WorldWideScience

Sample records for cross section evaluation

  1. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  2. Tables of RCN-2 fission-product cross section evaluation

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1979-05-01

    This report (continuation of ECN-13 and ECN-33) describes the third part of the RCN-2 evaluation of neutron cross sections for fission product nuclides in KEDAK format. It contains evaluated data for nine nuclides, i.e. 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 147 Nd, 148 Nd, 150 Nd and 147 Pm. Most emphasis has been given to the evaluation of the radiative capture cross section, in order to provide a data base for adjustment calculations using results of integral measurements. Short evaluation reports are given for this cross section. The evaluated capture cross sections are compared with recent experimental differential and integral data. Graphs are given of the capture cross sections at neutron energies above 1 keV, in which also adjusted point cross sections, based upon integral STEK and CFRMF data have been plotted. Moreover, the results are compared with those of the well-known ENDF/B-IV evaluation for fission product nucleides. Finally, evaluation summaries are given, which include tables of other important neutron cross sections, such as the total, elastic scattering and inelastic scattering cross sections

  3. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  4. ENDF/B-5 fission product cross section evaluations

    International Nuclear Information System (INIS)

    Schenter, R.E.; England, T.R.

    1979-12-01

    Cross section evaluations were made for the 196 fission product nuclides on the ENDF/B-5 data files. Most of the evaluations involve updating the capture cross sections of the important absorbers for fast and thermal reactor systems. This included updating thermal values, resonance integrals, resonance parameter sets, and fast capture cross sections. For the fast capture results generalized least-squares calculations were made with the computer code FERRET. Input for these cross section adjustments included nuclear models calculations and both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, 4000. Comparisons of these evaluations with recent capture measurements are shown. 15 figures, 10 tables

  5. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  6. Evaluation of cross sections for neutron-induced reactions in sodium

    International Nuclear Information System (INIS)

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of 23 Na has been done for the energy range from 10 -5 eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables

  7. Quality Quantification of Evaluated Cross Section Covariances

    International Nuclear Information System (INIS)

    Varet, S.; Dossantos-Uzarralde, P.; Vayatis, N.

    2015-01-01

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the 85 Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations

  8. Mechanized evaluation of neutron cross-sections

    International Nuclear Information System (INIS)

    Horsley, A.; Parker, J.B.

    1967-01-01

    The evaluation work to provide accurate and consistent neutron cross-section data for multigroup neutronics calculations is not fully exploiting the available theoretical and experimental results; this has been so particularly since the introduction of on-line data handling techniques enabled experimenters to turn out vast quantities of numbers. This situation can be radically improved only by mechanizing the evaluation processes. Systems such as the SC1SRS tape will not only largely overcome the task of collecting data but will provide speedy access to it; by using computers and graph-plotting machines to tabulate and display this data, the labour of evaluation can be very greatly reduced. With some types of cross-section there is hope that by using modern curve-fitting techniques the actual evaluation and statistical accounting of the data can be performed automatically. Some areas where automatic evaluation would seem likely to succeed are specified and a discussion of the mathematical difficulties incurred, such as the elimination of anomalous data, is given. Particularly promising is the use of splines in the mechanized evaluation of data. Splines are the mathematical analogues of the draughtsman's spline used in drawing smooth curves. Their principal properties are the excellent approximations they give to the derivatives of a function; in contrast to conventional polynomial fitting, this feature ensures good interpolation and, when required, stable extrapolation. Various methods of using splines in data graduation and the problem of marrying these methods to standard statistical procedures are examined. The results of work done at AWRE with cubic splines on the mechanized evaluation of neutron scattering total cross-section and angular distribution data are presented. (author)

  9. Evaluation of kerma in carbon and the carbon cross sections

    International Nuclear Information System (INIS)

    Axton, E.J.

