests was incorrect according to guidelines; (4) not adequately justified, if the referral form did not include enough clinical information to allow us to understand the patient’s clinical condition; and (5) not included in the guidelines, if the referral could not be matched to a clinical scenario described in the guidelines. We estimated the prevalence of the five categories according to relevant clinical and sociodemographic variables and the effective radiation dose and costs for each category. Results Approximately half of the imaging tests were deemed as appropriate (967, 47.8%) while one-third (634, 31.4%) were considered inappropriate. 19.6% of the effective dose and 25.2% of the cost were associated with inappropriate tests. Women were less likely than men to have an imaging test classified as appropriate (adjusted OR 0.70,95% CI 0.57 to 0.86). Imaging tests requested by general practitioners were less likely to be considered appropriate than those requested by central services (adjusted OR 0.60, 95% CI 0.38 to 0.93). Mammography and CT were more likely to be appropriate than conventional X-rays. Conclusion There was a significant frequency of inappropriateness, which resulted in a high percentage of associated effective radiation dose. Percentage of inappropriateness depends on

  1. Appropriate use of medical imaging in two Spanish public hospitals: a cross-sectional analysis.

    Science.gov (United States)

    Vilar-Palop, Jorge; Hernandez-Aguado, Ildefonso; Pastor-Valero, María; Vilar, José; González-Alvarez, Isabel; Lumbreras, Blanca

    2018-03-16

    To determine the appropriateness of medical imaging examinations involving radiation and to estimate the effective radiation dose and costs associated. Cross-sectional retrospective study. Two Spanish public tertiary hospitals. 2022 medical imaging tests were extracted from the radiology information system in February and March of 2014. MRI and ultrasound examinations were excluded. Five outcomes were set independently by at least two researchers according to four guidelines: (1) appropriate; (2) inappropriate; (3) inappropriate due to repetition, if the timing to carry out next diagnostic tests was incorrect according to guidelines; (4) not adequately justified, if the referral form did not include enough clinical information to allow us to understand the patient's clinical condition; and (5) not included in the guidelines, if the referral could not be matched to a clinical scenario described in the guidelines. We estimated the prevalence of the five categories according to relevant clinical and sociodemographic variables and the effective radiation dose and costs for each category. Approximately half of the imaging tests were deemed as appropriate (967, 47.8%) while one-third (634, 31.4%) were considered inappropriate. 19.6% of the effective dose and 25.2% of the cost were associated with inappropriate tests. Women were less likely than men to have an imaging test classified as appropriate (adjusted OR 0.70,95% CI 0.57 to 0.86). Imaging tests requested by general practitioners were less likely to be considered appropriate than those requested by central services (adjusted OR 0.60, 95% CI 0.38 to 0.93). Mammography and CT were more likely to be appropriate than conventional X-rays. There was a significant frequency of inappropriateness, which resulted in a high percentage of associated effective radiation dose. Percentage of inappropriateness depends on sociodemographic and clinical characteristics such as sex, age, referral physician and medical imaging test

  2. Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT

    International Nuclear Information System (INIS)

    Yuasa, Tetsuya; Hashimoto, Eiko; Maksimenko, Anton; Sugiyama, Hiroshi; Arai, Yoshinori; Shimao, Daisuke; Ichihara, Shu; Ando, Masami

    2008-01-01

    We discuss the recently proposed computed tomography (CT) technique based on refractive effects for biomedical use, which reconstructs the in-plane refractive-index gradient vector field in a cross-sectional plane of interest by detecting the angular deviation of the beam, refracted by a sample, from the incident beam, using the diffraction-enhanced imaging (DEI) method. The CT has advantages for delineating biological weakly absorbing soft tissues over the conventional absorption-contrast CT because of the use of phase sensitive detection. The paper aims to define the imaging scheme rigidly and to demonstrate its efficacy for non-destructive measurement of biomedical soft-tissue samples without imaging agent. We first describe the imaging principle of in-plane DEI-CT from the physico-mathematical viewpoints in detail, and investigate what physical quantities are extracted from the reconstructed images. Then, we introduce the imaging system using the synchrotron radiation as a light source, constructed at beamline BL-14B in KEK, Japan. Finally, we demonstrate the advantage of the refraction-based image for non-destructive analysis of biological sample by investigating the image of human breast cancer tumors obtained using the imaging system. Here, the refraction- and the apparent absorption-based images obtained simultaneously by the in-plane DEI-CT are compared. Also, the conventional absorption-based image obtained using micro-computed tomography (μCT) imaging system is compared with them. Thereby, it is shown that the refraction contrast much more sensitively delineates the soft tissues than the absorption contrast. In addition, the radiologic-histologic correlation study not only validates the efficacy for imaging soft tissues, but also produces the potential that the pathological inspection for the breast cancer tumors may be feasible non-destructively

  3. New developments in imaging: Sonography, cine-CT, MRI

    International Nuclear Information System (INIS)

    Otto, R.J.; Higgins, C.B.

    1987-01-01

    The book can be conveniently subdivided into three sections: the first on magnetic resonance imaging the second on cine-computed tomography and the third on advances in ultrasound (US). The MR imaging section includes two chapters: the first on indications for MR in abdominal disease (a cookbook layout of indications for MR imaging versus CT) and the second on MR imaging of the heart. There are also chapters on MR imaging and US in the pelvis, contrast agent principles, and a chapter on imaging renal tumors. The third section, on US, contains chapters on the liver and gastrointenstinal disease, interventional US sonography during neurosurgery, state-of-the-art echocardiography. Doppler flow imaging, contrast media for sonography, endometrial sonography, and high-resolution US in the first trimester. The final chapter is presented as a scientific paper rather than as a chapter in a book and has no illustrations

  4. CT and MR imaging of craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, M. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Takahashi, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Higano, S. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Kurihara, N. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology; Ikeda, H. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Neurosurgery; Sakamoto, K. [Tohoku Univ. School of Medicine, Sendai (Japan). Dept. of Radiology

    1997-05-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  5. CT and MR imaging of craniopharyngioma

    International Nuclear Information System (INIS)

    Tsuda, M.; Takahashi, S.; Higano, S.; Kurihara, N.; Ikeda, H.; Sakamoto, K.

    1997-01-01

    We reviewed imaging findings of CT and MR imaging in 20 cases of surgically confirmed craniopharyngioma in an attempt to determine their relation to patterns of tumor extent. The relationship between these patterns and the frequency of preoperative CT diagnosis and MR imaging diagnosis according to the surgical diagnosis were determined. The CT technique was superior to MR imaging in the detection of calcification. The MR imaging technique was superior to CT for determining tumor extent and provided valuable information about the relationships of the tumor to surrounding structures. Thus, CT and MR imaging have complementary roles in the diagnosis of craniopharyngiomas. In cases of possible craniopharyngioma, noncontrast sagittal T1-weighted images may enable the identification of the normal pituitary, possibly leading to the correct diagnosis. (orig.)

  6. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, C., E-mail: SAKAI.Chikako@nims.go.jp; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Fujita, D. [National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Ogata, Y. [TAIYO YUDEN CO., LTD., Takasaki-shi, Gunma 370-3347 (Japan)

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO{sub 3} dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  7. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  8. Diagnostic performance of 64-section CT using CT gastrography in preoperative T staging of gastric cancer according to 7th edition of AJCC cancer staging manual

    International Nuclear Information System (INIS)

    Kim, Jin Woong; Shin, Sang Soo; Heo, Suk Hee; Lim, Hyo Soon; Jeong, Yong Yeon; Kang, Heoung Keun; Choi, Yoo Duk; Park, Young Kyu; Park, Chang Hwan

    2012-01-01

    To evaluate the accuracy of 64-section multidetector CT with CT gastrography for determining the depth of mural invasion in patients with gastric cancer according to the 7th edition of the AJCC cancer staging manual. A total of 127 patients with gastric cancer and who had undergone both esophago-gastro-duodenoscopy and 64-section CT were included in this study. Two radiologists independently reviewed the preoperative CT images with respect to the detectability and T-staging of the gastric cancers. The sensitivity, specificity, accuracy and overall accuracy of each reviewer for the T staging of gastric cancer were calculated. Overall, gastric cancer was detected in 123 (96.9%) of the 127 cancers on the CT images. Reviewer 1 correctly staged 98 gastric cancers, and reviewer 2 correctly classified 105 gastric cancers. The overall diagnostic accuracy of the T staging was 77.2% (98/127) for reviewer 1 and 82.7% (105/127) for reviewer 2. 64-section CT using CT gastrography showed a reasonable diagnostic performance for determining the T staging in patients with gastric cancer according to the 7th edition of the AJCC cancer staging manual. (orig.)

  9. CT false-profile view of the hip: a reproducible method of measuring anterior acetabular coverage using volume CT data

    International Nuclear Information System (INIS)

    Needell, Steven D.; Borzykowski, Ross M.; Carreira, Dominic S.; Kozy, John

    2014-01-01

    To devise a simple, reproducible method of using CT data to measure anterior acetabular coverage that results in values analogous to metrics derived from false-profile radiographs. Volume CT images were used to generate simulated false-profile radiographs and cross-sectional false-profile views by angling a multiplanar reformat 115 through the affected acetabulum relative to a line tangential to the posterior margin of the ischial tuberosities. The anterolateral margin of the acetabulum was localized on the CT false-profile view corresponding with the cranial opening of the acetabular roof. Anterior center edge angle (CEA) was measured between a vertical line passing through the center of the femoral head and a line connecting the center of the femoral head with the anterior edge of the condensed line of the acetabulum (sourcil). Anterior CEA values measured on CT false-profile views of 38 symptomatic hips were compared with values obtained on simulated and projection false-profile radiographs. The CT false-profile view produces a cross-sectional image in the same obliquity as false-profile radiographs. Anterior CEA measured on CT false-profile views were statistically similar to values obtained with false-profile radiographs. CT technologists quickly mastered the technique of generating this view. Inter-rater reliability indicated this method to be highly reproducible. The CT false-profile view is simple to generate and anterior CEA measurements derived from it are similar to those obtained using well-positioned false-profile radiographs. Utilization of CT to assess hip geometry enables precise control of pelvic inclination, eliminates projectional errors, and minimizes limitations of image quality inherent to radiography. (orig.)

  10. CT false-profile view of the hip: a reproducible method of measuring anterior acetabular coverage using volume CT data

    Energy Technology Data Exchange (ETDEWEB)

    Needell, Steven D.; Borzykowski, Ross M. [Boca Radiology Group, Boca Raton, FL (United States); Carreira, Dominic S.; Kozy, John [Broward Health Orthopedics and Sports Medicine, Fort Lauderdale, FL (United States)

    2014-11-15

    To devise a simple, reproducible method of using CT data to measure anterior acetabular coverage that results in values analogous to metrics derived from false-profile radiographs. Volume CT images were used to generate simulated false-profile radiographs and cross-sectional false-profile views by angling a multiplanar reformat 115 through the affected acetabulum relative to a line tangential to the posterior margin of the ischial tuberosities. The anterolateral margin of the acetabulum was localized on the CT false-profile view corresponding with the cranial opening of the acetabular roof. Anterior center edge angle (CEA) was measured between a vertical line passing through the center of the femoral head and a line connecting the center of the femoral head with the anterior edge of the condensed line of the acetabulum (sourcil). Anterior CEA values measured on CT false-profile views of 38 symptomatic hips were compared with values obtained on simulated and projection false-profile radiographs. The CT false-profile view produces a cross-sectional image in the same obliquity as false-profile radiographs. Anterior CEA measured on CT false-profile views were statistically similar to values obtained with false-profile radiographs. CT technologists quickly mastered the technique of generating this view. Inter-rater reliability indicated this method to be highly reproducible. The CT false-profile view is simple to generate and anterior CEA measurements derived from it are similar to those obtained using well-positioned false-profile radiographs. Utilization of CT to assess hip geometry enables precise control of pelvic inclination, eliminates projectional errors, and minimizes limitations of image quality inherent to radiography. (orig.)

  11. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    Science.gov (United States)

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  12. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hiroyuki, E-mail: fukuhiro1962@hotmail.com [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Ito, Ryu; Ohto, Masao; Sakamoto, Akio [International HIFU Center, Sanmu Medical Center Hospital, Naruto 167, Sanbu-shi, Chiba 289-1326 (Japan); Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru [Department of General Surgery, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba-shi, Chiba 260-0856 (Japan); Yamagata, Hitoshi [Toshiba Medical Systems Corporation, Otawara 324-0036 (Japan)

    2012-09-15

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths.

  13. US-CT 3D dual imaging by mutual display of the same sections for depicting minor changes in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Fukuda, Hiroyuki; Ito, Ryu; Ohto, Masao; Sakamoto, Akio; Otsuka, Masayuki; Togawa, Akira; Miyazaki, Masaru; Yamagata, Hitoshi

    2012-01-01

    The purpose of this study was to evaluate the usefulness of ultrasound-computed tomography (US-CT) 3D dual imaging for the detection of small extranodular growths of hepatocellular carcinoma (HCC). The clinical and pathological profiles of 10 patients with single nodular type HCC with extranodular growth (extranodular growth) who underwent a hepatectomy were evaluated using two-dimensional (2D) ultrasonography (US), three-dimensional (3D) US, 3D computed tomography (CT) and 3D US-CT dual images. Raw 3D data was converted to DICOM (Digital Imaging and Communication in Medicine) data using Echo to CT (Toshiba Medical Systems Corp., Tokyo, Japan), and the 3D DICOM data was directly transferred to the image analysis system (ZioM900, ZIOSOFT Inc., Tokyo, Japan). By inputting the angle number (x, y, z) of the 3D CT volume data into the ZioM900, multiplanar reconstruction (MPR) images of the 3D CT data were displayed in a manner such that they resembled the conventional US images. Eleven extranodular growths were detected pathologically in 10 cases. 2D US was capable of depicting only 2 of the 11 extranodular growths. 3D CT was capable of depicting 4 of the 11 extranodular growths. On the other hand, 3D US was capable of depicting 10 of the 11 extranodular growths, and 3D US-CT dual images, which enable the dual analysis of the CT and US planes, revealed all 11 extranodular growths. In conclusion, US-CT 3D dual imaging may be useful for the detection of small extranodular growths

  14. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  15. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    Science.gov (United States)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  16. Radiation therapy treatment planning: CT, MR imaging and three-dimensional planning

    International Nuclear Information System (INIS)

    Lichter, A.S.

    1987-01-01

    The accuracy and sophistication of radiation therapy treatment planning have increased rapidly in the last decade. Currently, CT-based treatment planning is standard throughout the country. Care must be taken when CT is used for treatment planning because of clear differences between diagnostic scans and scans intended for therapeutic management. The use of CT in radiation therapy planning is discussed and illustrated. MR imaging adds another dimension to treatment planning. The ability to use MR imaging directly in treatment planning involves an additional complex set of capabilities from a treatment planning system. The ability to unwarp the geometrically distorted MR image is a first step. Three-dimensional dose calculations are important to display the dose on sagittal and acoronal sections. The ability to integrate the MR and CT images into a unified radiographic image is critical. CT and MR images are two-dimensional representations of a three-dimensional problem. Through sophisticated computer graphics techniques, radiation therapists are now able to integrate a three-dimensional image of the patient into the treatment planning process. This allows the use of noncoplanar treatment plans and a detailed analysis of tumor and normal tissue anatomy; it is the first step toward a fully conformational treatment planning system. These concepts are illustrated and future research goals outlined

  17. Development and practice for a PACS-based interactive teaching model for CT image

    International Nuclear Information System (INIS)

    Tian Junzhang; Jiang Guihua; Zheng Liyin; Wang Ling; Wenhua; Liang Lianbao

    2002-01-01

    Objective: To explore the interactive teaching model for CT imaging based on PACS, and provide the clinician and young radiologist with continued medical education. Methods: 100 M trunk net was adopted in PACS and 10 M was exchanged on desktop. Teaching model was installed in browse and diagnosis workstation. Teaching contents were classified according to region and managed according to branch model. Text data derived from authoritative textbooks, monograph, and periodicals. Imaging data derived from cases proved by pathology and clinic. The data were obtained through digital camera and scanner or from PACS. After edited and transformed into standard digital image through DICOM server, they were saved in HD of PACS image server with file form. Results: Teaching model for CT imaging provided kinds of cases of CT sign, clinic characteristics, pathology and distinguishing diagnosis. Normal section anatomy, typical image, and its notation could be browsed real time. Teaching model for CT imaging could provide reference to teaching, diagnosis and report. Conclusion: PACS-based teaching model for CT imaging could provide interactive teaching and scientific research tool and improve work quality and efficiency

  18. Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross-sectional area be used as an alternative to whole tumor analysis?

    International Nuclear Information System (INIS)

    Ng, Francesca; Kozarski, Robert; Ganeshan, Balaji; Goh, Vicky

    2013-01-01

    Objective: To determine if there is a difference between contrast enhanced CT texture features from the largest cross-sectional area versus the whole tumor, and its effect on clinical outcome prediction. Methods: Entropy (E) and uniformity (U) were derived for different filter values (1.0–2.5: fine to coarse textures) for the largest primary tumor cross-sectional area and the whole tumor of the staging contrast enhanced CT in 55 patients with primary colorectal cancer. Parameters were compared using non-parametric Wilcoxon test. Kaplan–Meier analysis was performed to determine the relationship between CT texture and 5-year overall survival. Results: E was higher and U lower for the whole tumor indicating greater heterogeneity at all filter levels (1.0–2.5): median (range) for E and U for whole tumor versus largest cross-sectional area of 7.89 (7.43–8.31) versus 7.62 (6.94–8.08) and 0.005 (0.004–0.01) versus 0.006 (0.005–0.01) for filter 1.0; 7.88 (7.22–8.48) versus 7.54 (6.86–8.1) and 0.005 (0.003–0.01) versus 0.007 (0.004–0.01) for filter 1.5; 7.88 (7.17–8.54) versus 7.48 (5.84–8.25) and 0.005 (0.003–0.01) versus 0.007 (0.004–0.02) for filter 2.0; and 7.83 (7.03–8.57) versus 7.42 (5.19–8.26) and 0.005 (0.003–0.01) versus 0.006 (0.004–0.03) for filter 2.5 respectively (p ≤ 0.001). Kaplan–Meier analysis demonstrated better separation of E and U for whole tumor analysis for 5-year overall survival. Conclusion: Whole tumor analysis appears more representative of tumor heterogeneity

  19. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  20. Associations of Age, BMI, and Years of Menstruation with Proximal Femur Strength in Chinese Postmenopausal Women: A Cross-Sectional Study.

    Science.gov (United States)

    Kang, Huili; Chen, Yu-Ming; Han, Guiyuan; Huang, Hua; Chen, Wei-Qing; Wang, Xidan; Zhu, Ying-Ying; Xiao, Su-Mei

    2016-01-23

    This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD) and geometric parameters, including cross-sectional area (CSA), outer diameter (OD), cortical thickness (CT), section modulus (SM), buckling ratio (BR) at the narrow neck (NN), intertrochanter (IT), and femoral shaft (FS). Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p menstruation had the positive relationships with proximal femur strength (p menstruation were 0.14%-1.34%, 0.20%-2.70%, and 0.16%-0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women.

  1. Cross-sectional imaging with rotational panoramic X-ray machine for preoperative assessment of dental implant site. Comparisons of imaging properties with conventional film tomography and computed tomography

    International Nuclear Information System (INIS)

    Makihara, Masahiro; Nishikawa, Keiichi; Kuroyanagi, Kinya

    2001-01-01

    To clarify the validity of cross-sectional imaging with rotational panoramic x-ray machine for preoperative assessment of the dental implant site, the imaging properties were compared with those of spiral tomography and multi-planer reconstruction (MPR) manipulation of x-ray computed tomography. Cross-sectional imaging of the maxilla and mandible of an edentulous dry skull was performed by each technique at an image layer thickness of 1 mm. Steel spheres were used to identify cross-sectional planes and measure distance. Six oral radiologists scored the image clarity of structures with 5-grade rating scales and measured the distance between images of 2 steel spheres. Each measured distance was divided by the magnification factor. The actual distance was also measured on the skull. The score and the distance were statistically compared. The Spearman's rank correlation coefficients for the score and the absolute values of the difference in distances measured by different observers were calculated as test units to compare inter-observer agreements statistically. The same observation and measurement were repeated to compare intra-observer agreement. Image clarity of the linear tomography available with a panoramic machine was comparable to spiral tomography and superior to MPR, except for the cortical bone on the lingual side. The inter- and intra-observer agreements were comparable. The accuracy for measurement of distance, the inter- and intra-observer agreements were also comparable to the spiral tomography and superior to those of MPR. Therefore, it is concluded that cross-sectional imaging with a rotational panoramic x-ray machine is useful for preoperative assessment of the dental implant site. (author)

  2. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  3. Evaluation of living renal donors: accuracy of three-dimensional 16-section CT

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, N; Sahani, D.V.; Blake, M.A.; Ko, D.C.; Mueller, P.R. [Massachusetts General Hospital, Boston, MA (United States). Dept. of Radiology

    2006-07-15

    Purpose: To retrospectively assess the sensitivity and specificity of three-dimensional (3D) 16-section computed tomography (CT) in the evaluation of vessels, pelvicalyceal system, and ureters in living renal donors, with surgical findings as the reference standard. Materials and methods: This was a HIPAA-compliant study. Institutional review board approval was obtained for the review of subjects' medical records and data analysis, with waiver of informed consent. Forty-six renal donors (18 men, 28 women; mean age, 42 years) were examined with 16-section CT. Two blinded reviewers independently studied renal vascular and urographic anatomy of each donor CT scans by fist using 3D images alone, then transverse images alone, and finally transverse and 3D data set. Image quality, degree of diagnostic confidence, and time used for review were recorded. Sensitivity and specificity were calculated. Results: For 3D images, transverse images, and transverse in conjunction with 3D data sets, the respective sensitivity and specificity of CT in evaluation of accessory arteries by reviewer 1 were 100% and 100%, 89% and 100%, and 100% and 100%, and those by reviewer 2 were 89% and 97%, 89% and 100%, and 89% and 100%; the respective sensitivity and specificity in evaluation of venous anomalies by reviewer 1 were 100% and 98%, 100% and 98%, and 100% and 98%, and those by reviewer 2 were 100% and 98%, 100% and 95%, and 100% and 98%. For focused comprehensive assessment of renal donors with 3D scans alone, a reviewer on average (average of reviewers 1 and 2) used 2.4 minutes per scan, demonstrated full confidence in 93%, and rated the quality as excellent in 76%. Conclusion: For focused assessment of renal vascular and urographic anatomy, review of 3D data set alone provides high sensitivity and specificity with regard to findings seen at surgery. (author)

  4. Evaluation of living renal donors: accuracy of three-dimensional 16-section CT

    International Nuclear Information System (INIS)

    Rastogi, N; Sahani, D.V.; Blake, M.A.; Ko, D.C.; Mueller, P.R.

    2006-01-01

    Purpose: To retrospectively assess the sensitivity and specificity of three-dimensional (3D) 16-section computed tomography (CT) in the evaluation of vessels, pelvicalyceal system, and ureters in living renal donors, with surgical findings as the reference standard. Materials and methods: This was a HIPAA-compliant study. Institutional review board approval was obtained for the review of subjects' medical records and data analysis, with waiver of informed consent. Forty-six renal donors (18 men, 28 women; mean age, 42 years) were examined with 16-section CT. Two blinded reviewers independently studied renal vascular and urographic anatomy of each donor CT scans by fist using 3D images alone, then transverse images alone, and finally transverse and 3D data set. Image quality, degree of diagnostic confidence, and time used for review were recorded. Sensitivity and specificity were calculated. Results: For 3D images, transverse images, and transverse in conjunction with 3D data sets, the respective sensitivity and specificity of CT in evaluation of accessory arteries by reviewer 1 were 100% and 100%, 89% and 100%, and 100% and 100%, and those by reviewer 2 were 89% and 97%, 89% and 100%, and 89% and 100%; the respective sensitivity and specificity in evaluation of venous anomalies by reviewer 1 were 100% and 98%, 100% and 98%, and 100% and 98%, and those by reviewer 2 were 100% and 98%, 100% and 95%, and 100% and 98%. For focused comprehensive assessment of renal donors with 3D scans alone, a reviewer on average (average of reviewers 1 and 2) used 2.4 minutes per scan, demonstrated full confidence in 93%, and rated the quality as excellent in 76%. Conclusion: For focused assessment of renal vascular and urographic anatomy, review of 3D data set alone provides high sensitivity and specificity with regard to findings seen at surgery. (author)

  5. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  6. Obscure gastrointestinal bleeding: preliminary comparison of 64-section CT enteroclysis with video capsule endoscopy

    International Nuclear Information System (INIS)

    Khalife, Samer; Vahedi, Kouroche; Dray, Xavier; Marteau, Philippe; Soyer, Philippe; Hamzi, Lounis; Place, Vinciane; Boudiaf, Mourad; Alatawi, Abdullah

    2011-01-01

    To retrospectively compare the diagnostic capabilities of 64-section CT enteroclysis with those of video capsule endoscopy (VCE) to elucidate the cause of obscure gastrointestinal bleeding. Thirty-two patients who had 64-section CT enteroclysis and VCE because of obscure gastrointestinal bleeding were included. Imaging findings were compared with those obtained at double balloon endoscopy, surgery and histopathological analysis, which were used as a standard of reference. Concordant findings were found in 22 patients (22/32; 69%), including normal findings (n = 13), tumours (n = 7), lymphangiectasia (n = 1) and inflammation (n = 1), and discrepancies in 10 patients (10/32; 31%), including ulcers (n = 3), angioectasias (n = 2), tumours (n = 2) and normal findings (n = 3). No statistical difference in the proportions of abnormal findings between 64-section CT enteroclysis (11/32; 34%) and VCE (17/32, 53%) (P = 0.207) was found. However, 64-section CT enteroclysis helped identify tumours not detected at VCE (n = 2) and definitely excluded suspected tumours (n = 3) because of bulges at VCE. Conversely, VCE showed ulcers (n = 3) and angioectasias (n = 2) which were not visible at 64-section CT enteroclysis. Our results suggest that 64-section CT enteroclysis and VCE have similar overall diagnostic yields in patients with obscure gastrointestinal bleeding. However, the two techniques are complementary in this specific population. (orig.)

  7. Radiation exposure in whole body CT screening.

    Science.gov (United States)

    Suresh, Pamidighantam; Ratnam, S V; Rao, K V J

    2011-04-01

    Using a technology that "takes a look" at people's insides and promises early warnings of cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for health conscious people: "Whole body CT screening" this typically involves scanning the body from the chin to below the hips with a form of x-ray imaging that produces cross-sectional images. In USA direct-to-consumer marketing of whole body CT is occurring today in many metropolitan areas. Free standing CT screening centres are being sited in shopping malls and other high density public areas, and these centres are being advertised in the electronic and print media. In this context the present article discussed the pros and cons of having such centres in India with the advent of multislice CT leading to fast scan times.

  8. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  9. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  10. CT and MR imaging of the liver. Clinical importance of nutritional status

    International Nuclear Information System (INIS)

    Leander, P.; Sjoeberg, S.; Hoeglund, P.

    2000-01-01

    Purpose: In an experimental study in rats a correlation between nutritional status and hepatic attenuation in CT and signal intensities in MR imaging was shown. Is physiological nutritional status of importance in clinical CT and MR imaging? Material and methods: In a cross-over study including 12 healthy volunteers (6 women and 6 men, mean age 34 years), CT and MR imaging of the liver were performed with nutritional status at three different levels, i.e., normal, fasting and after glycogen-rich meals. CT and MR were performed on clinical imaging systems and hepatic attenuation and signal intensity, respectively, were assessed. In MR, T1-weighted, proton density-weighted and T2-weighted pulse-sequences were used. Results: In CT there were significantly (p<0.01) higher liver attenuations in normal nutritional status and after glycogen rich-meals compared to the fasting condition. The difference between fasting and glycogen-rich meals were 10.5 HU for men, 7.4 for women and mean 8.8 HU for all 12 volunteers. In MR imaging the differences were small and non-significant. The results of this study are in accordance with an earlier experimental study in rats. Conclusion: In CT it may be of importance not to have patients in a fasting condition as it lowers the attenuation in normal liver tissue. The findings are important for planning of clinical studies where hepatic attenuation will be assessed and may be of some importance in clinical CT. In MR imaging the results indicate that the nutritional status is of less importance

  11. How to interpret an unenhanced CT Brain scan. Part 1: Basic principles of Computed Tomography and relevant neuroanatomy

    Directory of Open Access Journals (Sweden)

    Thomas Osborne

    2016-08-01

    Full Text Available The aim of this article is to: Cover the basics of Computed Tomography (CT Brain imaging. Review relevant CT neuroanatomy. A CT image is produced by firing x-rays at a moving object which is then detected by an array of rotating detectors (Figure 1. The detected x-rays are then converted into a computerised signal which is used to produce a series of cross sectional images.

  12. Imaging of patent foramen ovale with 64-section multidetector CT.

    Science.gov (United States)

    Saremi, Farhood; Channual, Stephanie; Raney, Aidan; Gurudevan, Swaminatha V; Narula, Jagat; Fowler, Steven; Abolhoda, Amir; Milliken, Jeffrey C

    2008-11-01

    To investigate the feasibility of 64-section multidetector computed tomography (CT) by using CT angiography (a) to demonstrate anatomic detail of the interatrial septum pertinent to the patent foramen ovale (PFO), and (b) to visually detect left-to-right PFO shunts and compare these findings in patients who also underwent transesophageal echocardiography (TEE). In this institutional review board-approved HIPAA-compliant study, electrocardiographically gated coronary CT angiograms in 264 patients (159 men, 105 women; mean age, 60 years) were reviewed for PFO morphologic features. The length and diameter of the opening of the PFO tunnel, presence of atrial septal aneurysm (ASA), and PFO shunts were evaluated. A left-to-right shunt was assigned a grade according to length of contrast agent jet (grade 1, 1 cm to 2 cm; grade 3, >2 cm). In addition, 23 patients who underwent both modalities were compared (Student t test and linear regression analysis). A difference with P patent at the entry into the right atrium (PFO) in 62 patients (61.4% of patients with flap valve, 23.5% of total patients). A left-to-right shunt was detected in 44 (16.7% of total) patients (grade 1, 61.4%; grade 2, 34.1%; grade 3, 4.5%). No shunt was seen in patients without a flap valve. Mean length of PFO tunnel was 7.1 mm in 44 patients with a shunt and 12.1 mm in 57 patients with a flap valve without a shunt (P < .0001). In patients with a tunnel length of 6 mm or shorter, 92.6% of the shunts were seen. ASA was seen in 11 (4.2%) patients; of these patients, a shunt was seen in seven (63.6%). In 23 patients who underwent CT angiography and TEE, both modalities showed a PFO shunt in seven. Multidetector CT provides detailed anatomic information about size, morphologic features, and shunt grade of the PFO. Shorter tunnel length and septal aneurysms are frequently associated with left-to-right shunts in patients with PFO. (c) RSNA, 2008.

  13. C-arm CT for planning and guidance of extrahepatic embolizations

    International Nuclear Information System (INIS)

    Wacker, F.K.; Meissner, O.A.; Meyer, B.C.

    2009-01-01

    Interventional radiological vascular embolizations are complex procedures that require exact imaging of the target region to facilitate safe and effective treatment. The purpose of this paper is to present the technique and feasibility of flat detector C-arm computed tomography (C-arm CT) for control and guidance of extrahepatic abdominal embolization procedures. C-arm CT images can provide important information on both vascular and cross-sectional anatomy of the target region, help in determining therapy endpoints and provide follow-up during and immediately after the abdominal interventions.The cases presented demonstrate that C-arm CT images are beneficial for abdominal embolization procedures and facilitate precise treatment. (orig.) [de

  14. Clinical PET/CT imaging. Promises and misconceptions

    International Nuclear Information System (INIS)

    Czernin, J.; Auerbach, M.A.

    2005-01-01

    PET/CT is now established as the most important imaging tool in oncology. PET/CT stages and restages cancer with a higher accuracy than PET or CT alone. The sometimes irrational approach to combine state of the art PET with the highest end CT devices should give way to a more reasonable equipment design tailored towards the specific clinical indications in well-defined patient populations. The continuing success of molecular PET/CT now depends more upon advances in molecular imaging with the introduction of targeted imaging probes for individualized therapy approaches in cancer patients and less upon technological advances of imaging equipment. (orig.)

  15. Manchester medical society (imaging section) presidential address 2008

    Energy Technology Data Exchange (ETDEWEB)

    Blakeley, C. [University of Salford (United Kingdom); Manchester Royal Infirmary (CMFT) (United Kingdom)], E-mail: c.blakeley@salford.ac.uk; Hogg, P. [University of Salford (United Kingdom)

    2009-12-15

    This article is based partly upon the Presidential Address of the Manchester Medical Society (Imaging Section) in 2008. It reviews the development of radiology services in the Manchester (UK) area from their inception in 1896 to the installation of the first EMI body CT scanner in Europe. It considers some of the innovative people in the Manchester area and some milestone events that occurred in that area to help establish the role and value of X-ray in diagnostic imaging. In this article the first recorded case of when X-ray imaging was used in a forensic domiciliary case is also outlined; this occurred approximately 35 miles north of Manchester on 23rd April 1896. The article also explains some interesting background information on the development of the first EMI CT scanner, drawing particularly on the revenue stream generated by the music section of EMI through the success of The Beatles - a band which emanated 35 miles from Manchester in Liverpool.

  16. Manchester medical society (imaging section) presidential address 2008

    International Nuclear Information System (INIS)

    Blakeley, C.; Hogg, P.

    2009-01-01

    This article is based partly upon the Presidential Address of the Manchester Medical Society (Imaging Section) in 2008. It reviews the development of radiology services in the Manchester (UK) area from their inception in 1896 to the installation of the first EMI body CT scanner in Europe. It considers some of the innovative people in the Manchester area and some milestone events that occurred in that area to help establish the role and value of X-ray in diagnostic imaging. In this article the first recorded case of when X-ray imaging was used in a forensic domiciliary case is also outlined; this occurred approximately 35 miles north of Manchester on 23rd April 1896. The article also explains some interesting background information on the development of the first EMI CT scanner, drawing particularly on the revenue stream generated by the music section of EMI through the success of The Beatles - a band which emanated 35 miles from Manchester in Liverpool.

  17. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  18. Pericardial sinuses and recesses effusion of 16-slice helical CT imaging and anatomic correlation

    International Nuclear Information System (INIS)

    Lu Chunyan; Yang Zhigang; Zhou Xiangping; Yu Jianqun; Zhu Jie; Yang Kaiqing

    2007-01-01

    Objective: To evaluate the CT features and implications of the pericardial sinuses and recesses effusion by combining the sectional cadavers and 16 multi-slice CT (MSCT) reformation. Methods: The anatomy and communication of the pericardial sinuses and recesses on the axial, coronal and saggital sectional cadavers (respectively 1 case), and the morphologic features on MSCT reformatted images in 104 patients were observed. The detection rate of effusion was analyzed. Results: The sectional cadavers and CT images showed that the pericardial sinuses and recesses were formed by the reflections of the pericardium on the root of the great vessels. The detection rate of the sinuses and recesses was lower in small effusion than in moderate and large effusion (P<0.05). The superior aortic recess was the most common recess for pericardial effusion. Conclusion: The MSCT reformatted images can show the morphologic features of pericardial sinuses and recesses effusion and communications with the pericardial cavity, help differentiate pericardial effusion from other mediastinal or pericardial lesions. (authors)

  19. Three-dimensional reconstruction of CT images

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshiaki; Kattoh, Keiichi; Kawakami, Genichiroh; Igami, Isao; Mariya, Yasushi; Nakamura, Yasuhiko; Saitoh, Yohko; Tamura, Koreroku; Shinozaki, Tatsuyo

    1986-09-01

    Computed tomography (CT) has the ability to provide sensitive visualization of organs and lesions. Owing to the nature of CT to be transaxial images, a structure which is greater than a certain size appears as several serial CT images. Consequently each observer must reconstruct those images into a three-dimensional (3-D) form mentally. It has been supposed to be of great use if such a 3-D form can be described as a definite figure. A new computer program has been developed which can produce 3-D figures from the profiles of organs and lesions on CT images using spline curves. The figures obtained through this method are regarded to have practical applications.

  20. CT guided stereotaxy based on scout view imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wester, K; Kjartansson, O; Bakke, S J

    1987-05-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing.

  1. CT guided stereotaxy based on scout view imaging

    International Nuclear Information System (INIS)

    Wester, K.; Kjartansson, O.; Bakke, S.J.; Rikshospitalet, Oslo

    1987-01-01

    A simple and inexpensive method for CT guided sterotaxy is described. The method requires no extra equipment in the interface between the computer tomograph and the stereotaxic frame, and could therefore easily be adopted in most neurosurgical units. With this method, information from the transaxial CT sections is transferred manually via the scout view image to the operation theater skull X-rays, and thereby to the stereotaxic frame. The method has proved to be sufficiently accurate for all current non-functional stereotaxic procedures in our department during 30 months of testing. (orig.)

