WorldWideScience

Sample records for cross-flow filter materials

  1. Thermal/chemical degradation of ceramic cross-flow filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  2. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  3. Method of producing monolithic ceramic cross-flow filter

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, David A. (Clifton Park, NY); Bacchi, David P. (Schenectady, NY); Connors, Timothy F. (Watervliet, NY); Collins, III, Edwin L. (Albany, NY)

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  4. Cross-flow filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  5. Long-term durability testing of ceramic cross-flow filter. Final report, September 29, 1987--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.E.; Smeltzer, E.E.; Alvin, M.A.; Bachovchin, D.M.

    1993-08-01

    Long term durability testing of the cross flow filter is described. Two high temperature, high pressure test facilities were built and operated. The facilities were designed to simulate dirty gas environments typical of Pressurized Fluidized Bed Combustion (PFBC) and coal gasification. Details of the design and operation of the test facilities and filter testing results are described.

  6. Cross-flow, filter-sorbet catalyst for particulate, SO sub 2 and NO sub x control

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This report describes a new concept for integrated pollutant control: A cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  7. Cross-flow filter-sorbent catalyst for particulate, SO{sub 2} and NO{sub x} control. Second quarter technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report describes a new concept for integrated pollutant control: a cross-flow filter comprised of layered, gas permeable membranes that act a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  8. Cross-flow, filter-sorbent catalyst for particulate, SO sub 2 and NO sub x control

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    The device described in this report will simultaneously remove particulates, SO{sub 2} and NO{sub x} from the combustion gases of coal combustors. The device is configured as a cross-flow filter. The gas flows from the inlet passages to orthogonally oriented discharge channels via thin, multilayered porous walls. Flue gas enters from both the front and back of the device. With the left wall of the filter sealed, gas discharges from the right side of the device. The key to combined physical (fly ash) and chemical (SO{sub 2}/NO{sub x}) cleaning is to utilize chemical active sorbent-catalysts (e.g., metal oxides) in the layered walls of the filter. This quarter, the NO{sub x} reduction activity of three sorbent-catalyst materials was tested over a temperature range from 200 to 500{degree}C. We were primarily interested in the sorbent-catalyst NO{sub x} reduction performance at 400{degree}C because this appears to be a minimum temperature for acceptable sulfur capture with these sorbents. the tradeoff between sulfur capture and NO{sub x} reduction performance for these sorbent-catalysts is clear: sulfation improves with higher temperatures (e.g., 400--600{degree}C) while NO{sub x} reduction improves at lower temperatures (e.g., 200--300{degree}C). Sorbent-catalyst materials included: Cu-7Al-O; Cu-Ce-O; and CeO{sub 2}. 7 refs., 7 figs., 4 tabs.

  9. Cross-flow, filter-sorbet catalyst for particulate, SO{sub 2} and NO{sub x} control. Fourth quarterly technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This report describes a new concept for integrated pollutant control: A cross-flow filter comprised of layered, gas permeable membranes that act as a particulate filter, an SO{sub 2} sorbent, and a NO{sub x} reduction catalyst.

  10. 静压箱式错流生物滴滤床去除甲苯废气的研究%Purification of toluene contained waste gas by static pressure tank cross-flow bio-trickling filter

    Institute of Scientific and Technical Information of China (English)

    彭淑婧; 李坚; 刘佳; 刘春敬; 李超; 金毓峑

    2011-01-01

    根据静压箱原理设计静压箱式错流生物滴滤床,设置进气静压区进一步改善气流分布情况,气流进入后在圆柱形静压区内动压降低,气流均匀分布.以甲苯为目标污染物、陶粒为填料、恶臭假单胞菌为菌源进行实验,研究静压箱式错流生物滴滤床的挂膜启动情况及稳定运行阶段甲苯停留时间、进气浓度对甲苯去除率的影响,分析了运行后期填料层压力损失增大的原因,并提出解决办法.%The static pressure tank cross-flow bio-trickling filter was designed on the principle of static pressure tank. A static pressure area was designed near the inlet of filter to improve the airflow distribution uniformity. The dynamic pressure of gas dropped as it flowed into the static pressure area so the gas was even distributed in filter. The waste gas purification by static pressure tank cross-flow bio-trickling filter was performed with toluene as target pollutant, ceramsite as packing material and Pseudomonas putida as degrading bacteria. The stat-up process of the bio-trickling filter was studied;the effects of inlet toluene concentration and residence time on removal capacity under stable operation stage were investigated; the reason of pressure drop rising in the filter was analyzed and the solutions were provided.

  11. Enzymatic oxidation of cephalosporin C using whole cells of the yeast Triginopsis variabilis within a "cross-flow filter-reactor".

    Science.gov (United States)

    Vicenzi, J T; Hansen, G J

    1993-04-01

    An economical process for the enzymatic oxidation of cephalosporin C to glutaryl-7-ACA was developed at a pilot plant scale. The process utilized nonviable whole cells of the yeast Triginopsis variabilis containing high levels of D-amino acid oxidase. Prior to use, the whole cells were permeabilized with a 25% acetone/water solution which enhanced their apparent activity by 20- to 50-fold. After permeabilization, the whole cells were incubated at pH 11, which served to selectively deactivate catalase which was present in very large quantities. Deactivation of catalase was critical to achieving high reaction yields. The whole cells were utilized within a "cross-flow filter-reactor" which allowed easy and economical recycle of the cells for repeated use. The overall yield of glutaryl-7-ACA from cephalosporin C was 90-95%. The overall productivity of the yeast was 13 kg cephalosporin C oxidized per kilogram yeast (dry basis). The reaction was run at a concentration of 40 g cephalosporin CL-1 and the overall reactor productivity was 11 g glutaryl-7-ACA l-1 h-1. The process has been thoroughly demonstrated on a 35-l scale, and it should be directly scaleable to 10,000 l or more.

  12. Materials for Bulk Acoustic Resonators and Filters

    Science.gov (United States)

    Loebl, Hans-Peter

    2003-03-01

    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  13. Filter casting nanoscale porous materials

    Science.gov (United States)

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

    2013-12-10

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

  14. Skin-sparing effects of neutron beam filtering materials.

    Science.gov (United States)

    Otte, V A; Almond, P R; Smathers, J B; Attix, F H

    1987-01-01

    The skin-sparing effects of several filtering materials for fast neutron beams were studied under various conditions. A parallel-plate ionization chamber was used for the measurements. The parameters which were studied included field size, distance from filter to ion chamber, filter material, and filter thickness. On the basis of this work, Teflon (polytetrafluoroethylene) was chosen for fabrication of flattening filters and wedges.

  15. New piezoelectric materials for SAW filters

    Science.gov (United States)

    Anghelescu, Adrian; Nedelcu, Monica

    2010-11-01

    Scientific research of surface acoustic wave (SAW) devices had an early start by the end of 1960s and led to the development of high frequency and small size piezo devices. A sustained effort was dedicated for these components to be transformed into many more interesting applications for telecom market. Recently the employment of new piezo materials and crystallographic orientations open new opportunities for SAW filters. New piezoelectric crystals of gallium orthophosphate (GaPO4) provide higher electromechanical coupling than quartz, while maintaining temperature compensated characteristics similar to quartz. Based on this material phase transition of 970°C, development of new piezo devices to operate at higher temperatures up to 800°C can be done. SAW velocities about 30% lower than ST-X quartz, favors smaller and more compact devices. Other advantages of GaPO4 are: stability with high resistance to stress induced twinning, 3~4 times higher electromechanical coupling than quartz and existence of SAW temperature compensated orientations. Another family of new materials of the trigonal 32 class has received much attention recently because of their temperature behavior similar to quartz and the promise of higher electromechanical coupling coefficients. It is the family of langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (La3Ga5.5Nb0.5O14). Langasite crystals, easier to obtain and with the value of electromechanical coupling coefficient intermediate between quartz and lithium tantalate (k2=0.32% for 0°, 140°, 22.5° orientation and k2=0.38% for 0°, 140°, 25° orientation), enable us to design SAW filters with a relative pass band of 0.3% to 0.85%. Other piezoelectric materials are reviewed for comparison.

  16. Biogas Filter Based on Local Natural Zeolite Materials

    OpenAIRE

    Satriyo Krido Wahono; Wahyu Anggo Rizal

    2014-01-01

    UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as ...

  17. A design methodology for cross flow water turbines

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, J.; Imbault, D.; Tourabi, A. [Laboratoire Sols, Solides, Structures - Risques (3S-R) Domaine Universitaire, B.P. 53, 38041 Grenoble Cedex 9 (France)

    2010-05-15

    This contribution deals with the design of cross flow water turbines. The mechanical stress sustained by the blades depends on the basic geometrical specifications of the cross flow water turbine, its rotational speed, the exact geometry of the blades and the velocity of the upstream water current. During the operation, the blades are submitted to severe cyclic loadings generated by pressure field's variation as function of angular position. This paper proposes a simplified design methodology for structural analysis of cross flow water turbine blades, with quite low computational time. A new trapezoidal-bladed turbine obtained from this method promises to be more efficient than the classical designs. Its most distinctive characteristic is a variable profiled cross-section area, which should significantly reduce the intensity of cyclic loadings in the material and improve the turbine's durability. The advantages of this new geometry will be compared with three other geometries based on NACA0018 hydrofoil. (author)

  18. Biogas Filter Based on Local Natural Zeolite Materials

    Directory of Open Access Journals (Sweden)

    Satriyo Krido Wahono

    2014-02-01

    Full Text Available UPT BPPTK LIPI has created a biogas filter tool to improve the purity of methane in the biogas. The device shaped cylindrical tube containing absorbent materials which based on local natural zeolite of Indonesia. The absorbent has been activated and modified with other materials. This absorbtion material has multi-adsorption capacity for almost impurities gas of biogas. The biogas  filter increase methane content of biogas for 5-20%. The biogas filter improve the biogas’s performance such as increasing methane contents, increasing heating value, reduction of odors, reduction of corrosion potential, increasing the efficiency and stability of the generator.

  19. A surface-renewal model of cross-flow microfiltration

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2013-03-01

    Full Text Available A mathematical model using classical cake-filtration theory and the surface-renewal concept is formulated for describing cross-flow microfiltration under dynamic and steady-state conditions. The model can predict the permeate flux and cake buildup in the filter. The three basic parameters of the model are the membrane resistance, specific cake resistance and rate of surface renewal. The model is able to correlate experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units with an average root-mean-square (RMS error of 4.6%. The experimental data are also compared against the critical-flux model of cross-flow microfiltration, which has average RMS errors of 6.3, 5.5 and 6.1% for the cases of cake filtration, intermediate blocking and complete blocking mechanisms, respectively.

  20. THE STUDY OF THE FILTRATION EFFICIENCY OF FILTER MATERIAL

    Institute of Scientific and Technical Information of China (English)

    Jia Ruiqing; Wang Luping; Wu Xueping

    2000-01-01

    In this paper, the course of the filtration is analyzed.In order to study the filtration efficiency of the filter material, the computer program was edited.According to the results of the computer program, some important parameters of the filter material are discussed.It shows that the filtration efficiency is closely related to the diameter (d) and the size (b).In addition, by using these results and the computer program, we can analysis the relationship between the fiber structure and filter properties quantitatively.

  1. Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection

    Energy Technology Data Exchange (ETDEWEB)

    Kontson, Kimberly, E-mail: Kimberly.Kontson@fda.hhs.gov; Jennings, Robert J. [Department of Bioengineering, University of Maryland, College Park, Maryland 20742 and Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2015-09-15

    Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity

  2. Preliminary stabilisation of stormwater biofilters and loss of filter material.

    Science.gov (United States)

    Subramaniam, D N; Mather, P B

    Stabilisation affects performance of stormwater biofilters operating under intermittent wetting and drying, mainly due to wash-off of filter material. Understanding the dynamics of solids wash-off is crucial in designing stormwater biofilters. The current study analysed the dynamics of solids wash-off in stormwater biofilters and quantified the loss of solids from the filter. Four Perspex™ bioretention columns (94 mm internal diameter) were fabricated with a filter layer that contained 8% organic material and were fed with tap water with different numbers of antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow and tested for particle size distribution and total solids and turbidity. Solids of particle size less than 50 microns were washed off from the filter during the stabilisation period, indicating that no sand particles were washed off. The very first event after commissioning the filter resulted in the highest wash-off of solids (approximately 75 g of fines) while a significant drop in wash-off followed from the second event. An empirical model fitted to the data showed that preliminary stabilisation of a filter occurs in the first three events, during which almost 25% of fines are lost from the filter.

  3. Physical collection efficiency of filter materials for bacteria and viruses.

    Science.gov (United States)

    Burton, Nancy Clark; Grinshpun, Sergey A; Reponen, Tiina

    2007-03-01

    The purpose of this study was to determine the physical collection efficiency of commercially available filters for collecting airborne bacteria, viruses, and other particles in the 10-900 nm (nanometer) size range. Laboratory experiments with various polytetrafluoroethylene (PTFE), polycarbonate (PC) and gelatin filters in conjunction with Button Inhalable samplers and three-piece cassettes were undertaken. Both biological and non-biological test aerosols were used: Bacillus atrophaeus, MS2, polystyrene latex (PSL), and sodium chloride (NaCl). The B.atrophaeus endospores had an aerodynamic diameter of 900 nm, whereas MS2 virion particles ranged from 10 to 80 nm. Monodisperse 350 nm PSL particles were used as this size was believed to have the lowest filtration efficiency. NaCl solution (1% weight by volume) was used to create a polydisperse aerosol in the 10-600 nm range. The physical collection efficiency was determined by measuring particle concentrations size-selectively upstream and downstream of the filters. The PTFE and gelatin filters showed excellent collection efficiency (>93%) for all of the test particles. The PC filters showed lower collection efficiency for small particles especially particle sizes of 47 and 63 nm, respectively. The results indicate that the effect of filter material is more significant for the size range of single virions than for bacteria. The effect of filter loading was examined by exposing filters to mixtures of PSL particles, which aimed at mimicking typical indoor dust levels and size distributions. A 4-h loading did not cause significant change in the physical collection efficiency of the tested filters.

  4. In-Place Filter Tester Instrument for Nuclear Material Containers.

    Science.gov (United States)

    Brown, Austin D; Moore, Murray E; Runnels, Joel T; Reeves, Kirk

    2016-05-01

    A portable instrument was developed to determine filter clogging and container leakage of in-place nuclear material storage canisters. This paper describes the development of an in-place filter tester for determining the "as found" condition of unopened canisters. The U.S. Department of Energy uses several thousand canisters for nuclear material storage, and air filters in the canister lids allow gases to escape while maintaining an equilibrated pressure without release of radioactive contamination. Diagnosing the filter condition and canister integrity is important for ensuring worker and public safety. Customized canister interfaces were developed for suction clamping (during tests) to two of the canister types in use at Los Alamos National Laboratory. Experimental leakage scenarios included: O-rings fouled with dust, cracked O-rings, and loose canister lids. The prototype tester has a measurement range for air leakage rates from 8.2 × 10 mL s up to 3.0 × 10 mL s. This is sufficient to measure a leak rate of 3.4 × 10 mL s, which is the Los Alamos helium leak criterion for post-drop tested canisters. The In-Place-Filter-Tester cannot measure to the lower value of the helium leak criterion for pre-drop tested canisters (1.0 × 10 mL s). However, helium leak testing requires canister disassembly, while the new in-place filter tester is able to assess the assembled condition of as-found and in-situ canisters.

  5. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed

  6. Suitability of various materials for porous filters in diffusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aldaba, David; Vidal, Miquel; Rigol, Anna [Univ. de Barcelona (Spain). Dept. de Quimica Analitica; Glaus, Martin; Van Loon, Luc [Paul Scherrer Institut, Villigen PSI (Switzerland). Lab. for Waste Management; Leupin, Olivier [Nagra, Wettingen (Switzerland)

    2014-10-01

    The suitability of different porous materials (stainless steel, VYCOR {sup registered} glass, Al{sub 2}O{sub 3} and PEEK) for use as confining filters in diffusion experiments was evaluated by measuring the effective diffusion coefficients (D{sub e}) of neutral (HTO) and ionic solutes (Na{sup +}, Cs{sup +}, Sr{sup 2+}, Cl{sup -}, SeO{sub 4}{sup 2-}) in the materials in through-diffusion experiments. For stainless steel filters, the D{sub e} values of the target solutes correlated satisfactorily with their bulk diffusion coefficient in water (D{sub w}); thus, the diffusion process in the stainless steel filters was primarily controlled by the diffusivity of the solvated ions. For the remaining materials, the D{sub e} and D{sub w} values were also correlated for the target solutes, and the geometric factors were in the sequence: VYCOR {sup registered} glass < Al{sub 2}O{sub 3} < PEEK. Stainless steel and VYCOR {sup registered} glass were the most appropriate materials because of their high D{sub e} values, but a specific interaction of caesium with VYCOR {sup registered} glass was hypothesised because the D{sub e} values obtained for this solute were slightly higher than expected.

  7. Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.

    Science.gov (United States)

    Dini, Danilo; Calvete, Mário J F; Hanack, Michael

    2016-11-23

    The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.

  8. In-plane Material Filters for the Discrete Material Optimization Method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...... have to group elements together in so-called patches, so to statically impose a minimum length scale. The proposed method imposes the minimum length scale through a standard density filter known from topology optimization of isotropic materials. This minimum length scale is generally referred...

  9. Coordinated Control of Cross-Flow Turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  10. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    Science.gov (United States)

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  11. Applications of Kalman Filtering to nuclear material control. [Kalman filtering and linear smoothing for detecting nuclear material losses

    Energy Technology Data Exchange (ETDEWEB)

    Pike, D.H.; Morrison, G.W.; Westley, G.W.

    1977-10-01

    The feasibility of using modern state estimation techniques (specifically Kalman Filtering and Linear Smoothing) to detect losses of material from material balance areas is evaluated. It is shown that state estimation techniques are not only feasible but in most situations are superior to existing methods of analysis. The various techniques compared include Kalman Filtering, linear smoothing, standard control charts, and average cumulative summation (CUSUM) charts. Analysis results indicated that the standard control chart is the least effective method for detecting regularly occurring losses. An improvement in the detection capability over the standard control chart can be realized by use of the CUSUM chart. Even more sensitivity in the ability to detect losses can be realized by use of the Kalman Filter and the linear smoother. It was found that the error-covariance matrix can be used to establish limits of error for state estimates. It is shown that state estimation techniques represent a feasible and desirable method of theft detection. The technique is usually more sensitive than the CUSUM chart in detecting losses. One kind of loss which is difficult to detect using state estimation techniques is a single isolated loss. State estimation procedures are predicated on dynamic models and are well-suited for detecting losses which occur regularly over several accounting periods. A single isolated loss does not conform to this basic assumption and is more difficult to detect.

  12. Numerical Analysis for the Air Flow of Cross Flow Fan

    Science.gov (United States)

    Sakai, Hirokazu; Tokushge, Satoshi; Ishikawa, Masatoshi; Ishihara, Takuya

    There are many factors for designing the cross flow fan. Therefore, the performance of cross flow fan is not clear yet. We can analyze the transient flow of a cross flow fan using sliding mesh approach. One of the tasks using Computational Fluid Dynamics (CFD) is a way of modeling for analysis heat exchangers with cross flow fan. These tasks are very important for design. The paper has a modeling of heat exchangers and meshing the fan blades. The next tasks, we focus the ability of cross flow fan when we change the geometry of fan blades.

  13. Removal of silver from wastewater using cross flow microfiltration

    Directory of Open Access Journals (Sweden)

    Zanain M.

    2013-04-01

    Full Text Available Removal of silver from wastewater was investigated using continuous cross flow microfiltration (MF technique hollow fiber membranes with a pore size 0.2μm, with sorbent coated material Al2O3/SDSH2Dz particle size (8 μm. The coating investigated was dithizone (Diphenylthiocarbazone in 0.005M ammonia solution. In the filtration of silver ion solutions, the effects of the permeate flow rate and cross flow velocity on the absorption of silver ion solutions, and since the pore size of membrane (=0.2 μm is smaller then that of the (Al2O3, no need to consider the variation of (Al2O3.rejection as it can be considered to be 100%. The amount of silver absorbed into sorbent material Al2O3/SDSH2Dz was (25.35, 39.68 ppm for the cross flown velocity of 5, 2.5 L/hr respectively, and were the results as function of permeate flow was (25.35, 39.68 ppm for the velocity of 5, 2.5 L/hr respectively.

  14. Filter properties of seam material from paved urban soils

    Directory of Open Access Journals (Sweden)

    T. Nehls

    2007-08-01

    Full Text Available We studied pavement seam material. This is the soil substrate in joints of pervious pavements in urban areas. It is mostly 1 cm thick and develops from the original seam filling by depositions of all kinds of urban residues, including anthropogenic organic substances. It was investigated, how this unique form of organic matter influences the filter properties of seam material and how the seam material influences heavy metal transport through the pavement. The seam material is characterised by a darker munsell colour, higher organic carbon content, higher surface areas, higher cation exchange capacities, but a lower fraction of high adsorption energy sites compared to the original seam filling. The deposited anthropogenic organic matter itself could be characterised as particulate and non-polar. Compared to natural soils, it has a small surface area and a low surface charge density resulting in a small cation exchange capacity of only 75 cmol(+ kg−1C. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material towards Pb is similar, towards Cd it is much smaller compared to natural soils. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb. For Cd the infiltration from ponds can lead to a displacement of Cd during only one decade.

  15. CANFLEX fuel bundle cross-flow endurance test (test report)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.

    1997-04-01

    As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.

  16. Development of multidye UV filters for OPVs using luminescent materials

    Science.gov (United States)

    Vignoto Fernandes, Ricardo; Bristow, Noel; Stoichkov, Vasil; Scapin Anizelli, Helder; Leonil Duarte, José; Laureto, Edson; Kettle, Jeff

    2017-01-01

    Luminescence down-shifting (LDS) is used in several photovoltaic technologies aiming to improve the photon conversion efficiency (PCE) of the devices through the increase of the light harvesting in the regions of the electromagnetic spectrum where the EQE of the solar cells is poor. The aim of this work was to produce films of mixtures (blends) of two luminescent materials, dispersed in a poly-methyl methacrylate (PMMA) matrix, hoping to improve their properties both as LDS layer and as UV filter when applied on the clear, external surface of P3HT:PC61BM photovoltaic devices. The best results led to an increment of 7.4% in the PCE of the devices, and a six fold enhancement in their half-life (T 50%). This study indicates that multidye LDS layers with optimized optical properties can lead to an effective improvement in the performance and operational stability of OPVs.

  17. The effectiveness of photocatalytic ionisation disinfection of filter materials.

    Science.gov (United States)

    Pietrzak, Katarzyna; Gutarowska, Beata

    2013-01-01

    The purpose of this study was to determine the effectiveness of photocatalytic ionisation as a disinfection method for filter materials contaminated by microorganisms, and to assess how air relative humidity (RH), time and microbe type influence the effectiveness of this disinfection. In the quantitative analysis of a used car air filter, bacterial contamination equalled 1.2 x 10(5) cfu/cm2, fungal contamination was 3.8 x 10(6) cfu/cm2, and the isolated microorganisms were Aspergillus niger, Bacillus megaterium, Cladosporium herbarum, Cryptococcus laurenti, Micrococcus sp., Rhodotorula glutinis and Staphylococcus cohnii. In the model experiment, three isolates (C. herbarum, R. glutinis, S. cohnii) and 3 ATCC species (A. niger, E. coli, S. aureus) were used for photocatalytic ionisation disinfection. The conditions of effective photocatalytic ionisation disinfection (R > or = 99.9%) were established as 2-3 h at RH = 77% (bacteria) and 6-24 h at RH = 53% (fungi). RH has an influence on the effectiveness of the photocatalytic disinfection process; the highest effectiveness was obtained for bacteria at RH = 77%, with results 5% higher than for RH = 49%. The studies show that the sensitivity of microorganisms to photocatalytic ionisation disinfection is ordered as follows: Gram-positive bacteria (S. cohnii, S. aureus), Gram-negative bacteria (E. coli), yeasts (R. glutinis), and moulds (C. herbarum, A. niger). Of all the mathematical models used for the description of death dynamics after photocatalytic ionisation disinfection, the Chick-Watson model is the most useful, but for more resistant microorganisms, the delayed Chick-Watson model is highly recommended. It therefore seems, that the presented disinfection method of photocatalytic ionisation can be successfully used to clean filtration materials.

  18. Filter properties of seam material from paved urban soils

    Directory of Open Access Journals (Sweden)

    T. Nehls

    2008-04-01

    Full Text Available Depositions of all kinds of urban dirt and dust including anthropogenic organic substances like soot change the filter properties of the seam filling material of pervious pavements and lead to the formation of a new soil substrate called seam material.

    In this study, the impact of the particular urban form of organic matter (OM on the seam materials CECpot, the specific surface area (As, the surface charge density (SCD, the adsorption energies (Ea and the adsorption of Cd and Pb were assessed. The Cd and Pb displacement through the pavement system has been simulated in order to assess the risk of soil and groundwater contamination from infiltration of rainwater in paved urban soils.

    As, Ea and SCD derived from water vapor adsorption isotherms, CECpot, Pb and Cd adsorption isotherms where analyzed from adsorption experiments. The seam material is characterized by a darker munsell-color and a higher Corg (12 to 48g kg-1 compared to the original seam filling. Although, the increased Corg leads to higher As (16m2g-1 and higher CECpot (0.7 to 4.8cmolckg-1, with 78cmolckg-1C its specific CECpot is low compared to OM of non-urban soils. This can be explained by a low SCD of 1.2×10-6molc m-2 and a low fraction of high adsorption energy sites which is likely caused by the non-polar character of the accumulated urban OM in the seam material.

    The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material for Pb is similar, for Cd it is much smaller compared to natural sandy soils with similar Corg concentrations

  19. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  20. Carbon nanofibers grown on metallic filters as novel catalytic materials

    OpenAIRE

    Tribolet, Pascal; Kiwi-Minsker, Lioubov

    2005-01-01

    Carbon nanofibers (CNF) were synthesized on sintered metal fibers (SMF) filters of nickel and Ni-containing alloys (Inconel, stainless steel (SS)) by thermal chemical vapor deposition of ethane in the presence of hydrogen at not, vert, similar660 °C. The CNFs were formed directly over the SMF filters without deposition of metal particles. The catalytic active sites leading to the CNF formation were attained by oxidation–reduction of the SMF filter. The CNFs present platelet morphology as dete...

  1. Enabling tunable micromechanical bandpass filters through phase-change materials

    Science.gov (United States)

    Cao, Yunqi; Torres, David; Wang, Tongyu; Tan, Xiaobo; Sepúlveda, Nelson

    2017-08-01

    Vanadium dioxide (VO2), one of the most promising phase-change smart materials, has shown strong frequency tuning capabilities in MEMS resonators. In this paper, we demonstrate the potential use of VO2-based MEMS devices as second-order kilohertz (kHz) bandpass filters with tunable band selectivity and adjustable bandwidth (BW). Two identical on-chip micro resonators are actuated using mechanical excitation and measured using optical detection. One of the resonators is not actuated while the other is tuned by applying electric currents across an integrated resistive heater, which induces the phase transition of the VO2, and consequently a large stress to the mechanical structure. The responses of both MEMS resonators are combined, resulting in a resonant peak of tunable BW controlled by the input current. The BW can be extended to 2.62 times by using two bridges or 2.39 times by implementing one pair of cantilevers. The results for both devices are discussed.

  2. Agricultural sprays in cross-flow and drift

    DEFF Research Database (Denmark)

    Farooq, M.; Balachandar, R.; Wulfsohn, Dvoralai

    2001-01-01

    The droplet size and velocity characteristics of an agricultural spray were studied in a wind tunnel in the presence of a non-uniform cross-flow. The spray was generated at three nozzle-operating pressures. The droplet size and velocity was measured in both the cross-flow direction and the vertical...... ratio (x/z) of two. Here, x is the distance in the cross-flow direction and z is the vertical distance below the nozzle exit. The behaviour of droplets of two particular size classes ( similar to 38 and 70 mum) were also investigated and found that the smaller droplets were subjected to an increased...

  3. The Effect of Cross Flow on Slat Noise

    Science.gov (United States)

    Lockard, David P.; Choudhari, Meelan M.

    2010-01-01

    This paper continues the computational examination (AIAA Journal, Vol. 45, No. 9, 2007, pp. 2174-2186) of the unsteady flow within the slat cove region of a multi-element high-lift airfoil configuration. Two simulations have been performed to examine the effect of cross flow on the near-field fluctuations and far-field acoustics. The cross flow was imposed by changing the free-stream velocity vector and modifying the Reynolds number. The cross flow does appear to alter the dynamics in the cove region, but the impact on the noise seems to be more dependent on the flow conditions. However, separating out the true effects of the cross flow from those of the Mach and Reynolds number would require additional calculations to isolate those effects.

  4. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  5. Bioabsorbable materials for use in vena cava filters

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Klausen, Kasper

    ⁄2 weeks using three sheep. Two stent-bases were implanted per sheep, one cranially and one caudually. After merely 2 weeks the stent-bases showed multiple fractures in the circumferential direction caused by the continuous cyclic compression. The fragments from the caudal device remained in the caval wall...... the adequate flexibility in such a filter design to withstand the cyclic compression of the vein over the course of 2 weeks. To achieve the goal of creating a bioabsorbable IVC filter, the stent-base must be made from a different polymer....

  6. An assessment of cellulose filters as a standardized material for measuring litter breakdown in headwater streams

    Science.gov (United States)

    The decay rate of cellulose filters and associated chemical and biological characteristics were compared to those of white oak (Quercus alba) leaves to determine if cellulose filters could be a suitable standardized material for measuring deciduous leaf breakdown in headwater str...

  7. Material for dust and flame filters in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Weber, E.; Hoelter, H.

    1980-01-24

    It is proposed to improve ceramic fibres (with a silica content of more than 80%) for use in underground filters. The temperature resistance is increased, above all, if the glass fibres receive a silica coating. A pretreatment with silane is advantageous.

  8. Antithrombotic Protein Filter Composed of Hybrid Tissue-Fabric Material has a Long Lifetime.

    Science.gov (United States)

    Inoue, Yusuke; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Kaneko, Akiko; Woo, Taeseong; Kobayashi, Shingo; Shibuya, Tomokazu; Tanaka, Masaru; Kosukegawa, Hiroyuki; Saito, Itsuro; Isoyama, Takashi; Abe, Yusuke; Yambe, Tomoyuki; Someya, Takao; Sekino, Masaki

    2017-05-01

    There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.

  9. Potential of organic filter materials for treating greywater to achieve irrigation quality: a review.

    Science.gov (United States)

    Dalahmeh, Sahar S; Hylander, Lars D; Vinnerås, Björn; Pell, Mikael; Oborn, Ingrid; Jönsson, Håkan

    2011-01-01

    The objectives of this literature review were to: (i) evaluate the impact of greywater generated in rural communities, with the emphasis on Jordanian conditions, on soil, plant and public health and assess the need for treatment of this greywater before it is used for irrigation, and (ii) assess the potential of different types of organic by-products as carrier material in different filter units for removal of pollutants from greywater. Greywater with high BOD5, COD, high concentrations of SS, fat, oil and grease and high levels of surfactants is commonly found in rural areas in Jordan. Oxygen depletion, odour emission, hydrophobic soil phenomena, plant toxicity, blockage of piping systems and microbiological health risks are common problems associated with greywater without previous treatment. Organic by-products such as wood chips, bark, peat, wheat straw and corncob may be used as carrier material in so-called mulch filters for treating wastewater and greywater from different sources. A down-flow-mode vertical filter is a common setup used in mulch filters. Wastewaters with a wide range of SS, cBOD5 and COD fed into different mulch filters have been studied. The different mulch materials achieved SS removal ranging between 51 and 91%, a BOD5 reduction range of 55-99.9%, and COD removal of 51-98%. Most types of mulches achieved a higher organic matter removal than that achieved by an ordinary septic tank. Bark, peat and wood chips filters removed organic matter better than sand and trickling filters, under similar conditions. Release of filter material and increase in COD in the effluent was reported using some mulch materials. In conclusion, some mulch materials such as bark, peat and woodchips seem to have a great potential for treatment of greywater in robust, low-tech systems. They can be expected to be resilient in dealing with variable low and high organic loads and shock loads.

  10. CROSS-FLOW ULTRAFILTRATION OF SECONDARY EFFLUENTS. MEMBRANE FOULING ANALYSIS

    Directory of Open Access Journals (Sweden)

    Luisa Vera

    2014-12-01

    Full Text Available The application of cross-flow ultrafiltration to regenerate secondary effluents is limited by membrane fouling. This work analyzes the influence of the main operational parameters (transmembrane pressure and cross-flow velocity about the selectivity and fouling observed in an ultrafiltration tubular ceramic membrane. The experimental results have shown a significant retention of the microcolloidal and soluble organic matter (52 – 54% in the membrane. The fouling analysis has defined the critical operational conditions where the fouling resistance is minimized. Such conditions can be described in terms of a dimensionless number known as shear stress number and its relationship with other dimensionless parameter, the fouling number.

  11. Determination of metal content in atmospheric dust samples using different vessel and filter materials

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, G.; Wentrup, G.J.

    1989-02-01

    In this paper materials like glassfibre and quartzglass filters were analysed with respect to their application for the analysis of metal contents in atmospheric dust samples. Furthermore different vessel materials, resistant to fluoric acid, have been tested too. In summary the most important fact for the determination of metal content in atmospheric dust samples - prior condition the chosen analysis method is suitable and sensitive enough - is the quality of the used materials. These materials are to be chosen thoroughly to the conditions required.

  12. Characterization of the selectivity of microsieves using a cross-flow microfiltration system

    Directory of Open Access Journals (Sweden)

    L. E. Gutierrez-Rivera

    2010-12-01

    Full Text Available Filtration through membranes is a process largely employed in the food and chemical industry to separate particles. Sieves present some advantages in relation to conventional membranes such as high homogeneity in the pore sizes, smooth surfaces, straight-through pores, etc. In this paper we compare the selectivity in the exclusion of particles by size of sieves with circular and slit pores with the same porosity. The selectivity was investigated by filtering a mixture of rutin in water in a cross-flow filtration system. The particle-size distribution of the rutin solution was measured before and after microfiltration. The results showed a high efficiency in the size exclusion of particles for microsieves with circular pores. The filtration through a commercial membrane (net filter with similar characteristics was also characterized for comparison.

  13. CrossFlow: Integrating Workflow Management and Electronic Commerce

    NARCIS (Netherlands)

    Hoffner, Y.; Ludwig, H.; Grefen, P.; Aberer, K.

    2001-01-01

    The CrossFlow1 architecture provides support for cross-organisational workflow management in dynamically established virtual enterprises. The creation of a business relationship between a service provider organisation performing a service on behalf of a consumer organisation can be made dynamic when

  14. Study on an undershot cross-flow water turbine

    Science.gov (United States)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  15. New luminescent materials and filters for Luminescent Solar Concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Ronda, C.R.; Keur, W.C.; Meijerink, A.

    2012-01-01

    In a Luminescent Solar Concentrator (LSC), short-wavelength light isconverted by a luminescent material into long-wavelength light, which is guided towards a photovoltaic cell. In principle, an LSC allows for high concentration, but in practice this is prevented by lossmechanisms like limited sunlig

  16. Investigation of IAQ-Relevant Surface Chemistry and Emissions on HVAC Filter Materials

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Fisk, William J.

    2010-02-01

    Chemical reactions involving ozone of outdoor origin and indoor materials are known to be significant sources of formaldehyde and other irritant gas-phase oxidation products in the indoor environment. HVAC filters are exposed to particularly high ozone concentrations--close to outdoor levels. In this study, we investigated chemical processes taking place on the surface of filters that included fiberglass, polyester, cotton/polyester blend and synthetic (e.g., polyolefin) filter media. Ozone reactions were studied on unused filter media, and on filters that were deployed for 3 months in two different locations: at the Lawrence Berkeley National Laboratory and at the Port of Oakland. Specimens from each filter were exposed to ozone under controlled conditions in a laboratory flow tube at a constant flow of dry or humidified air (50percent relative humidity). Ozone was generated with a UV source upstream of the flow tube, and monitored using a photometric detector. Ozone breakthrough curves were recorded for each sample exposed to ~;;150 ppbv O3 for periods of ~;;1000 min, from which we estimated their uptake rate. Most experiments were performed at 1.3 L/min (corresponding to a face velocity of 0.013 m/s), except for a few tests performed at a higher airflow rate, to obtain a face velocity of 0.093 m/s, slightly closer to HVAC operation conditions. Formaldehyde and acetaldehyde, two oxidation byproducts, were collected downstream of the filter and quantified. Emissions of these volatile aldehydes were consistently higher under humidified air than under dry conditions, at which levels were near the limit of detection. Our results confirm that there are significant reactions of ozone as air containing ozone flows through HVAC filters, particularly when the filters are loaded with particles and the air is humidified. The amount of ozone reacted was not clearly related to the types of filter media, e.g., fiberglass versus synthetic. Specific fiberglass filters that were

  17. Efficiency characterization of ceramic filtering materials used for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For ceramic filtering materials, their adsorption capacities, purification efficiencies to remove organic compounds from drinking water, and correlation between adsorption capacities and pore structures were tested and analyzed. The results show that correlation coefficient between the specific surface area and the adsorptive amount of iodine molecule is 0.99;correlation coefficient between the pore volume and the adsorptive value of tannin molecule is 0.92. And correlation coefficient between the most probable diameter and the adsorption parameter is 1.0. A new method of morphology characterization for ceramic filtering materials was developed. Which offered a sort of standard for the evaluation on water purification efficiencies and selection of ceramic filtering materials.

  18. Double component long period waveguide grating filter in sol-gel material.

    Science.gov (United States)

    Moujoud, Abderrafia; Kim, Hyun Jae; Kang, Sung Ho; Oh, Gyong-Jin; Kim, Woo-Soo; Bae, Byeong-Soo; Shin, Sang-Yung

    2007-11-12

    An efficient, tunable Long Period Waveguide Grating (LPWG) filter based on a new hybrid sol-gel material is demonstrated. The LPWG exhibits an attenuation of -22 dB and a high temperature sensitivity of ~3.3 nm/ degrees C. At room temperature the device shows an almost polarization independent wavelength. We took the advantage of the UV-curable sol-gel materials and used soft lithography to demonstrate a simple approach of integrating two LPWG filters on the same structure. The gratings were fabricated on the top and on the bottom of the same ridge waveguide and operate at communication wavelengths of 1550 and 1310 nm, respectively.

  19. Baleen Hydrodynamics and Morphology of Cross-Flow Filtration in Balaenid Whale Suspension Feeding.

    Directory of Open Access Journals (Sweden)

    Alexander J Werth

    Full Text Available The traditional view of mysticete feeding involves static baleen directly sieving particles from seawater using a simple, dead-end flow-through filtration mechanism. Flow tank experiments on bowhead (Balaena mysticetus baleen indicate the long-standing model of dead-end filtration, at least in balaenid (bowhead and right whales, is not merely simplistic but wrong. To recreate continuous intraoral flow, sections of baleen were tested in a flume through which water and buoyant particles circulated with variable flow velocity. Kinematic sequences were analyzed to investigate movement and capture of particles by baleen plates and fringes. Results indicate that very few particles flow directly through the baleen rack; instead much water flows anteroposteriorly along the interior (lingual side of the rack, allowing items to be carried posteriorly and accumulate at the posterior of the mouth where they might readily be swallowed. Since water flows mainly parallel to rather than directly through the filter, the cross-flow mechanism significantly reduces entrapment and tangling of minute items in baleen fringes, obviating the need to clean the filter. The absence of copepods or other prey found trapped in the baleen of necropsied right and bowhead whales supports this hypothesis. Reduced through-baleen flow was observed with and without boundaries modeling the tongue and lips, indicating that baleen itself is the main if not sole agent of crossflow. Preliminary investigation of baleen from balaenopterid whales that use intermittent filter feeding suggests that although the biomechanics and hydrodynamics of oral flow differ, cross-flow filtration may occur to some degree in all mysticetes.

  20. A goal-oriented field measurement filtering technique for the identification of material model parameters

    KAUST Repository

    Lubineau, Gilles

    2009-05-16

    The post-processing of experiments with nonuniform fields is still a challenge: the information is often much richer, but its interpretation for identification purposes is not straightforward. However, this is a very promising field of development because it would pave the way for the robust identification of multiple material parameters using only a small number of experiments. This paper presents a goal-oriented filtering technique in which data are combined into new output fields which are strongly correlated with specific quantities of interest (the material parameters to be identified). Thus, this combination, which is nonuniform in space, constitutes a filter of the experimental outputs, whose relevance is quantified by a quality function based on global variance analysis. Then, this filter is optimized using genetic algorithms. © 2009 Springer-Verlag.

  1. New filtering antimicrobial nonwovens with various carriers for biocides as respiratory protective materials against bioaerosol.

    Science.gov (United States)

    Majchrzycka, Katarzyna; Gutarowska, Beata; Brochocka, Agnieszka; Brycki, Bogumił

    2012-01-01

    This study evaluated the bioactivity of polypropylene melt-blown filtering nonwovens used in respiratory protective devices (RPD) with a biocidal agent (alkylammonium microbiocides) on 2 mineral carriers. Two types of carriers were tested: a bentonite, with an aluminosilicate base, and a perlite, volcanic glass. High biostatic and biocidal effects of modified nonwovens with biocides were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. Nonwovens modified with a biocide on a bentonite carrier showed an opposite reaction to a biocide on a perlite. The research also showed that 10% concentration of a biocidal agent on a perlite carrier was sufficient to inhibit the growth of bacteria (100% reduction) placed in the structure of a filtering material during normal use of RPD. A comparison of the biological activity of 2 filtering materials, each containing 10% of a perlite and produced in a laboratory and industrial conditions, showed no statistically significant differences.

  2. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  3. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    Science.gov (United States)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  4. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    Science.gov (United States)

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection.

  5. Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials

    Directory of Open Access Journals (Sweden)

    H Pashaei Adl

    2015-01-01

    Full Text Available In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters

  6. End of FY2014 Report - Filter Measurement System for Nuclear Material Storage Canisters (Including Altitude Correction for Filter Pressure Drop)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-24

    Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2 QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .

  7. Laboratory comparison of four iron-based filter materials for drainage water phosphate treatment.

    Science.gov (United States)

    Allred, Barry J; Racharaks, Ratanachat

    2014-09-01

    A laboratory investigation evaluated phosphate (PO4(3-)) drainage water treatment capabilities of four iron-based filter materials. The iron-based filter materials tested were zero-valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and iron oxide/ hydroxide (IOH). Only filter material retained on a 60-mesh sieve (> 0.25 mm) was used for evaluation. The laboratory investigation included saturated falling-head hydraulic conductivity tests, contaminant removal or desorption/dissolution batch tests, and low-to-high flow rate saturated solute transport column tests. Each of the four iron-based filter materials have sufficient water flow capacity as indicated by saturated hydraulic conductivity values that in most cases were greater than 1 x 10(-2) cm/s. For the 1, 10, and 100 ppm PO4(3-)-P contaminant removal batch tests, each of the four iron-based filter materials removed at least 95% of the PO4(3-)-P originally present. However, for the 1000 ppm PO4(3-)-P contaminant removal batch tests, IOH by far exhibited the greatest removal effectiveness (99% PO4(3-)-P removal), followed by SMI (72% PO4(3-)-P removal), then ZVI (62% PO4(3-)-P removal), and finally PIC (15% PO4(3-)-P removal). The desorption/dissolution batch test results, especially with respect to SMI and IOH, indicate that once PO4(3-) is adsorbed/precipitated onto surfaces of iron-based filter material particles, this PO4(3-) becomes fixed and is then not readily desorbed/dissolved back into solution. The results from the column tests showed that regardless of low or high flow rate (contact time ranged from a few hours to a few minutes) and PO4(3-) concentration (1 ppm or 10 ppm PO4(3-)-P), PIC, SMI, and IOH reduced PO4(3-)-P concentrations to below detection limits, while ZVI removed at least 90% of the influent PO4(3-)-P. Consequently, these laboratory results indicate that the ZVI, PIC, SMI, and IOH filter materials all exhibit promise for phosphate drainage water treatment.

  8. SAW filter manufacture and piezoelectric materials evaluation based on printed electronics technology

    Science.gov (United States)

    Liu, Xiao-chen; Li, Kun; Xuan, Xiu-wei; Cao, Yang; Teng, Jian-fu

    2014-09-01

    In this paper, the silver nanoparticle ink and ink-jet printing technology are used to manufacture the surface acoustic wave (SAW) filters. The characteristics of three common substrate piezoelectric materials of ST-quartz, Y36°-LiTaO3 and Y128°-LiNbO3 are evaluated. The experimental results show that Y128°-LiNbO3 matches the ink much better than others. The printed SAW filter with Y128°-LiNbO3 as piezoelectric substrate is realized, and its center frequency and bandwidth are 18.4 MHz and 500 kHz, respectively.

  9. Efficiency of filtering materials used in respiratory protective devices against nanoparticles.

    Science.gov (United States)

    Brochocka, Agnieszka; Makowski, Krzysztof; Majchrzycka, Katarzyna; Grzybowski, Piotr

    2013-01-01

    The basic aim of this research was to establish the efficiency of filtering materials widely used in respiratory protection devices with particular interest in their porosity, degree of electric and changeable process parameters, such as the flow rate of the test nanoaerosol and the size range of nanoparticles. Tests were carried out with an NaCl solid aerosol of 3.2 × 105 particles/cm3 for the range of particle size of 7-270 nm, at aerosol flow rate of 1800, 2700, 3600, 4500 and 5400 L/h. The tests showed that electrospun nonwovens were the most effective filtering materials for nanoparticles over 20 nm. Melt-blown electret nonwovens with lower porosity than electrospun nonwovens had higher values of penetration of 1%-4%. Those materials provided very efficient protection against nanoparticles of certain sizes only.

  10. Modulation power of porous materials and usage as ripple filter in particle therapy.

    Science.gov (United States)

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-07

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called 'modulation power' is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  11. Modulation power of porous materials and usage as ripple filter in particle therapy

    Science.gov (United States)

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-01

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called ‘modulation power’ is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  12. Experimental study on revolving cross-flow microfiltration of highly viscous liquids%高黏度液体错流旋转微滤实验研究

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvi-nylidene fluoride (PVDF, 0.1 μm), cellulose acetate (CA, 0.22 μm), sulfonated polyethersulfone (SPES, 0.22 μm) and polyamide (PA, 0.45 μm), respectively, were used in filtration experiments. The dependence of the filtrate mass of the cross-flow MF on time was measured on-line. The experimental results showed that the effect of the cross-flow on high viscosity medium was more significant than that on the low viscosity one.

