WorldWideScience

Sample records for cross-flow membrane system

  1. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems

    KAUST Repository

    Farhat, N.M.

    2016-09-06

    The spatially heterogeneous distribution of biofouling in spiral wound membrane systems restricts (i) the water distribution over the membrane surface and therefore (ii) the membrane-based water treatment. The objective of the study was to assess the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulated the first 0.20 m of spiral-wound membrane modules where biofouling accumulates the most in practice. In-situ non-destructive oxygen imaging using planar optodes was applied to determine the biofilm spatially resolved activity and heterogeneity.

  2. Innovative cross-flow membrane system for volume reduction of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Greene, W. [SpinTek Membrane Systems, Huntington Beach, CA (United States)

    1997-10-01

    In this task, SpinTek Membrane Systems, Inc., and the Institute of Gas Technology are completing engineering development leading to a full-scale demonstration of the SpinTek ST-II High Shear Rotary Membrane Filtration System (ST-II) under a Program Research and Development Agreement (PRDA) with the Federal Energy Technology Center-Morgantown. The SpinTek ST-II technology will be scaled-up, and a two-stage ST-II system will be designed, constructed, and operated on both surrogate and actual feed at the Los Alamos National Laboratory (LANL) Liquid Radioactive Waste Treatment Facility (LRWTF). Results from these studies on both surrogate and actual wastewater streams will also be used by LANL personnel to produce a model for determining the applicability and economics of the SpinTek ST-II system to other DOE waste and process streams. The ST-II is a unique, compact cross-flow membrane system having several advantages in performance and cost compared to currently available systems. Staff at LANL have performed pilot-scale testing with the SpinTek technology to evaluate its feasibility for enhanced radionuclide removal from wastewater at its 5- to 8-million-gallon-per-year LRWTF. Recent data have shown the system`s capabilities to remove radionuclides from the waste stream at concentration factors greater than 2000:1, and performance has exceeded both conventional and all other advanced technologies examined.

  3. CROSS-FLOW ULTRAFILTRATION OF SECONDARY EFFLUENTS. MEMBRANE FOULING ANALYSIS

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The application of cross-flow ultrafiltration to regenerate secondary effluents is limited by membrane fouling. This work analyzes the influence of the main operational parameters (transmembrane pressure and cross-flow velocity about the selectivity and fouling observed in an ultrafiltration tubular ceramic membrane. The experimental results have shown a significant retention of the microcolloidal and soluble organic matter (52 – 54% in the membrane. The fouling analysis has defined the critical operational conditions where the fouling resistance is minimized. Such conditions can be described in terms of a dimensionless number known as shear stress number and its relationship with other dimensionless parameter, the fouling number.

  4. Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane.

    Science.gov (United States)

    Hwang, Taewoon; Park, Seong-Jik; Oh, You-Kwan; Rashid, Naim; Han, Jong-In

    2013-07-01

    The purpose of the present study is to reduce fouling formation, a fatal problem of membrane technology by means of surface-coating with a functional coating material, i.e., hydrophilic polyvinyl alcohol (PVA) polymer. The PVA coating caused the membrane surface to become more hydrophilic and it was confirmed by decreased contact angles up to 64% compared to the un-modified membranes. The surface-coated membrane found to exhibit substantially enhanced performance: a maximum flux increase of 36% and almost 100% recovery rate. Maximum concentration factor of 77 also was modeled in the present study. These results show that the membrane performance can be improved simply by applying a surface-active coating, even to the level of economic feasibility.

  5. Mathematical models of membrane fouling in cross-flow micro-filtration

    Directory of Open Access Journals (Sweden)

    Mónica Jimena Ortíz Jerez

    2010-04-01

    Full Text Available The greatest difficulty arising during cross-flow micro-filtration is the formation of a cake layer on the membrane sur-face (also called fouling, thereby affecting system performance. Fouling has been related to permeate flux decay re-sulting from changes in operating variables. Many articles have been published in an attempt to explain this phe-nomenon but it has not yet been fully understood because it depends on specific solution/membrane interactions and differing parameters. This work was aimed at presenting an analytical review of recently published mathematical models to explain fouling. Although the reviewed models can be adjusted to any type of application, a simple “con-centration polarisation” model is advisable in the particular case of tropical fruit juices for describing the insoluble solids being deposited on membrane surface.

  6. Pengolahan Limbah Laundry Menggunakan Membran Nanofiltrasi Aliran Cross Flow untuk Menurunkan Kekeruhan dan Fosfat

    Directory of Open Access Journals (Sweden)

    Aufiyah Aufiyah

    2013-09-01

    Full Text Available Dilakukan penelitian mengenai pembuatan membran silika nanofiltrasi untuk mengurangi kekeruhan dan fosfat menggunakan reaktor dengan aliran cross flow dengan variasi massa silika 5, 8, dan 10 gram. Silika didapatkan dari sintesis pasir silika menggunakan metode alkali fussion menggunakan peleburan dengan KOH. Variasi limbah yang digunakan adalah 100% limbah, 50% pengenceran dan 75% pengenceran (25% air limbah dengan air PDAM. Penelitian ini bertujuan untuk mendapatkan pengaruh massa silika terhadap koefisien rejeksi dan nilai fluks pada setiap variasi membran. Data koefisien rejeksi dan nilai fluks menunjukkan variasi membran terbaik yang selanjutnya akan dianalisa morfologinya dengan metode SEM (Scanning Electron Microscopy dan analisa gugus fungsi dengan metode FTIR (Fourier Transform Infra Red. Didapatkan koefisien rejeksi terbaik adalah 5 gram 100% limbah dengan nilai rejeksi kekeruhan 91,33%. Rejeksi fosfat 56, 07%. Nilai fluks terbaik didapatkan membran 8 gram 25% air limbah dengan nilai fluks 2,81 L/m2.jam.

  7. Characterization of the selectivity of microsieves using a cross-flow microfiltration system

    Directory of Open Access Journals (Sweden)

    L. E. Gutierrez-Rivera

    2010-12-01

    Full Text Available Filtration through membranes is a process largely employed in the food and chemical industry to separate particles. Sieves present some advantages in relation to conventional membranes such as high homogeneity in the pore sizes, smooth surfaces, straight-through pores, etc. In this paper we compare the selectivity in the exclusion of particles by size of sieves with circular and slit pores with the same porosity. The selectivity was investigated by filtering a mixture of rutin in water in a cross-flow filtration system. The particle-size distribution of the rutin solution was measured before and after microfiltration. The results showed a high efficiency in the size exclusion of particles for microsieves with circular pores. The filtration through a commercial membrane (net filter with similar characteristics was also characterized for comparison.

  8. Effect of Cross-flow Velocity on the Critical Flux of Ceramic Membrane Filtration as a Pre-treatment for Seawater Desalination

    Institute of Scientific and Technical Information of China (English)

    CUI Zhaoliang; PENG Wenbo; FAN Yiqun; XING Weihong; XU Nanping

    2013-01-01

    Pre-treatment,which supplies a stable,high-quality feed for reverse osmosis (RO) membranes,is a critical step for successful operation in a seawater reverse osmosis plant.In this study,ceramic membrane systems were employed as pre-treatment for seawater desalination.A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux.Then a pilot test was performed to investigate the long-term performance.The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only,but the effect is distinct when the cross-flow velocity varies in the transition region.The membrane fouling is slight at the permeate flux of 150 L·m-2·h-1 and the system is stable,producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0,respectively) for RO to ran for 2922.4 h without chemical cleaning.Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.

  9. Separating xylose from glucose using spiral wound nanofiltration membrane: Effect of cross-flow parameters on sugar rejection

    Science.gov (United States)

    Roli, N. F. M.; Yussof, H. W.; Seman, M. N. A.; Saufi, S. M.; Mohammad, A. W.

    2016-11-01

    A solution model consisted of two different monosaccharides namely xylose and glucose were separated using a pilot scale spiral wound cross-flow system. This system was equipped by a commercial spiral wound nanofiltration (NF) membrane, Desal-5 DK, having a molecular weight cut off (MWCO) of 150-300 g mol-1. The aim of this present work is to investigate the effect of the cross-flow parameters: the trans-membrane pressure (TMP) and the feed concentration (C0) on the xylose separation from glucose. The filtration experiments were carried out in total reflux mode with different feed concentration of 2, 5, and 10 g/L at different TMP of 5,8 and 10 bar. The performances of the NF membrane were evaluated by measuring the permeate flux and sugar rejection for each experiment. All the samples were quantified using a high performance liquid chromatography equipped by a fractive index detector. The experimental results indicated an increase in pressure from 5 to 10 bar which was a notable increase to the permeate fluxes from 2.66 × 10-3 to 4.14 × 10-3L m-2s-1. Meanwhile, an increase in the C0 increases the xylose rejection. At TMP of 10 bar and C0 of 5 g/L, the observed xylose rejection and glucose rejection were measured at 67.19% and 91.82%, respectively. The lower rejection in xylose than glucose suggested that larger glucose molecule were not able to easily pass through the membrane compared to the smaller xylose molecule. The results of this phenomena proved that NF with spiral wound configuration has the potential to separate xylose from glucose, which is valuable to the purification of xylose in xylose production as an alternative to chromatographic processes.

  10. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  11. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  12. Producing monodisperse drug-loaded polymer microspheres via cross-flow membrane emulsification: the effects of polymers and surfactants.

    Science.gov (United States)

    Meyer, Robert F; Rogers, W Benjamin; McClendon, Mark T; Crocker, John C

    2010-09-21

    Cross-flow membrane emulsification (XME) is a method for producing highly uniform droplets by forcing a fluid through a small orifice into a transverse flow of a second, immiscible fluid. We investigate the feasibility of using XME to produce monodisperse solid microspheres made of a hydrolyzable polymer and a hydrophobic drug, a model system for depot drug delivery applications. This entails the emulsification of a drug and polymer-loaded volatile solvent into water followed by evaporation of the solvent. We use a unique side-view visualization technique to observe the details of emulsion droplet production, providing direct information regarding droplet size, dripping frequency, wetting of the membrane surface by the two phases, neck thinning during droplet break off, and droplet deformation before and after break off. To probe the effects that dissolved polymers, surfactants, and dynamic interfacial tension may have on droplet production, we compare our results to a polymer and surfactant-free fluid system with closely matched physical properties. Comparing the two systems, we find little difference in the variation of particle size as a function of continuous phase flow rate. In contrast, at low dripping frequencies, dynamic interfacial tension causes the particle size to vary significantly with drip frequency, which is not seen in simple fluids. No effects due to shear thinning or fluid elasticity are detected. Overall, we find no significant impediments to the application of XME to forming highly uniform drug-loaded microspheres.

  13. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa.

  14. Pseudo-2D model of a cross-flow membrane humidifier for a PEM fuel cell under multiphase conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dalet, C.; Diny, M. [Peugeot Citroen Automobile, Carrieres sous Poissy (France). Fuel Cell Program; Maranzana, G.; Lottin, O.; Dillet, J. [Nancy Univ., Vanoeuvre les Nancy (France). Centre national de la recherche scientifique

    2009-07-01

    Membrane dehydration can reduce the performance of proton exchange membrane fuel cells (PEMFCs). However, excessive water at the inlet of the fuel cells can flood cathodes. An understanding of the coupled mass and heat transfer processes involved in membrane humidifiers is needed in order to successfully manage water in PEMFCs. This paper discussed a pseudo-2D model of a cross-flow membrane humidifier for PEMFCs. The model was used to test correlations of the water transport coefficient through a Nafion 115 membrane. The study showed that results obtained using the model differed from experimental results. The effects of inlet operating conditions, flow rates, and temperature on the performance of a planar membrane humidifier under both single- and multi-phase conditions were also investigated.

  15. Dynamic Membrane for Cross-flow Micro-filtration in Treating Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    DENG Chun-hua; LI Fang; YANG Bo; XI Dan-li; CHEN Ji-hua

    2007-01-01

    Mixed liquid of activated sludge (AS) were microfiltrated by dynamic membrane (DM) made of 6 000 mesh kaolin. The results illustrated that the permeate quality and flux with DM filtration were superior to that with direct filtration in treating AS. The experiments of membrane washing showed that DM could abate the internal fouling of membranes efficiently, and the permeate flux of renewed membrane reached 90% of that of new membranes. The denser the mixed liquid suspended solids (MLSS) were, the lower the permeate flux was. Increasing of both flow velocity over the membrane surface and trans-membrane pressure (TMP) could lead to some enhancement of permeate flux, while the former approach could be carried out more economically. The feasibility of application of the DM to membrane bioreactor (MBR) has been ascertained.

  16. Shell-side dispersion coefficients in a rectangular cross-flow hollow fibre membrane module

    NARCIS (Netherlands)

    Dindore, V. Y.; Cents, A. H. G.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Membrane processes utilizing hollow fibre membrane modules are gaining increased interest in many industrial applications. However, these modules suffer from shell-side maldistribution and bypassing which results in a loss in efficiency. The shell-side mass transfer performance of these membrane mod

  17. Shell-side dispersion coefficients in a rectangular cross-flow hollow fibre membrane module

    NARCIS (Netherlands)

    Dindore, V. Y.; Cents, A. H. G.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Membrane processes utilizing hollow fibre membrane modules are gaining increased interest in many industrial applications. However, these modules suffer from shell-side maldistribution and bypassing which results in a loss in efficiency. The shell-side mass transfer performance of these membrane

  18. Modelling of cross-flow membrane contactors : Physical mass transfer processes

    NARCIS (Netherlands)

    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Traditionally, hollow fiber membrane contactors used for gas-liquid contacting were designed in a shell and tube configuration with shell-side fluid flowing parallel to the fiber-side fluid, either in co-current or counter-current pattern. The primary limitations of these so-called 'parallel flow' c

  19. Modelling of cross-flow membrane contactors: physical mass transfer processes

    NARCIS (Netherlands)

    Dindore, V.Y.; Brilman, D.W.F.; Versteeg, G.F.

    2005-01-01

    Traditionally, hollow fiber membrane contactors used for gas–liquid contacting were designed in a shell and tube configuration with shell-side fluid flowing parallel to the fiber-side fluid, either in co-current or counter-current pattern. The primary limitations of these so-called ‘parallel flow’ c

  20. Cross-flow filtration with different ceramic membranes for polishing wastewater treatment plant effluent

    DEFF Research Database (Denmark)

    Farsi, Ali; Hammer Jensen, Sofie; Roslev, Peter

    are harmful for aquatic organism. A possible strategy to avoid this is to polish the effluent by membrane processes. Different ceramic membranes were studied to test their ability to remove inorganic and organic compounds from the effluent. Hence, various active layers such as mesoporous TiO2 (average nominal...... pore size is 15 nm), mesoporous γ-alumina (5 nm), microporous TiO2 (1nm) and microporous hybrid silica (... spectroscopy, respectively. The type and the molecular size of removed organic compounds were determined using pH, full spectrum UV and size exclusion HPLC. Inorganic N-compound rejections were calculated by N-autoanalyzer. The retention of humic like substances measured by UV254 (Fig.1) decreased almost...

  1. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chien-Hwa [Department of Civil and Environment Engineering, Nanya Institute of Technology, Taoyuan, Taiwan (China); Fang, Lung-Chen; Lateef, Shaik Khaja [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wu, Chung-Hsin, E-mail: chunghsinwu@yahoo.com.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China); Lin, Cheng-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-15

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including {alpha}-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  2. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater.

    Science.gov (United States)

    Zhang, Lin; Lu, Ying; Liu, Ying-Ling; Li, Ming; Zhao, Hai-Yang; Hou, Li-An

    2016-12-15

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7L/(m(2)h) at 0.4MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr(2+) in an alkaline solution, and could also be used to separate Na(+)/Sr(2+) mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  3. Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration

    NARCIS (Netherlands)

    Brink, van den P.; Zwijnenburg, A.; Smith, G.; Temmink, B.G.; Loosdrecht, van M.C.

    2009-01-01

    Extracellular polymeric substances (EPS) are generally negatively charged polymers. Membrane fouling in membrane bioreactors (MBRs) by EPS is therefore influenced by the water chemistry of the mixed liquor (calcium concentration, foulant concentration and ionic strength). We used alginate as a model

  4. Effect of free calcium concentration and ionic strength on alginate fouling in cross-flow membrane filtration

    NARCIS (Netherlands)

    Brink, van den P.; Zwijnenburg, A.; Smith, G.; Temmink, B.G.; Loosdrecht, van M.C.

    2009-01-01

    Extracellular polymeric substances (EPS) are generally negatively charged polymers. Membrane fouling in membrane bioreactors (MBRs) by EPS is therefore influenced by the water chemistry of the mixed liquor (calcium concentration, foulant concentration and ionic strength). We used alginate as a model

  5. Investigation of spiral-wound membrane modules for the cross-flow nanofiltration of fermentation broth obtained from a pilot plant fermentation reactor for the continuous production of lactic acid.

    Science.gov (United States)

    Laube, Hendrik; Schneider, Roland; Venus, Joachim

    2017-01-01

    The separation performance of seven polymer membranes for the nanofiltration of sodium lactate in fermentation broth was investigated. Each module was introduced into the test stand, and the system curve was obtained by recording the permeate flow velocity at different pump head levels. Performance benchmarks were good permeate quality, as determined by high permeate flow velocity, high sodium lactic concentration, low ion impurity concentration, and low organic impurity concentration. Market research has shown that three companies, DOW (TW30, SW30, NF45), General Electric (DK73, DL73), and Microdyn-Nadir (NP30), distributed spiral-wound membrane modules for cross-flow filtration in a 2.5 by 40-in. module size, suitable for operation in the filtration test stand. The measured permeate flow velocity was found to vary widely between the membranes. At a pump head of 250 m, DK73, NP30, and DL73 generated more than 200, 300, and 400% higher permeate flow velocities, respectively, than TW30 and NF45. A key benchmark, lactate rejection, was also highly dependent upon membrane type. The NP30, NF45, and TW30 membranes showed a decrease in lactate permeate flow velocity of 117, 83, and 348% starting at 205, 250, and 300 m, respectively. The DL73 had the overall best performance according to the measured fermentation broth and lactic acid permeability. The presented method for the graphical analysis of the membrane performance proofed to be a useful tool for the filtration engineer.

  6. Pengolahan Limbah Cair Industri Pewarnaan Jeans Menggunakan Membran Silika Nanofiltrasi Aliran Cross Flow untuk Menurunkan Warna dan Kekeruhan

    Directory of Open Access Journals (Sweden)

    Veny Rachmawati

    2013-09-01

    Full Text Available Limbah cair industri tekstil disamping mengandung bahan pencemar organik yang tinggi, juga mengandung bahan pewarna organik rantai panjang yang relatif sukar diolah dengan proses biologis. Sedangkan proses pengolahan secara kimia seringkali kurang efektif dikarenakan biaya untuk pembelian bahan kimianya cukup tinggi dan pada umumnya pengolahan air limbah secara kimia akan menghasilkan sludge. Sehingga dipilih teknologi membran sebagai media filtrasi baik yang digunakan pada skala laboratorium maupun industri, proses berlangsung cepat, cara pengoperasian sederhana, mudah dalam penggandaan skala, tidak memerlukan ruang yang besar, dan dapat mendapatkan permeat dengan kualitas sangat baik. Pasir silika merupakan bahan yang dapat digunakan sebagai sumber silika untuk pembuatan membran. Metode yang digunakan untuk sintesis silika yaitu metode alkalifussion dikarenakan  metode ini menghasilkan silika dengan kemurnian 99%.Membran silika merupakan membran yang terbuat dari silika dengan perekat poly vinyl alcohol (PVA, pengemulsi poly ethylen glykol (PEG, dan semen putih. Penelitian ini bertujuan untuk mengetahui pengaruh massa silika dan konsentrasi limbah terhadap koefisien rejeksi, fluks, struktur dan morfologi membran. Uji struktur dan morfologi membran dilakukan dengan FTIR serta SEM.  Parameter yang digunakan pada penelitian ini adalah warna dan kekeruhan. Nilai koefisien rejeksi tertinggi sebesar 96,86% untuk warna dan 99,31% untuk kekeruhan yang diperoleh dari massa campuran silika 5 gram (28,65  %wt, volume limbah 100% dengan kandungan warna 1,123 Co dan kekeruhan 180,5 NTU. Nilai fluks tertinggi sebesar 3,432 liter.m-2.jam-1 yang diperoleh dari massa campuran silika 8 gram (39,12 %wt dengan penggunaan volume limbah 25% yang mengandung  warna 0,525 Co dan kekeruhan 40,9 NTU. Membran silika yang optimum untuk menurunkan warna dan kekeruhan diperoleh dari massa campuran silika 5 gram (28,65  %wt dengan % volume limbah 100%.

  7. Droplet formation in a T-shaped microchannel junction: A model system for membrane emulsification

    NARCIS (Netherlands)

    Graaf, van der S.; Steegmans, M.L.J.; Sman, van der R.G.M.; Schroën, C.G.P.H.; Boom, R.M.

    2005-01-01

    Droplet formation was studied in a glass microchip with a small channel containing to-be-dispersed phase perpendicular to a large channel with a cross-flowing continuous phase. This resembles the situation during cross-flow membrane emulsification. In this model system, droplets are formed at a

  8. A novel approach to evaluate the permeability of cake layer during cross-flow filtration in the flocculants added membrane bioreactors.

    Science.gov (United States)

    Zhang, Hanmin; Gao, Jifeng; Jiang, Tao; Gao, Dawen; Zhang, Shurong; Li, Hongyan; Yang, Fenglin

    2011-12-01

    In order to obtain a better understanding of the cake layer formation mechanism in the flocculants added MBRs, a model was developed on the basis of particle packing model considering cake collapse effect and a frictional force balance equation to predict the porosity and permeability of the cake layers. The important characteristic parameters of the flocs (e.g., floc size, fractal dimensions) and operating parameters of MBRs (e.g., transmembrane pressure, cross-flow velocity) are considered in this model. With this new model, the calculated results of porosities and specific cake resistances under different MBR operational conditions agree fairly well with the experimental data.

  9. Research on Ceramic Membrane Cross-flow Deep Filtration of Heterogeneous Particle Size Suspension%非均粒悬浮液的陶瓷膜错流深滤速度研究

    Institute of Scientific and Technical Information of China (English)

    杨德武; 周庄

    2012-01-01

    根据使用陶瓷膜中存在的问题,并以非对称陶瓷膜结构特点为基础,提出了以陶瓷膜支撑层(深层)与膜层共同作为过滤介质的一种新的陶瓷膜错流深层过滤方式。用非均粒径高岭土悬浮液,经过自行设计的实验流程和错流过滤器,进行了陶瓷膜错流深层过滤等实验。对取得的实验数据进行分析对比,得到了在相同操作条件下新方式比传统错流膜过滤的过滤阻力增长减缓、过滤速度更快且更稳定等结论。%Based on the characteristic of the ceramic membrane,this thesis use the membrane layer and supporting layer together to filter suspension.this article develops a new way of ceramic membrane filtration,which is named ceramic membrane cross-flow deep filtration.Using the heterogeneous particle size suspension as the material,the experiment is finished in a self-design filter and process is also brand new.According to analysis the results which are acquired by the experiment,it is presented in this work that the rate of filtration which is obtained when the ceramic membrane filtration is applying the new way is faster and more stable than the traditional cross-flow membrane filtration.

  10. Compositional asynchronous membrane systems

    Institute of Scientific and Technical Information of China (English)

    Cosmin Bonchis; Cornel Izbasa; Gabriel Ciobanu

    2007-01-01

    This paper presents an algorithmic way of building complex membrane systems by coupling elementary membranes. Its application seems particularly valuable in the case of asynchronous membrane systems, since the resulting membrane system remains asynchronous. The composition method is based on a handshake mechanism implemented by using antiport rules and promoters.

  11. Development and Deployment of a Full-Scale Cross-Flow Filtration System for Treatment of Liquid Low-Level Waste at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kent, T.E.

    2000-05-12

    A full-scale modular solid/liquid separation (SLS) system was designed, fabricated, installed, and successfully deployed for treatment of liquid low-level waste from the Melton Valley Storage Tanks (MVSTs) at Oak Ridge National Laboratory (ORNL). The SLS module, utilizing cross-flow filtration, was operated as part of an integrated tank waste pretreatment system (otherwise known as the Wastewater Triad) to remove suspended solids and prevent fouling of ion-exchange materials and heat exchange surfaces. The information gained from this testing was used to complete design specifications for the full-scale modular SLS system in May 1997. The contract for detailed design and fabrication of the system was awarded to NUMET in July 1997, and the design was completed in January 1998. Fabrication began in March 1998, and the completed system was delivered to ORNL on December 29, 1998. Installation of the system at the MVST facility was completed in May 1999. After completing an operational readiness assessment, approval was given to commence hot operations on June 7, 1999. Operations involving two of the eight MVSTs were performed safely and with very little unscheduled downtime. Filtration of supernatant from tank W-31 was completed on June 24, 1999 and W-26 processing was completed on August 20, 1999. The total volume processed during these two campaigns was about 45,000 gal. The suspended solids content of the liquid processed from tank W-31 was lower than expected, resulting in higher-than-expected filtrate production for nearly the entire operation. The liquid processed from tank W-26 was higher in suspended solids content, and filtrate production was lower, but comparable to the rates expected based on the results of previous pilot-scale, single-element filtration tests. The quality of the filtrate consistently met the requirements for feed to the downstream ion-exchange and evaporation processes. From an equipment and controls standpoint, the modular system (pumps

  12. Simplified Heat and Mass Transfer Model for Cross-Flow and Countercurrent Flow Packed Bed Tower Dehumidifiers with a Liquid Desiccant System

    Directory of Open Access Journals (Sweden)

    Shih-Cheng Hu

    2016-12-01

    Full Text Available A mathematical model is developed using the Matlab/Simulink platform to investigate heat and mass transfer performance of cross-flow and counterflow dehumidifiers with Lithium Chloride (LiCl solution. In the liquid desiccant dehumidifier, the orthogonal polynomial basis is used to simulate the combined processes of heat and mass transfer. The temperature profiles on cross-flow and countercurrent flow dehumidifiers are demonstrated. The resultant counter flow air changes the temperature profile of the LiCl solution in the longitudinal direction because of the drag forces. In addition, when inlet airflow rate reaches 15 kg·s−1, the temperature effect becomes less obvious and may be reasonably negligible. Under these conditions, the air changes the design factor and determines the interfacial temperature. It is demonstrated that the mathematical model can be of great value in the design and improvement of cross-flow and countercurrent flow dehumidifiers.

  13. Use of dynamic membranes for the preparation of vitamin E-loaded lipid particles: An alternative to prevent fouling observed in classical cross-flow emulsification

    NARCIS (Netherlands)

    Lauoini, A.; Charcosset, C.; Fessi, H.; Schroën, C.G.P.H.

    2014-01-01

    Solid lipid particles (SLP) were introduced at the beginning of the 1990s as an alternative to encapsulation systems such as emulsions and liposomes used in cosmetic and pharmaceutical preparations. The present paper investigated for the first time the preparation of SLP based on premix emulsificati

  14. 斜接管射流流动特性数值模拟%Numerical Simulation of Flow Characteristics of Lean Jet to Cross-Flow in Safety Injection of Reactor Cooling System

    Institute of Scientific and Technical Information of China (English)

    王海军; 王为术; 贺慧宁; 罗毓珊

    2011-01-01

    In the present work, a numerical simulation was performed to study the flow characteristics of lean jet to cross-flow in a main tube in the safety injection of reactor cooling system. The influence scope and mixing characteristics of the confined lean jet in cross-flow were studied. It can be concluded that three basic flow regimes are marked, namely the attached lean jet, lift-off lean jet and impinging lean jet. The velocity ratio VR is the key factor in the flow state. The depth and region of jet to main flow are enhanced with the increase of the velocity ratio. The jet flow penetrates through the main flow with the increase of the velocity ratio. At higher velocity ratio, the jet flow strikes the main flow bottom and circumfluence happens in upriver of main flow. The vortex flow characteristics dominate the flow near region of jet to cross-flow and the mixture of jet to cross-flow. At different velocity ratio VR, the vortex grows from the same displacement, but the vortex type and the vortex is different. At higher velocity ratio, the vortex develops fleetly, wears off sharp and dies out sharp. The study is very important to the heat transfer experiments of cross-flow jet and thermal stress analysis in the designs of nuclear engineering.%采用数值模拟方法对受限斜射流的流动特性、射流发展影响区域、射流发展关键因素及射流涡特性进行研究.研究表明:受限斜射流存在附壁斜射流、离升斜射流和冲击斜射流3种基本流型.流速比(V)是斜接管射流流动特性的关键特征参数;射流影响区域随V的增大而越大;在高V下,射流强烈冲击主管底面,并在上游形成明显回流区.射流涡特性决定斜射流近区域流场特性和射流的混合;V越大,射流涡强度越大,射流涡发展、破碎和耗散越快.

  15. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  16. The use of dead-end and cross-flow nanofiltration to purify prebiotic oligosaccharides from reaction mixtures

    Directory of Open Access Journals (Sweden)

    Alistair S. Grandison

    2002-11-01

    Full Text Available Nanofiltration (NF of model sugar solutions and commercial oligosaccharide mixtures were studied in both dead-end and cross-flow modes. Preliminary trials, with a dead-end filtration cell, demonstrated the feasibility of fractionating monosaccharides from disaccharides and oligosaccharides in mixtures, using loose nanofiltration (NF-CA-50, NF-TFC-50 membranes. During the nanofiltration purification of a commercial oligosaccharide mixture, yields of 19% (w w-1 for the monosaccharides and 88% (w w-1 for di, and oligosaccharides were obtained for the NF-TFC-50 membrane after four filtration steps, indicating that removal of the monosaccharides is possible, with only minor losses of the oligosaccharide content of the mixture. The effects of pressure, feed concentration, and filtration temperature were studied in similar experiments carried out in a cross-flow system, in full recycle mode of operation. The rejection rates of the sugar components increased with increasing pressure, and decreased with both increasing total sugar concentration in the feed and increasing temperature. Continuous diafiltration (CD purification of model sugar solutions and commercial oligosaccharide mixtures using NF-CA-50 (at 25oC and DS-5-DL (at 60oC membranes, gave yield values of 14 to 18% for the monosaccharide, 59 to 89% for the disaccharide and 81 to 98% for the trisaccharide present in the feed. The study clearly demonstrates the potential of cross flow nanofiltration in the purification of oligosaccharide mixtures from the contaminant monosaccharides.

  17. A surface-renewal model of cross-flow microfiltration

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2013-03-01

    Full Text Available A mathematical model using classical cake-filtration theory and the surface-renewal concept is formulated for describing cross-flow microfiltration under dynamic and steady-state conditions. The model can predict the permeate flux and cake buildup in the filter. The three basic parameters of the model are the membrane resistance, specific cake resistance and rate of surface renewal. The model is able to correlate experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units with an average root-mean-square (RMS error of 4.6%. The experimental data are also compared against the critical-flux model of cross-flow microfiltration, which has average RMS errors of 6.3, 5.5 and 6.1% for the cases of cake filtration, intermediate blocking and complete blocking mechanisms, respectively.

  18. Cross-flow filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  19. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  20. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, David A. (Clifton Park, NY); Bacchi, David P. (Schenectady, NY); Connors, Timothy F. (Watervliet, NY); Collins, III, Edwin L. (Albany, NY)

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  1. Removal of silver from wastewater using cross flow microfiltration

    Directory of Open Access Journals (Sweden)

    Zanain M.

    2013-04-01

    Full Text Available Removal of silver from wastewater was investigated using continuous cross flow microfiltration (MF technique hollow fiber membranes with a pore size 0.2μm, with sorbent coated material Al2O3/SDSH2Dz particle size (8 μm. The coating investigated was dithizone (Diphenylthiocarbazone in 0.005M ammonia solution. In the filtration of silver ion solutions, the effects of the permeate flow rate and cross flow velocity on the absorption of silver ion solutions, and since the pore size of membrane (=0.2 μm is smaller then that of the (Al2O3, no need to consider the variation of (Al2O3.rejection as it can be considered to be 100%. The amount of silver absorbed into sorbent material Al2O3/SDSH2Dz was (25.35, 39.68 ppm for the cross flown velocity of 5, 2.5 L/hr respectively, and were the results as function of permeate flow was (25.35, 39.68 ppm for the velocity of 5, 2.5 L/hr respectively.

  2. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  3. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  4. Coordinated Control of Cross-Flow Turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  5. Research on Membrane Fouling in Cross-flow Filtration of Activated Sludge%错流过滤活性污泥过程中膜污染的研究

    Institute of Scientific and Technical Information of China (English)

    王勇; 刘鹰; 宋永辉; 沈加正; 华耀祖

    2011-01-01

    The critical flux of the membrane bloreactor with self-made filtration membrane was determined by stepwise increasing flux method. The experimental results show that the critical flux of the membrane bioreactor is 23. 8 L/( m2 · h ). The membrane fouling behavior in filtration of activated sludge was studied under the condition of subcritical flux. The results of model calculation show that the decrease of membrane flux accords with membrane resistance limit model, pore blocking resistance model and cake resistance model simultaneously. The analysis on filtration resistance distribution of the running membrane shows that the resistances caused by cake-forming and pore-blocking are the main parts of filtration resistance, which are 36. 64% and 61. 96% of the total resistance respectively, the resistance caused by membrane only accounts for 1.40% .%采用通量阶式递增法对自制未改性滤膜用于膜生物反应器时的临界通量进行了测定.实验结果表明该膜生物反应器的临界通量为23.8 L(/ m2·h).在低于临界通量的条件下,对膜过滤活性污泥的污染行为进行了研究,通过模型计算,得出膜通量的衰减同时符合膜阻力模型、孔堵塞阻力模型和滤饼层阻力模型.对运行后过滤阻力分布进行分析,结果表明滤饼层阻力和孔堵塞阻力是过滤阻力的主要组成部分,分别占到过滤阻力的36.64%和61.96%,而膜阻力仅占1.40%.

  6. Effect of Membrane Fouling by PVA Addition in Simulated EPS Solution on Cross-flow Filtration%聚乙烯醇(PVA)对模拟胞外聚合物(EPS)在错流超滤中膜污染的影响

    Institute of Scientific and Technical Information of China (English)

    王歌; 李方; 吴亮; 付乐乐

    2012-01-01

    研究了在模拟胞外聚合物(EPS)溶液中添加聚乙烯醇(PVA)对错流超滤膜过滤过程的影响.对有无添加PVA的模拟EPS溶液分别用错流平板膜进行超滤实验,用Hermia修正模型对实验数据进行拟合,分析验证膜污染机理.结果表明,无论是否添加PVA,模拟溶液的通量-时间实验数据对滤饼堵塞模型的拟合度都最高,为0.891~0.994;添加PVA的模拟EPS溶液形成的吸附阻力和膜污染阻力均比无添加的溶液高约0.5倍,滤饼比阻比无添加的溶液高约4倍,分别为2.29×1014和9.57×1014 m-1;模拟EPS溶液添加PVA后,通量对操作压力的敏感度增加,对膜面流速的敏感度却降低.%The effect of polyvinyl alcohol (PVA) addition on the performance of cross-flow membrane filtration of model extracellular polymeric substances (EPS) solution was studied. Filtrations of model EPS solution with and without PVA were conducted in a cross-flow filtration cell through ultrafiltration (UF) membranes respectively. Hermia modified model was used to check the fouling mechanism by fitting of the experimental data. The results show that the cake filtration model fits to the experimental data the best in UF experiments regardless of addition of PVA, the degree of fitting ranges from 0.891 to 0.994, the adsorption resistance and membrane pollution resistance of the model EPS solution with addition of PVA is higher by half than that of model EPS solution, the specific cake resistance is four times higher, 2.29×1014 and 9.57×1014 m-1 respectively, the sensitivity of flux to the operating pressure is increased with addition of PVA, but the sensitivity to the velocity of the membrane surface reduced.

  7. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system.

    Science.gov (United States)

    Husnain, T; Mi, B; Riffat, R

    2015-01-01

    An integrated forward osmosis (FO) and membrane distillation (MD) system has great potential for sustainable wastewater reuse. However, the fouling and long-term durability of the system remains largely unknown. This study investigates the fouling behaviour and efficiency of cleaning procedures of FO and MD membranes used for treating domestic wastewater. Results showed that a significant decline in flux of both FO and MD membranes were observed during treatment of wastewater with organic foulants. However, shear force generated by the increased cross-flow physically removed the loosely attached foulants from the FO membrane surface and resulted in 86-88% recovery of flux by cleaning with tap water. For the MD membrane, almost no flux recovery was achieved due to adsorption of organic foulants on the hydrophobic membrane surface, thus indicating significant irreversible fouling/wetting, which may not be effectively cleaned even with chemical reagents. Long-term (10 d) tests showed consistent performance of the FO membrane by rejecting the contaminants. However, organic foulants reduced the hydrophobicity of the MD membrane, caused wetting problems and allowed contaminants to pass through. The results demonstrate that combination of the FO and MD processes can effectively reduce irreversible membrane fouling and solve the wetting problem of the MD membrane.

  8. Numerical Analysis for the Air Flow of Cross Flow Fan

    Science.gov (United States)

    Sakai, Hirokazu; Tokushge, Satoshi; Ishikawa, Masatoshi; Ishihara, Takuya

    There are many factors for designing the cross flow fan. Therefore, the performance of cross flow fan is not clear yet. We can analyze the transient flow of a cross flow fan using sliding mesh approach. One of the tasks using Computational Fluid Dynamics (CFD) is a way of modeling for analysis heat exchangers with cross flow fan. These tasks are very important for design. The paper has a modeling of heat exchangers and meshing the fan blades. The next tasks, we focus the ability of cross flow fan when we change the geometry of fan blades.

  9. Synthetic membranes and membrane processes with counterparts in biological systems

    Science.gov (United States)

    Matson, Stephen L.

    1996-02-01

    Conventional synthetic membranes, fashioned for the most part from rather unremarkable polymeric materials, are essentially passive structures that achieve various industrial and biomedical separations through simple and selective membrane permeation processes. Indeed, simplicity of membrane material, structure, and function has long been perceived as a virtue of membranes relative to other separation processes with which they compete. The passive membrane separation processes -- exemplified by micro- and ultrafiltration, dialysis, reverse osmosis, and gas permeation -- differ from one another primarily in terms of membrane morphology or structure (e.g., porous, gel-type, and nonporous) and the permeant transport mechanism and driving force (e.g., diffusion, convection, and 'solution/diffusion'). The passive membrane separation processes have in common the fact that interaction between permeant and membrane material is typically weak and physicochemical in nature; indeed, it is frequently an objective of membrane materials design to minimize interaction between permeant and membrane polymer, since such strategies can minimize membrane fouling. As a consequence, conventional membrane processes often provide only modest separation factors or permselectivities; that is, they are more useful in performing 'group separations' (i.e., the separation of different classes of material) than they are in fractionating species within a given class. It has long been recognized within the community of membrane technologists that biological membrane structures and their components are extraordinarily sophisticated and powerful as compared to their synthetic counterparts. Moreover, biomembranes and related biological systems have been 'designed' according to a very different paradigm -- one that frequently maximizes and capitalizes on extraordinarily strong and biochemically specific interactions between components of the membrane and species interacting with them. Thus, in recent

  10. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  11. Development of a Comprehensive Fouling Model for a Rotating Membrane Bioreactor System Treating Wastewater

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2015-01-01

    Full Text Available Membrane bioreactors (MBRs are now main stream wastewater treatment technologies. In recent times, novel pressure driven rotating membrane disc modules have been specially developed that induce high shear on the membrane surface, thereby reducing fouling. Previous research has produced dead-end filtration fouling model which combines all three classical mechanisms that was later used by another researcher as a starting point for a greatly refined model of a cross flow side-stream MBR that incorporated both hydrodynamics and soluble microbial products’ (SMP effects. In this study, a comprehensive fouling model was created based on this earlier work that incorporated all three classical fouling mechanisms for a rotating MBR system. It was tested and validated for best fit using appropriate data sets. The initial model fit appeared good for all simulations, although it still needs to be calibrated using further appropriate data sets.

  12. Applications of membrane systems in distributed systems

    Institute of Scientific and Technical Information of China (English)

    Aneta Binder; Rudolf Freund; Georg Lojka; Marion Oswald

    2007-01-01

    Based on the biological model of cell-to-cell communication proposed by A. Rustom et al. (Science, 2004, 303: 1007-1010), we investigate the possibilities to apply P systems with dynamic channels transporting membrane vesicles for describing processes in distributed systems.

  13. CANFLEX fuel bundle cross-flow endurance test (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.

  14. A Model for Transport Phenomena in a Cross-Flow Ultrafiltration Module with Microchannels

    Directory of Open Access Journals (Sweden)

    Shiro Yoshikawa

    2010-12-01

    Full Text Available Cross-flow ultrafiltration of macromolecular solutions in a module with microchannels is expected to have the advantages of fast diffusion from the membrane surface and a high ratio of membrane surface area to feed liquid volume. Cross-flow ultrafiltration modules with microchannels are expected to be used for separation and refining and as membrane reactors in microchemical processes. Though these modules can be applied as a separator connected with a micro-channel reactor or a membrane reactor, there have been few papers on their performance. The purpose of this study was to clarify the relationship between operational conditions and performance of cross-flow ultrafiltration devices with microchannels. In this study, Poly Vinyl Pyrrolidone (PVP aqueous solution was used as a model solute of macromolecules such as enzymes. Cross-flow ultrafiltration experiments were carried out under constant pressure conditions, varying other operational conditions. The permeate flux decreased in the beginning of each experiment. After enough time passed, the permeate flux reached a constant value. The performance of the module was discussed based on the constant values of the flux. It was observed that the permeate flux increased with increasing transmembrane pressure (TMP and feed flow rate, and decreased with an increase of feed liquid concentration. A model of the transport phenomena in the feed liquid side channel and the permeation through the membrane was developed based on the concentration and velocity distributions in the feed side channel. The experimental results were compared with those based on the model and the performance of the ultrafiltration module is discussed.

  15. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  16. Cross-flow filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Second quarter technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  17. Distributed algorithms over communicating membrane systems.

    Science.gov (United States)

    Ciobanu, Gabriel

    2003-07-01

    This paper presents fundamental distributed algorithms over membrane systems with antiport carriers. We describe distributed algorithms for collecting and dispersing information, leader election in these systems, and the mutual exclusion problem. Finally, we consider membrane systems producing correct results despite some failures at some of the components or the communication links. We show that membrane systems with antiport carriers provide an appropriate model for distributed computing, particularly for message-passing algorithms interpreted here as membrane transport in both directions, namely when two chemicals behave as input and output messages and pass the membranes in both directions using antiport carriers.