  2. Predicting the fidelity of JPEG2000 compressed CT images using DICOM header information

    International Nuclear Information System (INIS)

    Kim, Kil Joong; Kim, Bohyoung; Lee, Hyunna; Choi, Hosik; Jeon, Jong-June; Ahn, Jeong-Hwan; Lee, Kyoung Ho

    2011-01-01

    Purpose: To propose multiple logistic regression (MLR) and artificial neural network (ANN) models constructed using digital imaging and communications in medicine (DICOM) header information in predicting the fidelity of Joint Photographic Experts Group (JPEG) 2000 compressed abdomen computed tomography (CT) images. Methods: Our institutional review board approved this study and waived informed patient consent. Using a JPEG2000 algorithm, 360 abdomen CT images were compressed reversibly (n = 48, as negative control) or irreversibly (n = 312) to one of different compression ratios (CRs) ranging from 4:1 to 10:1. Five radiologists independently determined whether the original and compressed images were distinguishable or indistinguishable. The 312 irreversibly compressed images were divided randomly into training (n = 156) and testing (n = 156) sets. The MLR and ANN models were constructed regarding the DICOM header information as independent variables and the pooled radiologists' responses as dependent variable. As independent variables, we selected the CR (DICOM tag number: 0028, 2112), effective tube current-time product (0018, 9332), section thickness (0018, 0050), and field of view (0018, 0090) among the DICOM tags. Using the training set, an optimal subset of independent variables was determined by backward stepwise selection in a four-fold cross-validation scheme. The MLR and ANN models were constructed with the determined independent variables using the training set. The models were then evaluated on the testing set by using receiver-operating-characteristic (ROC) analysis regarding the radiologists' pooled responses as the reference standard and by measuring Spearman rank correlation between the model prediction and the number of radiologists who rated the two images as distinguishable. Results: The CR and section thickness were determined as the optimal independent variables. The areas under the ROC curve for the MLR and ANN predictions were 0.91 (95% CI; 0

  3. The findings and the role of axial CT imaging and 3D imaging of gastric lesion by spiral CT

    International Nuclear Information System (INIS)

    Lee, Dong Ho; Ko, Young Tae

    1996-01-01

    The purpose of this study is to assess the efficacy of axial CT imaging and 3D imaging by spiral CT in the detection and evaluation of gastric lesion. Seventy-seven patients with pathologically-proven gastric lesions underwent axial CT and 3D imaging by spiral CT. There were 49 cases of advanced gastric carcinoma(AGC), 21 of early gastric carcinoma (EGC), three of benign ulcers, three of leiomyomas, and one case of lymphoma. Spiral CT was performed with 3-mm collimation, 4.5mm/sec table feed, and 1-1.5-mm reconstruction interval after the ingestion of gas. 3D imaging was obtained using the SSD technique, and on analysis a grade was given(excellent, good, poor). Axial CT scan was performed with 5-mm collimation, 7mm/sec table feed, and 5-mm reconstruction interval after the ingestion of water. Among 49 cases of AGC, excellent 3D images were obtained in seven patients (14.3%), good 3D images in 30(61.2%), and poor 3D images in 12(24.5%). Among the 12 patients with poor images, the cancers were located at the pyloric antrum in eight cases, were AGC Borrmann type 4 in three cases, and EGC-mimicking lesion in one case. Using axial CT scan alone, Borrmann's classification based tumor morphology were accurately identified in 67.3% of cases, but using 3D imaging, the corresponding figure was 85.7%. In 33 cases receiving surgery, good correlation between axial CT scan and pathology occurred in 72.7% of T class, and 69.7% of N class. Among 21 cases of EGC, excellent 3D images were obtained in three patients (14.3%), good 3D images in 14 (66.7%), and poor 3D images in two (9.5%). The other two cases of EGC were not detected. By axial CT scan, no tumor was detected in four cases, and there were two doubtful cases. 3D images of three benign ulcers were excellent in one case and good in two. 3D images of three leiomyomas and one lymphoma were excellent. Combined axial CT imaging and 3D imaging by spiral CT has the potential to accurately diagnose gastric lesions other than AGC

  4. Algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images

    International Nuclear Information System (INIS)

    Ogino, Takashi; Egawa, Sunao

    1991-01-01

    New algorithms of CT value correction for reconstructing a radiotherapy simulation image through axial CT images were developed. One, designated plane weighting method, is to correct CT value in proportion to the position of the beam element passing through the voxel. The other, designated solid weighting method, is to correct CT value in proportion to the length of the beam element passing through the voxel and the volume of voxel. Phantom experiments showed fair spatial resolution in the transverse direction. In the longitudinal direction, however, spatial resolution of under slice thickness could not be obtained. Contrast resolution was equivalent for both methods. In patient studies, the reconstructed radiotherapy simulation image was almost similar in visual perception of the density resolution to a simulation film taken by X-ray simulator. (author)

  5. Differential diagnosis of primary nasopharyngeal lymphoma and nasopharyngeal carcinoma focusing on CT, MRI, and PET/CT.

    Science.gov (United States)

    Cho, Kyu-Sup; Kang, Dae-Woon; Kim, Hak-Jin; Lee, Jong-Kil; Roh, Hwan-Jung

    2012-04-01

    No study has done a comparative analysis of radiologic imaging findings between primary nasopharyngeal lymphoma (PNL) and nasopharyngeal carcinoma (NPC). The purpose of this study was to analyze computed tomography (CT) and magnetic resonance (MR) images and to evaluate the maximum standardized uptake value (SUV max) of positron emission tomography (PET)/CT between PNL and NPC, knowing the imaging features that distinguish PNL from NPC. Cross-sectional study. University tertiary care facility. The authors analyzed the features on CT, MR imaging, and PET/CT of 16 patients diagnosed with PNL and 32 patients diagnosed with NPC histopathologically. Patients with PNL had a larger tumor volume and showed symmetry of tumor shape than did patients with NPC. Patients with PNL also had higher tumor homogeneity than NPC patients on CT, T2-weighted, and postcontrast MR images. All PNL patients showed a high degree of enhancement without invasion to the adjacent deep structure. The involvement of the Waldeyer ring was significantly higher in PNL patients. Cervical and retropharyngeal lymphadenopathy and PET/CT SUV max showed no significant difference between PNL and NPC. If the images present a bulky, symmetric nasopharyngeal mass with marked homogeneity, a high degree of enhancement, and a higher Waldeyer ring involvement combined with no invasion into the deep structure, PNL should be considered over NPC.

  6. Targeted Molecular Imaging in Adrenal Disease—An Emerging Role for Metomidate PET-CT

    Directory of Open Access Journals (Sweden)

    Iosif A. Mendichovszky

    2016-11-01

    Full Text Available Adrenal lesions present a significant diagnostic burden for both radiologists and endocrinologists, especially with the increasing number of adrenal ‘incidentalomas’ detected on modern computed tomography (CT or magnetic resonance imaging (MRI. A key objective is the reliable distinction of benign disease from either primary adrenal malignancy (e.g., adrenocortical carcinoma or malignant forms of pheochromocytoma/paraganglioma (PPGL or metastases (e.g., bronchial, renal. Benign lesions may still be associated with adverse sequelae through autonomous hormone hypersecretion (e.g., primary aldosteronism, Cushing’s syndrome, phaeochromocytoma. Here, identifying a causative lesion, or lateralising the disease to a single adrenal gland, is key to effective management, as unilateral adrenalectomy may offer the potential for curing conditions that are typically associated with significant excess morbidity and mortality. This review considers the evolving role of positron emission tomography (PET imaging in addressing the limitations of traditional cross-sectional imaging and adjunctive techniques, such as venous sampling, in the management of adrenal disorders. We review the development of targeted molecular imaging to the adrenocortical enzymes CYP11B1 and CYP11B2 with different radiolabeled metomidate compounds. Particular consideration is given to iodo-metomidate PET tracers for the diagnosis and management of adrenocortical carcinoma, and the increasingly recognized utility of 11C-metomidate PET-CT in primary aldosteronism.

  7. Do Foley Catheters Adequately Drain the Bladder? Evidence from CT Imaging Studies

    Directory of Open Access Journals (Sweden)

    Svetlana Avulova

    2015-06-01

    Full Text Available ABSTRACTIntroduction:The Foley catheter has been widely assumed to be an effective means of draining the bladder. However, recent studies have brought into question its efficacy. The objective of our study is to further assess the adequacy of Foley catheter for complete drainage of the bladder.Materials and Methods:Consecutive catheterized patients were identified from a retrospective review of contrast enhanced and non-contrast enhanced computed tomo-graphic (CT abdomen and pelvis studies completed from 7/1/2011-6/30/2012. Residual urine volume (RUV was measured using 5mm axial CT sections as follows: The length (L and width (W of the bladder in the section with the greatest cross sectional area was combined with bladder height (H as determined by multiplanar reformatted images in order to calculate RUV by applying the formula for the volume (V of a sphere in a cube: V=(ϖ/6*(L*W*H.Results:RUVs of 167 (mean age 67 consecutively catheterized men (n=72 and women (n=95 identified by CT abdomen and pelvis studies were calculated. The mean RUV was 13.2 mL (range: 0.0 mL-859.1 mL, standard deviation: 75.9 mL, margin of error at 95% confidence:11.6 mL. Four (2.4% catheterized patients had RUVs of >50 mL, two of whom had an improperly placed catheter tip noted on their CT-reports.Conclusions:Previous studies have shown that up to 43% of catheterized patients had a RUV greater than 50 mL, suggesting inadequacy of bladder drainage via the Foley catheter. Our study indicated that the vast majority of patients with Foley catheters (97.6%, had adequately drained bladders with volumes of

  8. Do Foley catheters adequately drain the bladder? Evidence from CT imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Avulova, Svetlana; Li, Valery J.; Khusid, Johnathan A. [Department of Urology, SUNY Downstate College of Medicine, Brooklyn, NY (United States); Choi, Woo S. [Radiology, SUNY Downstate College of Medicine, Brooklyn, NY (United States); Weiss, Jeffrey P., E-mail: johnathan.khusid@downstate.edu [Department of Urology, Weill Cornell Medical College, New York, NY (United States)

    2015-05-15

    Introduction: The Foley catheter has been widely assumed to be an effective means of draining the bladder. However, recent studies have brought into question its efficacy. The objective of our study is to further assess the adequacy of Foley catheter for complete drainage of the bladder. Materials and Methods: Consecutive catheterized patients were identified from a retrospective review of contrast enhanced and non-contrast enhanced computed tomographic (CT) abdomen and pelvis studies completed from 7/1/2011-6/30/2012. Residual urine volume (RUV) was measured using 5mm axial CT sections as follows: The length (L) and width (W) of the bladder in the section with the greatest cross sectional area was combined with bladder height (H) as determined by multiplanar reformatted images in order to calculate RUV by applying the formula for the volume (V) of a sphere in a cube:V=(π/6)⁎L⁎W⁎H). Results: RUVs of 167 (mean age 67) consecutively catheterized men (n=72) and women (n=95) identified by CT abdomen and pelvis studies were calculated. The mean RUV was 13.2 mL (range: 0.0 mL-859.1 mL, standard deviation: 75.9 mL, margin of error at 95% confidence:11.6 mL). Four (2.4%) catheterized patients had RUVs of >50 mL, two of whom had an improperly placed catheter tip noted on their CT-reports. Conclusions: Previous studies have shown that up to 43% of catheterized patients had a RUV greater than 50 mL, suggesting inadequacy of bladder drainage via the Foley catheter. Our study indicated that the vast majority of patients with Foley catheters (97.6%), had adequately drained bladders with volumes of <50 mL. (author)

  9. CT of the pelvis after cesarean section

    International Nuclear Information System (INIS)

    Twickler, D.; Setiawan, H.; Harrell, R.; Brown, C.E.L.

    1989-01-01

    Febrile morbidity following cesarean section is often evaluated with CT, although the CT appearance of the normal uterus has not been evaluated. This study was undertaken to learn the normal uterine appearance after cesarean section. To date, 15 women who also underwent bilateral tubal ligation have been studied. Six had a vertical uterine incision; nine had a low transverse incision. Contrast-enhanced pelvic CT was performed 1--5 days after surgery. All women were asymptomatic, with a normal postpartum course

  10. CT in dental osseointegration

    International Nuclear Information System (INIS)

    Witte, D.

    1992-01-01

    Computerised tomography (CT) plays a key role in the pre-surgical evaluation of the alveolar process for titanium dental implants. The successful replacement of lost teeth by tissue integrated tooth root implants is a major advance in clinical dentistry. The paper will discuss briefly the history of osseointegration and how CT is now involved in helping the edentulous patient. CT is considered as a quick and convenient method of obtaining excellent anatomical information about the maxilla. Conventional tomography is difficult to obtain and does not provide valuable cross-sectional images. Exact height and width calculations can be made as well as screening out patients with advanced bone resorption. 3 refs. 6 figs

  11. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning.

    Science.gov (United States)

    Gee, Carole T

    2013-11-01

    As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  12. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    Science.gov (United States)

    Wu, T.-H.; Liang, C.-H.; Wu, J.-K.; Lien, C.-Y.; Yang, B.-H.; Huang, Y.-H.; Lee, J. J. S.

    2009-07-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18F-fluorodeoxyglucose (18F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  13. Integration of PET-CT and cone-beam CT for image-guided radiotherapy with high image quality and registration accuracy

    International Nuclear Information System (INIS)

    Wu, T-H; Liang, C-H; Wu, J-K; Lien, C-Y; Yang, B-H; Lee, J J S; Huang, Y-H

    2009-01-01

    Hybrid positron emission tomography-computed tomography (PET-CT) system enhances better differentiation of tissue uptake of 18 F-fluorodeoxyglucose ( 18 F-FDG) and provides much more diagnostic value in the non-small-cell lung cancer and nasopharyngeal carcinoma (NPC). In PET-CT, high quality CT images not only offer diagnostic value on anatomic delineation of the tissues but also shorten the acquisition time for attenuation correction (AC) compared with PET-alone imaging. The linear accelerators equipped with the X-ray cone-beam computed tomography (CBCT) imaging system for image-guided radiotherapy (IGRT) provides excellent verification on position setup error. The purposes of our study were to optimize the CT acquisition protocols of PET-CT and to integrate the PET-CT and CBCT for IGRT. The CT imaging parameters were modified in PET-CT for increasing the image quality in order to enhance the diagnostic value on tumour delineation. Reproducibility and registration accuracy via bone co-registration algorithm between the PET-CT and CBCT were evaluated by using a head phantom to simulate a head and neck treatment condition. Dose measurement in computed tomography dose index (CTDI) was also estimated. Optimization of the CT acquisition protocols of PET-CT was feasible in this study. Co-registration accuracy between CBCT and PET-CT on axial and helical modes was in the range of 1.06 to 2.08 and 0.99 to 2.05 mm, respectively. In our result, it revealed that the accuracy of the co-registration with CBCT on helical mode was more accurate than that on axial mode. Radiation doses in CTDI were 4.76 to 18.5 mGy and 4.83 to 18.79 mGy on axial and helical modes, respectively. Registration between PET-CT and CBCT is a state-of-the-art registration technology which could provide much information on diagnosis and accurate tumour contouring on radiotherapy while implementing radiotherapy procedures. This novelty technology of PET-CT and cone-beam CT integration for IGRT may have a

  14. Clinical assessment of SPECT/CT co-registration image fusion

    International Nuclear Information System (INIS)

    Zhou Wen; Luan Zhaosheng; Peng Yong

    2004-01-01

    Objective: Study the methodology of the SPECT/CT co-registration image fusion, and Assessment the Clinical application value. Method: 172 patients who underwent SPECT/CT image fusion during 2001-2003 were studied, 119 men, 53 women. 51 patients underwent 18FDG image +CT, 26 patients underwent 99m Tc-RBC Liver pool image +CT, 43 patients underwent 99mTc-MDP Bone image +CT, 18 patients underwent 99m Tc-MAA Lung perfusion image +CT. The machine is Millium VG SPECT of GE Company. All patients have been taken three steps image: X-ray survey, X-ray transmission and nuclear emission image (Including planer imaging, SPECT or 18 F-FDG of dual head camera) without changing the position of the patients. We reconstruct the emission image with X-ray map and do reconstruction, 18FDG with COSEM and 99mTc with OSEM. Then combine the transmission image and the reconstructed emission image. We use different process parameters in deferent image methods. The accurate rate of SPECT/CT image fusion were statistics, and compare their accurate with that of single nuclear emission image. Results: The nuclear image which have been reconstructed by X-ray attenuation and OSEM are apparent better than pre-reconstructed. The post-reconstructed emission images have no scatter lines around the organs. The outline between different issues is more clear than before. The validity of All post-reconstructed images is better than pre-reconstructed. SPECT/CT image fusion make localization have worthy bases. 138 patients, the accuracy of SPECT/CT image fusion is 91.3% (126/138), whereas 60(88.2%) were found through SPECT/CT image fusion, There are significant difference between them(P 99m Tc- RBC-SPECT +CT image fusion, but 21 of them were inspected by emission image. In BONE 99m Tc -MDP-SPECT +CT image fusion, 4 patients' removed bone(1-6 months after surgery) and their relay with normal bone had activity, their morphologic and density in CT were different from normal bones. 11 of 20 patients who could

  15. Improving image quality in portal venography with spectral CT imaging

    International Nuclear Information System (INIS)

    Zhao, Li-qin; He, Wen; Li, Jian-ying; Chen, Jiang-hong; Wang, Ke-yang; Tan, Li

    2012-01-01

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  16. Improving image quality in portal venography with spectral CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-qin, E-mail: zhaolqzr@sohu.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); He, Wen, E-mail: hewen1724@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Li, Jian-ying, E-mail: jianying.li@med.ge.com [CT Advanced Application and Research, GE Healthcare, 100176 China (China); Chen, Jiang-hong, E-mail: chenjianghong1973@hotmail.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Wang, Ke-yang, E-mail: ke7ke@sina.com [Department of Radiology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing,100050 (China); Tan, Li, E-mail: Litan@ge.com [CT product, GE Healthcare, 100176 China (China)

    2012-08-15

    Objective: To investigate the effect of energy spectral CT on the image quality of CT portal venography in cirrhosis patients. Materials and methods: 30 portal hypertension patients underwent spectral CT examination using a single-tube, fast dual tube voltage switching technique. 101 sets of monochromatic images were generated from 40 keV to 140 keV. Image noise and contrast-to-noise ratio (CNR) for portal veins from the monochromatic images were measured. An optimal monochromatic image set was selected for obtaining the best CNR for portal veins. The image noise and CNR of the intra-hepatic portal vein and extra-hepatic main stem at the selected monochromatic level were compared with those from the conventional polychromatic images. Image quality was also assessed and compared. Results: The monochromatic images at 51 keV were found to provide the best CNR for both the intra-hepatic and extra-hepatic portal veins. At this energy level, the monochromatic images had about 100% higher CNR than the polychromatic images with a moderate 30% noise increase. The qualitative image quality assessment was also statistically higher with monochromatic images at 51 keV. Conclusion: Monochromatic images at 51 keV for CT portal venography could improve CNR for displaying hepatic portal veins and improve the overall image quality.

  17. Quantitative analysis of length-diameter distribution and cross-sectional properties of fibers from three-dimensional tomographic images

    DEFF Research Database (Denmark)

    Miettinen, Arttu; Joffe, Roberts; Madsen, Bo

    2013-01-01

    obtained from optical microscopy of polished cross-sections of a composite. This approach gives accurate yet local results, but a rather large number of optical images have to be processed to achieve a representative description of the morphology of the material. In this work a fully automatic algorithm......A number of rule-of-mixture micromechanical models have been successfully used to predict the mechanical properties of short fiber composites. However, in order to obtain accurate predictions, a detailed description of the internal structure of the material is required. This information is often...... for estimating the length-diameter distribution of solid or hollow fibers, utilizing three-dimensional X-ray tomographic images, is presented. The method is based on a granulometric approach for fiber length distribution measurement, combined with a novel algorithm that relates cross-sectional fiber properties...

  18. 90Y microsphere therapy: does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging?

    Science.gov (United States)

    Zade, Anand A; Rangarajan, Venkatesh; Purandare, Nilendu C; Shah, Sneha A; Agrawal, Archi R; Kulkarni, Suyash S; Shetty, Nitin

    2013-11-01

    Transarterial radioembolization using Y microspheres is a novel therapeutic option for inoperable hepatic malignancies. As these spheres are radiolucent, real-time assessment of their distribution during the infusion process under fluoroscopic guidance is not possible. Bremsstrahlung radiations arising from 90Y have conventionally been used for imaging its biodistribution. Recent studies have proved that sources of 90Y also emit positrons, which can further be used for PET/computed tomography (CT) imaging. This study aimed to assess the feasibility of 90Y PET/CT imaging in evaluating microsphere distributions and to compare its findings with those of Bremsstrahlung imaging. Thirty-five sessions of 90Y microsphere transarterial radioembolization were performed on 30 patients with hepatic malignancies. 90Y PET/CT imaging was performed within 3 h of therapy. Bremsstrahlung imaging was also performed for each patient. The imaging findings were compared for concordance in the distribution of microspheres. Exact one-to-one correspondence between 90Y PET/CT imaging and 90Y Bremsstrahlung imaging was observed in 97.14% of cases (i.e. in 34/35 cases). Discordance was observed only in one case in which 90Y PET/CT imaging resolved the microsphere uptake in the inferior vena cava tumor thrombus, which was, however, not visualized on Bremsstrahlung imaging. There is good concordance in the imaging findings of 90Y PET/CT and 90Y Bremsstrahlung imaging. 90Y PET/CT imaging scores over the conventionally used Bremsstrahlung imaging in terms of better resolution, ease of technique, and comparable image acquisition time. This makes it a preferred imaging modality for assessment of the distribution of 90Y microspheres.

  19. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  20. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery

    Directory of Open Access Journals (Sweden)

    Chih-Ju Chang

    2015-01-01

    Full Text Available C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell’s method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds.

  1. PET/CT imaging in head and neck tumors

    International Nuclear Information System (INIS)

    Roedel, R.; Palmedo, H.; Reichmann, K.; Reinhardt, M.J.; Biersack, H.J.; Straehler-Pohl, H.J.; Jaeger, U.

    2004-01-01

    To evaluate the usefulness of combined PET/CT examinations for detection of malignant tumors and their metastases in head and neck oncology. 51 patients received whole body scans on a dual modality PET/CT system. CT was performed without i.v. contrast. The results were compared concerning the diagnostic impact of native CT scan on FDG-PET images and the additional value of fused imaging. From 153 lesions were 97 classified as malignant on CT and 136 on FDG/PET images, as suspicious for malignancy in 33 on CT and 7 on FDG-PET and as benign in 23 on CT and 10 on FDG-PET. With combined PET/CT all primary and recurrent tumors could be found, the detection rate in patients with unknown primary tumors was 45%. Compared to PET or CT alone the sensitivity, specifity and accuracy could be significantly improved by means of combined PET/CT. Fused PET/CT imaging with [F18]-FDG and native CT-scanning enables accurate diagnosis in 93% of lesions and 90% of patients with head and neck oncology. (orig.) [de

  2. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  3. Cross sectional imaging of cardiac tumors

    International Nuclear Information System (INIS)

    Maksimovic, R.

    2012-01-01

    Full text: Primary cardiac tumors are a rare entity whose incidence, according to surgery and autopsy reports, is 0.3% to 0.7% of all cardiac tumors. Metastasis to the heart from other primary cancers is 30 times more common. Only 25% of primary cardiac tumors are malignant, and, of these, 75% are sarcomas. Malignant primary cardiac sarcomas are usually located in the right atrium and are most commonly angiosarcoma. In the left atrium, the most common malignant tumors are pleomorphic sarcoma and leiomyosarcoma. Symptom presentation for cardiac tumors is quite varied, but it is dependent upon tumor location and size, rather than upon histologic characteristics. Presentation includes congestive heart failure from intracardiac obstruction, systemic embolization, constitutional symptoms, and arrhythmias. Left atrial sarcomas tend to be more solid and less infiltrative than right-sided sarcomas; consequently, they tend to metastasize later. They usually present with symptoms of blood-flow obstruction and substantial, life-threatening congestive heart failure. Right-sided cardiac tumors are usually malignant and appear as bulky, infiltrative masses that grow in an outward pattern. These are usually fast-growing tumors that metastasize early and do not present with congestive heart failure until late in the disease. The diagnosis of cardiac tumors relies heavily on the use of multiple imaging techniques, including cardiac computed tomography (CT), cardiovascular magnetic resonance (CMR), and echocardiography. Important imaging data to collect include information on the size of the intracardiac mass, the mobility of the mass (an important predictor of prognosis and embolic potential), myocardial invasion, and cardiac chamber location. These factors will provide the means to diagnosis and prognosis. Other important data to collect include the mechanism of tumor implantation, the relationship of the tumor with adjacent structures, the surgeon route of access to the heart

  4. Dual source CT imaging

    International Nuclear Information System (INIS)

    Seidensticker, Peter R.; Hofmann, Lars K.

    2008-01-01

    The introduction of Dual Source Computed Tomography (DSCT) in 2005 was an evolutionary leap in the field of CT imaging. Two x-ray sources operated simultaneously enable heart-rate independent temporal resolution and routine spiral dual energy imaging. The precise delivery of contrast media is a critical part of the contrast-enhanced CT procedure. This book provides an introduction to DSCT technology and to the basics of contrast media administration followed by 25 in-depth clinical scan and contrast media injection protocols. All were developed in consensus by selected physicians on the Dual Source CT Expert Panel. Each protocol is complemented by individual considerations, tricks and pitfalls, and by clinical examples from several of the world's best radiologists and cardiologists. This extensive CME-accredited manual is intended to help readers to achieve consistently high image quality, optimal patient care, and a solid starting point for the development of their own unique protocols. (orig.)

  5. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Ellingson, W.A.

    1987-02-01

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  6. PET/CT. Dose-escalated image fusion?

    International Nuclear Information System (INIS)

    Brix, G.; Beyer, T.

    2005-01-01

    Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hard- and software of PET/CT systems. (orig.)

  7. Quality assurance of CT-PET alignment and image registration for radiation treatment planning

    International Nuclear Information System (INIS)

    Gong, S.J.; O'Keefe, G.J.; Gunawardana, D.H.

    2005-01-01

    A multi-layer point source phantom was first used to calibrate and verify the CT-PET system alignment. A partial whole-body Aldcrson RANDO Man Phantom (head through mid-femur) was externally and internally marked with small metal cannulas filled with 18F-FDG and then scanned with both modalities. Six series of phantom studies with different acquisition settings and scan positions were performed to reveal possible system bias and evaluate the accuracy and reliabilities of Philips Syntegra program in image alignment, coregistration and fusion. The registration error was assessed quantitatively by measuring the root-mean-square distance between the iso-centers of corresponding fiducial marker geometries in reference CT volumes and transformed CT or PET volumes. Results: Experimental data confirms the accuracy of manual, parameter, point and image-based registration using Syntegra is better than 2 mm. Comparisons between blind and cross definition of iso-centers of fiducial marks indicate that the fused CT and PET is superior to visual correlation of CT and PET side-by-side. Conclusion: In this work we demonstrate the QA procedures of Gemini image alignment and registration. Syntegra produces intrinsic and robust multi-modality image registration and fusion with careful user interaction. The registration accuracy is generally better than the spatial resolution of the PET scanner used and this appears to be sufficient for most RTP CT-PET registration procedures

  8. Deep 3D convolution neural network for CT brain hemorrhage classification

    Science.gov (United States)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  9. Image mottle in abdominal CT.

    Science.gov (United States)

    Ende, J F; Huda, W; Ros, P R; Litwiller, A L

    1999-04-01

    To investigate image mottle in conventional CT images of the abdomen as a function of radiographic technique factors and patient size. Water-filled phantoms simulating the abdomens of adult (32 cm in diameter) and pediatric (16 cm in diameter) patients were used to investigate image mottle in CT as a function of x-ray tube potential and mAs. CT images from 39 consecutive patients with noncontrast liver scans and 49 patients with iodine contrast scans were analyzed retrospectively. Measurements were made of the mean liver parenchyma Hounsfield unit value and the corresponding image mottle. For a given water phantom and x-ray tube potential, image mottle was proportional to the mAs-0.5. Increasing the phantom diameter from 16 cm (pediatric) to 32 cm increased the mottle by a factor of 2.4, and increasing the x-ray tube potential from 80 kVp to 140 kVp reduced the mottle by a factor of 2.5. All patients were scanned at 120 kVp, with no correlation between patient size and the x-ray tube mAs. The mean mottle level was 7.8 +/- 2.2 and 10.0 +/- 2.5 for the noncontrast and contrast studies, respectively. An increase in patient diameter of 3 cm would require approximately 65% more mAs to maintain the same level of image mottle. The mottle in abdominal CT images may be controlled by adjusting radiographic technique factors, which should be adjusted to take into account the size of the patient undergoing the examination.

  10. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  11. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  12. An approach for quantitative image quality analysis for CT

    Science.gov (United States)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  13. KINKFOLD—an AutoLISP program for construction of geological cross-sections using borehole image data

    Science.gov (United States)

    Özkaya, Sait Ismail

    2002-04-01

    KINKFOLD is an AutoLISP program designed to construct geological cross-sections from borehole image or dip meter logs. The program uses the kink-fold method for cross-section construction. Beds are folded around hinge lines as angle bisectors so that bedding thickness remains unchanged. KINKFOLD may be used to model a wide variety of parallel fold structures, including overturned and faulted folds, and folds truncated by unconformities. The program accepts data from vertical or inclined boreholes. The KINKFOLD program cannot be used to model fault drag, growth folds, inversion structures or disharmonic folds where the bed thickness changes either because of deformation or deposition. Faulted structures and similar folds can be modelled by KINKFOLD by omitting dip measurements within fault drag zones and near axial planes of similar folds.

  14. Pulmonary hypertension CT imaging

    International Nuclear Information System (INIS)

    Nedevska, A.

    2013-01-01

    Full text: The right heart catheterization is the gold standard in the diagnosis and determines the severity of pulmonary hypertension. The significant technical progress of noninvasive diagnostic imaging methods significantly improves the pixel density and spatial resolution in the study of cardiovascular structures, thus changes their role and place in the overall diagnostic plan. Learning points: What is the etiology, clinical manifestation and general pathophysiological disorders in pulmonary hypertension. What are the established diagnostic methods in the diagnosis and follow-up of patients with pulmonary hypertension. What is the recommended protocol for CT scanning for patients with clinically suspected or documented pulmonary hypertension. What are the important diagnostic findings in CT scan of a patient with pulmonary hypertension. Discussion: The prospect of instantaneous complex - anatomical and functional cardiopulmonary and vascular diagnostics seems extremely attractive. The contrast enhanced multislice computed (CT ) and magnetic resonance imaging are very suitable methods for imaging the structures of the right heart, with the possibility of obtaining multiple projections and three-dimensional imaging reconstructions . There are specific morphological features that, if carefully analyzed, provide diagnostic information. Thus, it is possible to avoid or at least reduce the frequency of use of invasive diagnostic cardiac catheterization in patients with pulmonary hypertension. Conclusion: This review focuses on the use of contrast-enhanced CT for comprehensive evaluation of patients with pulmonary hypertension and presents the observed characteristic changes in the chest, lung parenchyma , the structures of the right half of the heart and pulmonary vessels

  15. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kamp, J [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Malyarenko, E [Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Tessonics Corp, Birmingham, MI (United Kingdom); Chen, D [Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Wydra, A [True Phantoms Solutions, Windsor, ON (Canada); University of Windsor - Institute for Diagnostic Imaging Research, Windsor, ON (Canada); Maev, R [Wayne State University, Detroit, MI (United States); Karmanos Cancer Institute - International Imaging Center, Detroit, MI (United States); Tessonics Corp, Birmingham, MI (United Kingdom); True Phantoms Solutions, Windsor, ON (Canada); University of Windsor - Institute for Diagnostic Imaging Research, Windsor, ON (Canada)

    2015-06-15

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included a programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge

  16. Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1

    Science.gov (United States)

    Gee, Carole T.

    2013-01-01

    • Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495

  17. The role of CT and MR in diagnosis of aortic dissection

    International Nuclear Information System (INIS)

    Yoon, Kwon Ha; Lim, Tae Hwan; Song, Koun Sik; Min, Kyung Seok; Song, Meong Gun

    1994-01-01

    The purpose of this study was to determine the role of CT and MR imagings in the diagnosis of aortic dissection and differentiation between the true and false lumen. We retrospectively studied forty patients with aortic dissection(AD) diagnosed by imagings or surgery. Of the forty patients, 19 were examined with only CT, 14 with CT and MR, and 7 with MR. Our points of view were(1) the classification of AD according to configuration of intimal flap by cross-sectional imaging, (2) differentiation between the true and false lumens, (3) the course of the false lumen, and (4) detectability of the origin of major branch vessels of the abdominal aorta. The classification by cross-sectional imaging were crescentic(65%), circumferential(15%), flat(12%), and irregular(8%) type, in which false negative diagnosis was made in 1 case of crescentic and circumferential type, respectively. In 2 case of flat type and 1 case of irregular type, the differentiation between the true and false lumen was impossible with CT. The course of the false lumen in descending thoracic aorta revealed counterclock wise rotation(66%), clockwise rotation(5%) or fixed(29%) appearance. MR imaging was superior to CT in the detection of the origin of major branch vessels of the abdominal aorta. The determination of the origin of major branches of abdominal aorta arising from the true and false lumen were impossible in 2 cases in which only CT was done. Diagnosis of crescentic and circumferential types of AD with narrow and thrombosed false lumen was problematic in both CT and MR with no difference of diagnostic accuracy between the two modalities. The differentiation between the true and false lumen was difficult in flat and irregular types with only CT. Therefore, when surgical treatment is considered as in type B aortic dissection, MR imaging is recommended in order to determine the origin of major branch vessels

  18. Tendon retraction with rotator cuff tear causes a decrease in cross-sectional area of the supraspinatus muscle on magnetic resonance imaging.

    Science.gov (United States)

    Fukuta, Shoji; Tsutsui, Takahiko; Amari, Rui; Wada, Keizo; Sairyo, Koichi

    2016-07-01

    Muscle atrophy and fatty degeneration of the rotator cuff muscles have been reported as negative prognostic indicators after rotator cuff repair. Although the Y-shaped view is widely used for measuring the cross-sectional area of the supraspinatus muscle, the contribution of retraction of the torn tendon as well as muscle atrophy must be considered. The purpose of this study was to clarify the relationship between cross-sectional area and tendon retraction or size of the tear. This study included 76 shoulders that were evaluated arthroscopically for the presence and size of tears. Cross-sectional areas of rotator cuff muscles were measured from the Y-shaped view to 3 more medial slices. The occupation ratio and tangent sign were evaluated on the Y-shaped view. The retraction of torn tendon was also measured on the oblique coronal images. On the Y-shaped view, the cross-sectional area of the supraspinatus and the occupation ratio decreased in conjunction with the increase in tear size. A significant decrease in cross-sectional area was noted only in large and massive tears on more medial slices from the Y-shaped view. Significant decreases in the cross-sectional area of the infraspinatus were observed in large and massive tears on all images. A negative correlation was found between tendon retraction and cross-sectional area, which was strongest on the Y-shaped view. To avoid the influence of retraction of the supraspinatus tendon, sufficient medial slices from the musculotendinous junction should be used for evaluation of muscle atrophy. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Ring artifacts removal from synchrotron CT image slices

    International Nuclear Information System (INIS)

    Wei Zhouping; Chapman, Dean; Wiebe, Sheldon

    2013-01-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  20. A morphological study of the mandibular molar region using reconstructed helical computed tomographic images

    International Nuclear Information System (INIS)

    Tsuno, Hiroaki; Noguchi, Makoto; Noguchi, Akira; Yoshida, Keiko; Tachinami, Yasuharu

    2010-01-01

    This study investigated the morphological variance in the mandibular molar region using reconstructed helical computed tomographic (CT) images. In addition, we discuss the necessity of CT scanning as part of the preoperative assessment process for dental implantation, by comparing the results with the findings of panoramic radiography. Sixty patients examined using CT as part of the preoperative assessment for dental implantation were analyzed. Reconstructed CT images were used to evaluate the bone quality and cross-sectional bone morphology of the mandibular molar region. The mandibular cortical index (MCI) and X-ray density ratio of this region were assessed using panoramic radiography in order to analyze the correlation between the findings of the CT images and panoramic radiography. CT images showed that there was a decrease in bone quality in cases with high MCI. Cross-sectional CT images revealed that the undercuts on the lingual side in the highly radiolucent areas in the basal portion were more frequent than those in the alveolar portion. This study showed that three-dimensional reconstructed CT images can help to detect variances in mandibular morphology that might be missed by panoramic radiography. In conclusion, it is suggested that CT should be included as an important examination tool before dental implantation. (author)

  1. Combined X-ray CT and mass spectrometry for biomedical imaging applications

    Science.gov (United States)

    Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.

    2014-04-01

    Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The

  2. The value of the 3D CT imaging in diagnosis of lumbar spondylolysis

    International Nuclear Information System (INIS)

    Krupski, W.; Paslawski, M.; Zlomaniec, J.; Fatyga, M.; Majcher, P.