  13. Bending strength measurements at different materials used for IR-cut filters in mobile camera devices

    Science.gov (United States)

    Dietrich, Volker; Hartmann, Peter; Kerz, Franca

    2015-03-01

    Digital cameras are present everywhere in our daily life. Science, business or private life cannot be imagined without digital images. The quality of an image is often rated by its color rendering. In order to obtain a correct color recognition, a near infrared cut (IRC-) filter must be used to alter the sensitivity of imaging sensor. Increasing requirements related to color balance and larger angle of incidence (AOI) enforced the use of new materials as the e.g. BG6X series which substitutes interference coated filters on D263 thin glass. Although the optical properties are the major design criteria, devices have to withstand numerous environmental conditions during use and manufacturing - as e.g. temperature change, humidity, and mechanical shock, as wells as mechanical stress. The new materials show different behavior with respect to all these aspects. They are usually more sensitive against these requirements to a larger or smaller extent. Mechanical strength is especially different. Reliable strength data are of major interest for mobile phone camera applications. As bending strength of a glass component depends not only upon the material itself, but mainly on the surface treatment and test conditions, a single number for the strength might be misleading if the conditions of the test and the samples are not described precisely,. Therefore, Schott started investigations upon the bending strength data of various IRC-filter materials. Different test methods were used to obtain statistical relevant data.

  14. Thermal-hydraulic study on cross-flow mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Atsuhiko; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In order to remove the high heat density generated in the mercury target effectively under the 1 MW proton beam operation, we have proposed the Cross Flow Type (CFT) target using bladed flow distributors. From three-dimensional numerical simulations using the general-purpose computational fluid dynamics (CFD) code (STAR-CD), it was found that the maximum local temperature rise could be suppressed less than 58.2 K under mercury flow rate of 40 m{sup 3}/h. This paper presents the current CFD analytical results of the 1 MW CFT mercury target. (author)

  15. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  16. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... govern the presence of material in each layer through the thickness of the laminate. Combined with an in-plane density filter, the method enables manufacturers to control the length scale of the geometry while obtaining near discrete designs. Together with the applied manufacturing constraints it is now...... possible for manufacturers to steer the design towards a higher level of manufacturability. The method is demonstrated for mass minimization with displacement and manufacturing constraints. The results show that the method indeed is capable of obtaining near discrete designs which obey the governing...

  17. Utilization of DNA as functional materials: preparation of filters containing DNA insolubilized with alginic acid gel.

    Science.gov (United States)

    Iwata, K; Sawadaishi, T; Nishimura, S I; Tokura, S; Nishi, N

    1996-02-01

    Thin films composed of DNA and alginic acid were prepared by casting their mixed solution on glass plate followed by coagulation with aqueous solution of calcium chloride. DNA could be conveniently insolubilized by this method. DNA in the films adsorbed intercalating materials, such as ethidium bromide. This phenomenon was successfully applied to the preparation of filters for the selective removal or accumulation of harmful intercalating pollutants.

  18. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems.

    Science.gov (United States)

    Lim, H S; Lim, W; Hu, J Y; Ziegler, A; Ong, S L

    2015-01-01

    The filter media in biofiltration systems play an important role in removing potentially harmful pollutants from urban stormwater runoff. This study compares the heavy metal removal potential (Cu, Zn, Cd, Pb) of five materials (potting soil, compost, coconut coir, sludge and a commercial mix) using laboratory columns. Total/dissolved organic carbon (TOC/DOC) was also analysed because some of the test materials had high carbon content which affects heavy metal uptake/release. Potting soil and the commercial mix offered the best metal uptake when dosed with low (Cu: 44.78 μg/L, Zn: 436.4 μg/L, Cd, 1.82 μg/L, Pb: 51.32 μg/L) and high concentrations of heavy metals (Cu: 241 μg/L, Zn: 1127 μg/L, Cd: 4.57 μg/L, Pb: 90.25 μg/L). Compost and sludge also had high removal efficiencies (>90%). Heavy metal leaching from these materials was negligible. A one-month dry period between dosing experiments did not affect metal removal efficiencies. TOC concentrations from all materials increased after the dry period. Heavy metal removal was not affected by filter media depth (600 mm vs. 300 mm). Heavy metals tended to accumulate at the upper 5 cm of the filter media although potting soil showed bottom-enriched concentrations. We recommend using potting soil as the principal media mixed with compost or sludge since these materials perform well and are readily available. The use of renewable materials commonly found in Singapore supports a sustainable approach to urban water management.

  19. Multi-Material and Thickness Optimization Utilizing Casting Filters for Laminated Composite Structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2013-01-01

    This extended abstract presents a new parameterization for performing discrete material and thickness optimization of laminated composite structures. The parameterization is based on the work by Sørensen and Lund 2013, where we present a reformulation of the original parameterization....... The reformulation eliminates the need for having explicit constraint for ensuring that intermediate void does not appear in between layers of the laminate. This is achieved by utilizing a filtering technique known as a casting constraint from traditional topology optimization with isotropic materials....

  20. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  1. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  2. PIV measurement of the vertical cross-flow structure over tube bundles

    Science.gov (United States)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    Shell and tube heat exchangers are among the most commonly used types of heat exchangers. Shell-side cross-flow in tube bundles has received considerable attention and has been investigated extensively. However, the microscopic flow structure including velocity distribution, wake, and turbulent structure in the tube bundles needs to be determined for more effective designs. Therefore, in this study, in order to clarify the detailed structure of cross-flow in tube bundles with particle image velocimetry (PIV), experiments were conducted using two types of model; in-line and staggered bundles with a pitch-to-diameter ratio of 1.5, containing 20 rows of five 15 mm O.D. tubes in each row. The velocity data in the whole flow field were measured successfully by adjusting the refractive index of the working fluid to that of the tube material. The flow features were characterized in different tube bundles with regards to the velocity vector field, vortex structure, and turbulent intensity.

  3. Intracycle Angular Velocity Control of Cross-Flow Turbines

    CERN Document Server

    Strom, Benjamin; Polagye, Brian

    2016-01-01

    Cross-flow turbines, also known as vertical-axis turbines, have numerous features that make them attractive for wind and marine renewable energy. To maximize power output, the turbine blade kinematics may be controlled during the course of the blade revolution, thus optimizing the unsteady fluid dynamic forces. Dynamically pitching the blades, similar to blade control in a helicopter, is an established method. However, this technique adds undesirable mechanical complexity to the turbine, increasing cost and reducing durability. Here we introduce a novel alternative requiring no additional moving parts: we optimize the turbine rotation rate as a function of blade position resulting in motion (including changes in the effective angle of attack) that is precisely timed to exploit unsteady fluid effects. We demonstrate experimentally that this approach results in a 79% increase in power output over industry standard control methods. Analysis of the fluid forcing and blade kinematics show that maximal power is ach...

  4. Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles

    Science.gov (United States)

    Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.

    2005-12-01

    Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (αtube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.

  5. Modelling of a cross flow evaporator for CSP application

    DEFF Research Database (Denmark)

    Sørensen, Kim; Franco, Alessandro; Pelagotti, Leonardo

    2016-01-01

    ) applications. Heat transfer and pressure drop prediction methods are an important tool for design and modelling of diabatic, two-phase, shell-side flow over a horizontal plain tubes bundle for a vertical up-flow evaporator. With the objective of developing a model for a specific type of cross flow evaporator....... The influence on the analysis of the performance of the evaporator, their impact on significant design variables and the effective lifetime of critical components in different operating conditions, simulating the daily start-up procedures of the steam generator is evaluated. The importance of a good calibration...... for a coil type steam generator specifically designed for solar applications, this paper analyzes the use of several heat transfer, void fraction and pressure drop correlations for the modelling the operation of such a type of steam generator. The paper after a brief review of the literature about...

  6. A new way to apply ultrasound in cross-flow ultrafiltration: application to colloidal suspensions.

    Science.gov (United States)

    Hengl, N; Jin, Y; Pignon, F; Baup, S; Mollard, R; Gondrexon, N; Magnin, A; Michot, L; Paineau, E

    2014-05-01

    A new coupling of ultrasound device with membrane process has been developed in order to enhance cross-flow ultrafiltration of colloidal suspensions usually involved in several industrial applications included bio and agro industries, water and sludge treatment. In order to reduce mass transfer resistances induced by fouling and concentration polarization, which both are main limitations in membrane separation process continuous ultrasound is applied with the help of a vibrating blade (20 kHz) located in the feed channel all over the membrane surface (8mm between membrane surface and the blade). Hydrodynamic aspects were also taking into account by the control of the rectangular geometry of the feed channel. Three colloidal suspensions with different kinds of colloidal interaction (attractive, repulsive) were chosen to evaluate the effect of their physico-chemical properties on the filtration. For a 90 W power (20.5 W cm(-2)) and a continuous flow rate, permeation fluxes are increased for each studied colloidal suspension, without damaging the membrane. The results show that the flux increase depends on the initial structural properties of filtered dispersion in terms of colloidal interaction and spatial organizations. For instance, a Montmorillonite Wyoming-Na clay suspension was filtered at 1.5 × 10(5)Pa transmembrane pressure. Its permeation flux is increased by a factor 7.1, from 13.6 L m(-2)h(-1) without ultrasound to 97 L m(-2)h(-1) with ultrasound.

  7. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P.; Tiensuu, J. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  8. Multi-Material and Thickness Optimization Utilizing Casting Filters for Laminated Composite Structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2013-01-01

    This extended abstract presents a new parameterization for performing discrete material and thickness optimization of laminated composite structures. The parameterization is based on the work by Sørensen and Lund 2013, where we present a reformulation of the original parameterization. The reformu......This extended abstract presents a new parameterization for performing discrete material and thickness optimization of laminated composite structures. The parameterization is based on the work by Sørensen and Lund 2013, where we present a reformulation of the original parameterization....... The reformulation eliminates the need for having explicit constraint for ensuring that intermediate void does not appear in between layers of the laminate. This is achieved by utilizing a filtering technique known as a casting constraint from traditional topology optimization with isotropic materials....

  9. Study on the heat transfer of cross flow in vertical upward tubes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A special device was designed to measure temperature difference in this study of heat transfer of water and oil cross flow inside vertical upward tubes. A new heat transfer correlation was obtained for cross flow. The experimental results showed that the dependence of heat transfer on Reynolds is much smaller in a narrow space than that in a wide space. It was found that the heat transfer correlation of cross flow in a narrow space is obviously different from that in a wide space, and that the heat transfer correlation obtained in a wide space may not be applicable to the cross-flow heat transfer in a narrow space. Further, the single-phase heat transfer capability of water cross flow was compared with that of oil cross flow. The experimental results showed that the average heat transfer coefficient of water is about 2~3 times that ofoil when they have the same superficial velocity.

  10. THz Discrimination of materials: demonstration of a bioinspired apparatus based on metasurfaces selective filters

    CERN Document Server

    Carelli1, P; Torrioli, G; Castellano, M G

    2016-01-01

    We present an apparatus for terahertz fingerprint discrimination of materials designed to be fast, simple, compact and economical in order to be suitable for preliminary on-field analysis. The system working principles, bioinspired by the human vision of colors, are based on the use of microfabricated metamaterials selective filters and of a very compact optics based on metallic ellipsoidal mirrors in air. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods and grease in an accurate and reproducible manner. We present the system and the obtained results and discuss issues and possible developments.

  11. Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.co [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2009-04-07

    Multiple defect modes may generate in one-dimensional dual-defective photonic crystals containing negative-index materials. The interference between the two kinds of defect states of the proposed structure is avoided. Therefore, the frequency, frequency interval and number of the defect modes corresponding to different kinds of defects can be tuned independently as desired. These defect modes inside the zero n-bar gap are insensitive to the incident angle. It thus opens a promising way to fabricate omnidirectional multichannel filters with specific channels.

  12. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    Science.gov (United States)

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  13. Experimental researches on mass and heat transfer in new typical cross-flow rotating packed bed

    Institute of Scientific and Technical Information of China (English)

    CHEN Haihui; ZENG Yingying; GAO Wenshuai

    2006-01-01

    New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop.

  14. THE ANALYSIS OF PHYSICO-CHEMICAL PROPERTIES OF TWO UNKNOWN FILTER MATERIALS

    Directory of Open Access Journals (Sweden)

    Iwona Skoczko

    2016-07-01

    Full Text Available One of the most important technological processes of water treatment is the process of filtration. Scientists and producers keep on searching new filtration materials which allow for better water purification, are simple in exploitation and do not add chemical substances to the treated water. Therefore, the aim of the present study was to analyze physical and chemical parameters of two unknown porous masses X1 and X2. Such physical parameters as color, granulation, bulk density, the equivalent diameter, the coefficient of uniformity and the porosity of the material were measured and determined. Additionally, the possibility of water treatment was studied during the filtration process in the laboratory tests. Chemical parameters were examined in the water flowing through the mass, such as pH, conductivity and COD-Mn as a general indicator of the content of organic substances in the water. Both studied porous masses were characterized by uniform size of particles. But they were not efficient enough in satisfactory reduction of oxygen consumption. Mass X2 slightly better adsorbed organic substances. It was found that the tested unknown mass filter slightly increase the pH of the filtered water.

  15. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry.

    Science.gov (United States)

    Lyngsie, Gry; Penn, Chad J; Hansen, Hans C B; Borggaard, Ole K

    2014-10-01

    Phosphorus eutrophication of lakes and streams, coming from drained farmlands, is a serious problem in areas with intensive agriculture. Installation of phosphate (P) sorbing filters at drain outlets may be a solution. The aim of this study was to improve the understanding of reactions involved in P sorption by three commercial P sorbing materials, i.e. Ca/Mg oxide-based Filtralite-P, Fe oxide-based CFH-12 and Limestone in two particle sizes (2-1 mm and 1-0.5 mm), by means of isothermal titration calorimetry (ITC), sorption isotherms, sequential extractions and SEM-EDS. The results indicate that P retention by CFH is due to surface complexation by rapid formation of strong Fe-P bonds. In contrast, retention of P by Filtralite-P and Limestone strongly depends on pH and time and is interpreted due to formation of calcium phosphate precipitate(s). Consequently, CFH can unambiguously be recommended as P retention filter material in drain outlets, whereas the use of Filtralite-P and Limestone has certain (serious) limitations. Thus, Filtralite-P has high capacity to retain P but only at alkaline pH (pH ≥ 10) and P retention by Limestone requires long-time contact and a high ratio between sorbent and sorbate.

  16. Effect of inner guide on performances of cross flow turbine

    Science.gov (United States)

    Kokubu, K.; Yamasaki, K.; Honda, H.; Kanemoto, T.

    2012-11-01

    To get the sustainable society, the hydropower with not only the large but also the mini/micro capacity has been paid attention to the power generation. The cross-flow turbines can work efficiently at the comparatively low head and/or low discharge in the onshore and the offshore, and the runner and the casing profiles have been optimizing. In this paper, the turbine composed of the optimal profiles has prepared to provide for the mini/micro hydropower, and the performances have been investigated at the low head. The hydraulic efficiency is maximal at the normal guide vane opening and deteriorates at the lower and the higher discharge than the normal discharge. Such deteriorations are brought from the unacceptable flow conditions crossing in the runner, that is, the flow direction does not meet the setting angle of the blade at the inner radius. To improve dramatically the performances, the inner guide, which guards the shaft from the water jet and adjusts the flow direction, was installed in the runner.

  17. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intended to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and

  18. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa.

  19. Research on Ceramic Membrane Cross-flow Deep Filtration of Heterogeneous Particle Size Suspension%非均粒悬浮液的陶瓷膜错流深滤速度研究

    Institute of Scientific and Technical Information of China (English)

    杨德武; 周庄

    2012-01-01

    根据使用陶瓷膜中存在的问题,并以非对称陶瓷膜结构特点为基础,提出了以陶瓷膜支撑层(深层)与膜层共同作为过滤介质的一种新的陶瓷膜错流深层过滤方式。用非均粒径高岭土悬浮液,经过自行设计的实验流程和错流过滤器,进行了陶瓷膜错流深层过滤等实验。对取得的实验数据进行分析对比,得到了在相同操作条件下新方式比传统错流膜过滤的过滤阻力增长减缓、过滤速度更快且更稳定等结论。%Based on the characteristic of the ceramic membrane,this thesis use the membrane layer and supporting layer together to filter suspension.this article develops a new way of ceramic membrane filtration,which is named ceramic membrane cross-flow deep filtration.Using the heterogeneous particle size suspension as the material,the experiment is finished in a self-design filter and process is also brand new.According to analysis the results which are acquired by the experiment,it is presented in this work that the rate of filtration which is obtained when the ceramic membrane filtration is applying the new way is faster and more stable than the traditional cross-flow membrane filtration.

  20. CrossFlow: Cross-Organizational Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises

    NARCIS (Netherlands)

    Grefen, Paul; Aberer, Karl; Ludwig, Heiko; Hoffner, Yigal

    2001-01-01

    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on dyna

  1. CrossFlow: Cross-Organizational Workflow Management in Dynamic Virtual Enterprises

    NARCIS (Netherlands)

    Grefen, Paul; Aberer, Karl; Hoffner, Yigal; Ludwig, Heiko

    2000-01-01

    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on dyna

  2. CrossFlow: cross-organizational workflow management in dynamic virtual enterprises

    NARCIS (Netherlands)

    Grefen, Paul; Aberer, Karl; Hoffner, Yigal; Ludwig, Heiko

    2000-01-01

    This paper gives a detailed overview of the approach to cross-organizational workflow management developed in the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enter

  3. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Austin Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Runnels, Joel T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  4. Thermal desorption GC-MS as a tool to provide PAH certified standard reference material on particulate matter quartz filters.

    Science.gov (United States)

    Grandesso, Emanuela; Pérez Ballesta, Pascual; Kowalewski, Konrad

    2013-02-15

    Reference materials for particulate matter (PM) on filter media are not available for the quantification of polycyclic aromatic hydrocarbons (PAHs) in ambient air. This is due to the difficulty of obtaining reference material that has a homogeneous distribution on a filter surface that is large enough for characterization and distribution. High volume sample filters from different locations and seasons were considered to validate the feasibility of the use of quartz filters as reference material for PAH concentrations. A rapid thermal desorption (TD) technique coupled with gas chromatography/mass spectroscopy was applied to characterise the material for the content of fifteen different PAHs. TD technique allowed for rapid and accurate analysis of small sections of filter (5mm diameter), leaving enough material for the production of twenty sub-filter cuts (42 mm diameter) that could be used for distribution and control. Stability and homogeneity tests required for material certification were performed as indicated by the ISO guide 34:2009 and ISO 35:2006. The contribution of the heterogeneous distribution of PAHs on the filter surface resulted generally lower than 10% and higher for more volatile PAHs. One year of storage at -18°C indicated no significant variation in PAH concentrations. Nevertheless, a methodology for shipping and storing of the filter material at ambient temperature in especially designed plastic envelopes, was also shown to allow for stabile concentrations within twenty days. The method accuracy was confirmed by the analysis of NIST SRM 1649a (urban dust) and PAH concentrations were validated against the reference values obtained from an inter-laboratory exercise. In the case of benzo[a]pyrene for masses quantified between 100 pg and 10 ng the TD method provided expanded uncertainties of circa 10%, while the inter-laboratory reference value uncertainties ranged between 15 and 20%. The evaluation of these results supports the use of the presented

  5. Development of an implantable oxygenator with cross-flow pump.

    Science.gov (United States)

    Asakawa, Yuichi; Funakubo, Akio; Fukunaga, Kazuyoshi; Taga, Ichiro; Higami, Tetsuya; Kawamura, Tsuyoshi; Fukui, Yasuhiro

    2006-01-01

    Thrombogenicity, a problem with long-term artificial lungs, is caused by blood-biomaterial interactions and is made worse by nonuniform flow, which also causes decreased gas exchange. To overcome these obstacles, we changed the inlet and added a uniform flow pump to our previous oxygenator design. Conventional membrane oxygenators have a (1/2)-inch port for the inlet of blood. These port structures make it difficult for the blood to flow uniformly in the oxygenator. In addition, the complex blood flow patterns that occur in the oxygenator, including turbulence and stagnation, lead to thrombogenicity. A cross-flow pump (CFP) can result in uniform blood flow to the inlet side of an oxygenator. In this study, we evaluated the usefulness of an integrated oxygenator with a fiber bundle porosity of 0.6 and a membrane surface area of 1.3 m2. The inlet part of the oxygenator is improved and better fits the outlet of the CFP. Each of the three models of the improved oxygenator has a different inlet taper angle. The computational fluid dynamics analysis showed that, compared with the original design, uniform flow of the integrated oxygenator improved by 88.8% at the hollow fiber membrane. With the integrated oxygenator, O2 transfer increased by an average of 20.8%, and CO2 transfer increased by an average of 35.5%. The results of our experiments suggest that the CFP, which produces a wide, uniform flow to the oxygenator, is effective in attaining high gas exchange performance.

  6. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    Science.gov (United States)

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems.

  7. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  8. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng

    2016-01-01

    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  9. Evaluation of Core Loss in Magnetic Materials Employed in Utility Grid AC Filters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede;

    2016-01-01

    Inductive components play an important role in filtering the switching harmonics related to the pulse width modulation in voltage source converters. Particularly, the filter reactor on the converter side of the filter is subjected to rectangular excitation which may lead to significant losses in ...

  10. Cavity flow control using a rod in cross flow

    Science.gov (United States)

    Sarpotdar, Shekhar

    For a variety of aerodynamic conditions and geometric configurations fluid structure interactions give rise to a reverberant field. This phenomenon, referred to as resonant acoustics, has practical importance due to its undesirable effects such as noise, structural loading, and unsteady flow field. Several flow control technologies exist but they lose efficacy at off-design conditions. With the focus on expanding their operating envelope, the present work investigates the physics of the flow control using a combination of detailed experimental measurements and theoretical analysis. The model resonant acoustic flow problem that we chose for our study is cavity tones, i.e., the high intensity acoustic tones produced by high speed air moving over rectangular cavity. The flow control actuator is a rod in cross flow, i.e., a thin horizontal rod placed upstream of the cavity. In the present work, a detailed experimental study has been undertaken to characterize the acoustics, mean velocity field as well as the pressure perturbation field both inside and outside of the cavity. Control cases with contrasting suppression results are chosen to illustrate important aspects of the mean flow field. To investigate whether the cylinder, through its wake, changes the stability characteristics of the shear layer that develops over the cavity, stability analysis of the shear layer is undertaken. First, stability of artificial velocity profiles that are prototypical of the experimentally measured velocity profiles is investigated; in order to determine what parameters of the velocity profiles influence the stability of the shear layer the most. Next stability of experimentally measured velocity profiles is evaluated to calculate integrated growth rates along the length of the cavity. Mean velocity data is also used to elucidate the shear layer lift off mechanism of the rod. Both integrated growth range and shear layer lift off data are compared with the acoustic suppression results

  11. Ultra-narrow bandwidth optical filters consisting of one-dimensional photonic crystals with anomalous dispersion materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jiang-Tao; Zhou Yun-Song; Wang Fu-He; Gu Ben-Yuan

    2005-01-01

    We present a new type of optical filter with an ultra-narrow bandwidth and a wide field-of-view (FOV). This kind of optical filter consists of one-dimensional photonic crystal (PC) incorporating an anomalous-dispersion-material (ADM) with, for instance, an anomalous dispersion of 6P3/2 ← 6S1/2 hyperfine structure transition of a caesium atom.The transmission spectra of optical filters are calculated by using the transfer-matrix method. The simulation results show that the designed optical filter has a bandwidth narrower than 0.33GHz and a wide FOV of ±30° as well. The response of transmission spectrum to an external magnetic field is also investigated.

  12. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    Science.gov (United States)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were

  13. Hydraulic Behavior and Chemical Characterization of Lapilli as Material for Natural Filtering of Slurry

    Directory of Open Access Journals (Sweden)

    Nereida Falcón-Cardona

    2015-06-01

    Full Text Available Livestock effluents are a beneficial nutrient supply for crops, whereby their use is critical to ensure the sustainability of the farms global management. However, they can cause serious ecological problems if misused, polluting soils and groundwater. Combining “soft technology” and local materials is a low cost solution in terms of finance and energy. The REAGUA project (REuso AGUA, Water reuse in Spanish analyzes the possibility of using “picon” (lapilli as a material for the treatment of liquid manure from ruminants, for later use in subsurface drip irrigation system to produce forage and biofuels, in which the soil acts as a subsequent advanced treatment. A three-phase system, in which the effluent was poured with a vertical subsurface flow in an unsaturated medium, is designed. In order to determine the management conditions that optimize the filter, it was necessary to characterize the hydraulic behavior of lapilli and its ability to remove substances. Using three lapilli-filled columns, unsaturated flux, and a ruminant effluent, the reduction of chemical oxygen demand (COD, biochemical oxygen demand after 5 days (BOD5 and ammonia, phosphorus and suspension solids (SS obtained was over 80%, 90%, and 95% respectively, assumable values for irrigation.

  14. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  15. Experimental Investigation on Cross Flow of Wedge-shaped Gap in the core of Prismatic VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Park, Goon Cherl; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of); Yoon, Su Jong [Idaho National Laboratory, Idaho Falls (United States)

    2014-10-15

    The core of the PMR type reactor consists of assemblies of hexagonal graphite blocks. The graphite blocks have lots of advantages for neutron economy and high temperature structural integrity. The height and flat-to-flat width of fuel bock are 793 mm and 360 mm, respectively. Each block has 108 coolant channels of which the diameter is 16 mm. And there are gaps between blocks not only vertically but also horizontally for reloading of the fuel elements. The vertical gap induces the bypass flow and through the horizontal gap the cross flow is formed. Since the complicated flow distribution occurs by the bypass flow and cross flow, flow characteristics in the core of the PMR reactor cannot be treated as a simple pipe flow. The fuel zone of the PMR core consists of multiple layers of fuel blocks. The shape change of the fuel blocks could be caused by the thermal expansion and fast-neutron induced shrinkage. It could make different axial shrinkage of fuel block and this leads to wedge-shaped gaps between two stacked fuel blocks. The cross flow is often considered as a leakage flow through the horizontal gap between stacked fuel blocks and it complicates the flow distribution in the reactor core by connecting the coolant channel and the bypass gap. Moreover, the cross flow could lead to uneven coolant distribution and consequently cause superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. To develop the cross flow loss coefficient model for determination of the flow distribution for PMR core analysis codes, study on cross flow for PMR200 core is essential. In particular, to predict the amount of flow through the cross flow gap, obtaining accurate flow loss coefficient is important. In this study, the full-scale cross flow experimental facility was constructed to

  16. USAGE OF FILTERS FROM FIBROUS MATERIALS IN AMELIORATIVE AND HYDRO-TECHNICAL CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    V. T. Klimkov

    2016-01-01

    Full Text Available Construction of first drainage tubular systems has been facing such problem as their protection against silting-up by soil particles penetrating through input openings. Searches and investigations have led to usage of various fibrous materials which are playing the role of filters. At the beginning glass-fibre mats have been widely applied for this purpose. However, the mats possessing good filtration properties have had a number of fundamental disadvantages. Works executed at the Institute of Mechanics of Metal Polymeric Systems (Gomel, Republic of Belarus have played a big role in usage of plastic materials. A new technology has been developed with the purpose to obtain thermally-bonded fibres from thermoplastic material. The fibres have been called as polyethylene mats. Investigation of their properties has been carried out under load and it has revealed that their lateral and longitudinal permeability becomes equal at specified pressures, in other words the material takes an isotropic state. The considered interactions of filtrating material and skeleton frame have shown that the main water filtration occurs directly above perforation holes while the material above blind frame sections does not participate in the process. Due to this a new design of the filtrating element has been developed and it can be used in water intake systems for surface and underground water. The filtrating element consists of the skeleton frame with openings and a filtration covering which is installed on the frame. Water-feeding groove cavities are located on the skeleton frame and they are dispersing from perforation holes in the form of beams. These grooves can have side branches of the second, third and other orders. As beam-like arrangement of grooves creates the shortest flow paths for filtrated water from periphery to frame holes and area of groove cross section exceeds the area of poral holes in water in-take covering by a factor of hundreds, it is possible

  17. Heterogeneous Distribution of Carbonaceous Material in Murchison Matrix: In Situ Observations Using Energy Filtered Transmission Electron Microscopy

    Science.gov (United States)

    Brearley, Adrian J.

    2002-01-01

    Energy filtered TEM (Transmission Electron Microscopy) has been used to study the location of carbonaceous material in situ in Murchison matrix. Carbon occurs frequently as narrow rims around sulfide grains, but is rare in regions of matrix that are dominated by phyllosilicates. Additional information is contained in the original extended abstract.

  18. Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    李国能; 郑友取; 胡桂林; 张治国

    2014-01-01

    Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.

  19. LES of turbulent jet in cross-flow: Part 1 – A numerical validation study

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2012-01-01

    The paper presents results of a LES based numerical simulation of the turbulent jet-in-cross-flow (JICF) flowfield, with Reynolds number based on cross-flow velocity and jet diameter Re=2400 and jet-to-cross-flow velocity ratio of R=3.3. The JICF flow case has been investigated in great detail......, involving conduction of two independent precursor simulations, prior to the main JICF simulation, as the considered case has turbulent inflow conditions on both jet and cross-stream side. The LES results are directly compared to pointwise Laser Doppler Anemometry (LDA) measurements, showing a very good...... agreement on the level of various statistical quantities in all flow regions but the immediate jet-to-cross-flow exhaustion zone. Several LES computations involving grids of up to 15million grid points have been conducted, showing no improvement in the agreement between numerical results and measurements...

  20. Study on an Undershot Cross-Flow Water Turbine with Straight Blades

    OpenAIRE

    Yasuyuki Nishi; Terumi Inagaki; Yanrong Li; Kentaro Hatano

    2015-01-01

    Small-scale hydroelectric power generation has recently attracted considerable attention. The authors previously proposed an undershot cross-flow water turbine with a very low head suitable for application to open channels. The water turbine was of a cross-flow type and could be used in open channels with the undershot method, remarkably simplifying its design by eliminating guide vanes and the casing. The water turbine was fitted with curved blades (such as the runners of a typical cross-flo...

  1. Study on physico - chemical properties of Korean anthracite for utilization development - application to filtering materials for waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong Soo; Lee, Jae Ho; Park, Suk Whan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This research was initiated for the development of filtering materials those can be used in waste water treatment sites. The selected Jangseong coal for filtering material has low Hardgrove Grindability Index (HGI : 38.38) and crushed two granule size. One is 1-2 mm size (effective size : 0.77 mm, uniformity coefficient : 1.70) and the other is 2-4 mm size (2.04 mm, 1.37) First, we had application test to find out the possibility of 2-4 mm sample for using water filtering material instead of silica sand in Sandflo filter. The result were unsuitable for treatment efficiency and micron size granule. But it will be solution with control of granule size and washing of coal. For feasibility study, the small scale of filtration tester was built on the waste water treatment plant of Lotte-chilsung beverage Co. to use the precipitated water during filtration test processed by purifying system. Measurement items are filtration rate, temperature of waste water, Electric Conductivity (EC), pH, turbidity, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Nitrogen Nitrate (NO{sub 3}-N), Organophosphorus and trace elements content (Zn, Al, Fe, Mg, K) of the supplied water and filtered water were carried out to find the filtration capacity of coal. The results indicated decreasing degree in turbidity (1-2 mm : 15.08 %, 2-4 mm : 11.58 %), COD (1-2 mm : 5.76 %, 2-4 mm : 5.49 %) and increasing degree in DO (1-2 mm : 11.25 %, 2-4 mm : 10 %). Trace elements removal degree of filtered waste water were about 30 % for Fe and 5 % for K. (author). 32 refs., tabs., figs.

  2. A Simple Candle Filter Safeguard Device

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Henderson, A.K.; Swanson, M.L.

    2002-09-18

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal utilization. Two main designs employ these turbines: those based on pressurized fluidized-bed combustors (PFBCs) and those based on integrated gasification combined cycles (IGCCs). In both designs, the suspended particulates, or dust, must be cleaned from the gas before it enters the turbine to prevent fouling and erosion of the blades. To produce the cleanest gas, barrier filters are being developed and are in commercial use. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the dust on the surface. The three main configurations are candle, cross-flow, and tube. Both candle and tube filters have been tested extensively. They are primarily composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer o n the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle, and individual elements can fail, allowing the particulates to pass through the hole left by the filter element and erode the turbine. Because of the possibility of occasional filter breakage, safeguard devices (SGDs) must be employed to prevent the dust streaming through broken filters from reaching the turbine. The Energy & Environmental Research Center (EERC) safeguard device is composed of three main parts: the ceramic substrate, the adhesive coating, and the safeguard device housing. This report describes the development and laboratory testing of each of those parts as well as the bench-scale performance of both types of complete SGDs.

  3. Theoretical and experimental investigations of hot filter materials. Final report; Theoretische und experimentelle Untersuchungen zur Einsatzneignung von Heissgasfiltermaterialien. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.; Angermann, J.

    2004-01-12

    Second generation fluidised bed combustors have higher gas turbine inlet temperatures and thus higher efficiencies. High-temperature filters are required for dust filtering of the hot flue gases and/or combustion gases. Several circuit and process variants are discussed on the basis of the first generation combined cycle process. Requirements on ceramic filters are listed, and experience with existing filter systems is presented. SiC-based filter materials are investigated with a view to their performance in hot gas filtering in pressurised fluidised bed systems. Three different SiC material types are analysed which differ in terms of their preparation conditions: Clay-bound SiC, liquid phase sintered SiC (LPS-SiC), and recrystallised SiC (RSiC). Both commercial materials and newly developed or advanced materials from the partnering Fraunhofer Institutes were used. The materials were found to undergo strong modifications subject to the type of material and the gas atmosphere. Liquid-phase sintered SiC generally had more pronounced effects than the other materials, owing to its smaller grain and pore size, which results in a much larger inner surface. (orig.) [German] Die Druckwirbelschichtfeuerung (DWSF) der so genannten 2. Generation zeichnet sich gegenueber herkoemmlichen DWSF-Konzepten durch hoehere Gasturbinen-Eintrittstemperaturen und dementsprechend hoehere Wirkungsgrade aus. Grundlegende Voraussetzung fuer die Realisierung des Prozesses ist jedoch die Verfuegbarkeit von Hochtemperaturfiltern fuer die Entstaubung der heissen Rauch- und/oder Brenngase. Ausgehend vom Druckwirbelschicht GuD-Prozess der 1. Generation werden verschiedene in der Literatur beschriebene Schaltungs- und Prozessvarianten vorgestellt und diskutiert. Die Anforderungen zum Einsatz keramischer Filterelemente fuer die Heissgasreinigung werden abgeleitet und Betriebserfahrungen mit bereits bestehenden Filteranlagen beschrieben. Das Ziel dieser Arbeit ist die Bewertung verschiedener Si

  4. Cost-Effective Filter Materials Coated with Silver Nanoparticles for the Removal of Pathogenic Bacteria in Groundwater

    Science.gov (United States)

    Mpenyana-Monyatsi, Lizzy; Mthombeni, Nomcebo H.; Onyango, Maurice S.; Momba, Maggy N. B.

    2012-01-01

    The contamination of groundwater sources by pathogenic bacteria poses a public health concern to communities who depend totally on this water supply. In the present study, potentially low-cost filter materials coated with silver nanoparticles were developed for the disinfection of groundwater. Silver nanoparticles were deposited on zeolite, sand, fibreglass, anion and cation resin substrates in various concentrations (0.01 mM, 0.03 mM, 0.05 mM and 0.1 mM) of AgNO3. These substrates were characterised by SEM, EDS, TEM, particle size distribution and XRD analyses. In the first phase, the five substrates coated with various concentrations of AgNO3 were tested against E. coli spiked in synthetic water to determine the best loading concentration that could remove pathogenic bacteria completely from test water. The results revealed that all filters were able to decrease the concentration of E. coli from synthetic water, with a higher removal efficiency achieved at 0.1 mM (21–100%) and a lower efficiency at 0.01 mM (7–50%) concentrations. The cation resin-silver nanoparticle filter was found to remove this pathogenic bacterium at the highest rate, namely 100%. In the second phase, only the best performing concentration of 0.1 mM was considered and tested against presumptive E. coli, S. typhimurium, S. dysenteriae and V. cholerae from groundwater. The results revealed the highest bacteria removal efficiency by the Ag/cation resin filter with complete (100%) removal of all targeted bacteria and the lowest by the Ag/zeolite filter with an 8% to 67% removal rate. This study therefore suggests that the filter system with Ag/cation resin substrate can be used as a potential alternative cost-effective filter for the disinfection of groundwater and production of safe drinking water. PMID:22470290

  5. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  6. DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

    2002-01-01

    In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical

  7. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    Science.gov (United States)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  8. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    -displacement curve from which the mechanical properties of the materials are deduced. The fracture surfaces were examined using a stereomicroscope and a scanning electron microscope. From the results, the strengths of the core materials were slightly reduced by the coating in tensile and flexural modes, while...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...

  9. Tunable multiple-channel filters based on photonic heterostructures using single-negative materials

    Institute of Scientific and Technical Information of China (English)

    DENG XinHua; LIU NianHua; AN LiPing

    2009-01-01

    We studied the multiple-channel filters based on photonic heterostructures consisting of single-negative permittivity and single-negative permeability media. The results showed that the number of resonance modes inside the zero-φeff gap increases as the number of heterogenous interface M increases. The number of resonance modes inside the zero-φeff gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters.

  10. Investigation of mud density and weighting materials effect on drilling fluid filter cake properties and formation damage

    Science.gov (United States)

    Fattah, K. A.; Lashin, A.

    2016-05-01

    Drilling fluid density/type is an important factor in drilling and production operations. Most of encountered problems during rotary drilling are related to drilling mud types and weights. This paper aims to investigate the effect of mud weight on filter cake properties and formation damage through two experimental approaches. In the first approach, seven water-based drilling fluid samples with same composition are prepared with different densities (9.0-12.0 lb/gal) and examined to select the optimum mud weight that has less damage. The second approach deals with investigating the possible effect of the different weighting materials (BaSO4 and CaCO3) on filter cake properties. High pressure/high temperature loss tests and Scanning Electron Microscopy (SEM) analyses were carried out on the filter cake (two selected samples). Data analysis has revealed that mud weigh of 9.5 lb/gal has the less reduction in permeability of ceramic disk, among the seven used mud densities. Above 10.5 ppg the effect of the mud weight density on formation damage is stabilized at constant value. Fluids of CaCO3-based weighting material, has less reduction in the porosity (9.14%) and permeability (25%) of the filter disk properties than the BaSO4-based fluid. The produced filter cake porosity increases (from 0.735 to 0.859) with decreasing of fluid density in case of drilling samples of different densities. The filtration loss tests indicated that CaCO3 filter cake porosity (0.52) is less than that of the BaSO4 weighted material (0.814). The thickness of the filter cake of the BaSO4-based fluid is large and can cause some problems. The SEM analysis shows that some major elements do occur on the tested samples (Ca, Al, Si, and Ba), with dominance of Ca on the expense of Ba for the CaCO3 fluid sample and vice versa. The less effect of 9.5 lb/gal mud sample is reflected in the well-produced inter-particle pore structure and relatively crystal size. A general recommendation is given to

  11. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  12. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon, E-mail: parkjw@dongguk.ac.k [Dongguk University, 707 Seokjang-Dong, Gyeongju, 780-714 (Korea, Republic of); Park, Byung Gi [Soonchunhyang University, Asan, Chungnam, 336-745 (Korea, Republic of); Kim, Chang Hyun [Korea Hydro and Nuclear Power Co., Ltd. 25-1, Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-12-15

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON{sup TM} and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  13. Evaluation of the performance of the cross-flow air classifier in manufactured sand processing via CFD-DEM simulations

    Science.gov (United States)

    Petit, H. A.; Irassar, E. F.; Barbosa, M. R.

    2017-03-01

    Manufactured sands are particulate materials obtained as by product of rock crushing. Particle sizes in the sand can be as high as 6 mm and as low as a few microns. The concrete industry has been increasingly using these sands as fine aggregates to replace natural sands. The main shortcoming is the excess of particles smaller than element modelling (DEM) were used for the assessment. Results show that the correct classification set up improves the size distribution of the raw materials. The cross-flow air classification is found to be influenced by the particle size distribution and the turbulence inside the chamber. The classifier can be re-designed to work at low inlet velocities to produce manufactured sand for the concrete industry.

  14. Theoretical and experimental study of a cross-flow induced-draft cooling tower

    Directory of Open Access Journals (Sweden)

    Abo Elazm Mahmoud Mohamed

    2009-01-01

    Full Text Available The main objective of this study is to find a proper solution for the cross-flow water cooling tower problem, also to find an empirical correlation's controlling heat and mass transfer coefficients as functions of inlet parameters to the tower. This is achieved by constructing an experimental rig and a computer program. The computer simulation solves the problem numerically. The apparatus used in this study comprises a cross-flow cooling tower. From the results obtained, the 'characteristic curve' of cross-flow cooling towers was constructed. This curve is very helpful for designers in order to find the actual value of the number of transfer units, if the values of inlet water temperature or inlet air wet bulb temperature are changed. Also an empirical correlation was conducted to obtain the required number of transfer units of the tower in hot water operation. Another correlation was found to obtain the effectiveness in the wet bulb operation.

  15. A new approach for thermal performance calculation of cross-flow heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, H.A. [Universidade Estadual Paulista, Rio Claro (Brazil). Dpto. de Estatistica; Cabezas-Gomez, L. [Universidade de Sao Paulo, Sao Carlos (Brazil). Dpto. de Engenharia Mecanica

    2005-08-01

    A new numerical methodology for thermal performance calculation in cross-flow heat exchangers is developed. Effectiveness-number of transfer units ({epsilon}-NTU) data for several standard and complex flow arrangements are obtained using this methodology. The results are validated through comparison with analytical solutions for one-pass cross-flow heat exchangers with one to four rows and with approximate series solution for an unmixed-unmixed heat exchanger, obtaining in all cases very small errors. New effectiveness data for some complex configurations are provided. (author)

  16. The Unsteady Fluctuating Pressure and Velocity in a Cross Flow Fan

    Institute of Scientific and Technical Information of China (English)

    Jiaye Gan; Fei Liu; Min Liu; Keqi Wu

    2008-01-01

    This paper investigates the relations between the fluctuating pressure and velocity of the source by means of nu-merical method and sound pressure in the far field obtained with an noise experiment for a novel cross flow fan. The frequency characteristics of the fluctuating pressure and velocity in a cross flow fan are analyzed by means of spectral analysis and wavelet transform. The fluctuating pressures obtained by large eddy simulation on the cas-ing wall are compared with that of experiments and show good agreement. From the spectral analysis of sound source, it is found that the pressure fluctuating peak is correspond with the sound pressure in the far field.

  17. Thermal design of multi-fluid mixed-mixed cross-flow heat exchangers

    Science.gov (United States)

    Roetzel, W.; Luo, X.

    2010-11-01

    A fast analytical calculation method is developed for the thermal design and rating of multi-fluid mixed-mixed cross-flow heat exchangers. Temperature dependent heat capacities and heat transfer coefficients can iteratively be taken into account. They are determined at one or two special reference temperatures. Examples are given for the application of the method to the rating of special multi-fluid multi-pass shell-and-tube heat exchangers and multi-fluid cross-flow plate-fin heat exchangers. The accuracy of the method is tested against numerical calculations with good results.

  18. Application of Natural Nano-fibers in Air Filter Material%天然纳米纤维在空气过滤材料中的应用

    Institute of Scientific and Technical Information of China (English)

    胥绍华

    2011-01-01

    文章介绍了纳米纤维特性及其在空气过滤材料中的应用,通过实验证明,纳米纤维的加入,使空气过滤效率和容尘量有了大幅提高。%The property of nano-fibers and its application in air filter material were introduced.Taking several filter materials containing nano-fibers for example,the function of nano-fibers in air filter material was illustrated.

  19. Evaluation of air samplers and filter materials for collection and recovery of airborne norovirus

    DEFF Research Database (Denmark)

    Uhrbrand, Katrine; Kalevi Koponen, Ismo; Schultz, Anna Charlotte

    2017-01-01

    V. Sampling was performed using a nylon (NY) filter in conjunction with four kinds of personal samplers; Gesamtstaubprobenahme sampler (GSP), Triplex-cyclone sampler (TC), 3-piece closed-faced Millipore cassette (3P) and a 2-stage NIOSH cyclone sampler (NIO). In addition, sampling was performed using the GSP...

  20. Systematic Evaluation of Dissolved Lead Sorption Losses to Particulate Syringe Filter Materials

    Science.gov (United States)

    Distinguishing between soluble and particulate lead in drinking water is useful in understanding the mechanism of lead release and identifying remedial action. Typically, particulate lead is defined as the amount of lead removed by a 0.45 µm filter. Unfortunately, there is little...

  1. 纤维织物材料在过滤领域的发展%FIBER MATERIALS IN FILTER MEDIA

    Institute of Scientific and Technical Information of China (English)

    吴煜梦; 许伟鸿; 苗振兴

    2015-01-01

    Fibers, acts as a key material in filter media, featured by special filtration properties such as filtration efficiency, dust capacity, pressure drop and wording environment, which are decided by appearance morphologies, specific surface area and chemical and physical properties. In this paper, detail introductions on fiber raw materials, fiber structure and composition are introduced, classification of the existing fiber filter materials and research progress of various fiber materials are outlined.%过滤材料中,纤维起到至关重要的作用,其形态,比表面积、物化性能决定了过滤材料的过滤效率、容尘量、压损及应用环境和工况状态。本文分别从纤维原材料、纤维结构及材料组成等角度对现有纤维过滤材料进行分类,并列举了各类材料的研究进展。

  2. Blunt needle revision with viscoelastic materials via the anterior chamber for early failed filtering blebs after trabeculectomy

    Directory of Open Access Journals (Sweden)

    Yamagami H

    2012-06-01

    Full Text Available Nozomi Kinoshita, Ayumi Ota, Fumihiko Toyoda, Hiroko Yamagami, Akihiro KakehashiDepartment of Ophthalmology, Saitama Medical Center, Jichi Medical University, Saitama, JapanPurpose: To report a new technique of blunt needle revision with viscoelastic materials via the anterior chamber for the treatment of early failed filtering blebs and elevated intraocular pressure after trabeculectomy, in which digital ocular massage and laser suture lysis have been ineffective.Methods: A 27-gauge blunt needle attached to a syringe containing viscoelastic material was inserted into the anterior chamber from the inferior paracentesis. The needle tip was inserted into the subscleral flap space from the filtering fistula at the anterior chamber side, and the scleral flap was lifted bluntly. The needle tip was then inserted into the subconjunctival space where the viscoelastic agent was injected and the adhesion between the sclera and conjunctiva was separated bluntly. Blunt needle revision via the anterior chamber was performed 14 times in six eyes of six patients at Saitama Medical Center, Jichi Medical University from January 2007 to May 2009. All procedures were performed within 1 month after trabeculectomy.Results: The intraocular pressure remained 21 mmHg or lower for more than 6 months in three of six eyes. Slight bleeding from the iris occurred in one of the 14 procedures, and hypotony (intraocular pressure below 5 mmHg occurred in one of the 14 procedures. No serious complications developed.Conclusion: Blunt needle revision via the anterior chamber for early failed filtering blebs is a new, simple, and safe procedure.Keywords: glaucoma, trabeculectomy, filtering bleb, needle revision, blunt needle

  3. Heat transfer and temperature distributions on finned tubes in cross flow. Waermeuebergangs- und Temperaturverteilungen an querangestroemten Rippenrohren

    Energy Technology Data Exchange (ETDEWEB)

    Schuez, G.