  18. Development of an implantable oxygenator with cross-flow pump.

    Science.gov (United States)

    Asakawa, Yuichi; Funakubo, Akio; Fukunaga, Kazuyoshi; Taga, Ichiro; Higami, Tetsuya; Kawamura, Tsuyoshi; Fukui, Yasuhiro

    2006-01-01

    Thrombogenicity, a problem with long-term artificial lungs, is caused by blood-biomaterial interactions and is made worse by nonuniform flow, which also causes decreased gas exchange. To overcome these obstacles, we changed the inlet and added a uniform flow pump to our previous oxygenator design. Conventional membrane oxygenators have a (1/2)-inch port for the inlet of blood. These port structures make it difficult for the blood to flow uniformly in the oxygenator. In addition, the complex blood flow patterns that occur in the oxygenator, including turbulence and stagnation, lead to thrombogenicity. A cross-flow pump (CFP) can result in uniform blood flow to the inlet side of an oxygenator. In this study, we evaluated the usefulness of an integrated oxygenator with a fiber bundle porosity of 0.6 and a membrane surface area of 1.3 m2. The inlet part of the oxygenator is improved and better fits the outlet of the CFP. Each of the three models of the improved oxygenator has a different inlet taper angle. The computational fluid dynamics analysis showed that, compared with the original design, uniform flow of the integrated oxygenator improved by 88.8% at the hollow fiber membrane. With the integrated oxygenator, O2 transfer increased by an average of 20.8%, and CO2 transfer increased by an average of 35.5%. The results of our experiments suggest that the CFP, which produces a wide, uniform flow to the oxygenator, is effective in attaining high gas exchange performance.

  19. Biofouling of spiral wound membrane systems

    NARCIS (Netherlands)

    Vrouwenvelder, J.S.

    2009-01-01

    Biofouling of spiral wound membrane systems High quality drinking water can be produced with membrane filtration processes like reverse osmosis (RO) and nanofiltration (NF). Because the global demand for fresh clean water is increasing, these membrane technologies will increase in importance in the

  20. Cross-flow deep fat frying and its effect on fry quality distribution and mobility

    NARCIS (Netherlands)

    Koerten, van K.N.; Schutyser, M.A.I.; Somsen, D.; Boom, R.M.

    2016-01-01

    Conventional industrial frying systems are not optimised towards homogeneous product quality, which is partly related to poor oil distribution across the packed bed of fries. In this study we investigate an alternative frying system with an oil cross-flow from bottom to top through a packed bed o

  1. Low flow rates and high air throughput: Cross-flow blowers; Niedrige Stroemungsgeschwindigkeiten bei hohem Luftdurchsatz: Querstromventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J. [ebm-papst Landshut GmbH (Germany)

    2006-05-15

    Cross-flow blowers are everywhere, in electric towel driers, heaters, night storage heaters, floor heating systems, and open chimneys. With a diameter of only 30 mm, they are compact and effective. (orig.)

  2. In situ characterization by SAXS of concentration polarization layers during cross-flow ultrafiltration of Laponite dispersions.

    Science.gov (United States)

    Pignon, F; Abyan, M; David, C; Magnin, A; Sztucki, M

    2012-01-17

    The structural organization inside the concentration polarization layer during cross-flow membrane separation process of Laponite colloidal dispersions has been characterized for the first time by in situ time-resolved small-angle X-ray scattering (SAXS). Thanks to the development of new "SAXS cross-flow filtration cells", concentration profiles have been measured as a function of the distance z from the membrane surface with 50 μm accuracy and linked to the permeation flux, cross-flow, and transmembrane pressure registered simultaneously. Different rheological behaviors (thixotropic gel with a yield stress or shear thinning sol) have been explored by controlling the mutual interactions between the particles as a result on the addition of peptizer. The structural reversibility of the concentration polarization layer has been demonstrated being in agreement with permeation flux measurements. These observations were related to structure of the dispersions under flow and their osmotic pressure.

  3. Agricultural sprays in cross-flow and drift

    DEFF Research Database (Denmark)

    Farooq, M.; Balachandar, R.; Wulfsohn, Dvoralai

    2001-01-01

    The droplet size and velocity characteristics of an agricultural spray were studied in a wind tunnel in the presence of a non-uniform cross-flow. The spray was generated at three nozzle-operating pressures. The droplet size and velocity was measured in both the cross-flow direction and the vertical...... ratio (x/z) of two. Here, x is the distance in the cross-flow direction and z is the vertical distance below the nozzle exit. The behaviour of droplets of two particular size classes ( similar to 38 and 70 mum) were also investigated and found that the smaller droplets were subjected to an increased...

  4. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  5. The Effect of Cross Flow on Slat Noise

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2010-01-01

    This paper continues the computational examination (AIAA Journal, Vol. 45, No. 9, 2007, pp. 2174-2186) of the unsteady flow within the slat cove region of a multi-element high-lift airfoil configuration. Two simulations have been performed to examine the effect of cross flow on the near-field fluctuations and far-field acoustics. The cross flow was imposed by changing the free-stream velocity vector and modifying the Reynolds number. The cross flow does appear to alter the dynamics in the cove region, but the impact on the noise seems to be more dependent on the flow conditions. However, separating out the true effects of the cross flow from those of the Mach and Reynolds number would require additional calculations to isolate those effects.

  6. Cross-flow, filter-sorbet catalyst for particulate, SO sub 2 and NO sub x control

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This report describes a new concept for integrated pollutant control: A cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  7. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  8. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.

    Science.gov (United States)

    Ronen, Avner; Semiat, Raphael; Dosoretz, Carlos G

    2013-11-01

    The concept of suppressing biofouling formation using an antibacterial feed spacer was investigated in a bench scale-cross flow system mimicking a spiral wound membrane configuration. An antibacterial composite spacer containing zinc oxide-nanoparticles was constructed by modification of a commercial polypropylene feed spacer using sonochemical deposition. The ability of the modified spacers to repress biofilm development on membranes was evaluated in flow-through cells simulating the flow conditions in commercial spiral wound modules. The experiments were performed at laminar flow (Re = 300) with a 200 kDa molecular weight cut off polysulfone ultrafiltration membrane using Pseudomonas putida S-12 as model biofilm bacteria. The modified spacers reduced permeate flux decrease at least by 50% compared to the unmodified spacers (control). The physical properties of the modified spacer and biofilm development were evaluated using high resolution/energy dispersive spectrometry-scanning electron microscopy, atomic force microscopy and confocal laser scanning microscopy imaging (HRSEM, EDS, AFM and CLSM). HRSEM images depicted significantly less bacteria attached to the membranes exposed to the modified spacer, mainly scattered and in a sporadic monolayer structure. AFM analysis indicated the influence of the modification on the spacer surface including a phase change on the upper surface. Dead-live staining assay by CLSM indicated that most of the bacterial cells attached on the membranes exposed to the modified spacer were dead in contrast to a developed biofilm which was predominant in the control samples.

  9. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  10. A design methodology for cross flow water turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, J.; Imbault, D.; Tourabi, A. [Laboratoire Sols, Solides, Structures - Risques (3S-R) Domaine Universitaire, B.P. 53, 38041 Grenoble Cedex 9 (France)

    2010-05-15

    This contribution deals with the design of cross flow water turbines. The mechanical stress sustained by the blades depends on the basic geometrical specifications of the cross flow water turbine, its rotational speed, the exact geometry of the blades and the velocity of the upstream water current. During the operation, the blades are submitted to severe cyclic loadings generated by pressure field's variation as function of angular position. This paper proposes a simplified design methodology for structural analysis of cross flow water turbine blades, with quite low computational time. A new trapezoidal-bladed turbine obtained from this method promises to be more efficient than the classical designs. Its most distinctive characteristic is a variable profiled cross-section area, which should significantly reduce the intensity of cyclic loadings in the material and improve the turbine's durability. The advantages of this new geometry will be compared with three other geometries based on NACA0018 hydrofoil. (author)

  11. THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1996-03-01

    Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.

  12. Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Rasmussen, Michael R.

    2011-01-01

    Fouling is the main bottleneck of the widespread of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid crossflow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of e.g. impellers. Val...... as function of the angular velocity and the total suspended solids concentration....

  13. Liners for ion transport membrane systems

    Science.gov (United States)

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  14. CrossFlow: Integrating Workflow Management and Electronic Commerce

    NARCIS (Netherlands)

    Hoffner, Y.; Ludwig, H.; Grefen, P.; Aberer, K.

    2001-01-01

    The CrossFlow1 architecture provides support for cross-organisational workflow management in dynamically established virtual enterprises. The creation of a business relationship between a service provider organisation performing a service on behalf of a consumer organisation can be made dynamic when

  15. Study on an undershot cross-flow water turbine

    Science.gov (United States)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  16. Cross-flow deep fat frying and its effect on fry quality distribution and mobility.

    Science.gov (United States)

    van Koerten, K N; Schutyser, M A I; Somsen, D; Boom, R M

    2016-04-01

    Conventional industrial frying systems are not optimised towards homogeneous product quality, which is partly related to poor oil distribution across the packed bed of fries. In this study we investigate an alternative frying system with an oil cross-flow from bottom to top through a packed bed of fries. Fluidization of rectangular fries during frying was characterised with a modified Ergun equation. Mixing was visualized by using two coloured layers of fries and quantified in terms of mixing entropy. Smaller fries mixed quickly during frying, while longer fries exhibited much less mixing, which was attributed to the higher minimum fluidization velocity and slower dehydration for longer fries. The cross-flow velocity was found an important parameter for the homogeneity of the moisture content of fries. Increased oil velocities positively affected moisture distribution due to a higher oil refresh rate. However, inducing fluidization caused the moisture distribution to become unpredictable due to bed instabilities.

  17. Trajectory Analysis of Fuel Injection into Supersonic Cross Flow Based on Schlieren Method

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LI Feng; SUN Baigang

    2012-01-01

    Trajectory analysis of fuel injection into supersonic cross flow is studied in this paper.A directly-connected wind tunnel is constructed to provide stable supersonic freestream.Based on the test rig,the schlieren system is established to reveal the fuel injection process visually.Subsequently,the method of quantitative schlieren is adopted to obtain data of both fuel/air interface and bow shock with the aid of Photoshop and Origin.Finally,the mechanism based on two influential factors of fuel injection angle and fuel injection driven pressure,is researched by vector analysis.A dimensionless model is deduced and analyzed.The curve fitting result is achieved.The relationship between the data and the two influential factors is established.The results provide not only the quantitative characteristics of the fuel injection in supersonic cross flow but also the valuable reference for the future computational simulation.

  18. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  19. How to express tumours using membrane systems

    Institute of Scientific and Technical Information of China (English)

    Miguel A. Gutiérrez-Naranjo; Mario J. Pérez-Jiménez; Agustín Riscos-Nú(n)ez; Francisco J. Romero-Campero

    2007-01-01

    In this paper we discuss the potential usefulness of membrane systems as tools for modelling tumours. The approach is followed both from a macroscopic and a microscopic point of view. In the first case, one considers the tumour as a growing mass of cells,focusing on its external shape. In the second case, one descends to the microscopic level, studying molecular signalling pathways that are crucial to determine if a cell is cancerous or not. In each of these approaches we work with appropriate variants of membrane systems.

  20. Subdiffusion in a system with thin membranes.

    Science.gov (United States)

    Kosztołowicz, Tadeusz; Dworecki, Kazimierz; Lewandowska, Katarzyna D

    2012-08-01

    We study both theoretically and experimentally a process of subdiffusion in a system with two thin membranes. The theoretical model uses Green's functions obtained for the membrane system by means of the generalized method of images. These Green's functions are combinations of the fundamental solutions to a fractional subdiffusion equation describing subdiffusion in a homogenous, unbounded system. Using Green's functions we find analytical formulas describing the time evolution of concentration profiles and the time evolution of the amount of substance that remains in the region between the membranes. The concentration profiles fulfill a new boundary condition at the membrane, in which the membrane permeability is assumed to change over time according to the special formula presented in the paper. These concentration profiles fulfill a standard subdiffusion equation with fractional Riemann-Liouville time derivative only approximately, but they coincide very well with the experimental data. Fitting the theoretical functions in with the experimental results, we also estimate the subdiffusion coefficient of polyethylene glycol 2000 in agarose hydrogel.

  1. Integrated Ceramic Membrane System for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  2. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  3. Shape optimization of multi-chamber cross-flow mufflers by SA optimization

    Science.gov (United States)

    Chiu, Min-Chie; Chang, Ying-Chun

    2008-05-01

    It is essential when searching for an efficient acoustical mechanism to have an optimally shaped muffler designed specially for the constrained space found in today's plants. Because the research work of optimally shaped straight silencers in conjunction with multi-chamber cross-flow perforated ducts is rarely addressed, this paper will not only analyze the sound transmission loss (STL) of three kinds of cross-flow perforated mufflers but also will analyze the optimal design shape within a limited space. In this paper, the four-pole system matrix used in evaluating acoustic performance is derived by using the decoupled numerical method. Moreover, a simulated annealing (SA) algorithm, a robust scheme in searching for the global optimum by imitating the softening process of metal, has been adopted during shape optimization. To reassure SA's correctness, the STL's maximization of three kinds of muffles with respect to one-tone and dual-tone noise is exemplified. Furthermore, the optimization of mufflers with respect to an octave-band fan noise by the simulated algorithm has been introduced and fully discussed. Before the SA operation can be carried out, an accuracy check of the mathematical model with respect to cross-flow perforated mufflers has to be performed by Munjal's analytical data and experimental data. The optimal result in eliminating broadband noise reveals that the cross-flow perforated muffler with more chambers is far superior at noise reduction than a muffler with fewer chambers. Consequently, the approach used for the optimal design of noise elimination proposed in this study is certainly easy and efficient.

  4. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  5. Experimental study on revolving cross-flow microfiltration of highly viscous liquids%高黏度液体错流旋转微滤实验研究

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvi-nylidene fluoride (PVDF, 0.1 μm), cellulose acetate (CA, 0.22 μm), sulfonated polyethersulfone (SPES, 0.22 μm) and polyamide (PA, 0.45 μm), respectively, were used in filtration experiments. The dependence of the filtrate mass of the cross-flow MF on time was measured on-line. The experimental results showed that the effect of the cross-flow on high viscosity medium was more significant than that on the low viscosity one.

  6. Applying Membrane Systems in Food Engineering

    OpenAIRE

    Escuela, Gabi; Hinze, Thomas; Dittrich, Peter; Schuster, Stefan; Moreno Álvarez, Mario; Research Group on Natural Computing (Universidad de Sevilla) (Coordinador)

    2010-01-01

    Food engineering deals with manufacturing, packaging and distributing systems for drug and food products. In this work, we discuss about the applicability of membrane systems to model environmental conditions and their e ects on the produces during storage of fresh fruits and vegetables. In particular, we are interested in abstract molecular interactions that occur between produce, lm and surrounding atmosphere factors involved in fresh fruit and vegetable package designs. We ...

  7. A new way to apply ultrasound in cross-flow ultrafiltration: application to colloidal suspensions.

    Science.gov (United States)

    Hengl, N; Jin, Y; Pignon, F; Baup, S; Mollard, R; Gondrexon, N; Magnin, A; Michot, L; Paineau, E

    2014-05-01

    A new coupling of ultrasound device with membrane process has been developed in order to enhance cross-flow ultrafiltration of colloidal suspensions usually involved in several industrial applications included bio and agro industries, water and sludge treatment. In order to reduce mass transfer resistances induced by fouling and concentration polarization, which both are main limitations in membrane separation process continuous ultrasound is applied with the help of a vibrating blade (20 kHz) located in the feed channel all over the membrane surface (8mm between membrane surface and the blade). Hydrodynamic aspects were also taking into account by the control of the rectangular geometry of the feed channel. Three colloidal suspensions with different kinds of colloidal interaction (attractive, repulsive) were chosen to evaluate the effect of their physico-chemical properties on the filtration. For a 90 W power (20.5 W cm(-2)) and a continuous flow rate, permeation fluxes are increased for each studied colloidal suspension, without damaging the membrane. The results show that the flux increase depends on the initial structural properties of filtered dispersion in terms of colloidal interaction and spatial organizations. For instance, a Montmorillonite Wyoming-Na clay suspension was filtered at 1.5 × 10(5)Pa transmembrane pressure. Its permeation flux is increased by a factor 7.1, from 13.6 L m(-2)h(-1) without ultrasound to 97 L m(-2)h(-1) with ultrasound.

  8. Application of Cross-Flow Filtration Technique in Purification and Concentration of Juice from Vietnamese Fruits

    Directory of Open Access Journals (Sweden)

    Huynh Cang Mai

    2017-09-01

    Full Text Available This study is to offer a 1st insight in the use of membrane process for the purification and concentration of Vietnamese fruit juices: cashew apple (Anacardium occidentale Line., dragon fruit (Cactus hémiépiphytes, pineapple (Ananas comosus, pomelo (Citrus grandis L., and gac aril oil (Momordica cochinchinensis Spreng.. On a laboratory scale, the effect of different operating parameters such as trans-membrane pressures (TMP, temperature and membrane pore sizes on permeate flux was determined in order to optimize process conditions that would ensure acceptable flux with adequate juice quality. The quality of the samples coming from the ultrafiltration (UF process was evaluated in terms of: total soluble solids (TSS, suspended solids (SS, and vitamin C. For example, the purification process of cashew apple juice by cross-flow filtration was optimized at 0.5 μm membrane pore size, 2.5 bars TMP, and 60 min filtration time. Besides, this technique was applied to enhance carotenoids concentration from gac oil. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. Carotenoids were concentrated higher than that in feeding oil.

  9. Cross-flow, filter-sorbet catalyst for particulate, SO{sub 2} and NO{sub x} control. Fourth quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This report describes a new concept for integrated pollutant control: A cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  10. Thermal-hydraulic study on cross-flow mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Atsuhiko; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In order to remove the high heat density generated in the mercury target effectively under the 1 MW proton beam operation, we have proposed the Cross Flow Type (CFT) target using bladed flow distributors. From three-dimensional numerical simulations using the general-purpose computational fluid dynamics (CFD) code (STAR-CD), it was found that the maximum local temperature rise could be suppressed less than 58.2 K under mercury flow rate of 40 m{sup 3}/h. This paper presents the current CFD analytical results of the 1 MW CFT mercury target. (author)

  11. Carotenoids concentration of Gac (Momordica cochinchinensis Spreng.) fruit oil using cross-flow filtration technology.

    Science.gov (United States)

    Mai, Huỳnh Cang; Truong, Vinh; Debaste, Frédéric

    2014-11-01

    Gac (Momordica cochinchinensis Spreng.) fruit, a traditional fruit in Vietnam and other countries of eastern Asia, contains an oil rich in carotenoids, especially lycopene and β-carotene. Carotenoids in gac fruit oil were concentrated using cross-flow filtration. In total recycle mode, effect of membrane pore size, temperature, and transmembrane pressure (TMP) on permeate flux and on retention coefficients has been exploited. Resistance of membrane, polarization concentration, and fouling were also analyzed. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. In batch mode, retentate was analyzed through index of acid, phospholipids, total carotenoids content (TCC), total antioxidant activity, total soluble solids, total solid content, color measurement, and viscosity. TCC in retentate is higher 8.6 times than that in feeding oil. Lipophilic antioxidant activities increase 6.8 times, while hydrophilic antioxidant activities reduce 40%. The major part of total resistance is due to polarization (55%) while fouling and intrinsic membrane contribute about 30% and 24%, respectively. © 2014 Institute of Food Technologists®

  12. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become m

  13. The Role of Mass Transfer in Membrane Systems

    Directory of Open Access Journals (Sweden)

    Levent Gürel

    2015-12-01

    Full Text Available Membranes are situated in the foreground among the considerably popular treatment systems in the last years. The use of membranes was become widespread in many fields such as drinking water treatment, wastewater treatment and obtaining drinking water from sea water. The predominance of membranes against the classical systems regarding the wastewater treatment, and the decreasing cost of membrane materials each day provided these systems to enter among the preferable options. There are considerably different types of membranes. Microfiltration (MF, ultrafiltration (UF, nanofiltration (NF and reverse osmosis (RO are the processes drawing most attention. One of the most important considerations in membrane processes is the amount of constituents passing from the membrane and rejecting by the membrane. Mass transfer concept arises in this place. Mass transfer is a critically important case used in the design of treatment systems and the estimation of efficiency. In addition to the points mentioned above, investigation of mass transfer occurring in membranes is important in comparing of different membrane types. In this review article, general information about the membranes, membrane types, uses of membranes and module designs are given, concept of mass transfer is viewed and the mass transfer processes realizing in these treatment systems are assessed.

  14. Intracycle Angular Velocity Control of Cross-Flow Turbines

    CERN Document Server

    Strom, Benjamin; Polagye, Brian

    2016-01-01

    Cross-flow turbines, also known as vertical-axis turbines, have numerous features that make them attractive for wind and marine renewable energy. To maximize power output, the turbine blade kinematics may be controlled during the course of the blade revolution, thus optimizing the unsteady fluid dynamic forces. Dynamically pitching the blades, similar to blade control in a helicopter, is an established method. However, this technique adds undesirable mechanical complexity to the turbine, increasing cost and reducing durability. Here we introduce a novel alternative requiring no additional moving parts: we optimize the turbine rotation rate as a function of blade position resulting in motion (including changes in the effective angle of attack) that is precisely timed to exploit unsteady fluid effects. We demonstrate experimentally that this approach results in a 79% increase in power output over industry standard control methods. Analysis of the fluid forcing and blade kinematics show that maximal power is ach...

  15. Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles

    Science.gov (United States)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    2005-12-01

    Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (αtube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.

  16. Modelling of a cross flow evaporator for CSP application

    DEFF Research Database (Denmark)

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo

    2016-01-01

    ) applications. Heat transfer and pressure drop prediction methods are an important tool for design and modelling of diabatic, two-phase, shell-side flow over a horizontal plain tubes bundle for a vertical up-flow evaporator. With the objective of developing a model for a specific type of cross flow evaporator....... The influence on the analysis of the performance of the evaporator, their impact on significant design variables and the effective lifetime of critical components in different operating conditions, simulating the daily start-up procedures of the steam generator is evaluated. The importance of a good calibration...... for a coil type steam generator specifically designed for solar applications, this paper analyzes the use of several heat transfer, void fraction and pressure drop correlations for the modelling the operation of such a type of steam generator. The paper after a brief review of the literature about...

  17. In situ characterization of fouling in reverse osmosis membranes using electrical impedance spectroscopy

    Science.gov (United States)

    Chilcott, Terry; Antony, Alice; Coster, Hans; Leslie, Greg

    2013-04-01

    Analytical solutions of the Nernst-Planck, Poisson and continuity equations for a membrane undergoing reverse osmosis in a cross-flow system reveal that the flow of alternating ionic charge induced in the membrane during impedance measurements is actively assisted by the flow of water. The actively driven current manifested "inductive" responses in impedance measurements of a Filmtec BW30 reverse osmosis membrane mounted in an Inphaze flat-bed cross-flow module after 16 hours of filtering a mineral salt solution seeded with CaCl2 and NaHCO3 at pressure of 900 kPa. Fitted transfer functions resolved conduction and capacitive properties of four membrane layers, diffusion/concentration phenomenon and a pseudo "inductor" shunted by a conductor. A 10-fold decrease in the shunt conductance correlated with smaller increases in the conductance values for the filtrate and membranous layers, and the onset of fouling diagnosed by a rapid increase in flux decline.

  18. Study on the heat transfer of cross flow in vertical upward tubes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A special device was designed to measure temperature difference in this study of heat transfer of water and oil cross flow inside vertical upward tubes. A new heat transfer correlation was obtained for cross flow. The experimental results showed that the dependence of heat transfer on Reynolds is much smaller in a narrow space than that in a wide space. It was found that the heat transfer correlation of cross flow in a narrow space is obviously different from that in a wide space, and that the heat transfer correlation obtained in a wide space may not be applicable to the cross-flow heat transfer in a narrow space. Further, the single-phase heat transfer capability of water cross flow was compared with that of oil cross flow. The experimental results showed that the average heat transfer coefficient of water is about 2~3 times that ofoil when they have the same superficial velocity.

  19. Iontophoretic Transport Across a Multiple Membrane System

    OpenAIRE

    Molokhia, Sarah A.; Zhang, Yanhui; Higuchi, William I.; Li, S. Kevin

    2008-01-01

    The objective of the present study was to investigate the iontophoretic transport behavior across multiple membranes of different barrier properties. Spectra/Por® (SP) and Ionac membranes were the synthetic membranes and sclera was the biomembrane in this model study. The barrier properties of SP membranes were determined individually in passive and iontophoresis transport experiments with tetraethylammonium ion (TEA), chloride ion (Cl), and mannitol as the model permeants. Passive and iontop...

  20. A porous stainless steel membrane system for extraterrestrial crop production

    Science.gov (United States)

    Koontz, H. V.; Prince, R. P.; Berry, W. L.; Knott, W. M. (Principal Investigator)

    1990-01-01

    A system was developed in which nutrient flow to plant roots is controlled by a thin (0.98 or 1.18 mm) porous (0.2 or 0.5 microns) stainless steel sheet membrane. The flow of nutrient solution through the membrane is controlled by adjusting the relative negative pressure on the nutrient solution side of the membrane. Thus, the nutrient solution is contained by the membrane and cannot escape from the compartment even under microgravity conditions if the appropriate pressure gradient across the membrane is maintained. Plant roots grow directly on the top surface of the membrane and pull the nutrient solution through this membrane interface. The volume of nutrient solution required by this system for plant growth is relatively small, since the plenum, which contains the nutrient solution in contact with the membrane, needs only to be of sufficient size to provide for uniform flow to all parts of the membrane. Solution not passing through the membrane to the root zone is recirculated through a reservoir where pH and nutrient levels are controlled. The size of the solution reservoir depends on the sophistication of the replenishment system. The roots on the surface of the membrane are covered with a polyethylene film (white on top, black on bottom) to maintain a high relative humidity and also limit light to prevent algal growth. Seeds are sown directly on the stainless steel membrane under the holes in the polyethylene film that allow a pathway for the shoots.

  1. Effect of inner guide on performances of cross flow turbine

    Science.gov (United States)

    Kokubu, K.; Yamasaki, K.; Honda, H.; Kanemoto, T.

    2012-11-01

    To get the sustainable society, the hydropower with not only the large but also the mini/micro capacity has been paid attention to the power generation. The cross-flow turbines can work efficiently at the comparatively low head and/or low discharge in the onshore and the offshore, and the runner and the casing profiles have been optimizing. In this paper, the turbine composed of the optimal profiles has prepared to provide for the mini/micro hydropower, and the performances have been investigated at the low head. The hydraulic efficiency is maximal at the normal guide vane opening and deteriorates at the lower and the higher discharge than the normal discharge. Such deteriorations are brought from the unacceptable flow conditions crossing in the runner, that is, the flow direction does not meet the setting angle of the blade at the inner radius. To improve dramatically the performances, the inner guide, which guards the shaft from the water jet and adjusts the flow direction, was installed in the runner.

  2. Nanofibrous membrane-based absorption refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature, and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.

  3. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    Science.gov (United States)

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  4. Numerical study of a M-cycle cross-flow heat exchanger for indirect evaporative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Changhong [Department of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); School of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Zhao, Xudong; Smith, Stefan [Institute of Energy and Sustainable Development, De Montfort University, The Gateway, Leicester LE1 9BH (United Kingdom); Riffat, S.B. [Department of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-03-15

    In this paper, numerical analyses of the thermal performance of an indirect evaporative air cooler incorporating a M-cycle cross-flow heat exchanger has been carried out. The numerical model was established from solving the coupled governing equations for heat and mass transfer between the product and working air, using the finite-element method. The model was developed using the EES (Engineering Equation Solver) environment and validated by published experimental data. Correlation between the cooling (wet-bulb) effectiveness, system COP and a number of air flow/exchanger parameters was developed. It is found that lower channel air velocity, lower inlet air relative humidity, and higher working-to-product air ratio yielded higher cooling effectiveness. The recommended average air velocities in dry and wet channels should not be greater than 1.77 m/s and 0.7 m/s, respectively. The optimum flow ratio of working-to-product air for this cooler is 50%. The channel geometric sizes, i.e. channel length and height, also impose significant impact to system performance. Longer channel length and smaller channel height contribute to increase of the system cooling effectiveness but lead to reduced system COP. The recommend channel height is 4 mm and the dimensionless channel length, i.e., ratio of the channel length to height, should be in the range 100 to 300. Numerical study results indicated that this new type of M-cycle heat and mass exchanger can achieve 16.7% higher cooling effectiveness compared with the conventional cross-flow heat and mass exchanger for the indirect evaporative cooler. The model of this kind is new and not yet reported in literatures. The results of the study help with design and performance analyses of such a new type of indirect evaporative air cooler, and in further, help increasing market rating of the technology within building air conditioning sector, which is currently dominated by the conventional compression refrigeration technology. (author)

  5. CrossFlow: Cross-Organizational Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises

    NARCIS (Netherlands)

    Grefen, Paul; Aberer, Karl; Ludwig, Heiko; Hoffner, Yigal

    2001-01-01

    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on dyna

  6. CrossFlow: Cross-Organizational Workflow Management in Dynamic Virtual Enterprises

    NARCIS (Netherlands)

    Grefen, Paul; Aberer, Karl; Hoffner, Yigal; Ludwig, Heiko

    2000-01-01

    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on dyna

  7. CrossFlow: cross-organizational workflow management in dynamic virtual enterprises

    NARCIS (Netherlands)

    Grefen, Paul; Aberer, Karl; Hoffner, Yigal; Ludwig, Heiko

    2000-01-01

    This paper gives a detailed overview of the approach to cross-organizational workflow management developed in the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enter

  8. A Study on the Uncertainty of Flow-Induced Vibration in a Cross Flow over Staggered Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Park, Jong-Woon [Dongguk univ, Gyeong Ju (Korea, Republic of); Choi, Hyeon-Kyeong [HanNam University, Daejeon (Korea, Republic of)

    2015-05-15

    Cross-flow in many support columns of very high temperature reactor (VHTR) lower plenum would have FIV issues under high speed flow jetting from the core. For a group of multiple circular cylinders subjected to a cross-flow, three types of potential vibration mechanisms may exist: (1) Vortex-induced vibration (VIV), (2) Fluid-elastic vibration (FEV) and (3) Turbulence-induced vibration (TIV). Kevalahan studied the free vibration of circular cylinders in a tightly packed periodic square inline array of cylinders. Pandey et al. studied the flue gas flow distribution in the Low Temperature Super Heater (LTSH) tube bundles situated in second pass of a utility boiler and the phenomenon of flow induced vibration. Nakamura et al. studied flow instability of cylinder arrays resembling U-bend tubes in steam generators. The FIV evaluation is usually performed with computational fluid dynamic (CFD) analysis to obtain unknown frequency of oscillation of the multiple objects under turbulent flow and thus the uncertainty residing in the turbulence model used should be quantified. In this paper, potential FIV uncertainty arising from the turbulence phenomena are evaluated for a typical cross flow through staggered tube bundles resembling the VHTR lower plenum support columns. Flow induced vibration (FIV) is one of the important mechanical and fatigue issues in nuclear systems. Especially, cross-flow in many support structures of VHTR lower plenum would have FIV issues under highly turbulent jet flows from the core. The results show that the effect of turbulence parameters on FIV is not negligible and the uncertainty is 5 to 10%. Present method can be applied to future FIV evaluations of nuclear systems. More extensive studies on flow induced vibration in a plant scale by using more rigorous computational methods are under way.

  9. An Extended Membrane System with Active Membranes to Solve Automatic Fuzzy Clustering Problems.

    Science.gov (United States)

    Peng, Hong; Wang, Jun; Shi, Peng; Pérez-Jiménez, Mario J; Riscos-Núñez, Agustín

    2016-05-01

    This paper focuses on automatic fuzzy clustering problem and proposes a novel automatic fuzzy clustering method that employs an extended membrane system with active membranes that has been designed as its computing framework. The extended membrane system has a dynamic membrane structure; since membranes can evolve, it is particularly suitable for processing the automatic fuzzy clustering problem. A modification of a differential evolution (DE) mechanism was developed as evolution rules for objects according to membrane structure and object communication mechanisms. Under the control of both the object's evolution-communication mechanism and the membrane evolution mechanism, the extended membrane system can effectively determine the most appropriate number of clusters as well as the corresponding optimal cluster centers. The proposed method was evaluated over 13 benchmark problems and was compared with four state-of-the-art automatic clustering methods, two recently developed clustering methods and six classification techniques. The comparison results demonstrate the superiority of the proposed method in terms of effectiveness and robustness.

  10. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Science.gov (United States)

    Hanuszkiewicz-Drapała, Małgorzata; Bury, Tomasz; Widziewicz, Katarzyna

    2016-03-01

    A cross-flow, tube and fin heat exchanger of the water - air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  11. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  12. Bio-Gas production from municipal sludge waste using anaerobic membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Lee, S.

    2009-07-01

    A laboratory scale anaerobic membrane bioreactor (AnMBR) system for the bio-methane gas production was operated for 60 days with municipal sludge wastes as a sole carbon source. The AnMRR system utilized the external cross-flow membrane module and was equipped with on-line data acquisition which enables continuous monitoring of the performance of both bioreactor and membrane through the analyses of pH, temperature, gas production; permeate flow rate, and transmembrane pressure (TMP). Such a configuration also provides an efficient tool to study rapid variations of monitoring membrane pressure (TMP). (Author)

  13. Playing with partial knowledge in membrane systems: A logical approach

    DEFF Research Database (Denmark)

    Cavaliere, Matteo; Mardare, Radu Iulian

    2006-01-01

    M. Cavaliere, R. Mardare. Playing with partial knowledge in membrane systems: A logical approach. In Proc. of the seventh Workshop on Membrane Computing - At the Crossroads of Cell Biology and Computation (WMC2006), Lecture Notes in Computer Science 4361:279-297, Springer, 2006......M. Cavaliere, R. Mardare. Playing with partial knowledge in membrane systems: A logical approach. In Proc. of the seventh Workshop on Membrane Computing - At the Crossroads of Cell Biology and Computation (WMC2006), Lecture Notes in Computer Science 4361:279-297, Springer, 2006...

  14. Membrane-Organized Chemical Photoredox Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, James K.

    2014-09-18

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  15. Performance Evaluation, Emulation, and Control of Cross-Flow Hydrokinetic Turbines

    Science.gov (United States)

    Cavagnaro, Robert J.

    Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical

  16. Systems biology of cellular membranes: a convergence with biophysics.

    Science.gov (United States)

    Chabanon, Morgan; Stachowiak, Jeanne C; Rangamani, Padmini

    2017-09-01

    Systems biology and systems medicine have played an important role in the last two decades in shaping our understanding of biological processes. While systems biology is synonymous with network maps and '-omics' approaches, it is not often associated with mechanical processes. Here, we make the case for considering the mechanical and geometrical aspects of biological membranes as a key step in pushing the frontiers of systems biology of cellular membranes forward. We begin by introducing the basic components of cellular membranes, and highlight their dynamical aspects. We then survey the functions of the plasma membrane and the endomembrane system in signaling, and discuss the role and origin of membrane curvature in these diverse cellular processes. We further give an overview of the experimental and modeling approaches to study membrane phenomena. We close with a perspective on the converging futures of systems biology and membrane biophysics, invoking the need to include physical variables such as location and geometry in the study of cellular membranes. WIREs Syst Biol Med 2017, 9:e1386. doi: 10.1002/wsbm.1386 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  17. 用于浆态床费托合成的错流过滤数学模型的研究进展%Research Advances in Mathematic Modeling of Cross-flow Filtration for Slurry Fischer-Tropsch Synthesis Technology

    Institute of Scientific and Technical Information of China (English)

    郑博; 唐晓津; 张占柱; 宗保宁

    2011-01-01

    The fouling mechanisms of membrane in the cross-flow filtration for the slurry Fischer-Tropsch synthesis technology (SFTST) were discussed. The research advances of mathematic modeling in cross-flow filtration for SFTST in literature were reviewed in both three-phase and two-phase systems. Based on different resistances, the models can be divided into blocked resistance, cake resistance and combined resistance. It is supposed that the combined resistance in cross-flow filtration for SFTST will be the further research direction.%分析了浆态床费托合成错流过滤过程中滤膜污染的机理,并分别综述了三相过滤和两相过滤过程中数学模型的研究进展根据阻力不同,将模型分为堵塞阻力模型、滤饼层阻力模型和组合阻力模型.在对现有模型研究总结的基础上,通过对比和分析指出了组合阻力模型是浆态床费托合成错流过滤数学模型研究的方向.

  18. Cake layer reduction by gas sparging cross flow ultrafiltration of skim latex serum

    Directory of Open Access Journals (Sweden)

    Harunsyah Nik Meriam Sulaiman

    2002-11-01

    Full Text Available A gas sparged method was investigated for reducing cake layer formation and enhancing the crossflow ultrafiltration process. The injection of nitrogen gas promotes turbulence and increases the permeate flux of the process fluid. Experiments were carried out using a tubular membrane (100 kDa MWCO,mounted vertically with skim latex serum, which results from the coagulation of skim latex by-product. The objective of this research was focused mainly on the observed reversible cake resistance during the cross flow ultrafiltration of skim latex serum. The effect of operating parameters, including feed flow rate, flowrate gas sparging and transmembrane pressure ware investigated. Results obtained thus far show that the use of gas sparged technique has been able to enhance total permeate flux in the range 8.29% to 145.33% compared to non-gas sparged condition. In this research optimum permeate flux was obtained at a feed flowrate of 1400 ml/min, a flowrate gas sparging of 500 ml/min and a transmembrane pressure of 0.89 barg.

  19. Cavity flow control using a rod in cross flow

    Science.gov (United States)

    Sarpotdar, Shekhar

    For a variety of aerodynamic conditions and geometric configurations fluid structure interactions give rise to a reverberant field. This phenomenon, referred to as resonant acoustics, has practical importance due to its undesirable effects such as noise, structural loading, and unsteady flow field. Several flow control technologies exist but they lose efficacy at off-design conditions. With the focus on expanding their operating envelope, the present work investigates the physics of the flow control using a combination of detailed experimental measurements and theoretical analysis. The model resonant acoustic flow problem that we chose for our study is cavity tones, i.e., the high intensity acoustic tones produced by high speed air moving over rectangular cavity. The flow control actuator is a rod in cross flow, i.e., a thin horizontal rod placed upstream of the cavity. In the present work, a detailed experimental study has been undertaken to characterize the acoustics, mean velocity field as well as the pressure perturbation field both inside and outside of the cavity. Control cases with contrasting suppression results are chosen to illustrate important aspects of the mean flow field. To investigate whether the cylinder, through its wake, changes the stability characteristics of the shear layer that develops over the cavity, stability analysis of the shear layer is undertaken. First, stability of artificial velocity profiles that are prototypical of the experimentally measured velocity profiles is investigated; in order to determine what parameters of the velocity profiles influence the stability of the shear layer the most. Next stability of experimentally measured velocity profiles is evaluated to calculate integrated growth rates along the length of the cavity. Mean velocity data is also used to elucidate the shear layer lift off mechanism of the rod. Both integrated growth range and shear layer lift off data are compared with the acoustic suppression results

  20. Focus control system for stretched-membrane mirror module

    Science.gov (United States)

    Butler, Barry L.; Beninga, Kelly J.

    1991-01-01

    A focus control system dynamically sets and controls the focal length of a reflective membrane supported between a perimeter frame. A rear membrane is also supported between the perimeter frame rearward and spaced apart from a back side of the reflective membrane. The space between the membranes defines a plenum space into which a mass of gas at a first pressure is inserted. The pressure differential between the first pressure and an external pressure, such as the atmospheric pressure, causes the reflective membrane to assume a first curvature relative to a reference plane associated with the perimeter frame. This curvature defines the focal length of the reflective membrane. The focal length is dynamically controlled by changing the volume of the plenum space, thereby changing the first pressure. The system can be used to change or maintain the pressure differential and hence the front membrane curvature. The plenum volume is changed by pushing or pulling on a central section of the rear membrane using a suitable actuator. Sensing means continuously sense the location of the reflective membrane relative to the reference plane. This sensed position is compared to a reference position, and a resulting error signal, comprising the difference between the sensed position and reference position, drives the actuator in a direction to minimize the difference. A vent value compensates for temperature changes or leaks in the closed volume by allowing the pressure differential to be adjusted as required to center the working range of the actuator about the desired focal length.

  1. Experimental Investigation on Cross Flow of Wedge-shaped Gap in the core of Prismatic VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Park, Goon Cherl; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of); Yoon, Su Jong [Idaho National Laboratory, Idaho Falls (United States)

    2014-10-15

    The core of the PMR type reactor consists of assemblies of hexagonal graphite blocks. The graphite blocks have lots of advantages for neutron economy and high temperature structural integrity. The height and flat-to-flat width of fuel bock are 793 mm and 360 mm, respectively. Each block has 108 coolant channels of which the diameter is 16 mm. And there are gaps between blocks not only vertically but also horizontally for reloading of the fuel elements. The vertical gap induces the bypass flow and through the horizontal gap the cross flow is formed. Since the complicated flow distribution occurs by the bypass flow and cross flow, flow characteristics in the core of the PMR reactor cannot be treated as a simple pipe flow. The fuel zone of the PMR core consists of multiple layers of fuel blocks. The shape change of the fuel blocks could be caused by the thermal expansion and fast-neutron induced shrinkage. It could make different axial shrinkage of fuel block and this leads to wedge-shaped gaps between two stacked fuel blocks. The cross flow is often considered as a leakage flow through the horizontal gap between stacked fuel blocks and it complicates the flow distribution in the reactor core by connecting the coolant channel and the bypass gap. Moreover, the cross flow could lead to uneven coolant distribution and consequently cause superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. To develop the cross flow loss coefficient model for determination of the flow distribution for PMR core analysis codes, study on cross flow for PMR200 core is essential. In particular, to predict the amount of flow through the cross flow gap, obtaining accurate flow loss coefficient is important. In this study, the full-scale cross flow experimental facility was constructed to

  2. Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.

    Science.gov (United States)

    Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-01

    Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions.

  3. A clinoptilolite-PDMS mixed-matrix membrane for high temperature water softening.

    Science.gov (United States)

    Yazdanbakhsh, Farzad; Alizadehgiashi, Moien; Sawada, James A; Kuznicki, Steven M

    2016-01-01

    A mixed-matrix membrane composed of polydimethylsiloxane (PDMS) as the continuous phase and clinoptilolite, a naturally occurring zeolite, as the active phase has been used to decrease the conductivity of water by more than 80% across the membrane. Testing was carried out using a cross-flow configuration at temperatures as high as 160 °C using a constant transmembrane pressure of 8 bar. The simple fabrication method for the membrane, the durability of the system under the test conditions, and a suitable flux rate make such membranes promising candidates for industrial wastewater treatment.

  4. Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: characterization at multi-scales.

    Science.gov (United States)

    Jin, Y; Hengl, N; Baup, S; Pignon, F; Gondrexon, N; Sztucki, M; Romdhane, A; Guillet, A; Aurousseau, M

    2015-06-25

    This study investigates for the first time the behaviors of starch and cellulose nanocrystals (SNC and CNC) suspensions which are simultaneously subjected to pressure, shear flow and ultrasound (US) during cross-flow ultrafiltration. This multi-forces process was characterized from macro-scales to nano-scales, with a custom designed "SAXS Cross-Flow US-coupled Filtration Cell". In addition, rheological behaviors of SNC samples at different concentrations/temperatures have been investigated. In both cases (ultrafiltration of SNC and CNC suspensions), better performances were observed with US. The in-situ SAXS measurements revealed that for SNC suspensions, no structure change occurred at the length scales range from 10 to 60nm in this multi-forces process, while CNC particles exhibited an ordered arrangement within the concentrated layer during the same process. SNC particles accumulated on the membrane surface forming a "fragile" concentrated layer which was removed very quickly by subsequent applied US. In contrary, the CNC particles accumulation was very severe, the additional ultrasonic force led to a disruption but not a totally removal of the CNC concentrated layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A novel lipoprotein nanoparticle system for membrane proteins

    Science.gov (United States)

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  6. Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    李国能; 郑友取; 胡桂林; 张治国

    2014-01-01

    Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.