    2003-01-01

    The frequent cause of a low back pain is the lumbar spondylolysis and the spondylolisthesis. The purpose of the study was to assess of the value of three-dimensional CT imaging in diagnosis of the lumbar spondylolysis. Material comprises of 22 patients complaining from low back pain in which lateral radiograms, axial CT scans, MPR and 3D reconstructions were performed. The presence of spondylolysis, spondylolisthesis, stenosis of the spinal canal and intervertebral foramens were assessed. The differences in diagnostic value between analysed imaging modalities in revealing spondylolysis, spondylolisthesis and narrowing of intervertebral foramens, were statistically highly significant. The highest sensitivity in recognition of these pathologies was observed in 3D reconstruction. The 3D reconstructions were also useful in an assessment of the spinal canal stenosis, revealing degenerative changes, but the increased number of diagnosed pathologies was not statistically significant comparing with axial CT section. Spondylolysis was diagnosed in 22 patients based on 3D reconstructions, in 14 patients on MPR reconstructions, in 18 patients on axial sections and only in 8 cases on lateral radiograms. Spondylolisthesis was visible on lateral radiograms in 21 patients, on axial scans in 12 patients, and in 22 cases, on both MPR and 3D reconstruction. The stenosis of the spinal canal was found on lateral radiograms in 2 patients, on MPR reconstruction in 4 cases, and in 7 patients on 3D reconstruction. The intervertebral foramen stenosis was present in 5 patients, based on MPR reconstruction and in 17, on spatial images. Spatial 3D CT reconstructions are superior to lateral radiograms, axial CT sections and MPR reconstruction in revealing spondylolysis, spondylolisthesis and stenosis of intervertebral foramens. They are useful in assessment of spinal canal narrowing and evaluation of degenerative changes. In our opinion 3D CT reconstruction projected from the inside of the

  3. CT anatomy of hilar lymphadenopathy

    International Nuclear Information System (INIS)

    Sone, S.; Higashihara, T.; Morimoto, S.; Ikezoe, J.; Arisawa, J.; Monden, Y.; Nahakara, K.

    1983-01-01

    The normal distributions of lymph nodes in the pulmonary hili is diagrammatically shown with a typical computed tomographic (CT) demonstration of hilar lymphadenopathy. On the basis of observations in anatomic cross sections of cadaver lungs, the lympth nodes in the right lung can be divided into four principal groups (right upper lobe, interlobar, middle lobe, and lower lobe) and in the left lung into three principal groups (left upper lobe, interlobar, and lower lobe). Most of the hilar lymph nodes are situated along the bronchi in close relation with the pulmonary vascular branches. Because of this close proximity, contrast-enhanced CT images are indispensable for precise CT interpretation of a hilar lymphadenopathy

  4. CT urethrography. New imaging technique of the urethra

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Munechika, Hirotsugu

    2005-01-01

    The purpose of the study is to assess the usefulness of CT urethrography for evaluation of the posterior urethra and surrounding structures. The CT images were performed with 4 channel multidetector row CT unit. Twenty-six cases (12 cases of CT urethrography and 14 cases of conventional urethrography) were included in this study. 3D-volume rendering (VR) images and VR-multiplaner reconstruction (MPR) sagittal images were compared with conventional retrograde urethrography (RUG) images to evaluate the following anatomical structures; the inferior wall of bladder, the neck of bladder, the posterior urethra, and the prostate. Two radiologists undertook a task of evaluation of the images. There was no significant difference in image quality between RUG and 3D-VR. However, VR-MPR sagittal images were significantly better than RUG or 3D-VR images in any anatomical structures set up beforehand for evaluation. CT urerthrography was useful for evaluation of the posterior urethra and surrounding structures. (author)

  5. Risk factors for morbidity and death in non-cystic fibrosis bronchiectasis: a retrospective cross-sectional analysis of CT diagnosed bronchiectatic patients

    Directory of Open Access Journals (Sweden)

    Goeminne Pieter

    2012-03-01

    Full Text Available Abstract Introduction There is a relative lack of information about the death rate and morbidity of non-cystic fibrosis bronchiectasis and most studies are limited due to referral bias. We wanted to assess death rate and morbidity in those patients at our hospital. Methods Adult patients seen at our department between June 2006 and November 2009 were recruited if the key string "bronchiect-" was mentioned in electronic clinical records and if chest CT imaging was available. Clinical records of all patients with confirmed radiologic diagnosis of bronchiectasis were reviewed and clinical characteristics were analyzed. Results 539 patients with a radiographic diagnosis of non-cystic fibrosis bronchiectasis were identified in a retrospective cross-sectional analysis giving a prevalence of 2.6% in our hospital population. A wide range of etiologies was found with idiopathic bronchiectasis in 26%. In the 41 months interval, 57 patients (10.6% died. We found a median exacerbation rate of 1.94 per year. Bacterial colonization status was associated with more deaths, exacerbation rate, symptoms and reduced pulmonary function. Pulmonary hypertension was found in 48% of our patients. Conclusions We evaluated a large non-cystic fibrosis bronchiectasis population, and provided new epidemiological data on associations between clinical characteristics and deaths and morbidity in these patients.

  6. Applying an animal model to quantify the uncertainties of an image-based 4D-CT algorithm

    International Nuclear Information System (INIS)

    Pierce, Greg; Battista, Jerry; Wang, Kevin; Lee, Ting-Yim

    2012-01-01

    The purpose of this paper is to use an animal model to quantify the spatial displacement uncertainties and test the fundamental assumptions of an image-based 4D-CT algorithm in vivo. Six female Landrace cross pigs were ventilated and imaged using a 64-slice CT scanner (GE Healthcare) operating in axial cine mode. The breathing amplitude pattern of the pigs was varied by periodically crimping the ventilator gas return tube during the image acquisition. The image data were used to determine the displacement uncertainties that result from matching CT images at the same respiratory phase using normalized cross correlation (NCC) as the matching criteria. Additionally, the ability to match the respiratory phase of a 4.0 cm subvolume of the thorax to a reference subvolume using only a single overlapping 2D slice from the two subvolumes was tested by varying the location of the overlapping matching image within the subvolume and examining the effect this had on the displacement relative to the reference volume. The displacement uncertainty resulting from matching two respiratory images using NCC ranged from 0.54 ± 0.10 mm per match to 0.32 ± 0.16 mm per match in the lung of the animal. The uncertainty was found to propagate in quadrature, increasing with number of NCC matches performed. In comparison, the minimum displacement achievable if two respiratory images were matched perfectly in phase ranged from 0.77 ± 0.06 to 0.93 ± 0.06 mm in the lung. The assumption that subvolumes from separate cine scan could be matched by matching a single overlapping 2D image between to subvolumes was validated. An in vivo animal model was developed to test an image-based 4D-CT algorithm. The uncertainties associated with using NCC to match the respiratory phase of two images were quantified and the assumption that a 4.0 cm 3D subvolume can by matched in respiratory phase by matching a single 2D image from the 3D subvolume was validated. The work in this paper shows the image-based 4D-CT

  7. Evaluation of Marfan syndrome: MR imaging versus CT

    International Nuclear Information System (INIS)

    Soulen, R.L.; Fishman, E.K.; Pyeritz, R.E.; Gott, V.L.; Zerhouni, E.A.

    1986-01-01

    Twenty-five patients with Marfan, syndrome underwent both CT and MR imaging. MR imaging were interpreted in blinded fashion and then compared with CT scans MR imaging was found to be equivalent to CT in the detection of aortic, dural, and hip abnormalities in patients not operated on. MR imaging was superior to CT in the evaluation of postoperative patients because the artifact produced by Bjork-Shirley or St. Jude valves precludes adequate evaluation of the aortic root on CT while producing only a small inferior field distortion (a ''pseudo-ventricular septal defect'') on MR imaging. The absence of radiation exposure is another major advantage of MR imaging in this relatively young population requiring serial studies. The authors conclude that MR imaging is the modality of choice for the evaluation and follow-up of patients with Marfan syndrome and offers an appropriate means of screening their kindred

  8. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  9. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation

    International Nuclear Information System (INIS)

    Strandberg, Sören; Wretling, Marie-Louise; Wredmark, Torsten; Shalabi, Adel

    2010-01-01

    Advancement in technology of computer tomography (CT) and introduction of new medical imaging softwares enables easy and rapid assessment of muscle cross-sectional area (CSA) and attenuation. Before using these techniques in clinical studies there is a need for evaluation of the reliability of the measurements. The purpose of the study was to evaluate the inter- and intra-observer reliability of ImageJ in measuring thigh muscles CSA and attenuation in patients with anterior cruciate ligament (ACL) injury by computer tomography. 31 patients from an ongoing study of rehabilitation and muscle atrophy after ACL reconstruction were included in the study. Axial CT images with slice thickness of 10 mm at the level of 150 mm above the knee joint were analyzed by two investigators independently at two times with a minimum of 3 weeks between the two readings using NIH ImageJ. CSA and the mean attenuation of individual thigh muscles were analyzed for both legs. Mean CSA and mean attenuation values were in good agreement both when comparing the two observers and the two replicates. The inter- and intraclass correlation (ICC) was generally very high with values from 0.98 to 1.00 for all comparisons except for the area of semimembranosus. All the ICC values were significant (p < 0,001). Pearson correlation coefficients were also generally very high with values from 0.98 to 1.00 for all comparisons except for the area of semimembranosus (0.95 for intraobserver and 0.92 for interobserver). This study has presented ImageJ as a method to monitor and evaluate CSA and attenuation of different muscles in the thigh using CT-imaging. The method shows an overall excellent reliability with respect to both observer and replicate

  10. Image quality in children with low-radiation chest CT using adaptive statistical iterative reconstruction and model-based iterative reconstruction.

    Directory of Open Access Journals (Sweden)

    Jihang Sun

    Full Text Available OBJECTIVE: To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR and a full model-based iterative reconstruction (MBIR algorithm. METHODS: Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years who received low-dose chest CT scans were included. Age-dependent noise index (NI was used for acquisition. Images were retrospectively reconstructed using three methods: MBIR, 60% of ASIR and 40% of conventional filtered back-projection (FBP, and FBP. The subjective quality of the images was independently evaluated by two radiologists. Objective noises in the left ventricle (LV, muscle, fat, descending aorta and lung field at the layer with the largest cross-section area of LV were measured, with the region of interest about one fourth to half of the area of descending aorta. Optimized signal-to-noise ratio (SNR was calculated. RESULT: In terms of subjective quality, MBIR images were significantly better than ASIR and FBP in image noise and visibility of tiny structures, but blurred edges were observed. In terms of objective noise, MBIR and ASIR reconstruction decreased the image noise by 55.2% and 31.8%, respectively, for LV compared with FBP. Similarly, MBIR and ASIR reconstruction increased the SNR by 124.0% and 46.2%, respectively, compared with FBP. CONCLUSION: Compared with FBP and ASIR, overall image quality and noise reduction were significantly improved by MBIR. MBIR image could reconstruct eligible chest CT images in children with lower radiation dose.

  11. In vivo microCT imaging of rodent cerebral vasculature

    International Nuclear Information System (INIS)

    Seo, Youngho; Hasegawa, Bruce H; Hashimoto, Tomoki; Nuki, Yoshitsugu

    2008-01-01

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I tube x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml -1 at 1.2 ml min -1 ) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel (∼85 μm) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid arteries and major cerebral blood vessels

  12. In vivo microCT imaging of rodent cerebral vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Youngho; Hasegawa, Bruce H [Center for Molecular and Functional Imaging, Department of Radiology, University of California, San Francisco, CA 94143 (United States); Hashimoto, Tomoki; Nuki, Yoshitsugu [Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143 (United States)], E-mail: youngho.seo@radiology.ucsf.edu

    2008-04-07

    Computed tomography (CT) remains a critical diagnostic tool for evaluating patients with cerebrovascular disease, and the advent of specialized systems for imaging rodents has extended these techniques to small animal models of these diseases. We therefore have evaluated in vivo methods of imaging rat models of hemorrhagic stroke using a high resolution compact computed tomography ('microCT') system (FLEX(tm) X-O(tm), Gamma Medica-Ideas, Northridge, CA). For all in vivo studies, the head of the anesthetized rat was secured in a custom immobilization device for microCT imaging with 512 projections over 2 min at 60 kVp and 0.530 mA (I{sub tube} x t/rotation = 63.6 mAs). First, imaging without iodinated contrast was performed (a) to differentiate the effect of contrast agent in contrast-enhanced CT and (b) to examine the effectiveness of the immobilization device between two time points of CT acquisitions. Then, contrast-enhanced CT was performed with continuous administration of iopromide (300 mgI ml{sup -1} at 1.2 ml min{sup -1}) to visualize aneurysms and other vascular formations in the carotid and cerebral arteries that may precede subarachnoid hemorrhage. The accuracy of registration between the noncontrast and contrast-enhanced CT images with the immobilization device was compared against the images aligned with normalized mutual information using FMRIB's linear image registration tool (FLIRT). Translations and rotations were examined between the FLIRT-aligned noncontrast CT image and the nonaligned noncontrast CT image. These two data sets demonstrated translational and rotational differences of less than 0.5 voxel ({approx}85 {mu}m) and 0.5 deg., respectively. Noncontrast CT demonstrated a very small volume (0.1 ml) of femoral arterial blood introduced surgically into the rodent brain. Continuous administration of iopromide during the CT acquisition produced consistent vascular contrast in the reconstructed CT images. As a result, carotid

  13. Maxillofacial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Larheim, T.A. [Oslo Univ. (Norway). Dept. of Maxillofacial Radiology; Westesson, P.L. [Univ. of Rochester School of Medicine and Dentistry, NY (United States). Div. of Diagnostic and Interventional Radiology

    2006-07-01

    Maxillofacial imaging has evolved dramatically over the past two decades with development of new cross-sectional imaging techniques. Traditional maxillofacial imaging was based on plain films and dental imaging. However, today's advanced imaging techniques with CT and MRI have only been partially implemented for maxillofacial questions. This book bridges the gap between traditional maxillofacial imaging and advanced medical imaging. We have applied CT and MRI to a variety of maxillofacial cases and these are illustrated with high-quality images and multiple planes. A comprehensive chapter on imaging anatomy is also included. This book is useful for oral and maxillofacial radiologists, oral and maxillofacial surgeons, dentists, radiologists, plastic surgeons, head and neck surgeons, and others that work with severe maxillofacial disorders. (orig.)

  14. High-picture quality industrial CT scanner

    International Nuclear Information System (INIS)

    Shoji, Takao; Nishide, Akihiko; Fujii, Masashi.

    1989-01-01

    Industrial X-ray-CT-scanners, which provide cross-sectional images of a tested sample without destroying it, are attracting attention as a new nondestructive inspection device. In 1982, Toshiba commenced the development of industrial CT scanners, and introduced the 'TOSCANER' -3000 and-4000 series. Now, the state of the art 'TOSCANER'-20000 series of CT systems has been developed incorporating the latest computer tomography and image processing technology, such as the T9506 image processor. One of the advantages of this system is its applicability to a wide range of X-ray energy . The 'TOSCANER'-20000 series can be utilized for inspecting castings and other materials with relatively low-transparency to X-rays, as well as ceramics, composite materials and other materials with high X-ray transparency. A further feature of the new system is its high-picture quality, with a high-spatial resolution resulting from a pixel size of 0.2x0.2(mm). (author)

  15. Neural network and its application to CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-02-01

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  16. Development of comprehensive image processing technique for differential diagnosis of liver disease by using multi-modality images. Pixel-based cross-correlation method using a profile

    International Nuclear Information System (INIS)

    Inoue, Akira; Okura, Yasuhiko; Akiyama, Mitoshi; Ishida, Takayuki; Kawashita, Ikuo; Ito, Katsuyoshi; Matsunaga, Naofumi; Sanada, Taizo

    2009-01-01

    Imaging techniques such as high magnetic field imaging and multidetector-row CT have been markedly improved recently. The final image-reading systems easily produce more than a thousand diagnostic images per patient. Therefore, we developed a comprehensive cross-correlation processing technique using multi-modality images, in order to decrease the considerable time and effort involved in the interpretation of a radiogram (multi-formatted display and/or stack display method, etc). In this scheme, the criteria of an attending radiologist for the differential diagnosis of liver cyst, hemangioma of liver, hepatocellular carcinoma, and metastatic liver cancer on magnetic resonance images with various sequences and CT images with and without contrast enhancement employ a cross-correlation coefficient. Using a one-dimensional cross-correlation method, comprehensive image processing could be also adapted for various artifacts (some depending on modality imaging, and some on patients), which may be encountered at the clinical scene. This comprehensive image-processing technique could assist radiologists in the differential diagnosis of liver diseases. (author)

  17. Squalene aspiration pneumonia : thin-section CT and histopathologic findings

    International Nuclear Information System (INIS)

    Lee, Jin Seong; Gong, Gyung Yub; Lim, Tae Hwan

    1998-01-01

    The purpose of this study was to describe the thin-section computed tomography (CT) findings and histopathologic findings of squalene aspiration pneumonia. Thin-section CT scans were obtained from nine patients with proven exogenous lipoid pneumonia resulting from aspiration of squalene (derived from shark liver oil). The condition was diagnosed by biopsy (n=3), bronchoalveolar lavage(n=4), or sputum cytology and clinical history (n=2) of squalene use was confirmed in all patients. Specimens of transbronchial lung biopsy were also reviewed and compared with thin-section CT findings. On the basis of these results, we concluded that squalene aspiration pneumonia can be reliably diagnosed by thin-section CT findings particularly when the appropriate history is known. (author). 19 refs., 3 figs

  18. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    Science.gov (United States)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set

  19. Non-contrast thin-section helical CT of urinary tract calculi in children

    International Nuclear Information System (INIS)

    Strouse, Peter J.; Bates, Gregory D.; Bloom, David A.; Goodsitt, Mitchell M.

    2002-01-01

    Background: Non-contrast thin-section helical CT has gained acceptance for the diagnosis of urinary tract calculi in adults, but experience with the technique in children is limited. Purpose: To evaluate the utility of non-contrast thin section helical CT for the diagnosis of urinary tract calculi in children. Materials and methods: Radiology databases at three pediatric institutions were searched to identify all pediatric patients evaluated by ''renal stone'' protocol CT scans (no oral or intravenous contrast, scans covering the entire urinary tract obtained in helical mode with narrow collimation (< 5 mm)). CT scans were reviewed for the primary finding of urinary tract calculi, for secondary signs of acute urinary tract obstruction and for evidence of alternative diagnoses. Medical records were reviewed to determine clinical presentation and to confirm the eventual diagnosis. Results: One hundred thirty-seven scans of 113 children (mean age: 11.2 years) were studied. Thirty-eight of 94 examinations (40%) performed on 82 children for acute pain and/or hematuria showed ureteral calculi. Alternative diagnoses were suggested by CT on 16 scans (17%). Twenty-eight scans were performed on 10 asymptomatic children with known calculus disease confirming renal stone burden on 21 scans (75%) and persistent ureteral calculi on 6 scans (21%). Upper tract calculi were demonstrated on 10 of 15 scans (67%) performed to evaluate for calculi in patients with known non-calculus genitourinary tract abnormalities. Conclusions: Non-contrast thin section helical CT is a useful method to diagnose urinary tract calculi in children. Radiation dose in this retrospective study may exceed the lowest possible radiation dose for diagnostic accuracy. Further research is needed to optimize CT imaging parameters, while maintaining diagnostic accuracy and minimizing radiation dose. (orig.)

  20. CT imaging of myocardial perfusion and viability. Beyond structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, U. Joseph [Medical University of South Carolina, Charleston, SC (United States). Dept. of Radiology and Radiological Sciences; Bamberg, Fabian [Muenchen Univ. (Germany); Bastarrika, Gorka [Sunnybrook Health Sciences Centre, Toronto, ON (Canada). Cardiothoracic Imaging Division; Ruzsics, Balazs [Royal Liverpool and Broadgreen Univ., Liverpool (United Kingdom). Dept. of Cardiology; Vliegenthart, Rozemarijn (ed.) [University Medical Center Groningen (Netherlands). Center for Medical Imaging

    2014-06-01

    First publication to be devoted to the subject. Reviews an advanced, promising application in healthcare. Spans multiple medical disciplines. The rapid evolution in cardiac computed tomography during the past decade has improved spatial and temporal resolution to the extent that cardiac CT is now an accepted alternative for the non-invasive interrogation of the heart. Beyond the assessment of cardiac structure and ventricular function, recent research has identified yet another promising CT application for the comprehensive diagnosis of coronary heart disease, namely the assessment of myocardial perfusion and viability. In this book, the first to be devoted to this novel application of CT, leading experts from across the world present up-to-date information and consider future directions. After short sections outlining the state of the art in the traditional applications of CT to image structure and function, the full range of CT techniques that may be employed to evaluate the myocardial blood supply are discussed in detail. Similarly, diverse CT approaches for the assessment of myocardial viability are described, with careful consideration of the available experimental and clinical evidence and the role of quantitative imaging.

  1. Research on Radar Cross Section Measurement Based on Near-field Imaging of Cylindrical Scanning

    Directory of Open Access Journals (Sweden)

    Xing Shu-guang

    2015-04-01

    Full Text Available A new method of Radar Cross Section (RCS measurement based on near-field imaging of cylindrical scanning surface is proposed. The method is based on the core assumption that the target consists of ideal isotropic scattered centers. Three-dimensional radar scattered images are obtained by using the proposed method, and then to obtain the RCS of the target, the scattered far field is calculated by summing the fields generated by the equivalent scattered centers. Not only three dimensional radar reflectivity images but also the RCS of targets in certain three dimensional angle areas can be obtained. Compared with circular scanning that can only obtain twodimensional radar reflectivity images and RCS results in two-dimensional angle areas, cylindrical scanning can provide more information about the scattering properties of the targets. The method has strong practicability and its validity is verified by simulations.

  2. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    International Nuclear Information System (INIS)

    Bauer, J; Unholtz, D; Kurz, C; Parodi, K

    2013-01-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β + activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β + activity induced in the investigated

  3. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    Science.gov (United States)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  4. Plastination of whole-body slices: a new aid in cross-sectional anatomy, demonstrated for thoracic organs in dogs

    International Nuclear Information System (INIS)

    Polgar, M.; Probst, A.; Koenig, H.E.; Sora, M.-C.

    2003-01-01

    Plastic-embedded, transparent serially sectioned slices from the canine thorax were compared wit cross-sections, made with the commonly used technique and computed tomograms. Three Beagles, at the age of seven months, were cut into 4 mm thick slices and plastinated with the epoxy resin Biodur E12. The area of the thorax was examined macro-scopically and scrutinized closely. Survey and magnification photographs were taken. Compared with the commonly used prepared sections the E12-slices proved to be transparent, hard, dry, odourless, resistant and show unlimited durability. Good color maintenance of the specimens makes differentiation of the organs easy. The leading of the blood vessels, nerves and other conductions of the thoracal cavity can be followed from section to section. The colorful images help to interpret CT and MRI and provide good learning aids for clinicians and students. (author)

  5. Image quality of conventional images of dual-layer SPECTRAL CT: a phantom study.

    Science.gov (United States)

    van Ommen, F; Bennink, E; Vlassenbroek, A; Dankbaar, J W; Schilham, A M R; Viergever, M A; de Jong, H W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips), by means of phantom experiments. For both CT scanners conventional CT images were acquired using four adult scanning protocols: i) body helical, ii) body axial, iii) head helical and iv) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10% and 5% MTF of the iCT and IQon showed small but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with

  6. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  7. Pros and cons of organ shielding for CT imaging

    International Nuclear Information System (INIS)

    Samei, Ehsan

    2014-01-01

    With the increased importance of CT radiation dose to health care providers, patients and the general public, there is an increased responsibility to minimize patient dose effectively. Bismuth shields offer a simple strategy to reduce dose to certain anterior radiosensitive organs such as breasts and eyes. However, in order to reduce organ dose they must be used properly; improper use can lead to an actual increase in the patient dose. They also create a proportional increase in image noise in the section of the body adjacent to the shield and further reduce the quantitative precision of CT numbers. In addition, shielding can degrade the overall efficiency (by an order of approximately 10%) of the imaging process, reducing the theoretical image quality that can be expected from a certain level of patient dose. However, in spite of their significant disadvantages, there are certain clinical situations and practice considerations that provide qualified justification for their continued use. (orig.)

  8. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    International Nuclear Information System (INIS)

    Poortman, Pieter; Lohle, Paul N.M.; Schoemaker, Cees M.; Cuesta, Miguel A.; Oostvogel, Henk J.M.; Lange-de Klerk, Elly S.M. de; Hamming, Jaap F.

    2010-01-01

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  9. Improving the false-negative rate of CT in acute appendicitis-Reassessment of CT images by body imaging radiologists: A blinded prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Poortman, Pieter [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: ppoortman@wlz.nl; Lohle, Paul N.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: plohle@elisabeth.nl; Schoemaker, Cees M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: mcschoemaker@elisabeth.nl; Cuesta, Miguel A. [Department of Surgery, VU Medical Centre, Amsterdam (Netherlands)], E-mail: ma.cuesta@vumc.nl; Oostvogel, Henk J.M. [Department of Surgery, St Elisabeth Hospital, Tilburg (Netherlands)], E-mail: h.oostvogel@elisabeth.nl; Lange-de Klerk, Elly S.M. de [Department of Epidemiology and Biostatistics, VU Medical Centre, Amsterdam (Netherlands)], E-mail: esm.delange@vumc.nl; Hamming, Jaap F. [Department of Surgery, Leiden University Medical Centre (Netherlands)], E-mail: j.f.hamming@lumc.nl

    2010-04-15

    Purpose: To compare the accuracy of computed tomography (CT) analyzed by individual radiology staff members and body imaging radiologists in a non-academic teaching hospital for the diagnosis of acute appendicitis. Patients and methods: In a prospective study 199 patients with suspected acute appendicitis were examined with unenhanced CT. CT images were pre-operatively analyzed by one of the 12 members of the radiology staff. In a later stage two body imaging radiologist reassessed all CT images without knowledge of the surgical findings and without knowledge of the primary CT diagnosis. The results, independently reported, were correlated with surgical and histopathologic findings. Results: In 132 patients (66%) acute appendicitis was found at surgery, in 67 patients (34%) a normal appendix was found. The sensitivity of the primary CT analysis and of the reassessment was 76% and 88%, respectively; the specificity was 84% and 87%; the positive predictive value was 90% and 93%; the negative predictive value was 64% and 78%; and the accuracy was 78% and 87%. Conclusion: Reassessment of CT images for acute appendicitis by body imaging radiologists results in a significant improvement of sensitivity, negative predictive value and accuracy. To prevent false-negative interpretation of CT images in acute appendicitis the expertise of the attending radiologist should be considered.

  10. Image-guided stereotactic surgery using ultrasonography and reconstructive three-dimensional CT-imaging system

    International Nuclear Information System (INIS)

    Kawamura, Hirotsune; Iseki, Hiroshi; Umezawa, Yoshihiro

    1991-01-01

    A new simulation and navigation system utilizing three-dimensional CT images has been developed for image-guided stereotactic surgery. Preoperative CT images are not always useful in predicting the intraoperative location of lesions, for cerebral lesions are easily displaced or distorted by gravity, brain retraction, and/or CSF aspiration during operative procedure. This new system, however, has the advantage that the intraoperative locations of intracranial lesions or the anatomical structures of the brain can be precisely confirmed during stereotactic surgery. Serial CT images were obtained from a patient whose head had been fixed to the ISEKI CT-guided stereotactic frame. The data of serial CT images were saved on a floppy disc and then transferred to the work station (IRIS) using the off line. In order to find the best approach angle for ultrasound-guided stereotactic surgery, three-dimenstional CT images were reconstructed using the work station. The site of the craniotomy or the angle of the trajectory of the ultrasound probe was measured preoperatively based on the three-dimensional CT images. Then, in the operating room, the patient's head was fixed to the ISEKI frame with the subframe at the same position as before according to the measurement of the CT images. In a case of cystic glioma, the predicable ultrasonograms from three-dimensional reconstructive CT images were ascertained to correspond well to the actual ultrasound images during ultrasound-guided stereotactic surgery. Therefore, the new simulation and navigation system can be judged to be a powerful operative supporting modality for correcting the locations of cerebral lesions; it allows one to perform stereotactic surgery more accurately and less invasively. (author)

  11. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J; Nishikawa, R [University of Pittsburgh, Pittsburgh, PA (United States); Reiser, I [The University of Chicago, Chicago, IL (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benign or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification

  12. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  13. Automatic anatomy recognition in whole-body PET/CT images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqian [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey; Tong, Yubing; Torigian, Drew A. [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Zhao, Liming [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-01-15

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  14. Automatic anatomy recognition in whole-body PET/CT images

    International Nuclear Information System (INIS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.; Zhao, Liming

    2016-01-01

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  15. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  16. Comparison of bone-implant contact and bone-implant volume between 2D-histological sections and 3D-SRµCT slices

    Directory of Open Access Journals (Sweden)

    R Bernhardt

    2012-04-01

    Full Text Available Histological imaging is still considered the gold standard for analysing bone formation around metallic implants. Generally, a limited number of histological sections per sample are used for the approximation of mean values of peri-implant bone formation. In this study we compared statistically the results of bone-implant contact (BIC and bone-implant volume (BIV obtained by histological sections, with those obtained by X-ray absorption images from synchrotron radiation micro-computed tomography (SRµCT using osseointegrated screw-shaped implants from a mini-pig study. Comparing the BIC results of 3-4 histological sections per implant sample with the appropriate 3-4 SRµCT slices showed a non-significant difference of 1.9 % (p = 0.703. The contact area assessed by the whole 3D information from the SRµCT measurement in comparison to the histomorphometric results showed a non-significant difference in BIC of 4.9 % (p = 0.171. The amount of the bone-implant volume in the histological sections and the appropriate SRµCT slices showed a non-significant difference by only 1.4 % (p = 0.736 and also remains non-significant with 2.6 % (p = 0.323 using the volumetric SRµCT information. We conclude that for a clinical evaluation of implant osseointegration with histological imaging at least 3-4 sections per sample are sufficient to represent the BIC or BIV for a sample. Due to the fact that in this study we have found a significant intra-sample variation in BIC of up to ± 35 % the selection of only one or two histological sections per sample may strongly influence the determined BIC.

  17. Three-dimensional multislice CT imaging of otitis media

    International Nuclear Information System (INIS)

    Suzuki, Miyako; Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro; Wada, Akihiro; Ando, Ichiro

    2002-01-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  18. Three-dimensional multislice CT imaging of otitis media

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Miyako [Yanagibasi Hospital, Tokyo (Japan); Yoshikawa, Hiroshi; Hosokawa, Akira; Furukawa, Tomoyasu; Ichikawa, Ginichiro [Juntendo Univ., Tokyo (Japan). School of Medicine; Wada, Akihiro; Ando, Ichiro [Juntendo Univ., Chiba (Japan). Urayasu Hospital

    2002-07-01

    In recent years, the multislice CT system has come into practical use that enables table movement of half mm, resulting in a significant improvement in resolution. The use of this CT system enables to depict the entire auditory ossicles, including the stapes. 3D reconstruction was performed using helical CT data in 5 patients with chronic otitis media and 5 patients with cholesteatoma. An Aquilion Multi (Toshiba) multislice helical CT scanner and a Xtension (Toshiba) image workstation were used in this study. We demonstrated the 3D display with axial, coronal and sagittal images. Compared with the normal ears, it was necessary to set a higher threshold for the affected ears. It is important to select suitable threshold for demonstration of 3D images optimally. Bone destruction of the stapes was confirmed at surgery in 2 ears. The stapes was observed at 3D-CT imaging in other 18 ears. It was found that the 3D images of the ossicular destruction in ears with cholesteatoma were consistent with surgical findings. It is therefore concluded that 3D imaging of the middle ear using a multislice CT scanner is clinically useful. (author)

  19. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  20. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    International Nuclear Information System (INIS)

    Yuan, C; Qi, H; Chen, Z; Wu, S; Xu, Y; Zhou, L

    2016-01-01

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using mean filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.

  1. Skeletal scintigraphy and SPECT/CT in orthopedic imaging

    International Nuclear Information System (INIS)

    Klaeser, B.; Walter, M.; Krause, T.

    2011-01-01

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  2. Utilization of CT images for the quantification of FDG uptake

    International Nuclear Information System (INIS)

    Karidioula, I.; De Freitas, D.; Cachin, F.; Geissler, B.; Jullien, Ph.; Maublant, J.

    2006-01-01

    The aim of this study was to evaluate an automatic method based on a computed tomography (CT) derived region of interest (ROI) to quantify the mean standardized uptake value (SUVm) of 18 F-fluoro-deoxy-glucose (FDG) in pulmonary lesions detected by positron emission tomography (PET). A total of 164 pairs of slices were selected in a series of PET/CT studies performed in 26 patients presenting lung tumours of various forms and complexities. On each matched CT slice, a ROI was obtained by growth-region segmentation starting from a pixel contained in the tumour. The obtained ROI was then applied to the PET image to calculate SUVm. Results were compared with the conventional manual method using a geometric ROI positioned directly on the PET lesion. The automatic delineation of the tumour from the CT image was successful in 136 sections (83%). The SUVm calculated by the manual and automatic method were respectively (mean±standard deviation) 5.05±2.39 and 6.70±3.18 (p<0.05). The ROI size (in number of pixels) was respectively 28±23 and 21±17 (p<0.05). The variability of the automatic method was 0% versus 20% for the manual method. SUV of FDG in PET/CT can be calculated with an excellent reproducibility by using the CT-derived limits of the lesion

  3. CT and MR image fusion using two different methods after prostate brachytherapy: impact on post-implant dosimetric assessment

    International Nuclear Information System (INIS)

    Servois, V.; El Khoury, C.; Lantoine, A.; Ollivier, L.; Neuenschwander, S.; Chauveinc, L.; Cosset, J.M.; Flam, T.; Rosenwald, J.C.

    2003-01-01

    To study different methods of CT and MR images fusion in patient treated by brachytherapy for localized prostate cancer. To compare the results of the dosimetric study realized on CT slices and images fusion. Fourteen cases of patients treated by 1125 were retrospectively studied. The CT examinations were realized with continuous section of 5 mm thickness, and MR images were obtained with a surface coil with contiguous section of 3 mm thickness. For the images fusion process, only the T2 weighted MR sequence was used. Two processes of images fusion were realized for each patient, using as reference marks the bones of the pelvis and the implanted seeds. A quantitative and qualitative appreciation was made by the operators, for each patient and both methods of images fusion. The dosimetric study obtained by a dedicated software was realized on CT images and all types of images fusion. The usual dosimetric indexes (D90, V 100 and V 150) were compared for each type of image. The quantitative results given by the software of images fusion showed a superior accuracy to the one obtained by the pelvic bony reference marks. Conversely, qualitative and quantitative results obtained by the operators showed a better accuracy of the images fusion based on iodine seeds. For two patients out of three presenting a D90 inferior to 145 Gy on CT examination, the D90 was superior to this norm when the dosimetry was based on images fusion, whatever the method used. The images fusion method based on implanted seed matching seems to be more precise than the one using bony reference marks. The dosimetric study realized on images fusion could allow to rectify possible errors, mainly due to difficulties in surrounding prostate contour delimitation on CT images. (authors)

  4. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography

    International Nuclear Information System (INIS)

    Wang Min; Qi Hengtao; Wang Ximing; Wang Tao; Chen, Jiu-Hong; Liu Cheng

    2009-01-01

    Objective: To evaluate dose performance and image quality of 64-slice dual source CT (DSCT) in comparison to 64-slice single source CT (SSCT) in cardiac CT angiography (CTA). Methods: 100 patients examined by DSCT and 60 patients scanned by SSCT were included in this study. Objective indices such as image noise, contrast-to-noise ratio and signal-to-noise ratio were analyzed. Subjective image quality was assessed by two cardiovascular radiologists in consensus using a four-point scale (1 = excellent to 4 = not acceptable). Estimation of effective dose was performed on the basis of dose length product (DLP). Results: At low heart rates ( 0.05), but, at high heart rates (>70 bpm), DSCT provided robust image quality (P 70 bpm), DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT.

  5. Cone beam CT findings of retromolar canals: Report of cases and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Sun [Dept. of Dental Hygiene, Eulji University, Seongnam (Korea, Republic of); Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yonsei University, Seoul (Korea, Republic of)

    2013-12-15

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  6. Cone beam CT findings of retromolar canals: Report of cases and literature review

    International Nuclear Information System (INIS)

    Han, Sang Sun; Park, Chang Seo

    2013-01-01

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended.

  7. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Science.gov (United States)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  8. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    International Nuclear Information System (INIS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-01-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H 2 , H 2 O, NH 3 , HF, CO, and CO 2

  9. Skin Diseases: Cross-section of human skin

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  10. Quantitative Analysis of Micro-CT Imaging and Histopathological Signatures of Experimental Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Matthew D. Silva

    2004-10-01

    Full Text Available Micro-computed tomographic (micro-CT imaging provides a unique opportunity to capture 3-D architectural information in bone samples. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AA, quantitative analysis of bone volume and roughness were performed by micro-CT imaging and compared with histopathology methods and paw swelling measurement. Micro-CT imaging of excised rat hind paws (n = 10 stored in formalin consisted of approximately 600 30-μm slices acquired on a 512 × 512 image matrix with isotropic resolution. Following imaging, the joints were scored from H&E stained sections for cartilage/bone erosion, pannus development, inflammation, and synovial hyperplasia. From micro-CT images, quantitative analysis of absolute bone volumes and bone roughness was performed. Bone erosion in the rat AA model is substantial, leading to a significant decline in tarsal volume (27%. The result of the custom bone roughness measurement indicated a 55% increase in surface roughness. Histological and paw volume analyses also demonstrated severe arthritic disease as compared to controls. Statistical analyses indicate correlations among bone volume, roughness, histology, and paw volume. These data demonstrate that the destructive progression of disease in a rat AA model can be quantified using 3-D micro-CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.