    1992-01-01

    The present paper deals with the flow and transport processes in high-performance heat exchanger tubes provided with external fins in cross flow. These have a broad area of applications, e.g. in chemical industry, in refrigeration, air conditioning and drying engineering, in the automotive industry, and on a commercial scale in dry cooling towers of power stations. Enhanced performance of heat exchangers can be obtained in three ways - in accordance with the defining equation of convective heat transfer - with the same wall material, fluid, and flow rate, namely by: increasing the wall surface area, e.g. by providing them with fins; intensifying the heat transfer; increasing the driving temperature difference. (orig.)

  4. Study Report of Design Guide for Tube Arrays in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Part of fluid energy transfers to the cylinders, when the fluid flows away the cylinders, and creates the vibration of them. The vibration of cylinders caused by the cross flow is much more violent than that caused by axial flow. So the sufficient concern should be given

  5. Study on an Undershot Cross-Flow Water Turbine with Straight Blades

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2015-01-01

    Full Text Available Small-scale hydroelectric power generation has recently attracted considerable attention. The authors previously proposed an undershot cross-flow water turbine with a very low head suitable for application to open channels. The water turbine was of a cross-flow type and could be used in open channels with the undershot method, remarkably simplifying its design by eliminating guide vanes and the casing. The water turbine was fitted with curved blades (such as the runners of a typical cross-flow water turbine installed in tube channels. However, there was ambiguity as to how the blades’ shape influenced the turbine’s performance and flow field. To resolve this issue, the present study applies straight blades to an undershot cross-flow water turbine and examines the performance and flow field via experiments and numerical analyses. Results reveal that the output power and the turbine efficiency of the Straight Blades runner were greater than those of the Curved Blades runner regardless of the rotational speed. Compared with the Curved Blades runner, the output power and the turbine efficiency of the Straight Blades runner were improved by about 31.7% and about 67.1%, respectively.

  6. Cross-flow deep fat frying and its effect on fry quality distribution and mobility

    NARCIS (Netherlands)

    Koerten, van K.N.; Schutyser, M.A.I.; Somsen, D.; Boom, R.M.

    2016-01-01

    Conventional industrial frying systems are not optimised towards homogeneous product quality, which is partly related to poor oil distribution across the packed bed of fries. In this study we investigate an alternative frying system with an oil cross-flow from bottom to top through a packed bed o

  7. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    Science.gov (United States)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  8. The effect of cross flow on one-dimensional spectra measured using hot wires

    Science.gov (United States)

    Ewing, D.

    Expressions were developed to estimate the cross-flow error that occurs in the one-dimensional velocity spectra determined by applying Taylor's frozen field hypothesis to measurements with single- and cross-wire probes. The cross-flow error and the error caused by the unsteady convection of the small-scale motions were evaluated for typical measurements. It was found that the cross-flow error could be significant in inertial range of the measured one-dimensional spectra, and was much larger than the error caused by the unsteady convection of the small-scale motions in the one-dimensional spectra of the cross-stream velocity components, $ F2}{22 {( {k1 } )} and F1}{33 {( {k1 } )} . The results indicate that the one-dimensional spectra of the streamwise velocity component F1}{11 {( {k1 } )} $ measured with a single-wire probe should be significantly more accurate than the spectra measured with a cross-wire probe. The cross-flow error in the one-dimensional spectra also becomes much less important in the dissipation range of the measured spectra.

  9. 陶瓷滤料改性的研究与应用%Modified Ceramic Filter Material Research and Application in Water Treatment

    Institute of Scientific and Technical Information of China (English)

    闫广勇; 于衍真

    2014-01-01

    This article mainly expounds the modifica tion methods of ceramic filter material and modified ceramic filter material application in water treatment, By comparing the performance study, Found that modified ceramic filter material is a kind of new type,environmental protection, economic and convenient filtering material, suitable for the study of widely.%阐述了陶瓷滤料的改性方法,从改性陶瓷滤料处理含油废水、印染废水及含重金属工业废水等方面论述了改性陶瓷滤料在水处理中的应用。通过对比性能研究,认为改性陶瓷滤料是一种新型的、环保的、经济的、便捷的过滤材料,适合人们广泛研究。

  10. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    Science.gov (United States)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  11. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    Science.gov (United States)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  12. A Monte Carlo Study of the Photon Spectrum due to the Different Materials Used in the Construction of Flattening Filters of LINAC

    Directory of Open Access Journals (Sweden)

    J. S. Estepa Jiménez

    2017-01-01

    Full Text Available Different types the spectrum of photons were studied; they were emitted from the flattening filter of a LINAC Varian 2100 C/D that operates at 15 MV. The simplified geometry of the LINAC head was calculated using the MCNPX code based on the studies of the materials of the flattening filter, namely, SST, W, Pb, Fe, Ta, Al, and Cu. These materials were replaced in the flattening filter to calculate the photon spectra at the output of this device to obtain the spectrum that makes an impact with the patient. The different spectra obtained were analyzed and compared to the emission from the original spectra configuration of the LINAC, which uses material W. In the study, different combinations of materials were considered in order to establish differences between the use of different materials and the original material, with the objective of establishing advantages and disadvantages from a clinical standpoint.

  13. Crosslinking of Kapok Cellulose Fiber via Azide Alkyne Click Chemistry as a New Material for Filtering System: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Nur Syazwani Abd Rahman

    2016-01-01

    Full Text Available A new class of green material has been elaborated by grafting the modified kapok fiber, by the means of azidated kapok fiber followed by “click-chemistry” reaction with the terminal alkyne crosslinker. The modified and synthesized product was characterized using Fourier transform infrared spectroscopy (FT-IR, and Scanning electron microscopy (SEM. The study also was undertaken to investigate the effect on the absorption of methylene blue from aqueous solution onto the click fiber prepared. The findings showed that the click kapok absorbed more compared to the untreated kapok. Based on the result, the reaction of click chemistry influenced the properties of the filter made from kapok fiber.

  14. The influence of ultrasound on wine and wine materials acidity during clarification process in tubular membrane filters

    Directory of Open Access Journals (Sweden)

    A. A. Ponedelchenko

    2016-01-01

    Full Text Available Researches on the experimental ultrasonic installation were carried out, using industrial equipment for bottling liquids and ultrasonic apparatus "Volna-M" UZTA-1/22-OM, for clarification and filtering of table wines by tangential microfiltration using membrane ceramic filtering elements with a pore size of 0.2 micron at a pressure of 0.5-2.0 bar. Membrane ultrafiltration upon application of ultrasound of 30-40 microns amplitude and a frequency of 20 kHz ± 1.65 Hz at high filter performance and work stability changes the quantitative content of the valuable wine components slightly. But much attention to the increase of titratable acidity and pH medium due to possible degradation and esterification intensification of higher acids and alcohols was paid. At the same time more intense and rich aroma and distinct flavor with berry notes appears in wine that along with the physical- and chemical indicators helped to improve organoleptic characteristics and to increase the tasting evaluation of wines. At the same time, the content of phenolic and nitrogen compounds is reduced resulting in wines stability to protein and colloidal opacification. It became possible to refuse multiple regeneration of ceramic filter elements for the  ecovery of their performance, as well as the use of preservatives and antiseptics at a high wines bottling stability. It is shown that the filtration with the dosing of ultrasound in the wine industry allows not only reducing the cost of consumables, equipment and removing some of the traditional processes, but also providing the cold sterilization of wine materials with an increase in their quality.

  15. Personalized Recommendation of Learning Material Using Sequential Pattern Mining and Attribute Based Collaborative Filtering

    Science.gov (United States)

    Salehi, Mojtaba; Nakhai Kamalabadi, Isa; Ghaznavi Ghoushchi, Mohammad Bagher

    2014-01-01

    Material recommender system is a significant part of e-learning systems for personalization and recommendation of appropriate materials to learners. However, in the existing recommendation algorithms, dynamic interests and multi-preference of learners and multidimensional-attribute of materials are not fully considered simultaneously. Moreover,…

  16. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  17. INFLUENCE OF RESIDENCE-TIME DISTRIBUTION ON A SURFACE-RENEWAL MODEL OF CONSTANT-PRESSURE CROSS-FLOW MICROFILTRATION

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2015-03-01

    Full Text Available Abstract This work examines the influence of the residence-time distribution (RTD of surface elements on a model of cross-flow microfiltration that has been proposed recently (Hasan et al., 2013. Along with the RTD from the previous work (Case 1, two other RTD functions (Cases 2 and 3 are used to develop theoretical expressions for the permeate-flux decline and cake buildup in the filter as a function of process time. The three different RTDs correspond to three different startup conditions of the filtration process. The analytical expressions for the permeate flux, each of which contains three basic parameters (membrane resistance, specific cake resistance and rate of surface renewal, are fitted to experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units. All three expressions for the permeate flux fit the experimental data fairly well with average root-mean-square errors of 4.6% for Cases 1 and 2, and 4.2% for Case 3, respectively, which points towards the constructive nature of the model - a common feature of theoretical models used in science and engineering.

  18. Development and Deployment of a Full-Scale Cross-Flow Filtration System for Treatment of Liquid Low-Level Waste at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kent, T.E.

    2000-05-12

    A full-scale modular solid/liquid separation (SLS) system was designed, fabricated, installed, and successfully deployed for treatment of liquid low-level waste from the Melton Valley Storage Tanks (MVSTs) at Oak Ridge National Laboratory (ORNL). The SLS module, utilizing cross-flow filtration, was operated as part of an integrated tank waste pretreatment system (otherwise known as the Wastewater Triad) to remove suspended solids and prevent fouling of ion-exchange materials and heat exchange surfaces. The information gained from this testing was used to complete design specifications for the full-scale modular SLS system in May 1997. The contract for detailed design and fabrication of the system was awarded to NUMET in July 1997, and the design was completed in January 1998. Fabrication began in March 1998, and the completed system was delivered to ORNL on December 29, 1998. Installation of the system at the MVST facility was completed in May 1999. After completing an operational readiness assessment, approval was given to commence hot operations on June 7, 1999. Operations involving two of the eight MVSTs were performed safely and with very little unscheduled downtime. Filtration of supernatant from tank W-31 was completed on June 24, 1999 and W-26 processing was completed on August 20, 1999. The total volume processed during these two campaigns was about 45,000 gal. The suspended solids content of the liquid processed from tank W-31 was lower than expected, resulting in higher-than-expected filtrate production for nearly the entire operation. The liquid processed from tank W-26 was higher in suspended solids content, and filtrate production was lower, but comparable to the rates expected based on the results of previous pilot-scale, single-element filtration tests. The quality of the filtrate consistently met the requirements for feed to the downstream ion-exchange and evaporation processes. From an equipment and controls standpoint, the modular system (pumps

  19. The Grading Entropy-based Criteria for Structural Stability of Granular Materials and Filters

    Directory of Open Access Journals (Sweden)

    Janos Lőrincz

    2015-05-01

    Full Text Available This paper deals with three grading entropy-based rules that describe different soil structure stability phenomena: an internal stability rule, a filtering rule and a segregation rule. These rules are elaborated on the basis of a large amount of laboratory testing and from existing knowledge in the field. Use is made of the theory of grading entropy to derive parameters which incorporate all of the information of the grading curve into a pair of entropy-based parameters that allow soils with common behaviours to be grouped into domains on an entropy diagram. Applications of the derived entropy-based rules are presented by examining the reason of a dam failure, by testing against the existing filter rules from the literature, and by giving some examples for the design of non-segregating grading curves (discrete particle size distributions by dry weight. A physical basis for the internal stability rule is established, wherein the higher values of base entropy required for granular stability are shown to reflect the closeness between the mean and maximum grain diameters, which explains how there are sufficient coarser grains to achieve a stable grain skeleton.

  20. Bacterial Suspensions Deposited on Microbiological Filter Material for Rapid Laser-Induced Breakdown Spectroscopy Identification.

    Science.gov (United States)

    Malenfant, Dylan J; Gillies, Derek J; Rehse, Steven J

    2016-03-01

    Four species of bacteria, E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa, were harvested from agar nutrient medium growth plates and suspended in water to create liquid specimens for the testing of a new mounting protocol. Aliquots of 30 µL were deposited on standard nitrocellulose filter paper with a mean 0.45 µm pore size to create highly flat and uniform bacterial pads. The introduction of a laser-based lens-to-sample distance measuring device and a pair of matched off-axis parabolic reflectors for light collection improved both spectral reproducibility and the signal-to-noise ratio of optical emission spectra acquired from the bacterial pads by laser-induced breakdown spectroscopy. A discriminant function analysis and a partial least squares-discriminant analysis both showed improved sensitivity and specificity compared to previous mounting techniques. The behavior of the spectra as a function of suspension concentration and filter coverage was investigated, as was the effect on chemometric cell classification of sterilization via autoclaving. © The Author(s) 2016.

  1. Direct determination of lead in urban particulate material and lubricating oil with thin silver films electrically vaporized from membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Swan, J.M.; Sacks, R.D.

    1985-06-01

    A rapid, direct method for the determination of lead in suspended solid particles is described. Particles are collected on a polycarbonate membrane filter coated with a thin film of high-purity Ag. The metal film does not affect filtration properties of the membrane. The thin film and sample are atomized and excited in the high-temperature plasma produced by the electrical vaporization of the Ag film. The Pb concentration is determined by emission spectroscopy. Sample introduction and standardization techniques are presented. Sample particle size and loading effects are considered. A high-inductance, longer-duration discharge is more useful for larger samples and for larger particles than a low-inductance, shorter-duration discharge. Analytical results are presented for Pb in NBS standard reference material SRM 1648 (urban particulate material) and lubricating oil spiked with Pb powder. 14 references, 4 figures, 3 tables.

  2. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  3. Numerical study of streamwise and cross flow in the presence of heat and mass transfer

    Science.gov (United States)

    Rizwan-ul-Haq; Soomro, Feroz Ahmed; Khan, Z. H.; Al-Mdallal, Qasem M.

    2017-05-01

    The present model is devoted to investigate the streamwise and cross flow of a viscous fluid over a heated moving surface. Viscous dissipation effects are also considered with heat and mass transfer effects and these effects with cross flow have not been explored yet in the literature. Governing boundary layer equations consist in the form of nonlinear partial differential equations (PDEs). Compatible transformations are applied to change such equations into ordinary differential equations which are further solved using the Runge-Kutta technique and shooting method. Linear stability analysis is also performed over the obtained solutions to validate the results and to determine the smallest eigenvalues. Three different kinds of fluids namely: acetone, water and ethaline glycol are investigated to analyse the heat transfer rate. The problem contains important physical parameters namely: Prandtl number, Eckert numbers and Lewis number. The obtained solutions are discussed in detail against each physical parameter using graphs and tables.

  4. Cross-flow deep fat frying and its effect on fry quality distribution and mobility.

    Science.gov (United States)

    van Koerten, K N; Schutyser, M A I; Somsen, D; Boom, R M

    2016-04-01

    Conventional industrial frying systems are not optimised towards homogeneous product quality, which is partly related to poor oil distribution across the packed bed of fries. In this study we investigate an alternative frying system with an oil cross-flow from bottom to top through a packed bed of fries. Fluidization of rectangular fries during frying was characterised with a modified Ergun equation. Mixing was visualized by using two coloured layers of fries and quantified in terms of mixing entropy. Smaller fries mixed quickly during frying, while longer fries exhibited much less mixing, which was attributed to the higher minimum fluidization velocity and slower dehydration for longer fries. The cross-flow velocity was found an important parameter for the homogeneity of the moisture content of fries. Increased oil velocities positively affected moisture distribution due to a higher oil refresh rate. However, inducing fluidization caused the moisture distribution to become unpredictable due to bed instabilities.

  5. Trajectory Analysis of Fuel Injection into Supersonic Cross Flow Based on Schlieren Method

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LI Feng; SUN Baigang

    2012-01-01

    Trajectory analysis of fuel injection into supersonic cross flow is studied in this paper.A directly-connected wind tunnel is constructed to provide stable supersonic freestream.Based on the test rig,the schlieren system is established to reveal the fuel injection process visually.Subsequently,the method of quantitative schlieren is adopted to obtain data of both fuel/air interface and bow shock with the aid of Photoshop and Origin.Finally,the mechanism based on two influential factors of fuel injection angle and fuel injection driven pressure,is researched by vector analysis.A dimensionless model is deduced and analyzed.The curve fitting result is achieved.The relationship between the data and the two influential factors is established.The results provide not only the quantitative characteristics of the fuel injection in supersonic cross flow but also the valuable reference for the future computational simulation.

  6. Modal and nonmodal stability analysis of electrohydrodynamic flow with and without cross-flow

    CERN Document Server

    Zhang, Mengqi; Wu, Jian; Schmid, Peter J; Quadrio, Maurizio

    2015-01-01

    We report the results of a complete modal and nonmodal linear stability analysis of the electrohydrodynamic flow (EHD) for the problem of electroconvection in the strong injection region. Convective cells are formed by Coulomb force in an insulating liquid residing between two plane electrodes subject to unipolar injection. Besides pure electroconvection, we also consider the case where a cross-flow is present, generated by a streamwise pressure gradient, in the form of a laminar Poiseuille flow. The effect of charge diffusion, often neglected in previous linear stability analyses, is included in the present study and a transient growth analysis, rarely considered in EHD, is carried out. In the case without cross-flow, a non-zero charge diffusion leads to a lower linear stability threshold and thus to a more unstable low. The transient growth, though enhanced by increasing charge diffusion, remains small and hence cannot fully account for the discrepancy of the linear stability threshold between theoretical a...

  7. THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1996-03-01

    Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.

  8. Shape optimization of multi-chamber cross-flow mufflers by SA optimization

    Science.gov (United States)

    Chiu, Min-Chie; Chang, Ying-Chun

    2008-05-01

    It is essential when searching for an efficient acoustical mechanism to have an optimally shaped muffler designed specially for the constrained space found in today's plants. Because the research work of optimally shaped straight silencers in conjunction with multi-chamber cross-flow perforated ducts is rarely addressed, this paper will not only analyze the sound transmission loss (STL) of three kinds of cross-flow perforated mufflers but also will analyze the optimal design shape within a limited space. In this paper, the four-pole system matrix used in evaluating acoustic performance is derived by using the decoupled numerical method. Moreover, a simulated annealing (SA) algorithm, a robust scheme in searching for the global optimum by imitating the softening process of metal, has been adopted during shape optimization. To reassure SA's correctness, the STL's maximization of three kinds of muffles with respect to one-tone and dual-tone noise is exemplified. Furthermore, the optimization of mufflers with respect to an octave-band fan noise by the simulated algorithm has been introduced and fully discussed. Before the SA operation can be carried out, an accuracy check of the mathematical model with respect to cross-flow perforated mufflers has to be performed by Munjal's analytical data and experimental data. The optimal result in eliminating broadband noise reveals that the cross-flow perforated muffler with more chambers is far superior at noise reduction than a muffler with fewer chambers. Consequently, the approach used for the optimal design of noise elimination proposed in this study is certainly easy and efficient.

  9. A Model for Transport Phenomena in a Cross-Flow Ultrafiltration Module with Microchannels

    Directory of Open Access Journals (Sweden)

    Shiro Yoshikawa

    2010-12-01

    Full Text Available Cross-flow ultrafiltration of macromolecular solutions in a module with microchannels is expected to have the advantages of fast diffusion from the membrane surface and a high ratio of membrane surface area to feed liquid volume. Cross-flow ultrafiltration modules with microchannels are expected to be used for separation and refining and as membrane reactors in microchemical processes. Though these modules can be applied as a separator connected with a micro-channel reactor or a membrane reactor, there have been few papers on their performance. The purpose of this study was to clarify the relationship between operational conditions and performance of cross-flow ultrafiltration devices with microchannels. In this study, Poly Vinyl Pyrrolidone (PVP aqueous solution was used as a model solute of macromolecules such as enzymes. Cross-flow ultrafiltration experiments were carried out under constant pressure conditions, varying other operational conditions. The permeate flux decreased in the beginning of each experiment. After enough time passed, the permeate flux reached a constant value. The performance of the module was discussed based on the constant values of the flux. It was observed that the permeate flux increased with increasing transmembrane pressure (TMP and feed flow rate, and decreased with an increase of feed liquid concentration. A model of the transport phenomena in the feed liquid side channel and the permeation through the membrane was developed based on the concentration and velocity distributions in the feed side channel. The experimental results were compared with those based on the model and the performance of the ultrafiltration module is discussed.

  10. NUMERICAL SIMULATION OF A HORIZONTAL MOMENTUM JET IN CROSS-FLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The mixing characteristics of a Horizontal Momentum Jet in Cross-flow (HMJC) were investigated using the CFD code Fluent. The realizable k-ε model was employed for turbulent closure of the Reynolds-averaged Navier-Stokes equations. The computed results, including concentration field and velocity field, agree well with the relations of dimensional analysis, as well as the experimental results by Sherif and Pletcher, Ali and Yu et al.

  11. Flow Field and Performance of Cross Flow Fans--Experimental and Theoretical Investigations

    Institute of Scientific and Technical Information of China (English)

    Martin Gabi; Simon Dornstetter; Toni Klemm

    2003-01-01

    Due to the construction and the operating principle the prediction of performance of Cross Flow Fans (CFF) is difficult and the knowledge about the internal flow regime is limited. To investigate the impact of geometrical parameters on the performance of CFF, experimental investigations, using Particle Imaging Velocimetry (PIV),and CFD calculations were carried out. Some results of PIV measurements and CFD calculations are presented,which give an impression of the internal flow and confirm the numerical calculations.

  12. Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Rasmussen, Michael R.

    2011-01-01

    Fouling is the main bottleneck of the widespread of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid crossflow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of e.g. impellers. Val...... as function of the angular velocity and the total suspended solids concentration....

  13. Lattice Boltzmann simulation of a laminar square jet in cross flows

    Institute of Scientific and Technical Information of China (English)

    Guoneng Li; Youqu Zheng; Huawen Yang; Wenwen Guo; Yousheng Xu

    2016-01-01

    A three-dimensional, nineteen-velocity (D3Q19) Lattice Boltzmann Method (LBM) model was developed to sim-ulate the fluid flow of a laminar square jet in cross flows based on the single relaxation time algorithm. The code was validated by the mathematic solution of the Poiseuille flow in a square channel, and was further validated with a previous well studied empirical correlation for the central trajectory of a jet in cross flows. The developed LBM model was found to be able to capture the dominant vortex, i.e. the Counter-rotating Vortex Pair (CVP) and the upright wake vortex. Results show that the incoming fluid in the cross flow channel was entrained into the leeside of the jet fluid, which contributes to the blending of the jet. That the spread width of the transverse jet decreases with the velocity ratio. A layer-organized entrainment pattern was found indicating that the incoming fluid at the lower position is firstly entrained into the leeside of the jet, and followed by the incoming fluid at the upper position.

  14. On the stability of plane Couette-Poiseuille flow with uniform cross-flow

    CERN Document Server

    Guha, Anirban

    2010-01-01

    We present a detailed study of the linear stability of plane Couette-Poiseuille flow in the presence of a cross-flow. The base flow is characterised by the cross flow Reynolds number, $R_{inj}$ and the dimensionless wall velocity, $k$. Squire's transformation may be applied to the linear stability equations and we therefore consider 2D (spanwise-independent) perturbations. Corresponding to each dimensionless wall velocity, $k\\in[0,1]$, two ranges of $R_{inj}$ exist where unconditional stability is observed. In the lower range of $R_{inj}$, for modest $k$ we have a stabilisation of long wavelengths leading to a cut-off $R_{inj}$. This lower cut-off results from skewing of the velocity profile away from a Poiseuille profile, shifting of the critical layers and the gradual decrease of energy production. Cross-flow stabilisation and Couette stabilisation appear to act via very similar mechanisms in this range, leading to the potential for robust compensatory design of flow stabilisation using either mechanism. As...

  15. Numerical Study on Instantaneous Discharge of Unsorted Particle Cloud in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    GU Jie; LI Chi-wai; YANG Hong; ZHAN Yong

    2007-01-01

    The mixing characteristics of particles such as dredged sediment of variable size discharged into cross flow are studied by a 3D numerical model, which is developed to model the particle-fluid two-phase flow. The Eulerian method with the modified k-ε parameterization of turbulence for the fluid phase is used to solve fluid phase, while a Lagrangian method for the solid phase (particles), both the processes are coupled through the momentum sources. In the model the wake turbulence induced by particles has been included as additional source term in the k-ε model; and the variable drift velocities of the particles are treated efficiently by the Lagrangian method in which the particles are tracked explicitly and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumping a cloud of particles is governed by the total buoyancy of the cloud, the drag force on each particle and the velocity of cross-flow. The computed results show a roughly linear relationship between the displacement of the frontal position and the longitudinal width of the particle cloud. The particle size in the cloud and the velocity of cross flow dominate the flow behavior. The computed results are compared with the results of laboratory experiments and satisfactory agreement is obtained.

  16. Cross-flow turbines: progress report on physical and numerical model studies at large laboratory scale

    Science.gov (United States)

    Wosnik, Martin; Bachant, Peter

    2016-11-01

    Cross-flow turbines show potential in marine hydrokinetic (MHK) applications. A research focus is on accurately predicting device performance and wake evolution to improve turbine array layouts for maximizing overall power output, i.e., minimizing wake interference, or taking advantage of constructive wake interaction. Experiments were carried with large laboratory-scale cross-flow turbines D O (1 m) using a turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. Several turbines of varying solidity were employed, including the UNH Reference Vertical Axis Turbine (RVAT) and a 1:6 scale model of the DOE-Sandia Reference Model 2 (RM2) turbine. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. Results are presented for the simulation of performance and wake dynamics of cross-flow turbines and compared with experiments and body-fitted mesh, blade-resolving CFD. Supported by NSF-CBET Grant 1150797, Sandia National Laboratories.

  17. Numerical study of cross flow fan performance in an indoor air conditioning unit

    Science.gov (United States)

    Yet, New Mei; Raghavan, Vijay R.; Chinc, W. M.

    2012-06-01

    The cross flow fan is a unique type of turbo machinery where the air stream flows transversely across the impeller, passing the blades twice. Due to its complex geometry, and highly turbulent and unsteady air-flow, a numerical method is used in this work to conduct the characterization study on the performance of a cross flow fan. A 2D cross-sectional model of a typical indoor air conditioning unit has been chosen for the simulation instead of a three dimensional 3D model due to the highly complex geometry of the fan. The simplified 2D model has been validated with experiments where it is found that the RMS error between the simulation and experimental results is less than 7%. The important parameters that affect the cross flow fan performance, i.e. the internal and external blade angles, the blade thickness, and the casing design, are analyzed in this study. The formation of an eccentric vortex is observed within the impeller.

  18. Air-bubbling, hollow-fiber reactor with cell bleeding and cross-flow filtration.

    Science.gov (United States)

    Nishii, K; Sode, K; Karube, I

    1990-05-01

    Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.

  19. 常用DPF过滤体材料发展现状及特性研究%The Development Status and Characteristics of Commonly Used DPF Filter Material

    Institute of Scientific and Technical Information of China (English)

    郭秀荣; 王雅慧

    2012-01-01

    柴油车尾气微粒捕集器(DPF)是解决碳烟颗粒排放的最为有效的方法之一,而其滤芯材料的发展又是制约DPF技术最为关键的因素。本文对目前常用的DPF滤芯材料按照陶瓷基材料,金属基材料及新型材料进行分类,对各种材料的结构特点、过滤性能及经济特性等方面做了详细介绍,并对比分析其优缺点,为各种DPF过滤体材料更好的应用提供有力参考。%Diesel particulate filter(DPF) is one of the most effective ways to solve the emissions of soot particles,while the development of the filter material is the most critical factor that constrains DPF technology.In this paper,the DPF filter materials were classified into three classes including ceramic-based materials,metal-based materials and new materials;and the structural characteristics,filtration performance and economic characteristics of the various materials were introduced in detail;then,the advantages and disadvantages of these materials were compared and analyzed,which could offer theory reference for the application of DPF filter materials.

  20. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  1. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  2. Improved tunable filter-based multispectral imaging system for detection of blood stains on construction material substrates

    Science.gov (United States)

    Janchaysang, Suwatwong; Sumriddetchkajorn, Sarun; Buranasiri, Prathan

    2013-06-01

    We present the improved tunable filter based multispectral imaging system for detecting blood stains on construction materials. Based upon the reflectance and Kubelka Munk absorbance spectra stocked from our previous work, we modify the blood discrimination criteria to make the system more efficient by replacing the old criteria which make use of polynomial fitting with new criteria associated with a few wavelengths images. The newly established criteria are tested to be able to detect blood against other stains almost as efficient as the old criteria, while the number of spectral images required for detecting blood stains are reduced significantly from 64 to 9 spectral images. The reduction of required spectral images will reduce the time needed for image capturing and blood detection criteria application with little sacrificing of the specificity and sensitivity of the system.

  3. THz Discrimination of Materials: Development of an Apparatus Based on Room Temperature Detection and Metasurfaces Selective Filters

    Science.gov (United States)

    Carelli, P.; Chiarello, F.; Torrioli, G.; Castellano, M. G.

    2017-03-01

    We present an apparatus for terahertz discrimination of materials designed to be fast, simple, compact, and economical in order to be suitable for preliminary on-field analysis. The system working principles, bio-inspired by the human vision of colors, are based on the use of an incoherent source, a room temperature detector, a series of microfabricated metamaterials selective filters, a very compact optics based on metallic ellipsoidal mirrors in air, and a treatment of the mirrors' surfaces that select the frequency band of interest. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods, and grease. We present the system and the obtained results and discuss issues and possible developments.

  4. THz Discrimination of Materials: Development of an Apparatus Based on Room Temperature Detection and Metasurfaces Selective Filters

    Science.gov (United States)

    Carelli, P.; Chiarello, F.; Torrioli, G.; Castellano, M. G.

    2016-12-01

    We present an apparatus for terahertz discrimination of materials designed to be fast, simple, compact, and economical in order to be suitable for preliminary on-field analysis. The system working principles, bio-inspired by the human vision of colors, are based on the use of an incoherent source, a room temperature detector, a series of microfabricated metamaterials selective filters, a very compact optics based on metallic ellipsoidal mirrors in air, and a treatment of the mirrors' surfaces that select the frequency band of interest. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods, and grease. We present the system and the obtained results and discuss issues and possible developments.

  5. Low flow rates and high air throughput: Cross-flow blowers; Niedrige Stroemungsgeschwindigkeiten bei hohem Luftdurchsatz: Querstromventilatoren

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, J. [ebm-papst Landshut GmbH (Germany)

    2006-05-15

    Cross-flow blowers are everywhere, in electric towel driers, heaters, night storage heaters, floor heating systems, and open chimneys. With a diameter of only 30 mm, they are compact and effective. (orig.)

  6. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  7. Mathematical modeling of a biogenous filter cake and identification of oilseed material parameters

    Directory of Open Access Journals (Sweden)

    Očenášek J.

    2009-12-01

    Full Text Available Mathematical modeling of the filtration and extrusion process inside a linear compression chamber has gained a lot of attention during several past decades. This subject was originally related to mechanical and hydraulic properties of soils (in particular work of Terzaghi and later was this approach adopted for the modeling of various technological processes in the chemical industry (work of Shirato. Developed mathematical models of continuum mechanics of porous materials with interstitial fluid were then applied also to the problem of an oilseed expression. In this case, various simplifications and partial linearizations are introduced in models for the reason of an analytical or numerical solubility; or it is not possible to generalize the model formulation into the fully 3D problem of an oil expression extrusion with a complex geometry such as it has a screw press extruder.We proposed a modified model for the oil seeds expression process in a linear compression chamber. The model accounts for the rheological properties of the deformable solid matrix of compressed seed, where the permeability of the porous solid is described by the Darcy's law. A methodology of the experimental work necessary for a material parameters identification is presented together with numerical simulation examples.

  8. Modeling of fluidelastic instability in tube bundle subjected to two-phase cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Sawadogo, T.P.; Mureithi, N.W.; Azizian, R.; Pettigrew, M.J. [Ecole Polytechnique, Dept. of Mechanical Engineering, BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Montreal, Quebec (Canada)

    2009-07-01

    Tube arrays in steam generators and heat exchangers operating in two-phase cross-flow are subjected sometimes to strong vibration due mainly to turbulence buffeting and fluidelastic forces. This can lead to tube damage by fatigue or fretting wear. A computer implementation of a fluidelastic instability model is proposed to determine with improved accuracy the fluidelastic forces and hence the critical instability flow velocity. Usually the fluidelastic instability is 'predicted', using the Connors relation with K=3. While the value of K can be determined experimentally to get an accurate prediction of the instability, the Connors relation does not allow good estimation of the fluid forces. Consequently the RMS value of the magnitude of vibration of the tube bundle, necessary to evaluate the work rate and the tube wear is only poorly estimated. The fluidelastic instability analysis presented here is based on the quasi-steady model, originally developed for single phase flow. The fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives which are determined experimentally. The forces also depend on the tube displacement and velocity. In the computer code ABAQUS, the fluid forces are provided in the user subroutines VDLOAD or VUEL. A typical simulation of the vibration of a single flexible tube within an array in two phase cross-flow is done in ABAQUS and the results are compared with the experimental measurements for a tube with similar physical properties. For a cantilever tube, in two phase cross-flow of void fraction 60%, the numerical critical flow velocity was 2.0 m/s compared to 1.8 m/s obtained experimentally. The relative error was 5% compared to 26.6% for the Connors relation with K=3. The simulation of the vibration of a typical tube in a steam generator is also presented. The numerical results show good agreement with experimental measurements. (author)

  9. Cross-flow blowing of a two-dimensional stationary arc.

    Science.gov (United States)

    Bose, T. K.

    1971-01-01

    It is demonstrated in an analysis that the electrons emitted from the cathode undergo collisions with the heavy particles and are deflected in the flow direction by the component of a collisional force associated with the relative difference in flow velocities between electrons and heavy particles. The resultant motion of the electrons describing the arc is thus caused by a combined action of the collisional force that results from the externally applied electric field. An expression is given which enables computation of the arc shape to be made provided the velocity distribution of the cross-flow and the distribution of the externally applied electric field are prescribed.

  10. MEAN BEHAVIOR OF THREE DIMENSIONAL LINE BUOYANT JETS IN CROSS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Han Hui-ling; Zhang Hong-min; Liang Su-tao; Li Wei

    2003-01-01

    This paper presents the results of a numerical calculation on the mean behavior of finite length line buoyant jets from slot with width B, discharged perpendicularly into relatively deep cross-flows in the mixing region. The length of diffuser was varied from 4 to 20 times the width of diffuser. The calculations were performed with the standard K-ε model and Hybrid Finite Analytic Method (HFAM) with staggered grid. The phenomenon and development of vortex pairs are simulated successfully and the influence of diffuser length and buoyant on turbulent buoyant jets are analyzed.

  11. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    Energy Technology Data Exchange (ETDEWEB)

    Forbush, Dominic; Polagye, Brian; Thomson, Jim; Kilcher, Levi; Donegan, James; McEntee, Jarlath

    2016-12-01

    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  12. Cross-flow turbines: physical and numerical model studies towards improved array simulations

    Science.gov (United States)

    Wosnik, M.; Bachant, P.

    2015-12-01

    Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An

  13. Point and planar LIF for velocity-concentration correlations in a jet in cross flow

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Özcan, Oktay; Larsen, Poul Scheel

    2002-01-01

    (LDA). The flow considered is the mixing of a jet in a fully developed cross flow in a square duct with a width of 10 jet diameters. Both a laminar flow case, Re=675, and a turbulent flow case, Re=33750, are presented . For both flows, the ratio jet-to-duct mean velocities was R=3.3. Result of mean...... velocities, mean concentration and Reynolds fluxes in the symmetry plane of the jet are presented for PIV and PLIF measurements. The LIF measurements performed with the LDA equipment was in general in good agreement with the PIV/PLIF measurements. The cross sections selected for comparison are challenging...

  14. Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material.

    Science.gov (United States)

    Tankhiwale, Rasika; Bajpai, S K

    2009-03-01

    The present work describes ceric ammonium nitrate (CAN) initiated graft copolymerization of acrylamide onto cellulose-based filter paper followed by entrapment of silver nanoparticles. The copolymerization was carried out in aqueous solution, containing 2M acrylamide monomer and 16mM N,N'-methylene bisacrylamide (MB) crosslinker. The optimum initiation time and grafting reaction temperature were found to be 15min and 30 degrees C, respectively. The silver nanoparticles were loaded into grafted filter paper by equilibration in silver nitrate solution followed by citrate reduction. The formation of silver nanoparticles has been confirmed by TEM and SAED analysis. The novel nano silver loaded filter paper has been investigated for its antimicrobial properties against E.coli. This newly developed material shows strong antibacterial property and thus offers its candidature for possible use as antibacterial food-packaging material.

  15. Investigation of Helical Cross-Flow Axis Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    Science.gov (United States)

    Bachant, Peter; Wosnik, Martin

    2011-11-01

    A new test bed for hydrokinetic turbines was used to evaluate different cross-flow axis turbines, and investigate effects of waves and turbulence. Turbine thrust (drag) and mechanical power were measured in a tow tank with cross section 3.7 x 2.4m at speeds of 0.6-1.5 m/s for a Gorlov Helical Turbine (GHT) and a Lucid spherical helical turbine (LST). GHT performance was also measured in progressive waves of various periods, grid turbulence, and in a cylinder wake. Overall, the GHT performs with higher power and thrust coefficients than the LST. A 2nd law, or kinetic exergy efficiency, defined as the fraction of kinetic energy removed from the flow that is converted to usable shaft work, was measured. The distribution of energy into shaft work and turbulent kinetic energy in the wake can affect environmental transport processes and performance of turbines arrays. Progressive waves generally enhance performance of the GHT, but can lead to stall at higher tip speed ratios compared to the steady case. Grid turbulence delays dynamic stall and enables operation at lower tip speed ratios, while not decreasing maximum power coefficient. Performance in a cylinder wake is highly dependent on the cylinder's cross-stream location, ranging from benign to detrimental. The experimental observations provide insight into the physical principles of operation of cross-flow axis turbines.

  16. Unsteady Simulation of an ASME Venturi Flow in a Cross Flow

    Science.gov (United States)

    Bonifacio, Jeremy; Rahai, Hamid

    2010-11-01

    Unsteady numerical simulations of an ASME venturi flow into a cross flow were performed. The velocity ratios between the venturi flow and the free stream were 25, 50, and 75%. Two cases of the venturi with and without a tube extension have been investigated. The tube extension length was approximately 4D (here D is the inner diameter of the venturi's outlet), connecting the venturi to the bottom surface of the numerical wind tunnel. A finite volume approach with the Wilcox K-φ turbulence model were used. Results that include contours of the mean velocity, velocity vector, turbulent kinetic energy, pressure and vortices within the venturi as well as downstream in the interaction region indicate that when the venturi is flushed with the surface, there is evidence of flow separation within the venturi, near the outlet. However, when the tube extension was added, the pressure recovery was sustained and flow separation within the venturi was not present and the characteristics of the flow in the interaction region were similar to the corresponding characteristics of a pipe jet in a cross flow.

  17. Computational study of liquid-gas cross-flow within structured packing cells

    Science.gov (United States)

    Lavalle, Gianluca; Lucquiaud, Mathieu; Valluri, Prashant

    2016-11-01

    Absorption columns used in the carbon capture processes and filled with structured packings are crucial to foster the exchanges and the transfers between the absorber liquid and the flue gas. However, flow reversal can occur under special flow conditions, resulting in a dramatic drop of the technological performances. We investigate numerically the liquid-gas pattern within a cross-flow packing cell. The cell is a complex geometry with two connected channels, where the two phases flow co- or counter-currently. We show that an increase of both the gas speed and the liquid load leads to an increase of the pressure drop. Particular focus is also given to the analysis of flow repartition and flooding delay. We reveal that tilting the unit cell helps to delay the flooding and extends the operational capability. The pressure drop of the cross-flow unit cell is also compared to the Mellapak packing which is widely used in carbon capture applications. Finally, we support this study by performing numerical simulations on simpler geometries by means of a low-dimensional film-gas model, in order to investigate the two-phase dynamics and predict the flooding onset with a low computational cost. The authors gratefully acknowledge EPSRC Grant No. EP/M001482/1.

  18. Geometric optimization of cross-flow heat exchanger based on dynamic controllability

    Directory of Open Access Journals (Sweden)

    Alotaibi Sorour

    2008-01-01

    Full Text Available The operation of heat exchangers and other thermal equipments in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually one of the output temperatures. The aim of this work is to optimize the geometry of a tube with internal flow of water and an external cross-flow of air, based on its controllability characteristics. Controllability is a useful concept both from theoretical and practical perspective since it tells us if a particular output can be controlled by a particular input. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a tube in cross-flow is developed, where an implicit formulation is used for transient numerical solutions. The aspect ratio of the tube is optimized, subject to volume constraints, based on the optimum operation in terms of controllability. The reported optimized aspect ratio, water mass flow rate and controllability are studied for deferent external properties of the tube.

  19. Influence of cross-flow on the entrainment of bending plumes

    Science.gov (United States)

    Freedland, Graham; Mastin, Larry; Steven, Solovitz; Cal, Raul

    2016-11-01

    Volcanic eruption columns inject high concentrations of ash into the atmosphere. Some of this ash is carried downwind forming ash clouds in the atmosphere that are hazardous for private and commercial aviation. Current models rely on inputs such as plume height, duration, eruption rate, and meteorological wind fields. Eruption rate is estimated from plume height using relations that depend on the rate of air entrainment into the plume, which is not well quantified. A wind tunnel experiment has been designed to investigate these models by injecting a vertical air jet into a cross-flow. The ratio of the cross-flow and jet velocities is varied to simulate a weak plume, and flow response is measured using particle image velocimetry. The plumes are characterized and profile data is examined to measure the growth of weak plumes and the entrainment velocity along its trajectory. This allows for the study of the flow field, mean, and second order moments, and obtain information to improve models of volcanic ash concentrations in the atmosphere.

  20. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    Science.gov (United States)

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  1. Three-Dimensional CFD Modeling of Transport Phenomena in a Cross-Flow Anode-Supported Planar SOFC

    Directory of Open Access Journals (Sweden)

    Zhonggang Zhang

    2013-12-01

    Full Text Available In this study, a three-dimensional computational fluid dynamics (CFD model is developed for an anode-supported planar SOFC from the Chinese Academy of Science Ningbo Institute of Material Technology and Engineering (NIMTE. The simulation results of the developed model are in good agreement with the experimental data obtained under the same conditions. With the simulation results, the distribution of temperature, flow velocity and the gas concentrations through the cell components and gas channels is presented and discussed. Potential and current density distributions in the cell and overall fuel utilization are also presented. It is also found that the temperature gradients exist along the length of the cell, and the maximum value of the temperature for the cross-flow is at the outlet region of the cell. The distribution of the current density is uneven, and the maximum current density is located at the interfaces between the channels, ribs and the electrodes, the maximum current density result in a large over-potential and heat source in the electrodes, which is harmful to the overall performance and working lifespan of the fuel cells. A new type of flow structure should be developed to make the current flow be more evenly distributed and promote most of the TPB areas to take part in the electrochemical reactions.

  2. Phosphorus removal using Ca-rich hydrated oil shale ash as filter material--the effect of different phosphorus loadings and wastewater compositions.

    Science.gov (United States)

    Kõiv, Margit; Liira, Martin; Mander, Ulo; Mõtlep, Riho; Vohla, Christina; Kirsimäe, Kalle

    2010-10-01

    We studied the phosphorus (P) binding capacity of Ca-rich alkaline filter material - hydrated oil shale ash (i.e. hydrated ash) in two onsite pilot-scale experiments (with subsurface flow filters) in Estonia: one using pre-treated municipal wastewater with total phosphorus (TP) concentration of 0.13-17.0 mg L(-1) over a period of 6 months, another using pre-treated landfill leachate (median TP 3.4 mg L(-1)) for a total of 12 months. The results show efficient P removal (median removal of phosphates 99%) in horizontal flow (HF) filters at both sites regardless of variable concentrations of several inhibitors. The P removal efficiency of the hydrated ash increases with increasing P loading, suggesting direct precipitation of Ca-phosphate phases rather than an adsorption mechanism. Changes in the composition of the hydrated ash suggest a significant increase in P concentration in all filters (e.g. from 489.5 mg kg(-1) in initial ash to 664.9 mg kg(-1) in the HF filter after one year in operation), whereas almost all TP was removed from the inflow leachate (R(2) = 0.99). Efficiency was high throughout the experiments (median outflow from HF hydrated ash filters 0.05-0.50 mg L(-1)), and P accumulation did not show any signs of saturation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  4. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  5. 超声波复合纤维燃油滤材的研制与应用%Development and Application of Ultrasonic Composite Fiber Filter Materials

    Institute of Scientific and Technical Information of China (English)

    胥绍华

    2012-01-01

    This paper introduces the development of ultrasonic composite fiber filter materials and its application in the fuel oil filter paper.%文章介绍了超声波复合纤维过滤材料的研制及其应用,通过实践证明,超声波复合纤维作为燃油过滤材料,可使燃油过滤材料的过滤效率和容尘量大幅提高.

  6. Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing Air

    Science.gov (United States)

    Milne, Andrew James Barnabas

    For drops sessile on a solid surface, cross flowing air can drive drop oscillation or shedding, based on the balance and interaction of aerodynamic drag force (based on drop size/shape and air speed) and adhesion/capillary forces (based on surface tension and drop size/shape). Better understanding of the above has applications to, e.g., fuel cell flooding, airfoil icing, and visibility in rain. To understand the basic physics, experiments studying individual sessile drops in a low speed wind tunnel were performed in this thesis. Analysis of high speed video gave time resolved profiles and airspeed for shedding. Testing 0.5 mul to 100 mul drops of water and hexadecane on poly(methyl methacrylate) PMMA, Teflon, and a superhydrophobic surface (SHS) yielded a master curve describing critical airspeed for shedding for water drops on all surface tested. This curve predicts behavior for new surfaces, and explains experimental results published previously. It also indicates that the higher contact angle leads to easier shedding due to decreased adhesion and increased drag. Developing a novel floating element differential drag sensor gave the first measurements of the microNewton drag force experienced by drops. Forces magnitude is comparable to gravitational shedding from a tilted plate and to simplified models for drop adhesion, with deviations that suggest effects due to the air flow. Fluid properties are seen to have little effect on drag versus airspeed, and decreased adhesion is seen to be more important than increased drag for easing shedding. The relation between drag coefficient and Reynolds number increases slightly with liquid-solid contact angle, and with drop volume. Results suggest that the drop experiences increased drag compared to similarly shaped solid bodies due to drop oscillations aeroelasticly coupling into the otherwise laminar flow. The bulk and surface oscillations of sessile drops in cross flow was also studied, using a full profile analysis

  7. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    Science.gov (United States)

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, Pmaterials (T1, T4 and T5) had higher N (16,100-21,300mg/kg), P (1500-2300mg/kg), K (19,800-28,200mg/kg), neutral pH, and lower C/N ratios (13:1-10:1), which were also comparable with commercially produced composts. Filter materials therefore, appears to be a vital ingredient for composting of winery solid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. COMPUTATIONAL FLUID DYNAMICS RESEARCH ON PRESSURE LOSS OF CROSS-FLOW PERFORATED MUFFLER

    Institute of Scientific and Technical Information of China (English)

    HU Xiaodong; ZHOU Yiqi; FANG Jianhua; MAN Xiliang; ZHAO Zhengxu

    2007-01-01

    The pressure loss of cross-flow perforated muffler has been computed with the procedure of physical modeling, simulation and data processing. Three-dimensional computational fluid dynamics (CFD) has been used to investigate the relations of porosities, flow velocity and diameter of the holes with the pressure loss. Accordingly, some preliminary results have been obtained that pressure loss increases with porosity descent as nearly a hyperbolic trend, rising flow velocity of the input makes the pressure loss increasing with parabola trend, diameter of holes affects little about pressure loss of the muffler. Otherwise, the holes on the perforated pipes make the air flow gently and meanly,which decreases the air impact to the wall and pipes in the muffler. A practical perforated muffler is used to illustrate the available of this method for pressure loss computation, and the comparison shows that the computation results with the method of CFD has reference value for muffler design.