  7. LES of turbulent jet in cross-flow: Part 1 – A numerical validation study

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2012-01-01

    The paper presents results of a LES based numerical simulation of the turbulent jet-in-cross-flow (JICF) flowfield, with Reynolds number based on cross-flow velocity and jet diameter Re=2400 and jet-to-cross-flow velocity ratio of R=3.3. The JICF flow case has been investigated in great detail......, involving conduction of two independent precursor simulations, prior to the main JICF simulation, as the considered case has turbulent inflow conditions on both jet and cross-stream side. The LES results are directly compared to pointwise Laser Doppler Anemometry (LDA) measurements, showing a very good...... agreement on the level of various statistical quantities in all flow regions but the immediate jet-to-cross-flow exhaustion zone. Several LES computations involving grids of up to 15million grid points have been conducted, showing no improvement in the agreement between numerical results and measurements...

  8. Applications of membrane computing in systems and synthetic biology

    CERN Document Server

    Gheorghe, Marian; Pérez-Jiménez, Mario

    2014-01-01

    Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological systems, becoming with time a thorough modeling paradigm comparable, in its modeling and predicting capabilities, to more established models in this area. This book is the result of the need to collect, in an organic way, different facets of this paradigm. The chapters of this book, together with the web pages accompanying th...

  9. Application of reverse osmosis membrane system for treatment of ...

    African Journals Online (AJOL)

    Application of reverse osmosis membrane system for treatment of effluent in textile knitted fabric dyeing. ... African Journal of Biotechnology ... The textile industry consumes a vast quantity of water and generates an equally vast quantity of ...

  10. Study on an Undershot Cross-Flow Water Turbine with Straight Blades

    OpenAIRE

    Yasuyuki Nishi; Terumi Inagaki; Yanrong Li; Kentaro Hatano

    2015-01-01

    Small-scale hydroelectric power generation has recently attracted considerable attention. The authors previously proposed an undershot cross-flow water turbine with a very low head suitable for application to open channels. The water turbine was of a cross-flow type and could be used in open channels with the undershot method, remarkably simplifying its design by eliminating guide vanes and the casing. The water turbine was fitted with curved blades (such as the runners of a typical cross-flo...

  11. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk;

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...

  12. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    Science.gov (United States)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  13. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-04-01

    Industrial separation processes consume a significant portion of the energy used in the United States. A 1986 survey by the Office of Industrial Programs estimated that about 4.2 quads of energy are expended annually on distillation, drying and evaporation operations. This survey also concluded that over 0.8 quads of energy could be saved in the chemical, petroleum and food industries alone if these industries adopted membrane separation systems more widely. Membrane separation systems offer significant advantages over existing separation processes. In addition to consuming less energy than conventional processes, membrane systems are compact and modular, enabling easy retrofit to existing industrial processes. The present study was commissioned by the Department of Energy, Office of Program Analysis, to identify and prioritize membrane research needs in light of DOE's mission. Each report will be individually cataloged.

  14. Simulation of P systems with active membranes on CUDA.

    Science.gov (United States)

    Cecilia, José M; García, José M; Guerrero, Ginés D; Martínez-del-Amor, Miguel A; Pérez-Hurtado, Ignacio; Pérez-Jiménez, Mario J

    2010-05-01

    P systems or Membrane Systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems in a relevant and understandable way. They are inherently parallel and non-deterministic computing devices. In this article, we discuss the motivation, design principles and key of the implementation of a simulator for the class of recognizer P systems with active membranes running on a (GPU). We compare our parallel simulator for GPUs to the simulator developed for a single central processing unit (CPU), showing that GPUs are better suited than CPUs to simulate P systems due to their highly parallel nature.

  15. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  16. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  17. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  18. A small deployable infrared diffractive membrane imaging system

    Science.gov (United States)

    Zhang, Yue; Jin, Jiangao; Wang, Baohua; Wu, Peng; Jiao, Jianchao; Su, Yun

    2016-10-01

    Diffractive membrane imaging can be widely used in infrared band due to its longer minimum linewidth and loose requirement of RMS to fabricate more easily and reduce production period and manufacturing cost than used in visible band. A deployable infrared diffractive membrane imaging system was designed, consisting of Φ200mm imaging aperture (actual aperture is Φ500mm) and deployable structure that supports the infrared membrane under tension. Its spectral band width is >1.2μm, field of view is >1°, and diffractive efficiency can be >60%. Stowed size is 150mm×150mm×400mm. Research result of this project can promote the application of diffractive membrane imaging in infrared band and provide an effective and feasible means for achieving extremely large optical primary mirror from compact, lightweight payload.

  19. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  20. EXPERIMENTAL INVESTIGATION INTO HOT WATER SLOT JETS WITH NEGATIVELY BUOYANCY IN CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    YANG Zhong-hua; HUAI Wen-xin; DAI Hui-chao

    2005-01-01

    An experiment was conducted to examine the near-field behavior of negatively buoyant planar jets in flowing environment. Hot water jet was projected downwards at different angles from a slot into a uniform cross flow. Micro Acoustic Doppler Velocimeter (Micro ADV) system is used to measure the velocity and turbulent fluxes of Reynolds stresses. The whole field temperatures were measured with fast response thermocouples. Pure jets experiments were made also to study the effect of buoyancy in negatively buoyant jets. It is found that the influenced area of hot jets is larger than which of pure jets when the jet angle is 90° and the influenced area of hot jets is smaller than which of pure jets when the jet angle is 45°. The difference is not obvious at 60° angle jets. This means that the rising of temperature has effect not only on negatively buoyancy, but also on the intensity of turbulence. The contrast of these two influences dominates the trend of jet flow.

  1. Energy extraction from ocean currents using straight bladed cross-flow hydrokinetic turbine

    Directory of Open Access Journals (Sweden)

    Prasad Dudhgaonkar

    2017-04-01

    Full Text Available Harvesting marine renewable energy remains to be a prime focus of researchers across the globe both in environmental and in commercial perspectives. India is blessed with a long coastline, and the seas around Indian peninsula offer ample potential to tap various ocean energy forms. National Institute of Ocean Technology carries out research and various ocean energy technologies, out of which harnessing kinetic energy in seawater currents is one. This article presents the open sea trials recently carried out on National Institute of Ocean Technology’s cross-flow hydrokinetic ocean current turbine in South Andaman. The turbine was designed to generate 100 W electricity at 1.2 m/s current speed and was built in-house. The turbine was initially tested in a seawater channel and then was deployed in Macpherson Strait in Andaman. It was fitted below a floating platform designed especially for this purpose, and the performance of the turbine was continuously logged inside an on-board data acquisition system. The trials were successful and in line with computations.

  2. COST MODELING AND ESTIMATION OF CROSS FLOW MEMBRANE FILTRATION PROCESSES. (R826694C620)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Soft sensing of system parameters in membrane distillation

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-03-23

    Various examples of methods and systems are provided for soft sensing of system parameters in membrane distillation (MD). In one example, a system includes a MD module comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to estimate feed solution temperatures and permeate solution temperatures of the MD module using monitored outlet temperatures of the feed side and the permeate side. In another example, a method includes monitoring outlet temperatures of a feed side and a permeate side of a MD module to determine a current feed outlet temperature and a current permeate outlet temperature; and determining a plurality of estimated temperature states of a membrane boundary layer separating the feed side and the permeate side of the MD module using the current feed outlet temperature and the current permeate outlet temperature.

  4. Control of stationary cross-flow modes in a mach 3.5 boundary layer using patterned passive and active roughness

    Science.gov (United States)

    Schuele, Chan Yong

    Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross-flow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14° right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4.2 angle of attack to produce a mean cross-flow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 mum) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross-flow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-flow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross-flow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.

  5. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  6. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes.

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-06-21

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  7. Estimation of membrane hydration status for active proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Török, Lajos; Sahlin, Simon Lennart; Kær, Søren Knudsen

    2016-01-01

    , the membrane of which PEMFCs are made of tends to dry out when not in use. This increases the time interval required to start the system up and could lead to the destruction of the fuel cell. In this article a start-up time measurement setup is presented, which is part of a larger project, the membrane......Fuel cells are getting growing interest in industrial areas like backup systems for telecom applications or power source for electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However...... hydration status estimator for monitoring the humidity of a fuel cell stack during standby. The fuel cell has been placed in a climatic chamber, connected to hydrogen and the start-up time has been measured with different environmental conditions. Based on the previous results and the ones presented...

  8. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    Science.gov (United States)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  9. Theoretical and experimental study of a cross-flow induced-draft cooling tower

    Directory of Open Access Journals (Sweden)

    Abo Elazm Mahmoud Mohamed

    2009-01-01

    Full Text Available The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.

  10. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  11. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  12. A new approach for thermal performance calculation of cross-flow heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H.A. [Universidade Estadual Paulista, Rio Claro (Brazil). Dpto. de Estatistica; Cabezas-Gomez, L. [Universidade de Sao Paulo, Sao Carlos (Brazil). Dpto. de Engenharia Mecanica

    2005-08-01

    A new numerical methodology for thermal performance calculation in cross-flow heat exchangers is developed. Effectiveness-number of transfer units ({epsilon}-NTU) data for several standard and complex flow arrangements are obtained using this methodology. The results are validated through comparison with analytical solutions for one-pass cross-flow heat exchangers with one to four rows and with approximate series solution for an unmixed-unmixed heat exchanger, obtaining in all cases very small errors. New effectiveness data for some complex configurations are provided. (author)

  13. The Unsteady Fluctuating Pressure and Velocity in a Cross Flow Fan

    Institute of Scientific and Technical Information of China (English)

    Jiaye Gan; Fei Liu; Min Liu; Keqi Wu

    2008-01-01

    This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu-merical method and sound pressure in the far field obtained with an noise experiment for a novel cross flow fan. The frequency characteristics of the fluctuating pressure and velocity in a cross flow fan are analyzed by means of spectral analysis and wavelet transform. The fluctuating pressures obtained by large eddy simulation on the cas-ing wall are compared with that of experiments and show good agreement. From the spectral analysis of sound source, it is found that the pressure fluctuating peak is correspond with the sound pressure in the far field.

  14. Thermal design of multi-fluid mixed-mixed cross-flow heat exchangers

    Science.gov (United States)

    Roetzel, W.; Luo, X.

    2010-11-01

    A fast analytical calculation method is developed for the thermal design and rating of multi-fluid mixed-mixed cross-flow heat exchangers. Temperature dependent heat capacities and heat transfer coefficients can iteratively be taken into account. They are determined at one or two special reference temperatures. Examples are given for the application of the method to the rating of special multi-fluid multi-pass shell-and-tube heat exchangers and multi-fluid cross-flow plate-fin heat exchangers. The accuracy of the method is tested against numerical calculations with good results.

  15. Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system.

    Science.gov (United States)

    Schäfer, A I; Broeckmann, A; Richards, B S

    2007-02-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem.

  16. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Chan, Wen Hao; Ray, Saikat Sinha; Li, Chi-Wang; Hsu, Hung-Te

    2016-06-01

    A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams.

  17. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab

    2013-02-01

    This paper analysed the performance of a membrane system over key design/operation parameters. A computation methodology is developed to solve the model of hollow fibre membrane systems for multicomponent gas feeds. The model represented by a nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality, pressure, area, selectivity and permeance, resulted in better understanding of operating and design optima. Particularly, high selectivities and/or permeabilities are shown not to be necessary targets for optimal operation. Rather, a medium selectivity (<60 in the given example) combined with medium permeance (∼300-500×10-10mol/sm2Pa in the given case study) is more advantageous. This model-based membrane systems engineering approach is proposed for the synthesis of efficient and cost-effective multi-stage membrane networks. © 2012 The Institution of Chemical Engineers.

  18. Anion-exchange membranes in electrochemical energy systems

    NARCIS (Netherlands)

    Antanassov, Plamen B.; Dekel, Dario R.; Herring, Andrew M.; Hickner, Michael A.; Kohl, Paul A.; Kucernak, Anthony R.; Mustain, William E.; Nijmeijer, Kitty; Scott, Keith; Varcoe, John R.; Xu, Tongwen; Zhuang, Lin

    2014-01-01

    This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current stat

  19. Membrane-organized Chemical Photoredox Systems

    Energy Technology Data Exchange (ETDEWEB)

    Britt, R. David [Univ. of California, Davis, CA (United States)

    2016-09-01

    The key photoredox process in photosynthesis is the accumulation of oxidizing equivalents on a tetranuclear manganese cluster that then liberates electrons and protons from water and forms oxygen gas. Our primary goal in this project is to characterize inorganic systems that can perform this same water-splitting chemistry. One such species is the dinuclear ruthenium complex known as the blue dimer. Starting at the Ru(III,III) oxidation state, the blue dimer is oxidized up to a putative Ru(V,V) level prior to O-O bond formation. We employ electron paramagnetic resonance spectroscopy to characterize each step in this reaction cycle to gain insight into the molecular mechanism of water oxidation.

  20. Numerical Simulation of Bubble Formation and Transport in Cross-Flowing Streams

    Directory of Open Access Journals (Sweden)

    Yanneck Wielhorski

    2014-09-01

    Full Text Available Numerical simulations on confined bubble trains formed by cross-flowing streams are carried out with the numerical code THETIS which is based on the Volume of Fluid (VOF method and has been developed for two phase flow studies and especially for a gas-liquid system. The surface tension force, which needs particular attention in order to determine the shape of the interface accurately, is computed using the Continuum Surface Force model (CSF. Through the coupling of a VOF-PLIC technique (Piecewise-Linear Interface Calculation and a smoothing function of adjustable thickness, the Smooth Volume of Fluid technique (SVOF is intended to capture accurately strong interface distortion, rupture or reconnection with large density and viscosity contrasts between phases. This approach is extended by using the regular VOF-PLIC technique, while applying a smoothing procedure affecting both physical characteristics averaging and surface tension modeling. The front-capturing strategy is extended to gas injection. We begin by introducing the main physical phenomena occurring during bubble formation in microfluidic systems. Then, an experimental study performed in a cylindrical T-junction for different wetting behaviors is presented. For the wetting configuration, Cartesian 2D numerical simulations concerning the gas-liquid bubble production performed in a T-junction with rectangular, planar cross sections are shown and compared with experimental measurements. Finally, the results obtained of bubble break-up mechanism, shape, transport and pressure drop along the channel will be presented, discussed and compared to some experimental and numerical outcomes given in the literature.

  1. Vibratory shear enhanced membrane process and its application in starch wastewater recycle

    Directory of Open Access Journals (Sweden)

    Kazi Sarwar Hasan

    2002-11-01

    Full Text Available Membrane application in wastewater is gaining significant popularity. Selecting the right membrane and filtration technique is an important consideration to ensure a successful system development and long term performance. A new type of membrane filtration technology known as ‘Vibratory Shear Enhanced Process’ (VSEP is introduced in this paper with some test results that has been conducted with VSEP pilot unit to recycle starch wastewater. Conventional cross flow membrane process used in wastewater application always led to rapid fouling. This loss in throughput capacity is primarily due to the formation of a layer that builds up naturally on the membranes surface during the filtration process. In addition to cutting down on the flux performance of the membrane, this boundary or gel layer acts as a secondary membrane reducing the native design selectivity of the membrane in use. This inability to handle the buildup of solids has also limited the use of membranes to low-solids feed streams. In a VSEP system, an additional shear wave produced by the membrane’s vibration cause solids and foulants to be lifted off the membrane surface and remixed with the bulk material flowing through the membrane stack. This high shear processing exposes the membrane pores for maximum throughput that is typically between 3 to10 times the throughput of conventional cross-flow systems. The short term results with raw starch wastewater shows very stable flux rate of 110 lmh using the VSEP system and selecting the PVDF ultrafiltration membrane with no pre-filtration.

  2. Cell or Cell Membrane-Based Drug Delivery Systems

    Science.gov (United States)

    Tan, Songwei; Wu, Tingting; Zhang, Dan; Zhang, Zhiping

    2015-01-01

    Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications. PMID:26000058

  3. [Membrane-based photochemical systems as models for photosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, J.K.

    1992-01-01

    The objectives of this research are to improve our conceptual view of the ways in which membranes and interfaces can be used to control chemical reactivity. We have focused on understanding three elementary processes that are central to developing membrane-based integrated chemical systems for water photolysis or related photoconversion/photostorage processes. Specifically, we have sought to identify: the influence of interfaces upon charge separation/recombination reactions, pathways for transmembrane charge separation across hydrocarbon bilayer membranes, and mechanisms of water oxidation catalyzed by transition metal coordination complexes. Historically, the chemical dynamics of each of these processes has been poorly understood, with numerous unresolved issues and conflicting viewpoints appearing in the literature. As described in this report our recent research has led to considerable clarification of the underlying reaction mechanisms.

  4. Study Report of Design Guide for Tube Arrays in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Part of fluid energy transfers to the cylinders, when the fluid flows away the cylinders, and creates the vibration of them. The vibration of cylinders caused by the cross flow is much more violent than that caused by axial flow. So the sufficient concern should be given

  5. Study on an Undershot Cross-Flow Water Turbine with Straight Blades

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2015-01-01

    Full Text Available Small-scale hydroelectric power generation has recently attracted considerable attention. The authors previously proposed an undershot cross-flow water turbine with a very low head suitable for application to open channels. The water turbine was of a cross-flow type and could be used in open channels with the undershot method, remarkably simplifying its design by eliminating guide vanes and the casing. The water turbine was fitted with curved blades (such as the runners of a typical cross-flow water turbine installed in tube channels. However, there was ambiguity as to how the blades’ shape influenced the turbine’s performance and flow field. To resolve this issue, the present study applies straight blades to an undershot cross-flow water turbine and examines the performance and flow field via experiments and numerical analyses. Results reveal that the output power and the turbine efficiency of the Straight Blades runner were greater than those of the Curved Blades runner regardless of the rotational speed. Compared with the Curved Blades runner, the output power and the turbine efficiency of the Straight Blades runner were improved by about 31.7% and about 67.1%, respectively.

  6. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    Science.gov (United States)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  7. The effect of cross flow on one-dimensional spectra measured using hot wires

    Science.gov (United States)

    Ewing, D.

    Expressions were developed to estimate the cross-flow error that occurs in the one-dimensional velocity spectra determined by applying Taylor's frozen field hypothesis to measurements with single- and cross-wire probes. The cross-flow error and the error caused by the unsteady convection of the small-scale motions were evaluated for typical measurements. It was found that the cross-flow error could be significant in inertial range of the measured one-dimensional spectra, and was much larger than the error caused by the unsteady convection of the small-scale motions in the one-dimensional spectra of the cross-stream velocity components, $ F2}{22 {( {k1 } )} and F1}{33 {( {k1 } )} . The results indicate that the one-dimensional spectra of the streamwise velocity component F1}{11 {( {k1 } )} $ measured with a single-wire probe should be significantly more accurate than the spectra measured with a cross-wire probe. The cross-flow error in the one-dimensional spectra also becomes much less important in the dissipation range of the measured spectra.

  8. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.;

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water...

  9. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  10. Large Eddy simulations of jet in cross flow; Simulations aux grandes echelles: application au jet transverse

    Energy Technology Data Exchange (ETDEWEB)

    Priere, C.

    2005-01-15

    Nowadays, environmental and economic constraints require considerable research efforts from the gas turbine industry. Objectives aim at lowering pollutants emissions and fuel consumption. These efforts take a primary importance to satisfy a continue growth of energy production and to obey to stringent environmental legislations. Recorded progresses are linked to mixing enhancement in combustors running at lean premixed operating point. Indeed, industry shows itself to be attentive in the mixing enhancement and during the last years, efforts are concentrated on fresh and burned gas dilution. The Jet In Cross Flow (JICF), which constitutes a representative case to further the research effort. It has been to be widely studied both in experimentally and numerically, and is particularly well suited for the evaluation of Large Eddy Simulations (LES). This approach, where large scale phenomena are naturally taken into account in the governing equation while the small scales are modelled, offers the means to well-predict such flows. The main objective of this work is to gauge and to enhance the quality of the LES predictions in JICF configurations by means of numerical tools developed in the compressible AVBP code. Physical and numerical parameters considered in the JICF modelization are taken into account and strategies that are able to enhance quality of LES results are proposed. Configurations studied in this work are the following: - Influences of the boundary conditions and jet injection system on a free JICF - Study of static mixing device in an industrial gas turbine chamber. - Study of a JICF configuration represented a dilution zone in low emissions combustors. (author)

  11. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  12. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  13. A numerical study of the three-dimensional structure of the Taylor-Couette flow in eccentric configuration with superimposed cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Scurtu, Nicoleta; Egbers, Christoph [Brandenburgische Technische Universitaet (BTU), Cottbus (Germany); Stuecke, Peter [Westsaechsische Hochschule (WHZ), Zwickau (Germany)], E-mail: scurtu@tu-cottbus.de

    2008-11-01

    The eccentric small gap Taylor-Couette system with rotating inner cylinder and fixed outer cylinder is investigated numerically. The main flow fields were examined and the transition region from the laminar Couette-flow to the Taylor-vortex-flow in different eccentric arrangements of the cylinders. The effect of the eccentricity on flow patterns was studied for different values of the eccentricity between 0 and 0.75 in relation to the mean gap. This flow was further disturbed by the superimposed cross flow entering into the gap through the feed hole with a cross flow rate of 0.1 of the circumferential flow rate. Hence, more complex three dimensional flow structures evolved in the cylinders' gap, especially in the vicinity of the feed hole.

  14. Continuous Membrane-Based Screening System for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Matthias Kraume

    2011-02-01

    Full Text Available The use of membrane reactors for enzymatic and co-factor regenerating reactions offers versatile advantages such as higher conversion rates and space-time-yields and is therefore often applied in industry. However, currently available screening and kinetics characterization systems are based on batch and fed-batch operated reactors and were developed for whole cell biotransformations rather than for enzymatic catalysis. Therefore, the data obtained from such systems has only limited transferability for continuous membrane reactors. The aim of this study is to evaluate and to improve a novel screening and characterization system based on the membrane reactor concept using the enzymatic hydrolysis of cellulose as a model reaction. Important aspects for the applicability of the developed system such as long-term stability and reproducibility of continuous experiments were very high. The concept used for flow control and fouling suppression allowed control of the residence time with a high degree of precision (±1% accuracy in a long-term study (>100 h.

  15. Validation of Wall Friction Model in SPACE-3D Module with Two-Phase Cross Flow Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher [Seoul National University, Seoul (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, SPACE-3D was used to simulate the Yang's experiment, and obtained the local variables. Then, the wall friction model used in SPACE-3D was validated by comparing the two-phase cross flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by SPACE-3D to validate the wall friction model in multi-dimensional module. Considering the realistic phenomena in the reactor, however, recent trends in safety analysis codes have tended to adopt multi-dimensional module to simulate the complex flow more accurately. Even though the module was applied to deal the multi-dimensional phenomena, implemented models in that are one-dimensional empirical models. Therefore, prior to applying the multi-dimensional module, the constitutive models implemented in the codes need to be validated. In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multi-dimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the friction models in multi-dimensional module of system analysis codes. Compared with the experiment, SPACE-3D underestimated the liquid film velocity and overestimated the liquid film thickness. From these results, it was clarified that the Wallis correlation which is used as a wall friction model in SPACE-3D overestimates the wall friction. On the other hand, H.T.F.S. correlation which is used as the wall friction in MARS-multiD underestimates the wall friction.

  16. Polymeric membrane systems of potential use for battery separators

    Science.gov (United States)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  17. Forward Osmosis System And Process

    KAUST Repository

    Duan, Jintang

    2013-08-22

    A forward osmosis fluid purification system includes a cross-flow membrane module with a membrane, a channel on each side of the membrane which allows a feed solution and a draw solution to flow through separately, a feed side, a draw side including a draw solute, where the draw solute includes an aryl sulfonate salt. The system can be used in a process to extract water from impure water, such as wastewater or seawater. The purified water can be applied to arid land.

  18. High anisotropy of flow-aligned bicellar membrane systems

    KAUST Repository

    Kogan, Maxim

    2013-10-01

    In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic orientation. Recently, it was shown that bicelles could be aligned also by shear flow in a Couette flow cell, making it applicable to structural and biophysical studies by polarized light spectroscopy. Considering the sensitivity of this lipid system to small variations in composition and physicochemical parameters, efficient use of such a flow-cell method with coupled techniques will critically depend on the detailed understanding of how the lipid systems behave under flow conditions. In the present study we have characterized the flow alignment behavior of the commonly used dimyristoyl phosphatidylcholine/dicaproyl phosphatidylcholine (DMPC/DHPC) bicelle system, for various temperatures, lipid compositions, and lipid concentrations. We conclude that at optimal flow conditions the selected bicellar systems can produce the most efficient flow alignment out of any lipid systems used so far. The highest degree of orientation of DMPC/DHPC samples is noticed in a narrow temperature interval, at a practical temperature around 25 C, most likely in the phase transition region characterized by maximum sample viscosity. The change of macroscopic orientation factor as function of the above conditions is now described in detail. The increase in macroscopic alignment observed for bicelles will most likely allow recording of higher resolution spectra on membrane systems, which provide deeper structural insight and analysis into properties of biomolecules interacting with solution phase lipid membranes. © 2013 Elsevier Ireland Ltd.

  19. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...... not in use. This increases the time required to start the system and could lead to the destruction of the fuel cell. In this article an impedance measurement circuit is presented, which is part of a humidity status estimator for monitoring the humidity status of a fuel cell stack during standby....... The impedance measurement circuit has been connected to a fuel cell stack and the operation of estimating the relative humidity has been demonstrated....

  20. Multiphoton excitation fluorescence microscopy in planar membrane systems.

    Science.gov (United States)

    Brewer, Jonathan; Bernardino de la Serna, Jorge; Wagner, Kerstin; Bagatolli, Luis A

    2010-07-01

    The feasibility of applying multiphoton excitation fluorescence microscopy-related techniques in planar membrane systems, such as lipid monolayers at the air-water interface (named Langmuir films), is presented and discussed in this paper. The non-linear fluorescence microscopy approach, allows obtaining spatially and temporally resolved information by exploiting the fluorescent properties of particular fluorescence probes. For instance, the use of environmental sensitive probes, such as LAURDAN, allows performing measurements using the LAURDAN generalized polarization function that in turn is sensitive to the local lipid packing in the membrane. The fact that LAURDAN exhibit homogeneous distribution in monolayers, particularly in systems displaying domain coexistence, overcomes a general problem observed when "classical" fluorescence probes are used to label Langmuir films, i.e. the inability to obtain simultaneous information from the two coexisting membrane regions. Also, the well described photoselection effect caused by excitation light on LAURDAN allows: (i) to qualitative infer tilting information of the monolayer when liquid condensed phases are present and (ii) to provide high contrast to visualize 3D membranous structures at the film's collapse pressure. In the last case, computation of the LAURDAN GP function provides information about lipid packing in these 3D structures. Additionally, LAURDAN GP values upon compression in monolayers were compared with those obtained in compositionally similar planar bilayer systems. At similar GP values we found, for both DOPC and DPPC, a correspondence between the molecular areas reported in monolayers and bilayers. This correspondence occurs when the lateral pressure of the monolayer is 26+/-2 mN/m and 28+/-3 mN/m for DOPC and DPPC, respectively.

  1. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  2. Numerical study of streamwise and cross flow in the presence of heat and mass transfer

    Science.gov (United States)

    Rizwan-ul-Haq; Soomro, Feroz Ahmed; Khan, Z. H.; Al-Mdallal, Qasem M.

    2017-05-01

    The present model is devoted to investigate the streamwise and cross flow of a viscous fluid over a heated moving surface. Viscous dissipation effects are also considered with heat and mass transfer effects and these effects with cross flow have not been explored yet in the literature. Governing boundary layer equations consist in the form of nonlinear partial differential equations (PDEs). Compatible transformations are applied to change such equations into ordinary differential equations which are further solved using the Runge-Kutta technique and shooting method. Linear stability analysis is also performed over the obtained solutions to validate the results and to determine the smallest eigenvalues. Three different kinds of fluids namely: acetone, water and ethaline glycol are investigated to analyse the heat transfer rate. The problem contains important physical parameters namely: Prandtl number, Eckert numbers and Lewis number. The obtained solutions are discussed in detail against each physical parameter using graphs and tables.

  3. Modal and nonmodal stability analysis of electrohydrodynamic flow with and without cross-flow

    CERN Document Server

    Zhang, Mengqi; Wu, Jian; Schmid, Peter J; Quadrio, Maurizio

    2015-01-01

    We report the results of a complete modal and nonmodal linear stability analysis of the electrohydrodynamic flow (EHD) for the problem of electroconvection in the strong injection region. Convective cells are formed by Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in EHD, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable low. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical a...

  4. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    Science.gov (United States)

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover.

  5. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  6. NUMERICAL SIMULATION OF A HORIZONTAL MOMENTUM JET IN CROSS-FLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The mixing characteristics of a Horizontal Momentum Jet in Cross-flow (HMJC) were investigated using the CFD code Fluent. The realizable k-ε model was employed for turbulent closure of the Reynolds-averaged Navier-Stokes equations. The computed results, including concentration field and velocity field, agree well with the relations of dimensional analysis, as well as the experimental results by Sherif and Pletcher, Ali and Yu et al.

  7. Flow Field and Performance of Cross Flow Fans--Experimental and Theoretical Investigations

    Institute of Scientific and Technical Information of China (English)

    Martin Gabi; Simon Dornstetter; Toni Klemm

    2003-01-01

    Due to the construction and the operating principle the prediction of performance of Cross Flow Fans (CFF) is difficult and the knowledge about the internal flow regime is limited. To investigate the impact of geometrical parameters on the performance of CFF, experimental investigations, using Particle Imaging Velocimetry (PIV),and CFD calculations were carried out. Some results of PIV measurements and CFD calculations are presented,which give an impression of the internal flow and confirm the numerical calculations.

  8. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    Membrane filtration technologies have emerged as cost competitive and viable techniques in drinking and industrial water production. Despite advancements in membrane manufacturing and technology, membrane scaling and fouling remain major problems and may limit future growth in the industry. Scaling

  9. Lattice Boltzmann simulation of a laminar square jet in cross flows

    Institute of Scientific and Technical Information of China (English)

    Guoneng Li; Youqu Zheng; Huawen Yang; Wenwen Guo; Yousheng Xu

    2016-01-01

    A three-dimensional, nineteen-velocity (D3Q19) Lattice Boltzmann Method (LBM) model was developed to sim-ulate the fluid flow of a laminar square jet in cross flows based on the single relaxation time algorithm. The code was validated by the mathematic solution of the Poiseuille flow in a square channel, and was further validated with a previous well studied empirical correlation for the central trajectory of a jet in cross flows. The developed LBM model was found to be able to capture the dominant vortex, i.e. the Counter-rotating Vortex Pair (CVP) and the upright wake vortex. Results show that the incoming fluid in the cross flow channel was entrained into the leeside of the jet fluid, which contributes to the blending of the jet. That the spread width of the transverse jet decreases with the velocity ratio. A layer-organized entrainment pattern was found indicating that the incoming fluid at the lower position is firstly entrained into the leeside of the jet, and followed by the incoming fluid at the upper position.

  10. On the stability of plane Couette-Poiseuille flow with uniform cross-flow

    CERN Document Server

    Guha, Anirban

    2010-01-01

    We present a detailed study of the linear stability of plane Couette-Poiseuille flow in the presence of a cross-flow. The base flow is characterised by the cross flow Reynolds number, $R_{inj}$ and the dimensionless wall velocity, $k$. Squire's transformation may be applied to the linear stability equations and we therefore consider 2D (spanwise-independent) perturbations. Corresponding to each dimensionless wall velocity, $k\\in[0,1]$, two ranges of $R_{inj}$ exist where unconditional stability is observed. In the lower range of $R_{inj}$, for modest $k$ we have a stabilisation of long wavelengths leading to a cut-off $R_{inj}$. This lower cut-off results from skewing of the velocity profile away from a Poiseuille profile, shifting of the critical layers and the gradual decrease of energy production. Cross-flow stabilisation and Couette stabilisation appear to act via very similar mechanisms in this range, leading to the potential for robust compensatory design of flow stabilisation using either mechanism. As...

  11. Numerical Study on Instantaneous Discharge of Unsorted Particle Cloud in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    GU Jie; LI Chi-wai; YANG Hong; ZHAN Yong

    2007-01-01

    The mixing characteristics of particles such as dredged sediment of variable size discharged into cross flow are studied by a 3D numerical model, which is developed to model the particle-fluid two-phase flow. The Eulerian method with the modified k-ε parameterization of turbulence for the fluid phase is used to solve fluid phase, while a Lagrangian method for the solid phase (particles), both the processes are coupled through the momentum sources. In the model the wake turbulence induced by particles has been included as additional source term in the k-ε model; and the variable drift velocities of the particles are treated efficiently by the Lagrangian method in which the particles are tracked explicitly and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumping a cloud of particles is governed by the total buoyancy of the cloud, the drag force on each particle and the velocity of cross-flow. The computed results show a roughly linear relationship between the displacement of the frontal position and the longitudinal width of the particle cloud. The particle size in the cloud and the velocity of cross flow dominate the flow behavior. The computed results are compared with the results of laboratory experiments and satisfactory agreement is obtained.

  12. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    Science.gov (United States)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  13. Numerical study of cross flow fan performance in an indoor air conditioning unit

    Science.gov (United States)

    Yet, New Mei; Raghavan, Vijay R.; Chinc, W. M.

    2012-06-01

    The cross flow fan is a unique type of turbo machinery where the air stream flows transversely across the impeller, passing the blades twice. Due to its complex geometry, and highly turbulent and unsteady air-flow, a numerical method is used in this work to conduct the characterization study on the performance of a cross flow fan. A 2D cross-sectional model of a typical indoor air conditioning unit has been chosen for the simulation instead of a three dimensional 3D model due to the highly complex geometry of the fan. The simplified 2D model has been validated with experiments where it is found that the RMS error between the simulation and experimental results is less than 7%. The important parameters that affect the cross flow fan performance, i.e. the internal and external blade angles, the blade thickness, and the casing design, are analyzed in this study. The formation of an eccentric vortex is observed within the impeller.

  14. Air-bubbling, hollow-fiber reactor with cell bleeding and cross-flow filtration.

    Science.gov (United States)

    Nishii, K; Sode, K; Karube, I

    1990-05-01

    Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.

  15. Membrane-based systems for carbon capture and hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Berchtold, Kathryn A [Los Alamos National Laboratory

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on

  16. INFLUENCE OF RESIDENCE-TIME DISTRIBUTION ON A SURFACE-RENEWAL MODEL OF CONSTANT-PRESSURE CROSS-FLOW MICROFILTRATION

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2015-03-01

    Full Text Available Abstract This work examines the influence of the residence-time distribution (RTD of surface elements on a model of cross-flow microfiltration that has been proposed recently (Hasan et al., 2013. Along with the RTD from the previous work (Case 1, two other RTD functions (Cases 2 and 3 are used to develop theoretical expressions for the permeate-flux decline and cake buildup in the filter as a function of process time. The three different RTDs correspond to three different startup conditions of the filtration process. The analytical expressions for the permeate flux, each of which contains three basic parameters (membrane resistance, specific cake resistance and rate of surface renewal, are fitted to experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units. All three expressions for the permeate flux fit the experimental data fairly well with average root-mean-square errors of 4.6% for Cases 1 and 2, and 4.2% for Case 3, respectively, which points towards the constructive nature of the model - a common feature of theoretical models used in science and engineering.

  17. Anthocyanin and flavonoid production from Perilla frutescens: pilot plant scale processing including cross-flow microfiltration and reverse osmosis.

    Science.gov (United States)

    Meng, Linghua; Lozano, Yves; Bombarda, Isabelle; Gaydou, Emile; Li, Bin

    2006-06-14

    Extraction and concentration at a pilot plant scale of anthocyanins and flavonoids from Perilla frutescens var. frutescens harvested in the Guangzhou area of China were investigated. The study of extraction efficiency using mineral acids and organic acids showed that 0.01 mol/L nitric acid was the most suitable to extract flavonoids from this slightly red leaf cultivar. The red extract contained 12 mg/L (as cyanidin equivalent) anthocyanins and other flavones. The multistep process included cross-flow microfiltration (CFM) with a ceramic type membrane, reverse osmosis (RO), and rotating evaporation (RE). The filtration fluxes were high and constant for CFM (150 L/h/m2 at 0.6 b) and for RO (22 L/h/m2 at 40 b). The red extract was concentrated 9.4 times by RO and then 5.4 times by RE. It contained 422 mg/L anthocyanins, representing 77% of the total extracted anthocyanin. The proportion of flavonoids was found unchanged during processing. The concentrated extract showed a pH of 2.7, and its free acidity was found to be 46% of the acidity added for extraction, because of the buffering capacity of the extract. At the concentration level reached, a crystallized deposit occurred and was identified as tartrate.

  18. LPV control of a tensegrity-membrane system

    Science.gov (United States)

    Yang, Shu; Sultan, Cornel

    2017-10-01

    This article presents the details of designing a linear parameter-varying (LPV) controller for a tensegrity-membrane system. The major control objective is to deploy the system from its initial packaged configuration to its final deployed configuration. Since LPV synthesis naturally leads to an infinite-dimensional linear matrix inequality (LMI) problem, a gridding method is used to reduce it to a finite-dimensional LMI problem and the control design is performed using a control-oriented model based on the linearized system dynamics at a set of system equilibriums. To test the performance of the resulting controller, a nonlinear finite element model and the control-oriented model are used in numerical simulations. To test the robustness of the controller, sensor noise is considered in another nonlinear finite element simulation and the results are compared with the simulation results given by the nominal system.

  19. Operation of passive membrane systems for drinking water treatment.

    Science.gov (United States)

    Oka, P A; Khadem, N; Bérubé, P R

    2017-02-28

    The widespread adoption of submerged hollow fibre ultrafiltration (UF) for drinking water treatment is currently hindered by the complexity and cost of these membrane systems, especially in small/remote communities. Most of the complexity is associated with auxiliary fouling control measures, which include backwashing, air sparging and chemical cleaning. Recent studies have demonstrated that sustained operation without fouling control measures is possible, but little is known regarding the conditions under which extended operation can be sustained with minimal to no fouling control measures. The present study investigated the contribution of different auxiliary fouling control measures to the permeability that can be sustained, with the intent of minimizing the mechanical and operational complexity of submerged hollow fiber UF membrane systems while maximizing their throughput capacity. Sustained conditions could be achieved without backwashing, air sparging or chemical cleaning (i.e. passive operation), indicating that these fouling control measures can be eliminated, substantially simplifying the mechanical and operational complexity of submerged hollow fiber UF systems. The adoption of hydrostatic pressure (i.e. gravity) to provide the driving force for permeation further reduced the system complexity. Approximately 50% of the organic material in the raw water was removed during treatment. The sustained passive operation and effective removal of organic material was likely due to the microbial community that established itself on the membrane surface. The permeability that could be sustained was however only approximately 20% of that which can be maintained with fouling control measures. Retaining a small amount of air sparging (i.e. a few minutes daily) and incorporating a daily 1-h relaxation (i.e. permeate flux interruption) period prior to sparging more than doubled the permeability that could be sustained. Neither the approach used to interrupt the permeate

  20. Bubble Formation Characteristics from a Sieve Tray with Liquid Cross-flow%筛板上液体横向流动时气泡的形成特性

    Institute of Scientific and Technical Information of China (English)

    秦炜; 徐世民

    2002-01-01

    An apparatus, designed to simulate bubbling of a sieve tray operated in froth regime, was employed.Bubble contact angles in and above the incipient weeping regime for an air-water-plexiglas system were investigated.The influence of both liquid cross-flow and gas up-flow upon bubble contact angles was examined. A model considering the influence of liquid cross-flow was developed to predict bubble size from a sieve hole in froth operation regime.The comparison shows that the bubble sizes predicted by the present model are consistent with our experimental values and the available published experimental data.

  1. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  2. Internal Concentration Polarization in Asymmetric Membrane in Forward Osmosis System

    Science.gov (United States)

    Gadelha, Gabriela; Gadelha, Hermes; Hankins, Nick

    2013-11-01

    There has been a re-emerging interest in the study of the osmotic-driving desalination process known as Forward Osmosis (FO), due to its potential for significantly lower energy demand. However, the employed asymmetric semi-permeable membranes are notorious for the formation of unstirred boundary layers. These boundary layers may be dilutive or concentrative, causing an undesired decline on the osmotic flux. To date, although several models have been proposed in the literature to describe various applications in membrane separation processes, the fundamental theoretical basis has remained unchanged. Here, we detail an alternative formulation for the solute concentration profile and the water flux decline in terms of the osmotic Peclet number and the dimensionless solute permeability. Our analysis shows that the osmotic potential efficiency and the resulting water flux are inversely related, preventing any simultaneous optimization of the system, i.e. the larger the water flux is, the less osmotically efficient it becomes. We equally investigated the effect of distinct flat-sheet membrane configurations on the water flux. In this case, when the active layer faces the solution of low concentration (feed solution), under normal operations conditions, the water flux can be 60% lower than its counter configuration, when the active layer faces the solution of high concentration (draw solution). Finally, we contrast the theoretical formulation with experiments using inorganic ions and micelle as draw solutions.

  3. Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems.

    Science.gov (United States)

    Yan, Hengjing; Catania, Chelsea; Bazan, Guillermo C

    2015-05-20

    Conjugated oligoelectrolytes (COEs), molecules that are defined by a π-delocalized backbone and terminal ionic pendant groups, have been previously demonstrated to effectively reduce charge-injection/extraction barriers at metal/organic interfaces in thin-film organic-electronic devices. Recent studies demonstrate a spontaneous affinity of certain COEs to intercalate into, and align within, lipid bilayers in an ordered orientation, thereby allowing modification of membrane properties and the functions of microbes in bioelectrochemical and photosynthetic systems. Several reports have provided evidence of enhanced current generation and bioproduction. Mechanistic approaches suggest that COEs influence microbial extracellular electron transport to abiotic electrode surfaces via more than one proposed pathway, including direct electron transfer and meditated electron transfer. Molecular dynamics simulations as a function of molecular structure suggest that insertion of cationic COEs results in membrane thinning as the lipid phosphate head groups are drawn toward the center of the bilayer. Since variations in molecular structures, especially the length of the conjugated backbone, distribution of ionic groups, and hydrophobic substitutions, show an effect on their antimicrobial properties, preferential cell localization, and microbial selection, it is promising to further design novel membrane-intercalating molecules based on COEs for practical applications, including energy generation, environmental remediation, and antimicrobial treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Coupling Study for Solar Heating System and Membrane Distillation System

    Science.gov (United States)

    Yan, Suying; Zhang, Tao; Professor, Rui Tian; WeiZhang, Wei

    In this paper, it was simplified that the heating system of thermal mass in solar membrane distillation and it was established that the physical model of heat transfer installed the guide plate in the all-glass thermal solar membrane distillation system. The model included the all-glass solar heat collector system and the hot chamber of membrane distillation system. In this paper, it was constructed that the coupling integration points between the two parts and reached setting methods for coupled boundary conditions and unsteady-state flow. It was established that an unsteady three-dimensional CFD model for solar membrane distillation system and drawn solution and ideas and reached the variation law of fluid temperature and flow rate in outlet of fluid connection changes in solar collector system. It was calculated that the coupling model of hot chamber in membrane distillation and obtained the variation law between non-steady-state flux and solar radiation intensity and laid the foundation for coupling utilization of solar energy with membrane distillation.