  11. Thin-section CT of Cushing's disease

    International Nuclear Information System (INIS)

    Takahashi, Tatsuo; Kuwayama, Akio; Katoh, Tetsuo; Ichihara, Kaoru; Kageyama, Naoki; Nakamura, Koji.

    1983-01-01

    Using 1.5 mm contiguous sections with a GE CT/T 8800 scanner, we investigated the sellar regions of 22 cases of Cushing's diseases which had been diagnosed endocrinologically. Each sellar turcica was normal in size, and in only 5 cases were there significant findings on 2 mm-thick sellar-floor polytomography. Nine tumors appeared as regions of a hypodense area, and three tumors were diagnosed by indirect signs, for example, stalk deviation and diaphragmatic plane asymmetry. The other 10 cases, especially those previously operated on or irradiated, were diagnosed as falsely positive or negative. Because it is best of the microadenomas appear hypodense within the strongly contrast-enhanced anterior pituitary glands, it is better for scans to be obtained immediately after rapid intravenous contrast infusion. Hypodense areas of microadenomas are best demonstrated on direct coronal scans or reversed scans of 1.5 mm-thickness thin-slice sections. By these methods, microadenomas, if they are over 5-6 mm in diameter, can appear as hypodense. Sellar floor findings by means of thin-section CT were more sensitive than those of polytomography and had more advantages in local diagnosis. If the tumor were over 4 mm in diameter, local changes in the sellar floor could be demonstrated by thin-section CT, but by polytomography no changes in the sellar floor could be demonstrated until the tumor size reached 6 mm. (author)

  12. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    Science.gov (United States)

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was

  13. Three-dimensional modeling and simulation of asphalt concrete mixtures based on X-ray CT microstructure images

    Directory of Open Access Journals (Sweden)

    Hainian Wang

    2014-02-01

    Full Text Available X-ray CT (computed tomography was used to scan asphalt mixture specimen to obtain high resolution continuous cross-section images and the meso-structure. According to the theory of three-dimensional (3D reconstruction, the 3D reconstruction algorithm was investigated in this paper. The key to the reconstruction technique is the acquisition of the voxel positions and the relationship between the pixel element and node. Three-dimensional numerical model of asphalt mixture specimen was created by a self-developed program. A splitting test was conducted to predict the stress distributions of the asphalt mixture and verify the rationality of the 3D model.

  14. Correlative Imaging in a Patient with Cystic Thymoma: CT, MR and PET/CT Comparison

    International Nuclear Information System (INIS)

    Romeo, Valeria; Esposito, Alfredo; Maurea, Simone; Camera, Luigi; Mainenti, Pier Paolo; Palmieri, Giovannella; Buonerba, Carlo; Salvatore, Marco

    2015-01-01

    Cystic thymoma is a rare variant of thymic neoplasm characterized by almost complete cystic degeneration with mixed internal structure. We describe a case of a 60 year-old woman with a cystic thymoma studied with advanced tomographic imaging stydies. CT, MRI and PET/CT with 18 F-FDG were performed; volumetric CT and MRI images provided better anatomic evaluation for pre-operative assessment, while PET/CT was helpful for lesion characterization based on 18 F-FDG uptake. Although imaging studies are mandatory for pre-operative evaluation of cystic thymoma, final diagnosis still remains surgical. A 60-year-old woman with recent chest pain and no history of previous disease was admitted to our departement to investigate the result of a previous chest X-ray that showed bilateral mediastinal enlargement; for this purpose, enhanced chest CT scan was performed using a 64-rows scanner (Toshiba, Aquilion 64, Japan) before and after intravenous bolus administration of iodinated non ionic contrast agent; CT images demonstrated the presence of a large mediastinal mass (11×8 cm) located in the anterior mediastinum who extended from the anonymous vein to the cardio-phrenic space, compressing the left atrium and causing medium lobe atelectasis; bilateral pleural effusion was also present. In conclusion, correlative imaging plays a foundamental role for the diagnostic evaluation of patient with cystic thymoma. In particular, volumetric CT and MRI studies can provide better anatomic informations regarding internal structure and local tumor spread for pre-operative assessment. Conversely, metabolic imaging using 18 F-FDG PET/CT is helpful for lesion characterization differentiating benign from malignant lesion on the basis of intense tracer uptake. The role of PET/MRI is still under investigation. However, final diagnosis still remains surgical even though imaging studies are mandatory for pre-operative patient management

  15. Dynamic CT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Caruso, Damiano; Eid, Marwen; Schoepf, U. Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie

    2016-01-01

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  16. Dynamic CT myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, Damiano [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiological Sciences, Oncological and Pathological Sciences, University of Rome “Sapienza”, Latina (Italy); Eid, Marwen [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC (United States); Jin, Kwang Nam [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Varga-Szemes, Akos [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Tesche, Christian [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich (Germany); Mangold, Stefanie [Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen (Germany); and others

    2016-10-15

    Highlights: • CT myocardial perfusion provides functional assessment of the myocardium. • CCTA is limited in determining the hemodynamic significance of coronary stenosis. • CT-MPI can accurately detect hemodynamically significant coronary artery stenosis. - Abstract: Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  17. Skeletal scintigraphy and SPECT/CT in orthopedic imaging; Knochenszintigrafie und SPECT/CT bei orthopaedischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Walter, M.; Krause, T. [Inselspital Bern (Switzerland). Universitaetsklinik fuer Nuklearmedizin

    2011-03-15

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  18. Geometric modelling of a make mandible utilising CT imaging

    International Nuclear Information System (INIS)

    Baker, N.; Basu, A.; McLean, A.G.; Jamieson, D.; Jonkman, M.

    1996-01-01

    Full text: The mandible is one of the most important and frequently used bones in the human body. It is responsible for basic actions such as mastication, communication and swallowing. It houses and provides protection for the tongue, teeth and salivary glands. The mandible is unique in that it has two anatomically identical articulations, each providing the same function. Both articulations, however, rarely have synchronous force and motion characteristics. The mandible is the only moveable bone in the skull and is capable of the following motions: depression - lowering the mandible, as in yawning, elevation - raising the mandible, protraction - thrusting the jaw forward, retraction - withdrawing the jaw posteriorly, and lateral deviation - sideways displacement in the transverse plane. The mandible is an irregular bone comprising a broad U shaped body with two ascending rami. The rami are quadrilateral plate like structures with lateral sides which are nearly flat. The mandible is subjected to repetitive loading and is susceptible to wear at its articulations, cyclic fatigue and dislocation. Despite the importance of the mandible little is understood about its mechanical properties and loading parameters. The purpose of this study was to create a three dimensional geometric model of a human mandible based on anatomical data. A 21 year old male with no history of mandible fracture or temporomandibular joint dysfunction was selected. The mandible was non-invasively imaged by Computed Tomography (CT). The subject was imaged lying on his back with the head supported and immobilised by a U shaped head rest. Seventeen parallel cross-sectional images oblique to the transverse plane were constructed. Cortical and cancellous bone boundaries were manually digitised for every image using a Science Accessories Corporation GP-9 digitiser linked to an IBM 286 SX personal computer. The data was transferred to a global coordinate system and entered into MSC/PATRAN finite element

  19. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H., E-mail: holly.johnston@utsw.edu [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2 (Canada); Hilts, M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Medical Physics, BC Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada); Jirasek, A. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Department of Physics, University of British Columbia—Okanagan Campus, Kelowna, British Columbia V1V 1V7 (Canada)

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  20. MR imaging and CT findings after liver transplantation

    International Nuclear Information System (INIS)

    Langer, M.; Langer, R.; Scholz, A.; Zwicker, C.; Astinet, F.

    1990-01-01

    The aim of the paper is to evaluate MR imaging and dynamic CT as noninvasive procedures to image signs of graft failure after an orthotopic liver transplantation (OLT). Thirty MR studies and 50 dynamic CT examinations were performed within 20 days after OLT. MR examinations were performed with a 0.5-T Siemens Magnetom. CT scans were obtained by using a Siemens Somatom Plus. In all patients, MR images demonstrated a perivascular rim of intermediate signal intensity on T1-weighted and increased signal intensity on T2-weighted images in the hilum of the liver; in 20/26, this was seen in peripheral areas also. In all patients, a perivascular area of low attenuation was diagnosed at angio-CT

  1. Comparison of CT myelography performed in the prone and supine positions in the detection of cervical spinal stenosis

    International Nuclear Information System (INIS)

    Blease Graham, Cole III; Wippold, Franz J. II; Bae, Kyongtae T.; Pilgram, Thomas K.; Shaibani, Ali; Kido, Daniel K.

    2001-01-01

    AIM: To quantify the change in the cross-sectional area of the cervical spinal cord and subarachnoid space (SAS) in the supine neutral vs prone extension positions in patients with myelopathy undergoing cervical CT myelography. MATERIAL AND METHODS: Axial CT myelgrams of 21 myelopathic patients were performed in both the supine neutral and prone extension positions. The SAS and cord cross-sectional areas were then measured at the disk spaces and mid-pedicle levels from C2 to T1 in both the supine and prone positions using a public domain NIH Image program, version 156b18. Mean area measurements in both positions were then compared for each level examined. RESULTS: Mean SAS cross-sectional area in the prone position was notably reduced compared with the supine position at C4-C5 [128.8 mm 2 vs 168.1 mm 2 (P 2 vs 143.2 mm 2 (P< .05)] disk levels. The mean cord cross-sectional area failed to change signficantly with positioning. CONCLUSIONS: Prone myelography may demonstrate a greater degree of cervical spine stenosis compared with CT myelography performed in the supine position in myelopathic patients. Imaging with the patient prone with neck extended in both myelography and CTM may improve precision in the results of measurements of the stenotic spinal canal when comparing these two methods. Blease Graham III, C. (2001)

  2. CT and MR imaging findings of sinonasal angiomatous polyps

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jing [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Man, Fengyuan [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing (China); Deng, Kai [Department of Radiology, Qingdao No. 4 People' s Hospital, Qingdao, Shandong (China); Zheng, Yuanyuan [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Hao, Dapeng, E-mail: haodp_2009@163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China); Xu, Wenjian, E-mail: cjr.xuwenjian@vip.163.com [Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong (China)

    2014-03-15

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP.

  3. CT and MR imaging findings of sinonasal angiomatous polyps

    International Nuclear Information System (INIS)

    Zou, Jing; Man, Fengyuan; Deng, Kai; Zheng, Yuanyuan; Hao, Dapeng; Xu, Wenjian

    2014-01-01

    Objective: To characterize the CT and MR imaging findings of patients with sinonasal angiomatous polyps (SAPs) and evaluate their respective clinical value in the diagnosis of SAP. Methods: CT and MR imaging findings of 15 patients with pathologically proven SAP were examined. Assessed image features included location, size, margin, attenuation, and change of the bony walls of the sinonasal cavity on CT, and signal intensity and enhancement pattern on MR. Results: On CT, the SAP was mostly isoattenuated with patches of slight hyperattenuation. Most lesions caused changes in the adjacent bone, including expansile remodeling (n = 8), defect or destruction (n = 7), and hyperostosis (n = 6). All lesions examined by MR showed heterogeneous isointense signal intensity on T1-weighted images and mixed obvious hyperintense and hypointense signal intensity with linear hypointense septum internally (n = 10), and hypointense peripheral rim on T2-weighted images (n = 10). Postcontrast MR images demonstrated areas of heterogeneous and marked enhancement with an unenhanced hypointense rim and septa (n = 7). Conclusions: CT and MR imaging have respective advantages in the diagnosis of SAP. Combined application of CT and MR examinations is necessary for patients with suspected SAP

  4. The Appendix on CT

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, S. [Sunnybrook Health Sciences Center, Toronto, Ontario (Canada); Barts and the Royal London, Royal London Hospital, Whitechapel, London (United Kingdom)], E-mail: siobhanwhitley@yahoo.co.uk; Sookur, P.; McLean, A.; Power, N. [Barts and the Royal London, Royal London Hospital, Whitechapel, London (United Kingdom)

    2009-02-15

    Appendicitis can be a difficult clinical diagnosis to make. A negative appendicectomy rate of 20% has traditionally been accepted as the consequences of appendiceal perforation can be grave. Cross-sectional imaging is increasingly being employed in the investigation of adults with suspected appendicitis. This review will demonstrate the appearance of the normal appendix on computed tomography (CT) and its appearance in a range of inflammatory and neoplastic processes including appendicitis, Crohn's disease, infections, and benign and malignant tumour000.

  5. Associations of Age, BMI, and Years of Menstruation with Proximal Femur Strength in Chinese Postmenopausal Women: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Huili Kang

    2016-01-01

    Full Text Available This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD and geometric parameters, including cross-sectional area (CSA, outer diameter (OD, cortical thickness (CT, section modulus (SM, buckling ratio (BR at the narrow neck (NN, intertrochanter (IT, and femoral shaft (FS. Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p < 0.05, which indicated a weaker bone strength at the proximal femur. BMI and years of menstruation had the positive relationships with proximal femur strength (p < 0.05. Further analyses showed that the ranges of absolute value of change slope per year, per BMI or per year of menstruation were 0.14%–1.34%, 0.20%–2.70%, and 0.16%–0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women.

  6. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, via L. Giorgieri 1, I-34127 Trieste (Italy); Christiansen, Ove [Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Norman, Patrick [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H{sub 2}, H{sub 2}O, NH{sub 3}, HF, CO, and CO{sub 2}.

  7. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  8. Blind CT image quality assessment via deep learning strategy: initial study

    Science.gov (United States)

    Li, Sui; He, Ji; Wang, Yongbo; Liao, Yuting; Zeng, Dong; Bian, Zhaoying; Ma, Jianhua

    2018-03-01

    Computed Tomography (CT) is one of the most important medical imaging modality. CT images can be used to assist in the detection and diagnosis of lesions and to facilitate follow-up treatment. However, CT images are vulnerable to noise. Actually, there are two major source intrinsically causing the CT data noise, i.e., the X-ray photo statistics and the electronic noise background. Therefore, it is necessary to doing image quality assessment (IQA) in CT imaging before diagnosis and treatment. Most of existing CT images IQA methods are based on human observer study. However, these methods are impractical in clinical for their complex and time-consuming. In this paper, we presented a blind CT image quality assessment via deep learning strategy. A database of 1500 CT images is constructed, containing 300 high-quality images and 1200 corresponding noisy images. Specifically, the high-quality images were used to simulate the corresponding noisy images at four different doses. Then, the images are scored by the experienced radiologists by the following attributes: image noise, artifacts, edge and structure, overall image quality, and tumor size and boundary estimation with five-point scale. We trained a network for learning the non-liner map from CT images to subjective evaluation scores. Then, we load the pre-trained model to yield predicted score from the test image. To demonstrate the performance of the deep learning network in IQA, correlation coefficients: Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are utilized. And the experimental result demonstrate that the presented deep learning based IQA strategy can be used in the CT image quality assessment.

  9. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications

    International Nuclear Information System (INIS)

    Chowdhury, F.U.; Scarsbrook, A.F.

    2008-01-01

    Single photon emission computed tomography - computed tomography (SPECT-CT) is an emerging dual-modality imaging technique with many established and potential clinical applications in the field of oncology. To date, there has been a considerable emphasis on the benefits of integrated positron emission tomography - computed tomography (PET-CT) in oncology, but relatively little focus on the clinical utility of SPECT-CT. As with PET-CT, accurate co-registration of anatomical and functional data from a combined SPECT-CT camera often provides complementary diagnostic information. Both sensitivity (superior disease localization) and specificity (exclusion of false-positives due to physiological tracer uptake) are improved, and the functional significance of indeterminate lesions detected on cross-sectional imaging can be defined. This article will review the scope of hybrid SPECT-CT in oncology and illustrate both current and emerging clinical applications

  10. CT and MR imaging characteristics of infantile hepatic hemangioendothelioma

    International Nuclear Information System (INIS)

    Feng Shiting; Chan Tao; Ching, A.S.C.; Sun Canhui; Guo Huanyi; Fan Miao; Meng Quanfei; Li Ziping

    2010-01-01

    Aim: This study aims to analyze computed tomography (CT) and magnetic resonance (MR) imaging features of infantile hepatic hemangioendotheliomas before and after treatment. Materials and methods: CT and MR examinations of seven infants with biopsy proven hepatic hemangioendotheliomas were retrospectively analyzed. The distribution, number, size, imaging appearance, enhancement pattern and post-treatment changes of the tumors were evaluated. Results: A total of 153 hepatic hemangioendotheliomas were detected on CT (111) and MR (42) imaging. In six infants, 109/111 (98.2%) tumors were hypodense and 2/111 (1.8%) lesions contained calcification on unenhanced CT. On MR imaging, all 42 lesions in one infant were heterogeneously T1-hypointense and T2-hyperintense compared to the normal liver parenchyma. Contrast-enhanced CT and MRI showed peripheral rim (51.6%), uniform (48.4%), fibrillary (33.3%), and nodular (28.8%) contrast enhancement in the hepatic arterial phase. Homogeneous (100%), rim (98.2%) and mixed enhancement patterns were noted in tumors 2.0 cm and 1.0-2.0 cm in diameter respectively in the hepatic arterial phase. In three patients who underwent steroid therapy, follow-up CT examination demonstrated tumor size reduction and increased intra-tumoral calcification in two patients. Conclusion: Infantile hepatic hemangioendotheliomas show some typical imaging features and size-dependent pattern of contrast enhancement on CT and MR imaging, which allow accurate imaging diagnosis and post-treatment evaluation.

  11. Paleoradiology: advanced CT in the evaluation of nine Egyptian mummies.

    Science.gov (United States)

    Hoffman, Heidi; Torres, William E; Ernst, Randy D

    2002-01-01

    Axial thin-collimation state-of-the-art spiral computed tomography (CT) was combined with sagittal and coronal reformatting, three-dimensional (3D) reconstruction, and virtual "fly-through" techniques to nondestructively study nine Egyptian mummies. These techniques provided important paleopathologic and historical information about mummification techniques, depicted anatomy in the most informative imaging plane, illustrated the soft-tissue preservation and physical appearance of mummies in superb detail, and generated an intriguing virtual tour through hollow mummified remains without harming the specimens themselves. Images generated with these methods can help archaeologists and Egyptologists understand these fascinating members of mankind and can serve as adjunct visual aids for laypersons who are interested in mummies. CT has emerged as the imaging modality of choice for the examination of Egyptian mummies due to its noninvasive cross-sectional nature and inherently superior contrast and spatial resolution. As multi-detector row CT and postprocessing tools evolve, the capabilities and applications of CT will continue to proliferate, attesting to the expanded versatility and utility of CT as a noninvasive research tool in the multidisciplinary study of Egyptian mummies. Copyright RSNA, 2002

  12. CT image registration in sinogram space.

    Science.gov (United States)

    Mao, Weihua; Li, Tianfang; Wink, Nicole; Xing, Lei

    2007-09-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy.

  13. CT image registration in sinogram space

    International Nuclear Information System (INIS)

    Mao Weihua; Li Tianfang; Wink, Nicole; Xing Lei

    2007-01-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy

  14. In-room CT techniques for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Ma, C.-M. Charlie; Paskalev, Kamen M.S.

    2006-01-01

    Accurate patient setup and target localization are essential to advanced radiation therapy treatment. Significant improvement has been made recently with the development of image-guided radiation therapy, in which image guidance facilitates short treatment course and high dose per fraction radiotherapy, aiming at improving tumor control and quality of life. Many imaging modalities are being investigated, including x-ray computed tomography (CT), ultrasound imaging, positron emission tomography, magnetic resonant imaging, magnetic resonant spectroscopic imaging, and kV/MV imaging with flat panel detectors. These developments provide unique imaging techniques and methods for patient setup and target localization. Some of them are different; some are complementary. This paper reviews the currently available kV x-ray CT systems used in the radiation treatment room, with a focus on the CT-on-rails systems, which are diagnostic CT scanners moving on rails installed in the treatment room. We will describe the system hardware including configurations, specifications, operation principles, and functionality. We will review software development for image fusion, structure recognition, deformation correction, target localization, and alignment. Issues related to the clinical implementation of in-room CT techniques in routine procedures are discussed, including acceptance testing and quality assurance. Clinical applications of the in-room CT systems for patient setup, target localization, and adaptive therapy are also reviewed for advanced radiotherapy treatments

  15. Importance of PET/CT for imaging of colorectal cancer

    International Nuclear Information System (INIS)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C.; Haug, A.R.

    2012-01-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [de

  16. Bubble-like appearances are characteristic thin-section CT findings of adenocarcinoma

    International Nuclear Information System (INIS)

    Kojima, Yoko; Saito, Haruhiro; Ito, Hiroyuki

    2008-01-01

    Adenocarcinomas are often diagnosed as old inflammatory lesions which are sometimes overlooked. Some of these adenocarcinomas display characteristic thin-section computed tomography (TS-CT) findings. We reported on these bubble-like appearances (BLA). We studied the BLA characteristics of adenocarcinomas. We reviewed the TS-CT findings of 17 (6 men, 11 women) cases of adenocarcinoma with bubble-like appearances. All 17 patients had undergone surgery between August 2003 and March 2007. We studied correlations between the TS-CT findings, the pathological findings and the clinical characteristics. The average tumor diameter was 35.4 mm. The definition of BLA is; having a irregular shape with straight margins, peripheral ground-glass opacity (GGO), dilated air bronchograms (more than 3), prominent pleural indentation. The pathological characteristics of tumors with BLA were; peripheral bronchioloalveolar cell carcinoma (BAC) patterns, almost total collapse (about 80% of the tumor area), and several ectatic small bronchi. Six cases were initially overlooked, because the TS-CT findings appeared as old inflammation. The average tumor doubling time was 1167 days. After resection, there have been no recurrences. On TS-CT images, BLA type adenocarcinomas appear as irregular in shape and they have a very slow doubling time. These types of lesions require careful attention because they are often diagnosed as old inflammatory scarring. (author)

  17. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    Kanamori, T.; Sukita, T.

    1995-01-01

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  18. CT and MR imaging of the kidney and adrenal glands: CT of the kidney

    International Nuclear Information System (INIS)

    Levine, E.

    1987-01-01

    Because of its high diagnostic yield, safety, and cost-effectiveness, CT has become a major imaging technique for evaluating the kidney. CT is highly accurate for determining the nature and extent of renal masses, and this has become the main indication for renal CT. However, CT is also valuable in assessing patients with renal cystic disease, trauma, inflammatory disease, infarction, hemorrhage and hydronephrosis of unknown cause. This presentation reviews the normal CT anatomy of the kidneys and the usefulness of CT in the diagnosis of all these conditions. Examination techniques are discussed with particular emphasis on avoiding diagnostic pitfalls and tailoring the examination to the nature of the clinical problem. CT findings in various renal disorders are compared with those of other imaging techniques, particularly US and angiography, and the place of CT in the diagnostic approach to these disorders is considered

  19. CT Image Reconstruction in a Low Dimensional Manifold

    OpenAIRE

    Cong, Wenxiang; Wang, Ge; Yang, Qingsong; Hsieh, Jiang; Li, Jia; Lai, Rongjie

    2017-01-01

    Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionality characterizes structural information of an image. In this paper, we propose a CT image reconstruc...

  20. Cardiac MR imaging: Comparison with echocardiography and dynamic CT

    International Nuclear Information System (INIS)

    Colletti, P.M.; Norris, S.; Raval, J.; Boswell, W.; Lee, K.; Ralls, P.; Haywood, J.; Halls, J.

    1986-01-01

    The authors compared gated cardiac MR imaging with two-dimensional and Doppler echocardiography and dynamic CT. Gated cardiac MR imaging (VISTA unit, 0.5 T) was performed in 55 patients with a variety of conditions. Accuracy of diagnosis was compared. CT showed arterial, valvular, and pericardial calcifications not seen on MR imaging. Many lesions were seen as well on CT as on MR imaging. Two-dimensional echocardiography was superior in demonstrating wall motion and valvular disease. MR imaging was superior in demonstrating myocardial structures

  1. Bronchial morphometry in smokers: comparison with healthy subjects by using 3D CT

    International Nuclear Information System (INIS)

    Montaudon, Michel; Berger, Patrick; Marthan, Roger; Lederlin, Mathieu; Tunon-de-Lara, Jose Manuel; Laurent, Francois

    2009-01-01

    The assessment of airway dimensions in patients with airway disease by using computed tomography (CT) has been limited by the obliquity of bronchi, the ability to identify the bronchial generation, and the limited number of bronchial measurements. The aims of the present study were (i) to analyze cross-sectional bronchial dimensions after automatic orthogonal reconstruction of all visible bronchi on CT images, and (ii) to compare bronchial morphometry between smokers and nonsmokers. CT and pulmonary function tests were performed in 18 males separated into two groups: 9 nonsmokers and 9 smokers. Bronchial wall area (WA) and lumen area (LA) were assessed using dedicated 3D software able to provide accurate cross-sectional measurements of all visible bronchi on CT. WA/LA and WA/(WA+LA) ratios were computed and all parameters were compared between both groups. Smokers demonstrated greater WA, smaller LA, and consequently greater LA/WA and LA/(WA+LA) ratios than nonsmokers. These differences occurred downward starting at the fourth bronchial generation. 3D quantitative CT method is able to demonstrate significant changes in bronchial morphometry related to tobacco consumption. (orig.)

  2. Automated curved planar reformation of 3D spine images

    International Nuclear Information System (INIS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks

  3. Plant Identification Based on Leaf Midrib Cross-Section Images Using Fractal Descriptors.

    Directory of Open Access Journals (Sweden)

    Núbia Rosa da Silva

    Full Text Available The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification.

  4. Diagnostic CT imaging of the heart and aorta in health and disease

    International Nuclear Information System (INIS)

    Watanabe, Shigeru

    1981-01-01

    Despite recent remarkable developments in computed tomography (CT) for many organs in the human body, its clinical application concerning the cardiovascular system has been slow. In this study, we investigated clinical applications of CT for the cardiovascular system. We used conventional CT without ECG synchronization and ECG-synchronized CT. By the former, the size, the shape, and the arrangement of cardiovascular structures and the presence of pericardial effusion and calcifications were shown. For the latter, ECG gating method and data sorting method were used, and the cardiac border movement, the sequential changes of cross-sectional cardiac areas and the changing ratio were studied by both methods. The cardiac CT was found to be a useful noninvasive method for observation of anatomical features in various cardiovascular diseases and for the analysis of cardiac motion - especially, dyssynergia such as hypokinesis, akinesis and paradoxical movement in myocardial infarctions. (author)

  5. Thin section helical CT findings of klastskin tumor and benign stricture: cholangiographic correlation

    International Nuclear Information System (INIS)

    Choi, Guk Myeong; Han, Joon Koo; Kim, Tae Kyoung; Choi, Byung Ihn; Kim, Sun Whe; Cho, Yun Ku; Han, Man Chung; Yeon, Kyung Mo

    1997-01-01

    The purpose of this study was 1) to describe the thin section helical CT findings of hilar cholangiocarcinoma and of benign strcture, and to discuss the differential points between the two disease entities and 2) using cholangiographic correlation, to evaluate the diagnostic accuracy of helical CT in determining the extent of hilar cholangiocarcinoma. Twenty-seven patients with hilar cholangiocarcinoma and eight with benign biliary dilatation were studied. All except four with hilar cholangiocarcinoma, who underwentCT using a conventional scanner, were studied with two-phase helical CT. In all patients, cholangiographs were obtained by digital fluoroscopy after the injection of contrast materials into PTBD catheters. The level of obstruction was classified according to Bismuth, and 35 CT scans were studied blindly and retrospectively by two radiologists. The findings were analyzed for the presence of tumor, and then divided into two groups(cholangiocarcinomas and benign strictures), and the positive predictive value was calculated. The CT images of klatskin tumor were analyzed with special emphasis on the level and shape of the hilar obstruction. The level of biliary obstruction and extent of the tumor were carefully correlated with the results of cholangiography. Thin-section spiral CT correctly identified all tumor mass as a focal wall thickening obliterating the lumen. On arterial/portal phase CT scanning, 81% of infilterative tumors showed high attenuation. In all patients, differentiation between benign stricture and klaskin tumor was possible;correct identification of the level of obstruction and extent of tumor, according to Bismuth's classification, was possible in 63% of cases. For correct diagnosis of hilar cholangiocarcinoma and differentiation of benign stricture, helical CT was highly accurate and effective. Because of limital Z-axis resolution, however, the exact intraductal extent of the tumor was less accorately diagnosed.=20

  6. Patient-specific estimation of detailed cochlear shape from clinical CT images

    DEFF Research Database (Denmark)

    Kjer, H Martin; Fagertun, Jens; Wimmer, Wilhelm

    2018-01-01

    of the detailed patient-specific cochlear shape from CT images. From a collection of temporal bone [Formula: see text]CT images, we build a cochlear statistical deformation model (SDM), which is a description of how a human cochlea deforms to represent the observed anatomical variability. The model is used...... for regularization of a non-rigid image registration procedure between a patient CT scan and a [Formula: see text]CT image, allowing us to estimate the detailed patient-specific cochlear shape. We test the accuracy and precision of the predicted cochlear shape using both [Formula: see text]CT and CT images...

  7. Experimental validation of heterogeneity-corrected dose-volume prescription on respiratory-averaged CT images in stereotactic body radiotherapy for moving tumors

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Miyabe, Yuki; Matsuo, Yukinori; Kamomae, Takeshi; Nakata, Manabu; Yano, Shinsuke; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2012-01-01

    The purpose of this study was to experimentally assess the validity of heterogeneity-corrected dose-volume prescription on respiratory-averaged computed tomography (RACT) images in stereotactic body radiotherapy (SBRT) for moving tumors. Four-dimensional computed tomography (CT) data were acquired while a dynamic anthropomorphic thorax phantom with a solitary target moved. Motion pattern was based on cos (t) with a constant respiration period of 4.0 sec along the longitudinal axis of the CT couch. The extent of motion (A 1 ) was set in the range of 0.0–12.0 mm at 3.0-mm intervals. Treatment planning with the heterogeneity-corrected dose-volume prescription was designed on RACT images. A new commercially available Monte Carlo algorithm of well-commissioned 6-MV photon beam was used for dose calculation. Dosimetric effects of intrafractional tumor motion were then investigated experimentally under the same conditions as 4D CT simulation using the dynamic anthropomorphic thorax phantom, films, and an ionization chamber. The passing rate of γ index was 98.18%, with the criteria of 3 mm/3%. The dose error between the planned and the measured isocenter dose in moving condition was within ± 0.7%. From the dose area histograms on the film, the mean ± standard deviation of the dose covering 100% of the cross section of the target was 102.32 ± 1.20% (range, 100.59–103.49%). By contrast, the irradiated areas receiving more than 95% dose for A 1 = 12 mm were 1.46 and 1.33 times larger than those for A 1 = 0 mm in the coronal and sagittal planes, respectively. This phantom study demonstrated that the cross section of the target received 100% dose under moving conditions in both the coronal and sagittal planes, suggesting that the heterogeneity-corrected dose-volume prescription on RACT images is acceptable in SBRT for moving tumors.

  8. Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology

    Science.gov (United States)

    Fiedler, S.; Bravin, A.; Keyriläinen, J.; Fernández, M.; Suortti, P.; Thomlinson, W.; Tenhunen, M.; Virkkunen, P.; Karjalainen-Lindsberg, M.-L.

    2004-01-01

    Different modalities for imaging cancer-bearing breast tissue samples are described and compared. The images include clinical mammograms and computed tomography (CT) images, CT images with partly coherent synchrotron radiation (SR), and CT and radiography images taken with SR using the diffraction enhanced imaging (DEI) method. The images are evaluated by a radiologist and compared with histopathological examination of the samples. Two cases of lobular carcinoma are studied in detail. The indications of cancer are very weak or invisible in the conventional images, but the morphological changes due to invasion of cancer become pronounced in the images taken by the DEI method. The strands penetrating adipose tissue are seen clearly in the DEI-CT images, and the histopathology confirms that some strands contain the so-called 'Indian file' formations of cancer cells. The radiation dose is carefully measured for each of the imaging modalities. The mean glandular dose (MGD) for 50% glandular breast tissue is about 1 mGy in conventional mammography and less than 0.25 mGy in projection DEI, while in the clinical CT imaging the MGD is very high, about 45 mGy. The entrance dose of 95 mGy in DEI-CT imaging gives rise to an MGD of 40 mGy, but the dose may be reduced by an order of magnitude, because the contrast is very large in most images.

  9. Advances in CT imaging for urolithiasis

    Directory of Open Access Journals (Sweden)

    Yasir Andrabi

    2015-01-01

    Full Text Available Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT is highly sensitive (>95% and specific (>96% in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT and technological innovations in CT such as dual-energy CT (DECT has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice.

  10. Improved CT imaging in diagnosis of ankylosing spondylitis

    International Nuclear Information System (INIS)

    Mai Yuanfeng; Sun Haixing; Ling Jian; Kuang Jianyi; Pan Ximin

    2006-01-01

    Objective: To evaluate the improved CT imaging of sacroiliac joint in diagnosis of ankylosing spondylitis (AS). Methods: 22 patients, diagnosed as AS by clinical and radiography, undertook both conventional and improved CT imaging. All images were comparatively studied. Results: With conventional CT imaging, in the 44 joints of 22 cases, unremarkable images were obtained in 3 cases; early stage AS was found in 15 joints of 9 cases; AS in progressive stage was revealed in 8 cases/16 joints, stabled AS was presented in 2 cases/4 joints. There were 23 joints in 12 cases diagnosed as early term by improved imaging, progressive staged AS was shown in 8 cases/16 joints as, stable AS was demonstrated in 2 cases/4 joints. Conclusion: The improved imaging is sensitive in the diagnosis of early staged AS, for the application of thin slice scan, which helps to reduce partial volume effect. Scanning along the longitudinal axis of the sacroiliac joint extends the observation of erosion of the joint surface. For progressive or stable staged AS, the alterations of bone and joint space are prominent, improved CT imaging is not superior to the conventional. (authors)

  11. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  12. Evaluation of unusual causes of pancreatitis: Role of cross-sectional imaging

    International Nuclear Information System (INIS)

    Kwak, Sang Wook; Kim, Suk; Lee, Jun Woo; Lee, Nam Kyung; Kim, Chang Won; Yi, Mi Seon; Kim, Gwang Ha; Kang, Dae Hwan

    2009-01-01

    There are widely diverse causes of pancreatitis. Gallstone and alcohol have been recognized as the most common causes of pancreatitis accounting for 90% of cases. However, acute and chronic pancreatitis may also result from a variety of uncommon causes. The determination of the etiology is important for patient management and prevention of recurrence. Sludge is the most common cause of idiopathic or recurrent acute pancreatitis. Endoscopic ultrasonography is considered as the most accurate diagnostic test for this abnormality. Computed tomography (CT) and magnetic resonance imaging (MRI) have only a limited role in the diagnosis of sludge. However, papillitis observed on the contrast-enhanced CT and MR may provide clues to the detection of pancreatitis secondary to sludge, a small stone or a recently passed stone. Radiological studies, clinical presentation and laboratory data can be helpful in determining the etiology of unusual causes of pancreatitis such as anatomic anomalies, autoimmune pancreatitis, groove pancreatitis, and traumatic pancreatitis.

  13. Evaluation of unusual causes of pancreatitis: Role of cross-sectional imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sang Wook [Department of Diagnostic Radiology, Pusan National University Hospital, Pusan National College of Medicine and the Medical Research Institute, Pusan National University, Busan 602-739 (Korea, Republic of); Kim, Suk [Department of Diagnostic Radiology, Pusan National University Hospital, Pusan National College of Medicine and the Medical Research Institute, Pusan National University, Busan 602-739 (Korea, Republic of)], E-mail: kimsuk@medigate.net; Lee, Jun Woo; Lee, Nam Kyung; Kim, Chang Won; Yi, Mi Seon [Department of Diagnostic Radiology, Pusan National University Hospital, Pusan National College of Medicine and the Medical Research Institute, Pusan National University, Busan 602-739 (Korea, Republic of); Kim, Gwang Ha; Kang, Dae Hwan [Division of Gastroenterology and Hepatology, Pusan National University Hospital, Pusan National College of Medicine and the Medical Research Institute, Pusan National University, Busan 602-739 (Korea, Republic of)

    2009-08-15

    There are widely diverse causes of pancreatitis. Gallstone and alcohol have been recognized as the most common causes of pancreatitis accounting for 90% of cases. However, acute and chronic pancreatitis may also result from a variety of uncommon causes. The determination of the etiology is important for patient management and prevention of recurrence. Sludge is the most common cause of idiopathic or recurrent acute pancreatitis. Endoscopic ultrasonography is considered as the most accurate diagnostic test for this abnormality. Computed tomography (CT) and magnetic resonance imaging (MRI) have only a limited role in the diagnosis of sludge. However, papillitis observed on the contrast-enhanced CT and MR may provide clues to the detection of pancreatitis secondary to sludge, a small stone or a recently passed stone. Radiological studies, clinical presentation and laboratory data can be helpful in determining the etiology of unusual causes of pancreatitis such as anatomic anomalies, autoimmune pancreatitis, groove pancreatitis, and traumatic pancreatitis.