  9. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Science.gov (United States)

    Hanuszkiewicz-Drapała, Małgorzata; Bury, Tomasz; Widziewicz, Katarzyna

    2016-03-01

    A cross-flow, tube and fin heat exchanger of the water - air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  10. Thermal-hydraulic performance of oval tubes in a cross-flow of air

    Science.gov (United States)

    Hasan, Ala

    2005-06-01

    The thermal-hydraulic performance of five oval tubes is experimentally investigated and compared with that for a circular tube in a cross-flow of air. The range of Reynolds numbers ReD is approximately between 1,000 and 11,000. The nominal axis ratios R (major axis/minor axis) for three of the investigated oval tubes are 2, 3, and 4. Two other configurations of oval tubes are also tested, an oval tube R=3 with two wires soldered on its upper and lower top positions, and a cut-oval tube. The performance of the tubes is corrected for the effects of area blockage and turbulence intensity. The measurement results show that the mean Nusselt numbers NuD for the oval tubes are close to that for the circular tube for ReDthermal-hydraulic performance is indicated by the ratio NuD/Cd, which shows a better combined performance for the oval tubes.

  11. THREE-DIMENSIONAL NUMERICAL SIMULATION OF INTAKE MODEL WITH CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    CHUANG Wei-Liang; HSIAO Shih-Chun

    2011-01-01

    The hydrodynamics of a pump sump consisting of a main channel, pump sump, and intake pipe is examined using Truchas,a three-dimensional Navier-Stokes solver, with a Large Eddy Simulation (LES) turbulence model. The numerical results of streamwise velocity profiles and flow patterns are discussed and compared with experimental data of Ansar and Nakato. Fairly good agreement is obtained. Furthermore, unlike Ansar et al.'s inviscid solution, the proposed numerical model includes the effect of fluid viscosity and considers more realistic simulation conditions. Simulation results show that viscosity affects the prediction of flow patterns and that the streamwise velocity can be better captured by including cross flow. The effects of the submergence Froude number on the free surface and streamwise velocity are also examined. The free surface significantly fluctuates at high submergence Froude number flows and the corresponding distribution of streamwise velocity profiles exhibits a trend different from that obtained for low submergence Froude number flows.

  12. The effect of turbulence on the particle impaction on a cylinder in a cross flow

    CERN Document Server

    Rivedal, Nikolai Hydle; Haugen, Nils Erland L

    2011-01-01

    Particle impaction on a cylinder in a cross flow is investigated with the use of Direct Numerical Simulations (DNS) and with a focus on the effect of turbulence on the impaction efficiency. The turbulence considered is isotropic homogeneous turbulence with varying integral scales. It is found that for particles with Stokes numbers in the boundary stopping mode there is up to 10 times more front side impaction for turbulence with a large integral scale than for a corresponding laminar flow. For decreasing integral scales the effect of the turbulence on front side particle impaction efficiency is decreasing. The back side impaction efficiency is also found to be influenced by the turbulence, but for the back side the strongest effect, and largest impaction efficiency, is found for small integral scales.

  13. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems

    KAUST Repository

    Farhat, N.M.

    2016-09-06

    The spatially heterogeneous distribution of biofouling in spiral wound membrane systems restricts (i) the water distribution over the membrane surface and therefore (ii) the membrane-based water treatment. The objective of the study was to assess the spatial heterogeneity of biofilm development over the membrane fouling simulator (MFS) length (inlet and outlet part) at three different cross-flow velocities (0.08, 0.12 and 0.16 m/s). The MFS contained sheets of membrane and feed spacer and simulated the first 0.20 m of spiral-wound membrane modules where biofouling accumulates the most in practice. In-situ non-destructive oxygen imaging using planar optodes was applied to determine the biofilm spatially resolved activity and heterogeneity.

  14. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder

    Institute of Scientific and Technical Information of China (English)

    XIA Yong; LU De-Tang; LIU Yang; XU You-Sheng

    2009-01-01

    The multiple-relaxation-time lattice Boltzmann method (MRT-LBM) is implemented to numerically simulate the cross flow over a longitudinal vibrating circular cylinder.This research is carried out on a three-dimensional (3D) finite cantilevered cylinder to investigate the effect of forced vibration on the wake characteristics and the 319 effect of a cantilevered cylinder.To meet the accuracy of this method,the present calculation is carried out at a low Reynolds number Re = 100,as well as to make the vibration obvious,we make the vibration strong enough.The calculation results indicate that the vibration has significant influence on the wake characteristics. When the vibrating is big enough,our early works show that the 2D vortex shedding would be locked up by vibration.Contrarily,this phenomenon would not appear in the present 313 case because of the end effect of the cantilevered cylinder.

  15. Mathematical models of membrane fouling in cross-flow micro-filtration

    Directory of Open Access Journals (Sweden)

    Mónica Jimena Ortíz Jerez

    2010-04-01

    Full Text Available The greatest difficulty arising during cross-flow micro-filtration is the formation of a cake layer on the membrane sur-face (also called fouling, thereby affecting system performance. Fouling has been related to permeate flux decay re-sulting from changes in operating variables. Many articles have been published in an attempt to explain this phe-nomenon but it has not yet been fully understood because it depends on specific solution/membrane interactions and differing parameters. This work was aimed at presenting an analytical review of recently published mathematical models to explain fouling. Although the reviewed models can be adjusted to any type of application, a simple “con-centration polarisation” model is advisable in the particular case of tropical fruit juices for describing the insoluble solids being deposited on membrane surface.

  16. Scale-adaptive simulation of a hot jet in cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Duda, B M; Esteve, M-J [AIRBUS Operations S.A.S., Toulouse (France); Menter, F R; Hansen, T, E-mail: benjamin.duda@airbus.com [ANSYS Germany GmbH, Otterfing (Germany)

    2011-12-22

    The simulation of a hot jet in cross flow is of crucial interest for the aircraft industry as it directly impacts aircraft safety and global performance. Due to the highly transient and turbulent character of this flow, simulation strategies are necessary that resolve at least a part of the turbulence spectrum. The high Reynolds numbers for realistic aircraft applications do not permit the use of pure Large Eddy Simulations as the spatial and temporal resolution requirements for wall bounded flows are prohibitive in an industrial design process. For this reason, the hybrid approach of the Scale-Adaptive Simulation is employed, which retains attached boundary layers in well-established RANS regime and allows the resolution of turbulent fluctuations in areas with sufficient flow instabilities and grid refinement. To evaluate the influence of the underlying numerical grid, three meshing strategies are investigated and the results are validated against experimental data.

  17. Scale-adaptive simulation of a hot jet in cross flow

    Science.gov (United States)

    Duda, B. M.; Menter, F. R.; Hansen, T.; Esteve, M.-J.

    2011-12-01

    The simulation of a hot jet in cross flow is of crucial interest for the aircraft industry as it directly impacts aircraft safety and global performance. Due to the highly transient and turbulent character of this flow, simulation strategies are necessary that resolve at least a part of the turbulence spectrum. The high Reynolds numbers for realistic aircraft applications do not permit the use of pure Large Eddy Simulations as the spatial and temporal resolution requirements for wall bounded flows are prohibitive in an industrial design process. For this reason, the hybrid approach of the Scale-Adaptive Simulation is employed, which retains attached boundary layers in well-established RANS regime and allows the resolution of turbulent fluctuations in areas with sufficient flow instabilities and grid refinement. To evaluate the influence of the underlying numerical grid, three meshing strategies are investigated and the results are validated against experimental data.

  18. Design and Analysis of Cross Flow Turbine for Micro Hydro Power Application using Sewerage Water

    Directory of Open Access Journals (Sweden)

    Muhammad Adil Khan

    2014-08-01

    Full Text Available The objective of this study endeavor is to describe the design of an environment friendly captive micro hydel power plant at the sewerage treatment plant outlet fall at Lai Nallah located in I-9 Islamabad. It will use sewerage water of CDA as discharge water to run the turbine of the micro hydel power plant to generate electricity. The important phases of the project are to carry out survey for collection of data about hydrology, quantity of flow of water, fall head, geology and design of an efficient turbine. Complete design calculations of turbine have been performed along with static and model analysis of the turbine. Key parameters to increase efficiency of cross-flow turbine are discussed.

  19. Experimental Investigation of Cross-Flow Axis Marine Hydrokinetic Turbines, Including Effects of Waves and Turbulence

    Science.gov (United States)

    Wosnik, M.; Bachant, P.

    2011-12-01

    A new test bed for Marine Hydrokinetic (MHK) turbines at the Center for Ocean Renewable Energy at the University of New Hampshire (UNH-CORE) was used to evaluate the performance of different cross-flow axis hydrokinetic turbines, and investigate the effects of waves and turbulence on these devices. The test bed was designed and built to operate in the UNH tow and wave tank, which has a cross section of 3.67m (width) x 2.44m (depth). In the present configuration, tow speeds of up to 3 m/s can be achieved for smaller turbine models, and up to 1.5 m/s for large turbine models with low gear ratio. It features a flap style wave maker at one end that is capable of producing waves with 1-5 s periods up to 0.4 m wave height. Turbine thrust (drag) and mechanical power output (torque, angular velocity) were measured at tow speeds of 0.6-1.5 m/s for two cross-flow axis MHK turbines: a Gorlov Helical Turbine (GHT) and a Lucid spherical turbine (LST). Both were provided by Lucid Energy Technologies, LLP, and have frontal areas of 1.3 (GHT) and 1.0 (LST) square meters, respectively. GHT performance was also measured in progressive waves of various periods, grid turbulence, and in the wake of a cylinder, installed upstream at various cross-stream locations. Overall, the GHT performs with higher power and thrust (drag) coefficients than the LST. A 2nd law efficiency, or kinetic exergy efficiency, was defined to calculate what fraction of the kinetic energy removed from the flow is converted to usable shaft work by each turbine. The exergy efficiency varies with tip speed ratio but approaches 90% for the optimum operating conditions for each turbine. The fraction of kinetic energy removed from the fluid that is not converted to shaft work is redistributed into turbulent kinetic energy in the wake. Quantifying the kinetic energy flowing out of the turbine is important for modeling of environmental transport processes and for predicting performance when turbines are used in arrays

  20. LES of an inclined jet into a supersonic cross-flow

    CERN Document Server

    Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall

    2008-01-01

    This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.

  1. Computational Studies of Flow through Cross Flow Fans - Effect of Blade Geometry

    Institute of Scientific and Technical Information of China (English)

    M. GOVARDHAN; D. LAKSHMANA SAMPAT

    2005-01-01

    This present paper describes three dimensional computational analysis of complex internal flow in a cross flow fan. A commercial computational fluid dynamics (CFD) software code CFX was used for the computation. RNG κ-ε two equation turbulence model was used to simulate the model with unstructured mesh. Sliding mesh interface was used at the interface between the rotating and stationary domains to capture the unsteady interactions. An accurate assessment of the present investigation is made by comparing various parameters with the available experimental data. Three impeller geometries with different blade angles and radius ratio are used in the present study. Maximum energy transfer through the impeller takes place in the region where the flow follows the blade curvature. Radial velocity is not uniform through blade channels. Some blades work in turbine mode at very low flow coefficients. Static pressure is always negative in and around the impeller region.

  2. Pengolahan Limbah Laundry Menggunakan Membran Nanofiltrasi Aliran Cross Flow untuk Menurunkan Kekeruhan dan Fosfat

    Directory of Open Access Journals (Sweden)

    Aufiyah Aufiyah

    2013-09-01

    Full Text Available Dilakukan penelitian mengenai pembuatan membran silika nanofiltrasi untuk mengurangi kekeruhan dan fosfat menggunakan reaktor dengan aliran cross flow dengan variasi massa silika 5, 8, dan 10 gram. Silika didapatkan dari sintesis pasir silika menggunakan metode alkali fussion menggunakan peleburan dengan KOH. Variasi limbah yang digunakan adalah 100% limbah, 50% pengenceran dan 75% pengenceran (25% air limbah dengan air PDAM. Penelitian ini bertujuan untuk mendapatkan pengaruh massa silika terhadap koefisien rejeksi dan nilai fluks pada setiap variasi membran. Data koefisien rejeksi dan nilai fluks menunjukkan variasi membran terbaik yang selanjutnya akan dianalisa morfologinya dengan metode SEM (Scanning Electron Microscopy dan analisa gugus fungsi dengan metode FTIR (Fourier Transform Infra Red. Didapatkan koefisien rejeksi terbaik adalah 5 gram 100% limbah dengan nilai rejeksi kekeruhan 91,33%. Rejeksi fosfat 56, 07%. Nilai fluks terbaik didapatkan membran 8 gram 25% air limbah dengan nilai fluks 2,81 L/m2.jam.

  3. Investigation of Blade Angle of an Open Cross-Flow Runner

    Science.gov (United States)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  4. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  5. NUMERICAL STUDY OF HYDRODYNAMICS OF MULTIPLE TANDEM JETS IN CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    XIAO Yang; TANG Hong-wu; LIANG Dong-fang; ZHANG Jiu-ding

    2011-01-01

    The hydrodynamics of a single jet and four tandem jets in a cross flow are simulated by using the Computational Fluid Dynamics (CFD) software Fluent.The realizable k- ε model is used to close the Reynolds-Averaged equations.The flow characteristics of the jets,including the jet trajectory,the velocity field and the turbulent kinetic energy are obtained with various jet-tocross flow velocity ratios R in the range of 2.38-17.88.It is shown that a single jet penetrates slightly deeper than the first jet in a jet group at the same R,although the difference decreases with the decrease of R.It is also found that the way in which the velocity decays along the centerline of the jet is similar for both a single jet and the first jet in a group,and the speed of the decay increases with the decrease of R.The downstream jets in a group are found to behave differently due to the sheltering effect of the first jet in the group.Compared with the first jet,the downstream jets penetrate deeper into the cross flow,and the velocity decays more slowly.The circulation zone between the two upstream jets in the front is stronger than those formed between the downstream jets.The Turbulent Kinetic Energy (TKE) sees a distinct double-peak across the cross-sections close to each nozzle,with low values in the jet core and high values in the shear layers.The double-peak gradually vanishes,as the shear layers of the jet merge further away from the nozzle,where the TKE assumes peaks at the jet centerline.

  6. Numerical study of a M-cycle cross-flow heat exchanger for indirect evaporative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Changhong [Department of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); School of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Zhao, Xudong; Smith, Stefan [Institute of Energy and Sustainable Development, De Montfort University, The Gateway, Leicester LE1 9BH (United Kingdom); Riffat, S.B. [Department of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-03-15

    In this paper, numerical analyses of the thermal performance of an indirect evaporative air cooler incorporating a M-cycle cross-flow heat exchanger has been carried out. The numerical model was established from solving the coupled governing equations for heat and mass transfer between the product and working air, using the finite-element method. The model was developed using the EES (Engineering Equation Solver) environment and validated by published experimental data. Correlation between the cooling (wet-bulb) effectiveness, system COP and a number of air flow/exchanger parameters was developed. It is found that lower channel air velocity, lower inlet air relative humidity, and higher working-to-product air ratio yielded higher cooling effectiveness. The recommended average air velocities in dry and wet channels should not be greater than 1.77 m/s and 0.7 m/s, respectively. The optimum flow ratio of working-to-product air for this cooler is 50%. The channel geometric sizes, i.e. channel length and height, also impose significant impact to system performance. Longer channel length and smaller channel height contribute to increase of the system cooling effectiveness but lead to reduced system COP. The recommend channel height is 4 mm and the dimensionless channel length, i.e., ratio of the channel length to height, should be in the range 100 to 300. Numerical study results indicated that this new type of M-cycle heat and mass exchanger can achieve 16.7% higher cooling effectiveness compared with the conventional cross-flow heat and mass exchanger for the indirect evaporative cooler. The model of this kind is new and not yet reported in literatures. The results of the study help with design and performance analyses of such a new type of indirect evaporative air cooler, and in further, help increasing market rating of the technology within building air conditioning sector, which is currently dominated by the conventional compression refrigeration technology. (author)

  7. Performance Evaluation, Emulation, and Control of Cross-Flow Hydrokinetic Turbines

    Science.gov (United States)

    Cavagnaro, Robert J.

    Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical

  8. Experimental Study on Coupled Cross-Flow and in-Line Vortex-Induced Vibration of Flexible Risers

    Institute of Scientific and Technical Information of China (English)

    GUO Hai-yan; LOU Min

    2008-01-01

    In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow (Y-) and in-line (X-) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.

  9. In situ characterization by SAXS of concentration polarization layers during cross-flow ultrafiltration of Laponite dispersions.

    Science.gov (United States)

    Pignon, F; Abyan, M; David, C; Magnin, A; Sztucki, M

    2012-01-17

    The structural organization inside the concentration polarization layer during cross-flow membrane separation process of Laponite colloidal dispersions has been characterized for the first time by in situ time-resolved small-angle X-ray scattering (SAXS). Thanks to the development of new "SAXS cross-flow filtration cells", concentration profiles have been measured as a function of the distance z from the membrane surface with 50 μm accuracy and linked to the permeation flux, cross-flow, and transmembrane pressure registered simultaneously. Different rheological behaviors (thixotropic gel with a yield stress or shear thinning sol) have been explored by controlling the mutual interactions between the particles as a result on the addition of peptizer. The structural reversibility of the concentration polarization layer has been demonstrated being in agreement with permeation flux measurements. These observations were related to structure of the dispersions under flow and their osmotic pressure.

  10. Filter quality of pleated filter cartridges.

    Science.gov (United States)

    Chen, Chun-Wan; Huang, Sheng-Hsiu; Chiang, Che-Ming; Hsiao, Ta-Chih; Chen, Chih-Chieh

    2008-04-01

    The performance of dust cartridge filters commonly used in dust masks and in room ventilation depends both on the collection efficiency of the filter material and the pressure drop across the filter. Currently, the optimization of filter design is based only on minimizing the pressure drop at a set velocity chosen by the manufacturer. The collection efficiency, an equally important factor, is rarely considered in the optimization process. In this work, a filter quality factor, which combines the collection efficiency and the pressure drop, is used as the optimization criterion for filter evaluation. Most respirator manufacturers pleat the filter to various extents to increase the filtration area in the limit space within the dust cartridge. Six sizes of filter holders were fabricated to hold just one pleat of filter, simulating six different pleat counts, ranging from 0.5 to 3.33 pleats cm(-1). The possible electrostatic charges on the filter were removed by dipping in isopropyl alcohol, and the air velocity is fixed at 100 cm s(-1). Liquid dicotylphthalate particles generated by a constant output atomizer were used as challenge aerosols to minimize particle loading effects. A scanning mobility particle sizer was used to measure the challenge aerosol number concentrations and size distributions upstream and downstream of the pleated filter. The pressure drop across the filter was monitored by using a calibrated pressure transducer. The results showed that the performance of pleated filters depend not only on the size of the particle but also on the pleat count of the pleated filter. Based on filter quality factor, the optimal pleat count (OPC) is always higher than that based on pressure drop by about 0.3-0.5 pleats cm(-1). For example, the OPC is 2.15 pleats cm(-1) from the standpoint of pressure drop, but for the highest filter quality factor, the pleated filter needed to have a pleat count of 2.65 pleats cm(-1) at particle diameter of 122 nm. From the aspect of

  11. Modeling and experimental analysis of phased array synthetic jet cross-flow interactions

    Science.gov (United States)

    Hasnain, Zohaib

    Synthetic Jet Actuators (SJAs) are fluidic devices capable of adding momentum to static or non-static bodies of fluid without adding mass. They are therefore categorized as zero-net-mass-flux (ZNMF) momentum source. In its simplest compact form a SJA consists of an oscillatory surface connected to a cavity with a single exit orifice through which the fluid enters and exits. SJA technology has been utilized in applications ranging from boundary layer control over aerodynamic surfaces to fluidic mixing in dispersion applications. The ZNMF nature of the technology means it is not subject to constraints experienced by traditional momentum sources that require the addition of mass in order to impart momentum. The momentum that can be added by a single SJA is limited by the energy transfer capabilities of the oscillating surface. In modern SJAs this surface usually is a piezoceramic/metal composite subjected to a high voltage AC signal. For applications such as flow control over aerodynamic surfaces, modern SJAs are used in an array configuration and are capable of altering the flow momentum by values ranging from 0.01-10%. While it is possible to build larger actuators to increase this value the benefits associated with the compact size would be lost. It is therefore desirable to tune other parameters associated with SJA arrays to increase this value. The specific motivation for this study comes from the desire to control the momentum addition capacity of a specific SJA array, without having to alter any geometric parameters. In a broader sense this study focuses on understanding the physics of SJA interaction in array configuration through experiments which are then used to guide in the design of modeling technique that predicts SJA array behavior in cross-flows. The first half of the project focused on understanding SJA behavior through modeling. Numerical techniques were initially used to model SJA and SJA arrays in cross-flows. Reduced numerical models were then

  12. Microbial community analysis in biotrickling filters treating isopropanol air emissions.

    Science.gov (United States)

    Pérez, M Carmen; Alvarez-Hornos, F Javier; San-Valero, Pau; Marzal, Paula; Gabaldón, Carmen

    2013-01-01

    The evolution of the microbial community was analysed over one year in two biotrickling filters operating under intermittent feeding conditions and treating isopropanol emissions, a pollutant typically found in the flexography sector. Each reactor was packed with one media: plastic cross-flow-structured material or polypropylene rings. The communities were monitored by fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA region. After inoculation with activated sludge, the biotrickling filters were operated using inlet loads (ILs) from 20 to 65 g C m(-3) h(-1) and empty-bed residence times (EBRTs) from 14 to 160 s. Removal efficiencies higher than 80% were obtained with ILs up to 35 g C m(-3) h(-1) working at EBRTs as low as 24 s. There was an increase in the total percentage of the target domains of up to around 80% at the end of the experiment. Specifically, the Gammaproteobacteria domain group, which includes the well-known volatile organic compound (VOC)-degrading species such as Pseudomonas putida, showed a noticeable rise in the two biotrickling filters of 26% and 27%, respectively. DGGE pattern band analysis revealed a stable band of Pseudomonas putida in all the samples monitored, even in the lower diversity communities. In addition, at similar operational conditions, the biotrickling filter with a greater relative abundance of Pseudomonas sp. (19.2% vs. 8%) showed higher removal efficiency (90% vs. 79%). Results indicate the importance of undertaking a further in-depth study of the involved species in the biofiltration process and their specific function.

  13. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  14. Innovative cross-flow membrane system for volume reduction of mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Greene, W. [SpinTek Membrane Systems, Huntington Beach, CA (United States)

    1997-10-01

    In this task, SpinTek Membrane Systems, Inc., and the Institute of Gas Technology are completing engineering development leading to a full-scale demonstration of the SpinTek ST-II High Shear Rotary Membrane Filtration System (ST-II) under a Program Research and Development Agreement (PRDA) with the Federal Energy Technology Center-Morgantown. The SpinTek ST-II technology will be scaled-up, and a two-stage ST-II system will be designed, constructed, and operated on both surrogate and actual feed at the Los Alamos National Laboratory (LANL) Liquid Radioactive Waste Treatment Facility (LRWTF). Results from these studies on both surrogate and actual wastewater streams will also be used by LANL personnel to produce a model for determining the applicability and economics of the SpinTek ST-II system to other DOE waste and process streams. The ST-II is a unique, compact cross-flow membrane system having several advantages in performance and cost compared to currently available systems. Staff at LANL have performed pilot-scale testing with the SpinTek technology to evaluate its feasibility for enhanced radionuclide removal from wastewater at its 5- to 8-million-gallon-per-year LRWTF. Recent data have shown the system`s capabilities to remove radionuclides from the waste stream at concentration factors greater than 2000:1, and performance has exceeded both conventional and all other advanced technologies examined.

  15. On the use of the periodicity condition in cross-flow tube

    Directory of Open Access Journals (Sweden)

    Beladjine Boumedienne

    2015-01-01

    Full Text Available This paper presents the results of measurements and numerical predictions of turbulent cross-flow through an in-line 7×7 bundle configuration with a constant transverse and longitudinal pitch-to-diameter ratio of 1.44. The experiments are conducted to measure the pressure around tubes, using DPS differential pressure scanner with air flow, in square channel at a Reynolds number of 35000 based on the gap velocity and the tube diameter. The commercial ANSYS FLUENT is used to solve the unsteady Reynolds–Averaged Navier–Stokes (RANS equations. The primary aim of the present study is to search for a turbulent model that could serve as an engineering design tool at a relatively low computational cost. The performances of the Spalart-Allmaras, the RNG k-ε, the Shear Stress Transport k-ω and the second moment closure RSM models are evaluated by comparing their simulation results against experimental data. The second objective is to verify the validity of the periodicity assumption taken account in the most previous numerical works by considering the filled bundle geometry. The CFD results show that the Spalart-Allmaras model on the fine mesh are comparable to the experiments while the periodicity statement did not produce consistently the flow behavior in the 7×7 tube bundle configuration.

  16. EXPERIMENTAL INVESTIGATION INTO HOT WATER SLOT JETS WITH NEGATIVELY BUOYANCY IN CROSS FLOW

    Institute of Scientific and Technical Information of China (English)

    YANG Zhong-hua; HUAI Wen-xin; DAI Hui-chao

    2005-01-01

    An experiment was conducted to examine the near-field behavior of negatively buoyant planar jets in flowing environment. Hot water jet was projected downwards at different angles from a slot into a uniform cross flow. Micro Acoustic Doppler Velocimeter (Micro ADV) system is used to measure the velocity and turbulent fluxes of Reynolds stresses. The whole field temperatures were measured with fast response thermocouples. Pure jets experiments were made also to study the effect of buoyancy in negatively buoyant jets. It is found that the influenced area of hot jets is larger than which of pure jets when the jet angle is 90° and the influenced area of hot jets is smaller than which of pure jets when the jet angle is 45°. The difference is not obvious at 60° angle jets. This means that the rising of temperature has effect not only on negatively buoyancy, but also on the intensity of turbulence. The contrast of these two influences dominates the trend of jet flow.

  17. Strouhal number effect on synchronized vibration range of a circular cylinder in cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Tsutomu; Nakao, Toshitsugu; Hayashi, Masaaki; Murayama, Kouichi [Hitachi Ltd., Tokyo (Japan)

    2001-11-01

    Synchronized vibrations were measured for a circular cylinder in a water cross flow at subcritical Reynolds numbers to compare the synchronization range between the subcritical and supercritical regions and clarify the effect of the Strouhal number on the range. A small vibration in the lift direction was found in only the subcritical region when the Karman vortex shedding frequency was about 1/5 of the cylinder natural frequency. The ratio of the Karman vortex shedding frequency to the natural frequency where the self-excited vibration in the drag direction by the symmetrical vortex shedding began was about 1/4 in the subcritical region, and increased to 0.32 at the Strouhal number of 0.29 in the supercritical region. The frequency ratio at the beginning of the lock-in vibration in the drag direction by the Karman vortex shedding was about 1/2, and that in the lift direction decreased from 1 to 0.8 with decreasing Strouhal number. (author)

  18. Effect of Impeller Geometry and Tongue Shape on the Flow Field of Cross Flow Fans

    Institute of Scientific and Technical Information of China (English)

    M. Govardhan; G. Venkateswarlu

    2003-01-01

    Experiments were conducted to investigate the effect of impeller geometry and tongue shape on the flow field of cross flow fans.Three impellers (Ⅰ,Ⅱ,Ⅲ)having same outer diameter,but different radius ratio and blade angles were employed for the investigation. Each impeller was tested with two tongue shapes. Flow survey was carded out for each impeller and tongue shape at two flow coefficients, and for each flow coefficient at different circumferential positions. The flow is two-dimensional along the blade span except near the shrouds.The total pressure developed by the impellers in each case is found to be maximum at a circumferential position of around 270°. The total and static pressures at the inlet of impellers are more or less same regardless of impeller and tongue geometry, but they vary considerably at exit of the impellers. Impeller Ⅲ with tongue T2 develops higher total pressure and efficiency where as impeller Ⅱ with tongue T_2 develops minimum total pressure.Higher diffusion and smaller vortex size are the reasons for better performance of impeller Ⅲ with tongue T2.

  19. Cake layer reduction by gas sparging cross flow ultrafiltration of skim latex serum

    Directory of Open Access Journals (Sweden)

    Harunsyah Nik Meriam Sulaiman

    2002-11-01

    Full Text Available A gas sparged method was investigated for reducing cake layer formation and enhancing the crossflow ultrafiltration process. The injection of nitrogen gas promotes turbulence and increases the permeate flux of the process fluid. Experiments were carried out using a tubular membrane (100 kDa MWCO,mounted vertically with skim latex serum, which results from the coagulation of skim latex by-product. The objective of this research was focused mainly on the observed reversible cake resistance during the cross flow ultrafiltration of skim latex serum. The effect of operating parameters, including feed flow rate, flowrate gas sparging and transmembrane pressure ware investigated. Results obtained thus far show that the use of gas sparged technique has been able to enhance total permeate flux in the range 8.29% to 145.33% compared to non-gas sparged condition. In this research optimum permeate flux was obtained at a feed flowrate of 1400 ml/min, a flowrate gas sparging of 500 ml/min and a transmembrane pressure of 0.89 barg.

  20. Interactions of a finite span synthetic jet with a cross flow

    Science.gov (United States)

    Leong, Chia Min; van Buren, Tyler; Whalen, Edward; Amitay, Michael; Rensselaer Polytechnic Institute Team; Boeing Collaboration

    2013-11-01

    A synthetic jet is a zero-net-mass-flux flow control actuator that produces alternating ejection and suction of fluid momentum across an orifice. It has been used in numerous applications as an active flow control device to improve aerodynamic performance. Though their aerodynamic performance effects are well known, this present study seeks to understand the fluid dynamic effects of synthetic jets. Specifically, the work investigates the interactions of a finite span synthetic jet with a zero-pressure-gradient laminar boundary layer. This study was performed in a small-scale subsonic wind tunnel with an adjustable test section upper wall that was used to generate a zero-pressure-gradient boundary layer. Several finite span rectangular orifices were chosen for this study. Time and phase-averaged Stereoscopic Particle Image Velocimetry (SPIV) measurements were acquired at multiple planes upstream and downstream of the synthetic jet orifice to explore the interaction of the synthetic jet with the cross flow. The effects of the orifice aspect ratio (12, 18, and 24) and blowing ratio (0.5, 1, and 1.5) were investigated. The unsteady vortical structures observed in the near field and the steady structures in the far field are discussed.

  1. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  2. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. (This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid sus-pension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low soliding ratio (Ms of less than 0.05 kg/kg). A usefial correlation ineorpomting solid lolling ratio, particle size and flow Reytmlds number was derived from experimental data. In addition, the κ-ε two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transit of the gas-phase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well wih experimental data.

  3. Guidelines for random excitation forces due to cross flow in steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Pettigrew, M.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1998-07-01

    Random excitation forces can cause low-amplitude tube motion that will result in long-term fretting-wear or fatigue. To prevent these tube failures in steam generators and other heat exchangers, designers and trouble-shooters must have guidelines that incorporate random or turbulent fluid forces. Experiments designed to measure fluid forces have been carried out at Chalk River Laboratories and at other labs around the world. The data from these experiments have been studied and collated to determine suitable guidelines for random excitation forces. In this paper, a guideline for random excitation forces in single-phase cross flow is presented in the form of normalised spectra that are applicable to a wide range of flow conditions and tube frequencies. In particular, the experimental results used in this study were carried out over the full range of flow conditions found in a nuclear steam generator. The proposed guidelines are applicable to steam generators, condensers, reheaters and other shell-and-tube heat exchangers. They may be used for flow-induced vibration analysis of new or existing components, as input to vibration analysis computer codes and as specifications in procurement documents. (author)

  4. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in m a ny industry processes, such as circulating fluidized bed process, pneumatic conv eying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and g as-solid suspension. The presence of particles causes positive enhancement of h e at transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (Ms of les s than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle s ize and flow Reynolds number was derived from experimental data. In addition, th e k-ε two-equation model and the Fluctuation-Spectrum- Random-Trajecto ry Model ( FSRT Model) are used to simulate the flow field and heat transfer of the gas-ph a se and the solid-phase, respectively. Through coupling of the two phases the mo d el can predict the local and total heat transfer characteristics of tube in gas - solid cross flow. For the total heat transfer enhancement due to particles loadi ng the model predictions agreed well with experimental data.

  5. The effect of blade pitch in the rotor hydrodynamics of a cross-flow turbine

    Science.gov (United States)

    Somoano, Miguel; Huera-Huarte, Francisco

    2016-11-01

    In this work we will show how the hydrodynamics of the rotor of a straight-bladed Cross-Flow Turbine (CFT) are affected by the Tip Speed Ratio (TSR), and the blade pitch angle imposed to the rotor. The CFT model used in experiments consists of a three-bladed (NACA-0015) vertical axis turbine with a chord (c) to rotor diameter (D) ratio of 0.16. Planar Digital Particle Image Velocimetry (DPIV) was used, with the laser sheet aiming at the mid-span of the blades, illuminating the inner part of the rotor and the near wake of the turbine. Tests were made by forcing the rotation of the turbine with a DC motor, which provided precise control of the TSR, while being towed in a still-water tank at a constant Reynolds number of 61000. A range of TSRs from 0.7 to 2.3 were covered for different blade pitches, ranging from 8° toe-in to 16° toe-out. The interaction between the blades in the rotor will be discussed by examining dimensionless phase-averaged vorticity fields in the inner part of the rotor and mean velocity fields in the near wake of the turbine. Supported by the Spanish Ministry of Economy and Competitiveness, Grant BES-2013-065366 and project DPI2015-71645-P.

  6. Reducing cross-flow vibrations of underflow gates: experiments and numerical studies

    CERN Document Server

    Erdbrink, C D; Sloot, P M A

    2013-01-01

    An experimental study is combined with numerical modelling to investigate new ways to reduce cross-flow vibrations of hydraulic gates with underflow. A rectangular gate section placed in a flume was given freedom to vibrate in the vertical direction. Holes in the gate bottom enabled leakage flow through the gate to enter the area directly under the gate which is known to play a key role in most excitation mechanisms. For submerged discharge conditions with small gate openings the vertical dynamic support force was measured in the reduced velocity range 1.5 < Vr < 10.5 for a gate with and without holes. The leakage flow through the holes significantly reduced vibrations. This attenuation was most profound in the high stiffness region at 2 < Vr < 3.5. Two-dimensional numerical simulations were performed with the Finite Element Method to assess local velocities and pressures for both gate types. A moving mesh covering both solid and fluid domain allowed free gate movement and two-way fluid-structure ...

  7. Relating surface pressure to Lagrangian wake topology around a circular cylinder in cross flow

    Science.gov (United States)

    Rockwood, Matthew; Green, Melissa

    2016-11-01

    The tracks of Lagrangian saddles, identified as non-parallel intersections of positive and negative-time finite-time Lyapunov exponent (FTLE) ridges, have been shown to indicate the timing of von Karman vortex shedding in the wake of bluff bodies. The saddles are difficult to track in real-time, however, since future flow field data is needed for the computation of the FTLE fields. In order to detect the topological changes without direct access to the FTLE, the saddle dynamics are correlated to measurable surface quantities on a circular cylinder in cross flow. The Lagrangian saddle found upstream of a forming and subsequently shedding vortex has been shown to accelerate away from the cylinder surface as the vortex sheds. In previous numerical results at Re = 150 , this acceleration coincides with the peak in lift force over the cylinder, and also with a minimum in the static pressure at a location slightly upstream of the mean separation location. In the current work, this result is compared with experimental data at Re = O (10 , 000) . Successful validation would provide a strategy for locating sensitive regions on the cylinder surface where vortex shedding could be detected using simple pressure transducers. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  8. Energy extraction from ocean currents using straight bladed cross-flow hydrokinetic turbine

    Directory of Open Access Journals (Sweden)

    Prasad Dudhgaonkar

    2017-04-01

    Full Text Available Harvesting marine renewable energy remains to be a prime focus of researchers across the globe both in environmental and in commercial perspectives. India is blessed with a long coastline, and the seas around Indian peninsula offer ample potential to tap various ocean energy forms. National Institute of Ocean Technology carries out research and various ocean energy technologies, out of which harnessing kinetic energy in seawater currents is one. This article presents the open sea trials recently carried out on National Institute of Ocean Technology’s cross-flow hydrokinetic ocean current turbine in South Andaman. The turbine was designed to generate 100 W electricity at 1.2 m/s current speed and was built in-house. The turbine was initially tested in a seawater channel and then was deployed in Macpherson Strait in Andaman. It was fitted below a floating platform designed especially for this purpose, and the performance of the turbine was continuously logged inside an on-board data acquisition system. The trials were successful and in line with computations.

  9. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.; Maurya, D.; Biswas, G.; Eswaran, V. [Indian Institute of Technology, Kanpur (India). Dept. of Mechanical Engineering

    2003-07-01

    A three-dimensional study of laminar flow and heat transfer in a channel with built-in oval tube and delta winglets is carried out through the solution of the complete Navier-Stokes and energy equations using a body-fitted grid and a finite-volume method. The geometrical configuration represents an element of a gas-liquid fin-tube cross-flow heat exchanger. The size of such heat exchangers can be reduced through enhancement of transport coefficients on the air (gas) side, which are usually small compared to the liquid side. In a suggested strategy, oval tubes are used in place of circular tubes, and delta-winglet type vortex generators in various configuration's are mounted on the fin-surface. An evaluation of the strategy is attempted in this investigation. The investigation is carried out for different angles of attack of the winglets to the incoming flow for the case of two winglet pairs. The variation of axial location of the winglets is also considered for one pair of winglets mounted in common-flow-down configuration. The structures of the velocity field and the heat transfer characteristics have been presented. The results indicate that vortex generators in conjunction with the oval tube show definite promise for the improvement of fin-tube heat exchangers. (author)

  10. Application of Cross-Flow Filtration Technique in Purification and Concentration of Juice from Vietnamese Fruits

    Directory of Open Access Journals (Sweden)

    Huynh Cang Mai

    2017-09-01

    Full Text Available This study is to offer a 1st insight in the use of membrane process for the purification and concentration of Vietnamese fruit juices: cashew apple (Anacardium occidentale Line., dragon fruit (Cactus hémiépiphytes, pineapple (Ananas comosus, pomelo (Citrus grandis L., and gac aril oil (Momordica cochinchinensis Spreng.. On a laboratory scale, the effect of different operating parameters such as trans-membrane pressures (TMP, temperature and membrane pore sizes on permeate flux was determined in order to optimize process conditions that would ensure acceptable flux with adequate juice quality. The quality of the samples coming from the ultrafiltration (UF process was evaluated in terms of: total soluble solids (TSS, suspended solids (SS, and vitamin C. For example, the purification process of cashew apple juice by cross-flow filtration was optimized at 0.5 μm membrane pore size, 2.5 bars TMP, and 60 min filtration time. Besides, this technique was applied to enhance carotenoids concentration from gac oil. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. Carotenoids were concentrated higher than that in feeding oil.

  11. On the use of the periodicity condition in cross-flow tube

    Science.gov (United States)

    Beladjine, Boumedienne; Aounallah, Mohammed; Belkadi, Mustapha; Aadjlout, Lahouari; Imine, Omar

    2015-05-01

    This paper presents the results of measurements and numerical predictions of turbulent cross-flow through an in-line 7×7 bundle configuration with a constant transverse and longitudinal pitch-to-diameter ratio of 1.44. The experiments are conducted to measure the pressure around tubes, using DPS differential pressure scanner with air flow, in square channel at a Reynolds number of 35000 based on the gap velocity and the tube diameter. The commercial ANSYS FLUENT is used to solve the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations. The primary aim of the present study is to search for a turbulent model that could serve as an engineering design tool at a relatively low computational cost. The performances of the Spalart-Allmaras, the RNG k-ɛ, the Shear Stress Transport k-ω and the second moment closure RSM models are evaluated by comparing their simulation results against experimental data. The second objective is to verify the validity of the periodicity assumption taken account in the most previous numerical works by considering the filled bundle geometry. The CFD results show that the Spalart-Allmaras model on the fine mesh are comparable to the experiments while the periodicity statement did not produce consistently the flow behavior in the 7×7 tube bundle configuration.

  12. Fluid structure interaction between rods and a cross flow - Numerical approach

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, Jan-patrice, E-mail: jan-patrice.simoneau@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Sageaux, Thomas, E-mail: thomas.sageaux@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Moussallam, Nadim, E-mail: nadim.moussallam@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Bernard, Olivier, E-mail: olivier.bernard1@areva.com [Areva, 1, Place J. Millet, F 92084 Paris la Defense (France)

    2011-11-15

    This paper presents a full coupled approach between fluid dynamics and structure analysis. It is conducted in order to further improve the assessment of fluid structure interaction problems, occurring in the nuclear field such as the behavior of PWR fuel rods, steam generators and other heat exchangers tubes, fast breeder fuel assemblies. The coupling is obtained by implementing a beam mechanical model in user routines of the CFD code Star-CD, and thanks to a moving grid procedure. The configurations considered are rods in a cross flow. The model is first validated on a single rod case. The lock-in effect is pointed out and both amplitude and frequency responses of the single rod are positively compared to experimental data. Secondly, the mutual influence of two rods, either in-line or parallely set, is investigated. Different behaviors, bounded by critical distances between the rods are highlighted. Finally, the stability of a 3 Multiplication-Sign 3 bundle is calculated for different impinging velocities. Stable and unstable areas are found when varying the impinging velocity. Above a limit, the vibrations amplify up to a contact between rods, this bound is found slightly greater than literature values for close configurations. It is therefore expected that further calculations, with model refinements, will bring valuable informations about bundle stability.

  13. Carotenoids concentration of Gac (Momordica cochinchinensis Spreng.) fruit oil using cross-flow filtration technology.

    Science.gov (United States)

    Mai, Huỳnh Cang; Truong, Vinh; Debaste, Frédéric

    2014-11-01

    Gac (Momordica cochinchinensis Spreng.) fruit, a traditional fruit in Vietnam and other countries of eastern Asia, contains an oil rich in carotenoids, especially lycopene and β-carotene. Carotenoids in gac fruit oil were concentrated using cross-flow filtration. In total recycle mode, effect of membrane pore size, temperature, and transmembrane pressure (TMP) on permeate flux and on retention coefficients has been exploited. Resistance of membrane, polarization concentration, and fouling were also analyzed. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. In batch mode, retentate was analyzed through index of acid, phospholipids, total carotenoids content (TCC), total antioxidant activity, total soluble solids, total solid content, color measurement, and viscosity. TCC in retentate is higher 8.6 times than that in feeding oil. Lipophilic antioxidant activities increase 6.8 times, while hydrophilic antioxidant activities reduce 40%. The major part of total resistance is due to polarization (55%) while fouling and intrinsic membrane contribute about 30% and 24%, respectively. © 2014 Institute of Food Technologists®

  14. Supercritical droplet dynamics and emission in low speed cross-flows

    Energy Technology Data Exchange (ETDEWEB)

    Chae, J. W. [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Yang, H. S.; Yoon, W. S. [Yonsei University, Seoul (Korea, Republic of)

    2008-08-15

    Droplet dynamics and emission of a supercritical droplet in crossing gas stream are numerically investigated. Effects of ambient pressure and velocity of nitrogen gas on the dynamics of the supercritical oxygen droplet are parametrically examined. Unsteady conservative axisymmetric Navier-Stokes equations in curvilinear coordinates are preconditioned and solved by dual-time stepping method. A unified property evaluation scheme based on a fundamental equation of state and extended corresponding-state principle is established to deal with thermodynamic non-idealities and transport anomalies. At lower pressures and velocities of nitrogen cross flows, both the diffusion and the convection are important in determining the droplet dynamics. Relative flow motion causes a secondary breakup and cascading vortices, and the droplet lifetime is reduced with increasing in ambient pressure. At higher ambient pressures and velocities, however, the droplet dynamics become convection-controlled while the secondary breakup is hindered by reduced diffusivity of the oxygen. Gas-phase mixing depends on the convection and diffusion velocities in conjunction with corresponding droplet deformation and flow interaction. Supercritical droplet dynamics and emission is not similar with respect to the pressure and velocity of the ambient gas and thus provides no scale

  15. Preparation of Interference Filter Reference Materials for ELISA Analytical Instruments%酶标分析仪波长标准物质的研制

    Institute of Scientific and Technical Information of China (English)

    杨欣欣; 张彬; 荀其宁; 拓锐; 胡国星; 潘忠泉

    2015-01-01

    以硫化锌为高折射材料和冰晶石为低反射材料,利用真空镀膜技术、光学极值法检测膜厚技术镀制了窄带全介质干涉滤光片,K9玻璃为薄膜保护层,采用切割、粗磨、精磨、抛光、镀膜等光学工艺制得酶标分析仪波长标准物质,经均匀性、稳定性考核合格后,由紫外可见近红外分光光度计标准装置对标准物质定值。研制的酶标分析仪波长标准物质定制结果扩展不确定度为0.7 nm(k=2),使用方便,量值准确、稳定,技术指标满足酶标分析仪波长示值误差及重复性检定/校准工作的需要。%The interference filter reference materials were made by vacuum coating technology and optical film thickness extremum method which plating zinc sulfide as high refraction materials and cryolite as low reflective materials of narrow–band interference filter, and K9 glass was used as film protective layer. After some optical technology such as cutting, coarse grinding,fine grinding,polishing and plating, the uniformity, stability of interference filter reference materials were examinated by the ultraviolet–visible–near infrared spectrophotometer standard device. According to the results, the deterministic uncertainty of the development reference material was 0.7 nm(k=2). Therefore, the developed interference filter reference materials can meet the verification/calibration requirement for wavelength error and repeatability of ELISA analytical instruments with convenience and stable value.

  16. Contactor/filter improvements

    Science.gov (United States)

    Stelman, David

    1989-01-01

    A contactor/filter arrangement for removing particulate contaminants from a gaseous stream includes a housing having a substantially vertically oriented granular material retention member with upstream and downstream faces, a substantially vertically oriented microporous gas filter element, wherein the retention member and the filter element are spaced apart to provide a zone for the passage of granular material therethrough. The housing further includes a gas inlet means, a gas outlet means, and means for moving a body of granular material through the zone. A gaseous stream containing particulate contaminants passes through the gas inlet means as well as through the upstream face of the granular material retention member, passing through the retention member, the body of granular material, the microporous gas filter element, exiting out of the gas outlet means. Disposed on the upstream face of the filter element is a cover screen which isolates the filter element from contact with the moving granular bed and collects a portion of the particulates so as to form a dust cake having openings small enough to exclude the granular material, yet large enough to receive the dust particles. In one embodiment, the granular material is comprised of prous alumina impregnated with CuO, with the cover screen cleaned by the action of the moving granular material as well as by backflow pressure pulses.