  5. Validation of computational non-Newtonian fluid model for membrane bioreactor

    DEFF Research Database (Denmark)

    Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian

    2015-01-01

    for optimizing MBR-systems is computational fluid dynamics (CFD) modelling, giving the ability to describe the flow in the systems. A parameter which is often neglected in such models is the non-Newtonian properties of active sludge, which is of great importance for MBR systems since they operate at sludge...... concentrations up to a factor 10 compared to conventional activated sludge (CAS) systems, resulting in strongly shear thinning liquids. A CFD-model is validated against measurements conducted in a system with rotating cross flow membranes submerged in non-Newtonian liquids, where tangential velocities...

  6. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    2012-01-01

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  7. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    2012-01-01

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  8. Nonlinear Effects in Osmotic Volume Flows of Electrolyte Solutions through Double-Membrane System

    NARCIS (Netherlands)

    Slezak, A.; Jasik-Slezak, J.; Grzegorczyn, S.; Slezak-Prochazka, I.

    The results of experimental study of volume osmotic flows in a double-membrane system are presented in this article. The double-membrane system consists of two membranes (M-u, M-d) oriented in horizontal planes and three identical compartments (u, m, d), containing unstirred binary or ternary ionic

  9. Preparation of liposomes: a novel application of microengineered membranes--from laboratory scale to large scale.

    Science.gov (United States)

    Laouini, A; Charcosset, C; Fessi, H; Holdich, R G; Vladisavljević, G T

    2013-12-01

    A novel ethanol injection method using microengineered nickel membrane was employed to produce POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and Lipoid(®) E80 liposomes at different production scales. A stirred cell device was used to produce 73ml of the liposomal suspension and the product volume was then increased by a factor of 8 at the same transmembrane flux (140lm(-2)h(-1)), volume ratio of the aqueous to organic phase (4.5) and peak shear stress on the membrane surface (2.7Pa). Two different strategies for shear control on the membrane surface have been used in the scaled-up versions of the process: a cross flow recirculation of the aqueous phase across the membrane surface and low frequency oscillation of the membrane surface (∼40Hz) in a direction normal to the flow of the injected organic phase. Using the same membrane with a pore size of 5μm and pore spacing of 200μm in all devices, the size of the POPC liposomes produced in all three membrane systems was highly consistent (80-86nm) and the coefficient of variation ranged between 26 and 36%. The smallest and most uniform liposomal nanoparticles were produced in a novel oscillating membrane system. The mean vesicle size increased with increasing the pore size of the membrane and the injection time. An increase in the vesicle size over time was caused by deposition of newly formed phospholipid fragments onto the surface of the vesicles already formed in the suspension and this increase was most pronounced for the cross flow system, due to long recirculation time. The final vesicle size in all membrane systems was suitable for their use as drug carriers in pharmaceutical formulations.

  10. Electrical Dissipative Structures in Membrane-Coupled Compartment Systems

    Science.gov (United States)

    Feudel, U.; Feistel, R.; Ebeling, W.

    Reaction-diffusion systems with charged particles are studied. Conditions for the arising of electrical dissipative structures in a compartment system consisting of two boxes separated by a membrane are derived. The appearance of a polar dissipative structure is proved for a simple capacitor model in combination with a simple second order chemical kinetics which leads to an analytically solvable problem. Electrical dissipative structures can in principle be considered as non equilibrium electrical batteries. The theoretical efficiency of such batteries is estimated.Translated AbstractElektrische Dissipative Strukturen in Membrangekoppelten SystemenEs werden Reaktions-Diffusionssysteme mit geladenen Teilchen studiert. Bedingungen für die Entstehung elektrischer dissipativer Strukturen in einem Kompartment-System, bestehend aus zwei durch eine Membran getrennten Zellen werden abgeleitet. Die Entstehung einer polaren dissipativen Struktur wird für ein einfaches Kondensatorenmodell in Kombination mit einer einfachen chemischen Kinetik, das analytische Lösbarkeit gestattet, nachgewiesen. Elektrische dissipative Strukturen können im Prinzip als elektrische Batterien fern von Gleichgewicht betrachtet werden. Der theoretische Wirkungsgrad einer solchen Batterie wird berechnet.

  11. Catalytic membrane reactor for tritium extraction system from He purge

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); Incelli, Marco [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy); DEIM, University of Tuscia, Via del Paradiso 47, 01100 Viterbo (Italy); Sansovini, Mirko; Tosti, Silvano [ENEA for EUROfusion, Via E. Fermi 45, 00044 Frascati, Roma (Italy)

    2016-11-01

    Highlights: • In the HCBB blanket, the produced tritium is recovered by purging with helium; membrane technologies are able to separate tritium from helium. • The paper presents the results of two experimental campaigns. • In the first, a Pd–Ag diffuser for hydrogen separation is tested at several operating conditions. • In the second, the ability of a Pd–Ag membrane reactor for water decontamination is assessed by performing isotopic swamping and water gas shift reactions. - Abstract: In the Helium Cooled Pebble Bed (HCPB) blanket concept, the produced tritium is recovered purging the breeder with helium at low pressure, thus a tritium extraction system (TES) is foreseen to separate the produced tritium (which contains impurities like water) from the helium gas purge. Several R&D activities are running in parallel to experimentally identify most promising TES technologies: particularly, Pd-based membrane reactors (MR) are under investigation because of their large hydrogen selectivity, continuous operation capability, reliability and compactness. The construction and operation under DEMO relevant conditions (that presently foresee a He purge flow rate of about 10,000 Nm{sup 3}/h and a H{sub 2}/He ratio of 0.1%) of a medium scale MR is scheduled for next year, while presently preliminary experiments on a small scale reactor are performed to identify most suitable operative conditions and catalyst materials. This work presents the results of an experimental campaign carried out on a Pd-based membrane aimed at measuring the capability of this device in separating hydrogen from the helium. Many operative conditions have been investigated by considering different He/H{sub 2} feed flow ratios, several lumen pressures and reactor temperatures. Moreover, the performances of a membrane reactor (composed of a Pd–Ag tube having a wall thickness of about 113 μm, length 500 mm and diameter 10 mm) in processing the water contained in the purge gas have been

  12. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2016-01-01

    Full Text Available Plasma membrane redox system (PMRS is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD. Effects of curcumin were also evaluated on level of glutathione (GSH and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP. Results show that curcumin significantly (p<0.01 downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

  13. Acidic phospholipid bicelles: a versatile model membrane system.

    Science.gov (United States)

    Struppe, J; Whiles, J A; Vold, R R

    2000-01-01

    With the aim of establishing acidic bicellar solutions as a useful membrane model system, we have used deuterium NMR spectroscopy to investigate the properties of dimyristoyl/dihexanoylphosphatidylcholine (DMPC/DHPC) bicelles containing 25% (w/w in H(2)O) of either dimyristoylphosphatidylserine (DMPS) or dimyristoylphosphatidylglycerol (DMPG). The addition of the acidic lipid component to this lyotropic liquid crystalline system reduces its range of stability because of poor miscibility of the two dimyristoylated phospholipids. Compared to the neutral bicelles, which are stable at pH 4 to pH 7, acidic bicelles are stable only from pH 5.5 to pH 7. Solid-state deuterium NMR analysis of d(54)-DMPC showed similar ordering in neutral and acidic bicelles. Fully deuterated DMPS or DMPG is ordered in a way similar to that of DMPC. Study of the binding of the myristoylated N-terminal 14-residue peptide mu-GSSKSKPKDPSQRR from pp60(nu-src) to both neutral and acidic bicelles shows the utility of these novel membrane mimetics. PMID:10620292

  14. Cross-membrane signal transduction of receptor tyrosine kinases (RTKs): from systems biology to systems pharmacology.

    Science.gov (United States)

    Benson, Neil; van der Graaf, Piet H; Peletier, Lambertus A

    2013-03-01

    Receptor tyrosine kinases are high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. They straddle the cell wall and play an important role in cross-membrane signalling. We present a two-component systems pharmacology model based on the local physiology and identify characteristic features of its dynamics. We thus present a transparent tool for studying the effects of drug intervention and ways of administration on cross-membrane signalling through these receptors.

  15. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2016-01-01

    Full Text Available Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  16. Advanced Wastewater Treatment Engineering-Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling.

    Science.gov (United States)

    Paul, Parneet; Jones, Franck Anderson

    2016-01-05

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti's RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti's newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level.

  17. Modeling of fluidelastic instability in tube bundle subjected to two-phase cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawadogo, T.P.; Mureithi, N.W.; Azizian, R.; Pettigrew, M.J. [Ecole Polytechnique, Dept. of Mechanical Engineering, BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Montreal, Quebec (Canada)

    2009-07-01

    Tube arrays in steam generators and heat exchangers operating in two-phase cross-flow are subjected sometimes to strong vibration due mainly to turbulence buffeting and fluidelastic forces. This can lead to tube damage by fatigue or fretting wear. A computer implementation of a fluidelastic instability model is proposed to determine with improved accuracy the fluidelastic forces and hence the critical instability flow velocity. Usually the fluidelastic instability is 'predicted', using the Connors relation with K=3. While the value of K can be determined experimentally to get an accurate prediction of the instability, the Connors relation does not allow good estimation of the fluid forces. Consequently the RMS value of the magnitude of vibration of the tube bundle, necessary to evaluate the work rate and the tube wear is only poorly estimated. The fluidelastic instability analysis presented here is based on the quasi-steady model, originally developed for single phase flow. The fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives which are determined experimentally. The forces also depend on the tube displacement and velocity. In the computer code ABAQUS, the fluid forces are provided in the user subroutines VDLOAD or VUEL. A typical simulation of the vibration of a single flexible tube within an array in two phase cross-flow is done in ABAQUS and the results are compared with the experimental measurements for a tube with similar physical properties. For a cantilever tube, in two phase cross-flow of void fraction 60%, the numerical critical flow velocity was 2.0 m/s compared to 1.8 m/s obtained experimentally. The relative error was 5% compared to 26.6% for the Connors relation with K=3. The simulation of the vibration of a typical tube in a steam generator is also presented. The numerical results show good agreement with experimental measurements. (author)

  18. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane.

  19. Cross-flow blowing of a two-dimensional stationary arc.

    Science.gov (United States)

    Bose, T. K.

    1971-01-01

    It is demonstrated in an analysis that the electrons emitted from the cathode undergo collisions with the heavy particles and are deflected in the flow direction by the component of a collisional force associated with the relative difference in flow velocities between electrons and heavy particles. The resultant motion of the electrons describing the arc is thus caused by a combined action of the collisional force that results from the externally applied electric field. An expression is given which enables computation of the arc shape to be made provided the velocity distribution of the cross-flow and the distribution of the externally applied electric field are prescribed.

  20. MEAN BEHAVIOR OF THREE DIMENSIONAL LINE BUOYANT JETS IN CROSS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Han Hui-ling; Zhang Hong-min; Liang Su-tao; Li Wei

    2003-01-01

    This paper presents the results of a numerical calculation on the mean behavior of finite length line buoyant jets from slot with width B, discharged perpendicularly into relatively deep cross-flows in the mixing region. The length of diffuser was varied from 4 to 20 times the width of diffuser. The calculations were performed with the standard K-ε model and Hybrid Finite Analytic Method (HFAM) with staggered grid. The phenomenon and development of vortex pairs are simulated successfully and the influence of diffuser length and buoyant on turbulent buoyant jets are analyzed.

  1. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    Energy Technology Data Exchange (ETDEWEB)

    Forbush, Dominic; Polagye, Brian; Thomson, Jim; Kilcher, Levi; Donegan, James; McEntee, Jarlath

    2016-12-01

    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  2. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  3. Cross-flow turbines: physical and numerical model studies towards improved array simulations

    Science.gov (United States)

    Wosnik, M.; Bachant, P.

    2015-12-01

    Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An

  4. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  5. Point and planar LIF for velocity-concentration correlations in a jet in cross flow

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Özcan, Oktay; Larsen, Poul Scheel

    2002-01-01

    (LDA). The flow considered is the mixing of a jet in a fully developed cross flow in a square duct with a width of 10 jet diameters. Both a laminar flow case, Re=675, and a turbulent flow case, Re=33750, are presented . For both flows, the ratio jet-to-duct mean velocities was R=3.3. Result of mean...... velocities, mean concentration and Reynolds fluxes in the symmetry plane of the jet are presented for PIV and PLIF measurements. The LIF measurements performed with the LDA equipment was in general in good agreement with the PIV/PLIF measurements. The cross sections selected for comparison are challenging...

  6. Random walk model of subdiffusion in a system with a thin membrane.

    Science.gov (United States)

    Kosztołowicz, Tadeusz

    2015-02-01

    We consider in this paper subdiffusion in a system with a thin membrane. The subdiffusion parameters are the same in both parts of the system separated by the membrane. Using the random walk model with discrete time and space variables the probabilities (Green's functions) P(x,t) describing a particle's random walk are found. The membrane, which can be asymmetrical, is characterized by the two probabilities of stopping a random walker by the membrane when it tries to pass through the membrane in both opposite directions. Green's functions are transformed to the system in which the variables are continuous, and then the membrane permeability coefficients are given by special formulas which involve the probabilities mentioned above. From the obtained Green's functions, we derive boundary conditions at the membrane. One of the conditions demands the continuity of a flux at the membrane, but the other one is rather unexpected and contains the Riemann-Liouville fractional time derivative P(x(N)(-),t)=λ(1)P(x(N)(+),t)+λ(2)∂(α/2)P(x(N)(+),t)/∂t(α/2), where λ(1),λ(2) depending on membrane permeability coefficients (λ(1)=1 for a symmetrical membrane), α is a subdiffusion parameter, and x(N) is the position of the membrane. This boundary condition shows that the additional "memory effect," represented by the fractional derivative, is created by the membrane. This effect is also created by the membrane for a normal diffusion case in which α=1.

  7. Experimental Study of a Membrane Antenna Surface Adaptive Control System

    Science.gov (United States)

    Fang, H.; Quijano, U.; Bach, V.; Hill, J.; Wang, K. W.

    2011-01-01

    Due to their ultra lightweight and high packaging efficiency, membrane reflectors are getting more and more attentions for mission architectures that need extremely large inspace deployable antennas. However how to maintain the surface shape of a membrane reflector to the instrument precision requirements is a very challenging problem. This experimental study investigated using PVDF membrane piezoelectric material as actuators to control the surface figures of membrane reflectors. The feasibility of this approach is demonstrated by several sets of test results.

  8. Mapping membrane protein interactions in cell signaling systems.

    Energy Technology Data Exchange (ETDEWEB)

    Light, Yooli Kim; Hadi, Masood Z.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Young, Malin M.

    2003-12-01

    We proposed to apply a chemical cross-linking, mass spectrometry and modeling method called MS3D to the structure determination of the rhodopsin-transducin membrane protein complex (RTC). Herein we describe experimental progress made to adapt the MS3D approach for characterizing membrane protein systems, and computational progress in experimental design, data analysis and protein structure modeling. Over the past three years, we have developed tailored experimental methods for all steps in the MS3D method for rhodopsin, including protein purification, a functional assay, cross-linking, proteolysis and mass spectrometry. In support of the experimental effort. we have out a data analysis pipeline in place that automatically selects the monoisotopic peaks in a mass spectrometric spectrum, assigns them and stores the results in a database. Theoretical calculations using 24 experimentally-derived distance constraints have resulted in a backbone-level model of the activated form of rhodopsin, which is a critical first step towards building a model of the RTC. Cross-linked rhodopsin-transducin complexes have been isolated via gel electrophoresis and further mass spectrometric characterization of the cross-links is underway.

  9. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    Science.gov (United States)

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  10. Detection of inhomogeneities in membrane ohmic resistance in geometrically complex systems

    DEFF Research Database (Denmark)

    Svirskis, G; Hounsgaard, J; Gutman, A

    2000-01-01

    DC field-evoked transients in arbitrarily shaped neurons and syncytia were analyzed theoretically. In systems with homogeneous passive membrane properties, the transients develop much faster than the membrane discharges. Conductance of the proximal membrane could be larger due to the injury impos...

  11. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration

    Science.gov (United States)

    Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.

    2016-01-01

    ABSTRACT This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rprePEM = 74.8% ± 9.7%) than with CS-blocked membranes (rpreCS = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpostPEM = 99.5% ± 6.6% and rpostCS = 98.8% ± 7.7%) and tap water (rpostPEM = 89% ± 15% and rpostCS = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpostCS = 88.6% ± 4.3% and rpostPEM = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery

  12. Investigation of Helical Cross-Flow Axis Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    Science.gov (United States)

    Bachant, Peter; Wosnik, Martin

    2011-11-01

    A new test bed for hydrokinetic turbines was used to evaluate different cross-flow axis turbines, and investigate effects of waves and turbulence. Turbine thrust (drag) and mechanical power were measured in a tow tank with cross section 3.7 x 2.4m at speeds of 0.6-1.5 m/s for a Gorlov Helical Turbine (GHT) and a Lucid spherical helical turbine (LST). GHT performance was also measured in progressive waves of various periods, grid turbulence, and in a cylinder wake. Overall, the GHT performs with higher power and thrust coefficients than the LST. A 2nd law, or kinetic exergy efficiency, defined as the fraction of kinetic energy removed from the flow that is converted to usable shaft work, was measured. The distribution of energy into shaft work and turbulent kinetic energy in the wake can affect environmental transport processes and performance of turbines arrays. Progressive waves generally enhance performance of the GHT, but can lead to stall at higher tip speed ratios compared to the steady case. Grid turbulence delays dynamic stall and enables operation at lower tip speed ratios, while not decreasing maximum power coefficient. Performance in a cylinder wake is highly dependent on the cylinder's cross-stream location, ranging from benign to detrimental. The experimental observations provide insight into the physical principles of operation of cross-flow axis turbines.

  13. Unsteady Simulation of an ASME Venturi Flow in a Cross Flow

    Science.gov (United States)

    Bonifacio, Jeremy; Rahai, Hamid

    2010-11-01

    Unsteady numerical simulations of an ASME venturi flow into a cross flow were performed. The velocity ratios between the venturi flow and the free stream were 25, 50, and 75%. Two cases of the venturi with and without a tube extension have been investigated. The tube extension length was approximately 4D (here D is the inner diameter of the venturi's outlet), connecting the venturi to the bottom surface of the numerical wind tunnel. A finite volume approach with the Wilcox K-φ turbulence model were used. Results that include contours of the mean velocity, velocity vector, turbulent kinetic energy, pressure and vortices within the venturi as well as downstream in the interaction region indicate that when the venturi is flushed with the surface, there is evidence of flow separation within the venturi, near the outlet. However, when the tube extension was added, the pressure recovery was sustained and flow separation within the venturi was not present and the characteristics of the flow in the interaction region were similar to the corresponding characteristics of a pipe jet in a cross flow.

  14. Computational study of liquid-gas cross-flow within structured packing cells

    Science.gov (United States)

    Lavalle, Gianluca; Lucquiaud, Mathieu; Valluri, Prashant

    2016-11-01

    Absorption columns used in the carbon capture processes and filled with structured packings are crucial to foster the exchanges and the transfers between the absorber liquid and the flue gas. However, flow reversal can occur under special flow conditions, resulting in a dramatic drop of the technological performances. We investigate numerically the liquid-gas pattern within a cross-flow packing cell. The cell is a complex geometry with two connected channels, where the two phases flow co- or counter-currently. We show that an increase of both the gas speed and the liquid load leads to an increase of the pressure drop. Particular focus is also given to the analysis of flow repartition and flooding delay. We reveal that tilting the unit cell helps to delay the flooding and extends the operational capability. The pressure drop of the cross-flow unit cell is also compared to the Mellapak packing which is widely used in carbon capture applications. Finally, we support this study by performing numerical simulations on simpler geometries by means of a low-dimensional film-gas model, in order to investigate the two-phase dynamics and predict the flooding onset with a low computational cost. The authors gratefully acknowledge EPSRC Grant No. EP/M001482/1.

  15. PIV measurement of the vertical cross-flow structure over tube bundles

    Science.gov (United States)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    Shell and tube heat exchangers are among the most commonly used types of heat exchangers. Shell-side cross-flow in tube bundles has received considerable attention and has been investigated extensively. However, the microscopic flow structure including velocity distribution, wake, and turbulent structure in the tube bundles needs to be determined for more effective designs. Therefore, in this study, in order to clarify the detailed structure of cross-flow in tube bundles with particle image velocimetry (PIV), experiments were conducted using two types of model; in-line and staggered bundles with a pitch-to-diameter ratio of 1.5, containing 20 rows of five 15 mm O.D. tubes in each row. The velocity data in the whole flow field were measured successfully by adjusting the refractive index of the working fluid to that of the tube material. The flow features were characterized in different tube bundles with regards to the velocity vector field, vortex structure, and turbulent intensity.

  16. Geometric optimization of cross-flow heat exchanger based on dynamic controllability

    Directory of Open Access Journals (Sweden)

    Alotaibi Sorour

    2008-01-01

    Full Text Available The operation of heat exchangers and other thermal equipments in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually one of the output temperatures. The aim of this work is to optimize the geometry of a tube with internal flow of water and an external cross-flow of air, based on its controllability characteristics. Controllability is a useful concept both from theoretical and practical perspective since it tells us if a particular output can be controlled by a particular input. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a tube in cross-flow is developed, where an implicit formulation is used for transient numerical solutions. The aspect ratio of the tube is optimized, subject to volume constraints, based on the optimum operation in terms of controllability. The reported optimized aspect ratio, water mass flow rate and controllability are studied for deferent external properties of the tube.

  17. Influence of cross-flow on the entrainment of bending plumes

    Science.gov (United States)

    Freedland, Graham; Mastin, Larry; Steven, Solovitz; Cal, Raul

    2016-11-01

    Volcanic eruption columns inject high concentrations of ash into the atmosphere. Some of this ash is carried downwind forming ash clouds in the atmosphere that are hazardous for private and commercial aviation. Current models rely on inputs such as plume height, duration, eruption rate, and meteorological wind fields. Eruption rate is estimated from plume height using relations that depend on the rate of air entrainment into the plume, which is not well quantified. A wind tunnel experiment has been designed to investigate these models by injecting a vertical air jet into a cross-flow. The ratio of the cross-flow and jet velocities is varied to simulate a weak plume, and flow response is measured using particle image velocimetry. The plumes are characterized and profile data is examined to measure the growth of weak plumes and the entrainment velocity along its trajectory. This allows for the study of the flow field, mean, and second order moments, and obtain information to improve models of volcanic ash concentrations in the atmosphere.

  18. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  19. Sequential concentration of bacteria and viruses from marine waters using a dual membrane system.

    Science.gov (United States)

    Abdelzaher, A M; Solo-Gabriele, H M; Wright, M E; Palmer, C J

    2008-01-01

    The ability to rapidly and effectively concentrate diverse microbes is an essential component for monitoring water quality at recreational beaches. The purpose of this study was to develop a 0.45 microm pore size dual membrane system, which can sequentially concentrate both viruses and bacteria. The top PVDF membrane was used to filter bacteria by physical straining while the bottom HA membrane retained viruses through adsorption. The recovery of this system was assessed using test organisms: enterococci and somatic coliphage. Volumes of 100 to 400 mL of unspiked and sewage-spiked beach water were filtered through both types of membranes. The PVDF membrane recovered statistically equivalent amounts of enterococci when compared to traditional membranes. All of the coliphage passed through the PVDF membrane, while 22% passed through the HA membrane. Increasing the volume from 100 to 400 mL did not significantly influence recoveries. Up to 35% of coliphage was eluted from the bottom membrane using beef extract solution. Rinsing bottom membranes with 0.5 mmol L(-1) H(2)S0(4) was found to deactivate somatic coliphage. This research demonstrates the potential of using a dual membrane adsorption system for the concentration of both bacteria and viruses from recreational beaches. A proposed bi-layer filtration system can be designed for simultaneous bacteria and virus filtration. Future experiments should focus on measurements utilizing additional bacteria and viruses.

  20. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.

  1. Resveratrol induces chain interdigitation in DPPC cell membrane model systems.

    Science.gov (United States)

    Longo, Elena; Ciuchi, Federica; Guzzi, Rita; Rizzuti, Bruno; Bartucci, Rosa

    2016-12-01

    Resveratrol is a natural polyphenol found in various plants with potential therapeutic activity as anti-oxidant, anti-inflammatory, cardioprotective and anti-tumoral. Lipid membranes are among cellular components that are targets of its action. In this work ESR of chain labeled lipids, calorimetry, X-ray diffraction and molecular docking are used to study the interaction of resveratrol with membrane model systems of dipalmitoylphosphatidylcholine (DPPC) as a function of resveratrol concentration (0-30 mol% of the lipid) and temperature (10-50°C). Resveratrol incorporated in DPPC bilayers induces considerable motional restriction at the lipid tail termini, removing the gradient of increasing mobility along the chain found in DPPC bilayers in the gel phase. In contrast, it leaves unperturbed the DPPC chain flexibility profile in the liquid-crystalline phase. At low concentration, resveratrol progressively reduces the pre-transition temperature and eliminates the pre-transition for content ≥5mol%. A reduced cooperativity and a downshift of the main transition temperature are observed, especially at high content. The typical diffraction pattern of DPPC multibilayers in the Lβ' phase is converted to a lamellar pattern with reduced d-spacing of untilted lipid chain in a hexagonal packing at 30 mol% of resveratrol. Molecular docking indicates that the energetically favoured anchoring site is the polar headgroup region, where resveratrol acts as a spacer. The overall results are consistent with the formation in DPPC of an interdigitated Lβi gel phase induced by 30 mol% resveratrol. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fouling in a MBR system with rotating membrane discs

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Bentzen, Thomas Ruby; Christensen, Morten Lykkegaard

    Membrane bioreactors (MBR) are an attractive alternative solution for municipal and industrial wastewater treatment. The MBR, which is a combination of a bioreactor for sludge degradation and a membrane for separation, has the advantages of a low footprint, ability to handle high sludge concentra......Membrane bioreactors (MBR) are an attractive alternative solution for municipal and industrial wastewater treatment. The MBR, which is a combination of a bioreactor for sludge degradation and a membrane for separation, has the advantages of a low footprint, ability to handle high sludge...

  3. Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing Air

    Science.gov (United States)

    Milne, Andrew James Barnabas

    For drops sessile on a solid surface, cross flowing air can drive drop oscillation or shedding, based on the balance and interaction of aerodynamic drag force (based on drop size/shape and air speed) and adhesion/capillary forces (based on surface tension and drop size/shape). Better understanding of the above has applications to, e.g., fuel cell flooding, airfoil icing, and visibility in rain. To understand the basic physics, experiments studying individual sessile drops in a low speed wind tunnel were performed in this thesis. Analysis of high speed video gave time resolved profiles and airspeed for shedding. Testing 0.5 mul to 100 mul drops of water and hexadecane on poly(methyl methacrylate) PMMA, Teflon, and a superhydrophobic surface (SHS) yielded a master curve describing critical airspeed for shedding for water drops on all surface tested. This curve predicts behavior for new surfaces, and explains experimental results published previously. It also indicates that the higher contact angle leads to easier shedding due to decreased adhesion and increased drag. Developing a novel floating element differential drag sensor gave the first measurements of the microNewton drag force experienced by drops. Forces magnitude is comparable to gravitational shedding from a tilted plate and to simplified models for drop adhesion, with deviations that suggest effects due to the air flow. Fluid properties are seen to have little effect on drag versus airspeed, and decreased adhesion is seen to be more important than increased drag for easing shedding. The relation between drag coefficient and Reynolds number increases slightly with liquid-solid contact angle, and with drop volume. Results suggest that the drop experiences increased drag compared to similarly shaped solid bodies due to drop oscillations aeroelasticly coupling into the otherwise laminar flow. The bulk and surface oscillations of sessile drops in cross flow was also studied, using a full profile analysis

  4. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    Directory of Open Access Journals (Sweden)

    Vedat Uyak

    2014-01-01

    Full Text Available The objective of this study was to investigate powdered activated carbon (PAC contribution to natural organic matter (NOM removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters.

  5. The effect of linear velocity and flux on performance of ceramic graded permeability membranes when processing skim milk at 50°C.

    Science.gov (United States)

    Zulewska, Justyna; Barbano, David M

    2014-05-01

    Raw milk (about 500 kg) was cold (4°C) separated and then the skim milk was pasteurized at 72°C and a holding time of 16s. The milk was cooled to 4°C and stored at ≤ 4°C until processing. The skim milk was microfiltered using a pilot-scale ceramic graded permeability (GP) microfilter system equipped with 0.1-µm nominal pore diameter ceramic Membralox membranes. First, about 155 kg of pasteurized skim milk was flushed through the system to push the water out of the system. Then, additional pasteurized skim milk (about 320 kg) was microfiltered (stage 1) in a continuous feed-and-bleed 3× process using the same membranes. The retentate from stage 1 was diluted with pasteurized reverse osmosis water in a 1:2 ratio and microfiltered (stage 2) with a GP system. This was repeated 3 times, with total of 3 stages in the process (stage 1 = microfiltration; stages 2 and 3 = diafiltration). The results from first 3 stages of the experiment were compared with previous data when processing skim milk at 50°C using ceramic uniform transmembrane pressure (UTP) membranes. Microfiltration of skim milk using ceramic UTP and GP membranes resulted in similar final retentate in terms of serum proteins (SP) removed. The SP removal rate (expressed by kilogram of SP removed per meter-squared of membrane area) was higher for GP membranes for each stage compared with UTP membranes. A higher passage of SP and SP removal rate for GP than UTP membranes was achieved by using a higher cross-flow velocity when processing skim milk. Increasing flux in subsequent stages did not affect membrane permeability and fouling. We operated under conditions that produced partial membrane fouling, due to using a flux that was less than limiting flux but higher than critical flux. Because the critical flux is a function of the cross-flow velocity, the difference in critical flux between UTP and GP membranes resulted only from operating under different cross-flow velocities (6.6 vs 7.12 for UTP and GP

  6. Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems

    DEFF Research Database (Denmark)

    Gruber, M.F.; Johnson, C.J.; Tang, C.Y.;

    2011-01-01

    Forward osmosis is an osmotically driven membrane separation process that relies on the utilization of a large osmotic pressure differential generated across a semi-permeable membrane. In recent years forward osmosis has shown great promise in the areas of wastewater treatment, seawater...... the understanding of membrane systems, models that can accurately encapsulate all significant physical processes occurring in the systems are required. The present study demonstrates a computational fluid dynamics (CFD) model capable of simulating forward osmosis systems with asymmetric membranes. The model...

  7. Solving Multidimensional 0-1 Knapsack Problem by P Systems with Input and Active Membranes

    OpenAIRE

    2004-01-01

    P systems are parallel molecular computing models based on pro- cessing multisets of objects in cell-like membrane structures. In this paper we give a membrane algorithm to multidimensional 0-1 knapsack problem in lin- ear time by recognizer P systems with input and with active membranes using 2-division. This algorithm can also be modi¯ed to solve general 0-1 integer programming problem.

  8. System and method for temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  9. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  10. Magnetic self-assembly of microparticle clusters in an aqueous two-phase microfluidic cross-flow

    Science.gov (United States)

    Abbasi, Niki; Jones, Steven G.; Moon, Byeong-Ui; Tsai, Scott S. H.

    2015-11-01

    We present a technique that self-assembles paramagnetic microparticles on the interface of aqueous two-phase system (ATPS) fluids in a microfluidic cross-flow. A co-flow of the ATPS is formed in the microfluidic cross channel as the flows of a dilute dextran (DEX) phase, along with a flow-focused particle suspension, converges with a dilute polyethylene glycol (PEG) phase. The microparticles arrive at the liquid-liquid interface and self-assemble into particle clusters due to forces on the particles from an applied external magnetic field gradient, and the interfacial tension of the ATPS. The microparticles form clusters at the interface, and once the cluster size grows to a critical value, the cluster passes through the interface. We control the size of the self-assembled clusters, as they pass through the interface, by varying the strength of the applied magnetic field gradient and the ATPS interfacial tension. We observe rich assembly dynamics, from the formation of Pickering emulsions to clusters that are completely encapsulated inside DEX phase droplets. We anticipate that this microparticle self-assembly method may have important biotechnological applications that require the controlled assembly of cells into clusters.

  11. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    Science.gov (United States)

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  12. COMPUTATIONAL FLUID DYNAMICS RESEARCH ON PRESSURE LOSS OF CROSS-FLOW PERFORATED MUFFLER

    Institute of Scientific and Technical Information of China (English)

    HU Xiaodong; ZHOU Yiqi; FANG Jianhua; MAN Xiliang; ZHAO Zhengxu

    2007-01-01

    The pressure loss of cross-flow perforated muffler has been computed with the procedure of physical modeling, simulation and data processing. Three-dimensional computational fluid dynamics (CFD) has been used to investigate the relations of porosities, flow velocity and diameter of the holes with the pressure loss. Accordingly, some preliminary results have been obtained that pressure loss increases with porosity descent as nearly a hyperbolic trend, rising flow velocity of the input makes the pressure loss increasing with parabola trend, diameter of holes affects little about pressure loss of the muffler. Otherwise, the holes on the perforated pipes make the air flow gently and meanly,which decreases the air impact to the wall and pipes in the muffler. A practical perforated muffler is used to illustrate the available of this method for pressure loss computation, and the comparison shows that the computation results with the method of CFD has reference value for muffler design.

  13. Thermal-hydraulic performance of oval tubes in a cross-flow of air

    Science.gov (United States)

    Hasan, Ala

    2005-06-01

    The thermal-hydraulic performance of five oval tubes is experimentally investigated and compared with that for a circular tube in a cross-flow of air. The range of Reynolds numbers ReD is approximately between 1,000 and 11,000. The nominal axis ratios R (major axis/minor axis) for three of the investigated oval tubes are 2, 3, and 4. Two other configurations of oval tubes are also tested, an oval tube R=3 with two wires soldered on its upper and lower top positions, and a cut-oval tube. The performance of the tubes is corrected for the effects of area blockage and turbulence intensity. The measurement results show that the mean Nusselt numbers NuD for the oval tubes are close to that for the circular tube for ReDthermal-hydraulic performance is indicated by the ratio NuD/Cd, which shows a better combined performance for the oval tubes.

  14. THREE-DIMENSIONAL NUMERICAL SIMULATION OF INTAKE MODEL WITH CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    CHUANG Wei-Liang; HSIAO Shih-Chun

    2011-01-01

    The hydrodynamics of a pump sump consisting of a main channel, pump sump, and intake pipe is examined using Truchas,a three-dimensional Navier-Stokes solver, with a Large Eddy Simulation (LES) turbulence model. The numerical results of streamwise velocity profiles and flow patterns are discussed and compared with experimental data of Ansar and Nakato. Fairly good agreement is obtained. Furthermore, unlike Ansar et al.'s inviscid solution, the proposed numerical model includes the effect of fluid viscosity and considers more realistic simulation conditions. Simulation results show that viscosity affects the prediction of flow patterns and that the streamwise velocity can be better captured by including cross flow. The effects of the submergence Froude number on the free surface and streamwise velocity are also examined. The free surface significantly fluctuates at high submergence Froude number flows and the corresponding distribution of streamwise velocity profiles exhibits a trend different from that obtained for low submergence Froude number flows.

  15. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    Science.gov (United States)

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  16. The effect of turbulence on the particle impaction on a cylinder in a cross flow

    CERN Document Server

    Rivedal, Nikolai Hydle; Haugen, Nils Erland L

    2011-01-01

    Particle impaction on a cylinder in a cross flow is investigated with the use of Direct Numerical Simulations (DNS) and with a focus on the effect of turbulence on the impaction efficiency. The turbulence considered is isotropic homogeneous turbulence with varying integral scales. It is found that for particles with Stokes numbers in the boundary stopping mode there is up to 10 times more front side impaction for turbulence with a large integral scale than for a corresponding laminar flow. For decreasing integral scales the effect of the turbulence on front side particle impaction efficiency is decreasing. The back side impaction efficiency is also found to be influenced by the turbulence, but for the back side the strongest effect, and largest impaction efficiency, is found for small integral scales.

  17. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder

    Institute of Scientific and Technical Information of China (English)

    XIA Yong; LU De-Tang; LIU Yang; XU You-Sheng

    2009-01-01

    The multiple-relaxation-time lattice Boltzmann method (MRT-LBM) is implemented to numerically simulate the cross flow over a longitudinal vibrating circular cylinder.This research is carried out on a three-dimensional (3D) finite cantilevered cylinder to investigate the effect of forced vibration on the wake characteristics and the 319 effect of a cantilevered cylinder.To meet the accuracy of this method,the present calculation is carried out at a low Reynolds number Re = 100,as well as to make the vibration obvious,we make the vibration strong enough.The calculation results indicate that the vibration has significant influence on the wake characteristics. When the vibrating is big enough,our early works show that the 2D vortex shedding would be locked up by vibration.Contrarily,this phenomenon would not appear in the present 313 case because of the end effect of the cantilevered cylinder.

  18. Scale-adaptive simulation of a hot jet in cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Duda, B M; Esteve, M-J [AIRBUS Operations S.A.S., Toulouse (France); Menter, F R; Hansen, T, E-mail: benjamin.duda@airbus.com [ANSYS Germany GmbH, Otterfing (Germany)

    2011-12-22

    The simulation of a hot jet in cross flow is of crucial interest for the aircraft industry as it directly impacts aircraft safety and global performance. Due to the highly transient and turbulent character of this flow, simulation strategies are necessary that resolve at least a part of the turbulence spectrum. The high Reynolds numbers for realistic aircraft applications do not permit the use of pure Large Eddy Simulations as the spatial and temporal resolution requirements for wall bounded flows are prohibitive in an industrial design process. For this reason, the hybrid approach of the Scale-Adaptive Simulation is employed, which retains attached boundary layers in well-established RANS regime and allows the resolution of turbulent fluctuations in areas with sufficient flow instabilities and grid refinement. To evaluate the influence of the underlying numerical grid, three meshing strategies are investigated and the results are validated against experimental data.

  19. Scale-adaptive simulation of a hot jet in cross flow

    Science.gov (United States)

    Duda, B. M.; Menter, F. R.; Hansen, T.; Esteve, M.-J.

    2011-12-01

    The simulation of a hot jet in cross flow is of crucial interest for the aircraft industry as it directly impacts aircraft safety and global performance. Due to the highly transient and turbulent character of this flow, simulation strategies are necessary that resolve at least a part of the turbulence spectrum. The high Reynolds numbers for realistic aircraft applications do not permit the use of pure Large Eddy Simulations as the spatial and temporal resolution requirements for wall bounded flows are prohibitive in an industrial design process. For this reason, the hybrid approach of the Scale-Adaptive Simulation is employed, which retains attached boundary layers in well-established RANS regime and allows the resolution of turbulent fluctuations in areas with sufficient flow instabilities and grid refinement. To evaluate the influence of the underlying numerical grid, three meshing strategies are investigated and the results are validated against experimental data.

  20. Design and Analysis of Cross Flow Turbine for Micro Hydro Power Application using Sewerage Water

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Khan

    2014-08-01

    Full Text Available The objective of this study endeavor is to describe the design of an environment friendly captive micro hydel power plant at the sewerage treatment plant outlet fall at Lai Nallah located in I-9 Islamabad. It will use sewerage water of CDA as discharge water to run the turbine of the micro hydel power plant to generate electricity. The important phases of the project are to carry out survey for collection of data about hydrology, quantity of flow of water, fall head, geology and design of an efficient turbine. Complete design calculations of turbine have been performed along with static and model analysis of the turbine. Key parameters to increase efficiency of cross-flow turbine are discussed.

  1. Experimental Investigation of Cross-Flow Axis Marine Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    Science.gov (United States)

    Wosnik, M.; Bachant, P.

    2011-12-01

    A new test bed for Marine Hydrokinetic (MHK) turbines at the Center for Ocean Renewable Energy at the University of New Hampshire (UNH-CORE) was used to evaluate the performance of different cross-flow axis hydrokinetic turbines, and investigate the effects of waves and turbulence on these devices. The test bed was designed and built to operate in the UNH tow and wave tank, which has a cross section of 3.67m (width) x 2.44m (depth). In the present configuration, tow speeds of up to 3 m/s can be achieved for smaller turbine models, and up to 1.5 m/s for large turbine models with low gear ratio. It features a flap style wave maker at one end that is capable of producing waves with 1-5 s periods up to 0.4 m wave height. Turbine thrust (drag) and mechanical power output (torque, angular velocity) were measured at tow speeds of 0.6-1.5 m/s for two cross-flow axis MHK turbines: a Gorlov Helical Turbine (GHT) and a Lucid spherical turbine (LST). Both were provided by Lucid Energy Technologies, LLP, and have frontal areas of 1.3 (GHT) and 1.0 (LST) square meters, respectively. GHT performance was also measured in progressive waves of various periods, grid turbulence, and in the wake of a cylinder, installed upstream at various cross-stream locations. Overall, the GHT performs with higher power and thrust (drag) coefficients than the LST. A 2nd law efficiency, or kinetic exergy efficiency, was defined to calculate what fraction of the kinetic energy removed from the flow is converted to usable shaft work by each turbine. The exergy efficiency varies with tip speed ratio but approaches 90% for the optimum operating conditions for each turbine. The fraction of kinetic energy removed from the fluid that is not converted to shaft work is redistributed into turbulent kinetic energy in the wake. Quantifying the kinetic energy flowing out of the turbine is important for modeling of environmental transport processes and for predicting performance when turbines are used in arrays

  2. LES of an inclined jet into a supersonic cross-flow

    CERN Document Server

    Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall

    2008-01-01

    This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.

  3. Computational Studies of Flow through Cross Flow Fans - Effect of Blade Geometry

    Institute of Scientific and Technical Information of China (English)

    M. GOVARDHAN; D. LAKSHMANA SAMPAT

    2005-01-01

    This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG κ-ε two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.

  4. Experimental researches on mass and heat transfer in new typical cross-flow rotating packed bed

    Institute of Scientific and Technical Information of China (English)

    CHEN Haihui; ZENG Yingying; GAO Wenshuai

    2006-01-01

    New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop.

  5. Investigation of Blade Angle of an Open Cross-Flow Runner

    Science.gov (United States)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  6. Network modeling of membrane-based artificial cellular systems

    Science.gov (United States)

    Freeman, Eric C.; Philen, Michael K.; Leo, Donald J.