  14. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  15. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  16. Clinical PET/CT Atlas: A Casebook of Imaging in Oncology

    International Nuclear Information System (INIS)

    2015-01-01

    Integrated positron emission tomography/computed tomography (PET/CT) has evolved since its introduction into the commercial market more than a decade ago. It is now a key procedure, particularly in oncological imaging. Over the last years in routine clinical service, PET/CT has had a significant impact on diagnosis, treatment planning, staging, therapy, and monitoring of treatment response and has therefore played an important role in the care of cancer patients. The high sensitivity from the PET component and the specificity of the CT component give this hybrid imaging modality the unique characteristics that make PET/CT, even after over 10 years of clinical use, one of the fastest growing imaging modalities worldwide. This publication combines over 90 comprehensive cases covering all major indications of fluorodeoxyglucose (18F-FDG)-PET/CT as well as some cases of clinically relevant special tracers. The cases provide an overview of what the specific disease can look like in PET/CT, the typical pattern of the disease’s spread as well as likely pitfalls and teaching points. This PET/CT Atlas will allow professionals interested in PET/CT imaging to embrace the variety of oncological imaging by providing clinically relevant teaching files on the effectiveness and diagnostic quality of FDG-PET/CT imaging in routine applications

  17. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  18. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images

    International Nuclear Information System (INIS)

    Won Kim, Chang; Kim, Jong Hyo

    2014-01-01

    Purpose: Reducing the patient dose while maintaining the diagnostic image quality during CT exams is the subject of a growing number of studies, in which simulations of reduced-dose CT with patient data have been used as an effective technique when exploring the potential of various dose reduction techniques. Difficulties in accessing raw sinogram data, however, have restricted the use of this technique to a limited number of institutions. Here, we present a novel reduced-dose CT simulation technique which provides realistic low-dose images without the requirement of raw sinogram data. Methods: Two key characteristics of CT systems, the noise equivalent quanta (NEQ) and the algorithmic modulation transfer function (MTF), were measured for various combinations of object attenuation and tube currents by analyzing the noise power spectrum (NPS) of CT images obtained with a set of phantoms. Those measurements were used to develop a comprehensive CT noise model covering the reduced x-ray photon flux, object attenuation, system noise, and bow-tie filter, which was then employed to generate a simulated noise sinogram for the reduced-dose condition with the use of a synthetic sinogram generated from a reference CT image. The simulated noise sinogram was filtered with the algorithmic MTF and back-projected to create a noise CT image, which was then added to the reference CT image, finally providing a simulated reduced-dose CT image. The simulation performance was evaluated in terms of the degree of NPS similarity, the noise magnitude, the bow-tie filter effect, and the streak noise pattern at photon starvation sites with the set of phantom images. Results: The simulation results showed good agreement with actual low-dose CT images in terms of their visual appearance and in a quantitative evaluation test. The magnitude and shape of the NPS curves of the simulated low-dose images agreed well with those of real low-dose images, showing discrepancies of less than +/−3.2% in

  19. Dynamic changes in the dural space and spinal cord cross-sectional area during flexion and extension in patients with cervical spondylotic myelopathy

    International Nuclear Information System (INIS)

    Machino, Masaaki; Yukawa, Yasutsugu; Ito, Keigo; Nakashima, Hiroaki; Kato, Fumihiko

    2009-01-01

    The number of patients with cervical spondylotic myelopathy (CSM) is increasing with the aging of the population. The patients' during spinal cord tends to be compressed neck extension, because the yellow ligaments and intervertebral discs protrude into the spinal canal during neck extension (pincer mechanism). A total of 100 patients with CSM were prospectively enrolled in this study. After preoperative myelography, multi-detector-row CT (MDCT) scans were acquired in flexion and extension, and the dural space and spinal cord cross-sectional area at each disc level from C2/3 to C7/Th1 were measured by using Scion imaging software. The average dural space and average spinal cord cross-sectional area were smaller in extension than in flexion from the C3/4 to C7/Th1 disc level, and the greatest dynamic changes were seen at the C5/6 level. MDCT demonstrated dynamic factors in patients with CSM. The spinal cord cross-sectional area became narrower during extension in patients with CSM. (author)

  20. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  1. AP diameter shows the strongest correlation with CTDI and DLP in abdominal and chest CT.

    LENUS (Irish Health Repository)

    Zarb, Francis

    2010-01-01

    The purpose of this study is to investigate the relationships among cross-sectional diameters, weight and computed tomography (CT) dose descriptors (CTDI and DLP) to identify which is best used as a measure for the establishment of DRLs in CT. Data (gender, weight, cross-sectional diameters, dose descriptors) from 56 adult patients attending for either a CT examination of the abdomen or chest was obtained from two spiral CT units using automatic milliampere modulation. The AP diameter was demonstrated as the main contributing factor influencing the dose in CT (CTDI: r(2) = 0.269, p-value < or =0.001; DLP: r(2) = 0.260, p-value < or =0.001) since it has a greater correlation with radiation dose than body weight and can thus be its substitute in dose-reduction strategies and establishment of DRLs. The advantages of using the AP diameter are that it can easily be measured prior to scanning or retrospectively from previous CT images. However, further studies on the practicality of this approach are recommended.

  2. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  3. Use of the Uro Dyna-CT in endourology - the new frontier

    Energy Technology Data Exchange (ETDEWEB)

    Vicentini, Fabio C.; Botelho, Luiz A.A.; Braz, Jose L.M.; Almeida, Ernane de S.; Hisano, Marcelo, E-mail: fabio@drfabiovicentini.com.br [Hospital 9 de Julho, Sao Paulo, SP (Brazil)

    2017-07-15

    We describe the use of the Uro Dyna-CT, an imaging system used in the operating room that produces real-time three-dimensional (3D) imaging and cross-sectional image reconstructions similar to an intraoperative computerized tomography, during a percutaneous nephrolithotomy and a contralateral flexible ureteroscopy in a complete supine position. A 65 year-old female patient had an incomplete calyceal staghorn stone in the right kidney and a 10mm in the left one. The procedure was uneventful and the intraoperative use of the Uro Dyna-CT identified 2 residual stones that were not found by digital fluoroscopy and flexible nephroscopy at the end of surgery, helping to render the patient stone-free in one procedure, which was confirmed by a postoperative CT scan. Prospective studies will define the real role of the Uro Dyna-CT for endourological procedures, but its use seems to be a very promising tool for improving stone free rates and decreasing auxiliary procedures, especially for complex cases. (author)

  4. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, H; Xing, L [Stanford University, Palo Alto, CA (United States); Liang, Z [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  5. MO-DE-207A-09: Low-Dose CT Image Reconstruction Via Learning From Different Patient Normal-Dose Images

    International Nuclear Information System (INIS)

    Han, H; Xing, L; Liang, Z

    2016-01-01

    Purpose: To investigate a novel low-dose CT (LdCT) image reconstruction strategy for lung CT imaging in radiation therapy. Methods: The proposed approach consists of four steps: (1) use the traditional filtered back-projection (FBP) method to reconstruct the LdCT image; (2) calculate structure similarity (SSIM) index between the FBP-reconstructed LdCT image and a set of normal-dose CT (NdCT) images, and select the NdCT image with the highest SSIM as the learning source; (3) segment the NdCT source image into lung and outside tissue regions via simple thresholding, and adopt multiple linear regression to learn high-order Markov random field (MRF) pattern for each tissue region in the NdCT source image; (4) segment the FBP-reconstructed LdCT image into lung and outside regions as well, and apply the learnt MRF prior in each tissue region for statistical iterative reconstruction of the LdCT image following the penalized weighted least squares (PWLS) framework. Quantitative evaluation of the reconstructed images was based on the signal-to-noise ratio (SNR), local binary pattern (LBP) and histogram of oriented gradients (HOG) metrics. Results: It was observed that lung and outside tissue regions have different MRF patterns predicted from the NdCT. Visual inspection showed that our method obviously outperformed the traditional FBP method. Comparing with the region-smoothing PWLS method, our method has, in average, 13% increase in SNR, 15% decrease in LBP difference, and 12% decrease in HOG difference from reference standard for all regions of interest, which indicated the superior performance of the proposed method in terms of image resolution and texture preservation. Conclusion: We proposed a novel LdCT image reconstruction method by learning similar image characteristics from a set of NdCT images, and the to-be-learnt NdCT image does not need to be scans from the same subject. This approach is particularly important for enhancing image quality in radiation therapy.

  6. Reaction cross section calculation of some alkaline earth elements

    Science.gov (United States)

    Tel, Eyyup; Kavun, Yusuf; Sarpün, Ismail Hakki

    2017-09-01

    Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  7. PET/CT imaging: The incremental value of assessing the glucose metabolic phenotype and the structure of cancers in a single examination

    International Nuclear Information System (INIS)

    Czernin, Johannes; Benz, Matthias R.; Allen-Auerbach, Martin S.

    2010-01-01

    PET/CT with the glucose analogue FDG is emerging as the most important diagnostic imaging tool in oncology. More than 2000 PET/CT scanners are operational worldwide and its unique role for diagnosing, staging, restaging and therapeutic monitoring in cancer is undisputed. Studies conducted in thousands of cancer patients have clearly indicated that the combination of molecular PET with anatomical CT imaging provides incremental diagnostic value over PET or CT alone. State of the art imaging protocols combine fully diagnostic CT scans with quality whole body PET surveys. The current review briefly describes the biological alterations of cancer cells that result in their switch to a strongly glycolytic phenotype. Different whole body imaging protocols are discussed. We summarize the evidence for the incremental value of PET/CT over CT and PET alone using imaging of sarcoma as an example. Following this section we discuss the performance of FDG-PET/CT imaging for staging, restaging and monitoring of head and neck cancer, solitary lung nodules and lung cancer, breast cancer, colorectal cancer, lymphoma and unknown primary tumors. Finally, the recently emerging evidence of a substantial impact of PET/CT imaging on patient management is presented.

  8. Imaging fusion (SPECT/CT) in degenerative disease of spine

    International Nuclear Information System (INIS)

    Bernal, P.; Ucros, G.; Bermudez, S.; Ocampo, M.

    2007-01-01

    Full text: Objective: To determine the utility of Fusion Imaging SPECT/CT in degenerative pathology of the spine and to establish the impact of the use of fusion imaging in spinal pain due to degenerative changes of the spine. Materials and methods: 44 Patients (M=21, F=23) average age of 63 years and with degenerative pathology of spine were sent to Diagnosis Imaging department in FSFB. Bone scintigraphy (SPECT), CT of spine (cervical: 30%, Lumbar 70%) and fusion imaging were performed in all of them. Bone scintigraphy was carried out in a gamma camera Siemens Diacam double head attached to ESOFT computer. The images were acquired in matrix 128 x 128, 20 seg/imag, 64 images. CT of spine was performed same day or two days after in Helycoidal Siemens somatom emotion CT. The fusion was done in a Dicom workstation in sagital, axial and coronal reconstruction. The findings were evaluated by 2 Nuclear Medicine physicians and 2 radiologists of the staff of FSFB in an independent way. Results: Bone scan (SPECT) and CT of 44 patients were evaluated. CT showed facet joint osteoarthrities in 27 (61.3%) patients, uncovertebral joint arthrosis in 7 (15.9%), bulging disc in 9(20.4%), spinal nucleus lesion in 7(15.9%), osteophytes in 9 (20.4%), spinal foraminal stenosis in 7 (15.9%), spondylolysis/spondylolisthesis in 4 (9%). Bone scan showed facet joint osteoarthrities in 29 (65.9%), uncovertebral joint arthrosis in 4 (9%), osteophytes in 9 (20.4%) and normal 3 (6.8%). The imaging fusion showed coincidence findings (main lesion in CT with high uptake in scintigraphy) in 34 patients (77.2%) and no coincidence in 10 (22.8%). In 15 (34.09%) patients the fusion provided additional information. The analysis of the findings of CT and SPECT showed similar results in most of the cases and the fusion didn't provide additional information but it allowed to confirm the findings but when the findings didn't match where the CT showed several findings and SPECT only one area with high uptake

  9. Determination of optimal parameters for three-dimensional reconstruction images of central airways using helical CT

    International Nuclear Information System (INIS)

    Hirose, Takahumi; Akata, Soichi; Matsuno, Naoto; Nagao, Takeshi; Abe, Kimihiko

    2002-01-01

    Three-dimensional (3D) image reconstruction of central airways using helical CT requires several user-defined parameters that exceed the requirements of conventional CT. The purpose of this study was to evaluate the optimal parameters for 3D images of central airways using helical CT. In our experimental study using a piglet immediately after sacrifice, 3D images of the central airway were evaluated with changes of 3D imaging parameters, such as detector collimation (1, 2, 3 and 6 mm), table speed (1, 2, 3 and 5 mm/sec), tube electric current (50, 100, 150, 200 and 250 mA), reconstruction interval (0.3, 0.5, 1, 2 and 3 mm), algorithm (mediastinum and lung) and interpolation method (180 deg and 360 deg). To minimize detector collimation, table speed, and reconstruction interval could provide the best 3D images of the central airway. Stair-step artifacts could also be reduced with a slow table speed. However, decreasing the collimation and table speed decreases not only the effective section thickness but also the scan coverage that can be achieved with a helical CT. For routine diagnosis, we conclude that optimal parameters for 3D images of the central airway are to minimize the table speed necessary to cover the volume of interest and to set detector collimation to 1/2 of the table speed. The reconstruction intervals should also be selected at up to 1/2 of the detector collimation, but with trade-offs of increased image processing time, data storage requirements, and physician time for image review. Regarding to tube electric current, 200 mA or more was necessary. Pixel noise increased with the algorithm for the lung. The 180 deg interpolation is better than 360 deg interpolation due to thin effective section thickness. (author)

  10. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  11. Central image archiving and managements system for multicenter clinical studies: Lessons from low-dose CT for appendicitis trial

    Energy Technology Data Exchange (ETDEWEB)

    Ko, You Sun; Lee, Kyong Joon; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); and others

    2017-03-15

    This special report aimed to document our experiences in implementing the Central Imaging Archiving and Management System (CIAMS) for a multicenter clinical trial, Low-dose CT for Appendicitis Trial (LOCAT), supported by the Korean Society of Radiology and Radiology Imaging Network of Korea for Clinical Research. LOCAT was a randomized controlled trial to determine whether low-dose CT is non-inferior to standard-dose CT with respect to the negative appendectomy rate in patients aged from 15 to 44 years. Site investigators downloaded the CT images from the site picture archiving and communication system servers, and uploaded the anonymized images to the primary server. CIAMS administrators inspected the images routed to the secondary server by a cross-check against image submission worksheets provided by the site investigators. The secondary server was automatically synchronized to the tertiary backup server. Up to June 2016, 2715 patients from 20 sites participated in LOCAT for 30 months. A total of 2539 patients' images (93.5%, 2539/2715) were uploaded to the primary server, 2193 patients' worksheets (80.8%, 2193/2715) were submitted, and 2163 patients' data (79.7%, 2163/2715) were finally monitored. No data error occurred.

  12. arXiv Top-quark pair production cross sections at NNLO+NNLL in pPb collisions at $\\sqrt{s_{NN}}$ = 8.16 TeV

    CERN Document Server

    d'Enterria, David

    Total and fiducial top pair ($t\\bar{t}$) production cross sections in proton-lead (pPb) collisions at $\\sqrt{s_{NN}}$ = 8.16 TeV are computed at next-to-next-to-leading-order (NNLO) accuracy including next-to-next-to-leading-log (NNLL) gluon resummation, using the CT14 and CT10 proton parton distribution functions (PDF), and the EPPS16 and EPS09 nuclear PDF parametrizations for the lead ion. The total cross sections amount to $\\sigma(pPb\\to t\\bar{t}+X) = 59.0 \\pm 5.3$(CT14+EPPS16)$\\,^{+1.6}_{-2.1}$(scale) nb, and $57.5 \\pm \\,^{+4.3}_{-3.3}$(CT10+EPS09)$\\,^{+1.5}_{-2.0}$(scale) nb, with small modifications with respect to the result computed using the free proton PDF alone. The normalized ratio of pPb to pp cross sections (nuclear modification factor) is $R_{pPb} = 1.04 \\,^{\\pm 0.07(EPPS16)}_{\\pm0.03(EPS09)}$. In the lepton+jets decay mode, $t\\bar{t} \\to b\\bar{b} W(\\ell\

  13. Non-destructive failure analysis and measurement for molded devices and complex assemblies with X-ray CT and 3D image processing techniques

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Liew, Seaw Jia; Jiang, Ting Ying; Xu, Jian; Kakarala, Ramakrishna

    2013-01-01

    In both automotive and healthcare sectors, reliable failure analysis and accurate measurement of molded devices and complex assemblies are important. Current methods of failure analysis and measurement require these molded parts to be cross-sectioned so that internal features or dimensions can be accessible. As a result, the parts are deemed unusable and additional failure introduced by sectioning may cause misinterpretation of the results. X-ray CT and 3D image processing techniques provide a new nondestructive solution for failure analysis and measurement of molded devices and complex assemblies. These techniques simplify failure analysis and measurement of molded devices and assemblies, and improve the productivity of molding manufacturing significantly.

  14. Imaging of appendicitis in adults; Bildgebung der Appendizitis beim Erwachsenen

    Energy Technology Data Exchange (ETDEWEB)

    Karul, M.; Berliner, C.; Keller, S.; Yamamura, J. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Tsui, T.Y. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of General, Visceral- and Thoracic Surgery

    2014-06-15

    Three imaging modalities are available for the diagnosis of acute appendicitis: ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). Transabdominal ultrasound should be the first-line imaging test. Abdominal CT is superior to US and is required immediately in patients with atypical clinical presentation of appendicitis and suspected perforation. However, low-dose unenhanced CT is equal to standard-dose CT with intravenous contrast agents in the detection of five signs of acute appendicitis (thickened appendiceal wall more than 2 mm, cross-sectional diameter greater than 6 mm, periappendicitis, abscess, and appendicolith). MRI is necessary in pregnant women and young adults. This review illustrates the principles of state-of-the-art imaging techniques and their clinical relevance. (orig.)

  15. Dental CT: examination technique, radiation load and anatomy

    International Nuclear Information System (INIS)

    Lenglinger, F.X.; Muhr, T.

    1999-01-01

    Traditionally oral surgeons and dentists have evaluated the jaws using intraoral films and panoramic radiographs. The involvement of radiologists has been limited. In the past few years dedicated CT-software-programs developed to evaluate dental implant patients have provided a new look at the jaws. The complex anatomy is described and identified on human skulls and on axial, panoramic, and cross-sectional images. With this anatomic description Dental-CT-scans are used to demonstrate the anatomy of maxilla and the mandible. An overview of the technique of Dental-CT is provided, furthermore the radiation dose of different organs is explained. Suggestions to reduce these doses by simple modifications of the recommended protocols are given. (orig.) [de

  16. Inflicted T12 fracture-dislocation: CT/MRI correlation and mechanistic implications

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Brandon [Brigham and Women' s Hospital, Section of Neuroradiology, Department of Radiology, Boston, MA (United States); Silvera, Michelle [Children' s Hospital Boston, Division of Neuroradiology, Department of Radiology, Boston, MA (United States); Newton, Alice [Children' s Hospital Boston, Division of General Pediatrics, Boston, MA (United States); Kleinman, Paul K. [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States)

    2007-11-15

    We describe the CT and MRI findings of a thoracolumbar neurocentral synchondrosis fracture-dislocation in an abused infant. The morphologic features of this classically described fracture, and the associated cervical and sacral spine injuries displayed on cross-sectional imaging, provide compelling evidence for a mechanism of massive hyperflexion and axial spinal loading. (orig.)

  17. Study of CT image texture using deep learning techniques

    Science.gov (United States)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  18. Issues specific to implementing PET-CT for pediatric oncology: what we have learned along the way

    International Nuclear Information System (INIS)

    Kaste, S.C.

    2004-01-01

    In parallel with the expansion of PET imaging to pediatric patients has been the technological development of merging state-of-the-art cross-sectional anatomic information (CT) with functional imaging (PET) into a single modality: PET-CT. Attending to the clinical, scheduling, and medical needs that are unique to imaging children and adolescents can be a challenge, particularly when instituting a single new modality. When that modality bridges two unique, previously independent methods-often previously located in two separate departmental divisions-the details and logistics required to set up a smoothly functioning process can be particularly difficult. This paper focuses on our experience in implementing PET-CT in a tertiary pediatric referral center. (orig.)

  19. A cross-platform survey of CT image quality and dose from routine abdomen protocols and a method to systematically standardize image quality

    International Nuclear Information System (INIS)

    Favazza, Christopher P; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M; Bruesewitz, Michael R; McCollough, Cynthia H

    2015-01-01

    Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice’s routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDI vol ). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDI vol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2  ±  0.2 mm using GE’s ‘Plus’ mode reconstruction setting and 5.0  ±  0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24  ±  0.37, 6.20  ±  0.34, and 7.84  ±  0.70 lp cm −1 , respectively. For all phantom sizes, image noise and CTDI vol varied considerably: 6.5–13.3 HU (noise) and 4.8–13.3 mGy (CTDI vol ) for the smallest phantom; 9.1–18.4 HU and 9.3–28.8 mGy for the medium phantom; and 7.8–23.4 HU and 16.0–48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes. (paper)

  20. A cross-platform survey of CT image quality and dose from routine abdomen protocols and a method to systematically standardize image quality.

    Science.gov (United States)

    Favazza, Christopher P; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M; Bruesewitz, Michael R; McCollough, Cynthia H

    2015-11-07

    Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice's routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2  ±  0.2 mm using GE's 'Plus' mode reconstruction setting and 5.0  ±  0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24  ±  0.37, 6.20  ±  0.34, and 7.84  ±  0.70 lp cm(-1), respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5-13.3 HU (noise) and 4.8-13.3 mGy (CTDIvol) for the smallest phantom; 9.1-18.4 HU and 9.3-28.8 mGy for the medium phantom; and 7.8-23.4 HU and 16.0-48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes.

  1. Modified CT imaging by reduction factor transformations

    International Nuclear Information System (INIS)

    Doehring, W.; Linke, G.

    1981-01-01

    The possibilities of CT image modification which had existed so far for given matrix of attenuation values (window setting, highlighting, black-and-white or colour reversal and logarithmic distortion of the video signal) are supplemented by the method of attenuation value transformation. As a specific case a linear interval by interval attenuation value transformation is described. First of all, the intirety of the measured CT values is transformed into the corresponding CT quotients (CTQ) and then subdivided into 5 optional intervals. Each one freely selected CTQ value can be allocated to the first and to the last interval; the intermediate 3 intervals can be linearly transformed at random. The article discusses the influence of such a manipulation on CT image reproduction; this is of particular importance for the image visualisation of the results of quantitative organ analyses by means of computed tomography. The presented paper also points to the possibility of effecting further attenuation value transformations. (orig.) [de

  2. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  3. Hardware system of parallel processing for fast CT image reconstruction based on circular shifting float memory architecture

    International Nuclear Information System (INIS)

    Wang Shi; Kang Kejun; Wang Jingjin

    1995-01-01

    Computerized Tomography (CT) is expected to become an inevitable diagnostic technique in the future. However, the long time required to reconstruct an image has been one of the major drawbacks associated with this technique. Parallel process is one of the best way to solve this problem. This paper gives the architecture and hardware design of PIRS-4 (4-processor Parallel Image Reconstruction System) which is a parallel processing system for fast 3D-CT image reconstruction by circular shifting float memory architecture. It includes structure and component of the system, the design of cross bar switch and details of control model. The test results are described

  4. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  5. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  6. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Murase, Kenya; Mochizuki, Teruhito; Motomura, Nobutoku

    2002-01-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with 201 Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external γ-ray source ( 99m Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study. In the human study, SPECT images were affected by the scan conditions of the X-ray CT. Attenuation correction of myocardial SPECT with an X-ray CT image is a simple and potentially beneficial method for clinical use, but accurate registration of the X-ray CT to SPECT image is essential for satisfactory attenuation correction. (author)

  7. PET/CT Atlas on Quality Control and Image Artefacts

    International Nuclear Information System (INIS)

    2014-01-01

    Combined positron emission tomography (PET)/computed tomography (CT) imaging has become a routine procedure in diagnostic radiology and nuclear medicine. The clinical review of both PET and PET/CT images requires a thorough understanding of the basics of image formation as well as an appreciation of variations of inter-patient and intra-patient image appearance. Such variations may be caused by variations in tracer accumulation and metabolism, and, perhaps more importantly, by image artefacts related to methodological pitfalls of the two modalities. This atlas on quality control (QC) and PET/CT artefacts provides guidance on typical image distortions in clinical PET/CT usage scenarios. A number of cases are presented to provide nuclear medicine and radiology professionals with an assortment of examples of possible image distortions and errors in order to support the correct interpretation of images. About 70 typical PET and PET/CT cases, comprised of image sets and cases, have been collected in this book, and all have been catalogued and have explanations as to the causes of and solutions to each individual image problem. This atlas is intended to be used as a guide on how to take proper QC measures, on performing situation and problem analysis, and on problem prevention. This book will be especially useful to medical physicists, physicians, technologists and service engineers in the clinical field

  8. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  9. Three-dimensional-CT imaging of colorectal disease with thin collimation helical CT scanning

    International Nuclear Information System (INIS)

    Ogura, Toshihiro; Koizumi, Koichi; Sakai, Tatsuya; Kai, Shunkichi; Takatsu, Kazuaki; Maruyama, Masakazu

    1998-01-01

    We have conducted research on three-dimensional (3D)-CT-colonoscopy with thin collimation helical CT scanning over the past three years. This has lately become a subject of special interest. 3D-CT-colonoscopy has three kinds of visualizing methods depending on the threshold setting of CT values. The first one is the virtual endoscopy method which is displayed in a similar fashion to colonoscopic images. The second one is the air image method using the air in the digestive tract as a contrast medium. The third one is the pseudo-tract method which has characteristics of both virtual endoscopy and the air image method and visualizes in a shape of the digestive tract. The image visualized by 3D-CT-colonoscopy is similar to that of conventional colonoscopy and barium enema study, which is obtained with minimal invasion to patients. Obvious advanced carcinomas were easily visualized, and even a small flat polyp measuring 5 mm in size, was able to be observed retrospectively. The characteristics of our method are that we can easily make an examination in a short time and with little dependence on expert technique. Also patients have little discomfort compared to that experienced during colonoscopy and barium enema study. Important features are as follows; long calculation time, insufficient air insufflation, fecal material in the patient''s bowel, whole abdominal scan, and spatial resolution. In the near future, a multislice CT scanner system will have ability to overcome these problems. Therefore, 3D-CT-colonoscopy might be applied in the future for first line examination as a mass screening for colorectal carcinoma. (author)

  10. Influence of volumes of prostate, rectum, and bladder on treatment planning CT on interfraction prostate shifts during ultrasound image-guided IMRT

    International Nuclear Information System (INIS)

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Sartin, William; Maiorano, Samuel; Modena, Jennifer; Mazur, Andrej; Osian, Adrian; Sood, Brijmohan; Ravi, Akkamma; Sampath, Seshadri; Lange, Christopher S.

    2009-01-01

    Purpose: The purpose of this study was to analyze the relationship between prostate, bladder, and rectum volumes on treatment planning CT day and prostate shifts in the XYZ directions on treatment days. Methods: Prostate, seminal vesicles, bladder, and rectum were contoured on CT images obtained in supine position. Intensity modulated radiation therapy plans was prepared. Contours were exported to BAT-ultrasound imaging system. Patients were positioned on the couch using skin marks. An ultrasound probe was used to obtain ultrasound images of prostate, bladder, and rectum, which were aligned with CT images. Couch shifts in the XYZ directions as recommended by BAT system were made and recorded. 4698 couch shifts for 42 patients were analyzed to study the correlations between interfraction prostate shifts vs bladder, rectum, and prostate volumes on planning CT. Results: Mean and range of volumes (cc): Bladder: 179 (42-582), rectum: 108 (28-223), and prostate: 55 (21-154). Mean systematic prostate shifts were (cm, ±SD) right and left lateral: -0.047±0.16 (-0.361-0.251), anterior and posterior: 0.14±0.3 (-0.466-0.669), and superior and inferior: 0.19±0.26 (-0.342-0.633). Bladder volume was not correlated with lateral, anterior/posterior, and superior/inferior prostate shifts (P>0.2). Rectal volume was correlated with anterior/posterior (P 0.2). The smaller the rectal volume or cross sectional area, the larger was the prostate shift anteriorly and vice versa (P 0.2). The smaller the prostate volume, the larger was prostate shift superiorly and vice versa (P<0.05). Conclusions: Prostate and rectal volumes, but not bladder volumes, on treatment planning CT influenced prostate position on treatment fractions. Daily image-guided adoptive radiotherapy would be required for patients with distended or empty rectum on planning CT to reduce rectal toxicity in the case of empty rectum and to minimize geometric miss of prostate.

  11. Pediatric renal leukemia: spectrum of CT imaging findings

    International Nuclear Information System (INIS)

    Hilmes, Melissa A.; Dillman, Jonathan R.; Mody, Rajen J.; Strouse, Peter J.

    2008-01-01

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  12. Pediatric renal leukemia: spectrum of CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Hilmes, Melissa A. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); Vanderbilt University Children' s Hospital, Section of Pediatric Radiology, Nashville, TN (United States); Dillman, Jonathan R. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Mody, Rajen J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Ann Arbor, MI (United States); Strouse, Peter J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2008-04-15

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  13. Effect of reconstruction algorithm on image quality and identification of ground-glass opacities and partly solid nodules on low-dose thin-section CT: Experimental study using chest phantom

    International Nuclear Information System (INIS)

    Koyama, Hisanobu; Ohno, Yoshiharu; Kono, Atsushi A.; Kusaka, Akiko; Konishi, Minoru; Yoshii, Masaru; Sugimura, Kazuro

    2010-01-01

    Purpose: The purpose of this study was to assess the influence of reconstruction algorithm on identification and image quality of ground-glass opacities (GGOs) and partly solid nodules on low-dose thin-section CT. Materials and methods: A chest CT phantom including simulated GGOs and partly solid nodules was scanned with five different tube currents and reconstructed by using standard (A) and newly developed (B) high-resolution reconstruction algorithms, followed by visually assessment of identification and image quality of GGOs and partly solid nodules by two chest radiologists. Inter-observer agreement, ROC analysis and ANOVA were performed to compare identification and image quality of each data set with those of the standard reference. The standard reference used 120 mA s in conjunction with reconstruction algorithm A. Results: Kappa values (κ) of overall identification and image qualities were substantial or almost perfect (0.60 < κ). Assessment of identification showed that area under the curve of 25 mA reconstructed with reconstruction algorithm A was significantly lower than that of standard reference (p < 0.05), while assessment of image quality indicated that 50 mA s reconstructed with reconstruction algorithm A and 25 mA s reconstructed with both reconstruction algorithms were significantly lower than standard reference (p < 0.05). Conclusion: Reconstruction algorithm may be an important factor for identification and image quality of ground-glass opacities and partly solid nodules on low-dose CT examination.

  14. Microcomputer-based image processing system for CT/MRI scans II

    International Nuclear Information System (INIS)

    Kwok, J.C.K.; Yu, P.K.N.; Cheng, A.Y.S.; Ho, W.C.

    1991-01-01

    This paper reports that a microcomputer-based image processing system is used to digitize and process serial sections of CT/MRI scan and reconstruct three-dimensional images of brain structures and brain lesions. The images grabbed also serve as templates and different vital regions with different risk values are also traced out for 3D reconstruction. A knowledge-based system employing rule-based programming has been built to help identifying brain lesions and to help planning trajectory for operations. The volumes of the lesions are also automatically determined. Such system is very useful for medical skills archival, tumor size monitoring, survival and outcome forecasting, and consistent neurosurgical planning

  15. Primary staging of laryngeal and hypopharyngeal cancer: CT, MR imaging and dual-energy CT

    International Nuclear Information System (INIS)

    Kuno, Hirofumi; Onaya, Hiroaki; Fujii, Satoshi; Ojiri, Hiroya; Otani, Katharina; Satake, Mitsuo

    2014-01-01

    Laryngeal and hypopharyngeal cancer, in particular T4a disease associated with cartilage invasion and extralaryngeal spread, needs to be evaluated accurately because treatment can impact heavily on a patient's quality of life. Reliable imaging tools are therefore indispensible. CT offers high spatial and temporal resolution and remains the preferred imaging modality. Although cartilage invasion can be diagnosed with acceptable accuracy by applying defined criteria for combinations of erosion, lysis and transmural extralaryngeal spread, iodine-enhanced tumors and non-ossified cartilage are sometimes difficult to distinguish. MR offers high contrast resolution for images without motion artifacts, although inflammatory changes in cartilage sometimes resemble cartilage invasion. With dual-energy CT, combined iodine overlay images and weighted average images can be used for evaluation of cartilage invasion, since iodine enhancement is evident in tumor tissue but not in cartilage. Extralaryngeal spread can be evaluated from CT, MR or dual-energy CT images and the routes of tumor spread into the extralaryngeal soft tissue must be considered; (1) via the thyrohyoid membrane along the superior laryngeal neurovascular bundle, (2) via the inferior pharyngeal constrictor muscle, and (3) via the cricothyroid membrane. Radiologists need to understand the advantages and limitations of each imaging modality for staging of laryngeal and hypopharyngeal cancer

  16. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  17. Accuracy of 16-slice multi-detector CT to quantify the degree of coronary artery stenosis: Assessment of cross-sectional and longitudinal vessel reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Cury, Ricardo C. [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States)]. E-mail: rcury@partners.org; Ferencik, Maros [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Achenbach, Stephan [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Division of Cardiology, Massachusetts General Hospital, Boston, MA (United States); Department of Internal Medicine II, University of Erlangen (Germany); Pomerantsev, Eugene [Division of Cardiology, Massachusetts General Hospital, Boston, MA (United States); Nieman, Koen [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Moselewski, Fabian [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Division of Cardiology, Massachusetts General Hospital, Boston, MA (United States); Abbara, Suhny [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Jang, Ik-Kyung [Division of Cardiology, Massachusetts General Hospital, Boston, MA (United States); Brady, Thomas J. [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Hoffmann, Udo [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States)

    2006-03-15

    Background: Sixteen-slice multi-detector computed tomography (MDCT) permits reliable noninvasive detection of significant coronary stenosis based on qualitative visual assessment. The purpose of this study was to determine the accuracy of MDCT to quantify the degree of coronary stenosis as compared to quantitative coronary angiography (QCA) using two different reconstruction methods. Methods: We studied 69 coronary artery lesions from 38 consecutive patients that underwent 16-slice MDCT as a part of research study, which enrolled consecutive subjects scheduled for clinically indicated invasive coronary angiography. Nine coronary artery lesions with motion artifacts, heavily calcified plaques or stents were excluded from the analysis. The degree of stenosis was calculated by two independent readers non-blinded to the location of the stenosis, but blinded to the results of the QCA. MDCT luminal diameters were measured in cross-sectional multi-planar reformatted (CS-MPR) images created perpendicular to the centerline of the vessel and in 5 mm thin-slab maximum intensity projections (MIP) parallel to the long axis of the vessel. Both MDCT methods were compared against QCA. Results: The mean degree of stenosis as measured by MDCT was closely correlated to QCA for both methods (CS-MPR versus QCA: 61 {+-} 23% versus 64 {+-} 29%; r {sup 2} = 0.83, p < 0.001 and MIP versus QCA: 64 {+-} 22% versus 64 {+-} 29%; r {sup 2} = 0.84, p < 0.001 for MIP. Bland-Altman analysis demonstrated a negative bias of the degree of stenosis of -2.8 {+-} 12% using CS-MPR and a minimally positive bias of 0.6 {+-} 12% for MIP. In stratified analysis for lesion severity (mild, 0-40%; moderate, 41-70% or severe, >70%) the agreement between both CS-MPR and MIP was high when compared to QCA ({kappa} = 0.74 and 0.71, respectively). Conclusion: Multi-detector spiral CT permits accurate quantitative assessment of the degree of coronary stenosis in selected data sets of sufficient quality using both

  18. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  19. Imaging in epilepsy

    International Nuclear Information System (INIS)

    Gupta, Arun Kumar; Sharma, Raju; Sarma, Dipanka

    2000-01-01

    Epilepsy is a common problem in the paediatric age group. Imaging plays a vital role in identifying the seizure focus. Cross-sectional imaging modalities like CT and MRI have had a major impact on the management of seizure disorders. MRI, because of its high contrast resolution and multiplanar capability is the ideal imaging modality but its use is restricted due to high cost. Computed tomography is cheaper and is the first, and often, the only modality used, especially in the under privileged areas of the world. In the tropical countries inflammatory granuloma are a common cause of epilepsy and CT is adequate to detect these lesions. Other causes include congenital abnormalities, neoplastic and vascular causes. (author)

  20. Reaction cross section calculation of some alkaline earth elements

    Directory of Open Access Journals (Sweden)

    Tel Eyyup

    2017-01-01

    Full Text Available Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  1. Coronary artery plaques: Cardiac CT with model-based and adaptive-statistical iterative reconstruction technique

    International Nuclear Information System (INIS)

    Scheffel, Hans; Stolzmann, Paul; Schlett, Christopher L.; Engel, Leif-Christopher; Major, Gyöngi Petra; Károlyi, Mihály; Do, Synho; Maurovich-Horvat, Pál; Hoffmann, Udo

    2012-01-01

    Objectives: To compare image quality of coronary artery plaque visualization at CT angiography with images reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model based iterative reconstruction (MBIR) techniques. Methods: The coronary arteries of three ex vivo human hearts were imaged by CT and reconstructed with FBP, ASIR and MBIR. Coronary cross-sectional images were co-registered between the different reconstruction techniques and assessed for qualitative and quantitative image quality parameters. Readers were blinded to the reconstruction algorithm. Results: A total of 375 triplets of coronary cross-sectional images were co-registered. Using MBIR, 26% of the images were rated as having excellent overall image quality, which was significantly better as compared to ASIR and FBP (4% and 13%, respectively, all p < 0.001). Qualitative assessment of image noise demonstrated a noise reduction by using ASIR as compared to FBP (p < 0.01) and further noise reduction by using MBIR (p < 0.001). The contrast-to-noise-ratio (CNR) using MBIR was better as compared to ASIR and FBP (44 ± 19, 29 ± 15, 26 ± 9, respectively; all p < 0.001). Conclusions: Using MBIR improved image quality, reduced image noise and increased CNR as compared to the other available reconstruction techniques. This may further improve the visualization of coronary artery plaque and allow radiation reduction.