  17. Numerical Simulation of Bubble Formation and Transport in Cross-Flowing Streams

    Directory of Open Access Journals (Sweden)

    Yanneck Wielhorski

    2014-09-01

    Full Text Available Numerical simulations on confined bubble trains formed by cross-flowing streams are carried out with the numerical code THETIS which is based on the Volume of Fluid (VOF method and has been developed for two phase flow studies and especially for a gas-liquid system. The surface tension force, which needs particular attention in order to determine the shape of the interface accurately, is computed using the Continuum Surface Force model (CSF. Through the coupling of a VOF-PLIC technique (Piecewise-Linear Interface Calculation and a smoothing function of adjustable thickness, the Smooth Volume of Fluid technique (SVOF is intended to capture accurately strong interface distortion, rupture or reconnection with large density and viscosity contrasts between phases. This approach is extended by using the regular VOF-PLIC technique, while applying a smoothing procedure affecting both physical characteristics averaging and surface tension modeling. The front-capturing strategy is extended to gas injection. We begin by introducing the main physical phenomena occurring during bubble formation in microfluidic systems. Then, an experimental study performed in a cylindrical T-junction for different wetting behaviors is presented. For the wetting configuration, Cartesian 2D numerical simulations concerning the gas-liquid bubble production performed in a T-junction with rectangular, planar cross sections are shown and compared with experimental measurements. Finally, the results obtained of bubble break-up mechanism, shape, transport and pressure drop along the channel will be presented, discussed and compared to some experimental and numerical outcomes given in the literature.

  18. Large Eddy simulations of jet in cross flow; Simulations aux grandes echelles: application au jet transverse

    Energy Technology Data Exchange (ETDEWEB)

    Priere, C.

    2005-01-15

    Nowadays, environmental and economic constraints require considerable research efforts from the gas turbine industry. Objectives aim at lowering pollutants emissions and fuel consumption. These efforts take a primary importance to satisfy a continue growth of energy production and to obey to stringent environmental legislations. Recorded progresses are linked to mixing enhancement in combustors running at lean premixed operating point. Indeed, industry shows itself to be attentive in the mixing enhancement and during the last years, efforts are concentrated on fresh and burned gas dilution. The Jet In Cross Flow (JICF), which constitutes a representative case to further the research effort. It has been to be widely studied both in experimentally and numerically, and is particularly well suited for the evaluation of Large Eddy Simulations (LES). This approach, where large scale phenomena are naturally taken into account in the governing equation while the small scales are modelled, offers the means to well-predict such flows. The main objective of this work is to gauge and to enhance the quality of the LES predictions in JICF configurations by means of numerical tools developed in the compressible AVBP code. Physical and numerical parameters considered in the JICF modelization are taken into account and strategies that are able to enhance quality of LES results are proposed. Configurations studied in this work are the following: - Influences of the boundary conditions and jet injection system on a free JICF - Study of static mixing device in an industrial gas turbine chamber. - Study of a JICF configuration represented a dilution zone in low emissions combustors. (author)

  19. Elution Is a Critical Step for Recovering Human Adenovirus 40 from Tap Water and Surface Water by Cross-Flow Ultrafiltration

    Science.gov (United States)

    Shi, Hang; Xagoraraki, Irene; Bruening, Merlin L.

    2016-01-01

    ABSTRACT This paper examines the recovery of the enteric adenovirus human adenovirus 40 (HAdV 40) by cross-flow ultrafiltration and interprets recovery values in terms of physicochemical interactions of virions during sample concentration. Prior to ultrafiltration, membranes were either blocked by exposure to calf serum (CS) or coated with a polyelectrolyte multilayer (PEM). HAdV 40 is a hydrophobic virus with a point of zero charge between pH 4.0 and pH 4.3. In accordance with predictions from the extended Derjaguin-Landau-Verwey-Overbeek theory, the preelution recovery of HAdV (rpre) from deionized water was higher with PEM-coated membranes (rprePEM = 74.8% ± 9.7%) than with CS-blocked membranes (rpreCS = 54.1% ± 6.2%). With either membrane type, the total virion recovery after elution (rpost) was high for both deionized water (rpostPEM = 99.5% ± 6.6% and rpostCS = 98.8% ± 7.7%) and tap water (rpostPEM = 89% ± 15% and rpostCS = 93.7% ± 6.9%). The nearly 100% recoveries suggest that the polyanion (sodium polyphosphate) and surfactant (Tween 80) in the eluent disrupt electrostatic and hydrophobic interactions between the virion and the membrane. Addition of EDTA to the eluent greatly improved the elution efficacy (rpostCS = 88.6% ± 4.3% and rpostPEM = 87.0% ± 6.9%) with surface water, even when the organic carbon concentration in the water was high (9.4 ± 0.1 mg/liter). EDTA likely disrupts cation bridging between virions and particles in the feed water matrix or the fouling layer on the membrane surface. For complex water matrices, the eluent composition is the most important factor for achieving high virion recovery. IMPORTANCE Herein we present the results of a comprehensive physicochemical characterization of HAdV 40, an important human pathogen. The data on HAdV 40 surface properties enabled rigorous modeling to gain an understanding of the energetics of virion-virion and virion-filter interactions. Cross-flow filtration for concentration and recovery

  20. Detailed flow and force measurements in a rotated triangular tube bundle subjected to two-phase cross-flow

    Science.gov (United States)

    Pettigrew, M. J.; Zhang, C.; Mureithi, N. W.; Pamfil, D.

    2005-05-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. A detailed knowledge of the characteristics of two-phase cross-flow in tube bundles is required to understand and formulate flow-induced vibration parameters such as damping, fluidelastic instability, and random excitation due to turbulence. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air/water flow to simulate two-phase mixtures. The array is made of relatively large diameter cylinders (38 mm) to allow for detailed two-phase flow measurements between cylinders. Fiber-optic probes were developed to measure local void fraction. Local flow velocities and bubble diameters or characteristic lengths of the two-phase mixture are obtained by using double probes. Both the dynamic lift and drag forces were measured with a strain gauge instrumented cylinder.

  1. A Study on the Uncertainty of Flow-Induced Vibration in a Cross Flow over Staggered Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Park, Jong-Woon [Dongguk univ, Gyeong Ju (Korea, Republic of); Choi, Hyeon-Kyeong [HanNam University, Daejeon (Korea, Republic of)

    2015-05-15

    Cross-flow in many support columns of very high temperature reactor (VHTR) lower plenum would have FIV issues under high speed flow jetting from the core. For a group of multiple circular cylinders subjected to a cross-flow, three types of potential vibration mechanisms may exist: (1) Vortex-induced vibration (VIV), (2) Fluid-elastic vibration (FEV) and (3) Turbulence-induced vibration (TIV). Kevalahan studied the free vibration of circular cylinders in a tightly packed periodic square inline array of cylinders. Pandey et al. studied the flue gas flow distribution in the Low Temperature Super Heater (LTSH) tube bundles situated in second pass of a utility boiler and the phenomenon of flow induced vibration. Nakamura et al. studied flow instability of cylinder arrays resembling U-bend tubes in steam generators. The FIV evaluation is usually performed with computational fluid dynamic (CFD) analysis to obtain unknown frequency of oscillation of the multiple objects under turbulent flow and thus the uncertainty residing in the turbulence model used should be quantified. In this paper, potential FIV uncertainty arising from the turbulence phenomena are evaluated for a typical cross flow through staggered tube bundles resembling the VHTR lower plenum support columns. Flow induced vibration (FIV) is one of the important mechanical and fatigue issues in nuclear systems. Especially, cross-flow in many support structures of VHTR lower plenum would have FIV issues under highly turbulent jet flows from the core. The results show that the effect of turbulence parameters on FIV is not negligible and the uncertainty is 5 to 10%. Present method can be applied to future FIV evaluations of nuclear systems. More extensive studies on flow induced vibration in a plant scale by using more rigorous computational methods are under way.

  2. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    Energy Technology Data Exchange (ETDEWEB)

    Roa, A M; Aumelas, V; MaItre, T; Pellone, C, E-mail: ane.mentxaka@hmg.inpg.f [Equipe Energetique, Grenoble-INP - LEGI (Laboratory of Geophysical and Industrial Flows), Domaine Universitaire - BP 53, Grenoble cedex 9, 38041 (France)

    2010-08-15

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  3. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    Science.gov (United States)

    Roa, A. M.; Aumelas, V.; Maître, T.; Pellone, C.

    2010-08-01

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  4. The effects of material loading and flow rate on the disinfection of pathogenic microorganisms using cation resin-silver nanoparticle filter system

    Science.gov (United States)

    Mpenyana-Monyatsi, L.; Mthombeni, N. H.; Onyango, M. S.; Momba, M. N. B.

    2017-08-01

    Waterborne diseases have a negative impact on public health in instances where the available drinking water is of a poor quality. Decentralised systems are needed to provide safe drinking water to rural communities. Therefore, the present study aimed to develop and investigate the point-of-use (POU) water treatment filter packed with resin-coated silver nanoparticles. The filter performance was evaluated by investigating the effects of various bed masses (10 g, 15 g, 20 g) and flow rates (2 mL/min, 5 mL/min, 10 mL/min) by means of breakthrough curves for the removal efficiency of presumptive Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Vibrio cholerae from spiked groundwater samples. The results revealed that, as the bed mass increases the breakthrough time also increases with regards to all targeted microorganisms. However, when the flow rate increases the breakthrough time decreased. These tests demonstrated that resin-coated silver nanoparticle can be an effective material in removing all targeted microorganisms at 100% removal efficiency before breakthrough points are achieved. Moreover the filter system demonstrated that it is capable of producing 15 L/day of treated water at an operating condition of 10 mL/min flow rate and 15 g bed mass, which is sufficient to provide for seven individuals in the household if they consume 2 L/person/day for drinking purpose. Therefore, the bed mass of the filter system should be increased in order for it to produce sufficient water that will conform to the daily needs of an individual.

  5. On the Nonlinear Evolution of a Stationary Cross-Flow Vortex in a Fully Three-Dimensional Boundary Layer Flow

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.

  6. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  7. The use of dead-end and cross-flow nanofiltration to purify prebiotic oligosaccharides from reaction mixtures

    Directory of Open Access Journals (Sweden)

    Alistair S. Grandison

    2002-11-01

    Full Text Available Nanofiltration (NF of model sugar solutions and commercial oligosaccharide mixtures were studied in both dead-end and cross-flow modes. Preliminary trials, with a dead-end filtration cell, demonstrated the feasibility of fractionating monosaccharides from disaccharides and oligosaccharides in mixtures, using loose nanofiltration (NF-CA-50, NF-TFC-50 membranes. During the nanofiltration purification of a commercial oligosaccharide mixture, yields of 19% (w w-1 for the monosaccharides and 88% (w w-1 for di, and oligosaccharides were obtained for the NF-TFC-50 membrane after four filtration steps, indicating that removal of the monosaccharides is possible, with only minor losses of the oligosaccharide content of the mixture. The effects of pressure, feed concentration, and filtration temperature were studied in similar experiments carried out in a cross-flow system, in full recycle mode of operation. The rejection rates of the sugar components increased with increasing pressure, and decreased with both increasing total sugar concentration in the feed and increasing temperature. Continuous diafiltration (CD purification of model sugar solutions and commercial oligosaccharide mixtures using NF-CA-50 (at 25oC and DS-5-DL (at 60oC membranes, gave yield values of 14 to 18% for the monosaccharide, 59 to 89% for the disaccharide and 81 to 98% for the trisaccharide present in the feed. The study clearly demonstrates the potential of cross flow nanofiltration in the purification of oligosaccharide mixtures from the contaminant monosaccharides.

  8. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  9. The removal of hydrogen sulfide from biogas in a microaerobic biotrickling filter using polypropylene carrier as packing material.

    Science.gov (United States)

    Zhou, Qiying; Liang, Hong; Yang, Senlin; Jiang, Xia

    2015-04-01

    Biological removal of hydrogen sulfide in biogas is an increasingly adopted alternative to the conventional physicochemical processes, because of its economic and environmental benefits. In this study, a microaerobic biofiltration system packed with polypropylene carrier was used to investigate the removal of high concentrations of H2S contained in biogas from an anaerobic digester. The results show that H2S in biogas was removed completely under different inlet concentrations of H2S from 2065 ± 234 to 7818 ± 131 ppmv, and the elimination capacity of H2S in the filter achieved about 122 g H2S/m(3)/h. It was observed that the content of CH4 in biogas increased after the biogas biodesulfurization process, which was beneficial for the further utilization of biogas. The elemental sulfur and sulfate were the main sulfur species of H2S degradation, and elemental sulfur was dominant (about 80 %) under high inlet H2S concentration. The results of terminal restriction fragment length polymorphism (T-RFLP) and fluorescence in situ hybridization (FISH) show that the population of sulfide-oxidizing bacteria (SOB) species in the filter changed with different concentrations of H2S. The microaerobic biofiltration system allows the potential use of biogas and the recovery of elemental sulfur resource simultaneously.

  10. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    Science.gov (United States)

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications.

  11. To Study the Effect of Grating Length on Propagating Modes in Bragg Filters with AlxGa1-xN/GaN Material Composition

    CERN Document Server

    Banerji, Sourangsu

    2013-01-01

    In this paper, the forward and backward propagating modes in an optical waveguide structure namely the fiber Bragg filter also considered as a one dimensional photonic crystal, are analytically computed as a function of grating length for coupled optical modes. AlxGa1-xN/GaN material composition is considered as a unit block of the periodic organization, and refractive index of AlxGa1-xN/GaN is taken to be dependent on material composition, bandgap and operating wavelength following Adachis' model. Expressions of propagating wave are derived using coupled mode theory. Simulated results help us to study the propagation of forward and backward wave propagating modes inside fiber and waveguide devices.

  12. Study of parameters and entrainment of a jet in cross-flow arrangement with transition at two low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Camilo [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany); Convenio Andres Bello, Instituto Internacional de Investigaciones Educativas para la Integracion, La Paz (Bolivia); Denev, Jordan A.; Bockhorn, Henning [Karlsruhe Institute of Technology, Engler-Bunte-Institute, Combustion Division, Karlsruhe (Germany); Suntz, Rainer [Karlsruhe Institute of Technology, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe (Germany)

    2012-10-15

    Investigation of the mixing process is one of the main issues in chemical engineering and combustion and the configuration of a jet into a cross-flow (JCF) is often employed for this purpose. Experimental data are gained for the symmetry plane in a JCF-arrangement of an air flow using a combination of particle image velocimetry (PIV) with laser-induced fluorescence (LIF). The experimental data with thoroughly measured boundary conditions are complemented with direct numerical simulations, which are based on idealized boundary conditions. Two similar cases are studied with a fixed jet-to-cross-flow velocity ratio of 3.5 and variable cross-flow Reynolds numbers equal to 4,120 and 8,240; in both cases the jet issues from the pipe at laminar conditions. This leads to a laminar-to-turbulent transition, which depends on the Reynolds number and occurs quicker for the case with higher Reynolds number in both experiments and simulations as well. It was found that the Reynolds number only slightly affects the jet trajectory, which in the case with the higher Reynolds number is slightly deeper. It is attributed to the changed boundary layer shape of the cross-flow. Leeward streamlines bend toward the jet and are responsible for the strong entrainment of cross-flow fluid into the jet. Velocity components are compared for the two Reynolds numbers at the leeward side at positions where strongest entrainment is present and a pressure minimum near the jet trajectory is found. The numerical simulations showed that entrainment is higher for the case with the higher Reynolds number. The latter is attributed to the earlier transition in this case. Fluid entrainment of the jet in cross-flow is more than twice stronger than for a similar flow of a jet issuing into a co-flowing stream. This comparison is made along the trajectory of the two jets at a distance of 5.5 jet diameters downstream and is based on the results from the direct numerical simulations and recently published

  13. CFD simulations of the flow control performance applied for inlet of low drag high-bypass turbofan engine at cross flow regimes

    Science.gov (United States)

    Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.

    2016-10-01

    Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.

  14. Alternative Electrode Materials and Ceramic Filter Minimize Disinfection Byproducts in Point-of-Use Electrochemical Water Treatment

    Science.gov (United States)

    Yoon, Yeojoon; Jung, Youmi; Kwon, Minhwan; Cho, Eunha; Kang, Joon-Wun

    2013-01-01

    Abstract Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions. PMID:24381482

  15. Alternative Electrode Materials and Ceramic Filter Minimize Disinfection Byproducts in Point-of-Use Electrochemical Water Treatment.

    Science.gov (United States)

    Yoon, Yeojoon; Jung, Youmi; Kwon, Minhwan; Cho, Eunha; Kang, Joon-Wun

    2013-12-01

    Effects of various electrodes and prefiltration to minimize disinfection byproducts (DBPs) in electrochemical water disinfection was evaluated. The target microorganism, Escherichia coli O157:H7, was effectively inactivated even applying a solar-charged storage battery for the electrolysis process. Extent of microbial inactivation decreased with lower water temperature and higher pH in the free chlorine disinfection system. The RuO2/Ti electrode was most efficient because it produced the lowest concentration of chlorate and the highest generation of free chlorine. Prefiltration using a ceramic filter inhibited formation of halogenated DBPs because it removed precursors of DBPs. For safe point-of-use water treatment, the use of a hybrid prefiltration stage with the electrolysis system is strongly recommended to reduce risks from DBPs. The system is particularly suited to use in developing regions.

  16. Performance evaluation and modeling of a conformal filter (CF) based real-time standoff hazardous material detection sensor

    Science.gov (United States)

    Nelson, Matthew P.; Tazik, Shawna K.; Bangalore, Arjun S.; Treado, Patrick J.; Klem, Ethan; Temple, Dorota

    2017-05-01

    Hyperspectral imaging (HSI) systems can provide detection and identification of a variety of targets in the presence of complex backgrounds. However, current generation sensors are typically large, costly to field, do not usually operate in real time and have limited sensitivity and specificity. Despite these shortcomings, HSI-based intelligence has proven to be a valuable tool, thus resulting in increased demand for this type of technology. By moving the next generation of HSI technology into a more adaptive configuration, and a smaller and more cost effective form factor, HSI technologies can help maintain a competitive advantage for the U.S. armed forces as well as local, state and federal law enforcement agencies. Operating near the physical limits of HSI system capability is often necessary and very challenging, but is often enabled by rigorous modeling of detection performance. Specific performance envelopes we consistently strive to improve include: operating under low signal to background conditions; at higher and higher frame rates; and under less than ideal motion control scenarios. An adaptable, low cost, low footprint, standoff sensor architecture we have been maturing includes the use of conformal liquid crystal tunable filters (LCTFs). These Conformal Filters (CFs) are electro-optically tunable, multivariate HSI spectrometers that, when combined with Dual Polarization (DP) optics, produce optimized spectral passbands on demand, which can readily be reconfigured, to discriminate targets from complex backgrounds in real-time. With DARPA support, ChemImage Sensor Systems (CISS™) in collaboration with Research Triangle Institute (RTI) International are developing a novel, real-time, adaptable, compressive sensing short-wave infrared (SWIR) hyperspectral imaging technology called the Reconfigurable Conformal Imaging Sensor (RCIS) based on DP-CF technology. RCIS will address many shortcomings of current generation systems and offer improvements in

  17. Investigations on the use of pneumatic cross-flow nebulizers with dual solution loading including the correction of matrix effects in elemental determinations by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mathieu [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de

    2007-02-15

    The use of a so-called trihedral and a T-shaped cross-flow pneumatic nebulizer with dual solution loading for inductively coupled plasma optical emission spectrometry has been studied. By these devices analyte clouds from two solutions can be mixed during the aerosol generation step. For both nebulizers the correction of matrix effects using internal standardization and standard addition calibration in an on-line way was investigated and compared to elemental determinations using a conventional cross-flow nebulizer and calibration with synthetic standard solutions without matrix matching. A significant improvement of accuracy, both for calibration with internal standardization and standard addition, was obtained in the case of four synthetic solutions containing each 40 mmol L{sup -1} Na, K, Rb and Ba as matrix elements and 300 {mu}g L{sup -1} Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as analytes. Calibration by standard addition in the case of dual solution loading has been shown to be very useful in the determination of elements at minor and trace levels in steel and alumina reference materials. The results of analysis for minor concentrations of Cr, Cu and Ni in steel as well as for Ca, Fe, Ga, Li, Mg, Mn, Na, Si and Zn in alumina powder certified reference materials subsequent to sample dissolution were found to be in good agreement with the certificates. Limits of detection were found to be only slightly above those for a conventional cross-flow nebulizer and a precision better than 3% was realized with both novel nebulizers.

  18. Optimal filtering

    CERN Document Server

    Anderson, Brian D O

    2005-01-01

    This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research.Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects e

  19. Improving Ambient Wind Environments of a Cross-flow Wind Turbine near a Structure by using an Inlet Guide Structure and a Flow Deflector

    Institute of Scientific and Technical Information of China (English)

    Tadakazu TANINO; Shinichiro NAKAO; Genki UEBAYASHI

    2005-01-01

    A cross-flow wind turbine near a structure was tested for the performance. The results showed that the performance of a cross-flow wind turbine near a structure was up to 30% higher than the one without a structure.In addition, we tried to get higher performance of a cross-flow wind turbine by using an Inlet Guide Structure and a Flow Deflector. An Inlet Guide Structure was placed on the edge of a structure and a Flow Deflector was set near a cross-flow wind turbine and can improve ambient wind environments of the wind turbine, the maximum power coefficients were about 15 to 40% higher and the tip speed ratio range showing the high power coefficient was wide and the positive gradients were steep apparently.

  20. Material characterization and evaluation of Fyrquel effect on the metal part of filters in a system EHC; Caracterizacion del material y evaluacion del efecto del Fyrquel en la parte metalica de filtros en un sistema EHC

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Zenteno S, J.; Robles P, E.; Contreras R, A.; Arganis J, C. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Griz C, M., E-mail: angeles.diaz@inin.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km. 42.5, Veracruz (Mexico)

    2014-10-15

    In recent years, unexpected stoppages in power plants have been associated with problems in electro-hydraulic control systems (EHC) which generally operate with fluids to high pressure resistant to fire, but sensitive to the presence of water and contaminants that can promote damage and malfunction of government and discharge valves. The analysis here presented was performed to two filters prior to the servo valves of an EHC system that came out of service as a result of damage to these components. The study is based on analysis and inspection of metal and filter elements of these devices, integrating both chemical characterization by energy-dispersive X-ray spectroscopy of waste as materials that comprise both filters. The assessment made allowed documenting a poor design of the devices, same that promoted the stagnant fluid (Fyrquel), locally modifying the chemical composition of the medium, prompting the activation of auto-catalytic degradation processes that acidified the environment; the acid ph solutions began in susceptible sites of electrochemical corrosion processes which increased the Fyrquel contamination. (Author)

  1. Adsorption of Ammonia Nitrogen by Silicon-Based Zeolite Filter Material%硅基沸石滤料对氨氮静态吸附实验

    Institute of Scientific and Technical Information of China (English)

    刘振亮; 于衍真; 冯岩; 赵春辉

    2011-01-01

    以天然斜发沸石为原料,研制硅基沸石滤料,并以硅基沸石滤料作为填料,研究探讨硅基沸石滤料对废水中氨氮的静态吸附作用.对比天然斜发沸石,通过质量浓度与吸附量的Langmuir曲线和Freundlich曲线,对硅基沸石滤料的吸附机理和离子交换性能进行分析.实验表明,自行研制的硅基沸石滤料符合国家标准,对氨氮的静态吸附容量可高达150mg/g,是其原料天然斜发沸石吸附容量的5倍;硅基沸石滤料对氨氮的静态吸附作用是物理吸附和化学吸附共同作用的结果,在一定的氨氮初始质量浓度范围内,硅基沸石滤料对于氨氮的去除率随着氨氮初始质量浓度的增加而增加,最高可达62.7%,远远高于天然斜发沸石.%The silicon-zeolite filter material is prepared using natural clinoptilolite as raw material.Taking it as additives, we investigated the adsorption of ammonia nitrogen in wastewater on it and analyzed its adsorption mechanism and ion exchanging behavior through Langmuir and Freundlich cures which describe the relation between mass concentration and the amount of adsorption.Experimental results show that the silicon-based zeolite filter material follows the national standard,and its static adsorption capacity of ammonia is up to 150 mg/g,which is 5 times that of natural zeolite ;the adsorption of ammonia nitrogen on the silicon-based zeolite filter mate rial is the results of physical adsorption and chemical adsorption ;in a certain range of initial ammonia concentration, the removal of ammonia by the silicon-based zeolite increases with the increase of initial ammonia concentration, the highest being 62.7%, which is higher than that of natural zeolite.

  2. Dose reduction technique using a combination of a region of interest (ROI) material x-ray attenuator and spatially different temporal filtering for fluoroscopic interventions

    Science.gov (United States)

    Swetadri Vasan, S. N.; Panse, A.; Jain, A.; Sharma, P.; Ionita, Ciprian N.; Titus, A. H.; Cartwright, A. N.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We demonstrate a novel approach for achieving patient dose savings during image-guided neurovascular interventions, involving a combination of a material x-ray region of interest (ROI) attenuator and a spatially different ROI temporal filtering technique. The part of the image under the attenuator is reduced in dose but noisy and less bright due to fewer x-ray quanta reaching the detector, as compared to the non-attenuating (or less attenuating) region. First the brightness is equalized throughout the image by post processing and then a temporal filter with higher weights is applied to the high attenuating region to reduce the noise, at the cost of increased lag; however, in the regions where less attenuation is present, a lower temporal weight is needed and is applied to preserve temporal resolution. A simulation of the technique is first presented on an actual image sequence obtained from an endovascular image guided interventional (EIGI) procedure. Then the actual implementation of the technique with a physical ROI attenuator is presented. Quantitative analysis including noise analysis and integral dose calculations are presented to validate the proposed technique.

  3. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    Science.gov (United States)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  4. Study on breakup of liquid ligaments in hypersonic cross flow using laser sheet imaging and infrared light extinction spectroscopy

    Science.gov (United States)

    Regert, T.; Horvath, I.; Buchlin, J.-M.; Masutti, D.; Chazot, O.; Vetrano, M. R.; Lapebie, C.; Le Gallic, C.

    2017-06-01

    This paper presents and discusses the results of tests of breakup phenomenon of liquid water into a hypersonic cross §ow from the surface of a 7 degree half-angle cone model at zero degree angle of incidence. The present work shows the dependence of the liquid phase characteristics on the cross-section area of the injection hole in a Mach 6 cross flow. The results are analyzed qualitatively by imaging, by Interferometric Laser Imaging for Droplet Sizing (ILIDS), and by InfraRed Light Extinction Spectroscopy (IR-LES). Conclusions are drawn concerning the droplet size distribution and the liquid §ow ¦eld characteristics.

  5. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    Science.gov (United States)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong

    2012-07-01

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector.

  6. Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures.

    Science.gov (United States)

    Pérez, M C; Álvarez-Hornos, F J; Portune, K; Gabaldón, C

    2015-01-01

    The removal of styrene was studied using two biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and one biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for BFs and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m(-3) h(-1) and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm(-3), removal efficiencies between 70 % and 95 % were obtained in the three bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m(-3) h(-1) were obtained for the BF1-P and BF2-C, respectively (IL of 173 g m(-3) h(-1) and EBRT of 60 s in BF1-P; IL of 89 g m(-3) h(-1) and EBRT of 90 s in BF2-C). A maximum EC of 52 g m(-3) h(-1) was obtained for the BTF (IL of 116 g m(-3) h(-1), EBRT of 45 s). Problems regarding high pressure drop appeared in the peat BF, whereas drying episodes occurred in the coconut fibre BF. DGGE revealed that the pure culture used for BF inoculation was not detected by day 105. Although two different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option.

  7. Extract-filter-shoot liquid chromatography with mass spectrometry for the analysis of vitamin D2 in a powdered supplement capsule and standard reference material 3280.

    Science.gov (United States)

    Byrdwell, William Craig

    2014-08-01

    An "extract-filter-shoot" method for the analysis of vitamin D2, ergocalciferol, in a dry powdered dietary supplement capsule containing rice flour excipient and in a National Institute of Standards and Technology standard reference material 3280 is reported. Quantification of vitamin D2 was done by atmospheric pressure chemical ionization mass spectrometry using selected ion monitoring, two transitions of selected reaction monitoring, and extracted ion chromatograms from full scans. UV detection was used for the quantification of Vitamin D2 in the dry powder capsule, whereas interfering species rendered UV detection unreliable for standard reference material 3280. Average values for standard reference material 3280 ranged from 8.27 ± 0.58 to 8.33 ± 0.57 μg/g using internal standard calibration and response factor approaches, compared to the previous National Institute of Standards and Technology internal value for vitamin D2 of 8.78 ± 0.11 μg/g, and the recently updated reference value of 8.6 ± 2.6 μg/g. The powdered supplement capsule was found to contain 28.19 ± 0.35 to 28.67 ± 0.90 μg/capsule for a capsule labeled to contain 25.00 μg. The triacylglycerol composition of the rice flour excipient in the powdered supplement capsule determined by atmospheric pressure chemical ionization mass spectrometry is also reported.

  8. Numerical heat and mass transfer analysis of a cross-flow indirect evaporative cooler with plates and flat tubes

    Science.gov (United States)

    Chua, K. J.; Xu, J.; Cui, X.; Ng, K. C.; Islam, M. R.

    2016-09-01

    In this study the performance of an indirect evaporative cooling system (IECS) of cross-flow configuration is numerically investigated. Considering the variation of water film temperature along the flowing path and the wettability of the wet channel, a two-dimensional theoretical model is developed to comprehensively describe the heat and mass transfer process involved in the system. After comparing the simulation results with available experimental data from literature, the deviation within ±5 % proves the accuracy and reliability of the proposed mathematical model. The simulation results of the plate type IECS indicate that the important parameters, such as dimension of plates, air properties, and surface wettability play a great effect on the cooling performance. The investigation of flow pattern shows that cross-flow configuration of primary air with counter-flow of secondary air and water film has a better cooling performance than that of the parallel-flow pattern. Furthermore, the performance of a novel flat tube working as the separating medium is numerically investigated. Simulation results for this novel geometry indicate that the tube number, tube long axis and short axis length as well as tube length remarkably affect its cooling performance.

  9. Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: characterization at multi-scales.

    Science.gov (United States)

    Jin, Y; Hengl, N; Baup, S; Pignon, F; Gondrexon, N; Sztucki, M; Romdhane, A; Guillet, A; Aurousseau, M

    2015-06-25

    This study investigates for the first time the behaviors of starch and cellulose nanocrystals (SNC and CNC) suspensions which are simultaneously subjected to pressure, shear flow and ultrasound (US) during cross-flow ultrafiltration. This multi-forces process was characterized from macro-scales to nano-scales, with a custom designed "SAXS Cross-Flow US-coupled Filtration Cell". In addition, rheological behaviors of SNC samples at different concentrations/temperatures have been investigated. In both cases (ultrafiltration of SNC and CNC suspensions), better performances were observed with US. The in-situ SAXS measurements revealed that for SNC suspensions, no structure change occurred at the length scales range from 10 to 60nm in this multi-forces process, while CNC particles exhibited an ordered arrangement within the concentrated layer during the same process. SNC particles accumulated on the membrane surface forming a "fragile" concentrated layer which was removed very quickly by subsequent applied US. In contrary, the CNC particles accumulation was very severe, the additional ultrasonic force led to a disruption but not a totally removal of the CNC concentrated layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Directory of Open Access Journals (Sweden)

    Chia-Chun Ho

    2015-03-01

    Full Text Available The multi-soil-layering (MSL system primarily comprises two parts, specifically, the soil mixture layer (SML and the permeable layer (PL. In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%.

  11. Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials

    Science.gov (United States)

    Ho, Chia-Chun; Wang, Pei-Hao

    2015-01-01

    The multi-soil-layering (MSL) system primarily comprises two parts, specifically, the soil mixture layer (SML) and the permeable layer (PL). In Japan, zeolite is typically used as the permeable layer material. In the present study, zeolite was substituted with comparatively cheaper and more environmentally friendly materials, such as expanded clay aggregates, oyster shells, and already-used granular activated carbon collected from water purification plants. A series of indoor tests indicated that the suspended solid (SS) removal efficiency of granular activated carbon was between 76.2% and 94.6%; zeolite and expanded clay aggregates achieved similar efficiencies that were between 53.7% and 87.4%, and oyster shells presented the lowest efficiency that was between 29.8% and 61.8%. Further results show that the oyster shell system required an increase of wastewater retention time by 2 to 4 times that of the zeolite system to maintain similar chemical oxygen demand (COD) removal efficiency. Among the four MSL samples, the zeolite system and granular activated carbon system demonstrated a stable NH3-N removal performance at 92.3%–99.8%. The expanded clay aggregate system present lower removal performance because of its low adsorption capacity and excessively large pores, causing NO3−-N to be leached away under high hydraulic loading rate conditions. The total phosphorous (TP) removal efficiency of the MSL systems demonstrated no direct correlation with the permeable layer material. Therefore, all MSL samples achieved a TP efficiency of between 92.1% and 99.2%. PMID:25809517

  12. Convective heat transfer on a flat surface induced by a vertically-oriented piezoelectric fan in the presence of cross flow

    Science.gov (United States)

    Li, Xin-Jun; Zhang, Jing-zhou; Tan, Xiao-ming

    2017-09-01

    Experimental tests are carried out to investigate the convective heat transfer performances on a flat surface around the vibration envelope of a vertically-oriented piezoelectric fan in the presence of cross flow. Distinct behaviors of convective heat transfer are illustrated under the present conditions of piezoelectric-fan excitation voltage ( U = 50, 150, 250 V) or characteristic velocity ( u PF = 0.83, 1.67, 2.34 m/s) fan tip-to-heated surface gap ( G = 3, 5, 7 mm) and cross flow velocity ( u CH = 0.94, 1.56 m/s). In addition, three-dimensional flow field simulations are conducted to illustrate the instantaneous flow fields around the vibrating fan. By comparing with the pure piezoelectric fan, the vortex induced by the vibrating fan is pushed downward by the cross flow and a series of vortices are displayed down the vibrating fan. It is confirmed that the presence of cross flow is contributive to the improvement of convective heat transfer in the rear zone downstream fan vibration envelope. The impingement role of streaming flow induced by piezoelectric fan is reduced by the presence of cross flow in the fan vibration envelope. On the other hand, the oscillating movement of the piezoelectric fan promotes the disturbance intensity of cross flow passing through the fan vibration envelope. These two aspects make the conjugated convective heat transfer in the vicinity of fan vibration envelope complicated. In general, the convective heat transfer in the vicinity of fan vibration envelope is mostly improved by the combined action of fan-excited steaming flow and cross flow in the situation where the piezoelectric fan is placed very close to the heated surface.

  13. Ultraviolet filters.

    Science.gov (United States)

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  14. Transmission properties of a Fibonacci quasi-crystals containing single-negative materials and their usage as multi-channel filters

    Science.gov (United States)

    Charkhesht, Ali; Pashaei Adl, Hamid; Roshan Entezar, Samad

    2014-03-01

    One of the interesting phenomena appearing in Fibonacci quasi-crystals is wave localization, so that the field becomes spatially confined in some suitable regions, or delocalized in some other parts. Many theoretical works have been written on this interesting subject. The periodic Fibonacci structure properties lead to a transmission spectrum that exhibits some band gap, and it is possible to control these band gaps by the generation number of this structures. All these properties make Fibonacci quasi-crystals materials very attractive from an optical point of view. Accordingly, the transmission properties of Fibonacci quasi-crystals containing single-negative materials are investigated with the transfer matrix method. It is shown that the periodic structures created by repeating the Fibonacci quasi-crystal generations, have some omnidirectional band gaps at the single-negative frequency region. Moreover, it is shown these band gaps depends on the number of Fibonacci photonic crystal unit cell. In other words, when generation number of Fibonacci photonic crystal unit cell increases, some sub band gaps appears within this omnidirectional band gap. In this work by using Fibonacci quasi-periodic structures we demonstrate that by increasing Generation Number of Unit cell, some omnidirectional sub-gaps will appear which can be used as a multichannel filter.

  15. Validation of Wall Friction Model in SPACE-3D Module with Two-Phase Cross Flow Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher [Seoul National University, Seoul (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, SPACE-3D was used to simulate the Yang's experiment, and obtained the local variables. Then, the wall friction model used in SPACE-3D was validated by comparing the two-phase cross flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by SPACE-3D to validate the wall friction model in multi-dimensional module. Considering the realistic phenomena in the reactor, however, recent trends in safety analysis codes have tended to adopt multi-dimensional module to simulate the complex flow more accurately. Even though the module was applied to deal the multi-dimensional phenomena, implemented models in that are one-dimensional empirical models. Therefore, prior to applying the multi-dimensional module, the constitutive models implemented in the codes need to be validated. In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multi-dimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the friction models in multi-dimensional module of system analysis codes. Compared with the experiment, SPACE-3D underestimated the liquid film velocity and overestimated the liquid film thickness. From these results, it was clarified that the Wallis correlation which is used as a wall friction model in SPACE-3D overestimates the wall friction. On the other hand, H.T.F.S. correlation which is used as the wall friction in MARS-multiD underestimates the wall friction.

  16. Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine

    Directory of Open Access Journals (Sweden)

    Peter Bachant

    2016-01-01

    Full Text Available Experiments were performed with a large laboratory-scale high solidity cross-flow turbine to investigate Reynolds number effects on performance and wake characteristics and to establish scale thresholds for physical and numerical modeling of individual devices and arrays. It was demonstrated that the performance of the cross-flow turbine becomes essentially R e -independent at a Reynolds number based on the rotor diameter R e D ≈ 10 6 or an approximate average Reynolds number based on the blade chord length R e c ≈ 2 × 10 5 . A simple model that calculates the peak torque coefficient from static foil data and cross-flow turbine kinematics was shown to be a reasonable predictor for Reynolds number dependence of an actual cross-flow turbine operating under dynamic conditions. Mean velocity and turbulence measurements in the near-wake showed subtle differences over the range of R e investigated. However, when transport terms for the streamwise momentum and mean kinetic energy were calculated, a similar R e threshold was revealed. These results imply that physical model studies of cross-flow turbines should achieve R e D ∼ 10 6 to properly approximate both the performance and wake dynamics of full-scale devices and arrays.

  17. Numerical simulation of liquid metal turbulent heat transfer from an inline tube bundle in cross-flow

    Directory of Open Access Journals (Sweden)

    Alexey G. Abramov

    2015-12-01

    Full Text Available Results of the numerical simulation of turbulent flow field and heat transfer of liquid metal in cross-flow over inline tube bundles consisting of smooth round tubes are presented. Computations have been performed with CFD-code ANSYS Fluent on the base of a two-dimensional unsteady RANS formulation using the SST turbulence model by Menter and assuming constant physical properties of a fluid with the Prandtl number equal to 0.023. The Reynolds number ranged from 26,200 to 52,400. Instantaneous and time-averaged velocity and temperature fields obtained for bundles of different intertube spacing with a variation of the bundle width (number of tube rows in the cross direction were analyzed. Integral characteristics of heat transfer were compared with the experimental data.

  18. Pseudo-2D model of a cross-flow membrane humidifier for a PEM fuel cell under multiphase conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dalet, C.; Diny, M. [Peugeot Citroen Automobile, Carrieres sous Poissy (France). Fuel Cell Program; Maranzana, G.; Lottin, O.; Dillet, J. [Nancy Univ., Vanoeuvre les Nancy (France). Centre national de la recherche scientifique

    2009-07-01

    Membrane dehydration can reduce the performance of proton exchange membrane fuel cells (PEMFCs). However, excessive water at the inlet of the fuel cells can flood cathodes. An understanding of the coupled mass and heat transfer processes involved in membrane humidifiers is needed in order to successfully manage water in PEMFCs. This paper discussed a pseudo-2D model of a cross-flow membrane humidifier for PEMFCs. The model was used to test correlations of the water transport coefficient through a Nafion 115 membrane. The study showed that results obtained using the model differed from experimental results. The effects of inlet operating conditions, flow rates, and temperature on the performance of a planar membrane humidifier under both single- and multi-phase conditions were also investigated.

  19. Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters

    Science.gov (United States)

    Liu, Ruixia; Lead, Jamie R.; Zhang, Hao

    2013-05-01

    Cross flow ultrafiltration (CFUF) and diffusive gradients in thin films (DGT) with open pore gel (OP) and restricted pore gel (RP) were used to measure trace metal speciation in selected UK freshwaters. The proportions of metals present in particulate forms (>1 μm) varied widely between 40-85% Pb, 60-80% Al, 7-56% Mn, 10-49% Cu, 0-55% Zn, 20-38% Cr, 20-30% Fe, 6-25% Co, 5-22% Cd and complexing ligands with smaller size for the metals to form kinetically inert species or thermodynamically stable complexes. Observed discrepancies in metal speciation between metals and within sampling sites were related to the differences in the characteristics of the metals and the nature of water sources.

  20. Admissible loads in wastewater treatment, using a recycled support materials in a biological aerated filter; Cargas admisibles en depuracion de aguas residuales, usando material reciclado como soporte de un filtro sumergido

    Energy Technology Data Exchange (ETDEWEB)

    Osorio Robles, F. [E.T.S.I. de Caminos Canales y Puertos de Granada (Spain)

    2000-07-01

    This study places in the context of the research into Biological Aerated Filters that the Environmental Technology and Environmental Microbiology Research Group (University of Granada, Spain) has been developing for several years. We have achieved a high level of optimization of the system, using a recycled ceramic-based materials as biofilm support. It enables to give some design parameters, which will make possible the practical application in the future. In this article the relations among volumetric and hydraulic loads applied and effluent concentrations and elimination rates in relation to several pollutants are presented. The oxygen supplied has been accurately controlled, and the relation among the consumption value and the loads applied and the system efficiency obtained is presented. The tests were performed at a pilot plant with full scale height. The influent used was the primary effluent of a conventional treatment plant and the operational flow was counter-current flow. (Author) 11 refs.

  1. Separating xylose from glucose using spiral wound nanofiltration membrane: Effect of cross-flow parameters on sugar rejection

    Science.gov (United States)

    Roli, N. F. M.; Yussof, H. W.; Seman, M. N. A.; Saufi, S. M.; Mohammad, A. W.

    2016-11-01

    A solution model consisted of two different monosaccharides namely xylose and glucose were separated using a pilot scale spiral wound cross-flow system. This system was equipped by a commercial spiral wound nanofiltration (NF) membrane, Desal-5 DK, having a molecular weight cut off (MWCO) of 150-300 g mol-1. The aim of this present work is to investigate the effect of the cross-flow parameters: the trans-membrane pressure (TMP) and the feed concentration (C0) on the xylose separation from glucose. The filtration experiments were carried out in total reflux mode with different feed concentration of 2, 5, and 10 g/L at different TMP of 5,8 and 10 bar. The performances of the NF membrane were evaluated by measuring the permeate flux and sugar rejection for each experiment. All the samples were quantified using a high performance liquid chromatography equipped by a fractive index detector. The experimental results indicated an increase in pressure from 5 to 10 bar which was a notable increase to the permeate fluxes from 2.66 × 10-3 to 4.14 × 10-3L m-2s-1. Meanwhile, an increase in the C0 increases the xylose rejection. At TMP of 10 bar and C0 of 5 g/L, the observed xylose rejection and glucose rejection were measured at 67.19% and 91.82%, respectively. The lower rejection in xylose than glucose suggested that larger glucose molecule were not able to easily pass through the membrane compared to the smaller xylose molecule. The results of this phenomena proved that NF with spiral wound configuration has the potential to separate xylose from glucose, which is valuable to the purification of xylose in xylose production as an alternative to chromatographic processes.

  2. 硅基沸石滤料A/O生物滤池挂膜启动的研究%Study on the Start-up of A/O Biofilm Process With Silicon-based Zeolite Filter Material

    Institute of Scientific and Technical Information of China (English)

    王娟婷; 刘振亮; 于衍真

    2014-01-01

    通过研究分析硅基沸石滤料A/O生物滤池的挂膜启动,以及考察系统出水CODCr、氨氮和总氮浓度在挂膜启动过程中的变化,分析挂膜启动的发展进程,寻求判断挂膜启动完成的合理理化指标,以期为A/O生物滤池的挂膜启动提供理论依据。%The start-up of A/O bio-filter was studied and reasonable indexs for the judgment of the start-up were found to provide the theory basis for the start-up of A/O bio-filter with silicon-based zeolite filter material. The study makes use of the natural start-up compound with inoculum start-up. The start-up of A/O bio-filter with silicon-based zeolite filter material was investigated by measuring the concentrations of CODCr, ammonia and total nitrogen in the effluent.

  3. Food Filter

    Institute of Scientific and Technical Information of China (English)

    履之

    1995-01-01

    A typical food-processing plant produces about 500,000 gallons of waste water daily. Laden with organic compounds, this water usually is evaporated or discharged into sewers.A better solution is to filter the water through

  4. Simplified Heat and Mass Transfer Model for Cross-Flow and Countercurrent Flow Packed Bed Tower Dehumidifiers with a Liquid Desiccant System

    Directory of Open Access Journals (Sweden)

    Shih-Cheng Hu

    2016-12-01

    Full Text Available A mathematical model is developed using the Matlab/Simulink platform to investigate heat and mass transfer performance of cross-flow and counterflow dehumidifiers with Lithium Chloride (LiCl solution. In the liquid desiccant dehumidifier, the orthogonal polynomial basis is used to simulate the combined processes of heat and mass transfer. The temperature profiles on cross-flow and countercurrent flow dehumidifiers are demonstrated. The resultant counter flow air changes the temperature profile of the LiCl solution in the longitudinal direction because of the drag forces. In addition, when inlet airflow rate reaches 15 kg·s−1, the temperature effect becomes less obvious and may be reasonably negligible. Under these conditions, the air changes the design factor and determines the interfacial temperature. It is demonstrated that the mathematical model can be of great value in the design and improvement of cross-flow and countercurrent flow dehumidifiers.