    2013-04-01

    Computational models are derived for predicting the behavior of artificial cellular networks for engineering applications. The systems simulated involve the use of a biomolecular unit cell, a multiphase material that incorporates a lipid bilayer between two hydrophilic compartments. These unit cells may be considered building blocks that enable the fabrication of complex electrochemical networks. These networks can incorporate a variety of stimuli-responsive biomolecules to enable a diverse range of multifunctional behavior. Through the collective properties of these biomolecules, the system demonstrates abilities that recreate natural cellular phenomena such as mechanotransduction, optoelectronic response, and response to chemical gradients. A crucial step to increase the utility of these biomolecular networks is to develop mathematical models of their stimuli-responsive behavior. While models have been constructed deriving from the classical Hodgkin-Huxley model focusing on describing the system as a combination of traditional electrical components (capacitors and resistors), these electrical elements do not sufficiently describe the phenomena seen in experiment as they are not linked to the molecular scale processes. From this realization an advanced model is proposed that links the traditional unit cell parameters such as conductance and capacitance to the molecular structure of the system. Rather than approaching the membrane as an isolated parallel plate capacitor, the model seeks to link the electrical properties to the underlying chemical characteristics. This model is then applied towards experimental cases in order that a more complete picture of the underlying phenomena responsible for the desired sensing mechanisms may be constructed. In this way the stimuli-responsive characteristics may be understood and optimized.

  7. Membrane Systems Engineering for Post-combustion Carbon Capture

    KAUST Repository

    Alshehri, Ali

    2013-08-05

    This study proposes a strategy for optimal design of hollow fiber membrane networks for post combustion carbon capture from power plant multicomponent flue gas. A mathematical model describing multicomponent gas permeation through a separation membrane was customized into the flowsheet modeling package ASPEN PLUS. An N-stage membrane network superstructure was defined considering all possible flowsheeting configurations. An optimization formulation was then developed and solved using an objective function that minimizes the costs associated with operating and capital expenses. For a case study of flue gas feed flow rate of 298 m3/s with 13% CO2 and under defined economic parameters, the optimization resulted in the synthesis of a membrane network structure consisting of two stages in series. This optimal design was found while also considering feed and permeate pressures as well as recycle ratios between stages. The cost of carbon capture for this optimal membrane network is estimated to be $28 per tonne of CO2 captured, considering a membrane permeance of 1000 GPU and membrane selectivity of 50. Following this approach, a reduction in capture cost to less than $20 per tonne CO2 captured is possible if membranes with permeance of 2000 GPU and selectivity higher than 70 materialize.

  8. NUMERICAL STUDY OF HYDRODYNAMICS OF MULTIPLE TANDEM JETS IN CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    XIAO Yang; TANG Hong-wu; LIANG Dong-fang; ZHANG Jiu-ding

    2011-01-01

    The hydrodynamics of a single jet and four tandem jets in a cross flow are simulated by using the Computational Fluid Dynamics (CFD) software Fluent.The realizable k- ε model is used to close the Reynolds-Averaged equations.The flow characteristics of the jets,including the jet trajectory,the velocity field and the turbulent kinetic energy are obtained with various jet-tocross flow velocity ratios R in the range of 2.38-17.88.It is shown that a single jet penetrates slightly deeper than the first jet in a jet group at the same R,although the difference decreases with the decrease of R.It is also found that the way in which the velocity decays along the centerline of the jet is similar for both a single jet and the first jet in a group,and the speed of the decay increases with the decrease of R.The downstream jets in a group are found to behave differently due to the sheltering effect of the first jet in the group.Compared with the first jet,the downstream jets penetrate deeper into the cross flow,and the velocity decays more slowly.The circulation zone between the two upstream jets in the front is stronger than those formed between the downstream jets.The Turbulent Kinetic Energy (TKE) sees a distinct double-peak across the cross-sections close to each nozzle,with low values in the jet core and high values in the shear layers.The double-peak gradually vanishes,as the shear layers of the jet merge further away from the nozzle,where the TKE assumes peaks at the jet centerline.

  9. Baleen Hydrodynamics and Morphology of Cross-Flow Filtration in Balaenid Whale Suspension Feeding.

    Directory of Open Access Journals (Sweden)

    Alexander J Werth

    Full Text Available The traditional view of mysticete feeding involves static baleen directly sieving particles from seawater using a simple, dead-end flow-through filtration mechanism. Flow tank experiments on bowhead (Balaena mysticetus baleen indicate the long-standing model of dead-end filtration, at least in balaenid (bowhead and right whales, is not merely simplistic but wrong. To recreate continuous intraoral flow, sections of baleen were tested in a flume through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were analyzed to investigate movement and capture of particles by baleen plates and fringes. Results indicate that very few particles flow directly through the baleen rack; instead much water flows anteroposteriorly along the interior (lingual side of the rack, allowing items to be carried posteriorly and accumulate at the posterior of the mouth where they might readily be swallowed. Since water flows mainly parallel to rather than directly through the filter, the cross-flow mechanism significantly reduces entrapment and tangling of minute items in baleen fringes, obviating the need to clean the filter. The absence of copepods or other prey found trapped in the baleen of necropsied right and bowhead whales supports this hypothesis. Reduced through-baleen flow was observed with and without boundaries modeling the tongue and lips, indicating that baleen itself is the main if not sole agent of crossflow. Preliminary investigation of baleen from balaenopterid whales that use intermittent filter feeding suggests that although the biomechanics and hydrodynamics of oral flow differ, cross-flow filtration may occur to some degree in all mysticetes.

  10. Attainability and minimum energy of multiple-stage cascade membrane Systems

    KAUST Repository

    Alshehri, Ali

    2015-08-12

    Process design and simulation of multi-stage membrane systems have been widely studied in many gas separation systems. However, general guidelines have not been developed yet for the attainability and the minimum energy consumption of a multi-stage membrane system. Such information is important for conceptual process design and thus it is the topic of this work. Using a well-mixed membrane model, it was determined that the attainability curve of multi-stage systems is defined by the pressure ratio and membrane selectivity. Using the constant recycle ratio scheme, the recycle ratio can shift the attainability behavior between single-stage and multi-stage membrane systems. When the recycle ratio is zero, all of the multi-stage membrane processes will decay to a single-stage membrane process. When the recycle ratio approaches infinity, the required selectivity and pressure ratio reach their absolute minimum values, which have a simple relationship with that of a single-stage membrane process, as follows: View the MathML sourceSn=S1, View the MathML sourceγn=γ1, where n is the number of stages. The minimum energy consumption of a multi-stage membrane process is primarily determined by the membrane selectivity and recycle ratio. A low recycle ratio can significantly reduce the required membrane selectivity without substantial energy penalty. The energy envelope curve can provide a guideline from an energy perspective to determine the minimum required membrane selectivity in membrane process designs to compete with conventional separation processes, such as distillation.

  11. A crossflow filtration system for constant permeate flux membrane fouling characterization

    Science.gov (United States)

    Miller, Daniel J.; Paul, Donald R.; Freeman, Benny D.

    2013-03-01

    Membrane fouling is often characterized using a crossflow filtration apparatus. Typically, the transmembrane pressure (TMP) difference is fixed, and the flux is allowed to decline as the membrane fouls and the resistance to mass transfer increases. However, as flux varies, so too does the rate at which foulants are brought to the membrane surface, so the observed fouling behavior is not solely the result of membrane/foulant interactions. Constant flux experiments, where the permeate flux is fixed and the TMP difference varies, minimize such variations in the hydrodynamic conditions at the membrane surface, but constant TMP difference experiments dominate the fouling literature because they are more straightforward to execute than constant flux experiments. Additionally, most industrial water purification membrane installations operate at constant flux rather than at constant TMP. Here, we describe the construction and operation of a constant flux crossflow fouling apparatus. System measurement accuracy was validated by comparison of pure water permeance measurements to values specified by the membrane manufacturer, reported elsewhere, and measured by another technique. Fouling experiments were performed with two membrane/foulant systems: polysulfone ultrafiltration membranes with a soybean oil emulsion foulant and PVDF microfiltration membranes with a polystyrene latex bead suspension foulant. Automatic permeate flux control facilitated flux stepping experiments, which are commonly used to determine the threshold flux or critical flux of a membrane/foulant pair. Comparison of a flux stepping experiment with a literature report yielded good agreement.

  12. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental Study on Coupled Cross-Flow and in-Line Vortex-Induced Vibration of Flexible Risers

    Institute of Scientific and Technical Information of China (English)

    GUO Hai-yan; LOU Min

    2008-01-01

    In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow (Y-) and in-line (X-) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.

  14. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered fati

  15. Biofouling Control in Spiral-Wound Membrane Systems: Impact of Feed Spacer Modification and Biocides

    KAUST Repository

    Siddiqui, Amber

    2016-12-01

    High-quality drinking water can be produced with membrane-based filtration processes like reverse osmosis and nanofiltration. One of the major problems in these membrane systems is biofouling that reduces the membrane performance, increasing operational costs. Current biofouling control strategies such as pre-treatment, membrane modification, and chemical cleaning are not sufficient in all cases. Feed spacers are thin (0.8 mm), complex geometry meshes that separate membranes in a module. The main objective of this research was to evaluate whether feed spacer modification is a suitable strategy to control biofouling. Membrane fouling simulator studies with six feed spacers showed differences in biofouled spacer performance, concluding that (i) spacer geometry influences biofouling impact and (ii) biofouling studies are essential for evaluation of spacer biofouling impact. Computed tomography (CT) was found as a suitable technique to obtain three-dimensional (3D) measurements of spacers, enabling more representative mathematical modeling of hydraulic behavior of spacers in membrane systems. A strategy for developing, characterizing, and testing of spacers by numerical modeling, 3D printing of spacers and experimental membrane fouling simulator studies was developed. The combination of modeling and experimental testing of 3D printed spacers is a promising strategy to develop advanced spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound membrane systems.

  16. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies.

    Science.gov (United States)

    Silva, Nuno H C S; Rodrigues, Artur Filipe; Almeida, Isabel F; Costa, Paulo C; Rosado, Catarina; Neto, Carlos Pascoal; Silvestre, Armando J D; Freire, Carmen S R

    2014-06-15

    Bacterial cellulose (BC) membranes were explored as novel nanostructured transdermal delivery systems for diclofenac sodium salt (a typical non-steroidal anti-inflammatory drug). Diclofenac sodium salt loaded BC membranes were prepared through a simple methodology, using glycerol as plasticizer, and characterized in terms of structure, morphology and swelling behavior. The membranes were very homogeneous, quite flexible and presented a considerably higher swelling behavior when compared with pure BC. In vitro diffusion studies with Franz cells, were conducted using human epidermal membranes, and showed that the incorporation of diclofenac in BC membranes provided similar permeation rates to those obtained with commercial patches and substantially lower than those observed with a commercial gel. This release profile together with the ease of application and the simple preparation and assembly of the drug-loaded membranes clearly indicates the enormous potentialities of using BC membranes for transdermal administration of diclofenac. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Feed gas contaminant removal in ion transport membrane systems

    Science.gov (United States)

    Underwood, Richard Paul [Allentown, PA; Makitka, III, Alexander; Carolan, Michael Francis [Allentown, PA

    2012-04-03

    An oxygen ion transport membrane process wherein a heated oxygen-containing gas having one or more contaminants is contacted with a reactive solid material to remove the one or more contaminants. The reactive solid material is provided as a deposit on a support. The one or more contaminant compounds in the heated oxygen-containing gas react with the reactive solid material. The contaminant-depleted oxygen-containing gas is contacted with a membrane, and oxygen is transported through the membrane to provide transported oxygen.

  18. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    2013-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...... way for estimating the hydration status and the temperature of its membrane before the system is started up. A summarizing table with the complete characterization of the fuel cell stack is included in this article....

  19. Experimental study of a R-407C drop-in test on an off-the-shelf air conditioner with a counter-cross-flow evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Mei, V.C.; Domitrovic, R.; Chen, F.C.

    1998-03-01

    An off-the-shelf 2-ton window air conditioner having an energy efficiency ratio of 10 was used to perform a drop-in test with R-407C. Laboratory tests were performed using a parallel-cross-flow (PCF) evaporator and a counter-cross-flow (CCF) evaporator. The CCF configuration is designed to take advantage of the temperature glide of R-407C so that the warm evaporator inlet air will be in contact with the higher temperature part of the evaporator coils first. The test results indicated that, at the Air Conditioning and Refrigeration Institute-rated indoor and outdoor conditions, the cooling capacity was 8% higher and system coefficient of performance about 3.8% higher for the CCF evaporator than for the PCF evaporator. The test results also showed that the latent load for CCF was 30.6% higher than for PCF. The far better dehumidification effect provided by the CCF evaporator design is desirable for areas where the latent load is high. The experimental findings should be useful for future efforts to design a dehumidifier that uses a zeotropic refrigerant that provides a significant temperature glide. R-22 test data from a previous project are included as a reference.

  20. Membrane emulsification to produce perfume microcapsules

    Science.gov (United States)

    Pan, Xuemiao

    Microencapsulation is an efficient technology to deliver perfume oils from consumer products onto the surface of fabrics. Microcapsules having uniform size/mechanical strength, may provide better release performance. Membrane emulsification in a dispersion cell followed by in-situ polymerization was used to prepare narrow size distribution melamine-formaldehyde (MF) microcapsules containing several types of oil-based fragrances or ingredients. Investigated in this study are the parameters impacting to the size and size distribution of the droplets and final MF microcapsules. A pilot plant-scale cross-flow membrane system was also used to produce MF microcapsules, demonstrating that the membrane emulsification process has potential to be scaled up for industrial applications. In this study, health and environmental friendly poly (methyl methacrylate) (PMMA) microcapsules with narrow size distribution were also prepared for the first time using the dispersion cell membrane emulsification system. Characterization methods previously used for thin-shell microcapsules were expanded to analyse microcapsules with thick shells. The intrinsic mechanical properties of thick shells were determined using a micromanipulation technique and finite element analysis (FEM). The microcapsules structure was also considered in the determination of the permeability and diffusivity of the perfume oils in good solvents..

  1. Pressure driven flow in porous tubular membranes

    Science.gov (United States)

    Tilton, Nils; Martinand, Denis; Serre, Eric; Lueptow, Richard

    2011-11-01

    We consider the steady laminar flow of a Newtonian incompressible fluid in a porous tubular membrane with pressure-driven transmembrane flow. Due to its fundamental importance to membrane filtration systems, this flow has been studied extensively both analytically and numerically, yet a robust analytic solution has not been found. The problem is challenging due to the coupling between the transmembrane pressure and velocity with the simultaneous coupling between the axial pressure gradient and the axial velocity. We present a robust analytical solution which incorporates Darcy's law on the membrane surface. The solution is in the form of an asymptotic expansion about a small parameter related to the membrane permeability. We verify the analytical solution with comparison to 2-D spectral direct numerical simulations of ultrafiltration and microfiltration systems with typical operating conditions, as well as extreme cases of cross-flow reversal and axial flow exhaustion. In all cases, the agreement between the analytical and numerical results is excellent. Finally, we use the analytical and numerical results to provide guidelines about when common simplifying assumptions about the permeate flow may be made. Specifically, the assumptions of a parabolic axial velocity profile and uniform transmembrane velocity are valid only for small permeabilities.

  2. Hydrogen selective membrane for the natural gas system. Development of CO{sub 2}-selective biogas membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vestboe, A.P.

    2012-02-15

    The project started as a literature study and technology development project for a hydrogen selective membrane for the natural gas system. The introduction of hydrogen (for example produced from wind turbines by surplus electricity) in the gas system makes it possible to store energy which can be selectively used with high energy conversion in fuel cells directly located at the end users. In order to make this possible, it is necessary to have a separating unit that can selectively remove hydrogen from the gas mixture and deliver it as fuel to the electrical generator (a fuel cell). In the project, several existing technologies were evaluated with regard to the application in view. It was concluded that while other technologies are ripe, they are costly in energy and unsuitable for the relatively low capacity application that are in question close to the end users. Membrane technology was evaluated to be the most suitable, although the technology is still under development in many cases. In the project it was found that metallic membranes in the form of palladium coated stainless discs would answer the needs for the high purity needed. Laboratory development yielded discs that could separate hydrogen from natural gas, however, the flux was low compared to the needs of the application. It was found that at least 2 bar pressure difference of hydrogen would be needed to get a high enough flux. The way to achieve this pressure would necessitate a compressor which would consume an energy amount high enough to invalidate the concept. When concluding on the results and the study it was found that the direction of the project could be changed towards developing CO{sub 2}-selective membranes with the goal of developing membrane technology that could upgrade biogas by removing CO{sub 2}. The laboratory equipment and setup that were developed in the first part of the project could be used directly in this second part of the project. In this second part of the project it was

  3. Energy minimization of separation processes using conventional/membrane hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Gottschlich, D.E.; Roberts, D.L. (SRI International, Menlo Park, CA (USA))

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  4. Modeling and experimental analysis of phased array synthetic jet cross-flow interactions

    Science.gov (United States)

    Hasnain, Zohaib

    Synthetic Jet Actuators (SJAs) are fluidic devices capable of adding momentum to static or non-static bodies of fluid without adding mass. They are therefore categorized as zero-net-mass-flux (ZNMF) momentum source. In its simplest compact form a SJA consists of an oscillatory surface connected to a cavity with a single exit orifice through which the fluid enters and exits. SJA technology has been utilized in applications ranging from boundary layer control over aerodynamic surfaces to fluidic mixing in dispersion applications. The ZNMF nature of the technology means it is not subject to constraints experienced by traditional momentum sources that require the addition of mass in order to impart momentum. The momentum that can be added by a single SJA is limited by the energy transfer capabilities of the oscillating surface. In modern SJAs this surface usually is a piezoceramic/metal composite subjected to a high voltage AC signal. For applications such as flow control over aerodynamic surfaces, modern SJAs are used in an array configuration and are capable of altering the flow momentum by values ranging from 0.01-10%. While it is possible to build larger actuators to increase this value the benefits associated with the compact size would be lost. It is therefore desirable to tune other parameters associated with SJA arrays to increase this value. The specific motivation for this study comes from the desire to control the momentum addition capacity of a specific SJA array, without having to alter any geometric parameters. In a broader sense this study focuses on understanding the physics of SJA interaction in array configuration through experiments which are then used to guide in the design of modeling technique that predicts SJA array behavior in cross-flows. The first half of the project focused on understanding SJA behavior through modeling. Numerical techniques were initially used to model SJA and SJA arrays in cross-flows. Reduced numerical models were then

  5. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  6. Red wine activates plasma membrane redox system in human erythrocytes.

    Science.gov (United States)

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  7. A high-efficiency cross-flow micronebulizer interface for capillary electrophoresis and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Li, J; Umemura, T; Odake, T; Tsunoda, K

    2001-12-15

    A pneumatic nebulizer interface for capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICPMS) is reported. The interface is constructed using a high-efficiency cross-flow micronebulizer (HECFMN) and has the following features. (1) Makeup solutions can be fed to the interface by nebulizer self-aspiration and liquid gravity pressurization. (2) The liquid dead volume of the interface is approximately 65 nL, much smaller than those (200-2500 nL) reported for other interfaces. (3) The interface can be stably operated at a liquid flow rate down to 5 microL/min with a high analyte transport efficiency up to 95% to the plasma and (4) does not induce noticeable laminar flow in the CE capillary at typical nebulizer gas flow rates of 0.8-1.2 L/min. Because of these features, baseline resolution of 10 lanthanides with a CE-ICPMS system using the HECFMN interface is achieved, and detection limits and peak asymmetry are 0.05-1 microg/L and 0.93-1.23, respectively, improved significantly over those reported previously for a CE-ICPMS system using a high-efficiency nebulizer interface. Peak precision for the 10 lanthanides is in the range of 6.2-12.3% RSD (N = 5). Peak widths are from 9.1 s for 139La to 17.9 s for 175Lu. The effects of nebulizer gas flow rate, makeup solution flow rate, and spray chamber volume on CE-ICPMS signal intensity and separation are also evaluated for the HECFMN interface by the separation of Cr3+ and Cr2O7(2-).

  8. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  9. Characterizing the Deformation of the Polydimethylsiloxane (PDMS Membrane for Microfluidic System through Image Processing

    Directory of Open Access Journals (Sweden)

    Xiang Qian

    2016-05-01

    Full Text Available Polydimethylsiloxane (PDMS membranes have been widely used in the microfluidic community to achieve various functions such as control, sensing, filter, etc. In this paper, an experimental process was proposed to directly characterize the deformation of the on-chip PDMS membrane at large deformation based on the image processing method. High precision pressures were applied on the surface of the PDMS membrane with fixed edges and a series deformation of the PDMS membrane were captured by the imaging system. The Chan and Vese (CV level set method was applied to segment the images of the deformed membrane. The volumes wrapped by the deformed membranes were obtained, and pressure-volumes relationships of the PDMS membranes with different geometry parameters were also calculated. Then the membrane capacitance can be derived by differentiating the curve of pressure-volumes. In addition, the theoretical estimation of the capacitance of the PDMS membrane at large deformation was also obtained through finite element simulation (FEM, which was in good agreement with the experimental results. These results are expected to be significant for designing and on-chip measuring of such PDMS membrane based microfluidic components in our future work.

  10. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas

    KAUST Repository

    Khalilpour, Rajab

    2011-08-12

    The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).

  11. Research on Influence Factors of Membrane Fouling in A/O-MBR System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the influence factors of membrane fouling in A/O-MBR system,so as to control membrane fouling better,prolong the service life of membrane,further reduce the cost of water treatment and promote the popularization of membrane bioreactor(MBR) effectively.[Method] Based on small A/O-MBR device,an orthogonal test with three factors(including aeration intensity,pump-stop ratio and mixed liquor suspended solid) and three levels was designed to optimize three parameters,and the effe...

  12. Single CMOS sensor system for high resolution double volume measurement applied to membrane distillation system

    Science.gov (United States)

    Lorenz, M. G.; Izquierdo-Gil, M. A.; Sanchez-Reillo, R.; Fernandez-Pineda, C.

    2007-01-01

    Membrane distillation (MD) [1] is a relatively new process that is being investigated world-wide as a low cost, energy saving alternative to conventional separation processes such as distillation and reverse osmosis (RO). This process offers some advantages compared to other more popular separation processes, such as working at room conditions (pressure and temperature); low-grade, waste and/or alternative energy sources such as solar and geothermal energy may be used; a very high level of rejection with inorganic solutions; small equipment can be employed, etc. The driving force in MD processes is the vapor pressure difference across the membrane. A temperature difference is imposed across the membrane, which results in a vapor pressure difference. The principal problem in this kind of system is the accurate measurement of the recipient volume change, especially at very low flows. A cathetometer, with up to 0,05 mm resolution, is the instrument used to take these measurements, but the necessary human intervention makes this instrument not suitable for automated systems. In order to overcome this lack, a high resolution system is proposed, that makes automatic measurements of the volume of both recipients, cold and hot, at a rate of up to 10 times per second.

  13. Effect of macroporous adsorption resin-membrane bioreactor hybrid system against fouling for municipal wastewater treatment.

    Science.gov (United States)

    Chen, Weiwei; Luo, Jing; Cao, Ruyi; Li, Yuting; Liu, Jinrong

    2017-01-01

    Membrane bioreactor (MBR) displays significant advantages in effluent quality, sludge production, footprint, and operation. However, membrane fouling limits the application of MBR. This study investigated membrane fouling in a macroporous adsorption resin-membrane bioreactor hybrid system established by adding macroporous adsorption resin (MAR) into MBR. MAR addition increased the critical flux by 27.97%, indicating that membrane fouling was successfully mitigated. Consequently, comparative experiments were designed to analyze the pathway. MAR addition mitigated external fouling development and improved mixed liquor characteristics, thereby mitigating gel layer formation and sludge floc deposition on the membrane surface. MAR effectively reduced the supernatant viscosity and dissolved COD by adsorbing soluble microbial products. Sludge production decreased because the sludge activity in MAR-MBR was inhibited. The fouled MAR could be regenerated effectively by deionized water and chemical cleaning. This work demonstrated the feasibility of using MAR-MBR to mitigate fouling in municipal wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Enhancing the Simulation of Membrane System on the GPU for the N-Queens Problem

    Institute of Scientific and Technical Information of China (English)

    Ravie Chandren Muniyandi; Ali Maroosi

    2015-01-01

    Previous approaches using active mem-brane systems to solve the N-queens problem defined many membranes with just one rule inside them. This resulted in many communication rules utilised to communicate be-tween membranes, which made communications between the cores and the threads a very time-consuming process. The proposed approach reduces unnecessary membranes and communication rules by defining two membranes with many ob jects and rules inside each membrane. With this structure, ob jects and rules can evolve concurrently in par-allel, which makes the model suitable for implementation on a Graphics processing unit (GPU). The speedup using a GPU with global memory for N=10 is 10.6 times, but using tiling and shared memory, it is 33 times.

  15. Humidity control during bell pepper storage, using a hollow fiber membrane contractor system

    NARCIS (Netherlands)

    Dijkink, B.H.; Tomassen, M.M.M.; Willemsen, J.H.A.; Doorn, van W.G.

    2004-01-01

    Green bell peppers (Capsicum annuum cv. Cardio) were stored in open crates at 5 degreesC, using a novel system for maintenance of relative humidity (RH). A hollow fiber membrane contactor allowed adequate transfer of water vapor between the air in the storage room and a liquid desiccant. The membran

  16. Humidity control during bell pepper storage, using a hollow fiber membrane contractor system

    NARCIS (Netherlands)

    Dijkink, B.H.; Tomassen, M.M.M.; Willemsen, J.H.A.; Doorn, van W.G.

    2004-01-01

    Green bell peppers (Capsicum annuum cv. Cardio) were stored in open crates at 5 degreesC, using a novel system for maintenance of relative humidity (RH). A hollow fiber membrane contactor allowed adequate transfer of water vapor between the air in the storage room and a liquid desiccant. The membran

  17. Blood feeding of Ornithodoros turicata larvae using an artificial membrane system

    Science.gov (United States)

    An artificial membrane system was adapted to feed Ornithodoros turicata larvae from a laboratory colony using defibrinated swine blood. Aspects related to larval feeding and molting to the 1st nymphal instar were evaluated. Fifty-five percent of all larvae exposed to the artificial membrane in two e...

  18. Dialysis system. [using ion exchange resin membranes permeable to urea molecules

    Science.gov (United States)

    Mueller, W. A. (Inventor)

    1978-01-01

    The improved hemodialysis system utilizes a second polymeric membrane having dialyzate in contact with one surface and a urea decomposition solution in contact with the other surface. The membrane selectively passes urea from the dialyzate into the decomposition solution, while preventing passage of positively charged metal ions from the dialyzate into the solution and ammonium ions from the solution into the dialyzate.

  19. Application of Cross-Flow Filtration Technique in Purification and Concentration of Juice from Vietnamese Fruits

    OpenAIRE

    Huynh Cang Mai

    2017-01-01

    This study is to offer a 1st insight in the use of membrane process for the purification and concentration of Vietnamese fruit juices: cashew apple (Anacardium occidentale Line.), dragon fruit (Cactus hémiépiphytes), pineapple (Ananas comosus), pomelo (Citrus grandis L.), and gac aril oil (Momordica cochinchinensis Spreng.). On a laboratory scale, the effect of different operating parameters such as trans-membrane pressures (TMP), temperature and membrane pore sizes on permeate flux was deter...

  20. On the use of the periodicity condition in cross-flow tube

    Directory of Open Access Journals (Sweden)

    Beladjine Boumedienne

    2015-01-01

    Full Text Available This paper presents the results of measurements and numerical predictions of turbulent cross-flow through an in-line 7×7 bundle configuration with a constant transverse and longitudinal pitch-to-diameter ratio of 1.44. The experiments are conducted to measure the pressure around tubes, using DPS differential pressure scanner with air flow, in square channel at a Reynolds number of 35000 based on the gap velocity and the tube diameter. The commercial ANSYS FLUENT is used to solve the unsteady Reynolds–Averaged Navier–Stokes (RANS equations. The primary aim of the present study is to search for a turbulent model that could serve as an engineering design tool at a relatively low computational cost. The performances of the Spalart-Allmaras, the RNG k-ε, the Shear Stress Transport k-ω and the second moment closure RSM models are evaluated by comparing their simulation results against experimental data. The second objective is to verify the validity of the periodicity assumption taken account in the most previous numerical works by considering the filled bundle geometry. The CFD results show that the Spalart-Allmaras model on the fine mesh are comparable to the experiments while the periodicity statement did not produce consistently the flow behavior in the 7×7 tube bundle configuration.

  1. Strouhal number effect on synchronized vibration range of a circular cylinder in cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Tsutomu; Nakao, Toshitsugu; Hayashi, Masaaki; Murayama, Kouichi [Hitachi Ltd., Tokyo (Japan)

    2001-11-01

    Synchronized vibrations were measured for a circular cylinder in a water cross flow at subcritical Reynolds numbers to compare the synchronization range between the subcritical and supercritical regions and clarify the effect of the Strouhal number on the range. A small vibration in the lift direction was found in only the subcritical region when the Karman vortex shedding frequency was about 1/5 of the cylinder natural frequency. The ratio of the Karman vortex shedding frequency to the natural frequency where the self-excited vibration in the drag direction by the symmetrical vortex shedding began was about 1/4 in the subcritical region, and increased to 0.32 at the Strouhal number of 0.29 in the supercritical region. The frequency ratio at the beginning of the lock-in vibration in the drag direction by the Karman vortex shedding was about 1/2, and that in the lift direction decreased from 1 to 0.8 with decreasing Strouhal number. (author)

  2. Effect of Impeller Geometry and Tongue Shape on the Flow Field of Cross Flow Fans

    Institute of Scientific and Technical Information of China (English)

    M. Govardhan; G. Venkateswarlu

    2003-01-01

    Experiments were conducted to investigate the effect of impeller geometry and tongue shape on the flow field of cross flow fans.Three impellers (Ⅰ,Ⅱ,Ⅲ)having same outer diameter,but different radius ratio and blade angles were employed for the investigation. Each impeller was tested with two tongue shapes. Flow survey was carded out for each impeller and tongue shape at two flow coefficients, and for each flow coefficient at different circumferential positions. The flow is two-dimensional along the blade span except near the shrouds.The total pressure developed by the impellers in each case is found to be maximum at a circumferential position of around 270°. The total and static pressures at the inlet of impellers are more or less same regardless of impeller and tongue geometry, but they vary considerably at exit of the impellers. Impeller Ⅲ with tongue T2 develops higher total pressure and efficiency where as impeller Ⅱ with tongue T_2 develops minimum total pressure.Higher diffusion and smaller vortex size are the reasons for better performance of impeller Ⅲ with tongue T2.

  3. Interactions of a finite span synthetic jet with a cross flow

    Science.gov (United States)

    Leong, Chia Min; van Buren, Tyler; Whalen, Edward; Amitay, Michael; Rensselaer Polytechnic Institute Team; Boeing Collaboration

    2013-11-01

    A synthetic jet is a zero-net-mass-flux flow control actuator that produces alternating ejection and suction of fluid momentum across an orifice. It has been used in numerous applications as an active flow control device to improve aerodynamic performance. Though their aerodynamic performance effects are well known, this present study seeks to understand the fluid dynamic effects of synthetic jets. Specifically, the work investigates the interactions of a finite span synthetic jet with a zero-pressure-gradient laminar boundary layer. This study was performed in a small-scale subsonic wind tunnel with an adjustable test section upper wall that was used to generate a zero-pressure-gradient boundary layer. Several finite span rectangular orifices were chosen for this study. Time and phase-averaged Stereoscopic Particle Image Velocimetry (SPIV) measurements were acquired at multiple planes upstream and downstream of the synthetic jet orifice to explore the interaction of the synthetic jet with the cross flow. The effects of the orifice aspect ratio (12, 18, and 24) and blowing ratio (0.5, 1, and 1.5) were investigated. The unsteady vortical structures observed in the near field and the steady structures in the far field are discussed.

  4. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. (This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid sus-pension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low soliding ratio (Ms of less than 0.05 kg/kg). A usefial correlation ineorpomting solid lolling ratio, particle size and flow Reytmlds number was derived from experimental data. In addition, the κ-ε two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transit of the gas-phase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well wih experimental data.

  5. Guidelines for random excitation forces due to cross flow in steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Pettigrew, M.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1998-07-01

    Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)

  6. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in m a ny industry processes, such as circulating fluidized bed process, pneumatic conv eying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and g as-solid suspension. The presence of particles causes positive enhancement of h e at transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (Ms of les s than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle s ize and flow Reynolds number was derived from experimental data. In addition, th e k-ε two-equation model and the Fluctuation-Spectrum- Random-Trajecto ry Model ( FSRT Model) are used to simulate the flow field and heat transfer of the gas-ph a se and the solid-phase, respectively. Through coupling of the two phases the mo d el can predict the local and total heat transfer characteristics of tube in gas - solid cross flow. For the total heat transfer enhancement due to particles loadi ng the model predictions agreed well with experimental data.

  7. The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine

    Science.gov (United States)

    Somoano, Miguel; Huera-Huarte, Francisco

    2016-11-01

    In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.

  8. Reducing cross-flow vibrations of underflow gates: experiments and numerical studies

    CERN Document Server

    Erdbrink, C D; Sloot, P M A

    2013-01-01

    An experimental study is combined with numerical modelling to investigate new ways to reduce cross-flow vibrations of hydraulic gates with underflow. A rectangular gate section placed in a flume was given freedom to vibrate in the vertical direction. Holes in the gate bottom enabled leakage flow through the gate to enter the area directly under the gate which is known to play a key role in most excitation mechanisms. For submerged discharge conditions with small gate openings the vertical dynamic support force was measured in the reduced velocity range 1.5 < Vr < 10.5 for a gate with and without holes. The leakage flow through the holes significantly reduced vibrations. This attenuation was most profound in the high stiffness region at 2 < Vr < 3.5. Two-dimensional numerical simulations were performed with the Finite Element Method to assess local velocities and pressures for both gate types. A moving mesh covering both solid and fluid domain allowed free gate movement and two-way fluid-structure ...

  9. Relating surface pressure to Lagrangian wake topology around a circular cylinder in cross flow

    Science.gov (United States)

    Rockwood, Matthew; Green, Melissa

    2016-11-01

    The tracks of Lagrangian saddles, identified as non-parallel intersections of positive and negative-time finite-time Lyapunov exponent (FTLE) ridges, have been shown to indicate the timing of von Karman vortex shedding in the wake of bluff bodies. The saddles are difficult to track in real-time, however, since future flow field data is needed for the computation of the FTLE fields. In order to detect the topological changes without direct access to the FTLE, the saddle dynamics are correlated to measurable surface quantities on a circular cylinder in cross flow. The Lagrangian saddle found upstream of a forming and subsequently shedding vortex has been shown to accelerate away from the cylinder surface as the vortex sheds. In previous numerical results at Re = 150 , this acceleration coincides with the peak in lift force over the cylinder, and also with a minimum in the static pressure at a location slightly upstream of the mean separation location. In the current work, this result is compared with experimental data at Re = O (10 , 000) . Successful validation would provide a strategy for locating sensitive regions on the cylinder surface where vortex shedding could be detected using simple pressure transducers. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  10. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.; Maurya, D.; Biswas, G.; Eswaran, V. [Indian Institute of Technology, Kanpur (India). Dept. of Mechanical Engineering

    2003-07-01

    A three-dimensional study of laminar flow and heat transfer in a channel with built-in oval tube and delta winglets is carried out through the solution of the complete Navier-Stokes and energy equations using a body-fitted grid and a finite-volume method. The geometrical configuration represents an element of a gas-liquid fin-tube cross-flow heat exchanger. The size of such heat exchangers can be reduced through enhancement of transport coefficients on the air (gas) side, which are usually small compared to the liquid side. In a suggested strategy, oval tubes are used in place of circular tubes, and delta-winglet type vortex generators in various configuration's are mounted on the fin-surface. An evaluation of the strategy is attempted in this investigation. The investigation is carried out for different angles of attack of the winglets to the incoming flow for the case of two winglet pairs. The variation of axial location of the winglets is also considered for one pair of winglets mounted in common-flow-down configuration. The structures of the velocity field and the heat transfer characteristics have been presented. The results indicate that vortex generators in conjunction with the oval tube show definite promise for the improvement of fin-tube heat exchangers. (author)

  11. On the use of the periodicity condition in cross-flow tube

    Science.gov (United States)

    Beladjine, Boumedienne; Aounallah, Mohammed; Belkadi, Mustapha; Aadjlout, Lahouari; Imine, Omar

    2015-05-01

    This paper presents the results of measurements and numerical predictions of turbulent cross-flow through an in-line 7×7 bundle configuration with a constant transverse and longitudinal pitch-to-diameter ratio of 1.44. The experiments are conducted to measure the pressure around tubes, using DPS differential pressure scanner with air flow, in square channel at a Reynolds number of 35000 based on the gap velocity and the tube diameter. The commercial ANSYS FLUENT is used to solve the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations. The primary aim of the present study is to search for a turbulent model that could serve as an engineering design tool at a relatively low computational cost. The performances of the Spalart-Allmaras, the RNG k-ɛ, the Shear Stress Transport k-ω and the second moment closure RSM models are evaluated by comparing their simulation results against experimental data. The second objective is to verify the validity of the periodicity assumption taken account in the most previous numerical works by considering the filled bundle geometry. The CFD results show that the Spalart-Allmaras model on the fine mesh are comparable to the experiments while the periodicity statement did not produce consistently the flow behavior in the 7×7 tube bundle configuration.

  12. Fluid structure interaction between rods and a cross flow - Numerical approach

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, Jan-patrice, E-mail: jan-patrice.simoneau@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Sageaux, Thomas, E-mail: thomas.sageaux@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Moussallam, Nadim, E-mail: nadim.moussallam@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Bernard, Olivier, E-mail: olivier.bernard1@areva.com [Areva, 1, Place J. Millet, F 92084 Paris la Defense (France)

    2011-11-15

    This paper presents a full coupled approach between fluid dynamics and structure analysis. It is conducted in order to further improve the assessment of fluid structure interaction problems, occurring in the nuclear field such as the behavior of PWR fuel rods, steam generators and other heat exchangers tubes, fast breeder fuel assemblies. The coupling is obtained by implementing a beam mechanical model in user routines of the CFD code Star-CD, and thanks to a moving grid procedure. The configurations considered are rods in a cross flow. The model is first validated on a single rod case. The lock-in effect is pointed out and both amplitude and frequency responses of the single rod are positively compared to experimental data. Secondly, the mutual influence of two rods, either in-line or parallely set, is investigated. Different behaviors, bounded by critical distances between the rods are highlighted. Finally, the stability of a 3 Multiplication-Sign 3 bundle is calculated for different impinging velocities. Stable and unstable areas are found when varying the impinging velocity. Above a limit, the vibrations amplify up to a contact between rods, this bound is found slightly greater than literature values for close configurations. It is therefore expected that further calculations, with model refinements, will bring valuable informations about bundle stability.

  13. Supercritical droplet dynamics and emission in low speed cross-flows

    Energy Technology Data Exchange (ETDEWEB)

    Chae, J. W. [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Yang, H. S.; Yoon, W. S. [Yonsei University, Seoul (Korea, Republic of)

    2008-08-15

    Droplet dynamics and emission of a supercritical droplet in crossing gas stream are numerically investigated. Effects of ambient pressure and velocity of nitrogen gas on the dynamics of the supercritical oxygen droplet are parametrically examined. Unsteady conservative axisymmetric Navier-Stokes equations in curvilinear coordinates are preconditioned and solved by dual-time stepping method. A unified property evaluation scheme based on a fundamental equation of state and extended corresponding-state principle is established to deal with thermodynamic non-idealities and transport anomalies. At lower pressures and velocities of nitrogen cross flows, both the diffusion and the convection are important in determining the droplet dynamics. Relative flow motion causes a secondary breakup and cascading vortices, and the droplet lifetime is reduced with increasing in ambient pressure. At higher ambient pressures and velocities, however, the droplet dynamics become convection-controlled while the secondary breakup is hindered by reduced diffusivity of the oxygen. Gas-phase mixing depends on the convection and diffusion velocities in conjunction with corresponding droplet deformation and flow interaction. Supercritical droplet dynamics and emission is not similar with respect to the pressure and velocity of the ambient gas and thus provides no scale

  14. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  15. Performance testing of cross flow heat exchanger operating in the atmosphere of flue gas particulate with vapor condensation

    Directory of Open Access Journals (Sweden)

    Nuntaphan, A.

    2006-05-01

    Full Text Available Performance testing of a cross flow heat exchanger operating under the atmosphere of flue gas particulate from combustion was carried out in this work. This heat exchanger exchanges heat between flue gas from the fuel oil combustion and cold water. The heat exchanger is composed of a spiral finned tube bank having 3 rows and 8 tubes per row with a staggered arrangement. The fin spacings considered are 2.85 and 6.10 mm. The theories of thermodynamics and heat transfer are used for analyzing the performance of this system.In this experiment, the flue gas temperature of 200ºC from combustion having 0.35 kg/s mass flow rate flows along outside surface of the heat exchanger and transfers heat to the 25ºC cooling water having 0.15 kg/s mass flow rate flowing in the tube side. Each experiment uses 750 hr for testing. During the testing, part of flue gas condenses on the heat transfer surface.From the experiment, it was found that the heat transfer rate of both heat exchangers tended to decrease with time while the airside pressure drop increased. These results come from the fouling on the heat transfer surface. Moreover, it is found that the heat exchanger having 2.85 mm fin spacing has an approximately 4 times higher fouling resistance than that of the 6.10 mm fin spacing.In this work a model for calculating the fouling resistance is also developed as a the function of time. The model is developed from that of Kern and Seaton and the mean deviation of the model is 0.789.

  16. Coarctation induces alterations in basement membranes in the cardiovascular system

    DEFF Research Database (Denmark)

    Lipke, D W; McCarthy, K J; Elton, T S

    1993-01-01

    A coarctation hypertensive rat model was used to examine the effects of elevated blood pressure on basement membrane component synthesis by cardiac myocytes and aorta using immunohistochemistry and Northern blot analysis. Carotid arterial pressure increased immediately on coarctation, and left ve...

  17. Models of natural computation : gene assembly and membrane systems

    NARCIS (Netherlands)

    Brijder, Robert

    2008-01-01

    This thesis is concerned with two research areas in natural computing: the computational nature of gene assembly and membrane computing. Gene assembly is a process occurring in unicellular organisms called ciliates. During this process genes are transformed through cut-and-paste operations. We

  18. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly stringen

  19. Scaling and particulate fouling in membrane filtration systems

    NARCIS (Netherlands)

    Boerlage, S.F.E.

    2001-01-01

    In the last decade, pressure driven membrane filtration processes; reverse osmosis, nano, ultra and micro-filtration have undergone steady growth. Drivers for this growth include desalination to combat water scarcity and the removal of various material from water to comply with increasingly

  20. Models of natural computation : gene assembly and membrane systems

    NARCIS (Netherlands)

    Brijder, Robert

    2008-01-01

    This thesis is concerned with two research areas in natural computing: the computational nature of gene assembly and membrane computing. Gene assembly is a process occurring in unicellular organisms called ciliates. During this process genes are transformed through cut-and-paste operations. We stud

  1. Development of taste sensing system using inorganic membrane

    Science.gov (United States)

    Kojima, Yohichiro; Hasegawa, Yuki

    2011-09-01

    We developed a novel taste sensor for liquid and verified its effectiveness using coffee. We fabricated an inorganic metal oxide membrane liquid sensor using the laser ablation method. The sensor shows a sufficient sensitivity for electrolyte solutions, while it shows a relatively low response for non-electrolyte solutions. We differentiated and identified five brands of commercially available coffee using the sensor.