    1992-02-01

    A preliminary simultaneous least squares fit to measurements of kerma in carbon, and carbon cross sections taken from the ENDF/B-V file was carried out. In the calculation the shapes of the total cross section and the various partial cross sections were rigid but their absolute values were allowed to float in the fit within the constraints of the ENDF/B-V uncertainties. The construction of the ENDF/B-V file imposed improbable shapes, particularly in the case of the (12)C(n,n'3(alpha)) reaction, which were incompatible with direct measurements of kerma and of the reaction cross sections. Consequently a new evaluation of the cross section data became necessary. Since the available time was limited the new evaluation concentrated particularly on those aspects of the ENDF/B-V carbon file which would have most impact on kerma calculations. Following the new evaluation of cross sections new tables of kerma factors were produced. Finally, the simultaneous least squares fit to measurements of kerma and the new cross section file was repeated

  10. Covariance Evaluation Methodology for Neutron Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  11. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  12. Evaluation of fission product neutron cross sections for JENDL

    International Nuclear Information System (INIS)

    1984-01-01

    The recent activities on the evaluation of fission product (FP) neutron cross sections for JENDL (Japanese Evaluated Nuclear Data Library) are presented briefly. The integral test of JENDL-1 FP cross section file was performed using the CFRMF sample activation data and the STEK sample reactivity data, and the ratio of experiment to calculation was nearly constant for all the samples in the STEK measurement. Therefore, a tentative analysis was performed by applying the correction to the calculated scattering reactivity component. Better agreement with the experiment was obtained after applying this correction in most cases. The evaluation work on the JENDL-2 FP neutron cross sections is now in progress. The improvement of the data evaluation is presented in an itemized form. The JENDL-2 FP file will contain the evaluated data for 100 nuclides from Kr to Tb. The improvement and the future scope of the integral test for JENDL-2 FP data are summarized. (Asami, T.)

  13. Some sources of the underestimation of evaluated cross section uncertainties

    International Nuclear Information System (INIS)

    Badikov, S.A.; Gai, E.V.

    2003-01-01

    The problem of the underestimation of evaluated cross-section uncertainties is addressed. Two basic sources of the underestimation of evaluated cross-section uncertainties - a) inconsistency between declared and observable experimental uncertainties and b) inadequacy between applied statistical models and processed experimental data - are considered. Both the sources of the underestimation are mainly a consequence of existence of the uncertainties unrecognized by experimenters. A model of a 'constant shift' is proposed for taking unrecognised experimental uncertainties into account. The model is applied for statistical analysis of the 238 U(n,f)/ 235 U(n,f) reaction cross-section ratio measurements. It is demonstrated that multiplication by sqrt(χ 2 ) as instrument for correction of underestimated evaluated cross-section uncertainties fails in case of correlated measurements. It is shown that arbitrary assignment of uncertainties and correlation in a simple least squares fit of two correlated measurements of unknown mean leads to physically incorrect evaluated results. (author)

  14. Consistent evaluation of neutron cross sections for the 242-244Cm isotopes

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.; Maslov, V.M.

    1989-01-01

    The knowledge of neutron cross-sections for Curium isotopes is necessary for solving the problems of the external fuel cycle. Experimental information on the cross-sections is very meager and does not satisfy requirements and existing evaluations in different libraries differ substantially for fission and (n,2n) reaction cross-sections. This situation requires a critical review of the entire set of evaluations of the neutron cross-sections for Curium. 17 refs, 3 figs

  15. Evaluations of fission product capture cross sections for ENDF/B-V

    International Nuclear Information System (INIS)

    Schenter, R.E.; Johnson, D.L.; Mann, F.M.; Schmittroth, F.

    1979-01-01

    Capture cross section evaluations were made for the 36 most important fission product absorbers in a fast reactor system. These evaluations were obtained by use of a generalized least-squares approach with calculations being performed with the computer code FERRET. These results will provide the major revisions to the ENDF/B-IV Fission Product Cross Section File which will be released as part of ENDF/B-V. Input for the cross section adjustment calculations included both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, and 4000. Comparisons of these evaluations with recent capture measurements are presented. 14 figures

  16. The evaluation of neutron total cross section for natural iron and aluminium

    International Nuclear Information System (INIS)

    Liu Shirui; Wang Chunhao; Zhao Defang

    1990-05-01

    The experimental data of total cross section were collected and evaluated for natural iron in the energy region from 1 keV to 20 MeV and for natural aluminium from 4.07 keV to 20 MeV. The evaluated data were recommended in the regions for them. The minimum values of Fe total cross section in the keV region were specially recommended. The resonance structures were briefly discussed for both Fe and Al. To make the evaluation better, all experimental measurements of neutron total cross section relative to Fe and Al were studied. Considering the resonance feature of medium weight nuclides, two criteria for selecting total cross section were presented: 1) the correlation between the precission of total cross section and neutron source; 2) the correlation between the accuracy of total cross section and the resolving power of the neutron spectrometer

  17. Evaluation of the 238U neutron total cross section

    International Nuclear Information System (INIS)

    Smith, A.; Poenitz, W.P.; Howerton, R.J.