  2. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    Science.gov (United States)

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and

  3. SU-E-I-62: Assessing Radiation Dose Reduction and CT Image Optimization Through the Measurement and Analysis of the Detector Quantum Efficiency (DQE) of CT Images Using Different Beam Hardening Filters

    International Nuclear Information System (INIS)

    Collier, J; Aldoohan, S; Gill, K

    2014-01-01

    Purpose: Reducing patient dose while maintaining (or even improving) image quality is one of the foremost goals in CT imaging. To this end, we consider the feasibility of optimizing CT scan protocols in conjunction with the application of different beam-hardening filtrations and assess this augmentation through noise-power spectrum (NPS) and detector quantum efficiency (DQE) analysis. Methods: American College of Radiology (ACR) and Catphan phantoms (The Phantom Laboratory) were scanned with a 64 slice CT scanner when additional filtration of thickness and composition (e.g., copper, nickel, tantalum, titanium, and tungsten) had been applied. A MATLAB-based code was employed to calculate the image of noise NPS. The Catphan Image Owl software suite was then used to compute the modulated transfer function (MTF) responses of the scanner. The DQE for each additional filter, including the inherent filtration, was then computed from these values. Finally, CT dose index (CTDIvol) values were obtained for each applied filtration through the use of a 100 mm pencil ionization chamber and CT dose phantom. Results: NPS, MTF, and DQE values were computed for each applied filtration and compared to the reference case of inherent beam-hardening filtration only. Results showed that the NPS values were reduced between 5 and 12% compared to inherent filtration case. Additionally, CTDIvol values were reduced between 15 and 27% depending on the composition of filtration applied. However, no noticeable changes in image contrast-to-noise ratios were noted. Conclusion: The reduction in the quanta noise section of the NPS profile found in this phantom-based study is encouraging. The reduction in both noise and dose through the application of beam-hardening filters is reflected in our phantom image quality. However, further investigation is needed to ascertain the applicability of this approach to reducing patient dose while maintaining diagnostically acceptable image qualities in a

  4. Tracheomalacia in adults with cystic fibrosis: determination of prevalence and severity with dynamic cine CT.

    LENUS (Irish Health Repository)

    McDermott, Shaunagh

    2012-02-01

    PURPOSE: To determine the prevalence and severity of tracheomalacia in adults with cystic fibrosis (CF) by using dynamic cine multidetector computed tomography (CT) and to correlate these findings with pulmonary function test (PFT) results and the severity of parenchymal lung disease. MATERIALS AND METHODS: In this institutional review board-approved HIPAA-compliant study, 40 patients with CF (22 men, 18 women; mean age, 28 years +\\/- 8 [standard deviation]; age range, 18-54 years) prospectively underwent PFTs, standard thin-section CT, and two dynamic cine multidetector CT acquisitions. Ten control subjects underwent dynamic cine multidetector CT. After standard thin-section CT was completed, dynamic cine multidetector CT was performed during a forced expiratory maneuver and during coughing. Dynamic cine multidetector CT images in nine patients were excluded. Maximal inspiratory, dynamic expiratory, and end-expiratory tracheal luminal areas were compared (Student t test) and correlated (Spearman rank) with PFT results and severity of parenchymal lung disease. RESULTS: Mean predicted forced expiratory volume in 1 second (FEV(1)) was 70.6% +\\/- 20.7, and mean Bhalla CT score was 41.8% +\\/- 13.6. In patients with CF, dynamic cine mean tracheal cross-sectional area reduction was 51.7% +\\/- 18.4 (range, 9%-89%) for forced expiratory maneuvers and 68.8% +\\/- 11.7 (range, 18%-88%) for coughing (P = .001). Tracheomalacia was demonstrated in 24 (69%) patients and no control subjects during forced expiratory maneuvers (P = .001) and in 10 (29%) patients and one (10%) control subject during coughing. For end-expiration images, mean tracheal luminal reduction was 16.1% +\\/- 14.0% (range, 0.0%-53.0%), with one patient demonstrating tracheal luminal reduction of more than 50%. There was no correlation between tracheal cross-sectional luminal reduction and either predicted FEV(1) or CT Bhalla score. CONCLUSION: Tracheomalacia depicted at dynamic cine multidetector CT is a

  5. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  6. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  7. Technical evaluation of DIC helical CT and 3D image for laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Shibuya, Kouki; Uchimura, Fumiaki; Haga, Tomo

    1995-01-01

    Recently Laparoscopic Cholecystectomy (L.C.) was widely accepted for its low invasive procedure. Before L.C., it is important to understand anatomical recognization of biliary tree. We examined DIC Helical CT before L.C., and reconstructed 3D Cholangiographic image. We evaluated physical potentiality of Helical CT using Section Sensitivity Profiles (SSP) with 5, 10 mm slice thickness on 360deg linear interpolation. And we analyzed most useful 3D image for biliary tree. Results showed the SSP depended on slice thickness (X-ray beam width) and table movement at same reconstruction spacing. The peak of SSP depended on slice thickness (X-ray beam width) and reconstruction spacing at same table movement. Clinically, it was necessary under 5 mm/rotation table movement and 5 mm thickness for acquiring volume image data. 3D Cholangiographic image reconstructed with 1 mm spacing image was useful in evaluation of relationship of anatomical biliary tree. (author)

  8. Registered error between PET and CT images confirmed by a water model

    International Nuclear Information System (INIS)

    Chen Yangchun; Fan Mingwu; Xu Hao; Chen Ping; Zhang Chunlin

    2012-01-01

    The registered error between PET and CT imaging system was confirmed by a water model simulating clinical cases. A barrel of 6750 mL was filled with 59.2 MBq [ 18 F]-FDG and scanned after 80 min by 2 dimension model PET/CT. The CT images were used to attenuate the PET images. The CT/PET images were obtained by image morphological processing analyses without barrel wall. The relationship of the water image centroids of CT and PET images was established by linear regression analysis, and the registered error between PET and CT image could be computed one slice by one slice. The alignment program was done 4 times following the protocol given by GE Healthcare. Compared with centroids of water CT images, centroids of PET images were shifted to X-axis (0.011slice+0.63) mm, to Y-axis (0.022×slice+1.35) mm. To match CT images, PET images should be translated along X-axis (-2.69±0.15) mm, Y-axis (0.43±0.11) mm, Z-axis (0.86±0.23) mm, and X-axis be rotated by (0.06±0.07)°, Y-axis by (-0.01±0.08)°, and Z-axis by (0.11±0.07)°. So, the systematic registered error was not affected by load and its distribution. By finding the registered error between PET and CT images for coordinate rotation random error, the water model could confirm the registered results of PET-CT system corrected by Alignment parameters. (authors)

  9. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  10. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  11. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  12. Improved quantitation and reproducibility in multi-PET/CT lung studies by combining CT information.

    Science.gov (United States)

    Holman, Beverley F; Cuplov, Vesna; Millner, Lynn; Endozo, Raymond; Maher, Toby M; Groves, Ashley M; Hutton, Brian F; Thielemans, Kris

    2018-06-05

    Matched attenuation maps are vital for obtaining accurate and reproducible kinetic and static parameter estimates from PET data. With increased interest in PET/CT imaging of diffuse lung diseases for assessing disease progression and treatment effectiveness, understanding the extent of the effect of respiratory motion and establishing methods for correction are becoming more important. In a previous study, we have shown that using the wrong attenuation map leads to large errors due to density mismatches in the lung, especially in dynamic PET scans. Here, we extend this work to the case where the study is sub-divided into several scans, e.g. for patient comfort, each with its own CT (cine-CT and 'snap shot' CT). A method to combine multi-CT information into a combined-CT has then been developed, which averages the CT information from each study section to produce composite CT images with the lung density more representative of that in the PET data. This combined-CT was applied to nine patients with idiopathic pulmonary fibrosis, imaged with dynamic 18 F-FDG PET/CT to determine the improvement in the precision of the parameter estimates. Using XCAT simulations, errors in the influx rate constant were found to be as high as 60% in multi-PET/CT studies. Analysis of patient data identified displacements between study sections in the time activity curves, which led to an average standard error in the estimates of the influx rate constant of 53% with conventional methods. This reduced to within 5% after use of combined-CTs for attenuation correction of the study sections. Use of combined-CTs to reconstruct the sections of a multi-PET/CT study, as opposed to using the individually acquired CTs at each study stage, produces more precise parameter estimates and may improve discrimination between diseased and normal lung.

  13. Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image.

    Science.gov (United States)

    Xiang, Lei; Wang, Qian; Nie, Dong; Zhang, Lichi; Jin, Xiyao; Qiao, Yu; Shen, Dinggang

    2018-07-01

    Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN). Specifically, we generate the feature maps from MR images, and then transform these feature maps forward through convolutional layers in the network. We can further compute a tentative CT synthesis from the midway of the flow of feature maps, and then embed this tentative CT synthesis result back to the feature maps. This embedding operation results in better feature maps, which are further transformed forward in DECNN. After repeating this embedding procedure for several times in the network, we can eventually synthesize a final CT image in the end of the DECNN. We have validated our proposed method on both brain and prostate imaging datasets, by also comparing with the state-of-the-art methods. Experimental results suggest that our DECNN (with repeated embedding operations) demonstrates its superior performances, in terms of both the perceptive quality of the synthesized CT image and the run-time cost for synthesizing a CT image. Copyright © 2018. Published by Elsevier B.V.

  14. Assessment of consistency of the whole tumor and single section perfusion imaging with 256-slice spiral CT: a preliminary study

    International Nuclear Information System (INIS)

    Sun Hongliang; Xu Yanyan; Hu Yingying; Tian Yuanjiang; Wang Wu

    2014-01-01

    Objective: To determine the consistency between quantitative CT perfusion measurements of colorectal cancer obtained from single section with maximal tumor dimension and from average of whole tumor, and compare intra- and inter-observer consistency of the two analysis methods. Methods: Twenty-two patients with histologically proven colorectal cancer were examined prospectively with 256-slice CT and the whole tumor perfusion images were obtained. Perfusion parameters were obtained from region of interest (ROI) inserted in single section showing maximal tumor dimension, then from ROI inserted in all tumor-containing sections by two radiologists. Consistency between values of blood flow (BF), blood volume (BV) and time to peak (TTP) calculated by two methods was assessed. Intra-observer consistency was evaluated by comparing repeated measurements done by the same radiologist using both methods after 3 months. Perfusion measurements were done by another radiologist independently to assess inter-observer consistency of both methods. The results from different methods were compared using paired t test and Bland-Altman plot. Results: Twenty-two patients were examined successfully. The perfusion parameters BF, BV and TTP obtained by whole tumor perfusion and single-section analysis were (35.59 ± 14.59) ml · min -1 · 100 g -1 , (17.55 ±4.21) ml · 100 g -1 , (21.30 ±7.57) s and (34.64 ± 13.29)ml · min -1 · 100 g -1 , (17.61 ±6.39)ml · 100 g -1 , (19.82 ±9.01) s, respectively. No significant differences were observed between the means of the perfusion parameters (BF, BV, TTP) calculated by the two methods (t=0.218, -0.033, -0.668, P>0.05, respectively). The intra-observer 95% limits of consistency of perfusion parameters were BF -5.3% to 10.0%, BV -13.8% to 10.8%, TTP -15.0% to 12.6% with whole tumor analysis, respectively; BF -14.3% to 16.5%, BV -24.2% to 22.2%, TTP -19.0% to 16.1% with single section analysis, respectively. The inter-observer 95% limits of

  15. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    Science.gov (United States)

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  16. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    Science.gov (United States)

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  17. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  18. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  19. Point spread function modeling and image restoration for cone-beam CT

    International Nuclear Information System (INIS)

    Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe

    2015-01-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)

  20. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  1. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    Science.gov (United States)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  2. An evaluation on CT image acquisition method for medical VR applications

    Science.gov (United States)

    Jang, Seong-wook; Ko, Junho; Yoo, Yon-sik; Kim, Yoonsang

    2017-02-01

    Recent medical virtual reality (VR) applications to minimize re-operations are being studied for improvements in surgical efficiency and reduction of operation error. The CT image acquisition method considering three-dimensional (3D) modeling for medical VR applications is important, because the realistic model is required for the actual human organ. However, the research for medical VR applications has focused on 3D modeling techniques and utilized 3D models. In addition, research on a CT image acquisition method considering 3D modeling has never been reported. The conventional CT image acquisition method involves scanning a limited area of the lesion for the diagnosis of doctors once or twice. However, the medical VR application is required to acquire the CT image considering patients' various postures and a wider area than the lesion. A wider area than the lesion is required because of the necessary process of comparing bilateral sides for dyskinesia diagnosis of the shoulder, pelvis, and leg. Moreover, patients' various postures are required due to the different effects on the musculoskeletal system. Therefore, in this paper, we perform a comparative experiment on the acquired CT images considering image area (unilateral/bilateral) and patients' postures (neutral/abducted). CT images are acquired from 10 patients for the experiments, and the acquired CT images are evaluated based on the length per pixel and the morphological deviation. Finally, by comparing the experiment results, we evaluate the CT image acquisition method for medical VR applications.

  3. Shape and dimensions of cardiac chambers: Importance of CT section thickness and orientation

    International Nuclear Information System (INIS)

    Hoffman, E.A.; Ritman, E.L.

    1985-01-01

    Three-dimensional (3D) computed tomography (CT) scan data were used to quantitate the geometry of all heart chambers. The Dynamic Spatial Reconstructor (DSR) was used to scan dogs with in situ casts of the cardiac chambers. Chamber volumes estimated from DSR images were accurate within 5% of water displacement volume measurements of the actual casts for chambers greater than 11 ml and within 10% of water displacement volumes for chambers less than 11 ml. Anatomic features of the actual cast correlated closely with anatomy visible in computer-generated surface images of the 3D DSR image data. The important effect of reconstructed section thickness and orientation on the fidelity of 3D cardiac geometry is demonstrated

  4. CT and MR imaging of post-aortic left brachiocephalic vein

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Takagi, Ryo; Hayashi, Hiromitsu; Kumazaki, Tatsuo (Nippon Medical School, Tokyo (Japan))

    1993-10-01

    The usefulness of CT and MR imaging (MRI) for the diagnosis of post-aortic left brachiocephalic vein (PALBV) is discussed. The subjects of the present study consisted of five patients with PALBV, two males and three females, aged for months to sixty years. Chest CT and MRI were performed as a follow-up study of other intrathoracic lesions in two cases, and for further examination of congenital heart diseases in two infant cases. The other patient underwent both CT and MRI to evaluate sporadic chest pain. Therefore, all PALBV were found incidentally. PALBV passes below the aortic arch in front of the trachea, draining the superior vena cava behind the ascending aorta. The finding was particularly well documented on consecutive coronal sections on MRI. In patients with intrathoracic malignant or specific inflammatory lesion, differentiation between PALBV and lymphadenopathy is necessary for treatment. From our experience, marked enhancement on CT and no signal intensity on MRI in PALBV could differentiate this anomaly from mediastinal lymphadenopathy. In two infantile cases with congenital cardiovascular anomalies such as tetralogy of Fallot, right aortic arch and pulmonary arterial stenosis, MRI was found to be superior to CT in demonstrating these anomalies. (author).

  5. CT and MR imaging of post-aortic left brachiocephalic vein

    International Nuclear Information System (INIS)

    Amano, Yasuo; Takagi, Ryo; Hayashi, Hiromitsu; Kumazaki, Tatsuo

    1993-01-01

    The usefulness of CT and MR imaging (MRI) for the diagnosis of post-aortic left brachiocephalic vein (PALBV) is discussed. The subjects of the present study consisted of five patients with PALBV, two males and three females, aged for months to sixty years. Chest CT and MRI were performed as a follow-up study of other intrathoracic lesions in two cases, and for further examination of congenital heart diseases in two infant cases. The other patient underwent both CT and MRI to evaluate sporadic chest pain. Therefore, all PALBV were found incidentally. PALBV passes below the aortic arch in front of the trachea, draining the superior vena cava behind the ascending aorta. The finding was particularly well documented on consecutive coronal sections on MRI. In patients with intrathoracic malignant or specific inflammatory lesion, differentiation between PALBV and lymphadenopathy is necessary for treatment. From our experience, marked enhancement on CT and no signal intensity on MRI in PALBV could differentiate this anomaly from mediastinal lymphadenopathy. In two infantile cases with congenital cardiovascular anomalies such as tetralogy of Fallot, right aortic arch and pulmonary arterial stenosis, MRI was found to be superior to CT in demonstrating these anomalies. (author)

  6. Acute eosinophilic pneumonia: Thin-section CT findings in 29 patients

    International Nuclear Information System (INIS)

    Daimon, Tadahisa; Johkoh, Takeshi; Sumikawa, Hiromitsu; Honda, Osamu; Fujimoto, Kiminori; Koga, Takeharu; Arakawa, Hiroaki; Yanagawa, Masahiro; Inoue, Atsuo; Mihara, Naoki; Tomiyama, Noriyuki

    2008-01-01

    Purpose: To determine thin-section computed tomography (CT) characteristics of acute eosinophilic pneumonia (AEP). Materials and methods: Thin-section CT scans of 29 patients (14 males, 15 females; mean age, 26 ± 15 years; age range, 15-72 years) with AEP were included this retrospective study. The clinical diagnosis of AEP was established by Allen's criteria. Each thin-section CT was reviewed by two observers. Results: Bilateral areas with ground-glass attenuation were observed on thin-section CT in all patients. Areas of air-space consolidation were present in 16 (55%) of 29 patients. Poorly defined centrilobular nodules were present in 9 patients (31%). Interlobular septal thickening was present in 26 patients (90%). Thickening of bronchovascular bundles was present in 19 patients (66%). Pleural effusions were present in 23 patients (79%) (bilateral = 22, right side = 1, left side = 0). The predominant overall anatomic distribution was central in only 2 (7%) of 29 patients, peripheral in 9 patients (31%), and random in 18 patients (62%). The overall zonal predominance was upper in 4 patients (14%), lower in 8 patients (28%), and random in 17 patients (58%). Conclusion: CT findings in AEP patients consisted mainly of bilateral areas of ground-glass attenuation, interlobular septal thickening, thickening of bronchovascular bundles, and the presence of a pleural effusion without cardiomegaly. The most common overall anatomic distribution and zonal predominance of the abnormal CT findings were random

  7. Acute eosinophilic pneumonia: Thin-section CT findings in 29 patients

    Energy Technology Data Exchange (ETDEWEB)

    Daimon, Tadahisa [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Medicine, Division of Pulmonary Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498 (Japan)], E-mail: t-daimon@radiol.med.osaka-u.ac.jp; Johkoh, Takeshi [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: johkoh@sahs.med.osaka-u.ac.jp; Sumikawa, Hiromitsu [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: h-sumikawa@radiol.med.osaka-u.ac.jp; Honda, Osamu [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: ohonda@radiol.med.osaka-u.ac.jp; Fujimoto, Kiminori [Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan)], E-mail: kimichan@med.kurume-u.ac.jp; Koga, Takeharu [Department of Medicine, Division of Respirology and Neurology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan)], E-mail: kogat@med.kurume-u.ac.jp; Arakawa, Hiroaki [Department of Radiology, Dokkyo University School of Medicine, 880 Kita-Kobayashi, Mibu, Tochigi 321-0293 (Japan)], E-mail: arakawa@dokkyomed.ac.jp; Yanagawa, Masahiro [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: m-yanagawa@radiol.med.osaka-u.ac.jp; Inoue, Atsuo [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: ainoue@radiol.med.osaka-u.ac.jp; Mihara, Naoki [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: nmihara@radiol.med.osaka-u.ac.jp; Tomiyama, Noriyuki [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: tomiyama@radiol.med.osaka-u.ac.jp (and others)

    2008-03-15

    Purpose: To determine thin-section computed tomography (CT) characteristics of acute eosinophilic pneumonia (AEP). Materials and methods: Thin-section CT scans of 29 patients (14 males, 15 females; mean age, 26 {+-} 15 years; age range, 15-72 years) with AEP were included this retrospective study. The clinical diagnosis of AEP was established by Allen's criteria. Each thin-section CT was reviewed by two observers. Results: Bilateral areas with ground-glass attenuation were observed on thin-section CT in all patients. Areas of air-space consolidation were present in 16 (55%) of 29 patients. Poorly defined centrilobular nodules were present in 9 patients (31%). Interlobular septal thickening was present in 26 patients (90%). Thickening of bronchovascular bundles was present in 19 patients (66%). Pleural effusions were present in 23 patients (79%) (bilateral = 22, right side = 1, left side = 0). The predominant overall anatomic distribution was central in only 2 (7%) of 29 patients, peripheral in 9 patients (31%), and random in 18 patients (62%). The overall zonal predominance was upper in 4 patients (14%), lower in 8 patients (28%), and random in 17 patients (58%). Conclusion: CT findings in AEP patients consisted mainly of bilateral areas of ground-glass attenuation, interlobular septal thickening, thickening of bronchovascular bundles, and the presence of a pleural effusion without cardiomegaly. The most common overall anatomic distribution and zonal predominance of the abnormal CT findings were random.

  8. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  9. Craniopharyngioma identification by CT and MR imaging at 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J.K. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States); Eldevik, O.P. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States); Skalpe, I.O. [Dept. of Radiology, Rikshospitalet, Oslo Univ. (Norway)]|[Dept. of Radiology, Univ. of Michigan Hospitals, Ann Arbor, MI (United States)

    1995-03-01

    To compare the detectability of craniopharyngiomas by CT and MR imaging, preoperative CT and MR studies obtained within 16 days of each other were evaluated retrospectively in 9 patients. MR imaging demonstrated cystic and solid tumor components in all 9 tumors, and enhancement in the 7 tumors that were studied after contrast medium injection. MR imaging demonstrated a signal void consistent with calcification in 4 patients. Combining unenhanced and contrast medium-enhanced studies, CT also identified all the tumors. CT demonstrated cysts in 7 lesions, calcification in 7 and enhancement in 6 of the 7 lesions that received i.v. contrast medium. Calcification was better seen by CT than MR imaging, while MR imaging identified cystic tumor components not seen on CT. The contrast medium enhancement pattern was the same with the 2 modalities. MR imaging of the sellar region, including at least one contrast medium-enhanced sequence, should be sufficient in most instances to establish a preoperative diagnosis of craniopharyngioma. (orig.).

  10. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning

    DEFF Research Database (Denmark)

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus

    2010-01-01

    -invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy......, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security...

  11. PET CT imaging: the Philippine experience

    International Nuclear Information System (INIS)

    Santiago, Jonas Y.

    2011-01-01

    Currently, the most discussed fusion imaging is PET CT. Fusion technology has tremendous potential in diagnostic imaging to detect numerous conditions such as tumors, Alzheimer's disease, dementia and neural disorders. The fusion of PET with CT helps in the localization of molecular abnormalities, thereby increasing diagnostic accuracy and differentiating benign or artefact lesions from malignant diseases. It uses a radiotracer called fluro deoxyglucose that gives a clear distinction between pathological and physiological uptake. Interest in this technology is increasing and additional clinical validation are likely to induce more health care providers to invest in combined scanners. It is hope that in time, a better appreciation of its advantages over conventional and traditional imaging modalities will be realized. The first PET CT facility in the country was established at the St. Luke's Medical Center in Quezon City in 2008 and has since then provided a state-of-the art imaging modality to its patients here and those from other countries. The paper will present the experiences so far gained from its operation, including the measures and steps currently taken by the facility to ensure optimum workers and patient safety. Plans and programs to further enhance the awareness of the Filipino public on this advanced imaging modality for an improved health care delivery system may also be discussed briefly. (author)

  12. Image analysis of the inner ear with CT and MR imaging

    International Nuclear Information System (INIS)

    Kumakawa, Kohzoh; Takeda, Hidehiko; Mutoh, Naoko; Miyakawa, Kohichi; Yukawa, Kumiko; Funasaka, Sohtaro.

    1992-01-01

    Recent progress in magnetic resonance imaging (MRI) has made it possible to obtain detailed images of the inner ear by delineating the lymphatic fluid within the labyrinth. We analyzed CT scans and MR imaging in 70 ears manifesting profound deafness owing to inner ear lesions and compared their detective ability for inner ear lesions. The following results were obtained. CT scan examination showed slight to extensive ossification of the labyrinth in six ears (9%), whereas MRI examination revealed low to absent signal intensity of the inner ear in nine ears (13%). Therefore, it was concluded that MRI is more sensitive in detecting abnormalities of the inner ear than CT scan. MRI provided useful information as to whether the cochlear turn is filled with lymphatic fluid or obstructed. This point was one of the greatest advantages of MRI over CT scan. Abnormal findings in either or both the CT scan and the MRI were detected in suppurative labyrinthitis occurring secondary to chronic otitis media, bacterial meningitis and in inner ear trauma. However, such abnormal findings were not detected in patients with idiopathic progressive sensorineural hearing loss, ototoxity or sudden deafness. These findings should be taken into consideration in pre-operative assessment of cochlear implant candidates. (author)

  13. Variation in the quality of CT images of the upper abdomen when CT automatic exposure control is employed

    International Nuclear Information System (INIS)

    Aizawa, Isao; Muramatsu, Yoshihisa; Nomura, Keiichi; Shimizu, Fuminori

    2010-01-01

    The aim of this study was to analyze the reason for variation of image quality in the upper abdomen CT with the use of CT-automatic exposure control (AEC). The CT investigated was 3D modulation in the 16 multi detector row CT (MDCT) and lung cancer screening CT (LSCT) phantom was used to simulate the patient. When there was a phase difference, an image noise increase of around 15% at the maximum was accepted. It is concluded that the major reason for variation in image quality is respiratory motion and the importance of respiration control must be recognized. (author)

  14. How safe is teleradiological telediagnosis for CT imaging?

    International Nuclear Information System (INIS)

    Ricke, J.; Wolf, M.; Hosten, N.; Zielinski, C.; Liebig, T.; Lopez-Haenninen, E.; Lemke, A.J.; Siekmann, R.; Stroszczynski, C.; Schauer, W.; Amthauer, H.; Kleinholz, L.; Felix, R.

    1997-01-01

    Purpose: To define the value of teleradiographic studies, a comparison was carried out between digitised copies of CT examinations of the skull with the original images. Differences in image quality obtained from a digital scanner and a camera were quantified. Material and method: 56 CT examinations of the skull, 28 of which had discrete abnormalities, were chosen for ROC analysis. The original films were digitised with a Vidar VXR-12 scanner and Panasonic WV-160 and WV-PB 500 cameras. The images were evaluated by five radiologists after image transfer with Video Conference software to a personal computer. Results: For the analysis of the films the area under the ROC curve was 0.91±0.04, for the digital scanner it was 0.85±0.04, for camera WV-BP 500 0.89±0.06 and for camera WE-160 0.87±0.09. Comprison with the film findings showed a minimal p-value of 0.17 which indicated that there was no significant reduction in diagnostic value following digitisation. Conclusion: The probable reason for the slight deterioration using the digital scanner was the reduction to 75 dpi compared with 134 dpi on the CT films. The cameras produce image noise comparable to CT with low window settings and reduced local resolution. We expect similar results for CT with soft tissue windows or for MRT of the skull. Conventional radiographs containing high local resolution, wide grey scale and low image noise would presumably make higher demands on methods of digitisation. (orig.) [de

  15. CT image construction of a totally deflated lung using deformable model extrapolation

    International Nuclear Information System (INIS)

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim

    2011-01-01

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  16. Castleman disease of the neck: CT and MR imaging findings

    International Nuclear Information System (INIS)

    Jiang, Xin-hua; Song, Hao-ming; Liu, Qing-yu; Cao, Yun; Li, Guo-hong; Zhang, Wei-dong

    2014-01-01

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases

  17. Castleman disease of the neck: CT and MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-hua [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Song, Hao-ming [Department of Cardiology, Shanghai Tongji Hospital, Shanghai 200065 (China); Liu, Qing-yu [Department of Radiology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120 (China); Cao, Yun [Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Li, Guo-hong [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China); Zhang, Wei-dong, E-mail: dongw.z@163.com [Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060 (China)

    2014-11-15

    Objective: To characterize the computed tomography (CT) and magnetic resonance imaging (MRI) findings of Castleman disease of the neck. Methods: The imaging findings of 21 patients with Castleman disease of the neck were reviewed retrospectively. Of the 21 patients, 16 underwent unenhanced and contrast-enhanced CT scans; 5 underwent unenhanced and contrast-enhanced MRI scans. Results: The unenhanced CT images showed isolated or multiple well-defined homogenous mild hypodensity lesions in fifteen cases, and a heterogeneous nodule with central areas of mild hypodensity in one case. Calcification was not observed in any of the patients. In five patients, MR T1-weighted images revealed well-defined, homogeneous isointense or mild hyperintense lesions to the muscle; T2-weighted images showed these as intermediate hyperintense. Sixteen cases showed intermediate to marked homogeneous enhancement on contrast-enhanced CT or MR T1-weighted images. Of the other five cases that underwent double-phase CT scans, four showed mild or intermediate heterogeneous enhancement at the arterial phase, and homogeneous intermediate or marked enhancement at the venous phase; the remaining case showed mild and intermediate ring-enhancement with a central non-enhanced area at the arterial and venous phases, respectively. Conclusion: Castleman disease of the neck can be characterized as solitary or multiple well-defined, mild hypodensity or homogeneous intense lesions on plain CT/MR scans, and demonstrates intermediate and marked enhancement on contrast-enhanced CT/MR scans. On double-phase CT scans, Castleman disease often demonstrates mild enhancement at the arterial phase, and gradually uniform enhancement at venous phase. Double-phase enhanced CT or MRI may help to differentiate Castleman disease from other diseases.

  18. MR imaging and CT in osteoarthritis of the lumbar facet joints

    International Nuclear Information System (INIS)

    Weishaupt, D.; Zanetti, M.; Hodler, J.; Boos, N.

    1999-01-01

    Objective. To test the agreement between MR imaging and CT in the assessment of osteoarthritis of the lumbar facet joints, and thus to provide data about the need for an additional CT scan in the presence of an MR examination. Design and patients. Using a four-point scale, two musculoskeletal radiologists independently graded the severity of osteoarthritis of 308 lumbar facet joints on axial T2-weighted and on sagittal T1- and T2-weighted turbo-spin-echo images and separately on the corresponding axial CT scans. Kappa statistics and percentage agreement were calculated. Results. The weighted kappa coefficients for MR imaging versus CT were 0.61 and 0.49 for readers 1 and 2, respectively. The weighted kappa coefficients for interobserver agreement were 0.41 for MR imaging and 0.60 for CT, respectively. There was agreement within one grade between MR and CT images in 95% of cases for reader 1, and in 97% of cases for reader 2. Conclusion. With regard to osteoarthritis of the lumbar facet joints there is moderate to good agreement between MR imaging and CT. When differences of one grade are disregarded agreement is even excellent. Therefore, in the presence of an MR examination CT is not required for the assessment of facet joint degeneration. (orig.)

  19. Measurement of skeletal muscle area: Comparison of CT and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinelnikov, Andrey, E-mail: sinelnikovas@upmc.edu [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Qu, Chuanxing [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Fetzer, David T. [Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX (United States); Pelletier, Jean-Sébastien [Department of Surgery, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Dunn, Michael A. [Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Tsung, Allan [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Furlan, Alessandro [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2016-10-15

    Objective: To investigate the intra- and inter-observer agreement and correlation between CT and MR measurements of skeletal muscle area (SMA) in the abdomen. Methods: CT and MR images from twelve patients were analyzed by two blinded observers using segmentation software (MITK-3M3, Mint Medical and Slice-O-Matic, Tomovision) to quantify SMA. MR images included T1w “in-phase”, T1w “out-of-phase”, and T2w sequences. Inter- and intra-observer agreement was assessed using the intraclass correlation coefficient (ICC). Pearson correlation coefficient (r) was used to correlate measurements obtained on MR with CT. CT and MR measurements were compared with Bland-Altman plots. Results: Intra- and inter-observer agreement for SMA was high for CT and MR. For MR, the measurements on T2w images showed the highest inter-observer agreement (ICC = 0.96). CT SMA correlated closely with MR, with T2w images showing the highest correlation (r = 0.98; P < 0.01). Bland-Altman plots showed a 1.7%–3.9% bias between CT and MR measurements, lowest for T2w images. Conclusions: MR SMA measurements are reproducible and correlate closely with CT. The T2w sequence is recommended to quantify SMA on MR images.

  20. Effects of target shape and reflection on laser radar cross sections.

    Science.gov (United States)

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  1. Advanced virtual monoenergetic images: improving the contrast of dual-energy CT pulmonary angiography

    International Nuclear Information System (INIS)

    Meier, A.; Wurnig, M.; Desbiolles, L.; Leschka, S.; Frauenfelder, T.; Alkadhi, H.

    2015-01-01

    Aim: To investigate the value of advanced virtual monoenergetic image reconstruction (mono-plus) from dual-energy computed tomography (CT) for improving the contrast of CT pulmonary angiography (CTPA). Materials and methods: Forty consecutive patients (25 women, mean 62.5 years, range 28–87 years) underwent 192-section dual-source CTPA with dual-energy CT (90/150 SnkVp) after the administration of 60 ml contrast media (300 mg iodine/ml). Conventional virtual monochromatic images at 60 keV and 17 mono-plus image datasets from 40–190 keV (in 10 keV steps) were reconstructed. Subjective image quality (artefacts, subjective noise) was rated. Attenuation was measured in the pulmonary trunk and in the right lower lobe pulmonary artery; noise was measured in the periscapular musculature. The signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were calculated for each patient and dataset. Comparisons between monochromatic images and mono-plus images were performed by repeated measures analysis of variance (ANOVA) with post-hoc Bonferroni correction. Results: Interreader agreement was good to excellent for subjective image quality (ICC: 0.616–0.889). As compared to conventional 60 keV images, artefacts occurred less (p=0.001) and subjective noise was rated lower (p<0.001) in mono-plus 40 keV images. Noise was lower (p<0.001), and the SNR and CNR in the pulmonary trunk and right lower lobe pulmonary artery were higher (both, p<0.001) in mono-plus 40 keV images compared to conventional monoenergetic 60 keV images. Transient interruption of contrast (TIC) was found in 14/40 (35%) of patients, with subjective contrast being similar 8/40 (20%) or higher 32/40 (80%) in mono-plus 40 keV as compared to conventional monoenergetic 60 keV images. Conclusions: Compared to conventional virtual monoenergetic imaging, mono-plus images at 40 keV improve the contrast of dual-energy CTPA. - Highlights: • Advanced monoenergetic image reconstruction from dual-energy CT

  2. Incremental Role of Mammography in the Evaluation of Gynecomastia in Men Who Have Undergone Chest CT.

    Science.gov (United States)

    Sonnenblick, Emily B; Salvatore, Mary; Szabo, Janet; Lee, Karen A; Margolies, Laurie R

    2016-08-01

    The purpose of this study was to determine whether additional breast imaging is clinically valuable in the evaluation of patients with gynecomastia incidentally observed on CT of the chest. In a retrospective analysis, 62 men were identified who had a mammographic diagnosis of gynecomastia and had also undergone CT within 8 months (median, 2 months). We compared the imaging findings of both modalities and correlated them with the clinical outcome. Gynecomastia was statistically significantly larger on mammograms than on CT images; however, there was a high level of concordance in morphologic features and distribution of gynecomastia between mammography and CT. In only one case was gynecomastia evident on mammographic but not CT images, owing to cachexia. Two of the 62 men had ductal carcinoma, which was obscured by gynecomastia. Both of these patients had symptoms suggesting malignancy. The appearance of gynecomastia on CT scans and mammograms was highly correlated. Mammography performed within 8 months of CT is unlikely to reveal cancer unless there is a suspicious clinical finding or a breast mass eccentric to the nipple. Men with clinical symptoms of gynecomastia do not need additional imaging with mammography to confirm the diagnosis if they have undergone recent cross-sectional imaging.