  2. Alveolar system of Paramecium. I. Trapping polycationic dye as a result of membrane impairment.

    Science.gov (United States)

    Wyroba, E

    1981-01-01

    The function of Paramecium alveolar system underlying the cell membrane has been studied. Permeability and structure of cell membrane, alveolar membranes and alveoli following alpha-amylase, beta-amylase, phospholipase C and hyaluronidase treatment has been examined. It is demonstrated that droplets of polycationic dye, ruthenium red, have been trapped within the alveoli whereas the dye was also bound by the outer and inner alveolar membrane. This suggest the presence of anionic sites capable to bind cationic compounds within the alveoli. It may be concluded that the alveolar system in Paramecium is functioning as a barrier protecting the cell against the chemicals added from the outside when the cell membrane separating the cytoplasm from the medium is impaired.

  3. Membrane separation of carbon dioxide in the integrated gasification combined cycle systems

    Science.gov (United States)

    Kotowicz, Janusz; Skorek-osikowska, Anna; Janusz-szymańska, Katarzyna

    2010-09-01

    Integrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2 capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2 separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.

  4. System identification and robust control of a portable proton exchange membrane full-cell system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fu-Cheng; Yang, Yee-Pien; Huang, Chi-Wei; Chen, Hsuan-Tsung [Department of Mechanical Engineering, National Taiwan University, Taipei (Taiwan); Chang, Hsin-Ping [Chung Shan Institute of Science and Technology (CSIST), Armaments Bureau, M.N.D (Taiwan)

    2007-02-10

    This paper will discuss the application of system identification techniques and robust control strategies to a proton exchange membrane fuel-cell system. The fuel-cell system's dynamic behaviour is influenced by many factors, such as the reaction mechanism, pressure, flow-rate, composition and temperature change, and is inherently non-linear and time varying. From a system point of view, however, the system can be modelled as a two-input, two-output linear time-invariant system whose inputs are hydrogen and air flow rates, and whose outputs are cell voltage and current. On the other hand, the system's non-linearities and time-varying characteristics can be regarded as system uncertainties and disturbances that are treated by the designed robust controllers. This paper is comprised of three parts. First, system identification techniques were adopted to model the system's transfer functions. Second, the H{sub {infinity}} robust control strategies were applied to stabilise the system. Finally, the system's stability and performance were compromised by introducing weighting functions to the controller's design. From the experimental results, the designed H{sub {infinity}} robust controllers were deemed effective. (author)

  5. Spacer geometry and particle deposition in spiral wound membrane feed channels

    KAUST Repository

    Radu, A.I.

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. © 2014 Elsevier Ltd.

  6. A Mathematical Model for Diffusion-Controlled Monolithic Matrix Coated with outer Membrane System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement with the experimental release data. The present model can be well used to describe the release process for all cd/cs values. In addition, the release effects of the monolithic matrix coated with outer membrane system are discussed theoretically.

  7. A Review of Multi-Responsive Membranous Systems for Rate-Modulated Drug Delivery

    OpenAIRE

    Shaikh, Rubina P.; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M.K.; Bawa, Priya; Cooppan, Shivaan

    2010-01-01

    Membrane technology is broadly applied in the medical field. The ability of membranous systems to effectively control the movement of chemical entities is pivotal to their significant potential for use in both drug delivery and surgical/medical applications. An alteration in the physical properties of a polymer in response to a change in environmental conditions is a behavior that can be utilized to prepare ‘smart’ drug delivery systems. Stimuli-responsive or ‘smart’ polymers are polymers tha...

  8. On acceptance conditions for membrane systems: characterisations of L and NL

    Directory of Open Access Journals (Sweden)

    Damien Woods

    2009-06-01

    Full Text Available In this paper we investigate the affect of various acceptance conditions on recogniser membrane systems without dissolution. We demonstrate that two particular acceptance conditions (one easier to program, the other easier to prove correctness both characterise the same complexity class, NL. We also find that by restricting the acceptance conditions we obtain a characterisation of L. We obtain these results by investigating the connectivity properties of dependency graphs that model membrane system computations.

  9. Nanobiohybrids: New Model Systems for Membranes and Sensors

    Science.gov (United States)

    2005-06-01

    15358, 2004 137. S.R. Scully, M.T. Lloyd, R. Herrera, E.P. Giannelis and G.G. Malliaras, "Dye Sensitized Solar Cells Employing a Highly Conductive and...evaluate the sensing capability of our bioinspired membranes, films were formed on interdigitated electrodes (Figure 16) by solvent casting a...SEM picture of the sensor, the response of our sensor to glucose and sucrose microfabricated interdigitated was investigated. No significant

  10. Hydrogen selective membrane for the natural gas system. Development of CO{sub 2}-selective biogas membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vestboe, A.P.

    2012-02-15

    The project started as a literature study and technology development project for a hydrogen selective membrane for the natural gas system. The introduction of hydrogen (for example produced from wind turbines by surplus electricity) in the gas system makes it possible to store energy which can be selectively used with high energy conversion in fuel cells directly located at the end users. In order to make this possible, it is necessary to have a separating unit that can selectively remove hydrogen from the gas mixture and deliver it as fuel to the electrical generator (a fuel cell). In the project, several existing technologies were evaluated with regard to the application in view. It was concluded that while other technologies are ripe, they are costly in energy and unsuitable for the relatively low capacity application that are in question close to the end users. Membrane technology was evaluated to be the most suitable, although the technology is still under development in many cases. In the project it was found that metallic membranes in the form of palladium coated stainless discs would answer the needs for the high purity needed. Laboratory development yielded discs that could separate hydrogen from natural gas, however, the flux was low compared to the needs of the application. It was found that at least 2 bar pressure difference of hydrogen would be needed to get a high enough flux. The way to achieve this pressure would necessitate a compressor which would consume an energy amount high enough to invalidate the concept. When concluding on the results and the study it was found that the direction of the project could be changed towards developing CO{sub 2}-selective membranes with the goal of developing membrane technology that could upgrade biogas by removing CO{sub 2}. The laboratory equipment and setup that were developed in the first part of the project could be used directly in this second part of the project. In this second part of the project it was

  11. Development of implantable hemodialysis system using PES membranes with high water-permeability.

    Science.gov (United States)

    To, N; Sanada, I; Ito, H; Morita, S; Kanno, Y; Miki, N

    2015-08-01

    This paper presents development of high water-permeable dialysis membranes. We proposed the system that does not use dialysis fluid for the implantable micro dialysis treatment and development of such membranes is crucial. We developed micro dialysis system composed by nanoporous membranes and microfluidic channels in our prior work. The membranes were made of nanoporous polyethersulfone (PES), which was not water-permeable. By not using dialysate, our device can be simplified because the pumps and storage tanks for the dialysis fluid are not necessary. This treatment is termed as hemofiltration. We measured the water permeability of PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. We could find the membranes with sufficiently high water permeability through in vitro experiments using a syringe pomp and whole cow blood, and the membrane had enough mechanical strength. We conducted experiments with multi-layered device in in vitro and in vivo using rats, where the system was connected to the vein and artery. We successfully collected the filtrate beyond target line, which was set by a medical doctor, without any leakage of blood from the device. The results verified that the filtration device can be scaled-up by increasing a number of the layer. We connected the device to a rat for 5h. It was verified the device maintained almost constant water permeability beyond our target line.

  12. Dynamic quenchers in fluorescently labeled membranes. Theory for quenching in a three-phase system.

    Science.gov (United States)

    Omann, G M; Glaser, M

    1985-05-01

    The theory for quenching of fluorescently labeled membranes by dynamic quenchers is described for a three-phase system: a fluorescently labeled membrane, a nonlabeled membrane, and an aqueous phase. Two different experimental protocols are possible to determine quenching parameters. Using the first protocol, partition coefficients and bimolecular quenching constants were determined for a hydrophobic quencher in carbazole-labeled membranes in the presence of an unlabeled reference membrane. These parameters determined for 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) using this three-phase analysis were in good agreement with values determined by a two-phase analysis without the reference lipid. Hence, the theory was verified. In the second protocol, the quencher partition coefficient was determined for unlabeled membranes in the presence of a carbazole-labeled reference membrane. Partition coefficients for DDE determined by this method were the same as partition coefficients determined for carbazole-labeled membranes using the two-phase analysis. The greater ease in determining partition coefficients and bimolecular quenching constants by the three-phase analysis and, in particular, the ability to determine the partition coefficient in unlabeled membranes make the three-phase analysis especially useful. This method was used to study the effect varying the membrane lipid composition has on the partition coefficient. The data indicate that partition coefficients of DDE in fluid membranes are not dramatically dependent upon polar head group composition, fatty acid composition, or cholesterol content. However, partitioning into gel-phase lipids is at least 100-fold less than fluid-phase lipids.

  13. Mini-review: novel non-destructivein situbiofilm characterization techniques in membrane systems

    KAUST Repository

    Valladares Linares, R.

    2016-05-12

    Membrane systems are commonly used in the water industry to produce potable water and for advanced wastewater treatment. One of the major drawbacks of membrane systems is biofilm formation (biofouling), which results in an unacceptable decline in membrane performance. Three novel in situ biofouling characterization techniques were assessed: (i) optical coherence tomography (OCT), (ii) planar optodes, and (iii) nuclear magnetic resonance (NMR). The first two techniques were assessed using a biofilm grown on the surface of nanofiltration (NF) membranes using a transparent membrane fouling simulator that accurately simulates spiral wound modules, modified for in situ biofilm imaging. For the NMR study, a spiral wound reverse osmosis membrane module was used. Results show that these techniques can provide information to reconstruct the biofilm accurately, either with 2-D (OCT, planar optodes and NMR), or 3-D (OCT and NMR) scans. These non-destructive tools can elucidate the interaction of hydrodynamics and mass transport on biofilm accumulation in membrane systems. Oxygen distribution in the biofilm can be mapped and linked to water flow and substrate characteristics; insights on the effect of crossflow velocity, flow stagnation, and feed spacer presence can be obtained, and in situ information on biofilm structure, thickness, and spatial distribution can be quantitatively assessed. The combination of these novel non-destructive in situ biofilm characterization techniques can provide real-time observation of biofilm formation at the mesoscale. The information obtained with these tools could potentially be used for further improvement in the design of membrane systems and operational parameters to reduce impact of biofouling on membrane performance. © 2016 Balaban Desalination Publications. All rights reserved.

  14. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow

    Science.gov (United States)

    Pettigrew, M. J.; Zhang, C.; Mureithi, N. W.; Pamfil, D.

    2005-05-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. A detailed knowledge of the characteristics of two-phase cross-flow in tube bundles is required to understand and formulate flow-induced vibration parameters such as damping, fluidelastic instability, and random excitation due to turbulence. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. The array is made of relatively large diameter cylinders (38 mm) to allow for detailed two-phase flow measurements between cylinders. Fiber-optic probes were developed to measure local void fraction. Local flow velocities and bubble diameters or characteristic lengths of the two-phase mixture are obtained by using double probes. Both the dynamic lift and drag forces were measured with a strain gauge instrumented cylinder.

  15. Comparison of Four Types of Membrane Bioreactor Systems in Terms of Shear Stress over the Membrane Surface using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Bentzen, Thomas Ruby

    2013-01-01

    Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement...

  16. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    Energy Technology Data Exchange (ETDEWEB)

    Roa, A M; Aumelas, V; MaItre, T; Pellone, C, E-mail: ane.mentxaka@hmg.inpg.f [Equipe Energetique, Grenoble-INP - LEGI (Laboratory of Geophysical and Industrial Flows), Domaine Universitaire - BP 53, Grenoble cedex 9, 38041 (France)

    2010-08-15

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  17. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    Science.gov (United States)

    Roa, A. M.; Aumelas, V.; Maître, T.; Pellone, C.

    2010-08-01

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  18. Determination and discussion hydraulic retention time in membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the microorganism kinetic model, the formulafor computing hydraulic retention time in a membrane bioreactorsystem (MBR) is derived. With considering HRT as an evaluationindex a combinational approach was used to discuss factors whichhave an effect on MBR. As a result, the influencing factors werelisted in order from strength to weakness as: maximum specificremoval rate K, saturation constant Ks, maintenance coefficient m,Moreover, the formula was simplified, whose parameters wereexperimentally determined in petrochemical wastewater treatment. The simplified formula is (=1.1((1/(-1)(Ks+S)/KX0, forpetrochemical wastewater treatment K and Ks equaled 0.185 and154.2, respectively.

  19. Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System

    OpenAIRE

    Schaefer, Andrea; Broeckmann, A.; Richards, B.S.

    2007-01-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalinati...

  20. On the Nonlinear Evolution of a Stationary Cross-Flow Vortex in a Fully Three-Dimensional Boundary Layer Flow

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.

  1. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  2. Optimization study of small-scale solar membrane distillation desalination systems (s-SMDDS).

    Science.gov (United States)

    Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong

    2014-11-24

    Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m(2) and 23 m(2) are analyzed. The lowest water production costs are $5.92/m(3) and $5.16/m(3) for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.

  3. Optimization Study of Small-Scale Solar Membrane Distillation Desalination Systems (s-SMDDS

    Directory of Open Access Journals (Sweden)

    Hsuan Chang

    2014-11-01

    Full Text Available Membrane distillation (MD, which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m2 and 23 m2 are analyzed. The lowest water production costs are $5.92/m3 and $5.16/m3 for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.

  4. Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, T.; Anghel, D. V.; Galperin, Y. M.; Manninen, M.; Materials Science Division; Univ. Jyvaskyla; National Inst. for Physics and Nuclear Engineering; Bogolivbov Lab. Theoretical Physics; Univ. Oslo; Russian Academy of Sciences

    2007-01-01

    Using a generalized model of interaction between a two-level system (TLS) and an arbitrary deformation of the material, we calculate the interaction of Lamb modes with TLSs in amorphous nanoscopic membranes. We compare the mean free paths of the Lamb modes of different symmetries and calculate the heat conductivity {kappa}. In the limit of an infinitely wide membrane, the heat conductivity is divergent. Nevertheless, the finite size of the membrane imposes a lower cutoff for the phonon frequencies, which leads to the temperature dependence {kappa}{alpha}T(a+b ln T). This temperature dependence is a hallmark of the TLS-limited heat conductance at low temperature.

  5. Ion transport membrane module and vessel system with directed internal gas flow

    Science.gov (United States)

    Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  6. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  7. A quick overview of membrane computing with some details about spiking neural P systems

    Institute of Scientific and Technical Information of China (English)

    Gheorghe Pǎun

    2007-01-01

    We briefly present the basic elements of membrane computing,a branch of natural computing inspired by the structure and functioning of living cells,then we give some details about spiking neural P systems,a class of membrane systems recently introduced,with motivations related to the way neurons communicate by means of spikes.In both cases,of general P systems and of spiking neural P systems,we introduce the fundamental concepts,give a few examples,then recall the types of results and of applications.A series of bibliographical references are provided.

  8. The architecture of EssB, an integral membrane component of the type VII secretion system.

    Science.gov (United States)

    Zoltner, Martin; Norman, David G; Fyfe, Paul K; El Mkami, Hassane; Palmer, Tracy; Hunter, William N

    2013-04-02

    The membrane-bound EssB is an integral and essential component of the bacterial type VII secretion system that can contribute to pathogenicity. The architecture of Geobacillus thermodenitrificans EssB has been investigated by combining crystallographic and EPR spectroscopic methods. The protein forms a dimer that straddles the cytoplasmic membrane. A helical fold is observed for the C-terminal segment, which is positioned on the exterior of the membrane. This segment contributes most to dimer formation. The N-terminal segment displays a structure related to the pseudokinase fold and may contribute to function by recognizing substrates or secretion system partners. The remaining part of EssB may serve as an anchor point for the secretion apparatus, which is embedded in the cytoplasmic membrane with the C-terminal domain protruding out to interact with partner proteins or components of peptidoglycan.

  9. Anion exchange membranes for fuel cells and flow batteries : transport and stability of model systems

    OpenAIRE

    Marino, Michael G

    2015-01-01

    Polymeric anion exchange materials in membrane form can be key components in emerging energy storage and conversions systems such as the alkaline fuel cell and the RedOx flow battery. For these applications the membrane properties need to include good ionic conductivity and sufficient chemical stability, two aspects, that are not sufficiently understood in terms of materials science. Materials fulfilling both criteria are currently not available. The transport of ions and water in a model...

  10. The plasma membrane redox system: a candidate source of aging-related oxidative stress

    OpenAIRE

    de Grey, Aubrey D. N. J

    2005-01-01

    The plasma membrane redox system (PMRS) is an electron transport chain in the plasma membrane that transfers electrons from either intra- or extracellular donors to extracellular acceptors. Unlike the superoxide-generating NADPH oxidase of phagocytes and the homologous (but much less active) enzymes found in some other cells, the PMRS is still incompletely characterised at the molecular level. Much is known, however, concerning its function and affinity for both physiological and non-physiolo...

  11. Systematic analysis of micromixers to minimize biofouling on reverse osmosis membranes.

    Science.gov (United States)

    Altman, Susan J; McGrath, Lucas K; Jones, Howland D T; Sanchez, Andres; Noek, Rachel; Clem, Paul; Cook, Adam; Ho, Clifford K

    2010-06-01

    Micromixers, UV-curable epoxy traces printed on the surface of a reverse osmosis membrane, were tested on a cross-flow system to determine their success at reducing biofouling. Biofouling was quantified by measuring the rate of permeate flux decline and the median bacteria concentration on the surface of the membrane (as determined by fluorescence intensity counts due to nucleic acid stains as measured by hyperspectral imaging). The micromixers do not appear to significantly increase the pressure needed to maintain the same initial permeate flux and salt rejection. Chevrons helped prevent biofouling of the membranes in comparison with blank membranes. The chevron design controlled where the bacteria adhered to the membrane surface. However, blank membranes with spacers had a lower rate of permeate flux decline than the membranes with chevrons despite having greater bacteria concentrations on their surfaces. With better optimization of the micromixer design, the micromixers could be used to control where the bacteria will adhere to the surface and create a more biofouling resistant membrane that will help to drive down the cost of water treatment.

  12. Membrane-Based Gas Traps for Ammonia, Freon-21, and Water Systems to Simplify Ground Processing

    Science.gov (United States)

    Ritchie, Stephen M. C.

    2003-01-01

    Gas traps are critical for the smooth operation of coolant loops because gas bubbles can cause loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and blockage of passages to remote systems. Coolant loops are ubiquitous in space flight hardware, and thus there is a great need for this technology. Conventional gas traps will not function in micro-gravity due to the absence of buoyancy forces. Therefore, clever designs that make use of adhesion and momentum are required for adequate separation, preferable in a single pass. The gas traps currently used in water coolant loops on the International Space Station are composed of membrane tube sets in a shell. Each tube set is composed of a hydrophilic membrane (used for water transport and capture of bubbles) and a hydrophobic membrane (used for venting of air bubbles). For the hydrophilic membrane, there are two critical pressures, the pressure drop and the bubble pressure. The pressure drop is the decrease in system pressure across the gas trap. The bubble pressure is the pressure required for air bubbles to pass across the water filled membrane. A significant difference between these pressures is needed to ensure complete capture of air bubbles in a single pass. Bubbles trapped by the device adsorb on the hydrophobic membrane in the interior of the hydrophilic membrane tube. After adsorption, the air is vented due to a pressure drop of approximately 1 atmosphere across the membrane. For water systems, the air is vented to the ambient (cabin). Because water vapor can also transport across the hydrophobic membrane, it is critical that a minimum surface area is used to avoid excessive water loss (would like to have a closed loop for the coolant). The currently used gas traps only provide a difference in pressure drop and bubble pressure of 3-4 psid. This makes the gas traps susceptible to failure at high bubble loading and if gas venting is impaired. One mechanism for the latter

  13. Electrophorus electricus as a model system for the study of membrane excitability.

    Science.gov (United States)

    Gotter, A L; Kaetzel, M A; Dedman, J R

    1998-01-01

    The stunning sensations produced by electric fish, particularly the electric eel, Electrophorus electricus, have fascinated scientists for centuries. Within the last 50 years, however, electric cells of Electrophorus have provided a unique model system that is both specialized and appropriate for the study of excitable cell membrane electrophysiology and biochemistry. Electric tissue generates whole animal electrical discharges by means of membrane potentials that are remarkably similar to those of mammalian neurons, myocytes and secretory cells. Electrocytes express ion channels, ATPases and signal transduction proteins common to these other excitable cells. Action potentials of electrocytes represent the specialized end function of electric tissue whereas other excitable cells use membrane potential changes to trigger sophisticated cellular processes, such as myofilament cross-bridging for contraction, or exocytosis for secretion. Because electric tissue lacks these functions and the proteins associated with them, it provides a highly specialized membrane model system. This review examines the basic mechanisms involved in the generation of the electrical discharge of the electric eel and the membrane proteins involved. The valuable contributions that electric tissue continues to make toward the understanding of excitable cell physiology and biochemistry are summarized, particularly those studies using electrocytes as a model system for the study of the regulation of membrane excitability by second messengers and signal transduction pathways.

  14. Effect of carvone on the permeation of nimodipine from a membrane-moderated transdermal therapeutic system.

    Science.gov (United States)

    Krishnaiah, Y S R; Bhaskar, P; Satyanarayana, V

    2003-08-01

    The purpose of this investigation was to develop a membrane-moderated transdermal therapeutic system (TTS) of nimodipine using 2% w/w hydroxypropylmethylcellulose (HPMC) gel as a reservoir system containing 10% w/w of carvone (penetration enhancer) in 60% v/v ethanol. The flux of nimodipine through an ethylene vinyl acetate (EVA) copolymer membrane was found to increase with an increase in vinyl acetate content in the copolymer. The effect of a pressure-sensitive adhesive (TACKWHITE A 4MED) on the permeability of nimodipine through an EVA 2825 membrane (28% w/w vinyl acetate) or an EVA 2825 membrane/skin composite was also studied. An EVA 2825 membrane coated with TACKWHITE 4A MED was found to provide the required flux of nimodipine (117 +/- 5 microg/cm2/h) across rat abdominal skin. Thus a new transdermal therapeutic system for nimodipine was formulated using EVA 2825 membrane, coated with a pressure-sensitive adhesive TACKWHITE 4A MED, and 2% w/w HPMC gel as reservoir containing 10% w/w of carvone as a penetration enhancer. Studies in healthy human volunteers indicated that the TTS of nimodipine, designed in the present study, provided steady-state plasma concentration of the drug with minimal fluctuations.

  15. Planar ceramic membrane assembly and oxidation reactor system

    Science.gov (United States)

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  16. Study of parameters and entrainment of a jet in cross-flow arrangement with transition at two low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Camilo [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany); Convenio Andres Bello, Instituto Internacional de Investigaciones Educativas para la Integracion, La Paz (Bolivia); Denev, Jordan A.; Bockhorn, Henning [Karlsruhe Institute of Technology, Engler-Bunte-Institute, Combustion Division, Karlsruhe (Germany); Suntz, Rainer [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany)

    2012-10-15

    Investigation of the mixing process is one of the main issues in chemical engineering and combustion and the configuration of a jet into a cross-flow (JCF) is often employed for this purpose. Experimental data are gained for the symmetry plane in a JCF-arrangement of an air flow using a combination of particle image velocimetry (PIV) with laser-induced fluorescence (LIF). The experimental data with thoroughly measured boundary conditions are complemented with direct numerical simulations, which are based on idealized boundary conditions. Two similar cases are studied with a fixed jet-to-cross-flow velocity ratio of 3.5 and variable cross-flow Reynolds numbers equal to 4,120 and 8,240; in both cases the jet issues from the pipe at laminar conditions. This leads to a laminar-to-turbulent transition, which depends on the Reynolds number and occurs quicker for the case with higher Reynolds number in both experiments and simulations as well. It was found that the Reynolds number only slightly affects the jet trajectory, which in the case with the higher Reynolds number is slightly deeper. It is attributed to the changed boundary layer shape of the cross-flow. Leeward streamlines bend toward the jet and are responsible for the strong entrainment of cross-flow fluid into the jet. Velocity components are compared for the two Reynolds numbers at the leeward side at positions where strongest entrainment is present and a pressure minimum near the jet trajectory is found. The numerical simulations showed that entrainment is higher for the case with the higher Reynolds number. The latter is attributed to the earlier transition in this case. Fluid entrainment of the jet in cross-flow is more than twice stronger than for a similar flow of a jet issuing into a co-flowing stream. This comparison is made along the trajectory of the two jets at a distance of 5.5 jet diameters downstream and is based on the results from the direct numerical simulations and recently published

  17. Phase coexistence in a triolein-phosphatidylcholine system. Implications for lysosomal membrane properties.

    Science.gov (United States)

    Pakkanen, Kirsi I; Duelund, Lars; Vuento, Matti; Ipsen, John Hjort

    2010-02-01

    The effects of tri- and monoglycerides on phospholipid (POPC) membranes were studied using spectroscopical methods. Triolein was found to form two types of POPC-rich membranes, both with POPC or as a three-component system with monopalmitin. These two membrane types were determined as co-existing phases based on their spontaneous and stable separation and named heavy and light phase according to their sedimentation behaviour. Marked differences were seen in the physical properties of these phases, even though only minor compositional variation was detected. The light, less polar phase was found to be less ordered and more fluid and seemed to allow significantly lower amount of water penetration into the membrane-water interface than pure POPC membrane. The heavy phase, apart from their slightly altered water penetration, resembled more a pure POPC membrane. As triglycerides are present in lysosomal membranes, the present results can be seen as an implication for polarity-based water permeability barrier possibly contributing to the integrity of lysosomes.

  18. Water-Permeable Dialysis Membranes for Multi-Layered Micro Dialysis System

    Directory of Open Access Journals (Sweden)

    Naoya eTo

    2015-06-01

    Full Text Available This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES, aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water-permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently water-permeable membranes were found through in vitro experiments using whole bovine blood. The filtrate was verified to have the concentrations of low-molecular-weight molecules, such as sodium, potassium, urea, and creatinine, while proteins, such as albumin, were successfully blocked by the membrane. We conducted in vivo experiments using rats, where the system was connected to the femoral artery and jugular vein. The filtrate was successfully collected without any leakage of blood inside the system and it did not contain albumin but low-molecular-weight molecules whose concentrations were identical to those of the blood. The rat model with renal failure showed 100% increase of creatinine in 5 h, while rats connected to the system showed only a 7.4% increase, which verified the effectiveness of the proposed microdialysis system.

  19. Water-Permeable Dialysis Membranes for Multi-Layered Microdialysis System.

    Science.gov (United States)

    To, Naoya; Sanada, Ippei; Ito, Hikaru; Prihandana, Gunawan S; Morita, Shinya; Kanno, Yoshihiko; Miki, Norihisa

    2015-01-01

    This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES), aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently, water-permeable membranes were found through in vitro experiments using whole bovine blood. The filtrate was verified to have the concentrations of low-molecular-weight molecules, such as sodium, potassium, urea, and creatinine, while proteins, such as albumin, were successfully blocked by the membrane. We conducted in vivo experiments using rats, where the system was connected to the femoral artery and jugular vein. The filtrate was successfully collected without any leakage of blood inside the system and it did not contain albumin but low-molecular-weight molecules whose concentrations were identical to those of the blood. The rat model with renal failure showed 100% increase of creatinine in 5 h, while rats connected to the system showed only a 7.4% increase, which verified the effectiveness of the proposed microdialysis system.

  20. CFD simulations of the flow control performance applied for inlet of low drag high-bypass turbofan engine at cross flow regimes

    Science.gov (United States)

    Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.

    2016-10-01

    Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.

  1. ENERGY ANALYSIS OF FREE TRANSVERSE VIBRATIONS OF THE VISCO-ELASTICALLY CONNECTED DOUBLE-MEMBRANE SYSTEM

    Directory of Open Access Journals (Sweden)

    Julijana Simonović

    2014-12-01

    Full Text Available The presented paper deals with the analysis of energy transfer in the visco-elastically connected circular double-membrane system for free transverse vibration of the membranes. The system motion is described by a set of two coupled non-homogeneous partial differential equations. The solutions are obtained by using the method of separation of variables. Once the problem is solved, natural frequencies and mode shape functions are found, and then the form of solution for small transverse deflections of membranes is derived. Using the obtained solutions, forms of reduced kinetic, potential and total energies, as functions of dissipation of the whole system and subsystems, are determined. The numerical examples are given as an illustration of the presented theoretical analysis as well as the possibilities to investigate the influence of different parameters and different initial conditions on the energies transfer in the system

  2. Mass-Sensitive Biosensor Systems to Determine the Membrane Interaction of Analytes.

    Science.gov (United States)

    Hoß, Sebastian G; Bendas, Gerd

    2017-01-01

    Biosensors are devices that transform a biological interaction into a readout signal, which is evaluable for analytical purposes. The general strength of biosensor approaches is the avoidance of time-consuming and cost-intensive labeling procedures of the analytes. In this chapter, we give insight into a mass-sensitive surface-acoustic wave (SAW) biosensor, which represents an elegant and highly sensitive method to investigate binding events at a molecular level. The principle of SAW technology is based on the piezoelectric properties of the sensors, so as to binding events and their accompanied mass increase at the sensor surface are detectable by a change in the oscillation of the surface acoustic wave. In combination with model membranes, transferred to the sensor surface, the analytical value of SAW biosensors has strongly been increased and extended to different topics of biomedical investigations, including antibiotic research. The interaction with the bacterial membrane or certain target structures therein is the essential mode of action for various antibacterial compounds. Beside targeted interaction, an unspecific membrane binding or membrane insertion of drugs can contribute to the antibacterial activity by changing the lateral order of membrane constituents or by interfering with the membrane barrier function. Those pleiotropic effects are hardly to illustrate in the bacterial systems and need a detailed view at the in vitro level. Here, we illustrate the usefulness of a SAW biosensor in combination with model membranes to investigate the mode of membrane interaction of antibiotic active peptides. Using two different peptides we exemplary describe the interaction analysis in a two-step gain of information: (1) a binding intensity or affinity by analyzing the phase changes of oscillation, and (2) mode of membrane interaction, i.e., surface binding or internalization of the peptide by following the amplitude of oscillation.

  3. Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems.

    Science.gov (United States)

    Everberg, Henrik; Gustavasson, Niklas; Tjerned, Folke

    2008-01-01

    Methods that combine efficient solubilization with enrichment of proteins and intact protein complexes are of central interest in current membrane proteomics. We have developed methods based on nondenaturing detergent extraction of yeast mitochondrial membrane proteins followed by enrichment of hydrophobic proteins in aqueous two-phase system. Combining the zwitterionic detergent Zwittergent 3-10 and the nonionic detergent Triton X-114 results in a complementary solubilization of proteins, which is similar to that of the anionic detergent sodium dodecyl sulfate (SDS) but with the important advantage of being nondenaturing. Detergent/polymer two-phase system partitioning offers removal of soluble proteins that can be further improved by manipulation of the driving forces governing protein distribution between the phases. Integral and peripheral membrane protein subunits from intact membrane protein complexes partition to the detergent phase while soluble proteins are found in the polymer phase. An optimized solubilization protocol is presented in combination with detergent/polymer two-phase partitioning as a mild and efficient method for initial enrichment of membrane proteins and membrane protein complexes in proteomic studies.

  4. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  5. Association of limbic system-associated membrane protein (LSAMP) to male completed suicide

    OpenAIRE

    Maron Eduard; Kõks Sulev; Vasar Eero; Lang Aavo; Tasa Gunnar; Must Anne; Väli Marika

    2008-01-01

    Abstract Background Neuroimaging studies have demonstrated volumetric abnormalities in limbic structures of suicide victims. The morphological changes might be caused by some inherited neurodevelopmental defect, such as failure to form proper axonal connections due to genetically determined dysfunction of neurite guidance molecules. Limbic system-associated membrane protein (LSAMP) is a neuronal adhesive molecule, preferentially expressed in developing limbic system neuronal dendrites and som...

  6. Flux Enhancement in Crossflow Membrane Filtration: Fouling and It's Minimization by Flow Reversal

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-08-04

    Fouling problems are perhaps the single most important reason for relatively slow acceptance of ultrafiltration in many areas of chemical and biological processing. To overcome the losses in permeate flux associated with concentration polarization and fouling in cross flow membrane filtration, we investigated the concept of flow reversal as a method to enhance membrane flux in ultrafiltration. Conceptually, flow reversal prevents the formation of stable hydrodynamic and concentration boundary layers at or near the membrane surface. Further more, periodic reversal of the flow direction of the feed stream at the membrane surface results in prevention and mitigation of membrane fouling. Consequently, these advantages are expected to enhance membrane flux significantly. A crossflow membrane filtration unit was designed and built to test the concept of periodic flow reversal for flux enhancement. The essential elements of the system include a crossflow hollow fiber membrane module integrated with a two-way valve to direct the feed flow directions. The two-way valve is controlled by a controller-timer for periodic reversal of flow of feed stream. Another important feature of the system is that with changing feed flow direction, the permeate flow direction is also changed to maintain countercurrent feed and permeate flows for enhanced mass transfer driving force (concentration difference). Three feed solutions (Bovine serum albumin (BSA), apple juice and citrus fruit pectin) were studied in crossflow membrane filtration. These solutes are well-known in membrane filtration for their fouling and concentration polarization potentials. Laboratory-scale tests on a hollow-fiber ultrafiltration membrane module using each of the feed solutes show that under flow reversal conditions, the permeate flux is significantly enhanced when compared with the conventional unidirectional flow. The flux enhancement is dramatic (by an order of magnitude) with increased feed concentration and

  7. Virus rejection with two model human enteric viruses in membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A membrane bioreactor (MBR) with gravity drain was tested for virus rejection with two coliphages, T4 and f2, which were used as surrogates for human enteric viruses. Virus rejection was investigated by PVDF and PP membrane modules, with the pore sizes of 0.22 and 0.1 μm, respectively. In tap water system, 2.1 lg rejection of coliphage T4 could be achieved by PVDF membrane compared with complete rejection by PP membrane, while for coliphage f2 with smaller diameter, 0.3―0.5 lg rejection of the influent virus was removed by the two membranes. In domestic wastewater system, cake layer and gel layer on the membrane surface changed the cut-off size of the membrane so that there was no significant difference between PP and PVDF for each coliphage. The removal ratios of coliphage T4 and f2 in the MBR were more than 5.5 and 3.0 lg, respectively. Compared with 5.5 lg removal for virus T4 in the MBR system, only 2.1 lg (96.8%―99.9%) removal rate was observed in the conventional activated sludge system with the influent virus concentration fluctuating from 1830 to 57000 PFU/mL. Only 0.8%―22% virus removal was the effect of adsorption to activated sludge, which showed a decreasing tendency with the retention time, while 75%―98% was the effect of virus inactivation by microbial activity. It indicated that the major mechanism of virus removal was not the transfer of viruses from the water phase to the sludge phase but inactivation in the biological treatment process.

  8. Virus rejection with two model human enteric viruses in membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiang; LIU JunXin

    2007-01-01

    A membrane bioreactor (MBR) with gravity drain was tested for virus rejection with two coliphages, T4 and f2, which were used as surrogates for human enteric viruses. Virus rejection was investigated by PVDF and PP membrane modules, with the pore sizes of 0.22 and 0.1 μm, respectively. In tap water system, 2.1 lg rejection of coliphage T4 could be achieved by PVDF membrane compared with complete rejection by PP membrane, while for coliphage f2 with smaller diameter, 0.3-0.5 lg rejection of the influent virus was removed by the two membranes. In domestic wastewater system, cake layer and gel layer on the membrane surface changed the cut-off size of the membrane so that there was no significant difference between PP and PVDF for each coliphage. The removal ratios of coliphage T4 and f2 in the MBR were more than 5.5 and 3.0 lg, respectively. Compared with 5.5 lg removal for virus T4 in the MBR system, only 2.1 lg (96.8%-99.9%) removal rate was observed in the conventional activated sludge system with the influent virus concentration fluctuating from 1830 to 57000 PFU/mL. Only 0.8 %-22 % virus removal was the effect of adsorption to activated sludge, which showed a decreasing tendency with the retention time, while 75%-98% was the effect of virus inactivation by microbial activity. It indicated that the major mechanism of virus removal was not the transfer of viruses from the water phase to the sludge phase but inactivation in the biological treatment process.

  9. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Wijmans

    2003-11-17

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  10. Pilot testing of a membrane system for postcombustion CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim [Membrane Technology And Research, Incorporated, Newark, CA (United States); Kniep, Jay [Membrane Technology And Research, Incorporated, Newark, CA (United States); Wei, Xiaotong [Membrane Technology And Research, Incorporated, Newark, CA (United States); Carlisle, Trevor [Membrane Technology And Research, Incorporated, Newark, CA (United States); White, Steve [Membrane Technology And Research, Incorporated, Newark, CA (United States); Pande, Saurabh [Membrane Technology And Research, Incorporated, Newark, CA (United States); Fulton, Don [Membrane Technology And Research, Incorporated, Newark, CA (United States); Watson, Robert [Membrane Technology And Research, Incorporated, Newark, CA (United States); Hoffman, Thomas [Membrane Technology And Research, Incorporated, Newark, CA (United States); Freeman, Brice [Membrane Technology And Research, Incorporated, Newark, CA (United States); Baker, Richard [Membrane Technology And Research, Incorporated, Newark, CA (United States)

    2015-09-30

    This final report summarizes work conducted for the U.S. Department of Energy, National Energy Technology Laboratory (DOE) to scale up an efficient post-combustion CO2 capture membrane process to the small pilot test stage (award number DE-FE0005795). The primary goal of this research program was to design, fabricate, and operate a membrane CO2 capture system to treat coal-derived flue gas containing 20 tonnes CO2/day (20 TPD). Membrane Technology and Research (MTR) conducted this project in collaboration with Babcock and Wilcox (B&W), the Electric Power Research Institute (EPRI), WorleyParsons (WP), the Illinois Sustainable Technology Center (ISTC), Enerkem (EK), and the National Carbon Capture Center (NCCC). In addition to the small pilot design, build and slipstream testing at NCCC, other project efforts included laboratory membrane and module development at MTR, validation field testing on a 1 TPD membrane system at NCCC, boiler modeling and testing at B&W, a techno-economic analysis (TEA) by EPRI/WP, a case study of the membrane technology applied to a ~20 MWe power plant by ISTC, and an industrial CO2 capture test at an Enerkem waste-to-biofuel facility. The 20 TPD small pilot membrane system built in this project successfully completed over 1,000 hours of operation treating flue gas at NCCC. The Polaris™ membranes used on this system demonstrated stable performance, and when combined with over 10,000 hours of operation at NCCC on a 1 TPD system, the risk associated with uncertainty in the durability of postcombustion capture membranes has been greatly reduced. Moreover, next-generation Polaris membranes with higher performance and lower cost were validation tested on the 1 TPD system. The 20 TPD system also demonstrated successful operation of a new low-pressure-drop sweep module that will reduce parasitic energy losses at full scale by as much as 10 MWe. In modeling and pilot boiler testing, B&W confirmed the

  11. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    Science.gov (United States)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  12. Performance of Membrane-Assisted Solid Oxide Fuel Cell System Fuelled by Bioethanol

    Directory of Open Access Journals (Sweden)

    Amornchai Arpornwichanop

    2011-04-01

    Full Text Available The membrane separation units for bioethanol purification including pervaporation and vapor permeation are integrated with the bioethanol-fuelled solid oxide fuel cell (SOFC system. The preliminary calculations indicate that Hydrophilic type is a suitable membrane for vapor permeation to be installed after a hydrophobic pervaporation. Based on energy self-sufficient condition and data of available pervaporation membranes, the simulation results show that the use of vapor permeation unit after the pervaporation can significantly improve the overall electrical efficiency from 10.96% for the system with pervaporation alone to 26.56%. Regarding the effect of ethanol recovery, the ethanol recovery at 75% can offer the optimal overall efficiency from the proposed purification system compared to the ethanol recovery at 31.16% for the case with the single pervaporation.

  13. Full-scale validation of an air scour control system for energy savings in membrane bioreactors.

    Science.gov (United States)

    Monclús, Hèctor; Dalmau, Montserrat; Gabarrón, Sara; Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2015-08-01

    Membrane aeration represents between 35 and 50% of the operational cost of membrane bioreactors (MBR). New automatic control systems and/or module configurations have been developed for aeration optimization. In this paper, we briefly describe an innovative MBR air scour control system based on permeability evolution and present the results of a full-scale validation that lasted over a 1-year period. An average reduction in the air scour flow rate of 13% was achieved, limiting the maximum reduction to 20%. This averaged reduction corresponded to a decrease in energy consumption for membrane aeration of 14% (0.025 kWh m(-3)) with maximum saving rates of 22% (0.04 kWh m(-3)). Permeability and fouling rate evolution were not affected by the air scour control system, as very similar behavior was observed for these variables for both filtration lines throughout the entire experimental evaluation period of 1 year.

  14. Impact of membrane solid-liquid separation on design of biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ramphao, M; Wentzel, M C; Merritt, R; Ekama, G A; Young, T; Buckley, C A

    2005-03-20

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only in the design of the BNR system itself, but also in the design approach for the whole wastewater treatment plant (WWTP). In multizone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic, and aerobic zones (i.e., fixed volume fractions), the mass fractions can be controlled (within a range) with the interreactor recycle ratios. This zone mass fraction flexibility is a significant advantage in membrane BNR systems over conventional BNR systems with SSTs, because it allows for changing of the mass fractions to optimize biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios in the upper range (f(q) approximately 2.0), aerobic mass fractions in the lower range (f(maer) secondary settling tanks is not as large (40% to 60%), the cost of the membranes can be offset against sludge thickening and stabilization costs. Moving from a flow-unbalanced raw wastewater system to a flow-balanced (f(q) = 1), low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes from extended aeration to include primary sludge stabilization. The cost of primary sludge treatment then has to be paid from the savings from the increased WWTP capacity.

  15. Improving Ambient Wind Environments of a Cross-flow Wind Turbine near a Structure by using an Inlet Guide Structure and a Flow Deflector

    Institute of Scientific and Technical Information of China (English)

    Tadakazu TANINO; Shinichiro NAKAO; Genki UEBAYASHI

    2005-01-01

    A cross-flow wind turbine near a structure was tested for the performance. The results showed that the performance of a cross-flow wind turbine near a structure was up to 30% higher than the one without a structure.In addition, we tried to get higher performance of a cross-flow wind turbine by using an Inlet Guide Structure and a Flow Deflector. An Inlet Guide Structure was placed on the edge of a structure and a Flow Deflector was set near a cross-flow wind turbine and can improve ambient wind environments of the wind turbine, the maximum power coefficients were about 15 to 40% higher and the tip speed ratio range showing the high power coefficient was wide and the positive gradients were steep apparently.