  5. Influência da granulometria da serragem de madeira como material filtrante no tratamento de águas residuárias Influence of the size of sawdust particles as filtering material in wastewater treatment

    Directory of Open Access Journals (Sweden)

    Paola A. Lo Monaco

    2004-04-01

    Full Text Available Com o presente trabalho, teve-se como meta principal avaliar a influência da granulometria da serragem de madeira, utilizada como material filtrante, na eficiência de tratamento de águas residuárias da suinocultura. Para isso, foram utlizadas colunas de filtragem contendo o material filtrante em três faixas granulométricas (0,84 a 1,19; 1,19 a 2,00 e 2,00 a 2,83 mm. Para a avaliação da eficiência do sistema, o afluente e o efluente foram caracterizados em relação aos seguintes parâmetros: demanda bioquímica de oxigênio (DBO5, demanda química de oxigênio (DQO, sólidos totais (ST, nitrogênio total (N-total, fósforo total (P-total, potássio total (K-total, sódio total (Na-total, cobre total (Cu-total e zinco total (Zn-total. De posse dos resultados, geraram-se curvas, relacionando-se as concentrações relativas dos parâmetros avaliados e a lâmina filtrada. A faixa granulométrica correspondente ao maior diâmetro do material foi mais eficiente na remoção da DBO5 e DQO, com 40 e 80%, respectivamente. No caso de sólidos totais (ST, a maior granulometria foi mais eficiente, obtendo-se remoções em torno de 70%. A menor granulometria mostrou-se mais eficiente na remoção de nitrogênio (N-total, obtendo-se valores em torno de 50%. Não houve influência da granulometria na remoção de fósforo total, embora se tenha conseguido remoções de até 65%. O sódio e o potássio não foram removidos pelo filtro. Obtiveram-se remoções superiores a 95% para o cobre e o zinco, tendo sido obtida maior eficiência na remoção do cobre quando se utilizou o material com a menor granulometria.The objective of this work was to evaluate the influence of the particle size of sawdust as filtering material on the efficiency of swine wastewater treatment. The three ranges of particles size used were 0.84 to 1.19; 1.19 to 2.00 and 2.00 to 2.83 mm. The values of biochemical oxygen demand (BOD, chemical oxygen demand (COD, total solids (TS

  6. Enhanced Optical Filter Design

    CERN Document Server

    Cushing, David

    2011-01-01

    This book serves as a supplement to the classic texts by Angus Macleod and Philip Baumeister, taking an intuitive approach to the enhancement of optical coating (or filter) performance. Drawing from 40 years of experience in thin film design, Cushing introduces the basics of thin films, the commonly used materials and their deposition, the major coatings and their applications, and improvement methods for each.

  7. Shielded multi-stage EMI noise filter

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger Allen; Fugate, David Lee

    2016-11-08

    Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.

  8. Shielded multi-stage EMI noise filter

    Science.gov (United States)

    Kisner, Roger Allen; Fugate, David Lee

    2016-11-08

    Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.

  9. T-junction cross-flow mixing with thermally driven density stratification

    Energy Technology Data Exchange (ETDEWEB)

    Kickhofel, John, E-mail: jkickhofel@gmail.com [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8057 Zurich (Switzerland); Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de [Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany)

    2016-12-01

    Highlights: • Mesh sensor for realistic nuclear thermal hydraulic scenarios is demonstrated. • Flow temperature behavior across a wide range of Richardson numbers measured. • Upstream stratified flow in the T-junction results in a thermal shock scenario. • Large, stable near-wall thermal gradients exist in spite of turbulent flows. - Abstract: As a means of further elucidating turbulence- and stratification-driven thermal fatigue in the vicinity of T-junctions in nuclear power plants, a series of experiments have been conducted at the high temperature high pressure fluid–structure interaction T-junction facility of the University of Stuttgart with novel fluid measurement instrumentation. T-junction mixing with large fluid temperature gradients results in complex flow behavior, the result of density driven effects. Deionized water mixing at temperature differences of up to 232 K at 7 MPa pressure have been investigated in a T-junction with main pipe diameter 71.8 mm and branch line diameter 38.9 mm. The experiments have been performed with fixed flow rates of 0.4 kg/s in the main pipe and 0.1 kg/s in the branch line. A novel electrode-mesh sensor compatible with the DN80 PN100 pipeline upstream and downstream of the T-junction has been utilized as a temperature sensor providing a high density information in the pipe cross-section in both space and time. Additionally, in-flow and in-wall thermocouples quantify the damping of thermal fluctuations by the wall material. The results indicate that large inflow temperature differences lead to strong turbulence damping, and ultimately stable stratification extending both downstream and upstream of the T-junction resulting in large local thermal gradients.

  10. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  11. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  12. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    Science.gov (United States)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2016-07-01

    Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited

  13. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    2007-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  14. Sucrose density gradient centrifugation and cross-flow filtration methods for the production of arbovirus antigens inactivated by binary ethylenimine

    Directory of Open Access Journals (Sweden)

    Chuan Teck F

    2004-01-01

    Full Text Available Abstract Background Sucrose density gradient centrifugation and cross-flow filtration methods have been developed and standardised for the safe and reproducible production of inactivated arbovirus antigens which are appropriate for use in diagnostic serological applications. Methods To optimise the maximum titre of growth during the propagation of arboviruses, the multiplicity of infection and choice of cell line were investigated using stocks of Ross River virus and Barmah Forest virus grown in both mosquito and mammalian cell lines. To standardise and improve the efficacy of the inactivation of arboviral suspensions, stocks of Ross River virus, Barmah Forest virus, Japanese encephalitis virus, Murray Valley encephalitis virus and Alfuy virus were chemically inactivated using binary ethylenimine at a final concentration of 3 mM. Aliquots were then taken at hourly intervals and crude inactivation rates were determined for each virus using a plaque assay. To ensure complete inactivation, the same aliquots were each passaged 3 times in Aedes albopictus C6/36 cells and the presence of viral growth was detected using an immunofluorescent assay. For larger quantities of viral suspensions, centrifugation on an isopycnic sucrose density gradient or cross-flow filtration was used to produce concentrated, pure antigens or partially concentrated, semi-purified antigens respectively. Results The results of the propagation experiments suggested that the maximum viral titres obtained for both Ross River virus and Barmah Forest virus were affected by the incubation period and choice of cell line, rather than the use of different multiplicity of infection values. Results of the binary ethylenimine inactivation trial suggested that standardised periods of 5 or 8 hours would be suitable to ensure effective and complete inactivation for a number of different arboviral antigens. Conclusion Two methods used to prepare inactivated arbovirus antigens have been

  15. Application of Uniform Design in the Research of Filtration Performance of Filter Material%均匀设计法在滤料过滤性能研究中的应用

    Institute of Scientific and Technical Information of China (English)

    许慧萍; 金伟; 纪民举; 赵英杰

    2015-01-01

    以滑石粉作为试验粉尘,以1#、3#中空纤维滤料作为过滤介质,对高效纤维过滤器的性能进行了研究。采用均匀设计法考察了气体含尘浓度、过滤风速、滤料压缩率和过滤时间四个因素对过滤器阻力降和过滤效率的影响。利用DPS数据回归处理方法建立数学模型,确定出试验范围内的优化工艺条件:对于1#滤料,在气体含尘浓度0.68 g/m3,过滤风速0.5 m/s,滤料压缩率16.7%,过滤时间10.3 min 时,阻力降为172 Pa,过滤效率为99.993%;对于3#滤料,在气体含尘浓度0.5 g/m3,过滤风速0.5 m/s,滤料压缩率15.4%,过滤时间3 min时,阻力降为493 Pa,过滤效率为99.992%。%The filtration performance of fibrous filtrator was studied by using talcum powder as test dust and hollow fiber materials named 1# and 3# as filter medium. The influence of dust concentration of gas, velocity of filtering, compression ratio of filter material and filtration time on pressure drop and filter efficiency was studied by using uniform design method. Regression analysis was used to establish a mathematical model by DPS and the optimum conditions were obtained. For the fiber material of 1#, when dust concentration of gas was 0.68 g/m 3, velocity of filtering was 0.5 m/s, compression ratio of filter material was 16.7% and filtration time was 10.3 min, its pressure drop was 172 Pa and its filter efficiency was 99.993%. For the fiber material of 3#, when dust concentration of gas was 0.5 g/m3, velocity of filtering was 0.5 m/s, compression ratio of filter material was 15.4% and filtration time was 3 min, its pressure drop was 493 Pa and its filter efficiency was 99.992%.

  16. Experimental study of Counter-Rotating Vortex Pair Trajectories induced by a Round Jet in Cross-Flow at Low Velocity Ratios

    CERN Document Server

    Cambonie, T; Aider, J -L

    2013-01-01

    Circular flush Jets In Cross-Flow were experimentally studied in a water tunnel using Volumetric Particle Tracking Velocimetry, for a range of jet to cross-flow velocity ratios, r, from 0.5 to 3, jet exit diameters $d$ from 0.8 cm to 1 cm and cross-flow boundary layer thickness delta from 1 to 2.5 cm. The analysis of the 3D mean velocity fields allows for the definition, computation and study of Counter-rotating Vortex Pair trajectories. The influences of r, d and delta were investigated. A new scaling based on momentum ratio r_m taking into account jet and cross-flow momentum distributions is introduced based on the analysis of jet trajectories published in the literature. Using a rigorous scaling quality factor Q to quantify how well a given scaling successfully collapses trajectories, we show that the proposed scaling also improves the collapse of CVP trajectories, leading to a final scaling law for these trajectories.

  17. Turbulent stresses in a direct contact condensation jet in cross-flow in a duct with implications for particle break-up

    NARCIS (Netherlands)

    Clerx, N.; van der Geld, C.W.M.; Kuerten, Johannes G.M.

    2013-01-01

    An experimental study has been conducted to investigate the turbulent mixing and heating caused by a (superheated) steam jet injected into a turbulent cross-flow of water in a square channel. The velocity field in the mid plane of the channel has been measured by means of particle image velocimetry

  18. Large-scaled simulation on the coherent vortex evolution of a jet in a cross-flow based on lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Shangguan Yanqin

    2015-01-01

    Full Text Available Large eddy simulation (LES is performed on a jet issued normally into a cross-flow using lattice Boltzmann method (LBM and multiple graphic processing units (multi-GPUs to study the flow characteristics of jets in cross-flow (JICF. The simulation with 8 1.50´10 grids is fulfilled with 6 K20M GPUs. With large-scaled simulation, the secondary and tertiary vortices are captured. The features of the secondary vortices and the tertiary vortices reveal that they have a great impact on the mixing between jet flow and cross-flow. The qualitative and quantitative results also indicate that the evolution mechanism of vortices is not constant, but varies with different situations. The hairpin vortex under attached jet regime originates from the boundary layer vortex of cross-flow. While, the origin of hairpin vortex in detached jet is the jet shear-layer vortex. The mean velocities imply the good ability of LBM to simulate JICF and the large loss of jet momentum in detached jet caused by the strong penetration. Besides, in our computation, a high computational performance of 1083.5 MLUPS is achieved.

  19. NUMERICAL STUDY ON THE MIXING OF UNSORTED SEDIMENT PARTICLES DISCHARGED INTO A CROSS-FLOW BY MULTIPHASE PARTICLE-IN-CELL (MP-PIC) METHOD

    Institute of Scientific and Technical Information of China (English)

    Jie GU; Chiwai LI; Hong YANG; Yong ZHAN

    2007-01-01

    The mixing characteristics of dredged sediments of variable size discharged into cross-flow are studied by an Eulerian-Lagrangian method. A three-dimensional (3D) numerical model has been developed by using the modified k-ε parameterization for the turbulence in fluid phase/water and a Lagrangian method for the solid phase/sediments. In the model the wake turbulence induced by sediments has been included as additional source and sink terms in the k-ε model; and the trajectories of the sediments are tracked by the Lagrangian method in which the sediment drift velocities in cross-flow are computed by a multiphase particle-in-cell (MP-PIC) method and the diffusion process is approximated by a random walk model. The hydrodynamic behavior of dumped sediment cloud is governed by the total buoyancy on the cloud, the drag force on each particle and velocity of cross-flow. The cross-flow destroys more or less the double vortices occurred in stagnant ambience and dominates the longitudinal movement of sediment cloud. The computed results suggest satisfactory agreement by comparison with the experimental results of laboratory.

  20. Turbulent stresses in a direct contact condensation jet in cross-flow in a duct with implications for particle break-up

    NARCIS (Netherlands)

    Clerx, N.; Geld, van der C.W.M.; Kuerten, J.G.M.

    2013-01-01

    An experimental study has been conducted to investigate the turbulent mixing and heating caused by a (superheated) steam jet injected into a turbulent cross-flow of water in a square channel. The velocity field in the mid plane of the channel has been measured by means of particle image velocimetry

  1. Effect of Cross-flow Velocity on the Critical Flux of Ceramic Membrane Filtration as a Pre-treatment for Seawater Desalination

    Institute of Scientific and Technical Information of China (English)

    CUI Zhaoliang; PENG Wenbo; FAN Yiqun; XING Weihong; XU Nanping

    2013-01-01

    Pre-treatment,which supplies a stable,high-quality feed for reverse osmosis (RO) membranes,is a critical step for successful operation in a seawater reverse osmosis plant.In this study,ceramic membrane systems were employed as pre-treatment for seawater desalination.A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux.Then a pilot test was performed to investigate the long-term performance.The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only,but the effect is distinct when the cross-flow velocity varies in the transition region.The membrane fouling is slight at the permeate flux of 150 L·m-2·h-1 and the system is stable,producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0,respectively) for RO to ran for 2922.4 h without chemical cleaning.Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.

  2. Comparison of an ultrasonic nebulizer with a cross-flow nebulizer for selenium speciation by ion-chromatography and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    2000-01-01

    The purpose of this work was to compare an ultrasonic nebulizer (USN) with a cross-flow nebulizer (CFN) for selenium speciation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The influence of instrumental parameters as well as composition of the solvent on the selenium...

  3. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  4. UV Bandpass Optical Filter for Microspectometers

    NARCIS (Netherlands)

    Correia, J.H.; Emadi, A.R.; Wolffenbuttel, R.F.

    2006-01-01

    This paper describes the design and modeling of a UV bandpass optical filter for microspectrometers. The materials used for fabricating the multilayer UV filter are: silicon dioxide (SiO2), titanium dioxide (TiO2) and yttrium oxide (Y2O3). The optical filter shows a bandpass response wavelength in t

  5. 27 CFR 24.243 - Filtering aids.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Filtering aids. 24.243... OF THE TREASURY LIQUORS WINE Storage, Treatment and Finishing of Wine § 24.243 Filtering aids. Inert fibers, pulps, earths, or similar materials, may be used as filtering aids in the cellar treatment...

  6. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  7. Notch filter

    Science.gov (United States)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  8. Control of stationary cross-flow modes in a mach 3.5 boundary layer using patterned passive and active roughness

    Science.gov (United States)

    Schuele, Chan Yong

    Spanwise-periodic roughness designed to excite selected wavelengths of stationary cross-flow modes was investigated in a 3-D boundary layer at Mach 3.5. The test model was a sharp-tipped 14° right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 Supersonic Low Disturbance Tunnel (SLDT) equipped with a "quiet design" nozzle at the NASA Langley Research Center. The model was oriented at a 4.2 angle of attack to produce a mean cross-flow velocity component in the boundary layer over the cone. Five removable cone tips have been investigated. One has a smooth surface that is used to document the baseline ("natural") conditions. Two had minute (20 - 40 mum) "dimples" that are equally spaced around the circumference, at a streamwise location that is just upstream of the linear stability neutral growth branch for cross-flow modes. The azimuthal mode numbers of the dimpled tips were selected to either enhance the most amplified wave numbers, or to suppress the growth of the most amplified wave numbers. Two of the cone tips had an array of plasma streamwise vortex generators that were designed to simulate the disturbances produced by the passive patterned roughness. The results indicate that the stationary cross-flow modes were highly receptive to the patterned roughness of both passive and active types. The patterned passive roughness that was designed to suppress the growth of the most amplified modes had an azimuthal wavelength that was 66% smaller that that of the most amplified stationary cross-flow mode. This had the effect to increase the transition Reynolds number from 25% to 50% depending on the measurement technique. The application of the research is on turbulent transition control on swept wings of supersonic aircraft. The plasma-based roughness has the advantage over the passive roughness of being able to be adaptable to different conditions that would occur during a flight mission.

  9. Cross-Flow VIV-Induced Fatigue Damage of Deepwater Steel Catenary Riser at Touch-Down Point

    Institute of Scientific and Technical Information of China (English)

    王坤鹏; 唐文勇; 薛鸿祥

    2014-01-01

    A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at touch-down point (TDP). The model will give more reasonable simulation of SCR response near TDP than the previous pinned truncation model. In the present model, the hysteretic riser-soil interaction model is simplified as the linear spring and damper to simulate the seafloor, and the damping is obtained according to the dissipative power during one periodic riser-soil interaction. In order to validate the model, the comparison with the field measurement and the results predicted by Shear 7 program of a full-scale steel catenary riser is carried out. The main induced modes, mode frequencies and response amplitude are in a good agreement. Furthermore, the parametric studies are carried out to broaden the understanding of the fatigue damage sensitivity to the upper end in-plane offset and seabed characteristics. In addition, the fatigue stress comparison at TDP between the truncation riser model and the present full riser model shows that the existence of touch-down zones is very important for the fatigue damage assessment of steel catenary riser at TDP.

  10. Magnetic self-assembly of microparticle clusters in an aqueous two-phase microfluidic cross-flow

    Science.gov (United States)

    Abbasi, Niki; Jones, Steven G.; Moon, Byeong-Ui; Tsai, Scott S. H.

    2015-11-01

    We present a technique that self-assembles paramagnetic microparticles on the interface of aqueous two-phase system (ATPS) fluids in a microfluidic cross-flow. A co-flow of the ATPS is formed in the microfluidic cross channel as the flows of a dilute dextran (DEX) phase, along with a flow-focused particle suspension, converges with a dilute polyethylene glycol (PEG) phase. The microparticles arrive at the liquid-liquid interface and self-assemble into particle clusters due to forces on the particles from an applied external magnetic field gradient, and the interfacial tension of the ATPS. The microparticles form clusters at the interface, and once the cluster size grows to a critical value, the cluster passes through the interface. We control the size of the self-assembled clusters, as they pass through the interface, by varying the strength of the applied magnetic field gradient and the ATPS interfacial tension. We observe rich assembly dynamics, from the formation of Pickering emulsions to clusters that are completely encapsulated inside DEX phase droplets. We anticipate that this microparticle self-assembly method may have important biotechnological applications that require the controlled assembly of cells into clusters.

  11. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    Science.gov (United States)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  12. Anthocyanin and flavonoid production from Perilla frutescens: pilot plant scale processing including cross-flow microfiltration and reverse osmosis.

    Science.gov (United States)

    Meng, Linghua; Lozano, Yves; Bombarda, Isabelle; Gaydou, Emile; Li, Bin

    2006-06-14

    Extraction and concentration at a pilot plant scale of anthocyanins and flavonoids from Perilla frutescens var. frutescens harvested in the Guangzhou area of China were investigated. The study of extraction efficiency using mineral acids and organic acids showed that 0.01 mol/L nitric acid was the most suitable to extract flavonoids from this slightly red leaf cultivar. The red extract contained 12 mg/L (as cyanidin equivalent) anthocyanins and other flavones. The multistep process included cross-flow microfiltration (CFM) with a ceramic type membrane, reverse osmosis (RO), and rotating evaporation (RE). The filtration fluxes were high and constant for CFM (150 L/h/m2 at 0.6 b) and for RO (22 L/h/m2 at 40 b). The red extract was concentrated 9.4 times by RO and then 5.4 times by RE. It contained 422 mg/L anthocyanins, representing 77% of the total extracted anthocyanin. The proportion of flavonoids was found unchanged during processing. The concentrated extract showed a pH of 2.7, and its free acidity was found to be 46% of the acidity added for extraction, because of the buffering capacity of the extract. At the concentration level reached, a crystallized deposit occurred and was identified as tartrate.

  13. Producing monodisperse drug-loaded polymer microspheres via cross-flow membrane emulsification: the effects of polymers and surfactants.

    Science.gov (United States)

    Meyer, Robert F; Rogers, W Benjamin; McClendon, Mark T; Crocker, John C

    2010-09-21

    Cross-flow membrane emulsification (XME) is a method for producing highly uniform droplets by forcing a fluid through a small orifice into a transverse flow of a second, immiscible fluid. We investigate the feasibility of using XME to produce monodisperse solid microspheres made of a hydrolyzable polymer and a hydrophobic drug, a model system for depot drug delivery applications. This entails the emulsification of a drug and polymer-loaded volatile solvent into water followed by evaporation of the solvent. We use a unique side-view visualization technique to observe the details of emulsion droplet production, providing direct information regarding droplet size, dripping frequency, wetting of the membrane surface by the two phases, neck thinning during droplet break off, and droplet deformation before and after break off. To probe the effects that dissolved polymers, surfactants, and dynamic interfacial tension may have on droplet production, we compare our results to a polymer and surfactant-free fluid system with closely matched physical properties. Comparing the two systems, we find little difference in the variation of particle size as a function of continuous phase flow rate. In contrast, at low dripping frequencies, dynamic interfacial tension causes the particle size to vary significantly with drip frequency, which is not seen in simple fluids. No effects due to shear thinning or fluid elasticity are detected. Overall, we find no significant impediments to the application of XME to forming highly uniform drug-loaded microspheres.

  14. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    CERN Document Server

    Giskes, Ella; Segerink, Frans B; Venner, Cornelis H

    2016-01-01

    In the research of supersonic flows, flow visualization continues to be an important tool, and even today it is difficult to create high quality images. In this study we present a low-cost and easy-to use Schlieren setup. The setup makes use of LEDs, pulsed with high currents to increase the optical output to sufficient levels, exploiting the advantages of LED light over conventional light sources. As a test-case we study the interaction of a Mach 1.7 cross flow and a transverse underexpanded jet, which is commonly studied considering the mixing and combustion in scramjet engines. Using 130 nanosecond LED light pulses, we captured the flow structures sharply and in great detail. We observed a large-gradient wave, which was seen in numerical studies but hitherto not reported in experiments. Furthermore, we demonstrate that time-correlated images can be obtained with this Schlieren setup, so that also flow unsteadiness can be studied, such as the movement of shock waves and vortices.

  15. Cross-flow VIV-induced fatigue damage of deepwater steel catenary riser at touch-down point

    Science.gov (United States)

    Wang, Kun-peng; Tang, Wen-yong; Xue, Hong-xiang

    2014-03-01

    A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at touch-down point (TDP). The model will give more reasonable simulation of SCR response near TDP than the previous pinned truncation model. In the present model, the hysteretic riser-soil interaction model is simplified as the linear spring and damper to simulate the seafloor, and the damping is obtained according to the dissipative power during one periodic riser-soil interaction. In order to validate the model, the comparison with the field measurement and the results predicted by Shear 7 program of a full-scale steel catenary riser is carried out. The main induced modes, mode frequencies and response amplitude are in a good agreement. Furthermore, the parametric studies are carried out to broaden the understanding of the fatigue damage sensitivity to the upper end in-plane offset and seabed characteristics. In addition, the fatigue stress comparison at TDP between the truncation riser model and the present full riser model shows that the existence of touch-down zones is very important for the fatigue damage assessment of steel catenary riser at TDP.

  16. Study of new materials for use as flooded filter media in waste water treatment; Estudio de nuevos materiales como soporte en filtros inundados en la depuracion de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M.; Hontoria, E. [Universidad de Granada, (Spain)

    1998-06-01

    The purpose of this study was to investigate pulverized brick taken from brick factories and recycled plastic used to cover crops as supported beds in submerged bi filters for the purification of residual water, which also permit the re-used of recycled or waste products and the clarification and improvement of the effluent flow from the filter. The study of this landfills shows that the ceramic efficiency was 92% COD-removal and 91% SS-removal, with secondary clarification. The study of recycled plastic shows that the efficiency was 88% COD-removal and 84% SS-removal, without secondary clarification. Although the functioning of the system with these materials have not improved 100%, this study has opened up a new field of investigation that will perfect the system and materials. (Author) 10 refs.

  17. Compostagem de bagaço de cana-de-açúcar triturado utilizado como material filtrante de águas residuárias da suinocultura Composting of sugarcane trash used as filtering material for swine wastewater

    Directory of Open Access Journals (Sweden)

    Marcos A. de Magalhães

    2006-06-01

    Full Text Available A suinocultura moderna, de produção animal confinada, em virtude de ser concentradora de dejetos em pequenas áreas, gera vultosos volumes de águas residuárias de grande potencial poluidor para o solo, o ar e a água, já que se trata de efluente rico em sólidos em suspensão e, dissolvidos, matéria orgânica, nutrientes (nitrogênio e fósforo, dentre outros, agentes patogênicos, metais pesados e sais diversos. No presente trabalho avaliou-se o processo de compostagem de resíduo orgânico (bagaço de cana-de-açúcar triturado, utilizado como material filtrante para águas residuárias de suinocultura, imediatamente após este material perder a capacidade filtrante e ter sido descartado da coluna filtrante. Os resultados obtidos permitiram concluir-se que o composto de bagaço de cana-de-açúcar corresponde ao fertilizante obtido por processo bioquímico, natural e controlado com mistura de resíduos de origem vegetal ou animal, contendo um ou mais nutrientes de plantas. Na avaliação da composição química do composto maturado, as pilhas de bagaço de cana-de-açúcar mais dejeto de suínos apresentaram concentração total de metais pesados que pode ser considerada segura, sob o ponto de vista de uso na adubação de culturas agrícolas, desde que obedecidos os critérios de taxa máxima de aplicação acumulativa.The modern swine production under confined conditions due to accumulation of dejects in small areas, generates large volumes of wastewater of high potential pollutant for the soil, the air and the water, since it is rich effluent in solids in suspension and dissolved organic nutritients (nitrogen and phosphorus, among others, pathogenic agents, heavy metals and several salts. In the present work the composting of organic residue (sugarcane trash used as filtering material for swine wastewater was evaluated immediately after the material lost its filtering capacity and was discarded from the column. The results led to the

  18. An Experimental Study of the Drag Force on a Cylinder Exposed to an Argon Thermal Plasma Cross Flow

    Institute of Scientific and Technical Information of China (English)

    XinTao; XiChen; 等

    1992-01-01

    Experimental data are presented concerning the drag force on a cylinder exposed to an argon plasma cross flow with temperatures about 104 K and velocities about 102 m/s.Using a method of sweeping a cylindrical probe across an argon plasma jet,the total drag force on the cylinder can be measured as a function of the lateral distance of cylindrical probe with respect to the plasma-jet axis.Through the Abel inversion,the drag force for per unit of cylinderlength and thus the drag coefflcient of cylinder have been measured under plasma conditions and compared with the values obtained from the standard drag curve of the cylinder in an isothermal flow.Experimental results show that the measured grag forces are always less than their counterparts read from the standard drag curve with the smae Reynolds numbers based on the oncoming plasma properties.Thew drag force on the cylinder exoposed to a thermal plasma flow is shown to be approximately proportional to the square root of cylinder diameter in the present experiment and it increases slightly proportional to the square root of cylinder diameter in the present experiment and if increases slightly with increasing surface temperature of the cylinder,.It is also shown that applying a voltage between the drag prode and the anode of the plasma jet generator has little effect on the drag force of cylinder under the experimental conditions.The drag force on a cylinder with finite length exposed to an argon plasma with the axis parallel to the plams jet is independent of ration of cylinder length to its dismeter L/d for the cases when L/d≤1.

  19. Performance testing of cross flow heat exchanger operating in the atmosphere of flue gas particulate with vapor condensation

    Directory of Open Access Journals (Sweden)

    Nuntaphan, A.

    2006-05-01

    Full Text Available Performance testing of a cross flow heat exchanger operating under the atmosphere of flue gas particulate from combustion was carried out in this work. This heat exchanger exchanges heat between flue gas from the fuel oil combustion and cold water. The heat exchanger is composed of a spiral finned tube bank having 3 rows and 8 tubes per row with a staggered arrangement. The fin spacings considered are 2.85 and 6.10 mm. The theories of thermodynamics and heat transfer are used for analyzing the performance of this system.In this experiment, the flue gas temperature of 200ºC from combustion having 0.35 kg/s mass flow rate flows along outside surface of the heat exchanger and transfers heat to the 25ºC cooling water having 0.15 kg/s mass flow rate flowing in the tube side. Each experiment uses 750 hr for testing. During the testing, part of flue gas condenses on the heat transfer surface.From the experiment, it was found that the heat transfer rate of both heat exchangers tended to decrease with time while the airside pressure drop increased. These results come from the fouling on the heat transfer surface. Moreover, it is found that the heat exchanger having 2.85 mm fin spacing has an approximately 4 times higher fouling resistance than that of the 6.10 mm fin spacing.In this work a model for calculating the fouling resistance is also developed as a the function of time. The model is developed from that of Kern and Seaton and the mean deviation of the model is 0.789.

  20. A Review on Empirical Correlations for Jet/Spray Trajectory of Liquid Jet in Uniform Cross Flow

    Directory of Open Access Journals (Sweden)

    Soo-Young No

    2015-12-01

    Full Text Available The empirical correlations for the prediction of jet/spray penetration of liquid jet in subsonic uniform crossflow are reviewed in this study. Considerable number of empirical correlations had been proposed by many investigators. It has generally known that the jet/spray trajectory of a liquid jet in a cross-flow is a function of the liquid to air momentum flux ratio and the normalized distance in the airstream direction from the injector. However, several researchers incorporated the Weber number, liquid-to-water or air viscosity ratio, pressure ratio or Reynolds number, temperature ratio in the empirical correlations. Two different classification methods of correlations, i.e. classification based on mathematic functional form and classification based on flow regime, are introduced in this study. The one classification of existing correlations based on functional form includes correlations in a power-law, logarithmic, and exponential forms, respectively. The other classification of previous correlations based on flow regime includes one, two and three regime, correlations. Correlations in a power-law functional form can be further divided into three groups such as momentum flux ratio, Weber number and other parameters forms. Correlations in logarithmic functional form can be also grouped as momentum flux ratio and Weber number forms. Most of the evaluation studies reported the significant discrepancies of predicted values by the existing correlations. The possible reasons for discrepancies will be summarized as measurement technique, assumptions made in defining terms in the liquid to air momentum flux ratio, difficulties in defining the boundaries of the liquid jets, turbulence level in the core and boundary layer of incoming jet and gas flows, nozzle/injector geometry and its position in the crossflow. However, it can be found from the several evaluation studies that the power-law functional form with momentum flux ratio and two regimes

  1. A high-efficiency cross-flow micronebulizer interface for capillary electrophoresis and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Li, J; Umemura, T; Odake, T; Tsunoda, K

    2001-12-15

    A pneumatic nebulizer interface for capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICPMS) is reported. The interface is constructed using a high-efficiency cross-flow micronebulizer (HECFMN) and has the following features. (1) Makeup solutions can be fed to the interface by nebulizer self-aspiration and liquid gravity pressurization. (2) The liquid dead volume of the interface is approximately 65 nL, much smaller than those (200-2500 nL) reported for other interfaces. (3) The interface can be stably operated at a liquid flow rate down to 5 microL/min with a high analyte transport efficiency up to 95% to the plasma and (4) does not induce noticeable laminar flow in the CE capillary at typical nebulizer gas flow rates of 0.8-1.2 L/min. Because of these features, baseline resolution of 10 lanthanides with a CE-ICPMS system using the HECFMN interface is achieved, and detection limits and peak asymmetry are 0.05-1 microg/L and 0.93-1.23, respectively, improved significantly over those reported previously for a CE-ICPMS system using a high-efficiency nebulizer interface. Peak precision for the 10 lanthanides is in the range of 6.2-12.3% RSD (N = 5). Peak widths are from 9.1 s for 139La to 17.9 s for 175Lu. The effects of nebulizer gas flow rate, makeup solution flow rate, and spray chamber volume on CE-ICPMS signal intensity and separation are also evaluated for the HECFMN interface by the separation of Cr3+ and Cr2O7(2-).

  2. Study on an Integrated Sintered Metal Screen Moving Granular Bed Filter

    Institute of Scientific and Technical Information of China (English)

    吴晋沪; 王洋

    2004-01-01

    A new gas clean-up process called "integrated sintered metal screen moving granular bed" (ISMSMGB) for the integrated gasification combined cycle (IGCC) and pressured fluidized bed combustion (PFBC) was developed on the basis of a sintered metal candle filter and a cross-flow moving granular bed filter. This is a combination of the surface and deep bed filtering processes. A set of facilities was established and a series of cold model tests were carried out. The dust removal efficiency and the pressure drop of the filter were measured and analyzed. The results show that this process features the advantages of the moving bed for high capacity as well as high inlet dust load and the surface filter for high efficiency. Meanwhile, the granules moving downward cleans the cake on the screen surface, so that the system is operated at steady state.

  3. CRYSTAL FILTER TEST SET

    Science.gov (United States)

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  4. Material characterization of the clay bonded silicon carbide candle filters and ash formations in the W-APF system after 500 hours of hot gas filtration at AEP. Appendix to Advanced Particle Filter: Technical progress report No. 11, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Alvin, M.A.

    1993-04-05

    (1) After 500 hours of operation in the pressurized fluidized-bed combustion gas environment, the fibrous outer membrane along the clay bonded silicon carbide Schumacher Dia Schumalith candles remained intact. The fibrous outer membrane did not permit penetration of fines through the filter wall. (2) An approximate 10-15% loss of material strength occurred within the intact candle clay bonded silicon carbide matrix after 500 hours of exposure to the PFBC gas environment. A relatively uniform strength change resulted within the intact candles throughout the vessel (i.e., top to bottom plenums), as well as within the various cluster ring positions (i.e., outer versus inner ring candle filters). A somewhat higher loss of material strength, i.e., 25% was detected in fractured candle segments removed from the W-APF ash hopper. (3) Sulfur which is present in the pressurized fluidized-bed combustion gas system induced phase changes along the surface of the binder which coats the silicon carbide grains in the Schumacher Dia Schumalith candle filter matrix.

  5. Ceramic HEPA Filter Program

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M A; Bergman, W; Haslam, J; Brown, E P; Sawyer, S; Beaulieu, R; Althouse, P; Meike, A

    2012-04-30

    Potential benefits of ceramic filters in nuclear facilities: (1) Short term benefit for DOE, NRC, and industry - (a) CalPoly HTTU provides unique testing capability to answer questions for DOE - High temperature testing of materials, components, filter, (b) Several DNFSB correspondences and presentations by DNFSB members have highlighted the need for HEPA filter R and D - DNFSB Recommendation 2009-2 highlighted a nuclear facility response to an evaluation basis earthquake followed by a fire (aka shake-n-bake) and CalPoly has capability for a shake-n-bake test; (2) Intermediate term benefit for DOE and industry - (a) Filtration for specialty applications, e.g., explosive applications at Nevada, (b) Spin-off technologies applicable to other commercial industries; and (3) Long term benefit for DOE, NRC, and industry - (a) Across industry, strong desire for better performance filter, (b) Engineering solution to safety problem will improve facility safety and decrease dependence on associated support systems, (c) Large potential life-cycle cost savings, and (d) Facilitates development and deployment of LLNL process innovations to allow continuous ventilation system operation during a fire.

  6. The intractable cigarette 'filter problem'.

    Science.gov (United States)

    Harris, Bradford

    2011-05-01

    became the fundamental cigarette filter material. By the mid-1960s, the meaning of the phrase 'filter problem' changed, such that the effort to develop effective filters became a campaign to market cigarette designs that would sustain the myth of cigarette filter efficacy. This study indicates that cigarette designers at Philip Morris, British-American Tobacco, Lorillard and other companies believed for a time that they might be able to reduce some of the most dangerous substances in mainstream smoke through advanced engineering of filter tips. In their attempts to accomplish this, they developed the now ubiquitous cellulose acetate cigarette filter. By the mid-1960s cigarette designers realised that the intractability of the 'filter problem' derived from a simple fact: that which is harmful in mainstream smoke and that which provides the smoker with 'satisfaction' are essentially one and the same. Only in the wake of this realisation did the agenda of cigarette designers appear to transition away from mitigating the health hazards of smoking and towards the perpetuation of the notion that cigarette filters are effective in reducing these hazards. Filters became a marketing tool, designed to keep and recruit smokers as consumers of these hazardous products.

  7. Study of two-phase flow regime identification in horizontal tube bundles under vertical upward cross-flow condition using wavelet transform

    Institute of Scientific and Technical Information of China (English)

    Xinghua HUANG; Li WANG; Feng JIA

    2008-01-01

    A wavelet-transform based approach for flow regime identification in horizontal tube bundles under vertical upward cross-flow condition was presented. Tests on two-phase flow pattern of R 134a were conducted under low mass velocity and flow boiling conditions over Time series of differential pressure fluctuations were mea-sured and analyzed with discrete wavelet transform. Different time-scale characteristics in bubbly flow, churn flow and annular flow were analyzed. The wavelet energy distributions over scales were found to be appropriate for flow regime identification. Based on the wavelet energy distribution over characteristic scales, a criterion of flow regime identification was proposed. The comparison with experiment results show that it is feasible to use the dis-crete wavelet transform as the tool of flow regime iden-tification in horizontal tube bundles under vertical upward cross-flow condition.

  8. A numerical study of the three-dimensional structure of the Taylor-Couette flow in eccentric configuration with superimposed cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Scurtu, Nicoleta; Egbers, Christoph [Brandenburgische Technische Universitaet (BTU), Cottbus (Germany); Stuecke, Peter [Westsaechsische Hochschule (WHZ), Zwickau (Germany)], E-mail: scurtu@tu-cottbus.de

    2008-11-01

    The eccentric small gap Taylor-Couette system with rotating inner cylinder and fixed outer cylinder is investigated numerically. The main flow fields were examined and the transition region from the laminar Couette-flow to the Taylor-vortex-flow in different eccentric arrangements of the cylinders. The effect of the eccentricity on flow patterns was studied for different values of the eccentricity between 0 and 0.75 in relation to the mean gap. This flow was further disturbed by the superimposed cross flow entering into the gap through the feed hole with a cross flow rate of 0.1 of the circumferential flow rate. Hence, more complex three dimensional flow structures evolved in the cylinders' gap, especially in the vicinity of the feed hole.

  9. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  10. In Situ Observation of Carbonaceous Material in the Matrices of CV and CM Carbonaceous Chondrites: Preliminary Results from Energy Filtered Transmission Electron Microscopy

    Science.gov (United States)

    Brearley, A. J.; Abreu, N. M.

    2001-01-01

    Energy filtered transmission electron microscopy shows that organic matter can be detected in situ in the matrices of carbonaceous chondrites at a spatial resolution of at least 1 nm. In CM chondrites, carbon is often associated with sulfide particles. Additional information is contained in the original extended abstract.

  11. Aquatic Plants Aid Sewage Filter

    Science.gov (United States)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  12. 陶瓷滤料处理低含聚污水试验%Experimental Research of Ceramic Filter Material in the Treatment of Low Poly-mer Containing Wastewater

    Institute of Scientific and Technical Information of China (English)

    尹立平

    2016-01-01

    针对常规核桃壳、石英砂滤料处理含聚污水效果较差的问题,开展了陶瓷滤料处理试验。试验对陶瓷滤料运行参数与处理效果之间的关系进行了研究,其最佳工况为滤速13 m/h、反冲洗周期24 h、反冲洗强度10 L/(S·m2)。现场试验表明,陶瓷滤料对含聚浓度低于90 mg/L的污水处理效果较好,含油及悬浮物去除效率都较高。在进水含油浓度低于100 mg/L、悬浮物浓度低于50 mg/L的情况下,出水达到了“5.5.2”指标要求,比现有核桃壳、石英砂滤料处理含聚污水效果更好。%Filtration is the key link of sewage treatment. In view of the poor effect of the conventional walnut shell and quartz sand filter material to deal with the poly-containing wastewater, the processing experiment of ceramic filter material was carried out. The rela-tionship between operation parameters and the treatment effect was studied. The optimum condition is the filter speed of 13 m/h , backwash cycle of 24 h , backwash intensity of 10 L/(S·m2).Field test showed that ceramic filter material is good for the sewage treatment effect which containing polymer concentration below 90 mg/L, oil and suspended solids re-moval efficiency is high, too. In the condition that oil containing below 100 mg/L in input water ,suspended solids content below 50 mg/L,the effluent can meet the"5.5.2"index re-quirements,which better than walnut shell and the quartz sand filter material.

  13. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 1st Report, Saturated Liquid

    OpenAIRE

    Ito, Takehiro; Nishikawa, Kaneyasu; Shigechi, Tooru

    1981-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to saturated liquid cross-flowing upward is analyzed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined by means of the integral method of boundary-layer for water, ethanol and hexane under the atmospheric pressure. The velocity profile, separation point of the boundary-layer, thickness of the boundary-layer, distribution of the heat transfer coefficients and avera...

  14. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 2nd Report, Subcooled Liquid

    OpenAIRE

    Shigechi, Tooru; Ito, Takehiro; Nishikawa, Kaneyasu

    1983-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to a subcooled liquid cross-flowing upward is analysed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined for subcooled water, ethanol and hexane under the atmospheric pressure by the method similar to that of the first report for saturated liquid. The velocity profile, the separation point in the vapor film, the thickness of the boundary-layer and the average Nuss...

  15. Heat transfer characteristics of air cross-flow for in-line arrangement of spirally corrugated tube and smooth tube bundles

    Institute of Scientific and Technical Information of China (English)

    LU Guo-dong; ZHOU Qiang-tai; TIAN Mao-cheng; CHENG Lin; YU Xiao-li

    2005-01-01

    An experimental study on heat transfer and resistance coefficients of linearly arranged smooth and spirally corrugated tube bundles in cross-flow was performed. The heat transfer and resistance coefficients are presented in this paper with transverse and longitudinal tube-pitch and tube geometries taken into account. The experiment's results can provide technical guidelines for application to horizontal air preheater with arranged in-line spirally corrugated tube bundles, especially to the air preheater for CFBCBs (Circulating Fluidized Bed Combustion Boilers).

  16. Trickling Filters. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Richwine, Reynold D.

    The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…

  17. Linear Regression Based Real-Time Filtering

    Directory of Open Access Journals (Sweden)

    Misel Batmend

    2013-01-01

    Full Text Available This paper introduces real time filtering method based on linear least squares fitted line. Method can be used in case that a filtered signal is linear. This constraint narrows a band of potential applications. Advantage over Kalman filter is that it is computationally less expensive. The paper further deals with application of introduced method on filtering data used to evaluate a position of engraved material with respect to engraving machine. The filter was implemented to the CNC engraving machine control system. Experiments showing its performance are included.

  18. Performance of conformal guided mode resonance filters.

    Science.gov (United States)

    Cannistra, Aaron T; Poutous, Menelaos K; Johnson, Eric G; Suleski, Thomas J

    2011-04-01

    Guided mode resonance (GMR) filters are highly functional micro-optics capable of narrowband spectral filtering. GMR devices have previously been demonstrated on flat substrates using a wide range of materials and configurations. In this Letter, we apply a soft lithographic technique followed by the deposition of dielectric layers to generate GMR filters on a concave lens surface. Resonances of the resulting conformal GMR filters are experimentally measured and characterized, and the results are compared to the performance of similar GMR filters fabricated on flat surfaces.

  19. Trickling filter and trickling filter-suspended growth process design and operation: a state-of-the-art review.

    Science.gov (United States)

    Daigger, Glen T; Boltz, Joshua P

    2011-05-01

    The modern trickling filter typically includes the following major components: (1) rotary distributors with speed control; (2) modular plastic media (typically cross-flow media unless the bioreactor is treating high-strength wastewater, which warrants the use of vertical-flow media); (3) a mechanical aeration system (that consists of air distribution piping and low-pressure fans); (4) influent/recirculation pump station; and (5) covers that aid in the uniform distribution of air and foul air containment (for odor control). Covers may be equipped with sprinklers that can spray in-plant washwater to cool the media during emergency shut down periods. Trickling filter mechanics are poorly understood. Consequently, there is a general lack of mechanistic mathematical models and design approaches, and the design and operation of trickling filter and trickling filter/suspended growth (TF/SG) processes is empirical. Some empirical trickling filter design criteria are described in this paper. Benefits inherent to the trickling filter process (when compared with activated sludge processes) include operational simplicity, resistance to toxic and shock loads, and low energy requirements. However, trickling filters are susceptible to nuisance conditions that are primarily caused by macro fauna. Process mechanical components dedicated to minimizing the accumulation of macro fauna such as filter flies, worms, and snail (shells) are now standard. Unfortunately, information on the selection and design of these process components is fragmented and has been poorly documented. The trickling filter/solids contact process is the most common TF/SG process. This paper summarizes state-of-the art design and operational practice for the modern trickling filter. Water Environ.

  20. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  1. 应用不同材料过滤去除海河蓝藻水华研究%Study on Removal of Blue-green Algae from Haihe River by Several Filter Materials

    Institute of Scientific and Technical Information of China (English)

    周绪申; 李慧峰; 罗阳; 林超; 张左立; 赵立虹

    2012-01-01

    Algae bloom broke out in Haihe River in July 2012. Algal community was analyzed during that time and several common materials were experimented on algae removal by direct filtration apparatus. The results showed that 42 species belonging to 5 phyta of phytoplankton were identified. Algae cell density was up to 1.89×108 / L and Microcysis aeruginosa belonging to Cyanophyta was dominant species. The algae removal efficiency (cell density and chlorophyll a) of cotton, rapid filter paper and acrylic was over 80%. The blue-green algae removal efficiency of five kinds of materials was over 80%, in which cotton was the best filter (96.02%). Most of the blue-green algae with group or larger volume were easier to be filtered by the materials. The rate of filtering algae from fast to slow is as follows: sponge > plant stalk fiber> nylon scrubbing cloth> gauze > AcryliO # 25 plankton net> copper mesh> cotton> non-woven fabric > Quick filter paper.%于2012年7月海河蓝藻爆发期间,对水体藻类群落组成进行了分析,对生活中常见材料过滤除藻能力进行了研究.结果表明海河蓝藻爆发期间共发现藻类5门42种,藻类细胞密度达1.89×108个/L,其中蓝藻门的铜绿微囊藻为本次藻类爆发的优势种类.所选过滤材料处理藻细胞密度和叶绿素a效率超过80%的有3种,分别为:脱脂棉、快速滤纸和腈纶.蓝藻去除效率超过80%的材料有5种,其中脱脂棉的处理效果最佳,处理效率达96.02%,群体和体积较大蓝藻大部分能被过滤去除.过滤材料过滤藻类速率由快至慢依次为:海绵4层>植物秸秆纤维>尼龙擦洗布>纱布16层>腈纶>25号浮游生物网>细铜丝网>脱脂棉>无纺布4层>快速滤纸.

  2. Development and application of high-temperature environmental protection filter material compound products%高温环保复合过滤材料研发及应用

    Institute of Scientific and Technical Information of China (English)

    王文鑫

    2016-01-01

    以研发高温环保复合过滤材料为目标,选用耐高温、耐腐蚀、抗氧化的纤维为原料,采用针刺水刺复合工艺,提高了高温环保复合过滤材料的微细粒子(PM2.5)的捕集效果,同时防止了细微粉尘进入过滤材料深层。迎尘面采用水刺层,具有表面过滤和利于清灰的作用,使表面对细微粉尘的过滤更加高效、可靠,并降低了过滤阻力。复合技术的应用还显著改善了过滤材料的耐温性能,并使其耐腐蚀性、抗氧化性和拉伸强力等显著提高,同时降低了生产成本。%With the aim to research and develop high-temperature environmental protection com-pound filter materials, the high-temperature, corrosin-resistant and antioxidant fibers were chosen as raw materials, with needle-punch and spunlace compound technology, the trapping effect of micro-particles(PM2. 5) of the compound materials was increased, and the fine dust from penetrating into the deep filter was prevented. The dust facing surface was made of spunlaced layer, which possessed the effect of surface filtration and was conducive to clear ash, and therefore, surface filtration was more efficient and reliable, and the filtration resistance was also reduced. The application of com-pound technology significantly improved the temperature resistance of the filter material, and the cor-rosion resistance, oxidation resistance and tensile strength of the filter material were increased great-ly, and the cost was reduced.

  3. Aspects of tests and assessment of filtering materials used for respiratory protection against bioaerosols. Part I: type of active substance, contact time, microorganism species.