  3. Comparison of measurement results between cervical pedicle specimens and CT images

    International Nuclear Information System (INIS)

    Zhang Guangjian; Li Hua; Liu Haiyan; Gao Zhenping

    2011-01-01

    Objective: To compare the difference between the measurement results of the cervical pedicle specimens and CT image, and provide the basis for clinical cervical screw internal fixation operation. Methods: Twenty-seven Chinese adult cadaver cervical specimens including C3 to C7 vertebrae were measured by a digital calipers and CT image, containing pedicle height (PH, PH'), pedicle width(PW, PW'), total pedicle length (TL, TL') and two pedicle lengths(PL1, PL2; PL1', PL2'). The results of specimens and CT image were compared. Results: Different cervical vertebra in the same side of specimens or CT images, PW (PW'): C3, C4< C5, C6 (P<0.05), C5, C6< C7 (P<0.01); PH (PH'): there were no significant differences; TL, PL1, PL2 (TL', PL1', PL2'): there were no marked differences. In the same cervical vertebra of the specimens or CT images, PW (PW')< PH (PH') (P<0.01), PL1 (PL1') < PL2 (PL2') (P<0.01). Conclusion: The results of measurement by CT images are not markedly different from that of specimens. CT image measurement is available before cervical screw internal fixation operation. (authors)

  4. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  5. Development of the three dimensional image display program for limited cone beam X-ray CT for dental use (Ortho-CT)

    International Nuclear Information System (INIS)

    Arai, Yoshinori; Hashimoto, Koji; Shinoda, Koji

    2000-01-01

    We have already developed and reported a limited cone beam X-ray CT system for dental use (Ortho-CT). This system has been used clinically since 1997. In this study, we report a 3D surface display program for Ortho-CT which has been newly-developed by the authors. The 3D surface display software has been developed using visual C ++ (Microsoft Co. WA. USA) and a personal computer (Pentium 450MHz Intel Co. CA USA, Windows NT 4.0 Microsoft WA. USA). In this software, the 3D surface images are recorded as AVI files and can be displayed on the personal computer. The 3D images can be rotated and a stepwise change of the threshold voxel value for binary image formation can be automatically used. We have applied these 3D surface images to clinical studies from January 1999 to May 1999 at the Radiology section in our Dental hospital. The images can be displayed very easily in personal computers using AVI files. Thirty-five cases have been reconstructed using 3D surface images in this way. The 3D surface image is useful in the diagnosis of fractures of the mandibular head and impacted teeth. Only teeth are observed when a relative threshold voxel value is set at a high level such as about 0.37. When the threshold is changed to a lower value (about 0.3), we can observe both teeth and the surface of the bone. We have developed a 3D surface display program for personal computers. The images are useful for the diagnosis of the pathosis in the maxillofacial region. (author)

  6. Comparative evaluation of the porta hepatis/hepatoduodenal ligament with CT and MR imaging

    International Nuclear Information System (INIS)

    Silverman, P.M.; Feuerstein, I.M.; Zeman, R.K.; Jaffe, M.H.; Garra, B.S.

    1988-01-01

    CT and MR imaging were compared in a retrospective evaluation of 16 patients with abnormalities, predominantly neoplasms, of the porta hepatis/hepatoduodenal ligament. Masses on CT were of decreased density compared with that of liver and were seen in contrast to surrounding periportal fat. On MR images, T1-weighted images demonstrated findings similar to those of CT. T2-weighted images clearly depicted intrahepatic lesions but less distinctly depicted lesions surrounded by fat. Short inversion recovery (STIR) images better demonstrated tumor relative to fat. CT was better than all MR imaging sequences in one of 16 cases, whereas at least one MR imaging sequence was better than CT in six of 16. In nine cases, CT was equivalent to the best MR imaging sequence. In five of six cases where MR imaging was better than CT, STIR sequences were most favorable. In conclusion, MR imaging provided a valuable technique for assessing abnormalities of the porta hepatis/hepatoduodenal ligament

  7. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1976-09-01

    A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed

  8. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  9. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  10. The use of thin-section high-resolution CT in pediatric pulmonary disease

    International Nuclear Information System (INIS)

    Hay, T.C.; Horgan, J.G.; Rumack, C.M.

    1989-01-01

    High-resolution thin-section CT of the chest was used successfully to characterize the extent of pulmonary disease. This paper reports on a study in which ten children with chronic lung disorders (including cystic fibrosis, reactive airway disease, and idiopathic disease) were evaluated to test the accuracy of the posteroanterior and lateral chest CT, with both thick (1 cm) and thin (1-3 mm) sections. Unsuspected bronchiectasis was established n two patients with reactive airway disease, and the extent of bronchiectasis in other patients was best defined on thin-section CT. Technique was crucial for an accurate study, and magnification views of each lung were useful. Thin-section CT of the chest was helpful in defining and localizing the extent of these pulmonary disorders

  11. A study on the precise examination needed to decide an optimal planning target volume for carbon ion radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kato, Hirotoshi; Tsujii, Hirohiko; Mizoe, Junetsu; Kandatsu, Susumu; Ezawa, Hidefumi; Kishimoto, Riwa; Minohara, Shinichi; Ohto, Masao

    2005-01-01

    The purpose of this study was to make two pictures of the randomly-selected cross section of the hepatocellular carcinoma (HCC) lesion using three dimensional (3D) image data obtained from the three dimensional computed tomography (CT) and the three dimensional ultrasonography (US), and to prove their identity as an image of the same cross section. Using the measurement system of three inclined angles of a cross section from the three planes, a horizontal plane and two vertical planes in the three dimensional space, we obtained two images of the same cross section of the HCC lesion originating from 3D-US and 3D-CT image data (US-CT 3D-dual image). To prove the identity of the two images of the US-CT 3D-dual image, 3D-US and 3D-CT images, we compared the two images to the original cross section of the resected HCC specimen. We could visually prove the identity of the two images consisting in the US-CT 3D-dual image originating from the 3D-US image data and 3D-CT image data. The US-CT 3D-dual image seems to be effective to make an exact treatment plan of carbon ion radiotherapy for HCC. (author)

  12. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

    International Nuclear Information System (INIS)

    Gelfand, Michael J.

    2009-01-01

    Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18 F-FDG and 123 I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children. (orig.)

  13. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  14. Image quality assessment for CT used on small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co [Universidad Nacional de Colombia, Departamento de Física, Grupo de Física Médica (Colombia)

    2016-07-07

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  15. Multi-section CT angiography compared with digital subtraction angiography in diagnosing major arterial hemorrhage in inflammatory pancreatic disease

    International Nuclear Information System (INIS)

    Hyare, Harpreet; Desigan, Sharmini; Nicholl, Helen; Guiney, Michael J.; Brookes, Jocelyn A.; Lees, William R.

    2006-01-01

    Purpose: Major arterial hemorrhage is an uncommon but serious complication of pancreatitis with high morbidity and mortality. Digital subtraction angiography (DSA) has long been the gold standard for the detection of a visceral artery pseudoaneurysm or for the site of active bleeding in patients with pancreatitis. Multi-section CT angiography is a minimally invasive technique which can provide high-resolution and high-contrast images of the arterial lumen and wall, with a much lower risk of complication and morbidity compared to DSA. The aim of this study was to determine the accuracy of multi-section CT angiography for the diagnosis of arterial complications of inflammatory pancreatitic disease. Materials and methods: A retrospective analysis of all patients undergoing visceral angiography for major bleeding as a complication of pancreatitis between 1998 and 2004 was performed. Twenty-nine studies in 25 patients (20 males, 5 females) with a mean age of 50.9 years (range 11-67 years) were identified where multi-section CT angiography was performed in the 24 h preceding the digital subtraction angiogram. Results: Digital subtraction angiography detected a pseudoaneurysm or contrast extravasation in 19 studies and no bleeding was demonstrated in 9 studies. CT angiography correctly identified the site and type of bleeding in 18 of the 19 positive studies. CT angiography detected extravasation of contrast in one study that was not demonstrated on digital subtraction angiography. The sensitivity and specificity for multi-section CT angiography for the detection of major arterial bleeding on a background of pancreatitis were 0.947 and 0.900, respectively. Conclusion: Multi-section CT angiography is a sensitive and accurate technique for the detection of major arterial hemorrhage in inflammatory pancreatic disease and should be considered as the first investigation in the management of these patients

  16. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  17. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  18. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Rajiah, Prabhakar; Ahn, Richard; Rassouli, Negin; Xi, Yin; Soesbe, Todd C; Lewis, Matthew A; Lenkinski, Robert E; Leyendecker, John R; Abbara, Suhny

    2017-03-01

    To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. In this HIPAA compliant, IRB approved prospective multi-institutional study, 46 patients underwent pre- and post-contrast imaging on a prototype dual-layer spectral detector CT between October 2013 and November 2015, yielding 84 unenhanced and VNC pairs (25 arterial, 39 portal venous/nephrographic, 20 urographic). Mean attenuation was measured by one of three readers in the liver, spleen, kidneys, psoas muscle, abdominal aorta, and subcutaneous fat. Equivalence testing was used to determine if the mean difference between unenhanced and VNC attenuation was less than 5, 10, or 15 HU. VNC image quality was assessed on a 5 point scale. Mean difference between unenhanced and VNC attenuation was VNC attenuation were equivalent in all tissues except fat using a threshold of VNC overestimated the HU relative to unenhanced images. VNC image quality was rated as excellent or good in 84% of arterial phase and 85% of nephrographic phase cases, but only 40% of urographic phase. VNC images derived from novel dual layer spectral detector CT demonstrate attenuation values similar to unenhanced images in all tissues evaluated except for subcutaneous fat. Further study is needed to determine if attenuation thresholds currently used clinically for common pathology should be adjusted, particularly for lesions containing fat.

  19. Systematic review: Use of ultrasonography, computed tomography and magnetic resonance imaging for the diagnosis, assessment of activity and abdominal complications of Crohn's disease

    OpenAIRE

    Panes , Julian; Bouzas , Rosa; García-Sánchez , Valle; Chaparro , María; Pérez-Gisbert , Javier; Martínez De Guereñu , Blanca; Mendoza , Juan Luis; Paredes , José María; Quiroga , Sergi; Ripollés , Tomás; Rimola , Jordi

    2011-01-01

    Abstract Backgroud: Cross-sectional imaging techniques, including ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI), are increasingly used for evaluation of Crohn?s disease (CD). Aim: To perform an assessment of the diagnostic accuracy of cross-sectional imaging techniques for diagnosis of CD, evaluation of disease extension and activity, and diagnosis of complications, and to provide recommendations for their optimal use. Methods: Relevant ...

  20. Reconstruction of point cross-section from ENDF data file for Monte Carlo applications

    International Nuclear Information System (INIS)

    Kumawat, H.; Saxena, A.; Carminati, F.; )

    2016-12-01

    Monte Carlo neutron transport codes are one of the best tools to simulate complex systems like fission and fusion reactors, Accelerator Driven Sub-critical systems, radio-activity management of spent fuel and waste, optimization and characterization of neutron detectors, optimization of Boron Neutron Capture Therapy, imaging etc. The neutron cross-section and secondary particle emission properties are the main input parameters of such codes. The fission, capture and elastic scattering cross-sections have complex resonating structures. Evaluated Nuclear Data File (ENDF) contains these cross-sections and secondary parameters. We report the development of reconstruction procedure to generate point cross-sections and probabilities from ENDF data file. The cross-sections are compared with the values obtained from PREPRO and in some cases NJOY codes. The results are in good agreement. (author)

  1. Treatment response assessment of radiofrequency ablation for hepatocellular carcinoma: Usefulness of virtual CT sonography with magnetic navigation

    International Nuclear Information System (INIS)

    Minami, Yasunori; Kitai, Satoshi; Kudo, Masatoshi

    2012-01-01

    Purpose: Virtual CT sonography using magnetic navigation provides cross sectional images of CT volume data corresponding to the angle of the transducer in the magnetic field in real-time. The purpose of this study was to clarify the value of this virtual CT sonography for treatment response of radiofrequency ablation for hepatocellular carcinoma. Patients and methods: Sixty-one patients with 88 HCCs measuring 0.5–1.3 cm (mean ± SD, 1.0 ± 0.3 cm) were treated by radiofrequency ablation. For early treatment response, dynamic CT was performed 1–5 days (median, 2 days). We compared early treatment response between axial CT images and multi-angle CT images using virtual CT sonography. Results: Residual tumor stains on axial CT images and multi-angle CT images were detected in 11.4% (10/88) and 13.6% (12/88) after the first session of RFA, respectively (P = 0.65). Two patients were diagnosed as showing hyperemia enhancement after the initial radiofrequency ablation on axial CT images and showed local tumor progression shortly because of unnoticed residual tumors. Only virtual CT sonography with magnetic navigation retrospectively showed the residual tumor as circular enhancement. In safety margin analysis, 10 patients were excluded because of residual tumors. The safety margin more than 5 mm by virtual CT sonographic images and transverse CT images were determined in 71.8% (56/78) and 82.1% (64/78), respectively (P = 0.13). The safety margin should be overestimated on axial CT images in 8 nodules. Conclusion: Virtual CT sonography with magnetic navigation was useful in evaluating the treatment response of radiofrequency ablation therapy for hepatocellular carcinoma.

  2. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  3. Imaging features of intracerebral hemorrhage with cerebral amyloid angiopathy: Systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Neshika Samarasekera

    Full Text Available We sought to summarize Computed Tomography (CT/Magnetic Resonance Imaging (MRI features of intracerebral hemorrhage (ICH associated with cerebral amyloid angiopathy (CAA in published observational radio-pathological studies.In November 2016, two authors searched OVID Medline (1946-, Embase (1974- and relevant bibliographies for studies of imaging features of lobar or cerebellar ICH with pathologically proven CAA ("CAA-associated ICH". Two authors assessed studies' diagnostic test accuracy methodology and independently extracted data.We identified 22 studies (21 cases series and one cross-sectional study with controls of CT features in 297 adults, two cross-sectional studies of MRI features in 81 adults and one study which reported both CT and MRI features in 22 adults. Methods of CAA assessment varied, and rating of imaging features was not masked to pathology. The most frequently reported CT features of CAA-associated ICH in 21 case series were: subarachnoid extension (pooled proportion 82%, 95% CI 69-93%, I2 = 51%, 12 studies and an irregular ICH border (64%, 95% CI 32-91%, I2 = 85%, five studies. CAA-associated ICH was more likely to be multiple on CT than non-CAA ICH in one cross-sectional study (CAA-associated ICH 7/41 vs. non-CAA ICH 0/42; χ2 = 7.8, p = 0.005. Superficial siderosis on MRI was present in 52% of CAA-associated ICH (95% CI 39-65%, I2 = 35%, 3 studies.Subarachnoid extension and an irregular ICH border are common imaging features of CAA-associated ICH, but methodologically rigorous diagnostic test accuracy studies are required to determine the sensitivity and specificity of these features.

  4. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    International Nuclear Information System (INIS)

    Taguchi, K.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  5. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  6. Pulmonary ventilation and perfusion imaging with dual-energy CT

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Sven F. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany); Klinikum Grosshadern, Institut fuer Klinische Radiologie, LMU Muenchen, Muenchen (Germany); Hoegl, Sandra; Fisahn, Juergen; Irlbeck, Michael [Klinikum Grosshadern, Department of Anesthesiology, Ludwig Maximilians University, Muenchen (Germany); Nikolaou, Konstantin; Maxien, Daniel; Reiser, Maximilian F.; Becker, Christoph R.; Johnson, Thorsten R.C. [Klinikum Grosshadern, Department of Clinical Radiology, Ludwig Maximilians University, Muenchen (Germany)

    2010-12-15

    To evaluate the feasibility of dual-energy CT (DECT) ventilation imaging in combination with DE perfusion mapping for a comprehensive assessment of ventilation, perfusion, morphology and structure of the pulmonary parenchyma. Two dual-energy CT acquisitions for xenon-enhanced ventilation and iodine-enhanced perfusion mapping were performed in patients under artificial respiration. Parenchymal xenon and iodine distribution were mapped and correlated with structural or vascular abnormalities. In all datasets, image quality was sufficient for a comprehensive image reading of the pulmonary CTA images, lung window images and pulmonary functional parameter maps and led to expedient results in each patient. With dual-source CT systems, DECT of the lung with iodine or xenon administration is technically feasible and makes it possible to depict the regional iodine or xenon distribution representing the local perfusion and ventilation. (orig.)

  7. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  8. CT and MR imaging findings of sphenoidal masses

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Shoki; Higano, Shuichi (Tohoku Univ., Sendai (Japan). School of Medicine); Ishii, Kiyoshi (and others)

    1994-07-01

    CT and MR imaging findings of 57 sphenoidal masses were retrospectively reviewed to assess the possibility of differential diagnosis between them. Various kinds of masses such as pituitary adenoma, epipharyngeal cancer, mucocele, chordoma, chondroma, chondrosarcoma, distant metastasis, multiple myeloma, fibrous dysplasia, craniopharyngioma, hemangiopericytoma, giant cell tumor, primary sphenoidal cancer, malignant melanoma, leukemia, histiocytosis X, and giant cell tumor were included in this series. CT scanning was performed in all cases using a spin-echo pulse sequence. The relative density of the masses, bony changes and calcification were evaluated on CT, and on MR images, signal intensity of the masses relative to the normal gray matter, contrast enhancement and extension/contour were evaluated. Although no single feature appeared to be specific to the masses, detection of calcification on CT, identification of the normal pituitary gland as deformed or displaced on T1-weighted images, signal intensity on T2-weighted images, and extension of the masses seemed to be useful and should be examined in terms of their ability to assist in differential diagnosis. Finally, accommodative classification of sphenoidal masses primarily based on presumed origin or mode of extension was attempted. (author).

  9. Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.

    Science.gov (United States)

    Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M

    2015-10-01

    Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.

  10. Relative location prediction in CT scan images using convolutional neural networks.

    Science.gov (United States)

    Guo, Jiajia; Du, Hongwei; Zhu, Jianyue; Yan, Ting; Qiu, Bensheng

    2018-07-01

    Relative location prediction in computed tomography (CT) scan images is a challenging problem. Many traditional machine learning methods have been applied in attempts to alleviate this problem. However, the accuracy and speed of these methods cannot meet the requirement of medical scenario. In this paper, we propose a regression model based on one-dimensional convolutional neural networks (CNN) to determine the relative location of a CT scan image both quickly and precisely. In contrast to other common CNN models that use a two-dimensional image as an input, the input of this CNN model is a feature vector extracted by a shape context algorithm with spatial correlation. Normalization via z-score is first applied as a pre-processing step. Then, in order to prevent overfitting and improve model's performance, 20% of the elements of the feature vectors are randomly set to zero. This CNN model consists primarily of three one-dimensional convolutional layers, three dropout layers and two fully-connected layers with appropriate loss functions. A public dataset is employed to validate the performance of the proposed model using a 5-fold cross validation. Experimental results demonstrate an excellent performance of the proposed model when compared with contemporary techniques, achieving a median absolute error of 1.04 cm and mean absolute error of 1.69 cm. The time taken for each relative location prediction is approximately 2 ms. Results indicate that the proposed CNN method can contribute to a quick and accurate relative location prediction in CT scan images, which can improve efficiency of the medical picture archiving and communication system in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Thin-section chest CT findings in systemic lupus erythematosus with antiphospholipid syndrome: A comparison with systemic lupus erythematosus without antiphospholipid syndrome

    International Nuclear Information System (INIS)

    Oki, Hodaka; Aoki, Takatoshi; Saito, Kazuyoshi; Yamashita, Yoshiko; Hanamiya, Mai; Hayashida, Yoshiko; Tanaka, Yoshiya; Korogi, Yukunori

    2012-01-01

    Purpose: To assess thin-section chest CT findings in systemic lupus erythematosus (SLE) with antiphospholipid syndrome (APS), in comparison with SLE without APS. Materials and methods: We retrospectively reviewed the medical records and thin-section CT findings of 17 consecutive patients with an established diagnosis of SLE with APS, comparing with 37 consecutive SLE patients without APS, between 2004 and 2008, and patients who had other autoimmune disease, such as Sjögren syndrome, were excluded. No significant differences were seen between the two groups in age, gender, smoking habits, or history of steroid pulse and biological therapy. CT images of 2 mm thickness obtained with a 16- or 64-detector row CT were retrospectively evaluated by two radiologists in consensus on ultra high-resolution gray-scale monitors. Results: The frequency of thin-section CT abnormalities was higher in SLE with APS group (82%) than in SLE without APS group (43%). Ground-glass opacity (59%), architectural distortion (47%), reticulation (41%), enlarged peripheral pulmonary artery (29%), and mosaic attenuation (29%) were significantly more common in the SLE with APS group than in the SLE without APS group (Fisher's exact test, p < 0.01). Conclusion: SLE patients with APS have increased prevalence of thin-section chest CT abnormalities than those without APS.

  12. CT- and MR-guided interventions in radiology. 2. ed.

    International Nuclear Information System (INIS)

    Mahnken, Andreas H.; Wilhelm, Kai E.; Ricke, Jens

    2013-01-01

    Revised and extended second edition that covers a broad range of non-vascular interventions guided by CT or MR imaging. Discusses in detail indications, materials, techniques, and results. Includes a comprehensive section on interventional oncology. Richly illustrated source of information and guidance for all radiologists who deal with non-vascular procedures. Interventional radiology is an indispensable and still expanding area of modern medicine that encompasses numerous diagnostic and therapeutic procedures. Cross-sectional imaging modalities such as computed tomography (CT) and magnetic resonance (MR) have emerged as important techniques for non-vascular interventions, including percutaneous biopsy, drainage, ablation, and neurolysis. Various organs, diseases, and lesions can be approached in this way, permitting the treatment and management of tumors, fluid collections, and pain, the embolization of endoleaks, the provision of access to hollow organs, etc. Accordingly, interventional radiology is now an integral component of the interdisciplinary management of numerous disorders. The revised and significantly extended second edition of this volume covers a broad range of non-vascular interventions guided by CT or MR imaging. Indications, materials, techniques, and results are all carefully discussed. A particularly comprehensive section is devoted to interventional oncology as the most rapidly growing branch of interventional radiology. In addition, detailed information is provided that will assist in establishing and developing an interventional service. This richly illustrated book will be a most valuable source of information and guidance for all radiologists who deal with non-vascular procedures.

  13. Role of FDG/CT in imaging of renal lesions

    International Nuclear Information System (INIS)

    Kochhar, R.; Manoharan, P.; Brown, R.K.; Dunnick, N.R.; Frey, K.A.; Wong, C.O.

    2010-01-01

    Full text: Focal incidental renal lesions are commonly encountered on positron emission tomography (PET)/computed tomography (CT) imaging. The wast majority of these lesions are benign. However, the interpretation of renal lesions can be problematic if the imaging criteria of simple cysts are not met. Limited literature exists on the characterisation of renal masses with metabolic imaging. The purpose of this article is to focus on the imaging features of benign and malignant renal masses with PET/CT. The lesions discussed include renal cyst, angiomyolipoma, oncocytoma, renal cell carcinoma, renal metastases and other infiltrating neoplastic processes affecting the kidney. Both the anatomical and metabolic features which characterise these benign and malignant entities are described. We emphasise the importance of viewing the CT component to identify the typical morphological features and discuss how to best use hybrid imaging for management of renal lesions. Metabolic imaging has a promising role in the imaging of renal lesions and can help prevent unnecessary biopsies and ensure optimal management of suspicious lesions.

  14. Dental imaging using laminar optical tomography and micro CT

    Science.gov (United States)

    Long, Feixiao; Ozturk, Mehmet S.; Intes, Xavier; Kotha, Shiva

    2014-02-01

    Dental lesions located in the pulp are quite difficult to identify based on anatomical contrast, and, hence, to diagnose using traditional imaging methods such as dental CT. However, such lesions could lead to functional and/or molecular optical contrast. Herein, we report on the preliminary investigation of using Laminar Optical Tomography (LOT) to image the pulp and root canals in teeth. LOT is a non-contact, high resolution, molecular and functional mesoscopic optical imaging modality. To investigate the potential of LOT for dental imaging, we injected an optical dye into ex vivo teeth samples and imaged them using LOT and micro-CT simultaneously. A rigid image registration between the LOT and micro-CT reconstruction was obtained, validating the potential of LOT to image molecular optical contrast deep in the teeth with accuracy, non-invasively. We demonstrate that LOT can retrieve the 3D bio-distribution of molecular probes at depths up to 2mm with a resolution of several hundred microns in teeth.

  15. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy.

    Science.gov (United States)

    Li, X; Zhang, Y Y; Shi, Y H; Zhou, L H; Zhen, X

    2016-04-29

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast.

  16. SU-E-I-73: Clinical Evaluation of CT Image Reconstructed Using Interior Tomography

    International Nuclear Information System (INIS)

    Zhang, J; Ge, G; Winkler, M; Cong, W; Wang, G

    2014-01-01

    Purpose: Radiation dose reduction has been a long standing challenge in CT imaging of obese patients. Recent advances in interior tomography (reconstruction of an interior region of interest (ROI) from line integrals associated with only paths through the ROI) promise to achieve significant radiation dose reduction without compromising image quality. This study is to investigate the application of this technique in CT imaging through evaluating imaging quality reconstructed from patient data. Methods: Projection data were directly obtained from patients who had CT examinations in a Dual Source CT scanner (DSCT). Two detectors in a DSCT acquired projection data simultaneously. One detector provided projection data for full field of view (FOV, 50 cm) while another detectors provided truncated projection data for a FOV of 26 cm. Full FOV CT images were reconstructed using both filtered back projection and iterative algorithm; while interior tomography algorithm was implemented to reconstruct ROI images. For comparison reason, FBP was also used to reconstruct ROI images. Reconstructed CT images were evaluated by radiologists and compared with images from CT scanner. Results: The results show that the reconstructed ROI image was in excellent agreement with the truth inside the ROI, obtained from images from CT scanner, and the detailed features in the ROI were quantitatively accurate. Radiologists evaluation shows that CT images reconstructed with interior tomography met diagnosis requirements. Radiation dose may be reduced up to 50% using interior tomography, depending on patient size. Conclusion: This study shows that interior tomography can be readily employed in CT imaging for radiation dose reduction. It may be especially useful in imaging obese patients, whose subcutaneous tissue is less clinically relevant but may significantly increase radiation dose

  17. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    Science.gov (United States)

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  18. Comparison of CT scanning and radionuclide imaging in liver disease

    International Nuclear Information System (INIS)

    Friedman, M.L.; Esposito, F.S.

    1980-01-01

    Early experience with body CT suggested its usefulness in many diagnostic problems; jaundice, renal and pancreatic masses, and in the evaluation of relatively inaccessible parts of the body, such as the retroperitineum, mediastinum, and pelvis. Investigation of hepatic disease by CT was not unexpectedly compared to radionuclide liver scanning, the major preexisting modality for imaging the liver. In the evaluation of the jaundiced patient, CT rapidly assumed a major role, providing more specific information about the liver than the RN liver scan, as well as demonstrating adjacent organs. CT differentiate obstructive from non-obstructive jaundice. With respect to mass lesions of the liver, the RN liver scan is more sensitive than CT but less specific. The abnormalities on an isotope image of the liver consist of normal variants in configuration, extrinsic compression by adjacent structures, cysts, hemangiomata, abscesses, and neoplasms. These suspected lesions may then be better delineated by the CT image, and a more precise diagnosis made. The physiologic information provided by the RN liver scan is an added facet which is helpful in the patient with diffuse hepatic disease. The CT image will be normal in many of these patients, however, hemochromatosis and fatty infiltration lend themselves especially to density evaluation by CT. The evaluation of lymphoma is more thorough with CT. Structures other than the liver, such as lymph nodes, are visualized. Gallium, however, provides additional isotopic information in patients with lymphoma, and in addition, is known to be useful in the investigation of a febrile patient with an abscess. Newer isotopic agents expand hepatic imaging in other directions, visualizing the biliary tree and evaluating the jaundiced patient

  19. Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections

    Science.gov (United States)

    Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.

    2017-02-01

    Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically

  20. Enabling image fusion for a CT guided needle placement robot

    Science.gov (United States)

    Seifabadi, Reza; Xu, Sheng; Aalamifar, Fereshteh; Velusamy, Gnanasekar; Puhazhendi, Kaliyappan; Wood, Bradford J.

    2017-03-01

    Purpose: This study presents development and integration of hardware and software that enables ultrasound (US) and computer tomography (CT) fusion for a FDA-approved CT-guided needle placement robot. Having real-time US image registered to a priori-taken intraoperative CT image provides more anatomic information during needle insertion, in order to target hard-to-see lesions or avoid critical structures invisible to CT, track target motion, and to better monitor ablation treatment zone in relation to the tumor location. Method: A passive encoded mechanical arm is developed for the robot in order to hold and track an abdominal US transducer. This 4 degrees of freedom (DOF) arm is designed to attach to the robot end-effector. The arm is locked by default and is released by a press of button. The arm is designed such that the needle is always in plane with US image. The articulated arm is calibrated to improve its accuracy. Custom designed software (OncoNav, NIH) was developed to fuse real-time US image to a priori-taken CT. Results: The accuracy of the end effector before and after passive arm calibration was 7.07mm +/- 4.14mm and 1.74mm +/-1.60mm, respectively. The accuracy of the US image to the arm calibration was 5mm. The feasibility of US-CT fusion using the proposed hardware and software was demonstrated in an abdominal commercial phantom. Conclusions: Calibration significantly improved the accuracy of the arm in US image tracking. Fusion of US to CT using the proposed hardware and software was feasible.

  1. Clinical feasibility of {sup 90}Y digital PET/CT for imaging microsphere biodistribution following radioembolization

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Chadwick L.; Binzel, Katherine; Zhang, Jun; Knopp, Michael V. [The Ohio State University Wexner Medical Center, Wright Center of Innovation in Biomedical Imaging, Department of Radiology, Columbus, OH (United States); Wuthrick, Evan J. [The Ohio State University Wexner Medical Center, Department of Radiation Oncology, Columbus, OH (United States)

    2017-07-15

    The purpose of this study was to evaluate the clinical feasibility of next generation solid-state digital photon counting PET/CT (dPET/CT) technology and imaging findings in patients following {sup 90}Y microsphere radioembolization in comparison with standard of care (SOC) bremsstrahlung SPECT/CT (bSPECT/CT). Five patients underwent SOC {sup 90}Y bremsstrahlung imaging immediately following routine radioembolization with 3.5 ± 1.7 GBq of {sup 90}Y-labeled glass microspheres. All patients also underwent dPET/CT imaging at 29 ± 11 h following radioembolization. Matched pairs comparison was used to compare image quality, image contrast and {sup 90}Y biodistribution between dPET/CT and bSPECT/CT images. Volumetric assessments of {sup 90}Y activity using different isocontour thresholds on dPET/CT and bSPECT/CT images were also compared. Digital PET/CT consistently provided better visual image quality and {sup 90}Y-to-background image contrast while depicting {sup 90}Y biodistribution than bSPECT/CT. Isocontour volumetric assessment using a 1% threshold precisely outlined {sup 90}Y activity and the treatment volume on dPET/CT images, whereas a more restrictive 20% threshold on bSPECT/CT images was needed to obtain comparable treatment volumes. The use of a less restrictive 10% threshold isocontour on bSPECT/CT images grossly overestimated the treatment volume when compared with the 1% threshold on dPET/CT images. Digital PET/CT is clinically feasible for the assessment of {sup 90}Y microsphere biodistribution following radioembolization, and provides better visual image quality and image contrast than routine bSPECT/CT with comparable acquisition times. With further optimization and clinical validation, dPET technology may allow faster and more accurate imaging-based assessment of {sup 90}Y microsphere biodistribution. (orig.)

  2. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  3. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  4. Dental CT: examination technique, radiation load and anatomy; Dental-CT: Untersuchungstechnik, Strahlenbelastung und Anatomie

    Energy Technology Data Exchange (ETDEWEB)

    Lenglinger, F.X.; Muhr, T. [AKH Wels (Austria). Inst. fuer Radiologie; Krennmair, G. [Praxis fuer Zahn-, Mund- und Kieferheilkunde und Implantologie, Marchtrenk (Austria)

    1999-12-01

    Traditionally oral surgeons and dentists have evaluated the jaws using intraoral films and panoramic radiographs. The involvement of radiologists has been limited. In the past few years dedicated CT-software-programs developed to evaluate dental implant patients have provided a new look at the jaws. The complex anatomy is described and identified on human skulls and on axial, panoramic, and cross-sectional images. With this anatomic description Dental-CT-scans are used to demonstrate the anatomy of maxilla and the mandible. An overview of the technique of Dental-CT is provided, furthermore the radiation dose of different organs is explained. Suggestions to reduce these doses by simple modifications of the recommended protocols are given. (orig.) [German] Die Einfuehrung im Bereich der Computertomographiesoftware (Dental-CT) ermoeglicht dem Radiologen zusaetzlich zu den ueblichen, von den Zahnaerzten durchgefuehrten Roentgenuntersuchungen eine ueberlagerungs- und verzerrungsfreie Darstellung des Ober- und Unterkiefers. In der Implantologie ist mit dieser Darstellung eine exakte Planung moeglich. Weiterhin haben sich Duennschicht-CT-Untersuchungen auch bei der Abklaerung von Zysten, Tumoren, Frakturen, tiefen Parodontitiden und retinierten Zaehnen bewaehrt. In dieser Zeit wird ein Ueberblick ueber die Anatomie, die Untersuchungstechnik des Dental-CT und die auftretende Strahlenbelastung gegeben. Basierend auf rezente Literaturangaben kann eine Reduktion der absorbierten Dosis bei gleichbleibender Bildqualitaet durch einfache Protokollmodifikationen erzielt werden. (orig.)

  5. Pretherapeutic and posttherapeutic laryngeal imaging; Prae- und posttherapeutische Larynxbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M.; Burkhardt, K.; Allal, A.S.; Dulguerov, P.; Ratib, O.; Becker, C.D. [Hopitaux Universitaires de Geneve, Abteilung fuer Hals-Nasen-Ohren-Radiologie, Geneve (Switzerland)

    2009-01-15

    Cross-sectional imaging with CT, MRI and more recently PET CT plays an indispensable complementary role to endoscopy in the pretherapeutic diagnostic and staging of laryngeal neoplasms and in the evaluation of the operated or irradiated larynx. Adequate interpretation of the CT, PET CT and MR images requires a thorough knowledge of the patterns of submucosal spread and familiarity with the diagnostic signs of neoplastic invasion as seen with each modality. In addition, one should be aware of the implications of imaging for staging and treatment. Both CT and MR imaging are highly sensitive for the detection of neoplastic invasion of the preepiglottic and paraglottic spaces, subglottic region and cartilage. The high negative predictive value of both CT and MRI allows a relatively reliable exclusion of neoplasm cartilage invasion. The specificity of both CT and MRI is, however, moderately high and both methods may, therefore, overestimate the extent of tumor spread. However, recent investigations have shown that the specificity of MRI may be significantly improved by using new diagnostic criteria which allow differentiation of tumor from peritumoral inflammation in many instances. Both cross-sectional imaging methods also significantly improve the pretherapeutic staging accuracy of laryngeal tumors if used in addition to clinical examination and endoscopic biopsy. In the presence of a submucosal mass, CT and MRI play a key role for the diagnosis, as they may characterize the lesion, reliably depict its submucosal extent and guide the endoscopist to perform deep biopsies which allow the definitive histological diagnosis. Cross-sectional imaging also plays a key role in the evaluation of laryngoceles, recurrent laryngeal nerve paralysis and fractures. (orig.) [German] Sowohl CT als auch MRT und neuerdings die PET-CT sind unentbehrliche Zusatzuntersuchungen zur Diagnostik und Stadieneinteilung von Tumoren des Larynx. Sie sind der klinischen Untersuchung (einschliesslich

  6. The usefulness of three-dimensional imaging with spiral CT in the evaluation of upper airway stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Ho; Yoon, Dae Young; Bae, Sang Hoon; Rho, Young Soo; Jung, Yin Gyo [Hallym Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-01-01

    To assess the usefulness of three-dimensional (3D) spiral CT imaging in patients with upper airway stenosis. We performed 3D spiral CT imagings in ten patients in whom upper airway stenosis was clinically suspected. Eight of these patients had upper airway stenosis caused by intubation or tracheostomy (n-6), tuberculosis (n=1), or extrinsic compression by a thyroid mass (n=1). Spiral CT scanning (30-second continuous exposure and 90-mm length) was performed with a table speed of 3mm/sec and a section thickness of 3mm. The selected starting point was the epiglottis. The resulting data were reformatted by multiplanar reformation (MPR) and shaded surface display (SSD) with peeling after reconstruction of 2mm interval. In the evaluation of location and extent of stenosis, we compared fidings of 3D imaging with those of baseline axial images (n=10), endoscopy (n=9) and operation (n=4). The locations of stenosis in eight patients were as follows;tracheostoma (n=4), subglottic region (n=3), and larynx (n=1). In all eight, 3D imaging demonstrated the location and extent of stenosis, which exactly correlated with endoscopic and operative findings. In one patient, however, another stenotic area in the tracheal bifurcation was not discovered because this lesion was not included in the field of CT scan. In two patients, the diagnosis on 3D images of no 'stenosis' was comfirmed by clinical findings or operation. No differences in diagnostic accuracy were noted between axial images, MPR, and SSD when evalvating the location and extent of stenosis; vertical extent was shown more easily by 3D imaging than by axial images, however. 3D imaging with spiral CT may be an useful adjunctive method in the evaluation of upper airway stenosis with variable causes.