  16. Membrane systems for energy efficient separation of light gases

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Archuleta, T.; Barbero, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  17. FORMATION OF POROUS MEMBRANES FOR DRUG DELIVERY SYSTEMS

    NARCIS (Netherlands)

    VANDEWITTE, P; ESSELBRUGGE, H; PETERS, AMP; DIJKSTRA, PJ; FEIJEN, J; GROENEWEGEN, RJJ; SMID, J; OLIJSLAGER, J; SCHAKENRAAD, JM; EENINK, MJD; SAM, AP

    1993-01-01

    Highly crystalline porous hollow poly (L-lactide) (PLLA) fibres suitable for the delivery of various drugs were obtained using a dry-wet spinning process. The pore structure of the fibres could be regulated by changing the spinning systems and spinning conditions. Using the spinning system PLLA-diox

  18. Decentralized systems for potable water and the potential of membrane technology.

    Science.gov (United States)

    Peter-Varbanets, Maryna; Zurbrügg, Chris; Swartz, Chris; Pronk, Wouter

    2009-02-01

    Decentralized drinking-water systems are an important element in the process of reaching the Millennium Development Goals, as centralized systems are often deficient or non-existent in developing and transition countries (DC and TC). Most water-quality problems are due to hygiene factors and pathogens. A range of decentralized systems is available to counter these problems, including thermal and/or UV methods, physical removal and chemical treatment. This review focuses on decentralized systems that treat the potable water (drinking and cooking) of a single household (point-of-use systems) or a community (small-scale systems). For application in DC and TC, important boundary conditions for decentralized systems include low costs, ease of use, sustainability, low maintenance and independence of utilities (energy sources). Although some low-cost systems are available, their application is limited by time-consuming daily operation and maintenance. Other systems are too expensive for the poor populations of DC and TC and in most cases do not fulfill the system requirements described above. Point-of-use systems based on membranes are commercially available and are designed to operate on tap pressure or gravity. Membrane systems are attractive since they provide an absolute barrier for pathogens and remove turbidity, thus increasing the palatability of the water. The costs of membrane have decreased rapidly during the last decades and therefore membrane systems have also become within reach for application in low-cost applications in DC and TC. Some membrane systems rely on gravity as a driving force, thereby avoiding the use of pumps and electricity. On the basis of the present literature data, no small-scale systems could be identified which meet all the requirements for successful implementation. Furthermore, in the available literature the performance of highly fouling water types has not been reported. For such cases, more extensive studies are required and a need

  19. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems. Performance report, April 1, 1989--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  20. New approaches to characterizing and understanding biofouling of spiral wound membrane systems

    KAUST Repository

    van Loosdrecht, Mark C.M.

    2012-06-01

    Historically, biofouling research on spiral wound membrane systems is typically problem solving oriented. Membrane modules are studied as black box systems, investigated by autopsies. Biofouling is not a simple process. Many factors influence each other in a non-linear fashion. These features make biofouling a subject which is not easy to study using a fundamental scientific approach. Nevertheless to solve or minimize the negative impacts of biofouling, a clear understanding of the interacting basic principles is needed. Recent research into microbiological characterizing of biofouling, small scale test units, application of in situ visualization methods, and model approaches allow such an integrated study of biofouling. © IWA Publishing 2012.

  1. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system.

    Science.gov (United States)

    Schlacht, Alexander; Herman, Emily K; Klute, Mary J; Field, Mark C; Dacks, Joel B

    2014-10-01

    The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  3. Anoxic gas recirculation system for fouling control in anoxic membrane reactor.

    Science.gov (United States)

    Lee, Hansaem; Lee, Daeju; Hong, Seongwan; Yun, Geum Hee; Kim, Sungpyo; Hwang, Jung Ki; Lee, Woojae; Yun, Zuwhan

    2014-06-01

    Anoxic gas recirculation system was applied to control the membrane fouling in pilot-scale 4-stage anoxic membrane bioreactor (MBR). In the anaerobic-anoxic-anoxic-aerobic flow scheme, hydrophilic polytetrafluoroethylene (PTFE) membrane (0.2 μm, 7.2 m(2)/module) was submerged in the second anoxic zone. During 8 months operation, the average flux of the membrane was 21.3 L/(m(2)·hr). Chemical cleaning of the membrane was conducted only once with sodium hydroxide and sodium hypochlorite. Dissolved oxygen (DO) concentration in the second anoxic zone was maintained with an average of 0.19 ± 0.05 mg/L. Gas chromatography analysis showed that the headspace gas in the second anoxic reactor was mainly consisted of N2 (93.0% ± 2.5%), O2 (3.8% ± 0.6%), and CO2 (3.0% ± 0.5%), where the saturation DO concentration in liquid phase was 1.57 mg/L. Atmospheric O2 content (20.5% ± 0.8%) was significantly reduced in the anoxic gas. The average pH in the reactor was 7.2 ± 0.4. As a result, the recirculation of the anoxic gas was successfully applied to control the membrane fouling in the anoxic MBR. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Novel Composite Membrane for Space Life Supporting System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  5. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2015-11-01

    Bioelectrochemical systems (BES) represent an energy-efficient approach for wastewater treatment, but the effluent still requires further treatment for direct discharge or reuse. Integrating membrane filtration in BES can achieve high-quality effluents with additional benefits. Three types of filtration membranes, dynamic membrane, ultrafiltration membrane and forward osmosis membrane that are grouped based on pore size, have been studied for integration in BES. The integration can be accomplished either in an internal or an external configuration. In an internal configuration, membranes can act as a separator between the electrodes, or be immersed in the anode/cathode chamber as a filtration component. The external configuration allows BES and membrane module to be operated independently. Given much progress and interest in the integration of membrane filtration into BES, this paper has reviewed the past studies, described various integration methods, discussed the advantages and limitations of each integration, and presented challenges for future development.

  6. Study on breakup of liquid ligaments in hypersonic cross flow using laser sheet imaging and infrared light extinction spectroscopy

    Science.gov (United States)

    Regert, T.; Horvath, I.; Buchlin, J.-M.; Masutti, D.; Chazot, O.; Vetrano, M. R.; Lapebie, C.; Le Gallic, C.

    2017-06-01

    This paper presents and discusses the results of tests of breakup phenomenon of liquid water into a hypersonic cross §ow from the surface of a 7 degree half-angle cone model at zero degree angle of incidence. The present work shows the dependence of the liquid phase characteristics on the cross-section area of the injection hole in a Mach 6 cross flow. The results are analyzed qualitatively by imaging, by Interferometric Laser Imaging for Droplet Sizing (ILIDS), and by InfraRed Light Extinction Spectroscopy (IR-LES). Conclusions are drawn concerning the droplet size distribution and the liquid §ow ¦eld characteristics.

  7. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    Science.gov (United States)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong

    2012-07-01

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector.

  8. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  9. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  10. Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Rasmussen, Michael R.

    2011-01-01

    . Validation of the CFD model was made against LDA tangential velocity measurements (error less than 8 %) using water a fluid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated sludge is a non-Newtonian liquid, for which the CFD model was modified...... incorporating the non-Newtonian behaviour of activated sludge. Shear stress and area-weighted average shear stress relationships were made giving error less that 8 % compared to the CFD results. An empirical relationship for the area-weighted average shear stress was developed for water and activated sludge...

  11. Expression of Trans-Membrane Proteins in vitro Using a Cell Free System

    Science.gov (United States)

    Weisse, Natalie; Noireaux, Vincent; Chalmeau, Jerome

    2010-10-01

    Trans-membrane proteins represent a significant portion of the proteins expressed by cells. The expression of proteins in vitro, however, remains a challenge. Numerous expression approaches have been developed with cell free expression (CFE) being one of the most promising. CFE is based on a transcription-translation system that has been extracted from E. coli bacteria. Adding the desired DNA allows expression of a selected protein, and in the presence of phospholipids the expression of trans-membrane proteins becomes possible. In order to express trans-membrane proteins in a closed native environment, the cell free system (CFS) is encapsulated with a phospholipid bilayer, creating an artificial cell. To verify protein expression, AquaporinZ (AqpZ), a well-known trans-membrane protein tagged with a green fluorescent protein (eGFP), was used so the expressed proteins could be seen under a fluorescent microscope. These artificial cells will serve as an experimental platform for testing the viability of the expressed trans-membrane proteins. Results from the manipulation of these artificial cells by attaching them to the slide surface through streptavidin-biotin bonding will be presented.

  12. A mammalian nervous-system-specific plasma membrane proteasome complex that modulates neuronal function.

    Science.gov (United States)

    Ramachandran, Kapil V; Margolis, Seth S

    2017-04-01

    In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It is unclear how proteasomes are able to acutely regulate such processes, as this action is inconsistent with their canonical role in proteostasis. Here we describe a mammalian nervous-system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is closely associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of the membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked the production of extracellular peptides and attenuated neuronal-activity-induced calcium signaling. Moreover, we observed that membrane-proteasome-derived peptides were sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes function primarily to maintain proteostasis, and highlight a form of neuronal communication that takes place through a membrane proteasome complex.

  13. A Feasibility Study of Pressure Retarded Osmosis Power Generation System based on Measuring Permeation Volume using Reverse Osmosis Membrane

    Science.gov (United States)

    Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie

    Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.

  14. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications.

    Science.gov (United States)

    Field, Robert W; Pearce, Graeme K

    2011-05-11

    Critical flux theory evolved as a description of the upper bound in the operating envelope for controlled steady state environments such as cross-flow systems. However, in the application of UF membranes in the water industry, dead-end (direct-flow) designs are used. Direct-flow is a pseudo steady state operation with different fouling characteristics to cross-flow, and thus the critical flux concept has limited applicability. After a review of recent usage of the critical flux theory, an alternative concept for providing design guidelines for direct-flow systems namely that of the threshold flux is introduced. The concept of threshold flux can also be applicable to cross-flow systems. In more general terms the threshold flux can be taken to be the flux that divides a low fouling region from a high fouling region. This may be linked both to the critical flux concept and to the concept of a sustainable flux. The sustainable flux is the one at which a modest degree of fouling occurs, providing a compromise between capital expenditure (which is reduced by using high flux) and operating costs (which are reduced by restricting the fouling rate). Whilst the threshold flux can potentially be linked to physical phenomena alone, the sustainable flux also depends upon economic factors and is thus of a different nature to the critical and threshold fluxes. This distinction will be illustrated using some MBR data. Additionally the utility of the concept of a threshold flux will be illustrated using pilot plant data obtained for UF treatment of four sources of water. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems

    NARCIS (Netherlands)

    Kuntke, P.; Zamora, P.; Saakes, M.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    The application of a gas-permeable hydrophobic tubular membrane in bio-electrochemical systems enables efficient recovery of ammonia (NH3) from their cathode compartments. Due to a hydrogen evolution reaction at the cathode, no chemical addition was required to increase the pH for continuous NH3

  16. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants

    Institute of Scientific and Technical Information of China (English)

    SHAO Jiahui; FANG Xuliang; HE Yiliang; JIN Qiang

    2008-01-01

    Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditionalchlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaksin the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose.Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditionson the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration,liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9%was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically foundto be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammoniaremoval rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plantmembrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatmentplant, also paved the way towards a larger scale application.

  17. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    Science.gov (United States)

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  18. Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus lactis

    NARCIS (Netherlands)

    in t Veld, Gerda; Driessen, Arnold J.M.; Kamp, Jos A.F. op den; Konings, Wil N.

    1991-01-01

    The effect of the phospholipid acyl chain carbon number on the activity of the branched-chain amino acid transport system of Lactococcus lactis has been investigated. Major fatty acids identified in a total lipid extract of L. lactis membranes are palmitic acid (16:0), oleic acid (18:1) and the cycl

  19. MEMBRANOUS FLOWS IN GAS-LIQUID COLLECTORS-REGENERATORS OF SOLAR ABSORPTIVE SYSTEMS FEATURES

    Directory of Open Access Journals (Sweden)

    Doroshenko А.V.

    2009-12-01

    Full Text Available Article is devoted to the creation of new generation of solar collectors of the gas-liquid type, intended for use in alternative refrigerating and conditioning systems of drying-evaporating type with direct solar regeneration of absorbent. Special attention is given to the study of membranous flows features on inclined surfaces, including questions of such flows stability.

  20. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    Science.gov (United States)

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  1. A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations.

    Science.gov (United States)

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2013-01-01

    This study demonstrates the robustness and treatment capacity of a forward osmosis (FO)-membrane distillation (MD) hybrid system for small-scale decentralized sewer mining. A stable water flux was realized using a laboratory-scale FO-MD hybrid system operating continuously with raw sewage as the feed at water recovery up to 80%. The hybrid system also showed an excellent capacity for the removal of trace organic contaminants (TrOCs), with removal rates ranging from 91 to 98%. The results suggest that TrOC transport through the FO membrane is governed by "solute-membrane" interaction, whereas that through the MD membrane is strongly correlated to TrOC volatility. Concentrations of organic matter and TrOCs in the draw solution increased substantially as the water recovery increased. This accumulation of some contaminants in the draw solution is attributed to the difference in their rejection by the FO and MD systems. We demonstrate that granular activated carbon adsorption or ultraviolet oxidation could be used to prevent contaminant accumulation in the draw solution, resulting in near complete rejection (>99.5%) of TrOCs.

  2. Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System.

    Science.gov (United States)

    Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick

    2017-08-18

    Despite reasonable predictive power of current cell-based and cell-free absorption models for the assessment of intestinal drug permeability, high costs and/or lengthy preparation steps hamper their use. The use of a simple artificial membrane (without any lipids present) as intestinal barrier substitute would overcome these hurdles. In the present study, a set of 14 poorly water-soluble drugs, dissolved in two different media [fasted state simulated/human intestinal fluids (FaSSIF/FaHIF)], were applied to the donor compartment of an artificial membrane insert system (AMI-system) containing a regenerated cellulose membrane. Furthermore, to investigate the predictive capacity of the AMI-system as substitute for the well-established Caco-2 system to assess intestinal permeability, the same set of 14 drugs dissolved in FaHIF, were applied to the donor compartment of a Caco-2 system. For 14 drugs, covering a broad range of physicochemical parameters, a reasonable correlation between both absorption systems was observed, characterized by a Pearson correlation coefficient r of 0.95 (FaHIF). Using the AMI-system, an excellent predictive capacity of FaSSIF as surrogate medium for FaHIF was demonstrated (r = 0.96). Based on the acquired data, the AMI-system appears to be a time- and cost-effective tool for the early-stage estimation of passive intestinal permeability for poorly water-soluble drugs. Copyright © 2017. Published by Elsevier Inc.

  3. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems...... was applied, and the relationship between module of impedance and relative humidity was found. The results showed that measuring the impedance of a fuel cell during standby can be a viable way for estimating the hydration status of its membrane....

  4. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    Science.gov (United States)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  5. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.

    Science.gov (United States)

    Yoshida, Keitaro; Tashiro, Yosuke; May, Thithiwat; Okabe, Satoshi

    2015-06-01

    In order to examine the interactions between physicochemical properties of specific extracellular polymeric substances (EPS) and membrane biofouling, we investigated the impacts of hydrophilic colanic acid, as a model extracellular polysaccharide component, on initial bacterial attachment to different microfiltration (MF) membranes and membrane biofouling by using Escherichia coli strains producing different amounts of colanic acid. In a newly designed microtiter plate assay, the bacterial attachment by an E. coli strain RcsF(+), which produces massive amounts of colanic acid, decreased only to a hydrophobic membrane because the colanic acid made cell surfaces more hydrophilic, resulting in low cell attachment to hydrophobic membranes. The bench-scale cross-flow filtration tests followed by filtration resistance measurement revealed that RcsF(+) caused severe irreversible membrane fouling (i.e., pore-clogging), whereas less extracellular polysaccharide-producing strains caused moderate but reversible fouling to all membranes used in this study. Further cross-flow filtration tests indicated that colanic acid liberated in the bulk phase could rapidly penetrate pre-accumulated biomass layers (i.e., biofilms) and then directly clogged membrane pores. These results indicate that colanic acid, a hydrophilic extracellular polysaccharide, and possible polysaccharides with similar characteristics with colanic acid are considered as a major cause of severe irreversible membrane fouling (i.e., pore-clogging) regardless of biofilm formation (dynamic membrane).

  6. Comparative genomic analysis of evolutionarily conserved but functionally uncharacterized membrane proteins in archaea: Prediction of novel components of secretion, membrane remodeling and glycosylation systems.

    Science.gov (United States)

    Makarova, Kira S; Galperin, Michael Y; Koonin, Eugene V

    2015-11-01

    A systematic comparative genomic analysis of all archaeal membrane proteins that have been projected to the last archaeal common ancestor gene set led to the identification of several novel components of predicted secretion, membrane remodeling, and protein glycosylation systems. Among other findings, most crenarchaea have been shown to encode highly diverged orthologs of the membrane insertase YidC, which is nearly universal in bacteria, eukaryotes, and euryarchaea. We also identified a vast family of archaeal proteins, including the C-terminal domain of N-glycosylation protein AglD, as membrane flippases homologous to the flippase domain of bacterial multipeptide resistance factor MprF, a bifunctional lysylphosphatidylglycerol synthase and flippase. Additionally, several proteins were predicted to function as membrane transporters. The results of this work, combined with our previous analyses, reveal an unexpected diversity of putative archaeal membrane-associated functional systems that remain to be functionally characterized. A more general conclusion from this work is that the currently available collection of archaeal (and bacterial) genomes could be sufficient to identify (almost) all widespread functional modules and develop experimentally testable predictions of their functions.

  7. APPLICATION OF A SURFACE-RENEWAL MODEL TO PERMEATE-FLUX DATA FOR CONSTANTPRESSURE CROSS-FLOW MICROFILTRATION WITH DEAN VORTICES

    Directory of Open Access Journals (Sweden)

    G. Idan

    2015-06-01

    Full Text Available AbstractThe introduction of flow instabilities into a microfiltration process can dramatically change several elements such as the surface-renewal rate, permeate flux, specific cake resistance, and cake buildup on the membrane in a positive way. A recently developed surface-renewal model for constant-pressure, cross-flow microfiltration (Hasan et al., 2013 is applied to the permeate-flux data reported by Mallubhotla and Belfort (1997, one set of which included flow instabilities (Dean vortices while the other set did not. The surface-renewal model has two forms - the complete model and an approximate model. For the complete model, the introduction of vortices leads to a 53% increase in the surface-renewal rate, which increases the limiting (i.e., steady-state permeate flux by 30%, decreases the specific cake resistance by 14.5% and decreases the limiting cake mass by 15.5% compared to operation without vortices. For the approximate model, a 50% increase in the value of surface renewal rate is shown due to vortices, which increases the limiting permeate flux by 30%, decreases the specific cake resistance by 10.5% and decreases the limiting cake mass by 13.7%. The cake-filtration version of the critical-flux model of microfiltration (Field et al., 1995 is also compared against the experimental permeate-flux data of Mallubhotla and Belfort (1997. Although this model can represent the data, the quality of its fit is inferior compared to that of the surface-renewal model.

  8. Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing.

    Science.gov (United States)

    Salerno, Simona; Bartolo, Loredana De

    2017-01-01

    In drug development, in vitro human model systems are absolutely essential prior to the clinical trials, considering the increasing number of chemical compounds in need of testing, and, keeping in mind that animals cannot predict all the adverse human health effects and reactions, due to the species-specific differences in metabolic pathways. The liver plays a central role in the clearance and biotransformation of chemicals and xenobiotics. In vitro liver model systems by using highly differentiated human cells could have a great impact in preclinical trials. Membrane biohybrid systems constituted of human hepatocytes and micro- and nano-structured membranes, represent valuable tools for studying drug metabolism and toxicity. Membranes act as an extracellular matrix for the adhesion of hepatocytes, and compartmentalise them in a well-defined physical and chemical microenvironment with high selectivity. Advanced 3-D tissue cultures are furthermore achieved by using membrane bioreactors (MBR), which ensure the continuous perfusion of cells protecting them from shear stress. MBRs with different configurations allow the culturing of cells at high density and under closely monitored high perfusion, similarly to the natural liver. These devices that promote the long-term maintenance and differentiation of primary human hepatocytes with preserved liver specific functions can be employed in drug testing for prolonged exposure to chemical compounds and for assessing repeated-dose toxicity. The use of primary human hepatocytes in MBRs is the only system providing a faster and more cost-effective method of analysis for the prediction of in vitro human drug metabolism and enzyme induction alternative and/or complementary to the animal experimentation. In this paper, in vitro models for studying drug metabolism and toxicity as advanced biohybrid membrane systems and MBRs will be reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    recording of a steady-state photocurrent while only a transient photocurrent peak was recorded on the polyelectrolyte cushion without a PES membrane. This PhD thesis also comprises the design and fabrication process of a modular microfluidic system with automated fluid delivery (micropumps and valves...... with reconstituted membrane spanning proteins, are attractive tools. However, BLMs suffer from intrinsic fragility, therefore, requiring techniques to increase their robustness and stability. This PhD thesis presents strategies to construct solid supports for electrochemical studies of two biomimetic membrane...... transporter valinomycin. The presented work also includes a comprehensive EIS analysis and cryological scanning electron microscopic (cryo-SEM) imaging of hydrogels formulated in various molar ratios (1:100; 1:200; 1:400) of the cross-linker poly(ethylene glycol)dimethacrylate (PEGDMA) and 2-hydroxyethylene...

  10. Recent Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

    Science.gov (United States)

    Leimkuehler, Thomas O.; Lukens, Clark; Reeves, Daniel R.; Holt, James M.

    2004-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas removal performance and operational lifetime of the gas trap have been affected by contamination in the ITCS coolant. However, the gas trap has performed flawlessly with regard to its purpose of preventing gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump. This paper discusses on-orbit events over the course of the last year related to the performance and functioning of the gas trap.

  11. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area.

  12. Effect of water temperature on biofouling development in reverse osmosis membrane systems

    KAUST Repository

    Farhat, N.M.

    2016-07-14

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water.

  13. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    Science.gov (United States)

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-01-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components. PMID:24561561

  14. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    Energy Technology Data Exchange (ETDEWEB)

    Myles, Dean A A [ORNL; Standaert, Robert F. [ORNL; Stanley, Christopher B. [ORNL; Cheng, Xiaolin [ORNL; Elkins, James G. [ORNL; Katsaras, John [ORNL; Qian, Shuo [ORNL; Nickels, Jonathan D. [ORNL; Chatterjee, Sneha [ORNL

    2017-03-01

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent work using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.

  15. Gravity-driven membrane system for secondary wastewater effluent treatment: Filtration performance and fouling characterization

    KAUST Repository

    Wang, Yiran

    2017-04-21

    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) configurations. It operates at an ultra-low pressure by gravity, requiring a minimal energy. The objective of this study was to understand the performance of GDM filtration system and characterize the biofouling formation on a flat sheet membrane. This submerged GDM reactor was operated at constant gravitational pressure in treating of two different concentrations of secondary wastewater effluent. Morphology of biofilm layer was acquired by an in-situ and on-line optical coherence tomography (OCT) scanning in a fixed position at regular intervals. The thickness and roughness calculated from OCT images were related to the variation of flux, fouling resistance and permeate quality. At the end of experiment, fouling was quantified by total organic carbon (TOC) and adenosine tri-phosphate (ATP) method. Confocal laser scanning microscopy (CLSM) was also applied for biofouling morphology observation. The biofouling formed on membrane surface was mostly removed by physical cleaning confirmed by contact angle measurement before and after cleaning. This demonstrated that fouling on the membrane under ultra-low pressure operation was highly reversible. The superiority and sustainability of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated.

  16. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling.

    Science.gov (United States)

    Bar-Zeev, Edo; Passow, Uta; Castrillón, Santiago Romero-Vargas; Elimelech, Menachem

    2015-01-20

    Transparent exopolymer particles (TEP) are ubiquitous in marine and freshwater environments. For the past two decades, the distribution and ecological roles of these polysaccharide microgels in aquatic systems were extensively investigated. More recent studies have implicated TEP as an active agent in biofilm formation and membrane fouling. Since biofouling is one of the main hurdles for efficient operation of membrane-based technologies, there is a heightened interest in understanding the role of TEP in engineered water systems. In this review, we describe relevant TEP terminologies while critically discussing TEP biological origin, biochemical and physical characteristics, and occurrence and distributions in aquatic systems. Moreover, we examine the contribution of TEP to biofouling of various membrane technologies used in the desalination and water/wastewater treatment industry. Emphasis is given to the link between TEP physicochemical and biological properties and the underlying biofouling mechanisms. We highlight that thorough understanding of TEP dynamics in feedwater sources, pretreatment challenges, and biofouling mechanisms will lead to better management of fouling/biofouling in membrane technologies.

  17. Quantitative measurement and visualization of biofilm O 2 consumption rates in membrane filtration systems

    KAUST Repository

    Prest, Emmanuelle I E C

    2012-03-01

    There is a strong need for techniques enabling direct assessment of biological activity of biofouling in membrane filtration systems. Here we present a new quantitative and non-destructive method for mapping O 2 dynamics in biofilms during biofouling studies in membrane fouling simulators (MFS). Transparent planar O 2 optodes in combination with a luminescence lifetime imaging system were used to map the two-dimensional distribution of O 2 concentrations and consumption rates inside the MFS. The O 2 distribution was indicative for biofilm development. Biofilm activity was characterized by imaging of O 2 consumption rates, where low and high activity areas could be clearly distinguished. The spatial development of O 2 consumption rates, flow channels and stagnant areas could be determined. This can be used for studies on concentration polarization, i.e. salt accumulation at the membrane surface resulting in increased salt passage and reduced water flux. The new optode-based O 2 imaging technique applied to MFS allows non-destructive and spatially resolved quantitative biological activity measurements (BAM) for on-site biofouling diagnosis and laboratory studies. The following set of complementary tools is now available to study development and control of biofouling in membrane systems: (i) MFS, (ii) sensitive pressure drop measurement, (iii) magnetic resonance imaging, (iv) numerical modelling, and (v) biological activity measurement based on O 2 imaging methodology. © 2011 Elsevier B.V.

  18. Convective heat transfer on a flat surface induced by a vertically-oriented piezoelectric fan in the presence of cross flow

    Science.gov (United States)

    Li, Xin-Jun; Zhang, Jing-zhou; Tan, Xiao-ming

    2017-09-01

    Experimental tests are carried out to investigate the convective heat transfer performances on a flat surface around the vibration envelope of a vertically-oriented piezoelectric fan in the presence of cross flow. Distinct behaviors of convective heat transfer are illustrated under the present conditions of piezoelectric-fan excitation voltage ( U = 50, 150, 250 V) or characteristic velocity ( u PF = 0.83, 1.67, 2.34 m/s) fan tip-to-heated surface gap ( G = 3, 5, 7 mm) and cross flow velocity ( u CH = 0.94, 1.56 m/s). In addition, three-dimensional flow field simulations are conducted to illustrate the instantaneous flow fields around the vibrating fan. By comparing with the pure piezoelectric fan, the vortex induced by the vibrating fan is pushed downward by the cross flow and a series of vortices are displayed down the vibrating fan. It is confirmed that the presence of cross flow is contributive to the improvement of convective heat transfer in the rear zone downstream fan vibration envelope. The impingement role of streaming flow induced by piezoelectric fan is reduced by the presence of cross flow in the fan vibration envelope. On the other hand, the oscillating movement of the piezoelectric fan promotes the disturbance intensity of cross flow passing through the fan vibration envelope. These two aspects make the conjugated convective heat transfer in the vicinity of fan vibration envelope complicated. In general, the convective heat transfer in the vicinity of fan vibration envelope is mostly improved by the combined action of fan-excited steaming flow and cross flow in the situation where the piezoelectric fan is placed very close to the heated surface.

  19. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    Science.gov (United States)

    Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  20. Computer aided design, analysis and experimental investigation of membrane assisted batch reaction-separation systems

    DEFF Research Database (Denmark)

    Mitkowski, Piotr Tomasz; Buchaly, Carsten; Kreis, Peter;

    2009-01-01

    Membrane assisted batch reaction operation offers an interesting option for equilibrium limited reaction systems in chemical and biochemical manufacturing by selective removal of one of the products and thereby increasing the product yield. The design of such hybrid systems need to take into acco...... and separation functionalities and to design/analyse the hybrid scheme. The generated hybrid scheme has been validated through experiments involving an esterification reaction....

  1. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    Science.gov (United States)

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  2. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen

    Fuel cells have started replacing traditional lead-acid battery banks in backup systems. Although these systems are characterized by long periods of standby, they must be able to start at any instant in the shortest time. In the case of low temperature proton exchange membrane fuel cell systems......, a precise estimation of hydration status of the fuel cell during standby is important for a fast and safe startup. In this article, the measurement of the complex impedance of the fuel cell is suggested as a method to estimate the membrane hydration status. A 56-cell fuel cell stack has been symmetrically...... was applied, and the relationship between module of impedance and relative humidity was found. The results showed that measuring the impedance of a fuel cell during standby can be a viable way for estimating the hydration status of its membrane....

  3. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  4. Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bergero, Stefano; Chiari, Anna [DIPARC, Faculty of Architecture, University of Genoa, Stradone S. Agostino 37, 16123 Genova (Italy)

    2010-11-15

    The present study examines the performances of a hybrid air-conditioning system in which a vapour-compression inverse cycle is integrated with an air dehumidification system working with hygroscopic solution and hydrophobic membrane. This model may be a valid alternative to traditional summertime air-conditioning system, in which the air is cooled to below its dew-point temperature and subsequently reheated. The proposed hybrid system involves simultaneously cooling and dehumidifying the air conveyed to the conditioned ambient in an air-solution membrane contactor. An LiCl solution is cooled by means of a vapour-compression inverse cycle using the refrigerant KLEA 407C. The solution is regenerated in another membrane contactor by exploiting the heat rejected by the condenser. A SIMULINK calculation programme was designed in order to simulate the system under examination in steady-state conditions. The performances of the system were analysed on varying a few significant operating parameters, and were compared with those of a traditional direct-expansion air-conditioning plant in typical summertime conditions. The results of the simulations revealed significant energy savings, which, in particular operating conditions, may exceed 50%. (author)

  5. Mathematical Modeling of Hollow-Fiber Membrane System in Biological Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jian PENG

    2006-02-01

    Full Text Available A set of mathematical models were derived based on the bio-kinetics and material balance principles to describe the performance of membrane system in this research. A synthetic wastewater and a meat packing wastewater were processed through a lab-scale membrane bioreactor system to generate experimental data for calibration and verification of the derived models. For the synthetic wastewater treatment, a high and stable Total Organic Carbon (TOC removal was achieved with volumetric organic loading from 0.2 to 24.2 kg TOC/m3ƒ(d. It was found that the derived system models fit the experimental data well. The bio-kinetic coefficients of k, Ks, Y and kd in the models were found to be 0.16 d-1, 1.0 mg/L, 1.75 mg Mixed Liquor Volatile Suspended Solids (MLVSS/mg TOC and 0.11 d-1, respectively. For the meat packing wastewater treatment, the bio-kinetic coefficients of k, Ks, Y and kd were found to be 0.48 d-1, 56.3 mg/L, 0.53 mg MLVSS/mg COD and 0.04 d-1, respectively. F/M ratio of 0.08 was found to be the proper operating condition for the system. Based on the proposed system models, the optimum MLSS concentration and F/M ratio can be computed to yield minimum cost of a membrane bioreactor system without excess biomass production.

  6. The influence of oscillating electromagnetic fields on membrane structure and function: Synthetic liposome and natural membrane bilayer systems with direct application to the controlled delivery of chemical agents

    Energy Technology Data Exchange (ETDEWEB)

    Liburdy, R.P.; de Manincor, D.; Fingado, B.

    1989-09-01

    Investigations have been conducted to determine if an imposed electromagnetic field can influence membrane transport, and ion and drug permeability in both synthetic and natural cell membrane systems. Microwave fields enhance accumulation of sodium in the lymphocyte and induce protein shedding at Tc. Microwaves also trigger membrane permeability of liposome systems under specific field exposure conditions. Sensitivity varies in a defined way in bilayers displaying a membrane structural phase transition temperature, Tc; maximal release was observed at or near Tc. Significantly, liposome systems without a membrane phase transition were also found to experience permeability increases but, in contrast, this response was temperature independent. The above results indicate that field-enhanced drug release occurs in liposome vesicles that possess a Tc as well as non-Tc liposomes. Additional studies extend non-Tc liposome responses to the in vivo case in which microwaves trigger Gentamicin release from a liposome depot'' placed subcutaneously in the rat hind leg. In addition, evidence is provided that cell surface sequestered liposomes can be triggered by microwave fields to release drugs directly into target cells. 24 refs., 6 figs.

  7. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation.

  8. Toward a reverse osmosis membrane system for recycling space mission wastewater.

    Science.gov (United States)

    Lee, S; Lueptow, R M

    2000-01-01

    Essential to extended human exploration and utilization of space is providing a clean supply of potable water as well as water for washing. Recycling of space mission wastewater is necessary for long-term space missions due to the limited capacity of water storage. In this study, initial measurements toward a wastewater reclamation system that provides a clean water supply using reverse osmosis (RO) membranes have been made using stirred cell filtration experiments. Low-pressure reverse osmosis (LPRO) membranes were used to obtain high flux of permeate as well as high rejection. Detergent removal was above 99%, and dissolved salt removal was above 90% in single-pass treatment, while total organic carbon (TOC) removal was nearly 80%. Most problematic is nitrogen rejection, which was 74% at best. Comparison of feed water before and after urea hydrolysis shows that the rejection of nitrogen compounds can be increased to 95% by allowing urea hydrolysis to occur. The removal efficiency for nitrogen compounds was also improved by increasing the shear rate near membrane surface. As a result, the product water in two passes could meet the hygiene water requirements for human space missions, and the product water in three passes could meet potable water regulations with overall recovery of 77%. This study also suggests that dynamic rotating membrane filtration, which can produce a high shear rate, will be useful to increase the system recovery as well as pollutant rejection. Grant numbers: NAG9-1053

  9. The role of forward osmosis and microfiltration in an integrated osmotic-microfiltration membrane bioreactor system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D; Elimelech, Menachem

    2015-10-01

    This study investigates the performance of an integrated osmotic and microfiltration membrane bioreactor (O/MF-MBR) system for wastewater treatment and reclamation. The O/MF-MBR system simultaneously used microfiltration (MF) and forward osmosis (FO) membranes to extract water from the mixed liquor of an aerobic bioreactor. The MF membrane facilitated the bleeding of dissolved inorganic salts and thus prevented the build-up of salinity in the bioreactor. As a result, sludge production and microbial activity were relatively stable over 60 days of operation. Compared to MF, the FO process produced a better permeate quality in terms of nutrients, total organic carbon, as well as hydrophilic and biologically persistent trace organic chemicals (TrOCs). The high rejection by the FO membrane also led to accumulation of hydrophilic and biologically persistent TrOCs in the bioreactor, consequently increasing their concentration in the MF permeate. On the other hand, hydrophobic and readily biodegradable TrOCs were minimally detected in both MF and FO permeates, with no clear difference in the removal efficiencies between two processes.

  10. An integrated membrane system for the biocatalytic production of 3′-sialyllactose from dairy by-products

    DEFF Research Database (Denmark)

    Luo, Jianquan; Nordvang, Rune Thorbjørn; Morthensen, Sofie Thage

    2014-01-01

    An integrated membrane system was investigated for the production of 30-sialyllactose by an engineered sialidase using casein glycomacropeptide (CGMP) and lactose as substrates. CGMP was purified by ultrafiltration (UF) to remove any small molecules present and then an enzymatic membrane reactor...... (EMR) was used to separate the product and reuse the enzyme. A PLCC regenerated cellulose membrane was found to be the most suitable for both the UF purification and EMR. Subsequently, nanofiltration (NF) was conducted to increase the purity of the 30-sialyllactose by removing the excess lactose...... present. The NTR7450 membrane outperformed others in NF due to its high retention of 30-sialyllactose (98%) and relatively low rejection of lactose (40%). The lactose in the permeate could be concentrated by the NF45 membrane and recycled into the EMR. The described integrated membrane system enables...

  11. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    Science.gov (United States)

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit.

  12. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  13. Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine

    Directory of Open Access Journals (Sweden)

    Peter Bachant

    2016-01-01

    Full Text Available Experiments were performed with a large laboratory-scale high solidity cross-flow turbine to investigate Reynolds number effects on performance and wake characteristics and to establish scale thresholds for physical and numerical modeling of individual devices and arrays. It was demonstrated that the performance of the cross-flow turbine becomes essentially R e -independent at a Reynolds number based on the rotor diameter R e D ≈ 10 6 or an approximate average Reynolds number based on the blade chord length R e c ≈ 2 × 10 5 . A simple model that calculates the peak torque coefficient from static foil data and cross-flow turbine kinematics was shown to be a reasonable predictor for Reynolds number dependence of an actual cross-flow turbine operating under dynamic conditions. Mean velocity and turbulence measurements in the near-wake showed subtle differences over the range of R e investigated. However, when transport terms for the streamwise momentum and mean kinetic energy were calculated, a similar R e threshold was revealed. These results imply that physical model studies of cross-flow turbines should achieve R e D ∼ 10 6 to properly approximate both the performance and wake dynamics of full-scale devices and arrays.

  14. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    Science.gov (United States)

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-08-16

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  15. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems

    KAUST Repository

    Siddiqui, Amber Siddiqui Shahnawaz

    2016-01-02

    Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydraulic behavior of various feed spacer geometries suggested that the impact of spacers on hydraulics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydraulic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydraulic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of biofilm formation on

  16. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems.

    Science.gov (United States)

    Siddiqui, Amber; Farhat, Nadia; Bucs, Szilárd S; Linares, Rodrigo Valladares; Picioreanu, Cristian; Kruithof, Joop C; van Loosdrecht, Mark C M; Kidwell, James; Vrouwenvelder, Johannes S

    2016-03-15

    Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydrodynamic behavior of various feed spacer geometries suggested that the impact of spacers on hydrodynamics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as the first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydrodynamic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydrodynamic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of

  17. Heat transfer and temperature distributions on finned tubes in cross flow. Waermeuebergangs- und Temperaturverteilungen an querangestroemten Rippenrohren

    Energy Technology Data Exchange (ETDEWEB)

    Schuez, G.

    1992-01-01

    The present paper deals with the flow and transport processes in high-performance heat exchanger tubes provided with external fins in cross flow. These have a broad area of applications, e.g. in chemical industry, in refrigeration, air conditioning and drying engineering, in the automotive industry, and on a commercial scale in dry cooling towers of power stations. Enhanced performance of heat exchangers can be obtained in three ways - in accordance with the defining equation of convective heat transfer - with the same wall material, fluid, and flow rate, namely by: increasing the wall surface area, e.g. by providing them with fins; intensifying the heat transfer; increasing the driving temperature difference. (orig.)

  18. Numerical simulation of liquid metal turbulent heat transfer from an inline tube bundle in cross-flow

    Directory of Open Access Journals (Sweden)

    Alexey G. Abramov

    2015-12-01

    Full Text Available Results of the numerical simulation of turbulent flow field and heat transfer of liquid metal in cross-flow over inline tube bundles consisting of smooth round tubes are presented. Computations have been performed with CFD-code ANSYS Fluent on the base of a two-dimensional unsteady RANS formulation using the SST turbulence model by Menter and assuming constant physical properties of a fluid with the Prandtl number equal to 0.023. The Reynolds number ranged from 26,200 to 52,400. Instantaneous and time-averaged velocity and temperature fields obtained for bundles of different intertube spacing with a variation of the bundle width (number of tube rows in the cross direction were analyzed. Integral characteristics of heat transfer were compared with the experimental data.

  19. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    Science.gov (United States)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.

  20. Evaluation of the performance of the cross-flow air classifier in manufactured sand processing via CFD-DEM simulations

    Science.gov (United States)

    Petit, H. A.; Irassar, E. F.; Barbosa, M. R.

    2017-03-01

    Manufactured sands are particulate materials obtained as by product of rock crushing. Particle sizes in the sand can be as high as 6 mm and as low as a few microns. The concrete industry has been increasingly using these sands as fine aggregates to replace natural sands. The main shortcoming is the excess of particles smaller than element modelling (DEM) were used for the assessment. Results show that the correct classification set up improves the size distribution of the raw materials. The cross-flow air classification is found to be influenced by the particle size distribution and the turbulence inside the chamber. The classifier can be re-designed to work at low inlet velocities to produce manufactured sand for the concrete industry.

  1. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  2. Discovery of an archetypal protein transport system in bacterial outer membranes.

    Science.gov (United States)

    Selkrig, Joel; Mosbahi, Khedidja; Webb, Chaille T; Belousoff, Matthew J; Perry, Andrew J; Wells, Timothy J; Morris, Faye; Leyton, Denisse L; Totsika, Makrina; Phan, Minh-Duy; Celik, Nermin; Kelly, Michelle; Oates, Clare; Hartland, Elizabeth L; Robins-Browne, Roy M; Ramarathinam, Sri Harsha; Purcell, Anthony W; Schembri, Mark A; Strugnell, Richard A; Henderson, Ian R; Walker, Daniel; Lithgow, Trevor

    2012-04-01

    Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.

  3. Study on Extracting Low Concentration Cadmium from Zinc Hydrometallurgy System by Liquid Membrane Crystallizing Technique

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The extraction of low concentration cadmium from a system containing high concentration zinc was studied and got CdS product directly. A new liquid membrane system taking DIPSA, TIBPS as carriers, (NH4)2S as precipitating agent was reported. Precipitating Cd2+ in the internal aq. phase that is used to treat sulfuric acid leaching solution of zinc oxide in zinc hydrometallurgy has gotten satisfied results of extracting cadmium from high concentration zinc. After one-stage of batch process under the optimum liquid membrane conditions, 98.6% transferring rate and 98.1% extracting rate of cadmium was obtained with only less than 1.0% transferring rate of zinc, and the feed solution can be purified very well.

  4. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein

  5. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption.

    Science.gov (United States)

    Bilad, M R; Discart, V; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, Ivo F J

    2013-06-01

    This study was performed to investigate the effectiveness of submerged microfiltration to harvest both a marine diatom Phaeodactylum tricornutum and a Chlorella vulgaris in a recently developed magnetically induced membrane vibrating (MMV) system. We assess the filtration performance by conducting the improved flux step method (IFM), fed-batch concentration filtrations and membrane fouling autopsy using two lab-made membranes with different porosity. The full-scale energy consumption was also estimated. Overall results suggest that the MMV offers a good fouling control and the process was proven to be economically attractive. By combining the membrane filtration (15× concentration) with centrifugation to reach a final concentration of 25% w/v, the energy consumption to harvest P. tricornutum and C. vulgaris was, respectively, as low as 0.84 and 0.77kWh/m(3), corresponding to 1.46 and 1.39 kWh/kg of the harvested biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Development of a stealth carrier system for structural studies of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial carriers that mimic the native bilayer environment allows for the handling of membrane proteins in solution and enables the use of small-angle scattering techniques for fast an......-resolution structural studes of many membrane proteins and their complexes in solution as the analysis of SANS data for this platform is greatly simplified and allows for the application of existing data analysis tools already available for soluble proteins...... and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly non-trivial fashion, making subsequent data analysis challenging. This thesis presents the development of a specifically deuterated, stealth nanodisc system...... which can be used for SANS structural analysis of membrane proteins in solution. In combination with the D2O/H2O-based contrast variation method it is demonstrated that it is possible to prepare specifically deuterated analogues of the nanodisc, which give minimal contribution to the neutron scattering...

  7. Demonstration of Next-Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, John [Plug Power Inc., Latham, NY (United States); Fritz Intwala, Katrina [Plug Power Inc., Latham, NY (United States)

    2009-08-01

    Plug Power and BASF have conducted eight years of development work prior to this project, demonstrating the potential of PBI membranes to exceed many DOE technical targets. This project consisted of; 1.The development of a worldwide system architecture; 2.Stack and balance of plant module development; 3.Development of an improved, lower cost MEA electrode; 4.Receipt of an improved MEA from the EU consortium; 5.Integration of modules into a system; and 6.Delivery of system to EU consortium for additional integration of technologies and testing.