    Science.gov (United States)

    Majchrzycka, Katarzyna; Gutarowska, Beata; Brochocka, Agnieszka

    2010-01-01

    This paper presents the results of a study on antimicrobial activity of polymer filter nonwovens produced by needle-punching or melt-blowing with an addition of disinfecting agents. The first part of the paper discusses how the biocidal activity of nonwovens is a function of the active agent added to the nonwovens, the duration of the contact of microorganisms with nonwovens and the type of microorganisms. The types of fibres and disinfecting agents had a considerable effect on the biocidal activity of nonwovens. The biocidal effect of nonwovens increased with the duration of their contact with microorganisms. Fibre activity differed considerably depending on the species of the microorganism. The microorganisms most sensitive to biocidal activity of the active filter nonwoven were S. aureus, M. flavus and E. coli. There were no biocidal effects on spore-forming bacterium B. subtilis.

  4. 新型天然复合纸基材料对滤棒成型及性能的影响%Study on the Forming Process and Pressure Drop Stability of the New Natural Composite Material Filter Tip

    Institute of Scientific and Technical Information of China (English)

    高鑫; 唐荣成; 盛培秀; 周成喜; 孙庆杰

    2012-01-01

    The new natural composite material ( CAP) , made of the wood pulp and special functional fibers is a composite filter paper. In order to define the basis weight criteria of CAP, the relationship between pressure drop and the weight of the CAP filter tip was investigated. The relationship between pressure drop and crimping depth of CAP filter tip and pure wood pulp paper filter tip in the same process conditions was also conceived, and the characteristic curves of filter tip were fitted. The correlation analysis showed that when basis weight of CAP was in the range of (36 ± 1) g/m2 , there was no correlation between crimping depth and pressure drop, while there was a close relationship when it exceeded ( 36 ± 1) g/m2 . It indicated that pressure drop increases while the crimping depth grows, and pressure drop has a linear relationship with the crimping depth in the range of 20% ~ 70% especially for CAP. Their stability of pressure drop is not as good as diacetate cellulose tow. The practice proves that they can satisfy the requirement of dual filters.%考察了新型天然复合纸基材料(CAP,定量36 g,/m2)的定量波动和滤棒压降的相关性,以确定CAP的定量标准;在相同工艺条件下,分别对CAP和纯木浆纸(CP,定量36g/m2)的压深比例和滤棒压降的相关性进行了研究,并对CAP和CP滤棒压降的稳定性、滤材压深比例与滤棒压降的关系进行了比较.结果表明,当CAP定量波动在±1 g/m2范围内时,CAP定量波动与滤棒压降之间无相关性;当CAP定量波动超过±1 g/m2时,CAP定量波动对滤棒压降的影响较大;CAP和CP滤棒压降都随压深比例的增加而增大;当压深比例在20% ~ 70%时,CAP的压深比例和滤棒压降的线性关系良好;与醋酸纤维滤棒复合后,CAP滤棒可设计成满足要求的复合滤棒.

  5. Convergent Filter Bases

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

  6. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  7. Qualitative analysis by X ray fluorescence of impurities in materials used as air filters; Analisis cualitativo por fluorescencia de rayos X de impurezas en materiales utilizados como filtros de aire

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue G, J; Munoz M, G; Navarrete T, M [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1995-06-01

    A qualitative analysis of impurities in 5 materials commonly used as air filters was performed with 2 aims: to compare them, in regard to their impurities and to set a methodology to identify spectroscopically, in a short time (1000 seconds), those impurities in order to subtract the blanks signal from that one generated by the collected sample. Some papers on air filters impurities (cellulose, polycarbonate and glass fiber) were found in literature. In one case, the analysis was performed by energy-dispersive X ray fluorescence, tube generated method. In this work it was employed the same method but a radioisotope (Cd-109) was used as primary source. This was applied to 2 of the above mentioned materials as well as to nylon, teflon and quartz. The glass fiber filter had the highest impurity level: Ca, Ba, Pb, Zn, Sr, Rb, and Fe (0.5 {mu}gFe/cm{sup 2}, measured by Atomic Absorption Spectroscopy). The teflon filter had the lowest impurity level. The developed procedure is fast, precise and reproducible and it may be applied also to wastewaters filters. [Spanish] Se realizo el analisis cualitativo de impurezas en cinco materiales comunmente utilizados como filtros de aire, con dos propositos: compararlos en base a sus impurezas y establecer una metodologia que permitiera, en muy corto tiempo (1000 segundos), identificar espectroscopicamente las impurezas a fin de restar la senal del blanco de aquella que genera eventualmente la muestra. En la bibliografia se encontraron algunas publicaciones acerca de impurezas en filtros de aire (celulosa, pollicarbonato y fibra de vidrio), determinadas principalmente por Absorcion Atomica. En un caso, tal determinacion se realizo por Fluorescencia de Rayos X generados en tubo de descargas y detectados por dispersion de energia. En este trabajo se empleo el mismo metodo de Fluorescencia de Rayos X detectados por dispersion de energia pero generados por un radioisotopo (Cd-109) y se aplico a dos de los tres materiales antes

  8. On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers

    Science.gov (United States)

    Baarholm, G. S.; Larsen, C. M.; Lie, H.

    2006-01-01

    Large-scale model tests of a tensioned steel riser were performed at Hanøytangen outside Bergen, Norway in 1997. The length of the model was 90 m and the diameter was 3 cm. The information from these tests consists of measured bending strains, tension, flow speed and all relevant riser data. In this work, this information is reexamined in an attempt to improve our understanding of vortex-induced vibrations (VIV) for cases with very high order of responding modes. The aim is in particular to study the relative importance of in-line (IL) and cross-flow (CF) vibrations for fatigue damage accumulation. It is shown that fatigue damage is proportional to U (U is the flow velocity) when the modes are dominated by tension. When bending controls the modes, the fatigue damage is proportional to U. A linear SN-curve with slope parameter m=3 is used. The Hanøytangen riser fatigue damage goes as U7 for the lowest velocities and U4 for the highest current velocities. Based on the Hanøytangen data, it seems that the transition velocity between the tension and the bending-stiffness-dominated regions is at the current velocity that gives response at a mode number where a tensioned string and an untensioned beam have equal eigenfrequencies. IL response has a significant contribution to fatigue for cases dominated by the lowest modes. The reason is that IL oscillations will take place at double the frequency of those in CF. For a tension-controlled case, this corresponds to a mode with half the wavelength, while a bending-controlled case will tend to have a wavelength ratio of 2. Since the curvature for a given amplitude increases with the inverse modal wavelength squared, fatigue from IL tends to dominate for cases with tension-controlled modes (low current speed), while CF will dominate for bending-controlled modes (high current speed). This tendency is clearly seen in the experimental data for both CF and IL responses. Fatigue damage is calculated directly from the measured

  9. Smart structures for application in ceramic barrier filter technology. Final report, August 1991--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, S.J.; Lippert, T.E

    1994-12-01

    High temperature optical fiber sensors were developed to measure the in-service stressing that occurs in ceramic barrier filter systems. The optical fiber sensors were based on improvements to the sensor design developed under the DOE/METC Smart Structures for Fossil Energy Applications contract no. DE-AC21-89MC25159. In-house application testing of these sensors on both candle and cross-flow filters were performed in the Westinghouse Science and Technology Center High-Temperature, High-Pressure Filter Test Facility and the results analyzed. This report summarizes the sensor developments, methods to apply the sensors to the filters for in-situ testing, and the test results from the four in-house tests that were performed.

  10. FILTER COMPONENT ASSESSMENT--CERAMIC CANDLES--

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Alvin

    2004-04-23

    Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on development of hot gas filter systems as an enabling technology for advanced coal and biomass-based gas turbine power generation applications. SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report summarizes the results of SWPC's filter component assessment efforts, identifying the performance and stability of porous monolithic, fiber reinforced, and filament wound ceramic hot gas candle filters, potentially for {ge}3 years of viable pressurized fluidized-bed combustion (PFBC) service operating life.

  11. A biological oil adsorption filter

    Energy Technology Data Exchange (ETDEWEB)

    Pasila, A. [University of Helsinki (Finland). Dept. of Agricultural Engineering and Household Technology

    2005-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore. (author)

  12. A biological oil adsorption filter.

    Science.gov (United States)

    Pasila, Antti

    2004-12-01

    A new oil adsorption method called adsorption filtration (AF) has been developed. It is a technology where by oil residues can be cleaned from water by running it through a simple filter made from freeze treated, dried, milled and then fragmented plant material. By choosing suitable plants and fragmentation sizes it is possible to produce filters, which pass water but adsorb oil. The aim of this study was to investigate the possibilities of manufacturing oil adsorbing filter materials from reed canary grass (Phalaris arundinacea), flax (Linum usitatissimum L.) or hemp fibre (Cannabis sativa L.). The oil (80 ml) was mixed with de-ionised water (200 ml) and this mixture was filtered through 10 or 20 g adsorption filters. Fine spring harvested hemp fibre (diameter less than 1 mm) and reed canary grass fragments adsorb 2-4 g of oil per gram of adsorption material compared to 1-3 g of water. Adsorption filtration is thus a novel way of gathering spilled oil in shallow coastal waters before the oil reaches the shore.

  13. Emergency sacrificial sealing method in filters, equipment, or systems

    Science.gov (United States)

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  14. Emergency sacrificial sealing method in filters, equipment, or systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Erik P.

    2017-02-28

    A system seals a filter or equipment component to abase and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  15. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  16. Miniaturized dielectric waveguide filters

    Science.gov (United States)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  17. Research on water and oil-repellent finish of polyester needle punched nonwoven filter material%涤纶针刺滤料的拒水拒油整理工艺研究

    Institute of Scientific and Technical Information of China (English)

    曹小敏; 崔运花

    2015-01-01

    使用FG-910含氟拒水拒油整理剂对涤纶针刺滤料进行拒水拒油整理,研究了在整理过程中五个主要因素对整理效果的影响规律,并进行了正交优化试验. 结果表明:最佳的整理工艺参数是浸渍温度55 ℃、浸渍时间25 min、FG-910质量浓度60 g/L、焙烘温度150 ℃和焙烘时间150 s,在该条件下整理可使涤纶针刺滤料的拒水等级和拒油等级都达到8级,且透气率变化率达到18.75%,可有效地改善滤料的过滤性能.%Used fluorinated reagent FG-910 to do water an filter material , the influence of five major factors on the finishing effects was studied , and then did orthogonal optimization test .The results showed that the optimum finishing process as follows:dipping temperature was 55 ℃, dipping time was 25 min, FG-910 concentration was 60 g/L, curing tempera-ture was 150 ℃and curing time was 150 s.Under this condition water-repellency and oil-repellency grade of polyester needle punched filter material has reached eight , and the permeability has reached 18.75%, which improved the filtration performance of filter media effectively . d oil repellent finishing for polyester needle punched

  18. A novel approach to evaluate the permeability of cake layer during cross-flow filtration in the flocculants added membrane bioreactors.

    Science.gov (United States)

    Zhang, Hanmin; Gao, Jifeng; Jiang, Tao; Gao, Dawen; Zhang, Shurong; Li, Hongyan; Yang, Fenglin

    2011-12-01

    In order to obtain a better understanding of the cake layer formation mechanism in the flocculants added MBRs, a model was developed on the basis of particle packing model considering cake collapse effect and a frictional force balance equation to predict the porosity and permeability of the cake layers. The important characteristic parameters of the flocs (e.g., floc size, fractal dimensions) and operating parameters of MBRs (e.g., transmembrane pressure, cross-flow velocity) are considered in this model. With this new model, the calculated results of porosities and specific cake resistances under different MBR operational conditions agree fairly well with the experimental data.

  19. Investigation on heat transfer mechanism of impinging jet with cross-flow%横流对冲击射流换热特性的影响

    Institute of Scientific and Technical Information of China (English)

    张传杰; 孙纪宁; 李浩; 毛宏霞

    2011-01-01

    用实验和数值计算的方法研究了横流对单孔短距冲击换热特性的影响规律.结果表明:①在实验研究范围内,冲击靶面平均努塞尔数Nuav,is随横流的增大而增大;②冲击靶面前区努塞尔数Nufia随横流的增大而减小,这是因为壁面附近x负向流动的气流流速绝对值变小,换热削弱;③靶面冲击点附近及冲击靶面后区努塞尔数Nubia随横流的增大而增大,原因是在冲击点上游出现的马蹄涡的旋涡方向和冲击射流自身形成的卷吸涡拉伸涡对方向相同,这两种涡的叠加使该区域冲击靶面的换热得到增强.%Experimental and numerical investigations were made to simulate heat transfer characteristics of a single impinging hole and short impinging distance with cross-flow.The results show that:(1)in the experiment,the average Nusselt number of the impingement surface increases with the increase of cross-flow;(2)the Nusselt number in the front impact area decreases with the increase of cross-flow,because the flow velocity near the wall decreases,weakening the heat transfer effect;(3)the Nusselt number behind impact area near the impact point increases with the increase of cross-flow,because the vortexes directions between the horseshoe vortex in the upstream near the impact point and the stretching vortex produced by impinging jet are the same,and these two vortexes enhance the heat transfer in the impact surface.

  20. New performance data for {open_quotes}Emery 3002{close_quotes} and {open_quotes}Emery 3004,{close_quotes} two Army-approved safe materials to replace DOP in mask and filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Carlon, H.R.; Guelta, M.A. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States)

    1995-02-01

    At the 22nd Conference in Denver, we reported that the U.S. Army Surgeon General (SGJ) had approved our developmental material {open_quotes}Emery 3004{close_quotes} as a safe replacement for the suspected carcinogen DOP (dioctyl phthalate) in mask and filter testing throughout the Army. Subsequently the SG approved a second, less viscous material, {open_quotes}Emery 3002,{close_quotes} for similar applications. We have measured the viscosities and surface tensions of these liquids over a wide range of temperatures, and have initiated liquid breakup studies through Laskin and two-fluid nozzles. New measurements have been carried out with both liquids, e.g. using the ATI, Inc., TDA-4A cold generator to disperse aerosols for which droplet size distributions were measured using the TSI, Inc., Differential Mobility Particle Sizer (DMPS). Among the findings were that Emery 3004 performs much like DOP in the TDA-4A, with some possible advantages, while Emery 3002 in the TDA-4A produces mean droplet diameters about one-half those of Emery 3004 or DOP. This suggests that Emery 3002 could yield more rigorous filter tests with a smaller consumption of material. New laboratory results will be summarized. Sources of the {open_quotes}Emery{close_quotes} materials will be discussed since the production facility formerly operated by Emery is now run by the Ethyl Corporation and the source products are now known as {open_quotes}Ethylflo 192{close_quotes} (Emery 3002) and{open_quotes}Ethylflo 194{close_quotes} (Emery 3004).

  1. Dedusting and filtering technology; Entstaubungs- und Filtertechnik

    Energy Technology Data Exchange (ETDEWEB)

    Selck, S.; Stockmann, H.W.; Both, R. [Deutsche Montan Technologie GmbH, Essen (Germany). Gas and Fire Div.

    2004-07-01

    For the further development of the filtration and dedusting technology within the last research period the new regulations in occupational hygiene concerning dust as well as ISO and EN standards have been considered. Also the new requirements concerning fire and explosion protection filter materials based in the test regulations for synthetic materials have been taken into account. The adoption of these new regulations inhibits the further use of the available high effective filter materials in underground coal mines. The development of new filter materials has been forced by the test regulations for synthetic materials, as the specific aspects of electrostatic behaviour, soot and toxic gases formed by burning of filter materials impacting the CO self rescue filters, have been taken into account. Even these requirements are partially inhibiting high filter efficiencies and air flows, all the requirements have been fulfilled on a high level on filter efficiencies matching the present state of art in occupational hygiene as reported in the Silicosis Reports Vol. 20 and 21. (orig.)

  2. CFD and laboratory analysis of axial cross-flow velocity in porous tube packed with differently structured static turbulence promoters

    Directory of Open Access Journals (Sweden)

    Gaspar Igor

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD was used for modelling flow regime in a porous tube. This tube is an ultrafiltration membrane filter made from zirconium-oxide which is very effective in the separation of stable oil-in-water microemulsions, especially when the tube is filled with static mixer. The results of the CFD analysis were used in the preliminary optimisation of the static mixer’s geometry since it has significant effect the energy requirement of this advanced membrane technology. The self-developed static mixers were tested “in vitro” from the aspect of separation quality and process productivity as well to validate CFD results and to develop a cost effective, green method to recover unmanageable oily wastewaters for sustainable development. In this work the results of computational simulation of the fluid velocity and membrane separation experiments are discussed.

  3. LES of turbulent jet in cross flow: Part 2 – POD analysis and identification of coherent structures

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Meyer, Knud Erik

    2012-01-01

    results are directly compared and found to be in close agreement with results of a Particle Image Velocimetry (PIV) based planar (2D) snapshot POD analysis by Meyer et al. (JFM 583, p. 199–227, 2007), indicating that LES is able to predict the same large scale flow dynamics as that captured by PIV. Some...... are validated against pointwise time averaged Laser Doppler Anemometry (LDA) measurements in PART1 of this study. In PART2 of the presented study – a planar (2D) LES based snapshot POD analysis is first conducted on two mutually perpendicular planes located in the jet-to-crossflow entrance zone. The obtained...... differences are also observed, but appear to be directly connected to the differences in levels of the resolved turbulent kinetic energy (TKE) between LES and PIV datasets. Those differences proved to be linked to the process of filtering out the small-scale fluctuations implicit to the PIV measurement...

  4. Aspects of tests and assessment of filtering materials used for respiratory protection against bioaerosols. Part II: sweat in the environment, microorganisms in the form of a bioaerosol.

    Science.gov (United States)

    Majchrzycka, Katarzyna; Gutarowska, Beata; Brochocka, Agnieszka

    2010-01-01

    The second part of the article presents the results of a study of antimicrobial activity of filter nonwovens with an addition of biocides, as a function of the presence of sweat in the environment and the method of microbe deposition on a nonwoven in the form of a liquid and a bioaerosol. At the same time, the filtration efficiency of nonwovens against microorganisms in the form of a bioaerosol was tested with the dynamic method. The results showed that the addition of sweat on the surface of a nonwoven resulted in an insignificant decrease of biological activity that still remained high. Moreover, an active nonwoven showed biostatic and biocidal activity only when microbes were deposited on the surface in the form of a solution. The nonwoven did not show any biological activity after deposition of microorganisms with the dynamical method in the form of a bioaerosol.

  5. Research on the PTFE emulsion finishing of polyester needle punched nonwoven filter material%涤纶针刺滤料的 PTFE 乳液整理工艺探索

    Institute of Scientific and Technical Information of China (English)

    崔运花; 韩雅岚; 季舒阳; 曾卉菁; 张嘉珂; 江宁

    2013-01-01

    Two kinds of polyestcr needle-punched filter media with diflercnt density were finlshed by PTFE emulsion . The effects of eight different parameters in PTFE emulsion finishing process on permeability of two kinds of filter materials were studied , involving impergeating temperature , impregnation time , PTFE emulsion concentration , calendar pressure , pre-drying temperature and time , curing temperature and time.The optimum finishing process for the permeability of filter material with loose structure was as follows, the dip time was 15 min, the calendar pressure was 0.2 MPa, the pre-drying temperature was 100 ℃, the pre-drying time was 5 min, the curing remperature was 180 ℃, the curing time was 7 min.The optimum finishing process for the permeability of filter masterial with compact structure was as follows, the dip time was 15 min, the calendar pressure was 0.5 MPa, the pre-drying temperature was 80 ℃, the pre-drying tiem was 10 min, the curing temperature was 160 ℃, and the curing time was 3 min.%  选择两种结构致密程度不同的涤纶针刺滤料,对其进行PTFE乳液整理,研究了浸渍温度、浸渍时间、PTFE乳液浓度、轧车压力、预烘温度、预烘时间、焙烘温度和焙烘时间八项工艺参数对滤料透气率的影响规律。正交优化试验结果显示:可以使结构疏松滤料透气率变化率最大的工艺为浸渍时间15 min,轧车压力0.2 MPa,预烘温度100℃,预烘时间5 min,焙烘温度180℃,焙烘时间7 min;可以使结构致密滤料透气率变化率最大的整理工艺为浸渍时间15 min,轧车压力0.5 MPa,预烘温度80℃,预烘时间10 min,焙烘温度160℃,焙烘时间3 min。

  6. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater.

    Science.gov (United States)

    Zhang, Lin; Lu, Ying; Liu, Ying-Ling; Li, Ming; Zhao, Hai-Yang; Hou, Li-An

    2016-12-15

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7L/(m(2)h) at 0.4MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr(2+) in an alkaline solution, and could also be used to separate Na(+)/Sr(2+) mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  7. Effects of Bulbous Bow on Cross-Flow Vortex Structures Around a Streamlined Submersible Body at Intermediate Pitch Maneuver:A Numerical Investigation

    Institute of Scientific and Technical Information of China (English)

    Saeed Abedi; Ali Akbar Dehghan; Ali Saeidinezhad; Mojtaba Dehghan Manshadi

    2016-01-01

    A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; therefore, it is essential to accurately determine this pair and estimate its size and location. This study utilizes the element-based finite volume method based on RANS equations to compute a 3D axisymmetric flow around a SUBOFF bare submarined hull. Cross-flow vortex structures are then numerically simulated and compared for a submarine with SUBOFF and DRDC STR bows. Computed results of pressure and shear stress distribution on the hull surface and the strength and locations of the vortex structures are presented at an intermediate incidence angle of 20°. A wind tunnel experiment is also conducted to experimentally visualize the vortex structures and measure their core locations. These experimental results are compared with the numerical data, and a good agreement is found.

  8. Experimental study of a R-407C drop-in test on an off-the-shelf air conditioner with a counter-cross-flow evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Mei, V.C.; Domitrovic, R.; Chen, F.C.

    1998-03-01

    An off-the-shelf 2-ton window air conditioner having an energy efficiency ratio of 10 was used to perform a drop-in test with R-407C. Laboratory tests were performed using a parallel-cross-flow (PCF) evaporator and a counter-cross-flow (CCF) evaporator. The CCF configuration is designed to take advantage of the temperature glide of R-407C so that the warm evaporator inlet air will be in contact with the higher temperature part of the evaporator coils first. The test results indicated that, at the Air Conditioning and Refrigeration Institute-rated indoor and outdoor conditions, the cooling capacity was 8% higher and system coefficient of performance about 3.8% higher for the CCF evaporator than for the PCF evaporator. The test results also showed that the latent load for CCF was 30.6% higher than for PCF. The far better dehumidification effect provided by the CCF evaporator design is desirable for areas where the latent load is high. The experimental findings should be useful for future efforts to design a dehumidifier that uses a zeotropic refrigerant that provides a significant temperature glide. R-22 test data from a previous project are included as a reference.

  9. Effects of bulbous bow on cross-flow vortex structures around a streamlined submersible body at intermediate pitch maneuver: A numerical investigation

    Science.gov (United States)

    Abedi, Saeed; Dehghan, Ali Akbar; Saeidinezhad, Ali; Manshadi, Mojtaba Dehghan

    2016-03-01

    A flow field around a streamlined body at an intermediate angle of incidence is dominated by cross-flow separation and vortical flow fields. The separated flow leads to a pair of vortices on the leeside of the body; therefore, it is essential to accurately determine this pair and estimate its size and location. This study utilizes the element-based finite volume method based on RANS equations to compute a 3D axisymmetric flow around a SUBOFF bare submarined hull. Cross-flow vortex structures are then numerically simulated and compared for a submarine with SUBOFF and DRDC STR bows. Computed results of pressure and shear stress distribution on the hull surface and the strength and locations of the vortex structures are presented at an intermediate incidence angle of 20°. A wind tunnel experiment is also conducted to experimentally visualize the vortex structures and measure their core locations. These experimental results are compared with the numerical data, and a good agreement is found.

  10. Laboratory Tests on Granular Filters for Embankment Dams.

    Science.gov (United States)

    1987-08-01

    to filters and drains; for brevity, only the word filter is used. 7 D 15 Hazen’s law for the permeability of uniform clean sand ( Cedergren 1977) is...Figure I ( Cedergren 1977). Gap-graded filter material 10. A gap-graded filter material (see Figure 2) should never be used since it will consist of...filter material ( Cedergren 1977). As shown in Figure 3, the addition of 2.5 percent, by dry weight, silt fines to concrete sand results in an order of

  11. Composing morphological filters

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk)

    1995-01-01

    textabstractA morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openin

  12. Composing morphological filters

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.

    1995-01-01

    A morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openings and closi

  13. Passive Power Filters

    CERN Document Server

    Künzi, R

    2015-01-01

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  14. Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-22

    A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal.

  15. PREPARATION OF BIO-ANTIBACTERIAL AIR FILTER MATERIAL%生物抗菌性空气过滤材料的制备及其抗菌效果评价

    Institute of Scientific and Technical Information of China (English)

    郝丽梅; 祁建城; 王政; 吴金辉; 林松; 田涛; 杨荆泉

    2011-01-01

    目的 制备新型生物抗菌性空气过滤材料,并进行抗菌效果评价,为研制新型抗菌过滤器等提供新材料.方法 该研究选取安全性高的生物抗菌剂(硫酸鱼精蛋白、ε-聚赖氨酸、溶菌酶、硫酸多粘菌素、乳酸链球菌素)和常用的过滤材料玻璃纤维为基材,采用化学法对其进行表面修饰,从而将生物抗菌剂以共价键结合的方式固定在玻璃纤维上.同时考察固定时抗菌剂的浓度对固定后获得的抗菌滤材抗菌性能的影响,以及2种抗菌剂组合固定的抗菌效果.以大肠杆菌(8099)、金黄色葡萄球菌(ATCC 6538)、枯草芽孢杆菌(ATCC 9372)和噬菌体f2为模式微生物,采用液滴气相试验法对抗菌玻璃纤维进行抗菌效果评价.按照消毒技术规范的稳定性测试方法检测抗菌过滤材料的长效性.结果 抗菌实验结果表明,硫酸鱼精蛋白、ε-聚赖氨酸和硫酸多粘菌素分别以5、5、1 mg/ml的质量浓度进行固定时,获得的抗菌滤材抗菌效果较理想,但是其对病毒的杀灭率小于99%.抗菌剂组合固定获得的抗菌过滤材料抗菌性能明显提高,以硫酸鱼精蛋白和甘氨酸、硫酸鱼精蛋白和ε-聚赖氨酸组合效果最好,其对4种模式微生物的抗菌率均达到99%以上.长效性测试结果表明这2种抗菌滤材在常温下的使用期限至少为2年.结论 本研究制备了2种生物抗菌性玻璃纤维过滤材料,其对4种模式微生物的抗菌率均达到99%以上,且稳定性能良好,可长时间保存或使用.%Objective To prepare a novel bio-antibacterial air filter material and evaluate its antibacterial efficiency, so as to provide the basis for developing new antibacterial filter.Methods Surface modifications of the glass fiber filter were performed via chemically modified procedure and the bio-antibacterial substances (protamine sulfate, ε- polylysin lysozyme, polymyxin sulfate, and nisin) were immobilized on it.Then the effect

  16. Research Progress on Performance and Filtration Process of Non-woven Filtering Material%非织造布滤料性能及过滤过程的研究进展

    Institute of Scientific and Technical Information of China (English)

    薛帆帆; 周蓉

    2016-01-01

    对近年来非织造布滤料的研究进展做了简要综述,介绍了内部结构的研究及表征、过滤性能及其影响因素、过滤过程的计算机模拟,指出进一步发展所需要解决的问题.%Research progress of non-woven filtering material was briefly reviewed , such key points were in-troduced as internal structure ' s research and its characterization , filtration performance and its influencing ele-ments and computerized simulation of filtration process , and problems for further development were put forward .

  17. Associations between Blocking, Monitoring, and Filtering Software on the Home Computer and Youth-Reported Unwanted Exposure to Sexual Material Online

    Science.gov (United States)

    Ybarra, Michele L.; Finkelhor, David; Mitchell, Kimberly J.; Wolak, Janis

    2009-01-01

    Objective: To examine the relationship between the use of preventive software on the home computer and unwanted exposure to sexual material online. Methods: The Youth Internet Safety Survey-2 was a national, RDD telephone survey conducted in March-June 2005. Eight hundred households (one caregiver and one child between the ages of 10 and 17 years)…

  18. Associations between Blocking, Monitoring, and Filtering Software on the Home Computer and Youth-Reported Unwanted Exposure to Sexual Material Online

    Science.gov (United States)

    Ybarra, Michele L.; Finkelhor, David; Mitchell, Kimberly J.; Wolak, Janis

    2009-01-01

    Objective: To examine the relationship between the use of preventive software on the home computer and unwanted exposure to sexual material online. Methods: The Youth Internet Safety Survey-2 was a national, RDD telephone survey conducted in March-June 2005. Eight hundred households (one caregiver and one child between the ages of 10 and 17 years)…

  19. UV filters for lighting of plants

    Science.gov (United States)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-03-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  20. Method of securing filter elements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.

  1. 拜耳法赤泥质陶粒滤料处理含铜废水%Experimental Study on Treatment of Copper-contained Waste Water with Porous Ceramics Filtering Materials with Red Mud from Bayer Process

    Institute of Scientific and Technical Information of China (English)

    潘嘉芬; 李梦红; 刘爱菊

    2012-01-01

    以自制拜耳法赤泥质陶粒滤料为吸附剂,进行了模拟废水中铜离子吸附效果和吸附饱和陶粒再生的研究.结果表明,拜耳法赤泥质陶粒滤料对废水中铜离子具有较好的吸附效果和耐久性;吸附饱和后的陶粒在pH=3的硝酸溶液中静态洗脱3次即可恢复至新鲜陶粒的吸附水平;拜耳法赤泥质陶粒用于废水中铜离子的吸附无论从技术上、经济上还是从二次资源的再利用上均具有显著优势,适合大规模推广应用.%The porous ceramics filtering materials with red mud derived from Bayer process is used as adsorbent to investigate the removal rate of copper in waste water and the regeneration of saturated porous ceramics. The research indicated that the porous ceramics filtering materials with red mud derived from Bayer process has a significant adsorbing performance and lasting quality. The adsorption-saturated ceramics can be restored to be fresh ceramics with fresh adsorption performance after regenerating 3 times in static status in a nitric acid solution of pH = 3. The copper removal from the waste water with the porous ceramics of red mud derived from Bayer Process has a significant advantage in techniques, economics and re-utilization of resources, and it is suitable for large-scale application.

  2. Presence of cross flow in the Cerro Prieto geothermal field, BC; Presencia de flujo cruzado en el campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, Marco Helio [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail: marco.rodriguez01@cfe.gob.mx

    2011-01-15

    During the development of Cerro Prieto geothermal field, BC, exploitation has increased gradually, causing a continuous drop in pressure to almost 100 bars in the central and eastern parts of the field. This has occurred despite the high natural recharge induced by the reservoir exploitation and helped by the high permeability of the reservoir and the wide availability of natural recharge of low-temperature water in the vicinity. The strata above the production zones have significantly lower temperatures than these zones, but due to the particular characteristics of the reservoir, do not have pressure drops. As the pressure of producing strata declines, the hydraulic pressure differential between them and the overlying strata increases. Thus in recent years the phenomenon of cross flow occurs with greater frequency and severity. In this paper, this phenomenon is analyzed, detailing the specific mechanisms favoring it and identifying the stage (drilling or workover) in which it commonly occurs. Rigorous supervision during these stages is crucial to identifying cross flow and to taking necessary measures to save the well. Cross flow cases are presented at different stages in the history of a well: during drilling, repair, before and during the stimulation, and during production. [Spanish] Durante el desarrollo del campo geotermico de Cerro Prieto, BC, la explotacion se ha incrementado en forma gradual provocando una continua caida de presion, que en las porciones central y oriente ha sido de casi 100 bars. Esto ha ocurrido a pesar de la enorme recarga natural inducida por la explotacion, favorecida por la alta permeabilidad del yacimiento y la gran disponibilidad de recarga natural de agua de baja temperatura en los alrededores del mismo. Los estratos ubicados encima de las zonas productoras presentan temperaturas significativamente menores que estos, pero debido a las caracteristicas particulares del yacimiento, no han presentado abatimiento en su presion. En la

  3. Adopting primary plastic trickling filters as a solution for enhanced nitrification.

    Science.gov (United States)

    Wilson, Simon P; Ouki, Sabeha K; Saroj, Devendra P; Pearce, Pete A; Bancroft, Louise; Germain, Eve

    2015-01-01

    The wastewater industry is under pressure to optimize performance of sewage treatment works (STW), while simultaneously reducing energy consumption. Using a process configuration selection matrix, this paper explores the practicability of placing a hypothetical cross flow structured plastic media (CFSP) trickling filter (TF) immediately ahead of an existing conventional trickling filter process (CTFP), without intermediate clarification. The viability of this configuration is subsequently demonstrated using an empirical multispecies TF model. This predicts the enhanced nitrification performance of the CTFP by simulating prior removals of biochemical oxygen demand (BOD). The model predictions propose that prior 50-80% BOD removals can allow for further reductions in effluent ammoniacal nitrogen (NH4-N) concentrations of 40-70%, respectively. This illustrates that adopting low energy TF technologies can eliminate the requirement for more energy intensive alternatives, such as submerged aerated filters (SAF). Moreover, this configuration maximizes the potential of existing assets, while simultaneously improving nitrification robustness when compared with tertiary nitrification processes.

  4. Soot filter for the exhaust gas of internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.

    1980-06-19

    In the previously known soot filters, the exhaust gas flows through the cylindrical filter radially from the outside to the inside. The exhaust gas touches a relatively large area of the filter housing and therefore loses a large part of the thermal energy required for post-combustion. According to the invention, these disadvantages are avoided in the new filter, where the filter material forms hollow spaces at the internal wall of the filter, which take the exhaust gas after it has flowed through the filter and carry it in an axial direction of the filter housing to the exhaust. Due to this design of the filter and the saving in heat, the areas on which the exhaust gas impinges can be kept appreciably smaller and better use can be made of the heat in the exhaust gas. The ceramic filter material can consist of an outer layer of loose ceramic fibres and an inner woven ceramic fibre mat. In order to increase the effectiveness of the filter, the soot filter can be used as a fine filter after a coarse filter.

  5. Filter Cake Oil-Wax as Raw Material for the Production of Biodiesel: Analysis of the Extraction Process and the Transesterification Reaction

    OpenAIRE

    Casas, L.; Hernández, Y.; Mantell, C; Casdelo, N.; E. Martinez de la Ossa

    2015-01-01

    The viability of using the waste obtained in the manufacture of sugar from sugarcane for the production of biodiesel has been analyzed. Two fundamental stages are necessary to obtain biodiesel; the first stage is the extraction process from the waste oil materials and the second is the transesterification reaction. Four techniques, Soxhlet, orbital shaker extraction, ultrasonic-assisted extraction, and supercritical fluid extraction, have been analyzed. For Soxhlet, orbital shaker extraction,...

  6. Generalized Hampel Filters

    Science.gov (United States)

    Pearson, Ronald K.; Neuvo, Yrjö; Astola, Jaakko; Gabbouj, Moncef

    2016-12-01

    The standard median filter based on a symmetric moving window has only one tuning parameter: the window width. Despite this limitation, this filter has proven extremely useful and has motivated a number of extensions: weighted median filters, recursive median filters, and various cascade structures. The Hampel filter is a member of the class of decsion filters that replaces the central value in the data window with the median if it lies far enough from the median to be deemed an outlier. This filter depends on both the window width and an additional tuning parameter t, reducing to the median filter when t=0, so it may be regarded as another median filter extension. This paper adopts this view, defining and exploring the class of generalized Hampel filters obtained by applying the median filter extensions listed above: weighted Hampel filters, recursive Hampel filters, and their cascades. An important concept introduced here is that of an implosion sequence, a signal for which generalized Hampel filter performance is independent of the threshold parameter t. These sequences are important because the added flexibility of the generalized Hampel filters offers no practical advantage for implosion sequences. Partial characterization results are presented for these sequences, as are useful relationships between root sequences for generalized Hampel filters and their median-based counterparts. To illustrate the performance of this filter class, two examples are considered: one is simulation-based, providing a basis for quantitative evaluation of signal recovery performance as a function of t, while the other is a sequence of monthly Italian industrial production index values that exhibits glaring outliers.

  7. Higher-Order Compositional Modeling of Three-phase Flow in 3D Fractured Porous Media Using Cross-flow Equilibrium Approach

    CERN Document Server

    Moortgat, Joachim

    2013-01-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical dis...

  8. An Energy-Saving Optimisation of the Large-Scale Cross-Flow Cooling Tower%大型横流塔的节能优化方案

    Institute of Scientific and Technical Information of China (English)

    宗洁

    2012-01-01

    大型横流冷却塔一般采用钢筋混凝土结构,近年来在我国发展迅速。本研究旨在通过消除气场涡流降低风阻及改进填料等手段提高冷却塔冷却效率。原塔设计填料为75mm×35mm×30°P.V.C薄膜式填料,实际运行冷却效率0.623,与设计要求的0.75相比差距较大。通过优化改造设计,单塔风量提高50%以上,单位千瓦电耗产风量提高40%,单塔出水温度降低2℃,冷却效率达0.788。%The large-scale cross-flow cooling tower generally using reinforced concrete structure has recently been developed rapidly in China. A study was carried out to improve its cooling efficiency through eliminating eddy in the air-flow field to reduce drag, improving packing, and etc. The filler of the original tower design was 75 mm ×35 mm×30° PVC film packing. The cooling efficiency of practical operation was only 0.623, far lower than 0.75 of the design specification. By an optimal renovation in design of the cross-flow cooling tower, air volume of a single tower increased by 50%, air output per kilowatt power consumption raised 40% and outlet water temperature of the single tower decreased 2 ℃ whilst the cooling efficiency reached 0.788.

  9. Melt spray non-woven and cellulose fiber composite binder point product high efficiency fuel filter materials%熔喷无纺布与植物纤维点粘结生产高精度复合燃油滤纸

    Institute of Scientific and Technical Information of China (English)

    胥绍华

    2011-01-01

    this paper introduces the ultrasonic composite fiber filter materials development and in the fuel oil filter paper, and the application of the test results show that the compound ultrasonic testing of filtration material application effect.%本文介绍了高精度过滤材料的研制及其在燃油滤纸中的应用,并通过试验台测试结果说明复合滤材的应用效果

  10. 驻极处理对熔喷空气过滤材料过滤性能的影响%The influence on filtration efficiency of melt-blown air filter material after electrets treatment

    Institute of Scientific and Technical Information of China (English)

    刘超

    2013-01-01

      The structure characteristic and filtration mechanism of melt-blown filtration materials were introduced. The influence of melt-blown filtration material with electrets treatment on the filtration efficiency was studied.The electrets treatment could enhance filtration efficiency of the material greatly and almost re-main absorption resistance stable , the filtration efficiency of the material would increase by rise of elec-trets voltage.The filtration efficiency of melt-blown filtration material with electrets treatment was high-er than that of the melt-blown filtration material spray nanofiber and the absorption resistance of the melt-blown filtration material spray nanofiber was higher than the national standard and larger than that of the former.The electrets treatment was an important process on melt-blown air filter material and could be applied on production widely .%  介绍了熔喷过滤材料的结构特点和过滤机理,研究了驻极处理对熔喷过滤材料过滤性能的影响。结果表明:驻极处理能够大幅度地提高熔喷空气过滤材料的过滤效率而保持呼吸阻力几乎不变,并随着驻极电压的增加,过滤效率增大;在熔喷空气过滤材料上喷涂纳米纤维后,其过滤效率低于经驻极处理的熔喷空气过滤材料,而呼吸阻力却急剧增大,远远超过国家标准(≤350 Pa)的要求。驻极处理方法是熔喷空气过滤材料重要的一种处理工艺,可在生产中广泛应用。

  11. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  12. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  13. Guided image filtering.

    Science.gov (United States)

    He, Kaiming; Sun, Jian; Tang, Xiaoou

    2013-06-01

    In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.

  14. Preparation of ZnO nanoribbon–MWCNT composite film and its application as antimicrobial bandage, antibacterial filter and thermal IR camouflage material

    Indian Academy of Sciences (India)

    PRASAD UPASANI; T V SREEKUMAR; V G GAIKAR; NEETU JHA

    2017-08-01

    A zinc oxide nanoribbon (ZnO NR)–multiwall carbon nanotube (MWCNT) composite film was prepared byfiltration technique. The film was characterized by X-ray diffraction spectroscopy, scanning electron microscopy (SEM),Raman spectroscopy, infrared (IR) spectroscopy and reflectance spectroscopy. The SEM images showed ZnO NRs trappedin the porous MWCNT network. This composite film displayed a strong antimicrobial property and porous structure, whichhas potential application as an antimicrobial bandage material. The composite film successfully removed the Escherichiacoli bacteria from water and destroyed the bacteria retained on its surface due to the antibacterial action of ZnO NRs. The absorption of thermal IR radiation by the composite film was studied by thermography, which can be useful in IR camouflageapplications.

  15. Bubble Formation Characteristics from a Sieve Tray with Liquid Cross-flow%筛板上液体横向流动时气泡的形成特性

    Institute of Scientific and Technical Information of China (English)

    秦炜; 徐世民

    2002-01-01

    An apparatus, designed to simulate bubbling of a sieve tray operated in froth regime, was employed.Bubble contact angles in and above the incipient weeping regime for an air-water-plexiglas system were investigated.The influence of both liquid cross-flow and gas up-flow upon bubble contact angles was examined. A model considering the influence of liquid cross-flow was developed to predict bubble size from a sieve hole in froth operation regime.The comparison shows that the bubble sizes predicted by the present model are consistent with our experimental values and the available published experimental data.

  16. DWPF GC FILTER ASSEMBLY SAMPLING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C.; Imrich, K.

    2009-11-11

    On March 18, 2009 a Defense Waste Processing Facility (DWPF) GC Line Filter Assembly was received at the Savannah River National Laboratory (SRNL). This filter assembly was removed from operation following the completion of Sludge Batch 4 processing in the DWPF. Work on this sample was requested in a Technical Assistance Request. This document reports the pictures, observations, samples collected, and analytical results for the assembly. The assembly arrived at SRNL separated into its three component filters: high efficiency particulate air (HEPA)-1, HEPA-2, and a high efficiency mist evaporator (HEME). Each stage of the assembly's media was sampled and examined visually and by scanning electron microscopy (SEM). Solids built up in the filter housing following the first stage HEME, were dissolved in dilute nitric acid and analyzed by ICP-AES and the undissolved white solids were analyzed by x-ray diffraction (XRD). The vast majority of the material in each of the three stages of the DWPF GC Line Filter Assembly appears to be contaminated with a Hg compound that is {approx}59 wt% Hg on a total solids basis. The Hg species was identified by XRD analysis to contain a mixture of Hg{sub 4}(OH)(NO{sub 3}){sub 3} and Hg{sub 10}(OH){sub 4}(NO{sub 3}){sub 6}. Only in the core sample of the second stage HEPA, did this material appear to be completely covering portions of the filter media, possibly explaining the pressure drops observed by DWPF. The fact that the material migrates through the HEME filter and both HEPA filters, and that it was seen collecting on the outlet side of the HEME filter, would seem to indicate that these filters are not efficient at removing this material. Further SRAT off-gas system modeling should help determine the extent of Hg breakthrough past the Mercury Water Wash Tank (MWWT). The SRAT off-gas system has not been modeled since startup of the facility. Improvements to the efficiency of Hg stripping prior to the ammonia scrubber would seem

  17. Computer Aided Filter Design.

    Science.gov (United States)

    1987-12-01

    FIR filter can be described in the following. [Ref. 2] 1. FIR filters with exact linear phase can be easily designed. Linear phase filters are important...response for the four cases of linear phase filter , i.e., even or odd symmetry with an even or odd number of terms, can be written in the form: H (eJ ) = e...Ansari, The Design and Application of Optimal FIR Fractional Phase Filters , IEEE on Acoutics, Speech and Signal Processing, Vol. 2, 1987, pp.896-899. 77 14

  18. A unified Kalman filter

    Science.gov (United States)

    Stubberud, Allen R.

    2017-01-01

    When considering problems of linear sequential estimation, two versions of the Kalman filter, the continuous-time version and the discrete-time version, are often used. (A hybrid filter also exists.) In many applications in which the Kalman filter is used, the system to which the filter is applied is a linear continuous-time system, but the Kalman filter is implemented on a digital computer, a discrete-time device. The two general approaches for developing a discrete-time filter for implementation on a digital computer are: (1) approximate the continuous-time system by a discrete-time system (called discretization of the continuous-time system) and develop a filter for the discrete-time approximation; and (2) develop a continuous-time filter for the system and then discretize the continuous-time filter. Generally, the two discrete-time filters will be different, that is, it can be said that discretization and filter generation are not, in general, commutative operations. As a result, any relationship between the discrete-time and continuous-time versions of the filter for the same continuous-time system is often obfuscated. This is particularly true when an attempt is made to generate the continuous-time version of the Kalman filter through a simple limiting process (the sample period going to zero) applied to the discrete-time version. The correct result is, generally, not obtained. In a 1961 research report, Kalman showed that the continuous-time Kalman filter can be obtained from the discrete-time Kalman filter by taking limits as the sample period goes to zero if the white noise process for the continuous-time version is appropriately defined. Using this basic concept, a discrete-time Kalman filter can be developed for a continuous-time system as follows: (1) discretize the continuous-time system using Kalman's technique; and (2) develop a discrete-time Kalman filter for that discrete-time system. Kalman's results show that the discrete-time filter generated in

  19. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    . The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  20. Adaptive Filtering Algorithms and Practical Implementation

    CERN Document Server

    Diniz, Paulo S R

    2013-01-01

    In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are...

  1. Viability of bacteria in unused air filter media

    Science.gov (United States)

    Maus, R.; Goppelsröder, A.; Umhauer, H.

    Different experimental techniques were applied to determine the effects of different air filter media on the viability of bacteria. Rinse suspensions of unused filter media were employed in standard inhibition tests to determine the effects of filter ingredients on bacterial growth under ideal nutritional conditions. Furthermore, a new test procedure was proposed and validated to determine the survival of viable microorganisms in fibrous air filters as a function of different parameters. Samples of filter media were challenged with microbial aerosols in an experimental set-up designed for measuring the collection efficiencies of fibrous filters. The loaded filter samples were then challenged with clean air under controlled conditions for a definite time span and numbers of viable microorganisms in the filter media were determined as colony forming units. The filter samples were retrieved from unused filter media usually employed in common air conditioning and ventilation systems. Under ideal nutritional and moisture conditions, growth of investigated microorganisms in nutrient broth and on nutrient agar was not inhibited by the inclusion of filter samples or rinse solutions of different filters in the growth medium with one exception. M. luteus and E. coli collected in air filter media and exposed to low air humidity (RH = 30-60%) showed a decline in their viability as a function of time (within 1 h). The decline rate was dependent on the type of bacteria employed and also the filter material itself.