  7. The usefulness of three-dimensional imaging with spiral CT in the evaluation of upper airway stenosis

    International Nuclear Information System (INIS)

    Jang, Won Ho; Yoon, Dae Young; Bae, Sang Hoon; Rho, Young Soo; Jung, Yin Gyo

    1996-01-01

    To assess the usefulness of three-dimensional (3D) spiral CT imaging in patients with upper airway stenosis. We performed 3D spiral CT imagings in ten patients in whom upper airway stenosis was clinically suspected. Eight of these patients had upper airway stenosis caused by intubation or tracheostomy (n-6), tuberculosis (n=1), or extrinsic compression by a thyroid mass (n=1). Spiral CT scanning (30-second continuous exposure and 90-mm length) was performed with a table speed of 3mm/sec and a section thickness of 3mm. The selected starting point was the epiglottis. The resulting data were reformatted by multiplanar reformation (MPR) and shaded surface display (SSD) with peeling after reconstruction of 2mm interval. In the evaluation of location and extent of stenosis, we compared fidings of 3D imaging with those of baseline axial images (n=10), endoscopy (n=9) and operation (n=4). The locations of stenosis in eight patients were as follows;tracheostoma (n=4), subglottic region (n=3), and larynx (n=1). In all eight, 3D imaging demonstrated the location and extent of stenosis, which exactly correlated with endoscopic and operative findings. In one patient, however, another stenotic area in the tracheal bifurcation was not discovered because this lesion was not included in the field of CT scan. In two patients, the diagnosis on 3D images of no 'stenosis' was comfirmed by clinical findings or operation. No differences in diagnostic accuracy were noted between axial images, MPR, and SSD when evalvating the location and extent of stenosis; vertical extent was shown more easily by 3D imaging than by axial images, however. 3D imaging with spiral CT may be an useful adjunctive method in the evaluation of upper airway stenosis with variable causes

  8. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    International Nuclear Information System (INIS)

    Gahleitner, Andre; Watzek, G.; Imhof, H.

    2003-01-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  9. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Watzek, G. [Department of Oral Surgery, Dental School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria); Imhof, H. [Department of Radiology/Osteology, Medical School, University of Vienna, Waehringer Strasse 25a, 1090 Vienna (Austria)

    2003-02-01

    In addition to conventional imaging methods, dental CT has become an established method for anatomic imaging of the jaws prior to dental implant placement. More recently, this high-resolution imaging technique has gained importance in diagnosing dental-associated diseases of the mandible and maxilla. Since most radiologists have had little experience in these areas, many of the CT findings remain undescribed. The objective of this review article is to present the technique of dental CT, to illustrate the typical appearance of jaw anatomy and dental-related diseases of the jaws with dental CT, and to show where it can serve as an addition to conventional imaging methods in dental radiology. (orig.)

  10. Paediatric CT scan usage and referrals of children to computed tomography in Germany-a cross-sectional survey of medical practice and awareness of radiation related health risks among physicians

    Directory of Open Access Journals (Sweden)

    Merzenich Hiltrud

    2012-02-01

    Full Text Available Abstract Background Computed tomography (CT is a major source of ionizing radiation exposure in medical diagnostic. Compared to adults, children are supposed to be more susceptible to health risks related to radiation. The purpose of a cross-sectional survey among office-based physicians in Germany was the assessment of medical practice in paediatric CT referrals and to investigate physicians' knowledge of radiation doses and potential health risks of radiation exposure from CT in children. Methods A standardized questionnaire was distributed to all paediatricians and surgeons in two defined study areas. Furthermore, the study population included a random sample of general practitioners in the two areas. The questionnaire covered the frequency of referrals for paediatric CT examinations, the medical diagnoses leading to paediatric CT referrals, physicians' knowledge of radiation doses and potential health risks of radiation exposure from CT in children. Results A total of 295 (36.4% physicians responded. 59% of the doctors had not referred a child to CT in the past year, and approximately 30% referred only 1-5 children annually. The most frequent indications for a CT examination in children were trauma or a suspected cancer. 42% of the referrals were related to minor diagnoses or unspecific symptoms. The participants underestimated the radiation exposure due to CT and they overestimated the radiation exposure due to conventional X-ray examinations. Conclusions In Germany, the frequency of referrals of children to computed tomography is moderate. The knowledge on the risks from radiation exposure among office-based physicians in our sample varied, but there was a tendency to underestimate potential CT risks. Advanced radiological training might lead to considerable amendments in terms of knowledge and practice of CT referral.

  11. Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-small-cell lung cancer.

    Science.gov (United States)

    Dahele, M; Hwang, D; Peressotti, C; Sun, L; Kusano, M; Okhai, S; Darling, G; Yaffe, M; Caldwell, C; Mah, K; Hornby, J; Ehrlich, L; Raphael, S; Tsao, M; Behzadi, A; Weigensberg, C; Ung, Y C

    2008-10-01

    Understanding the three-dimensional (3D) volumetric relationship between imaging and functional or histopathologic heterogeneity of tumours is a key concept in the development of image-guided radiotherapy. Our aim was to develop a methodologic framework to enable the reconstruction of resected lung specimens containing non-small-cell lung cancer (NSCLC), to register the result in 3D with diagnostic imaging, and to import the reconstruction into a radiation treatment planning system. We recruited 12 patients for an investigation of radiology-pathology correlation (RPC) in nsclc. Before resection, imaging by positron emission tomography (PET) or computed tomography (CT) was obtained. Resected specimens were formalin-fixed for 1-24 hours before sectioning at 3-mm to 10-mm intervals. To try to retain the original shape, we embedded the specimens in agar before sectioning. Consecutive sections were laid out for photography and manually adjusted to maintain shape. Following embedding, the tissue blocks underwent whole-mount sectioning (4-mum sections) and staining with hematoxylin and eosin. Large histopathology slides were used to whole-mount entire sections for digitization. The correct sequence was maintained to assist in subsequent reconstruction. Using Photoshop (Adobe Systems Incorporated, San Jose, CA, U.S.A.), contours were placed on the photographic images to represent the external borders of the section and the extent of macroscopic disease. Sections were stacked in sequence and manually oriented in Photoshop. The macroscopic tumour contours were then transferred to MATLAB (The Mathworks, Natick, MA, U.S.A.) and stacked, producing 3D surface renderings of the resected specimen and embedded gross tumour. To evaluate the microscopic extent of disease, customized "tile-based" and commercial confocal panoramic laser scanning (TISSUEscope: Biomedical Photometrics, Waterloo, ON) systems were used to generate digital images of whole-mount histopathology sections

  12. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  13. Multidetector CT of the colon

    International Nuclear Information System (INIS)

    Luboldt, W.; Hoepffner, N.; Holzer, K.

    2003-01-01

    Multidetector technology, enabling faster imaging, higher spatial resolution and reduction in radiation dose, increases the role of CT in colonic diagnostic. The higher spatial resolution in the z-direction also changes the way to analyze the images. Instead of reading axial sections, now the colon can be systematically assessed in 3D by scrolling through multiplanar reconstructions or in CT colonography by virtual endoscopy. With ongoing improvements in computer-aided diagnosis CT colonography becomes an alternative to fiberoptic colonocopy for screening (http://www.multiorganscreening.org). In this article we propose a CT examination protocol for the colon, describe the typical imaging findings of different colonic diseases, and summarize the current status of CT colonography. (orig.)

  14. Imaging of abdominal tumours: CT or MRI?

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.

    2009-01-01

    The scope of this review is to discuss a theoretical approach to imaging policy, particularly in the perspective of radiation risk reduction. Decisions are ideally driven by empirical evidence about efficacy and risk, e.g., in classical hierarchical efficacy model. As a result of the paucity of empirical evidence (inevitable because of rapid technological development), a pragmatic model is needed. This should avoid overemphasis of factors that currently seem to hamper change, namely personal preference, local expertise, infrastructure, availability. Extrapolation of current general knowledge about CT and MRI demonstrates how a pragmatic approach can be applied in the real world with intermediate goals such as (1) channeling patients from CT to MRI, and (2) reducing CT-delivered radiation. Increased utilisation of MRI in body imaging requires optimisation of scan protocols and equipment, and, being a very operator-dependent modality, the active involvement of the radiologist. In CT dose reduction the main challenge is to benchmark the minimum radiation-dose requirement, and therefore the minimum required image quality that is diagnostically acceptable. As this will ultimately depend on pre-test likelihoods in institutional populations, it is difficult to issue general guidance, and local assessment remains a cornerstone in this effort. (orig.)

  15. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1978-01-01

    A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)

  16. Multi-Detector Computed Tomography Imaging Techniques in Arterial Injuries

    Directory of Open Access Journals (Sweden)

    Cameron Adler

    2018-04-01

    Full Text Available Cross-sectional imaging has become a critical aspect in the evaluation of arterial injuries. In particular, angiography using computed tomography (CT is the imaging of choice. A variety of techniques and options are available when evaluating for arterial injuries. Techniques involve contrast bolus, various phases of contrast enhancement, multiplanar reconstruction, volume rendering, and maximum intensity projection. After the images are rendered, a variety of features may be seen that diagnose the injury. This article provides a general overview of the techniques, important findings, and pitfalls in cross sectional imaging of arterial imaging, particularly in relation to computed tomography. In addition, the future directions of computed tomography, including a few techniques in the process of development, is also discussed.

  17. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-01

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with 68 Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V HU ) or Jacobian determinant of deformation (V Jac ). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV HU and ρV Jac ) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ m = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d 20 for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV HU ) with σ m = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d 20 ⩽ 0.68, with r ¯ =0.42±0.16 and d ¯ 20 =0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r ¯ and d ¯ 20 (p ¯ than for unscaled

  18. Fractal characterization of brain lesions in CT images

    International Nuclear Information System (INIS)

    Jauhari, Rajnish K.; Trivedi, Rashmi; Munshi, Prabhat; Sahni, Kamal

    2005-01-01

    Fractal Dimension (FD) is a parameter used widely for classification, analysis, and pattern recognition of images. In this work we explore the quantification of CT (computed tomography) lesions of the brain by using fractal theory. Five brain lesions, which are portions of CT images of diseased brains, are used for the study. These lesions exhibit self-similarity over a chosen range of scales, and are broadly characterized by their fractal dimensions

  19. Prevalence of Os Trigonum on CT Imaging

    NARCIS (Netherlands)

    Zwiers, Ruben; Baltes, Thomas P. A.; Opdam, Kim T. M.; Wiegerinck, Johannes I.; van Dijk, C. Niek

    2017-01-01

    The os trigonum is known as one of the main causes of posterior ankle impingement. In the literature, a wide variation of occurrence has been reported. All foot and/or ankle computed tomography (CT) scans made between January 2012 and December 2013 were reviewed. CT images were assessed, blinded for

  20. MR and CT imaging of cerebral fat embolism

    International Nuclear Information System (INIS)

    Li Ying; Xu Jianmin; Wan Xiaohong; Chen Yu; Guo Yi

    2003-01-01

    Objective: To summarize the clinical characteristics and imaging features of cerebral fat embolism (CFE). Methods: The clinical features and imaging appearances of 3 cases with acute CFE were analyzed. Results: (1) 3 non-head injured cases had sudden mental status changes after leg injury. (2) The main clinical manifestation was vigil coma. (3) MRI showed lesions of the brain in all 3 cases. Cranial CT showed lesions in only 1 case. (4) MRI and CT showed spotty and patchy symmetrical lesions, which were low signal on T 1 WI and high signal on T 2 WI, and low density on CT scan. The lesions were distributed in the white matter along the boundary zones of the major vascular territories, thalamus and basal ganglia, internal capsule, corpus callosum, brain stem, and cerebellum. The margins of the lesions were obscure. (5) 1 case received MRI examination after therapy for 3 months, which showed no lesions in the brain. Conclusion: Cerebral fat embolism has its own clinical features and imaging characteristics. MRI is superior to CT in diagnosing CFE

  1. Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants

    International Nuclear Information System (INIS)

    Goerres, Gerhard W.; Hany, Thomas F.; Kamel, Ehab; Schulthess von, Gustav K.; Buck, Alfred

    2002-01-01

    Germanium-68 based attenuation correction (PET Ge68 ) is performed in positron emission tomography (PET) imaging for quantitative measurements. With the recent introduction of combined in-line PET/CT scanners, CT data can be used for attenuation correction. Since dental implants can cause artefacts in CT images, CT-based attenuation correction (PET CT ) may induce artefacts in PET images. The purpose of this study was to evaluate the influence of dental metallic artwork on the quality of PET images by comparing non-corrected images and images attenuation corrected by PET Ge68 and PET CT . Imaging was performed on a novel in-line PET/CT system using a 40-mAs scan for PET CT in 41 consecutive patients with high suspicion of malignant or inflammatory disease. In 17 patients, additional PET Ge68 images were acquired in the same imaging session. Visual analysis of fluorine-18 fluorodeoxyglucose (FDG) distribution in several regions of the head and neck was scored on a 4-point scale in comparison with normal grey matter of the brain in the corresponding PET images. In addition, artefacts adjacent to dental metallic artwork were evaluated. A significant difference in image quality scoring was found only for the lips and the tip of the nose, which appeared darker on non-corrected than on corrected PET images. In 33 patients, artefacts were seen on CT, and in 28 of these patients, artefacts were also seen on PET imaging. In eight patients without implants, artefacts were seen neither on CT nor on PET images. Direct comparison of PET Ge68 and PET CT images showed a different appearance of artefacts in 3 of 17 patients. Malignant lesions were equally well visible using both transmission correction methods. Dental implants, non-removable bridgework etc. can cause artefacts in attenuation-corrected images using either a conventional 68 Ge transmission source or the CT scan obtained with a combined PET/CT camera. We recommend that the non-attenuation-corrected PET images also be

  2. Volume of myocardium perfused by coronary artery branches as estimated from 3D micro-CT images of rat hearts

    Science.gov (United States)

    Lund, Patricia E.; Naessens, Lauren C.; Seaman, Catherine A.; Reyes, Denise A.; Ritman, Erik L.

    2000-04-01

    Average myocardial perfusion is remarkably consistent throughout the heart wall under resting conditions and the velocity of blood flow is fairly reproducible from artery to artery. Based on these observations, and the fact that flow through an artery is the product of arterial cross-sectional area and blood flow velocity, we would expect the volume of myocardium perfused to be proportional to the cross-sectional area of the coronary artery perfusing that volume of myocardium. This relationship has been confirmed by others in pigs, dogs and humans. To test the body size-dependence of this relationship we used the hearts from rats, 3 through 25 weeks of age. The coronary arteries were infused with radiopaque microfil polymer and the hearts scanned in a micro- CT scanner. Using these 3D images we measured the volume of myocardium and the arterial cross-sectional area of the artery that perfused that volume of myocardium. The average constant of proportionality was found to be 0.15 +/- 0.08 cm3/mm2. Our data showed no statistically different estimates of the constant of proportionality in the rat hearts of different ages nor between the left and right coronary arteries. This constant is smaller than that observed in large animals and humans, but this difference is consistent with the body mass-dependence on metabolic rate.

  3. Automated angular and translational tomographic alignment and application to phase-contrast imaging

    DEFF Research Database (Denmark)

    Cunha Ramos, Tiago Joao; Jørgensen, Jakob Sauer; Andreasen, Jens Wenzel

    2017-01-01

    X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object po...... improvement in the reconstruction resolution. A MATLAB implementation is made publicly available and will allow robust analysis of large volumes of phase-contrast tomography data.......X-ray computerized tomography (CT) is a 3D imaging technique that makes use of x-ray illumination and image reconstruction techniques to reproduce the internal cross-sections of a sample. Tomographic projection data usually require an initial relative alignment or knowledge of the exact object...... reconstruction artifacts and limit the attained resolution in the final tomographic reconstruction. Alignment algorithms that require manual interaction impede data analysis with ever-increasing data acquisition rates, supplied by more brilliant sources. We present in this paper an iterative reconstruction...

  4. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  5. Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan

    International Nuclear Information System (INIS)

    Kim, Hyun Ju; Cho, Jae Hwan; Park, Cheol Soo

    2010-01-01

    The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). CT value of chest image increased at 100 kVp by 14.06%∼27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients

  6. 3D ultrasonography is as accurate as low-dose CT in thyroid volumetry.

    Science.gov (United States)

    Licht, K; Darr, A; Opfermann, T; Winkens, T; Freesmeyer, M

    2014-01-01

    The purpose of this study was to compare thyroid volumetry by three-dimensional mechanically swept ultrasonography (3DmsUS) and low-dose computed tomography (ldCT). 30 subjects referred for radioiodine therapy of benign thyroid diseases were subjected to 3DmsUS and ldCT. A prerequisite of 3DmsUS analyses was that the scans had to capture the entire thyroid, excluding therefore cases with a very large volume or retrosternal portions. The 3DmsUS data were transformed into a DICOM format, and volumetry calculations were performed via a multimodal workstation equipped with standard software for cross-sectional imaging. Volume was calculated applying both the ellipsoid model and a manually tracing method. Statistical analyses included 95% confidence intervals (CI) of the means and limits of agreement according to Bland and Altman, the latter including 95% of all expected values. Volumetric measurements by 3DmsUS and ldCT resulted in very high, significant correlation coefficients, r = 0.997 using the ellipsoid model and r = 0.993 with the manually tracing method. The mean relative differences of the two imaging modalities proved very small (-1.2±4.0% [95% CI -2.62; 0.28] using the ellipsoid model; -1.1±5.2% [95% CI -2.93; 0.80] using the manually tracing method) and the limits of agreement sufficiently narrow (-9.1% to 6.8%; -11.3% to 9.2%, respectively). For moderately enlarged thyroids, volumetry with 3DmsUS proved comparable to that of ldCT, irrespective of whether the ellipsoid model or the manually tracing method was applied. Thus, 3DmsUS qualifies as a potential alternative to ldCT, provided that the organ is completely accessible. The use of a standard workstation for cross-sectional imaging with routine software did not prove problematic.

  7. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging

    International Nuclear Information System (INIS)

    Aschoff, Philip; Plathow, Christian; Lichy, Matthias P.; Claussen, Claus D.; Pfannenberg, Christina; Beyer, Thomas; Erb, Gunter; Oeksuez, Mehmet Oe.

    2012-01-01

    State-of-the-art positron emission tomography/computed tomography (PET/CT) systems incorporate multislice CT technology, thus facilitating the acquisition of multiphase, contrast-enhanced CT data as part of integrated PET/CT imaging protocols. We assess the influence of a highly concentrated iodinated contrast medium (CM) on quantification and image quality following CT-based attenuation correction (CT-AC) in PET/CT. Twenty-eight patients with suspected malignant liver lesions were enrolled prospectively. PET/CT was performed 60 min after injection of 400 MBq of 18 F-fluorodeoxyglucose (FDG) and following the biphasic administration of an intravenous CM (400 mg iodine/ml, Iomeron 400). PET images were reconstructed with CT-AC using any of four acquired CT image sets: non-enhanced, pre-contrast (n-PET), arterial phase (art-PET), portal venous phase (pv-PET) and late phase (late-PET). Normal tissue activity and liver lesions were assessed visually and quantitatively on each PET/CT image set. Visual assessment of PET following CT-AC revealed no noticeable difference in image appearance or quality when using any of the four CT data sets for CT-AC. A total of 44 PET-positive liver lesions was identified in 21 of 28 patients. There were no false-negative or false-positive lesions on PET. Mean standardized uptake values (SUV) in 36 evaluable lesions were: 5.5 (n-PET), 5.8 (art-PET), 5.8 (pv-PET) and 5.8 (late-PET), with the highest mean increase in mean SUV of 6%. Mean SUV changes in liver background increased by up to 10% from n-PET to pv-PET. Multiphase CT data acquired with the use of highly concentrated CM can be used for qualitative assessment of liver lesions in torso FDG PET/CT. The influence on quantification of FDG uptake is small and negligible for most clinical applications. (orig.)

  8. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records

    Directory of Open Access Journals (Sweden)

    Benyó Balázs

    2012-10-01

    Full Text Available Abstract Background Shape of the dental root canal is highly patient specific. Automated identification methods of the medial line of dental root canals and the reproduction of their 3D shape can be beneficial for planning endodontic interventions as severely curved root canals or multi-rooted teeth may pose treatment challenges. Accurate shape information of the root canals may also be used by manufacturers of endodontic instruments in order to make more efficient clinical tools. Method Novel image processing procedures dedicated to the automated detection of the medial axis of the root canal from dental micro-CT and cone-beam CT records are developed. For micro-CT, the 3D model of the root canal is built up from several hundred parallel cross sections, using image enhancement, histogram based fuzzy c-means clustering, center point detection in the segmented slice, three dimensional inner surface reconstruction, and potential field driven curve skeleton extraction in three dimensions. Cone-beam CT records are processed with image enhancement filters and fuzzy chain based regional segmentation, followed by the reconstruction of the root canal surface and detecting its skeleton via a mesh contraction algorithm. Results The proposed medial line identification and root canal detection algorithms are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used in the validation procedure. The overall success rate of the automatic dental root canal identification was about 92% in both procedures. The algorithms proved to be accurate enough for endodontic therapy planning. Conclusions Accurate medial line identification and shape detection algorithms of dental root canal have been developed. Different procedures are defined for micro-CT and cone-beam CT records. The automated execution of the subsequent processing steps allows easy application of the algorithms in the dental care. The output data of the image processing procedures

  9. Electron collision cross sections of mercury

    International Nuclear Information System (INIS)

    Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo

    2006-01-01

    In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)

  10. Recurrent postoperative sciatica: Evaluation with MR imaging and enhanced CT

    International Nuclear Information System (INIS)

    Duoauferrier, R.; Frocrain, L.; Husson, J.L.

    1987-01-01

    The authors prospectively compared surface coil MR (SCMR) imaging and CT with iodinate contrast enhancement in 50 patients with recurrent postoperative sciatica. Of the 50 patients enrolled in the study, surgical treatment was elected in 27 patients after independent examination of SCMR imaging and enhanced CT. All predictions made with the 27 SCMR images were surgically confirmed. The surgical findings were 20 recurrent disk herniations, five recurrent disk herniations with scar tissue, one disk herniation above the level of diskectomy, and one disk herniation below the level of diskectomy. The surgical findings of the 12 patients who had scar tissue on CT were seven recurrent disk herniations, four recurrent disk herniations with scar tissue, and one disk herniation below the operated level. SCMR imaging was more sensitive and more specific than CT to differentiate scar tissue from recurrent disk herniation

  11. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  12. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  13. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1976-05-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  14. X-ray and gamma-ray transmission computed tomographic imaging of archaeological objects

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Susan Maria Sipaun

    2004-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-section images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography or computed-aided tomography. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper presents a brief overview of X-ray or gamma-ray transmission tomography. It is not intended to be a technical treatise but is hoped that it would raise awareness and promote opportunities for further collaboration amongst the nuclear research community, including archaeologists and those in the conservation profession. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. In addition, a few examples of CT images for archaeological objects are presented. The examples were purposely chosen to illustrate clearly and precisely the fundamental concepts of this sophisticated field. (Author)

  15. Reconstruction of Cochlea Based on Micro-CT and Histological Images of the Human Inner Ear

    Directory of Open Access Journals (Sweden)

    Christos Bellos

    2014-01-01

    Full Text Available The study of the normal function and pathology of the inner ear has unique difficulties as it is inaccessible during life and, so, conventional techniques of pathologic studies such as biopsy and surgical excision are not feasible, without further impairing function. Mathematical modelling is therefore particularly attractive as a tool in researching the cochlea and its pathology. The first step towards efficient mathematical modelling is the reconstruction of an accurate three dimensional (3D model of the cochlea that will be presented in this paper. The high quality of the histological images is being exploited in order to extract several sections of the cochlea that are not visible on the micro-CT (mCT images (i.e., scala media, spiral ligament, and organ of Corti as well as other important sections (i.e., basilar membrane, Reissner membrane, scala vestibule, and scala tympani. The reconstructed model is being projected in the centerline of the coiled cochlea, extracted from mCT images, and represented in the 3D space. The reconstruction activities are part of the SIFEM project, which will result in the delivery of an infrastructure, semantically interlinking various tools and libraries (i.e., segmentation, reconstruction, and visualization tools with the clinical knowledge, which is represented by existing data, towards the delivery of a robust multiscale model of the inner ear.

  16. Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: Comparison with conventional tube-voltage images.

    Science.gov (United States)

    Sakabe, Daisuke; Funama, Yoshinori; Taguchi, Katsuyuki; Nakaura, Takeshi; Utsunomiya, Daisuke; Oda, Seitaro; Kidoh, Masafumi; Nagayama, Yasunori; Yamashita, Yasuyuki

    2018-05-01

    To investigate the image quality characteristics for virtual monoenergetic images compared with conventional tube-voltage image with dual-layer spectral CT (DLCT). Helical scans were performed using a first-generation DLCT scanner, two different sizes of acrylic cylindrical phantoms, and a Catphan phantom. Three different iodine concentrations were inserted into the phantom center. The single-tube voltage for obtaining virtual monoenergetic images was set to 120 or 140 kVp. Conventional 120- and 140-kVp images and virtual monoenergetic images (40-200-keV images) were reconstructed from slice thicknesses of 1.0 mm. The CT number and image noise were measured for each iodine concentration and water on the 120-kVp images and virtual monoenergetic images. The noise power spectrum (NPS) was also calculated. The iodine CT numbers for the iodinated enhancing materials were similar regardless of phantom size and acquisition method. Compared with the iodine CT numbers of the conventional 120-kVp images, those for the monoenergetic 40-, 50-, and 60-keV images increased by approximately 3.0-, 1.9-, and 1.3-fold, respectively. The image noise values for each virtual monoenergetic image were similar (for example, 24.6 HU at 40 keV and 23.3 HU at 200 keV obtained at 120 kVp and 30-cm phantom size). The NPS curves of the 70-keV and 120-kVp images for a 1.0-mm slice thickness over the entire frequency range were similar. Virtual monoenergetic images represent stable image noise over the entire energy spectrum and improved the contrast-to-noise ratio than conventional tube voltage using the dual-layer spectral detector CT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Diagnostic imaging in the staging of gynecologic cancers

    International Nuclear Information System (INIS)

    Forstner, R.; Graf, A.

    1999-01-01

    The prognosis in patients with gynecologic cancers depends not only on the stage but also on a wide spectrum of other findings. Cross-sectional imaging modalities, including sonography, CT and MRI, have increasingly been used for optimal treatment planning in gynecologic cancers. Their staging criteria are based on the well-established FIGO staging system. CT and MRI compete with sonography, which plays a pivotal role in the valuation of the female pelvis. This paper reviews the role of sonography, CT and MRI in the staging of gynecologic malignancies. It puts the emphasis on MRI, which has been established as imaging modality of choice in the preoperative evaluation of cervical and endometrial cancer, and which seems slightly superior to CT in the staging of ovarian cancer. (orig.) [de

  18. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  19. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    Science.gov (United States)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  20. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  1. Clinical value of SPECT/CT imaging in the diagnosis of bone metastasis

    International Nuclear Information System (INIS)

    Wang Xinhua; Zhao Yanping; Lu Haijian; Dong Zhanfei

    2010-01-01

    Objective: To evaluate the clinical value of 99 Tc m -methylene diphosphonic acid (MDP) SPECT/CT imaging for the diagnosis of bone metastasis. Methods: Patients suspected for bone metastasis and with bone pain of unknown origin were included in this study (n=237). All cases underwent SPECT and CT imaging at 180 min after 99 Tc m -MDP injection. Diagnosis was confirmed by pathology (n=21), more than 2 kinds of radiologieal imaging (MRI, CT, X-ray) (n=106), and clinical follow up in 2 years (n=110). χ 2 -test was used to compare the results of planar and SPECT/CT imaging using SAS 6.12 software. Results: In 237 patients, planar imaging of 142 cases matched the final diagnosis in which 72 had benign lesions and 70 had bone metastases. The definite coincidence rate was 95.30% (142/149). SPECT/CT imaging of 224 cases matched the final diagnosis in which 104 had benign lesions and 120 cases diagnosed as bone metastases. The coincidence and definite coincidence rates were 94.51% (224/237), and 99.48% (192/193). Difference in the definite coincidence rate between planar and SPECT/CT imaging was statistically significant (χ 2 = 5.37, P=0.024). Conclusion: SPECT/CT imaging is valuable for accurate localization of osseous pathology and for improvement of diagnosing bone metastasis. (authors)

  2. Study of three-dimensional image display by systemic CT

    International Nuclear Information System (INIS)

    Fujioka, Tadao; Ebihara, Yoshiyuki; Unei, Hiroshi; Hayashi, Masao; Shinohe, Tooru; Wada, Yuji; Sakai, Takatsugu; Kashima, Kenji; Fujita, Yoshihiro

    1989-01-01

    A head phantom for CT was scanned at 2 mm intervals from the cervix to the vertex in an attempt to obtain a three-dimensional image display of bones and facial epidermis from an ordinary axial image. Clinically, three-dimensional images were formed at eye sockets and hip joints. With the three-dimensional image using the head phantom, the entire head could be displayed at any angle. Clinically, images were obtained that could not be attained by ordinary CT scanning, such as broken bones in eye sockets and stereoscopic structure at the bottom of a cranium. The three-dimensional image display is considered to be useful in clinical diagnosis. (author)

  3. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  4. Automatic anatomy recognition on CT images with pathology

    Science.gov (United States)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  5. CT imaging features of anaplastic thyroid carcinoma

    International Nuclear Information System (INIS)

    Shi Zhenshan; You Ruixiong; Cao Dairong; Li Yueming; Zhuang Qian

    2013-01-01

    Objective: To investigate the CT characteristics of anaplastic thyroid carcinoma and evaluate the diagnostic value of CT in this disease. Methods: The CT findings of 10 patients with pathologically proved anaplastic thyroid carcinoma were retrospectively reviewed. The patients included 7 females and 3 males. Their age ranged from 25.0 to 78 years with median of 61 years. Multi-slices plain and post contrast CT scans were performed in all patients. Results: Unilateral thyroid was involved in 6 patients. Unilateral thyroid and thyroid isthmus were both involved in 2 patients due to big size. Bilateral thyroid were involved in 2 patients. The maximum diameter of anaplastic thyroid carcinoma ranged from 2.9-12.8 cm with mean of (4.5 ± 1.4) cm. All lesions demonstrated unclear margins and envelope invasion. The densities of all lesions were heterogeneous and obvious necrosis areas were noted on precontrast images. Seven lesions showed varied calcifications, and coarse granular calcifications were found in 5 lesions among them. All lesions showed remarkable heterogenous enhancement on post-contrast CT. The CT value of solid portion of the tumor increased 40 HU after contrast media administration. The ratios of CT value which comparing of the tumor with contralateral sternocleidomastoid muscle were 0.69-0.82 (0.76 ± 0.18) and 1.25-1.41 (1.33 ± 0.28) on pre and post CT, respectively. Enlarged cervical lymph nodes were found in 6 cases (60.0%). It showed obvious homogeneous enhancement or irregular ring-like enhancement on post-contrast images and dot calcifications were seen in 1 case. Conclusions: Relative larger single thyroid masses with coarse granular calcifications, necrosis,envelope invasion, remarkable heterogeneous enhancing and enlarged lymph nodes on CT are suggestive of anaplastic thyroid carcinoma. (authors)

  6. Hypothalamic-pituitary dwarfism: Comparison between MR imaging and CT findings

    International Nuclear Information System (INIS)

    Maghnie, M.; Larizza, D.; Severi, F.; Triulzi, F.; Scotti, G.; Beluffi, G.; Cecchini, A.

    1990-01-01

    Magnetic Resonance (MR) imaging was carried out on 33 patients with idiopathic growth hormone deficiency, in 22 of whom CT scan had been carried out previously. Twenty-one patients presented some complications at birth. Both MR and CT were positive in the evaluation of the sella. MR imaging exhibited a higher degree of accuracy than CT in the evaluation of pituitary gland, pituitary stalk and brain anomalies. (orig.)

  7. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  8. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  9. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  10. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  11. Anato-metabolic fusion of PET, CT and MRI images

    International Nuclear Information System (INIS)

    Przetak, C.; Baum, R.P.; Niesen, A.; Slomka, P.; Proeschild, A.; Leonhardi, J.

    2000-01-01

    The fusion of cross-sectional images - especially in oncology - appears to be a very helpful tool to improve the diagnostic and therapeutic accuracy. Though many advantages exist, image fusion is applied routinely only in a few hospitals. To introduce image fusion as a common procedure, technical and logistical conditions have to be fulfilled which are related to long term archiving of digital data, data transfer and improvement of the available software in terms of usefulness and documentation. The accuracy of coregistration and the quality of image fusion has to be validated by further controlled studies. (orig.) [de

  12. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  13. Edge detection of solid motor' CT image based on gravitation model

    International Nuclear Information System (INIS)

    Yu Guanghui; Lu Hongyi; Zhu Min; Liu Xudong; Hou Zhiqiang

    2012-01-01

    In order to detect the edge of solid motor' CT image much better, a new edge detection operator base on gravitation model was put forward. The edge of CT image is got by the new operator. The superiority turned out by comparing the edge got by ordinary operator. The comparison among operators with different size shows that higher quality CT images need smaller size operator while the lower need the larger. (authors)

  14. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    Science.gov (United States)

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (Pvolumetry. If not, three-dimensional images could be essential. PMID:21850689

  15. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Jiantao [Department of Radiology, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Shaanxi 710061, People’s Republic of China, and Departments of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan; Qian, Yongqiang; Guo, Youmin [Department of Radiology, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Shaanxi 710061 (China); Wang, Xiaohua [Third Affiliated Hospital, Peking University, Beijing, People’s Republic of China, 100029 (China); Meng, Xin [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concave loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.

  16. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  17. Study of CT head scans using different voltages: image quality evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco de Freitas C, I.; Prata M, A. [Centro Federal de Educacao Tecnologica de Minas Gerais, Centro de Engenharia Biomedica, Av. Amazonas 5253, 30421-169 Nova Suica, Belo Horizonte, Minas Gerais (Brazil); Alonso, T. C. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P., E-mail: iarapfcorrea@gmail.com [Universidade Federal de Minas Gerais, Departamento de Anatomia e Imagem, Av. Prof. Alfredo Balena 190, 30130-100 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  18. Study of CT head scans using different voltages: image quality evaluation

    International Nuclear Information System (INIS)

    Pacheco de Freitas C, I.; Prata M, A.; Alonso, T. C.; Santana, P.

    2016-10-01

    Computed tomography (CT) was introduced to medical practice in 1972. It generates images recognized by high diagnostic potential. CT allows investigation of structures in the human body inaccessible by conventional image methods, replacing invasive methods in many cases. Noise is a kind of variation of brightness observed on CT images, and it is inherent to this method. The magnitude of the noise is determined by the standard deviation of CT numbers of a region of interest in a homogeneous material. The aim of this study is to analyze the noise in head CT images generated by different acquisition protocols using four voltage values. Five different scans were performed using a female Alderson phantom and their images were analyzed with the RadiAnt software. With the average HU values and standard deviation of each scan, the values of noise were calculated in some region of interest. The obtained noise values were compared and it was observed that the 140 kV voltage promotes the in the lower noise in the image, resulting in better image quality. The results also show that the parameters, such as voltage and current, can be adjusted so that the noise can be decreased. Thus, acquisition protocols may be adapted to produce images with diagnostic quality and lower doses in patient. (Author)

  19. Comparison of MR imaging and CT in neuroendrocrine disorders in children

    International Nuclear Information System (INIS)

    Garreh, M.K.; Ball, W.S.; Brody, A.S.; Dolan, L.; Burton, E.M.

    1989-01-01

    MR imaging has been shown to be superior in imaging the adult hypothalamicpituitary axis. The authors have reviewed the CT and MR findings in children with known abnormalities, including hamartoma of the tuber cinereum, craniopharyngiomas,. pituitary adenoma, Rathke cleft cyst, incomplete pituitary stalk, and septo-optic dysplasia. Clinical correlation and typical CT and MR features were analyzed. In four cases, abnormalities were not visualized on CT. The authors conclude that because of its unique sensitivity and excellent anatomic resolution, MR imaging is the modality of choice in the imaging of neuroendocrine disorders in children

  20. Patient position matching between SPECT and CT

    International Nuclear Information System (INIS)

    Eubig, C.; Lodhi, L.M.; Trueblood, J.H.; Kingsbury, T.; Burke, G.; Flickenger, F.

    1990-01-01

    Since the authors had previously developed an ability for accurate repositioning of patients by means of video imaging of their external features, it was their purpose to determine if separate video systems placed in SPECT and CT rooms could be positioned and a calibration procedure for each modality developed to assure easy identification and acquisition of corresponding congruent axial image sections through the patient. A video frame grabber is used to acquire an image of the patient in one room and superimpose it on a similar image of the patient in the other room. A radioactive ruler visible at CT images obtained with a gamma camera computer, and a CT scout image are used to adjust the initial relative position of the video cameras and calibrate the acquisition parameters of both systems. The success of this alignment procedure was tested with a body phantom. The body phantom studies indicate that this method of positioning the patient and acquiring corresponding aligned CT and SPECT axial sections can be successful where internal organ shift between the acquisitions is minimal. This should lead to a reduction of the time and computer resources necessary to fuse or superimpose images of corresponding patient sections acquired with different modalities