  8. Water activities of polymeric membrane/water systems in fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Ji Yun; Bae, Young Chan [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Sun, Yang Kook [Division of Chemical Engineering and Center for Information and Communication Material, Hanyang University, Seoul 133-791 (Korea)

    2006-07-03

    A new equation of state (EOS) is established to describe water activities of polymeric membrane/water systems in fuel cell. It is developed based on the modified perturbed hard-sphere-chain (PHSC) EOS by introducing a new perturbation equation that is obtained from the generalized Lennard-Jones (GLJ) potential function based on a statistical-mechanical relationship. Experimentally observed water activities of polymeric electrolyte/water systems are interpreted by the proposed model. The values calculated from the proposed model are in a good agreement with the experimental data for given systems. (author)

  9. A Fluid Membrane-Based Soluble Ligand Display System for Live CellAssays

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jwa-Min; Nair, Pradeep N.; Neve, Richard M.; Gray, Joe W.; Groves, Jay T.

    2005-10-14

    Cell communication modulates numerous biological processes including proliferation, apoptosis, motility, invasion and differentiation. Correspondingly, there has been significant interest in the development of surface display strategies for the presentation of signaling molecules to living cells. This effort has primarily focused on naturally surface-bound ligands, such as extracellular matrix components and cell membranes. Soluble ligands (e.g. growth factors and cytokines) play an important role in intercellular communications, and their display in a surface-bound format would be of great utility in the design of array-based live cell assays. Recently, several cell microarray systems that display cDNA, RNAi, or small molecules in a surface array format were proven to be useful in accelerating high-throughput functional genetic studies and screening therapeutic agents. These surface display methods provide a flexible platform for the systematic, combinatorial investigation of genes and small molecules affecting cellular processes and phenotypes of interest. In an analogous sense, it would be an important advance if one could display soluble signaling ligands in a surface assay format that allows for systematic, patterned presentation of soluble ligands to live cells. Such a technique would make it possible to examine cellular phenotypes of interest in a parallel format with soluble signaling ligands as one of the display parameters. Herein we report a ligand-modified fluid supported lipid bilayer (SLB) assay system that can be used to functionally display soluble ligands to cells in situ (Figure 1A). By displaying soluble ligands on a SLB surface, both solution behavior (the ability to become locally enriched by reaction-diffusion processes) and solid behavior (the ability to control the spatial location of the ligands in an open system) could be combined. The method reported herein benefits from the naturally fluid state of the supported membrane, which allows

  10. The Architecture of EssB, an Integral Membrane Component of the Type VII Secretion System

    OpenAIRE

    Zoltner, Martin; Norman, David G.; Fyfe, Paul K.; El Mkami, Hassane; Palmer, Tracy; Hunter, William N.

    2013-01-01

    Supported by the Biotechnology and Biological Sciences Research Council (H007571), the Medical Research Council (UK) (G117/519), and the Wellcome Trust (grants 082596, 083481, 094090, and 099149). The membrane-bound EssB is an integral and essential component of the bacterial type VII secretion system that can contribute to pathogenicity. The architecture of Geobacillus thermodenitrificans EssB has been investigated by combining crystallographic and EPR spectroscopic methods. The protein f...

  11. Plant polyphenols as electron donors for erythrocyte plasma membrane redox system: validation through in silico approach

    OpenAIRE

    Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna; Rizvi, Syed Ibrahim

    2012-01-01

    Background The plasma membrane redox system (PMRS) has extensively been studied in erythrocytes. The PMRS plays an important role in maintaining plasma redox balance and provides a protective mechanism against oxidative stress. Earlier it was proposed that only NADH or NADPH provided reducing equivalents to PMRS; however, now it is acknowledged that some polyphenols also have the ability to donate reducing equivalents to PMRS. Methods Two different docking simulation softwares, Molegro Virtua...

  12. Missing Pieces of an Ancient Puzzle: Evolution of the Eukaryotic Membrane-Trafficking System

    OpenAIRE

    Schlacht, Alexander; Herman, Emily K.; Klute, Mary J.; Field, Mark C.; Dacks, Joel B.

    2014-01-01

    The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing fr...

  13. ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity.

    Science.gov (United States)

    Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-04-01

    Plant growth and productivity are adversely affected by various abiotic stressors and plants develop a wide range of adaptive mechanisms to cope with these adverse conditions, including adjustment of growth and development brought about by changes in stomatal activity. Membrane ion transport systems are involved in the maintenance of cellular homeostasis during exposure to stress and ion transport activity is regulated by phosphorylation/dephosphorylation networks that respond to stress conditions. The phytohormone abscisic acid (ABA), which is produced rapidly in response to drought and salinity stress, plays a critical role in the regulation of stress responses and induces a series of signaling cascades. ABA signaling involves an ABA receptor complex, consisting of an ABA receptor family, phosphatases and kinases: these proteins play a central role in regulating a variety of diverse responses to drought stress, including the activities of membrane-localized factors, such as ion transporters. In this review, recent research on signal transduction networks that regulate the function ofmembrane transport systems in response to stress, especially water deficit and high salinity, is summarized and discussed. The signal transduction networks covered in this review have central roles in mitigating the effect of stress by maintaining plant homeostasis through the control of membrane transport systems.

  14. Study on Mini Re-Entry System Using Deployable Membrane Aeroshell

    Science.gov (United States)

    Koyama, Masashi; Suzuki, Kojiro; Imamura, Osamu; Yamada, Kazuhiko

    An aeroshell made from membrane material have an advantage of reduction in the aerodynamic heating, because its small mass and large area enable us to make the low-ballistic-coefficient flight, in which the vehicle decelerates at very high altitude with low atmospheric density. In this paper, we propose a new concept of mini re-entry system for small satellites. This vehicle is called "FEATHER" (Flexible Expanded Aeroshell with Tiny payload Harness for Entry and Recovery). "FEATHER" is a novel re-entry and recovery system, featuring the autonomous aeroshell deployment, the low-ballistic-coefficient re-entry with less severe aerodynamicc heating and so on. FEATHER is composed of the membrane aeroshell made from the high-temperature cloth called ZYLON®, an outer frame made of Shape Memory Alloy (SMA) and a payload. When the aeroshell receives the aerodynamic heating, the temperature of SMA frame rises and restores the circular shape as memorized beforehand. Then the membrane aeroshell is automatically deployed. Therefore the vehicle can achieve the low-ballistic-coefficient flight with a drastic reduction in the aerodynamic heating without any additional sensors, controllers and actuators. The preliminary studies made on FEATHER system so far including the hypersonic wind tunnel experiments are presented in this paper.

  15. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  16. Phase coexistence in films composed of DLPC and DPPC: a comparison between different model membrane systems.

    Science.gov (United States)

    Mangiarotti, Agustín; Caruso, Benjamín; Wilke, Natalia

    2014-07-01

    For the biophysical study of membranes, a variety of model systems have been used to measure the different parameters and to extract general principles concerning processes that may occur in cellular membranes. However, there are very few reports in which the results obtained with the different models have been compared. In this investigation, we quantitatively compared the phase coexistence in Langmuir monolayers, freestanding bilayers and supported films composed of a lipid mixture of DLPC and DPPC. Two-phase segregation was observed in most of the systems for a wide range of lipid proportions using fluorescence microscopy. The lipid composition of the coexisting phases was determined and the distribution coefficient of the fluorescent probe in each phase was quantified, in order to explore their thermodynamic properties. The comparison between systems was carried out at 30mN/m, since it is accepted that at this or higher lateral pressures, the mean molecular area in bilayers is equivalent to that observed in monolayers. Our study showed that while Langmuir monolayers and giant unilamellar vesicles had a similar phase behavior, supported films showed a different composition of the phases with the distribution coefficient of the fluorescent probe being close to unity. Our results suggest that, in supported membranes, the presence of the rigid substrate may have led to a stiffening of the liquid-expanded phase due to a loss in the degrees of freedom of the lipids as a consequence of the proximity of the solid material.

  17. Isolation of plasma from whole blood using a microfludic chip in a continuous cross-flow

    Institute of Scientific and Technical Information of China (English)

    CHEN Xing; CUI DaFu; ZHANG LuLu

    2009-01-01

    A novel microfluidic chip is developed for crossflow filtration plasma from the whole blood which is carried out in a continuous manner. This microfluidic chip was made of a silicon substrate sealed with a compound cover. The silicon substrate fabricated by micro-electro-mechanical system (MEMS)technology consisted of microposts array, microchannels and reservoirs. Then the silicon substrate was characterized by Scaning Electron Microscopy (SEM). The performance of the microfiuidic chip was valued by the experiments of plasma isolation. During more than one hour of continuous blood infusion through the chip, there were no problems of jamming or clogging, and the plasma selectivity of 97.78% was achieved. Due to the chip's simple structure and control mechanism with a continuous,real time operating manner, this microfluidic chip is easily expected to be integrated into micro total analytical system (uTAS) which will create a microanalysis system for point-of-care diagnostics.

  18. Numerical and Experimental Investigation of Performance Improvements of a Cross-Flow Fan

    Science.gov (United States)

    2010-06-01

    is a personal ventilation and filtration system using CFF technology to remove dust and allergens from the air in confined spaces. Figure 1...diameter (15.24 cm) rotor disk from Cordero [13], it was realized that a 2-D mesh extraction from the default 3-D was not possible. An investigation

  19. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  20. Effect of water temperature on biofouling development in reverse osmosis membrane systems.

    Science.gov (United States)

    Farhat, N M; Vrouwenvelder, J S; Van Loosdrecht, M C M; Bucs, Sz S; Staal, M

    2016-10-15

    Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different water temperatures (10, 20, and 30 °C) inside a membrane fouling simulator (MFS) flow cell. The MFS studies were done at the same crossflow velocity with the same type of membrane and spacer materials, and the same feed water type and nutrient concentration, differing only in water temperature. Spatially resolved biofilm parameters such as oxygen decrease rate, biovolume, biofilm spatial distribution, thickness and composition were measured using in-situ imaging techniques. Pressure drop (PD) increase in time was used as a benchmark as to when to stop the experiments. Biofilm measurements were performed daily, and experiments were stopped once the average PD increased to 40 mbar/cm. The results of the biofouling study showed that with increasing feed water temperature (i) the biofilm activity developed faster, (ii) the pressure drop increased faster, while (iii) the biofilm thickness decreased. At an average pressure drop increase of 40 mbar/cm over the MFS for the different feed water temperatures, different biofilm activities, structures, and quantities were found, indicating that diagnosis of biofouling of membranes operated at different or varying (seasonal) feed water temperatures may be challenging. Membrane installations with a high temperature feed water are more susceptible to biofouling than installations fed with low temperature feed water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...... suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated...

  2. Model Checking the Biological Model of Membrane Computing with Probabilistic Symbolic Model Checker by Using Two Biological Systems

    Directory of Open Access Journals (Sweden)

    Ravie c. Muniyandi

    2010-01-01

    Full Text Available Problem statement: Membrane computing formalism has provided better modeling capabilities for biological systems in comparison to conventional mathematical models. Model checking could be used to reason about the biological system in detail and with precision by verifying formally whether membrane computing model meets the properties of the system. Approach: This study was carried to investigate the preservation of properties of two biological systems that had been modeled and simulated in membrane computing by a method of model checking using PRISM. The two biological systems were prey-predator population and signal processing in the legend-receptor networks of protein TGF-ß. Results: The model checking of membrane computing model of the biological systems with five different properties showed that the properties of the biological systems could be preserved in the membrane computing model. Conclusion: Membrane computing model not only provides a better approach in representing and simulating a biological system but also able to sustain the basic properties of the system.

  3. Analytical and Numerical Modelling of Newtonian and non-Newtonian Liquid in a Rotational Cross-flow MBR

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Madsen, S.;

    2012-01-01

    Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross- flow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of, for example, i......-weighted average shear stress was developed for water and AS as a function of the angular velocity and the total suspended solids concentration. These relationships can be linked to the energy consumption of this type of systems.......Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross- flow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of, for example......, impellers. Validation of the CFD (computational fluid dynamics) model was made against laser Doppler anemometry (LDA) tangential velocity measurements (error less than 8%) using water as a fluid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated...

  4. A Linear Time Complexity of Breadth-First Search Using P System with Membrane Division

    Directory of Open Access Journals (Sweden)

    Einallah Salehi

    2013-01-01

    Full Text Available One of the known methods for solving the problems with exponential time complexity such as NP-complete problems is using the brute force algorithms. Recently, a new parallel computational framework called Membrane Computing is introduced which can be applied in brute force algorithms. The usual way to find a solution for the problems with exponential time complexity with Membrane Computing techniques is by P System with active membrane using division rule. It makes an exponential workspace and solves the problems with exponential complexity in a polynomial (even linear time. On the other hand, searching is currently one of the most used methods for finding solution for problems in real life, that the blind search algorithms are accurate, but their time complexity is exponential such as breadth-first search (BFS algorithm. In this paper, we proposed a new approach for implementation of BFS by using P system with division rule technique for first time. The theorem shows time complexity of BSF in this framework on randomly binary trees reduced from O(2d to O(d.

  5. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water.

  6. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes.

    Science.gov (United States)

    Koók, László; Nemestóthy, Nándor; Bakonyi, Péter; Zhen, Guangyin; Kumar, Gopalakrishnan; Lu, Xueqin; Su, Lianghu; Saratale, Ganesh Dattatraya; Kim, Sang-Hyoun; Gubicza, László

    2017-05-01

    In this work, the performance of dual-chamber microbial fuel cells (MFCs) constructed either with commonly used Nafion(®) proton exchange membrane or supported ionic liquid membranes (SILMs) was assessed. The behavior of MFCs was followed and analyzed by taking the polarization curves and besides, their efficiency was characterized by measuring the electricity generation using various substrates such as acetate and glucose. By using the SILMs containing either [C6mim][PF6] or [Bmim][NTf2] ionic liquids, the energy production of these MFCs from glucose was comparable to that obtained with the MFC employing polymeric Nafion(®) and the same substrate. Furthermore, the MFC operated with [Bmim][NTf2]-based SILM demonstrated higher energy yield in case of low acetate loading (80.1 J g(-1) CODin m(-2) h(-1)) than the one with the polymeric Nafion(®) N115 (59 J g(-1) CODin m(-2) h(-1)). Significant difference was observed between the two SILM-MFCs, however, the characteristics of the system was similar based on the cell polarization measurements. The results suggest that membrane-engineering applying ionic liquids can be an interesting subject field for bioelectrochemical system research.

  7. Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae

    Science.gov (United States)

    Rawson, Frankie J.; Downard, Alison J.; Baronian, Keith H.

    2014-06-01

    Redox mediators can interact with eukaryote cells at a number of different cell locations. While cell membrane redox centres are easily accessible, the redox centres of catabolism are situated within the cytoplasm and mitochondria and can be difficult to access. We have systematically investigated the interaction of thirteen commonly used lipophilic and hydrophilic mediators with the yeast Saccharomyces cerevisiae. A double mediator system is used in which ferricyanide is the final electron acceptor (the reporter mediator). After incubation of cells with mediators, steady state voltammetry of the ferri/ferrocyanide redox couple allows quantitation of the amount of mediator reduced by the cells. The plateau current at 425 mV vs Ag/AgCl gives the analytical signal. The results show that five of the mediators interact with at least three different trans Plasma Membrane Electron Transport systems (tPMETs), and that four mediators cross the plasma membrane to interact with cytoplasmic and mitochondrial redox molecules. Four of the mediators inhibit electron transfer from S. cerevisiae. Catabolic inhibitors were used to locate the cellular source of electrons for three of the mediators.

  8. Modeling of the buckstay system of membrane-walls in watertube boiler construction

    Directory of Open Access Journals (Sweden)

    Nagiar Hasan Mehdi

    2014-01-01

    Full Text Available Membrane walls are very important structural parts of water-tube boiler construction. Based on their specific geometry, one special type of finite element was defined to help model the global boiler construction. That is the element of reduced orthotropic plate with two thicknesses and two elasticity matrixes, for membrane and bending load separately. A global model of the boiler construction showed that the high value of stress is concentrated in plates of the buckstay system in boiler corners. Validation of the new finite element was done on the local model of the part of membrane wall and buckstay. A very precise model of tubes and flanges was compared to the model formed on the element of a reduced orthotropic plate. Pressure and thermal loads were discussed. Obtained results indicated that the defined finite element was quite favorable in the design and reconstruction of the boiler substructures such as a buckstay system. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  9. Feedback control for distributed heat transfer mechanisms in direct-contact membrane distillation system

    KAUST Repository

    Eleiwi, Fadi

    2015-09-21

    In this paper, the problem of stabilization and production rate reference tracking for a Direct-Contact Membrane Distillation (DCMD) system is addressed. Sufficient conditions for the asymptotic and exponential stabilization for DCMD system are presented using the Gronwall-Bellman lemma and Linear Matrix Inequalities (LMIs) approaches, respectively. A nonlinear observer is then proposed to estimate the temperature distribution among the DCMD domain. This contributes to propose a reference production rate control design for the DCMD process via observer-based output control approach. Finally, numerical simulations are given to show the effectiveness of the proposed methods.

  10. Development of a Direct Ethanol Fuel Cell System with Anion Exchange Membranes

    Science.gov (United States)

    2015-01-15

    Fuel Cell System with Anion Exchange Membranes Report Title Based on the Phase I research results, we identified that carbon supported Pd-based catalysts...Report 22-0ct-2012- 21-Jan-2013 4. 1ITLE AND SUBTITLE 5a CONTRACT NUMBER Development of a Direct Ethanol Fuel Cell System with Anion Exchange...14. ABSTRACT Based on the Phase I research results, we identified that carbon supported Pd-based catalysts, such as Pd/C and PdRu!C, had better

  11. Dynamic Control of Electric Output Characteristics of Proton Exchange Membrane Fuel Cell System

    Institute of Scientific and Technical Information of China (English)

    刘星则; 朱新坚

    2005-01-01

    This paper discusses dynamic characteristics of proton exchange membrane fuel cell (PEMFC) under rapid fluctuation of power demand. Wavelet neural network is adopted in the identification of the characteristic curve to predict the voltage. The system control scheme of the voltage and power is introduced. The corresponding schemes for voltage and power control are studied. MATLAB is used to simulate the control system. The results reveal that the adopted control schemes can produce expected effects. Corresponding anti-disturbance and robustness simulation are also carried out. The simulation results show that the implemented control schemes have better robustness and adaptability.

  12. Primary light harvesting system: phycobilisomes and associated membranes. Progress report, January 1, 1978--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, E.

    1978-01-01

    Phycobilisomes, attached to photosynthetic membranes of the red and blue-green algae, function as the major light harvesters for photosynthesis. They represent one of the most efficient energy transfer systems in photosynthetic organisms. Allophycocyanin is the terminal pigment in the transfer chain. One of the far emitting allophycocyanin forms has been under study because it is the probable bridging pigment between the phycobilisomes and the photosynthetic membrane. Vesicles with attached phycobilisomes from Anabaena variabilis have been isolated and shown to transfer excitation energy from phycobiliproteins to photosystem II chlorophy11 and to actively evolving oxygen. With the availability of such conditions, and with the capability of being able to isolate phycobilisomes from any algae, probes for the phycobilisome attachment site can now be undertaken. Our isolation, characterization, and in vitro recombination of a phycocyanin and phycoerythrin complex represents the first crucial step in being able to explore the in vitro formation of phycobilisomes.

  13. Efficient Nanoporous Silicon Membranes for Integrated Microfluidic Separation and Sensing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ileri, N; L?tant, S E; Britten, J; Nguyen, H; Larson, C; Zaidi, S; Palazoglu, A; Faller, R; Tringe, J W; Stroeve, P

    2009-04-06

    Nanoporous devices constitute emerging platforms for selective molecule separation and sensing, with great potential for high throughput and economy in manufacturing and operation. Acting as mass transfer diodes similar to a solid-state device based on electron conduction, conical pores are shown to have superior performance characteristics compared to traditional cylindrical pores. Such phenomena, however, remain to be exploited for molecular separation. Here we present performance results from silicon membranes created by a new synthesis technique based on interferometric lithography. This method creates millimeter sized planar arrays of uniformly tapered nanopores in silicon with pore diameter 100 nm or smaller, ideally-suited for integration into a multi-scale microfluidic processing system. Molecular transport properties of these devices are compared against state-of-the-art polycarbonate track etched (PCTE) membranes. Mass transfer rates of up to fifteen-fold greater than commercial sieve technology are obtained. Complementary results from molecular dynamics simulations on molecular transport are reported.

  14. Optical Biosensor with Multienzyme System Immobilized onto Hybrid Membrane for Pesticides Determination

    Directory of Open Access Journals (Sweden)

    Lyubov Yotova

    2011-12-01

    Full Text Available A construction of optical biosensor based on simultaneous immobilization of acetylcholinesterase and choline oxidase enzymes for the detection of pesticides residues is described. Different kinds of novel SiO2 hybrid membranes were synthesized to be suitable for optical biosensors using sol-gel techniques. The bioactive component of the sensor consists of a multi-enzyme system including acetylcholinesterase and choline oxidase covalently immobilized on new hybrid membranes. The sensor exhibited a linear response to acetylcholine in a concentration range of 2.5 - 30 mM. Inhibition plots obtained from testing carbamate (carbofuran pesticides exhibited concentration dependent behaviour and showed linear profiles in concentration ranges between 5x10-8 - 5x10-7 M for carbofuran. The factors affecting the constructed optical biosensors were investigated.

  15. Removal of micropollutants and NOM in carbon nanotube-UF membrane system from seawater.

    Science.gov (United States)

    Heo, Jiyong; Joseph, Lesley; Yoon, Yeomin; Park, Yong-Gyun; Her, Namguk; Sohn, Jinsik; Yoon, Seong-Hoon

    2011-01-01

    One of the main problems for seawater reverse osmosis desalination is membrane fouling associated with natural organic matter. Bisphenol-A (BPA) and 17alpha-ethinylestradiol (EE2) are well-known endocrine-disrupting compounds that have been detected in wastewater and seawater. In this study, the contribution of carbon nanotubes (CNTs, single-walled carbon nanotubes) to membrane fouling control and the potential adsorption mechanisms of BPA and EE2 were investigated using artificial seawater (ASW) in a bench scale ultrafiltration (UF) membrane coupled with CNTs. For high ionic strength ASW, UVA254 nm is a good alternative for highly aromatic dissolved organic carbon (DOC) determination, with a very strong linear relationship (R2 > or = 0.99) with increasing DOC concentrations. Approximately 80% of DOC in ASW was rejected by the CNT-UF system where 31% of DOC was removed due to adsorption by CNTs. The presence of CNTs shows a 20% increase in membrane flux in ASW. A strong linear correlation between retention and adsorption of BPA and EE2 was obtained. The percentage of adsorption/retention of BPA and EE2 in UF-CNTs follows the order: 94.0/96.6 (DI + CNTs, EE2) > 86.2/90.0 (ASW + CNTs, EE2) > 73.6/78.9 (DI + CNTS, BPA) > or = 74.1/77.3 (ASW + CNTS, BPA) > 29.8/29.8 (ASW, EE2) approximately equal to 27.3/27.3 (ASW, BPA) > or = 25.3/25.3 (DI, EE2) approximately equal to 24.8/24.8 (DI, BPA). This indicates that retention by the UF-CNT system is mainly due to adsorption. Overall, EE2 adsorption was greater than BPA during the UF-CNT experiments, presumably due to the higher hydrophobicity of EE2 than BPA.

  16. Characterization of Ceramic Composite-Membranes Prepared by ORMOSIL Coating Sol

    Institute of Scientific and Technical Information of China (English)

    Goo-Dae Kim; Tae-Bong Kim

    2004-01-01

    Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under different molecular weight of polymer species [polyethylene glycol (PEG) ] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol (PEG)]. The properties of as-prepared ormosil sol such as,viscosity, gelation time were characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its micro-structure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross-flow apparatus. The ormosil sol coated Membrane is easily formed by steric effect of polymer and it improves flux efficiency because infiltration into porous support decreased. Its flux efficiency is elevated about 200(1/m2·h) compared with colloidal sol coated membrane at point of five minutes from starting test.

  17. Purification of chondroitin precursor from Escherichia coli K4 fermentation broth using membrane processing.

    Science.gov (United States)

    Schiraldi, Chiara; Carcarino, Immacolata Loredana; Alfano, Alberto; Restaino, Odile Francesca; Panariello, Andrea; De Rosa, Mario

    2011-04-01

    Recently the possibility of producing the capsular polysaccharide K4, a fructosylated chondroitin, in fed-batch experiments was assessed. In the present study, a novel downstream process to obtain chondroitin from Escherichia coli K4 fermentation broth was developed. The process is simple, scalable and economical. In particular, downstream procedures were optimized with a particular aim of purifying a product suitable for further chemical modifications, in an attempt to develop a biotechnological platform for chondroitin sulfate production. During process development, membrane devices (ultrafiltration/diafiltration) were exploited, selecting the right cassette cut-offs for different phases of purification. The operational conditions (cross-flow rate and transmembrane pressure) used for the process were determined on an ÄKTA cross-flow instrument (GE Healthcare, USA), a lab-scale automatic tangential flow filtration system. In addition, parameters such as selectivity and throughput were calculated based on the analytical quantification of K4 and defructosylated K4, as well as the major contaminants. The complete downstream procedure yielded about 75% chondroitin with a purity higher than 90%.

  18. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    Science.gov (United States)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2016-07-01

    Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited

  19. Biofilm Formation on Reverse Osmosis Membranes Is Initiated and Dominated by Sphingomonas spp.▿ †

    Science.gov (United States)

    Bereschenko, L. A.; Stams, A. J. M.; Euverink, G. J. W.; van Loosdrecht, M. C. M.

    2010-01-01

    The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces. PMID:20190090

  20. Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System

    Directory of Open Access Journals (Sweden)

    Won-Taek Hong

    2016-12-01

    Full Text Available The objective of this study is to estimate multiple-cycles of the soil-water characteristic curve (SWCC using an innovative volumetric pressure plate extractor (VPPE, which is incorporated with a membrane and time domain reflectometry (TDR. The pressure cell includes the membrane to reduce the experimental time and the TDR probe to automatically estimate the volumetric water content. For the estimation of SWCC using the VPPE system, four specimens with different grain size and void ratio are prepared. The volumetric water contents of the specimens according to the matric suction are measured by the burette system and are estimated in the TDR system during five cycles of SWCC tests. The volumetric water contents estimated by the TDR system are almost identical to those determined by the burette system. The experimental time significantly decreases with the new VPPE. The hysteresis in the SWCC is largest in the first cycle and is nearly identical after 1.5 cycles. As the initial void ratio decreases, the air entry value increases. This study suggests that the new VPPE may effectively estimate multiple-cycles of the SWCC of unsaturated soils.

  1. Oxygen transport membrane reactor based method and system for generating electric power

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  2. Organic semiconductor wastewater treatment using a four-stage Bardenpho with membrane system.

    Science.gov (United States)

    Chung, Jinwook; Fleege, Daniel; Ong, Say Kee; Lee, Yong-Woo

    2014-01-01

    Electronic wastewater from a semiconductor plant was treated with a pilot-scale four-stage Bardenpho process with membrane system. The system was operated over a 14-month period with an overall hydraulic retention time (HRT) ranging from 9.5 to 30 h. With a few exceptions, the pilot plant consistently treated the electronic wastewater with an average removal efficiency of chemical oxygen demand (COD) and total nitrogen of 97% and 93%, respectively, and achieving effluent quality of COD<15 mg/L, turbidity<1, and silt density index<1. Based on removal efficiencies of the pilot plant, it is possible to lower the HRT to less than 9.5 h to achieve comparable removal efficiencies. An energy-saving configuration where an internal recycle line was omitted and the biomass recycle was rerouted to the pre-anoxic tank, can reduce energy consumption by 8.6% and gave removal efficiencies that were similar to the Bardenpho process. The system achieved pre-anoxic and post-anoxic specific denitrification rate values with a 95% confidence interval of 0.091 ± 0.011 g NO₃-N/g MLVSS d and 0.087 ± 0.016 g NO₃-N/g MLVSS d, respectively. The effluent from the four-stage Bardenpho with membrane system can be paired with a reverse osmosis system to provide further treatment for reuse purposes.

  3. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization.

    Science.gov (United States)

    Cardoso, Ana M S; Trabulo, Sara; Cardoso, Ana L; Lorents, Annely; Morais, Catarina M; Gomes, Paula; Nunes, Cláudia; Lúcio, Marlene; Reis, Salette; Padari, Kärt; Pooga, Margus; Pedroso de Lima, Maria C; Jurado, Amália S

    2012-03-01

    The present work aims to gain insights into the role of peptide-lipid interactions in the mechanisms of cellular internalization and endosomal escape of the S4(13)-PV cell-penetrating peptide, which has been successfully used in our laboratory as a nucleic acid delivery system. A S4(13)-PV analogue, S4(13)-PVscr, displaying a scrambled amino acid sequence, deficient cell internalization and drug delivery inability, was used in this study for comparative purposes. Differential scanning calorimetry, fluorescence polarization and X-ray diffraction at small and wide angles techniques showed that both peptides interacted with anionic membranes composed of phosphatidylglycerol or a mixture of this lipid with phosphatidylethanolamine, increasing the lipid order, shifting the phase transition to higher temperatures and raising the correlation length between the bilayers. However, S4(13)-PVscr, in contrast to the wild-type peptide, did not promote lipid domain segregation and induced the formation of an inverted hexagonal lipid phase instead of a cubic phase in the lipid systems assayed. Electron microscopy showed that, as opposed to S4(13)-PVscr, the wild-type peptide induced the formation of a non-lamellar organization in membranes of HeLa cells. We concluded that lateral phase separation and destabilization of membrane lamellar structure without compromising membrane integrity are on the basis of the lipid-driven and receptor-independent mechanism of cell entry of S4(13)-PV peptide. Overall, our results can contribute to a better understanding of the role of peptide-lipid interactions in the mechanisms of cell-penetrating peptide membrane translocation, helping in the future design of more efficient cell-penetrating peptide-based drug delivery systems.

  4. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development is...

  5. Efficient solutions to hard computational problems by P systems with symport/antiport rules and membrane division.

    Science.gov (United States)

    Song, Bosheng; Pérez-Jiménez, Mario J; Pan, Linqiang

    2015-04-01

    P systems are computing models inspired by some basic features of biological membranes. In this work, membrane division, which provides a way to obtain an exponential workspace in linear time, is introduced into (cell-like) P systems with communication (symport/antiport) rules, where objects are never modified but they just change their places. The computational efficiency of this kind of P systems is studied. Specifically, we present a (uniform) linear time solution to the NP-complete problem, Subset Sum by using division rules for elementary membranes and communication rules of length at most 3. We further prove that such P system allowing division rules for non-elementary membranes can efficiently solve the PSPACE-complete problem, QSAT in a uniform way.

  6. Sucrose density gradient centrifugation and cross-flow filtration methods for the production of arbovirus antigens inactivated by binary ethylenimine

    Directory of Open Access Journals (Sweden)

    Chuan Teck F

    2004-01-01

    Full Text Available Abstract Background Sucrose density gradient centrifugation and cross-flow filtration methods have been developed and standardised for the safe and reproducible production of inactivated arbovirus antigens which are appropriate for use in diagnostic serological applications. Methods To optimise the maximum titre of growth during the propagation of arboviruses, the multiplicity of infection and choice of cell line were investigated using stocks of Ross River virus and Barmah Forest virus grown in both mosquito and mammalian cell lines. To standardise and improve the efficacy of the inactivation of arboviral suspensions, stocks of Ross River virus, Barmah Forest virus, Japanese encephalitis virus, Murray Valley encephalitis virus and Alfuy virus were chemically inactivated using binary ethylenimine at a final concentration of 3 mM. Aliquots were then taken at hourly intervals and crude inactivation rates were determined for each virus using a plaque assay. To ensure complete inactivation, the same aliquots were each passaged 3 times in Aedes albopictus C6/36 cells and the presence of viral growth was detected using an immunofluorescent assay. For larger quantities of viral suspensions, centrifugation on an isopycnic sucrose density gradient or cross-flow filtration was used to produce concentrated, pure antigens or partially concentrated, semi-purified antigens respectively. Results The results of the propagation experiments suggested that the maximum viral titres obtained for both Ross River virus and Barmah Forest virus were affected by the incubation period and choice of cell line, rather than the use of different multiplicity of infection values. Results of the binary ethylenimine inactivation trial suggested that standardised periods of 5 or 8 hours would be suitable to ensure effective and complete inactivation for a number of different arboviral antigens. Conclusion Two methods used to prepare inactivated arbovirus antigens have been

  7. Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow

    Science.gov (United States)

    Tien, J. S.; Yang, Chin Tien

    1998-01-01

    The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.

  8. Dynamic cross-flow filtration: enhanced continuous small-scale solid-liquid separation.

    Science.gov (United States)

    Gursch, Johannes; Hohl, Roland; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2016-01-01

    In a previous study, a small-scale dynamic filtration device (SFD) was analyzed and the basic mechanisms governing the filtration process were characterized. The present work aims at improving the device's performance in terms of actual production. Various operation modes were tested in order to increase permeate flow and concentration factors (CF), while maintaining a fully continuous production mode. Both, a vacuum-enhanced and a pulsating operation mode, proved to be superior to the currently implemented open-operation mode. For example, for lactose, an increase of the CF could be achieved from 1.7 in open mode to 7.6 in pulsating operation mode. The investigated operation strategy enables process control systems to rapidly react to fluctuating feeds that may occur due to changes in upstream manufacturing steps. As a result, not only filtration performance in terms of permeate rate but also process flexibility can be significantly increased. Overall, vacuum-enhanced operation was shown to be most promising for integration into an industrial environment. The option to elevate achievable concentration factors, ease of flow monitoring as well as the ability to react to changes in the feed conditions allow for effective and efficient continuous small-scale filtration.

  9. Membrane-membrane interactions in a lipid-containing bacteriophage system. Progress report, October 1, 1980-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Snipes, W

    1981-05-01

    Virus-cell interactions and the mechanism of viral entry have been the major focal points of this research. A method of analysis was perfected to investigate the entry process for herpes simplex virus. This technique makes use of a photosensitizing dye, FITC, that covalently binds to viral envelope proteins. Treated virions remain photosensitive until the envelope is shed during the process of infection. Our data strongly support an entry mechanism in which the viral envelope fuses with the cell plasma membrane. Other related projects have involved studies of the virucidal properties of retinoids, plaque development characteristics for viruses surviving treatment with membrane perturbers, and a large plaque effect that occurs when virus are plated on cells pretreated with uv light. In addition, we have characterized a new bacteriophage, investigated the interactions of divalent cations and proteins with phospholipid vesicles, extended our studies of the effects of hydrophobic photosensitizers on cell membranes, and used the spin-trapping technique to elucidate the reaction mechanism for an enzyme-like activity in soil extracts.

  10. Experimental study of Counter-Rotating Vortex Pair Trajectories induced by a Round Jet in Cross-Flow at Low Velocity Ratios

    CERN Document Server

    Cambonie, T; Aider, J -L

    2013-01-01

    Circular flush Jets In Cross-Flow were experimentally studied in a water tunnel using Volumetric Particle Tracking Velocimetry, for a range of jet to cross-flow velocity ratios, r, from 0.5 to 3, jet exit diameters $d$ from 0.8 cm to 1 cm and cross-flow boundary layer thickness delta from 1 to 2.5 cm. The analysis of the 3D mean velocity fields allows for the definition, computation and study of Counter-rotating Vortex Pair trajectories. The influences of r, d and delta were investigated. A new scaling based on momentum ratio r_m taking into account jet and cross-flow momentum distributions is introduced based on the analysis of jet trajectories published in the literature. Using a rigorous scaling quality factor Q to quantify how well a given scaling successfully collapses trajectories, we show that the proposed scaling also improves the collapse of CVP trajectories, leading to a final scaling law for these trajectories.

  11. Turbulent stresses in a direct contact condensation jet in cross-flow in a duct with implications for particle break-up

    NARCIS (Netherlands)

    Clerx, N.; van der Geld, C.W.M.; Kuerten, Johannes G.M.

    2013-01-01

    An experimental study has been conducted to investigate the turbulent mixing and heating caused by a (superheated) steam jet injected into a turbulent cross-flow of water in a square channel. The velocity field in the mid plane of the channel has been measured by means of particle image velocimetry

  12. Large-scaled simulation on the coherent vortex evolution of a jet in a cross-flow based on lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Shangguan Yanqin

    2015-01-01

    Full Text Available Large eddy simulation (LES is performed on a jet issued normally into a cross-flow using lattice Boltzmann method (LBM and multiple graphic processing units (multi-GPUs to study the flow characteristics of jets in cross-flow (JICF. The simulation with 8 1.50´10 grids is fulfilled with 6 K20M GPUs. With large-scaled simulation, the secondary and tertiary vortices are captured. The features of the secondary vortices and the tertiary vortices reveal that they have a great impact on the mixing between jet flow and cross-flow. The qualitative and quantitative results also indicate that the evolution mechanism of vortices is not constant, but varies with different situations. The hairpin vortex under attached jet regime originates from the boundary layer vortex of cross-flow. While, the origin of hairpin vortex in detached jet is the jet shear-layer vortex. The mean velocities imply the good ability of LBM to simulate JICF and the large loss of jet momentum in detached jet caused by the strong penetration. Besides, in our computation, a high computational performance of 1083.5 MLUPS is achieved.

  13. NUMERICAL STUDY ON THE MIXING OF UNSORTED SEDIMENT PARTICLES DISCHARGED INTO A CROSS-FLOW BY MULTIPHASE PARTICLE-IN-CELL (MP-PIC) METHOD

    Institute of Scientific and Technical Information of China (English)

    Jie GU; Chiwai LI; Hong YANG; Yong ZHAN

    2007-01-01

    The mixing characteristics of dredged sediments of variable size discharged into cross-flow are studied by an Eulerian-Lagrangian method. A three-dimensional (3D) numerical model has been developed by using the modified k-ε parameterization for the turbulence in fluid phase/water and a Lagrangian method for the solid phase/sediments. In the model the wake turbulence induced by sediments has been included as additional source and sink terms in the k-ε model; and the trajectories of the sediments are tracked by the Lagrangian method in which the sediment drift velocities in cross-flow are computed by a multiphase particle-in-cell (MP-PIC) method and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumped sediment cloud is governed by the total buoyancy on the cloud, the drag force on each particle and velocity of cross-flow. The cross-flow destroys more or less the double vortices occurred in stagnant ambience and dominates the longitudinal movement of sediment cloud. The computed results suggest satisfactory agreement by comparison with the experimental results of laboratory.

  14. Turbulent stresses in a direct contact condensation jet in cross-flow in a duct with implications for particle break-up

    NARCIS (Netherlands)

    Clerx, N.; Geld, van der C.W.M.; Kuerten, J.G.M.

    2013-01-01

    An experimental study has been conducted to investigate the turbulent mixing and heating caused by a (superheated) steam jet injected into a turbulent cross-flow of water in a square channel. The velocity field in the mid plane of the channel has been measured by means of particle image velocimetry

  15. Comparison of an ultrasonic nebulizer with a cross-flow nebulizer for selenium speciation by ion-chromatography and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    2000-01-01

    The purpose of this work was to compare an ultrasonic nebulizer (USN) with a cross-flow nebulizer (CFN) for selenium speciation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The influence of instrumental parameters as well as composition of the solvent on the selenium...

  16. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Bae [Mechanical Engineering Department, Chonnam National University, Gwangju (Korea)

    2010-10-01

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system. (author)

  17. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cuiru [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Jia, Zhidong; Guan, Zhicheng; Wang, Liming [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2009-04-01

    The remarkable characteristics of nanofibers mats electrospun are large surface area to volume ratio and high porosity, which are crucial to increase the ionic conductivity of membrane full of liquid electrolyte, in this aspect, electrospinning is prior to the other methods, such as dry method, wet method, etc. Therefore, fabricating the separator of Li-ion batteries by electrospinning is potential and promising. The PVDF membranes were fabricated by electrospinning. The experiment demonstrated that the main deficiency in the fabricating separators process by electrospinning was low mechanical property, which induced partial short circuits inside the cells. Several methods were presented to enhance the mechanical strength. The experiments demonstrated that the higher the solution concentration was, the stronger the mechanical strength was, and the higher the voltage was, the stronger the mechanical strength was. Additionally, the spherical hat collection target instead of conditional plane target was applied in the electrospinning system, as a result, the thickness of the membrane was more uniform and the fiber diameter was also more uniform. Therefore, the charge and discharge capacity of the coin type cell composed of the separator collected by spherical hat target exceeded the plane target, and the electrospinning separators exceeded the commercial polypropylene separator. (author)

  18. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries

    Science.gov (United States)

    Yang, Cuiru; Jia, Zhidong; Guan, Zhicheng; Wang, Liming

    The remarkable characteristics of nanofibers mats electrospun are large surface area to volume ratio and high porosity, which are crucial to increase the ionic conductivity of membrane full of liquid electrolyte, in this aspect, electrospinning is prior to the other methods, such as dry method, wet method, etc. Therefore, fabricating the separator of Li-ion batteries by electrospinning is potential and promising. The PVDF membranes were fabricated by electrospinning. The experiment demonstrated that the main deficiency in the fabricating separators process by electrospinning was low mechanical property, which induced partial short circuits inside the cells. Several methods were presented to enhance the mechanical strength. The experiments demonstrated that the higher the solution concentration was, the stronger the mechanical strength was, and the higher the voltage was, the stronger the mechanical strength was. Additionally, the spherical hat collection target instead of conditional plane target was applied in the electrospinning system, as a result, the thickness of the membrane was more uniform and the fiber diameter was also more uniform. Therefore, the charge and discharge capacity of the coin type cell composed of the separator collected by spherical hat target exceeded the plane target, and the electrospinning separators exceeded the commercial polypropylene separator.

  19. Improving dynamic performance of proton-exchange membrane fuel cell system using time delay control

    Science.gov (United States)

    Kim, Young-Bae

    Transient behaviour is a key parameter for the vehicular application of proton-exchange membrane (PEM) fuel cell. The goal of this presentation is to construct better control technology to increase the dynamic performance of a PEM fuel cell. The PEM fuel cell model comprises a compressor, an injection pump, a humidifier, a cooler, inlet and outlet manifolds, and a membrane-electrode assembly. The model includes the dynamic states of current, voltage, relative humidity, stoichiometry of air and hydrogen, cathode and anode pressures, cathode and anode mass flow rates, and power. Anode recirculation is also included with the injection pump, as well as anode purging, for preventing anode flooding. A steady-state, isothermal analytical fuel cell model is constructed to analyze the mass transfer and water transportation in the membrane. In order to prevent the starvation of air and flooding in a PEM fuel cell, time delay control is suggested to regulate the optimum stoichiometry of oxygen and hydrogen, even when there are dynamical fluctuations of the required PEM fuel cell power. To prove the dynamical performance improvement of the present method, feed-forward control and Linear Quadratic Gaussian (LQG) control with a state estimator are compared. Matlab/Simulink simulation is performed to validate the proposed methodology to increase the dynamic performance of a PEM fuel cell system.

  20. A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

    Science.gov (United States)

    Leimkuehler, Thomas O.; Patel, Vipul; Reeves, Daniel R.; Holt, James M.

    2005-01-01

    A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.