  2. Filter Cake Oil-Wax as Raw Material for the Production of Biodiesel: Analysis of the Extraction Process and the Transesterification Reaction

    Directory of Open Access Journals (Sweden)

    L. Casas

    2015-01-01

    Full Text Available The viability of using the waste obtained in the manufacture of sugar from sugarcane for the production of biodiesel has been analyzed. Two fundamental stages are necessary to obtain biodiesel; the first stage is the extraction process from the waste oil materials and the second is the transesterification reaction. Four techniques, Soxhlet, orbital shaker extraction, ultrasonic-assisted extraction, and supercritical fluid extraction, have been analyzed. For Soxhlet, orbital shaker extraction, and ultrasonic-assisted extraction, the organic solvent (hexane was maintained for all experiment. In supercritical fluid extraction two solvents were evaluated: pure CO2 and mixtures of CO2 and 5% (v : v methanol. The reaction kinetics of the transesterification reaction with an acidic catalyst and a basic catalyst were analysed. The results show that the supercritical extraction process produces a better product for the subsequent transesterification reaction. This finding is attributed to the high selectivity of carbon dioxide in the recovery of fatty acids and triglycerides in comparison with other solvents.

  3. Three-zone pupil filters

    Science.gov (United States)

    Sheppard, Colin J. R.; Campos, Juan; Escalera, Juan C.; Ledesma, Silvia

    2008-07-01

    The performance of pupil filters consisting of three zones each of constant complex amplitude transmittance is investigated. For filters where the transmittance is real, different classes of potentially useful filter are identified. These include leaky filters with an inner zone of low amplitude transmittance, pure phase filters with phase change of π, and equal area filters.

  4. Wideband Lithium Niobate FBAR Filters

    Directory of Open Access Journals (Sweden)

    Thomas Baron

    2013-01-01

    Full Text Available Filters based on film bulk acoustic resonators (FBARs are widely used for mobile phone applications, but they can also address wideband aerospace requirements. These devices need high electromechanical coupling coefficients to achieve large band pass filters. The piezoelectric material LiNbO3 complies with such specifications and is compatible with standard fabrication processes. In this work, simple metal—LiNbO3—metal structures have been developed to fabricate single FBAR elements directly connected to each other on a single chip. A fabrication process based on LiNbO3/silicon Au-Au bonding and LiNbO3 lapping/polishing has been developed and is proposed in this paper. Electrical measurements of these FBAR filters are proposed and commented exhibiting filters with 8% of fractional bandwidth and 3.3 dB of insertion losses. Electrical measurements show possibilities to obtain 14% of fractional bandwidth. These devices have been packaged, allowing for power handling, thermal, and ferroelectric tests, corresponding to spatial conditions.

  5. IF&P Fibrosic{trademark} filters

    Energy Technology Data Exchange (ETDEWEB)

    Eggerstedt, P.M.

    1994-11-01

    The primary objective of this SBIR research program is to increase the performance, durability, and corrosion resistance of lightweight filter candles and filter tubesheet components (Fibrosic{trademark}), fabricated from vacuum formed chopped ceramic fiber (VFCCF), for use in advanced coal utilization applications. Phase I results proved that significant gains in material strength and particle retentivity are possible by treatment of VFCCF materials with colloidal ceramic oxides. Phase II efforts will show how these treated materials tolerate high temperature and vapor-phase alkali species, on a long-term basis. With good durability and corrosion resistance, high temperature capability, and a low installed and replacement cost, these novel materials will help promote commercial acceptance of ceramic candle filter technology, as well as increase the efficiency and reliability of coal utilization processes in general.

  6. Lightweight ceramic filter components: Evaluation and application

    Energy Technology Data Exchange (ETDEWEB)

    Eggerstedt, P.M.

    1995-11-01

    Ceramic candle filtration is an attractive technology for particulate removal at high temperatures. The primary objective of this SBIR research program is to increase the performance, durability, and corrosion resistance of lightweight filter candles and filter tubesheet components (Fibrosic{trademark}), fabricated from vacuum formed chopped ceramic fiber (VFCCF), for use in advanced coal utilization applications. Phase 1 results proved that significant gains in material strength and particle retentivity are possible by treatment of VFCCF materials with colloidal ceramic oxides. Phase 2 effort will show how these treated materials tolerate high temperature and vapor-phase alkali species, on a long-term basis. With good durability and corrosion resistance, high temperature capability, and a low installed and replacement cost, these novel materials will help promote commercial acceptance of ceramic candle filter technology, as well as increase the efficiency and reliability of coal utilization processes in general.

  7. The intractable cigarette ‘filter problem’

    Science.gov (United States)

    2011-01-01

    production. The synthetic plastic cellulose acetate became the fundamental cigarette filter material. By the mid-1960s, the meaning of the phrase ‘filter problem’ changed, such that the effort to develop effective filters became a campaign to market cigarette designs that would sustain the myth of cigarette filter efficacy. Conclusions This study indicates that cigarette designers at Philip Morris, British-American Tobacco, Lorillard and other companies believed for a time that they might be able to reduce some of the most dangerous substances in mainstream smoke through advanced engineering of filter tips. In their attempts to accomplish this, they developed the now ubiquitous cellulose acetate cigarette filter. By the mid-1960s cigarette designers realised that the intractability of the ‘filter problem’ derived from a simple fact: that which is harmful in mainstream smoke and that which provides the smoker with ‘satisfaction’ are essentially one and the same. Only in the wake of this realisation did the agenda of cigarette designers appear to transition away from mitigating the health hazards of smoking and towards the perpetuation of the notion that cigarette filters are effective in reducing these hazards. Filters became a marketing tool, designed to keep and recruit smokers as consumers of these hazardous products. PMID:21504917

  8. Electrically heated particulate filter embedded heater design

    Science.gov (United States)

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  9. Digital filters principles and applications with MATLAB

    CERN Document Server

    Taylor, Fred J

    2012-01-01

    "The proposed book is not an exposition on digital signal processing (DSP) but rather a treatise on digital filters. The material and coverage is comprehensive, presented in a consistent style that first develops topics and subtopics in terms it their purpose, relationship to other core ideas, theoretical and conceptual framework, and finally instruction in the implementation of digital filter devices. Each major study is supported by Matlab-enabled activities and examples, with each Chapter culminating in a comprehensive design case study"--

  10. Fracture behavior of advanced ceramic hot gas filters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-03-01

    This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

  11. Analysis of an MCU HEPA filter

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fondeur, F. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-01

    A series of direct analyses on three portions (inlet, center, and outlet) of the High Efficiency Particulate Air (HEPA) filter material from the Modular Caustic-Side Solvent Extraction Unit (MCU) have been performed; this includes x-ray methods such as X-Ray Diffraction (XRD), Contained Scanning Electron Microscopy (CSEM) and X-Ray Fluorescence (XRF), as well as Fourier Transform InfraRed spectroscopy (FTIR). Additionally, two leaching studies (one with water, one with dichloromethane) have been performed on three portions (inlet, center, and outlet) of the HEPA filter material, with the leachates being analyzed by Inductively-coupled plasma emission spectroscopy (ICPES), Semi-Volatile Organic Analysis (SVOA) and gammascan. From the results of the analyses, SRNL feels that cesium-depleted solvent is being introduced into the HEPA filter. The most likely avenue for this is mechanical aerosolization of solvent, where the aerosol is then carried along an airstream into the HEPA filter. Once introduced into the HEPA filter media, the solvent wicks throughout the material, and migrates towards the outlet end. Once on the outlet end, continual drying could cause particulate flakes to exit the filter and travel farther down the airstream path.

  12. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  13. Preliminary studies to determine the shelf life of HEPA filters

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, H.; Fretthold, J.K.; Rainer, F. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    We have completed a preliminary study using filter media tests and filter qualification tests to investigate the effect of shelf-life on HEPA filter performance. Our media studies showed that the tensile strength decreased with age, but the data were not sufficient to establish a shelf-life. Thermogravimetric analyses demonstrated that one manufacturer had media with low tensile strength due to insufficient binder. The filter qualification tests (heated air and overpressure) conducted on different aged filters showed that filter age is not the primary factor affecting filter performance; materials and the construction design have a greater effect. An unexpected finding of our study was that sub-standard HEPA filters have been installed in DOE facilities despite existing regulations and filter qualification tests. We found that the filter with low tensile strength failed the overpressure test. The same filter had passed the heated air test, but left the filter so structurally weak, it was prone to blow-out. We recommend that DOE initiate a filter qualification program to prevent this occurrence.

  14. Are NORMs Accumulated in Filters of Drinking Water Facilities?

    Science.gov (United States)

    Choung, S.; Shin, W.; Park, M.; Han, J. H.; Ryu, J. S.; Han, W. S.; Chang, B. U.

    2016-12-01

    Groundwater is used as raw water to produce mineral drinking water through filtering processes in bottled water facilities. Although natural occurring radioactive materials (NORMs) exist in groundwater, accumulation of NORMs were rarely studied due to their low concentrations in groundwater. The goal of this study is to evaluate potential accumulation of NORMs in filters used at the drinking water facilities. Raw water and treated water after each filtering step, bottled water, and used filters were collected from a total of 13 bottled water facilities to analyze major dissolved ions and NORMs. Additionally, surface radioactive dose rate were measured at individual filter housings. The measured concentrations of NORMs in raw and treated water were quite low. However, the surface radioactivity dose rates dramatically increased around filter housing located at very first step regardless of filter type (i.e., activated carbon or membrane filter) in 4 out of 6 facilities. Some used filters showed approximately 20 times greater contents of Pb-210 than the Korean regulation level of 1 Bq g-1. Also, the concentrations of uranium and thorium were detected up to 75 µg g-1filter and 2 µg g-1filter, respectively, in 4 water facilities. These results implies potential accumulation of NORMs in filters used at bottled water facilities. Therefore, the filters need to be monitored during manufacturing processes of bottled water, and may be properly managed after use.

  15. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  16. Crux vena cava filter.

    Science.gov (United States)

    Murphy, Erin H; Johnson, Eric D; Kopchok, George E; Fogarty, Thomas J; Arko, Frank R

    2009-09-01

    Inferior vena cava filters are widely accepted for pulmonary embolic prophylaxis in high-risk patients with contraindications to anticoagulation. While long-term complications have been associated with permanent filters, retrievable filters are now available and have resulted in the rapid expansion of this technology. Nonetheless, complications are still reported with optional filters. Furthermore, device tilting and thrombus load may prevent retrieval in up to 30% of patients, thereby eliminating the benefits of this technology. The Crux vena cava filter is a novel, self-centering, low-profile filter that is designed for ease of delivery, retrievability and improved efficacy while limiting fatigue-related device complications. This device has been proven safe and user-friendly in an ovine model and has recently been implanted in human subjects.

  17. CrowdFilter

    DEFF Research Database (Denmark)

    Mortensen, Michael Lind; Wallace, Byron C.; Kraska, Tim

    for complex multi-criteria search problems through crowdsourcing. The CrowdFilter system is capable of supporting both criteria-level labels and n-gram rationales, capturing the human decision making process behind each filtering choice. Using the data provided through CrowdFilter we also introduce a novel......Multi-criteria filtering of mixed open/closed-world data is a time-consuming task, requiring significant manual effort when latent open-world attributes are present. In this work we introduce a novel open-world filtering framework CrowdFilter, enabling automatic UI generation and label elicitation...... multi-criteria active learning method; capable of incorporating labels and n-gram rationales per inclusion criteria, and thus capable of determining both clear includes/excludes, as well as complex borderline cases. By incorporating the active learning approach into the elicitation process of Crowd...

  18. Conservative Noise Filters

    Directory of Open Access Journals (Sweden)

    Mona M.Jamjoom

    2016-05-01

    Full Text Available Noisy training data have a huge negative impact on machine learning algorithms. Noise-filtering algorithms have been proposed to eliminate such noisy instances. In this work, we empirically show that the most popular noise-filtering algorithms have a large False Positive (FP error rate. In other words, these noise filters mistakenly identify genuine instances as outliers and eliminate them. Therefore, we propose more conservative outlier identification criteria that improve the FP error rate and, thus, the performance of the noise filters. With the new filter, an instance is eliminated if and only if it is misclassified by a mutual decision of Naïve Bayesian (NB classifier and the original filtering criteria being used. The number of genuine instances that are incorrectly eliminated is reduced as a result, thereby improving the classification accuracy.

  19. Correlation for cross-flow resistance coefficient using STAR-CCM+ simulation data for flow of water through rod bundle supported by spacer grid with split-type mixing vane

    Energy Technology Data Exchange (ETDEWEB)

    Agbodemegbe, V.Y., E-mail: vincevalt@gmail.com [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technique, Kaiserstrasse 12, Karlsruhe (Germany); Cheng, Xu, E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technique, Kaiserstrasse 12, Karlsruhe (Germany); Akaho, E.H.K, E-mail: akahoed@yahoo.com [School of Nuclear and Allied Sciences, University of Ghana, PO Box AE 1, Kwabenya, Accra (Ghana); Allotey, F.K.A, E-mail: fkallotey@gmail.com [Institute of Mathematical Sciences, PO Box LG 197, Legon, Accra (Ghana)

    2015-04-15

    Highlights: • Investigate spacer grid with split-type mixing vanes. • Extent of predictability of experimental data by STAR-CCM+. • Reliability of two equation turbulence models. • Resistance to cross-flow through gaps. - Abstract: Mass transfer by diversion cross-flow through gaps is an important inter-subchannel interaction in fuel bundle of power reactors. It is normally due to the lateral pressure difference between adjacent sub-channels. This phenomenon is augmented in the presence of flow deflectors and is referred to as, directed cross-flow. Diversion cross-flow carries the momentum and energy of flow and hence affects the velocity and temperature profile in the rod bundle. The resistance to cross-flow in the transverse momentum equations is specified by the cross-flow resistant coefficient which is the subject of concern in the present study. In order to obtain data to correlate cross-flow resistance coefficient, computational fluid dynamic simulation using STAR-CCM+ was performed for flow of water at the bundle Reynolds number of Re1 = 3.4×10{sup 4} through a 5 × 5 rod bundle geometry supported by spacer grid with split mixing vanes for which the rod to rod pitch to diameter ratio was 1.33 and the rod to wall pitch to diameter ratio was 0.74. The two layer k-epsilon turbulence model with an all y+ automatic wall treatment function in STAR-CCM+ were adopted for an isothermal single phase (water) flow through the geometry. The objectives were to primarily investigate the extent of predictability of the experimental data by the computational fluid dynamic (CFD) simulation as a measure of reliability on the CFD code employed and also apply the simulation data to develop correlations for determining resistance coefficient to cross-flow. Validation of simulation results with experimental data showed good correlation of mean flow parameters with experimental data whiles turbulent fluctuations deviated largely from experimental trends. Generally, the

  20. TSI8130自动滤料测试仪测定滤料瞬时压降和瞬时穿透率试验初探%TSI8130 Automatic Filter Material Tester Measurement Filter Material Instantaneous Pressure Drop and Instantaneous Transmission Test Trial

    Institute of Scientific and Technical Information of China (English)

    张成

    2013-01-01

      对T S I8130自动滤料测试仪测定滤料瞬时压降和瞬时穿透率的试验过程、影响因素进行论述。%  To TSI8130 automatic flter material tester measurement flter material instantaneous pressure drop and instantaneous transmission test process, the infuence factors is discussed.

  1. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  2. PM2.5 Emission Control of Bag Hose Precipitator with Covering Membrane and Filtering Materials in Industrial Dust%覆膜滤料袋除尘器对工业粉尘中PM2.5的排放控制

    Institute of Scientific and Technical Information of China (English)

    黄斌香; 舒家华; 陈璀君; 冷瑞娟

    2013-01-01

      提出以覆膜滤料袋式除尘器来控制工业烟尘中PM2.5的排放,探讨了检测、计算的方法,分析了过滤元件的缺陷对排放效果的影响.%The paper puts forward to use the bag hose precipitator with covering membrane and filtering materials and to control PM2.5 emission in industrial dust; discusses the examination and calculational methods; analyzes the impact of filtering element limitation on emission effect.

  3. Oriented Fiber Filter Media

    Directory of Open Access Journals (Sweden)

    R. Bharadwaj

    2008-06-01

    Full Text Available Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a thick layered media can improve performance by about 40%. The results also show the improved performance is not monotonically correlated to the average fiber angle of the medium.

  4. Fundamentals of Stochastic Filtering

    CERN Document Server

    Crisan, Dan

    2008-01-01

    The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient

  5. Vortex-induced vibrations of circular cylinder in cross flow at supercritical Reynolds numbers; Chorinkai Reynolds su ryoiki ni okeru enchu no uzu reiki shindo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Nakao, T.; Takahashi, M.; Hayashi, M.; Goto, N. [Hitachi, Ltd., Tokyo (Japan)

    1999-07-25

    Vortex-induced vibrations were measured for a circular cylinder subjected to a water cross flow at supercritical Reynolds numbers for a wide range of reduced velocities. Turbulence intensities were changed from 1% to 13% in order to investigate the effect of the Strouhal number on the region of synchronization by symmetrical and Karman vortex shedding. The reduced damping of the test cylinder was about 0.1 in water. The surface roughness of the cylinder was a mirror-polished surface. Strouhal number decreased from about 0.48 to 0.29 with increasing turbulence intensity. Synchronized vibrations were observed even at supercritical Reynolds numbers where fluctuating fluid force was small. Reduced velocities at which drag and lift direction lock-in by Karman vortex shedding were initiated decreased with increasing Strouhal number. When Strouhal number was about 0.29, the self-excited vibration in drag direction by symmetrical vortex shedding began at which the frequency ratio of Karman vortex shedding frequency to the natural frequency of cylinder was 0.32. (author)

  6. STUDY OF VORTEX CHARACTERISTICS OF THE FLOW AROUND A HORIZONTAL CIRCULAR CYLINDER AT VARIOUS GAP-RATIOS IN THE CROSS-FLOW

    Institute of Scientific and Technical Information of China (English)

    QI E-rong; LI Guo-ya; LI Wei; WU Jian; ZHANG Xin

    2006-01-01

    In the gap-ratio range of 0.0≤G≤7.0, a particle image velocimetry PIV is applied to conduct a systematic experimental research of the flow around a horizontal circular cylinder in the cross-flow of shallow water. The velocity distribution of transient flow field at various gap-ratios is obtained. Based on these data, the phenomena and rules of the vortex and its course of generation, development and evolvement at various gap-ratios are analyzed, and it is found that there are similar unshedding vortex structures at G = 0.0 and G = 7.0, and others are structures of shedding vortex. The figures of typical vortex movements are given. Based on this, the differences between the transient flow field and the time-averaged flow field and the characteristics of the vortex structures are analyzed. In addition when the Strouhal number keeps constant (about 0.2) concerning vortex shedding have been discussed. The findings of this paper are of guiding significance for engineering issues with similar flowing features.

  7. Improving the simultaneous removal of chemical oxygen demand and terephthalic acid in a cross-flow aerobic sludge reactor by using response surface methodology.

    Science.gov (United States)

    Hu, Dong-Xue; Tian, Yu; Chen, Zhao-Bo; Ge, Hui; Cui, Yu-Bo; Ran, Chun-Qiu

    2015-01-01

    Central composite design and response surface methodology (RSM) were implemented to optimize the operational parameters for a cross-flow aerobic sludge reactor (CFASR) in remedying mixed printing and dyeing wastewater (MPDW). The individual and interactive effects of three variables, hydraulic retention time (HRT), pH and sludge loading rate (SLR), on chemical oxygen demand (COD) and terephthalic acid (TA) removal rates were evaluated. For HRT of 15.3-19.8 hours, pH of 7.2-8.1 and SLR of 0.4-0.6 kg chemical oxygen demand (COD) per kg mixed liquor suspended solids per day, COD and TA removal rates of the CFASR exceeded 85% and 90%, respectively. The check experiment revealed that the effluent from the optimized CFASR was stable below the limitation of 100 mg COD/L and the TA concentration decreased by 6.0% compared to the usual CFASR. The results verified that the RSM was useful for optimizing the operation parameters of the CFASR in remedying MPDW.

  8. Effects of drop acceleration and deceleration on particle capture in a cross-flow gravity tower at intermediate drop Reynolds numbers.

    Science.gov (United States)

    Kumar, Anoop; Gupta, S K; Kale, S R

    2007-04-01

    Cross-flow gravity towers are particle scrubbing devices in which water is sprayed from the top into particle-laden flow moving horizontally. Models for predicting particle capture assume drops traveling at terminal velocity and potential flow (ReD > 1000) around it, however, Reynolds numbers in the intermediate range of 1 to 1000 are common in gravity towers. Drops are usually injected at velocities greater than their terminal velocities (as in nozzles) or from near rest (perforated tray) and they accelerate/decelerate to their terminal velocity in the tower. Also, the effects of intermediate drop Reynolds number on capture efficiency have been simulated for (a) drops at their terminal velocity and (b) drops accelerating/decelerating to their terminal velocity. Tower efficiency based on potential flow about the drop is 40%-50% greater than for 200 mm drops traveling at their terminal velocity. The corresponding values for 500 mm drops are about 10%-20%. The drop injection velocity is important operating parameter. Increase in tower efficiency by about 40% for particles smaller than 5 mm is observed for increase in injection velocity from 0 to 20 m/s for 200 and 500mm drops.

  9. Assessment of unsteady-RANS approach against steady-RANS approach for predicting twin impinging jets in a cross-flow

    Directory of Open Access Journals (Sweden)

    Zhiyin Yang

    2014-12-01

    Full Text Available A complex flow field is created when a vertical/short take-off and landing aircraft is operating near ground. One major concern for this kind of aircraft in ground effect is the possibility of ingestion of hot gases from the jet engine exhausts back into the engine, known as hot gas ingestion, which can increase the intake air temperature and also reduce the oxygen content in the intake air, potentially leading to compressor stall, low combustion efficiency and causing a dramatic loss of lift. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Accurate prediction of this complicated flow field under the Reynolds averaged Navier–Stokes (RANS approach (current practise in industry is a great challenge as previous studies suggest that some important flow features cannot be captured by the Steady-RANS (SRANS approach even with a second-order Reynolds stress model (RSM. This paper presents a numerical study of this flow using the Unsteady-RANS (URANS approach with a RSM and the results clearly indicate that the URANS approach is superior than the SRANS approach but still the predictions of Reynolds stress are not accurate enough.

  10. Modeling the near-wake of a vertical-axis cross-flow turbine with 2-D and 3-D RANS

    CERN Document Server

    Bachant, Peter

    2016-01-01

    The near-wake of a vertical-axis cross-flow turbine (CFT) was modeled numerically via blade-resolved $k$-$\\omega$ SST and Spalart-Allmaras RANS models in two and three dimensions. Results for each case are compared with experimental measurements of the turbine shaft power, overall drag, mean velocity, turbulence kinetic energy, and momentum transport terms in the near-wake at one diameter downstream. It was shown that 2-D simulations overpredict turbine loading and do not resolve mean vertical momentum transport, which plays an important role in the near-wake's momentum balance. The 3-D simulations fared better at predicting performance, with the Spalart-Allmaras model predictions being closest to the experiments. The SST model more accurately predicted the turbulence kinetic energy while the Spalart-Allmaras model more closely matched the momentum transport terms in the near-wake. These results show the potential of blade-resolved RANS as a design tool and a way to "interpolate" experimental flow field measu...

  11. Microwave-Regenerated Diesel Exhaust Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  12. Precise dispersion equations of absorbing filter glasses

    Science.gov (United States)

    Reichel, S.; Biertümpfel, Ralf

    2014-05-01

    The refractive indices versus wavelength of optical transparent glasses are measured at a few wavelengths only. In order to calculate the refractive index at any wavelength, a so-called Sellmeier series is used as an approximation of the wavelength dependent refractive index. Such a Sellmeier representation assumes an absorbing free (= loss less) material. In optical transparent glasses this assumption is valid since the absorption of such transparent glasses is very low. However, optical filter glasses have often a rather high absorbance in certain regions of the spectrum. The exact description of the wavelength dependent function of the refractive index is essential for an optimized design for sophisticated optical applications. Digital cameras use an IR cut filter to ensure good color rendition and image quality. In order to reduce ghost images by reflections and to be nearly angle independent absorbing filter glass is used, e.g. blue glass BG60 from SCHOTT. Nowadays digital cameras improve their performance and so the IR cut filter needs to be improved and thus the accurate knowledge of the refractive index (dispersion) of the used glasses must be known. But absorbing filter glass is not loss less as needed for a Sellmeier representation. In addition it is very difficult to measure it in the absorption region of the filter glass. We have focused a lot of effort on measuring the refractive index at specific wavelength for absorbing filter glass - even in the absorption region. It will be described how to do such a measurement. In addition we estimate the use of a Sellmeier representation for filter glasses. It turns out that in most cases a Sellmeier representation can be used even for absorbing filter glasses. Finally Sellmeier coefficients for the approximation of the refractive index will be given for different filter glasses.

  13. Filter holder and gasket assembly for candle or tube filters

    Science.gov (United States)

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  14. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin

  15. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  16. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Wells, George; Beaton, Dorcas E; Tugwell, Peter;

    2014-01-01

    The "Discrimination" part of the OMERACT Filter asks whether a measure discriminates between situations that are of interest. "Feasibility" in the OMERACT Filter encompasses the practical considerations of using an instrument, including its ease of use, time to complete, monetary costs, and inter...

  17. Vena cava filter; Vena-cava-Filter

    Energy Technology Data Exchange (ETDEWEB)

    Helmberger, T. [Klinikum Bogenhausen, Institut fuer Diagnostische und Interventionelle Radiologie und Nuklearmedizin, Muenchen (Germany)

    2007-05-15

    Fulminant pulmonary embolism is one of the major causes of death in the Western World. In most cases, deep leg and pelvic venous thrombosis are the cause. If an anticoagulant/thrombotic therapy is no longer possible or ineffective, a vena cava filter implant may be indicated if an embolism is threatening. Implantation of the filter is a simple and safe intervention. Nevertheless, it is necessary to take into consideration that the data base for determining the indications for this treatment are very limited. Currently, a reduction in the risk of thromboembolism with the use of filters of about 30%, of recurrences of almost 5% and fatal pulmonary embolism of 1% has been reported, with a risk of up to 20% of filter induced vena cava thrombosis. (orig.) [German] Die fulminante Lungenembolie zaehlt zu den Haupttodesursachen in der westlichen Welt. In der Mehrzahl der Faelle sind tiefe Bein- und Beckenvenenthrombosen ursaechlich verantwortlich. Ist eine antikoagulative/-thrombotische Therapie nicht (mehr) moeglich oder unwirksam, kann bei drohender Emboliegefahr die Vena-cava-Filterimplantation indiziert sein. Die Filterimplantation ist eine einfache und sehr sichere Intervention. Dennoch muss bei der Indikationsstellung beruecksichtigt werden, dass die Datenlage zur Wirksamkeit sehr limitiert ist. So wird aktuell ueber eine Reduktion des Thrombembolierisikos um 30% bei Embolierezidiven von knapp 5% und fatalen Lungenembolien von 1% unter Filterprophylaxe berichtet, bei einem Risiko von bis zu 20% fuer die filterinduzierte Vena-cava-Thrombose. (orig.)

  18. Weighted guided image filtering.

    Science.gov (United States)

    Li, Zhengguo; Zheng, Jinghong; Zhu, Zijian; Yao, Wei; Wu, Shiqian

    2015-01-01

    It is known that local filtering-based edge preserving smoothing techniques suffer from halo artifacts. In this paper, a weighted guided image filter (WGIF) is introduced by incorporating an edge-aware weighting into an existing guided image filter (GIF) to address the problem. The WGIF inherits advantages of both global and local smoothing filters in the sense that: 1) the complexity of the WGIF is O(N) for an image with N pixels, which is same as the GIF and 2) the WGIF can avoid halo artifacts like the existing global smoothing filters. The WGIF is applied for single image detail enhancement, single image haze removal, and fusion of differently exposed images. Experimental results show that the resultant algorithms produce images with better visual quality and at the same time halo artifacts can be reduced/avoided from appearing in the final images with negligible increment on running times.

  19. Robustifying Vector Median Filter

    Directory of Open Access Journals (Sweden)

    Valentín Gregori

    2011-08-01

    Full Text Available This paper describes two methods for impulse noise reduction in colour images that outperform the vector median filter from the noise reduction capability point of view. Both methods work by determining first the vector median in a given filtering window. Then, the use of complimentary information from componentwise analysis allows to build robust outputs from more reliable components. The correlation among the colour channels is taken into account in the processing and, as a result, a more robust filter able to process colour images without introducing colour artifacts is obtained. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter. Objective measures demonstrate the goodness of the achieved improvement.

  20. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  1. Naive Bayesian for Email Filtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper presents a method of email filter based on Naive Bayesian theory that can effectively filter junk mail and illegal mail. Furthermore, the keys of implementation are discussed in detail. The filtering model is obtained from training set of email. The filtering can be done without the users specification of filtering rules.

  2. Design of dual ring wavelength filters for WDM applications

    Science.gov (United States)

    Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.

    2016-12-01

    Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.

  3. Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.

    2015-01-01

    Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.

  4. Si-based infrared optical filters

    Science.gov (United States)

    Balčytis, Armandas; Ryu, Meguya; Seniutinas, Gediminas; Nishijima, Yoshiaki; Hikima, Yuta; Zamengo, Massimiliano; Petruškevičius, Raimondas; Morikawa, Junko; Juodkazis, Saulius

    2015-12-01

    Pyramidal silicon nanospikes, termed black-Si (b-Si), with controlled height of 0.2 to 1 μm, were fabricated by plasma etching over 3-in wafers and were shown to act as variable density filters in a wide range of the IR spectrum 2.5 to 20 μm, with transmission and its spectral gradient dependent on the height of the spikes. Such variable density IR filters can be utilized for imaging and monitoring applications. Narrow IR notch filters were realized with gold mesh arrays on Si wafers prospective for applications in surface-enhanced IR absorption sensing and "cold materials" for heat radiation into atmospheric IR transmission window. Both types of filters for IR: spectrally variable and notch are made by simple fabrication methods.

  5. Dust removal and filter technology. Entstaubungs- und Filtertechnik

    Energy Technology Data Exchange (ETDEWEB)

    Stockmann, H.W. (DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). DMT-Institut fuer Staubbekaempfung, Gefahrstoffe und Ergonomie); Henke, B. (DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). DMT-Institut fuer Staubbekaempfung, Gefahrstoffe und Ergonomie)

    1991-01-01

    New approaches were adopted in filter technology to respond to technological changes in mechanized mining and to allow perfect dust removal in keeping with occupational hygiene requirements. Self-supporting filter materials based on ceramic fibres and synthetic granulates were taken to develop filter elements allowing lamination to enhance their separation-active surface area. Filter materials made from thermally fixed fibre nonwovens were processed to form plicated filter bags of the same structural volume but with a surface area increased by a factor of 2.5. Integrated inlet nozzles were developed to allow these elements to be cleaned of dust deposits. These nozzles were also studied in basic filter-technology tests. A test rig supplied design findings which were included in a study to develop new generations of dedusters. A reduction of design volume and an increase of through-put rate greater than 20% could be predicted. Service tests with modified filter materials were run for ventilation-air dust dust removal both for whole faces and for face segments. The benefits of filter technology for face, face opening and drifting were highlighted. New methods for wetting and transport of the dust removed from the dedusters were developed. New concepts of exhaust-air filter separators allow flat storage bunkers to be used in pneumatic conveyance of building materials at the face. (orig.)

  6. Solar Rejection Filter for Large Telescopes

    Science.gov (United States)

    Hemmati, Hamid; Lesh, James

    2009-01-01

    front aperture filter is integrated with the telescope dome, it will reject heat from the dome and will significantly reduce dome temperature regulation requirements and costs. Also, the filter will protect the telescope optics from dust and other contaminants in the atmosphere. It will be simpler to clean or replace this filter than the telescope primary mirror. It may be necessary to paint the support grid with a highly reflective material to avoid overheating.

  7. An Optical Additive Solc Filter for Deep Ultraviolet Applications

    Science.gov (United States)

    Manka, Charles; Nikitin, Sergei

    2008-10-01

    A number of optical applications in the deep ultra violet (DUV) range have limitations due to the absence of simple and reliable optical notch filters. This is important for resonant Raman applications that employ frequency agile laser illumination at many sequential DUV wavelengths. Our filter is based on widely known birefringent filter design originally proposed by Solc [I. Solc ``Birefringent chain filters'' JOSA 55, p.621 (1965)]. Rather than the transmission filter design of Solc, the additive Solc filter (ASF) described here is suitable for narrow-line rejection (< 1 nm), as dictated by the requirements of UVRR and other applications. We have designed and constructed such a filter and present test results. Finally, we present a design which allows fiber delivery of DUV illumination wavelengths, rejects the quartz Raman lines generated in the fiber, but then rejects the backscattered unshifted light from a target and passes the Raman lines generated by the target material.

  8. Higher-order compositional modeling of three-phase flow in 3D fractured porous media based on cross-flow equilibrium

    Science.gov (United States)

    Moortgat, Joachim; Firoozabadi, Abbas

    2013-10-01

    Numerical simulation of multiphase compositional flow in fractured porous media, when all the species can transfer between the phases, is a real challenge. Despite the broad applications in hydrocarbon reservoir engineering and hydrology, a compositional numerical simulator for three-phase flow in fractured media has not appeared in the literature, to the best of our knowledge. In this work, we present a three-phase fully compositional simulator for fractured media, based on higher-order finite element methods. To achieve computational efficiency, we invoke the cross-flow equilibrium (CFE) concept between discrete fractures and a small neighborhood in the matrix blocks. We adopt the mixed hybrid finite element (MHFE) method to approximate convective Darcy fluxes and the pressure equation. This approach is the most natural choice for flow in fractured media. The mass balance equations are discretized by the discontinuous Galerkin (DG) method, which is perhaps the most efficient approach to capture physical discontinuities in phase properties at the matrix-fracture interfaces and at phase boundaries. In this work, we account for gravity and Fickian diffusion. The modeling of capillary effects is discussed in a separate paper. We present the mathematical framework, using the implicit-pressure-explicit-composition (IMPEC) scheme, which facilitates rigorous thermodynamic stability analyses and the computation of phase behavior effects to account for transfer of species between the phases. A deceptively simple CFL condition is implemented to improve numerical stability and accuracy. We provide six numerical examples at both small and larger scales and in two and three dimensions, to demonstrate powerful features of the formulation.

  9. APPLICATION OF A SURFACE-RENEWAL MODEL TO PERMEATE-FLUX DATA FOR CONSTANTPRESSURE CROSS-FLOW MICROFILTRATION WITH DEAN VORTICES

    Directory of Open Access Journals (Sweden)

    G. Idan

    2015-06-01

    Full Text Available AbstractThe introduction of flow instabilities into a microfiltration process can dramatically change several elements such as the surface-renewal rate, permeate flux, specific cake resistance, and cake buildup on the membrane in a positive way. A recently developed surface-renewal model for constant-pressure, cross-flow microfiltration (Hasan et al., 2013 is applied to the permeate-flux data reported by Mallubhotla and Belfort (1997, one set of which included flow instabilities (Dean vortices while the other set did not. The surface-renewal model has two forms - the complete model and an approximate model. For the complete model, the introduction of vortices leads to a 53% increase in the surface-renewal rate, which increases the limiting (i.e., steady-state permeate flux by 30%, decreases the specific cake resistance by 14.5% and decreases the limiting cake mass by 15.5% compared to operation without vortices. For the approximate model, a 50% increase in the value of surface renewal rate is shown due to vortices, which increases the limiting permeate flux by 30%, decreases the specific cake resistance by 10.5% and decreases the limiting cake mass by 13.7%. The cake-filtration version of the critical-flux model of microfiltration (Field et al., 1995 is also compared against the experimental permeate-flux data of Mallubhotla and Belfort (1997. Although this model can represent the data, the quality of its fit is inferior compared to that of the surface-renewal model.

  10. Derivative free filtering using Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Hansen, Søren; Ravn, Ole;

    2010-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of different filtering algorithms. The toolbox is called Kalmtool 4 and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox contains functions for extended Kalman filtering as well as for DD1...... filter and the DD2 filter. It also contains functions for Unscented Kalman filters as well as several versions of particle filters. The toolbox requires MATLAB version 7, but no additional toolboxes are required....

  11. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  12. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  13. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...

  14. Performance evaluation of clay-sawdust composite filter for point of ...

    African Journals Online (AJOL)

    Performance evaluation of clay-sawdust composite filter for point of use water treatment. ... eliminating the possibility of recontamination by the use of point of use (POU) water filters made from cheap locally available materials. ... Article Metrics.

  15. Air Filter Simulation by Geodict

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-peng; Kitai Kim; Changhwan Lee; Jooyong Kim

    2006-01-01

    In this paper, we discussed the relationship of filter efficiency and pressure drop with the porosity, fiber diameter and filter thickness by Geodict. We found that filter efficiency will increase when filter porosity and fiber diameter decreasing or filter thickness increasing. And the pressure drop has a linear relationship with filter thickness and non-linear relationship with filter porosity and fiber diameter. We also compared the simulation results with the real test results by TSI 3160. Although there are some differences, I think Geodict can be used to predict filter efficiency and pressure drop.

  16. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  17. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are......OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...... that are universal to all studies of the effects of intervention effects. There is no published outline for instrument choice or development that is aimed at measuring outcome, was derived from broad consensus over its underlying philosophy, or includes a structured and documented critique. Therefore, a new proposal...

  18. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    D'Agostino, Maria-Antonietta; Boers, Maarten; Kirwan, John

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides a framework for the validation of outcome measures for use in rheumatology clinical research. However, imaging and biochemical measures may face additional validation challenges because of their technical nature. The Imagin...

  19. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  20. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...

  1. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  2. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  3. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  4. Cryogenic coaxial microwave filters

    CERN Document Server

    Tancredi, G; Meeson, P J

    2014-01-01

    At millikelvin temperatures the careful filtering of electromagnetic radiation, especially in the microwave regime, is critical for controlling the electromagnetic environment for experiments in fields such as solid-state quantum information processing and quantum metrology. We present a design for a filter consisting of small diameter dissipative coaxial cables that is straightforward to construct and provides a quantitatively predictable attenuation spectrum. We describe the fabrication process and demonstrate that the performance of the filters is in good agreement with theoretical modelling. We further perform an indicative test of the performance of the filters by making current-voltage measurements of small, underdamped Josephson Junctions at 15 mK and we present the results.

  5. Development of iron-aluminide hot-gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Wright, I.G.; Judkins, R.R.

    1996-06-01

    Removal of particles from hot synthesis gas produced by coal gasification is vital to the success of these systems. In Integrated [Coal] Gasification Combined Cycle systems, the synthesis gas is the fuel for gas turbines. To avoid damage to turbine components, it is necessary that particles be removed from the fuel gas prior to combustion and introduction into the turbine. Reliability and durability of the hot-gas filtering devices used to remove the particles is, of course, of special importance. Hot-gas filter materials include both ceramics and metals. Numerous considerations must be made in selecting materials for these filters. Constituents in the hot gases may potentially degrade the properties and performance of the filters to the point that they are ineffective in removing the particles. Very significant efforts have been made by DOE and others to develop effective hot-particle filters and, although improvements have been made, alternative materials and structures are still needed.

  6. Adaptive texture filtering for defect inspection in ultrasound images

    Science.gov (United States)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  7. Holographic interference filters

    Science.gov (United States)

    Diehl, Damon W.

    Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.

  8. The Endogenous Kalman Filter

    OpenAIRE

    Brad Baxter; Liam Graham; Stephen Wright

    2007-01-01

    We relax the assumption of full information that underlies most dynamic general equilibrium models, and instead assume agents optimally form estimates of the states from an incomplete information set. We derive a version of the Kalman filter that is endogenous to agents' optimising decisions, and state conditions for its convergence. We show the (restrictive) conditions under which the endogenous Kalman filter will at least asymptotically reveal the true states. In general we show that incomp...

  9. Study on an integrated sintered metal screen moving granular bed filter%烧结复合式烧结金属丝网颗粒移动床过滤器研究

    Institute of Scientific and Technical Information of China (English)

    吴晋沪; 王洋

    2004-01-01

    A new gas clean-up process called "integrated sintered metal screen moving granular bed"(ISMSMGB)for the integrated gasification combined cycle(IGCC)and pressured fluidized bed combustion(PFBC)was developed on the basis of a sintered metal candle filter and a cross-flow moving granular bed filter.This is a combination of the surface and deep bed filtering processes.A set of facilities was established and a series of cold model tests were carried out.The dust removal efficiency and the pressure drop of the filter were measured and analyzed.The results show that this process features the advantages of the moving bed for high capacity as well as high inlet dust load and the surface filter for high efficiency.Meanwhile,the granules moving downward cleans the cake on the screen surface,so that the system is operated at steady state.

  10. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  11. Mining dust filter. Bergbaustaubfilter

    Energy Technology Data Exchange (ETDEWEB)

    Igelbuescher, H.; Hoelter, H.

    1988-12-28

    A dust filter for application underground, whose casing is designed as a transportable unit combinable with further casings and fitted with removable filter pockets. These filter pockets have a frame which seals towards the casing and with the lattices on which the filter cloth is stretched and with spacers holding the said lattices at a distance. Each casing as such has inspection ports that are operationable optionally on either side, and clean and crude gas channels on its upper side. The ends of these channels have coupleable head pieces, so that connection is made easy when casings are arranged in a line. Each crude gas channel is connected to the inside of the casing by means of perforations in the floor of said channel, whereas the clean gas channel, for its part, is in connection with the inside of the casing by means of a channel on the head side of the casing. It is thus possible to create a dust filter having practically any desired output by arranging individual modules in line, in which connection each individual module is reliably transportable on the facilities available below ground, as pre-fabricated above ground. Stable support of the sides of the filter cloths is ensured by the lattice that consists of reciprocally cranked longitudinal and transverse wires. 10 figs.

  12. Two techniques enable sampling of filtered and unfiltered molten metals

    Science.gov (United States)

    Burris, L., Jr.; Pierce, R. D.; Tobias, K. R.; Winsch, I. O.

    1967-01-01

    Filtered samples of molten metals are obtained by filtering through a plug of porous material fitted in the end of a sample tube, and unfiltered samples are obtained by using a capillary-tube extension rod with a perforated bucket. With these methods there are no sampling errors or loss of liquid.

  13. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP

    Science.gov (United States)

    Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No

    2016-05-01

    Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.

  14. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

    Science.gov (United States)

    Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck

    2014-07-01

    Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution

  15. 斜接管射流流动特性数值模拟%Numerical Simulation of Flow Characteristics of Lean Jet to Cross-Flow in Safety Injection of Reactor Cooling System

    Institute of Scientific and Technical Information of China (English)

    王海军; 王为术; 贺慧宁; 罗毓珊

    2011-01-01

    In the present work, a numerical simulation was performed to study the flow characteristics of lean jet to cross-flow in a main tube in the safety injection of reactor cooling system. The influence scope and mixing characteristics of the confined lean jet in cross-flow were studied. It can be concluded that three basic flow regimes are marked, namely the attached lean jet, lift-off lean jet and impinging lean jet. The velocity ratio VR is the key factor in the flow state. The depth and region of jet to main flow are enhanced with the increase of the velocity ratio. The jet flow penetrates through the main flow with the increase of the velocity ratio. At higher velocity ratio, the jet flow strikes the main flow bottom and circumfluence happens in upriver of main flow. The vortex flow characteristics dominate the flow near region of jet to cross-flow and the mixture of jet to cross-flow. At different velocity ratio VR, the vortex grows from the same displacement, but the vortex type and the vortex is different. At higher velocity ratio, the vortex develops fleetly, wears off sharp and dies out sharp. The study is very important to the heat transfer experiments of cross-flow jet and thermal stress analysis in the designs of nuclear engineering.%采用数值模拟方法对受限斜射流的流动特性、射流发展影响区域、射流发展关键因素及射流涡特性进行研究.研究表明:受限斜射流存在附壁斜射流、离升斜射流和冲击斜射流3种基本流型.流速比(V)是斜接管射流流动特性的关键特征参数;射流影响区域随V的增大而越大;在高V下,射流强烈冲击主管底面,并在上游形成明显回流区.射流涡特性决定斜射流近区域流场特性和射流的混合;V越大,射流涡强度越大,射流涡发展、破碎和耗散越快.

  16. Fractional vortex dipole phase filter

    Science.gov (United States)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam

    2014-10-01

    In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.

  17. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin

    2014-01-01

    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  18. 耐酸型玻纤填充芳纶1313复合针刺毡滤料的制备与性能%Preparation and Properties of Acid Resistant Glass Fiber/Aramid Fiber Compound Filter Materials of Needled Felt

    Institute of Scientific and Technical Information of China (English)

    郑玉婴; 蔡伟龙; 程雷

    2011-01-01

    By using domestic aramid fiber 1313 and glass fiber as main raw materials,the composite needled felts were prepared by reasonable structure design,process optimization and advanced non-woven needle technology,of which the process included high temperature heat-setting,singeing,calendering,acid-resisting treatment,and so on.The wearability,bursting strength,acid-resistance and filtration performance were characterized;it is found that the compound filter materials have excellent acid-resistance,filtering precision,abrasion resistance and high performance-cost ratio.The scanning electron microscope(SEM) photos show that the surface of composite filters is coated with polytetrafluoroethylene(PTFE),improving chemical resistance and friction coefficient of filter materials.%以国产芳纶1313为主要原料,通过合理的结构设计与工艺优化,填充一定比例的玻璃纤维,利用先进的无纺针刺工艺制作成毡,再经高温热定型、烧毛压光及耐酸处理等多种技术制作成产品。通过对其进行耐磨性、耐破性、耐酸性和过滤性能测试,研究发现,该复合滤料具有强耐酸性、过滤精度高、耐磨损、高性价比等特点。通过扫描电子显微镜观察发现,滤料表面形成一层聚四氟乙烯(PTFE)层,PTFE优良的抗化学性能和较低的摩擦系数大大改善了复合滤料的综合性能。

  19. An IIR median hybrid filter

    Science.gov (United States)

    Bauer, Peter H.; Sartori, Michael A.; Bryden, Timothy M.

    1992-01-01

    A new class of nonlinear filters, the so-called class of multidirectional infinite impulse response median hybrid filters, is presented and analyzed. The input signal is processed twice using a linear shift-invariant infinite impulse response filtering module: once with normal causality and a second time with inverted causality. The final output of the MIMH filter is the median of the two-directional outputs and the original input signal. Thus, the MIMH filter is a concatenation of linear filtering and nonlinear filtering (a median filtering module). Because of this unique scheme, the MIMH filter possesses many desirable properties which are both proven and analyzed (including impulse removal, step preservation, and noise suppression). A comparison to other existing median type filters is also provided.

  20. Two-zone pupil filters

    Science.gov (United States)

    Sheppard, Colin J. R.; Campos, Juan; Escalera, Juan C.; Ledesma, Silvia

    2008-03-01

    The performance of pupil filters consisting of two zones each of constant complex amplitude transmittance is investigated. For filters where the transmittance is real, different classes of potentially useful filter are identified and optimized. These include leaky filters with an inner zone of low amplitude transmittance, pure phase filters with phase change of π, and equal area filters. The first of these minimizes the relative power in the outer rings for a given axial resolution, the second maximizes the Strehl ratio for a given transverse resolution, and the third minimizes the relative power in the outer rings for a given transverse resolution. Complex filters can give an axially shifted maximum in intensity: the performance parameters calculated relative to the true focus are investigated for some different classes of filter, but filters with phase change not equal to π are found to give inferior performance to the real value filters.