    1982-12-01

    Experimental energy-averaged neutron total cross sections of 238 U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V

  18. SigmaCalc recent development and present status of the evaluated cross-sections for IBA

    Energy Technology Data Exchange (ETDEWEB)

    Gurbich, A.F.

    2016-03-15

    A new version of the SigmaCalc Internet site ( (http://sigmacalc.iate.obninsk.ru)) intended to provide evaluated differential cross-sections for spectra simulation is presented. Results of the revision of previously evaluated cross-sections and new evaluations including data for PIGE were made available to the IBA community through a simple interface. New SigmaCalc features allow users to compare evaluated differential cross-sections with the available results of the cross-section measurements taken on-the-fly from the IBANDL database and to validate them against benchmarks. The current status of the evaluated cross-sections for IBA is discussed.

  19. New evaluations of neutron cross sections for 14N and 16O

    International Nuclear Information System (INIS)

    Hale, G.M.; Young, P.G.; Chadwick, M.; Chen, Z.P.

    1991-01-01

    New evaluations of the neutron cross sections for 14 N and 16 O have been made for ENDF/B=VI. The evaluations are based at low energies on R-matrix analyses of reactions in the 15 N and 17 O systems, and at higher energies on GNASH calculations and experimental data evaluations, including covariance analyses. The 15 N system R-matrix analysis includes data from reactions among the channels n+ 14 N, p+ 14 C, and α+ 11 B at energies corresponding to excitations in 15 N below E x =13 MeV. The resonance structure of all cross sections in this energy range is fairly well reproduced. New data indicate a different J-value for the first resonance, however. Sub-threshold S-wave levels required to explain the large n+ 14 N total and elastic cross sections near zero energy give scattering lengths that differ significantly from the previous values. The R-matrix analysis of the 17 O system includes many new measurements of the n+ 16 O total cross section, done primarily at Oak Ridge and at Karlsruhe. The resonance structure of all the cross sections [total, (n,n), (n,α), and (α,α)] is well represented by the fit in the region below E n = 6.5 MeV. The new total cross section information gives different positions for some of the resonances and implies a different normalization for the (n,α) cross sections than that obtained in the ENDF/B-IV analysis. The evaluations at energies above the ranges of the R-matrix analyses incorporate results from a number of experiments performed since the previous ENDF/B evaluations. Especially important are new measurements of the total cross sections and differential elastic, and gamma-ray production cross sections

  20. Evaluation of the neutron and gamma-ray production cross-sections for 55Mn

    International Nuclear Information System (INIS)

    Takahashi, H.

    1974-11-01

    The evaluation of neutron and gamma production cross sections for manganese-55 from 1.0 (10) -5 eV to 20.0 MeV for ENDF/ B-IV is summarized. Included are resonance parameters, neutron cross sections, angular and energy distribution of secondary neutrons, gamma multiplicities and transition probability array, gamma angular and energy distributions, nuclear model calculations, uncertainty estimates of cross sections, and evaluated cross sections. (U.S.)

  1. Measured and evaluated fast neutron cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Guenther, P.; Smith, A.; Smith, D.; Whalen, J.; Howerton, R.

    1975-07-01

    Fast neutron total and scattering cross sections of elemental nickel are measured. Differential elastic scattering cross sections are determined from incident energies of 0.3 to 4.0 MeV. The cross sections for the inelastic neutron excitation of states at: 1.156 +- 0.015, 1.324 +- 0.015, 1.443 +- 0.015, 2.136 +- 0.013, 2.255 +- 0.030, 2.449 +- 0.030, 2.614 +- 0.020 and 2.791 +- 0.025 MeV are measured to incident neutron energies of 4.0 MeV. The total neutron cross sections are determined from 0.25 to 5.0 MeV. The experimental results are discussed in the context of optical and statistical models. It is shown that resonance width-fluctuation and correlation effects are significant. The present experimental and theoretical results, together with previously reported values, are used to construct a comprehensive evaluated elemental data file in the ENDF format. Some comparisons are made with previously reported evaluated files. In addition, some selected reactions which are widely used in dosimetry and other applications are presented as supplemental evaluated isotopic-data files. The numerical quantities are presented in tabular form. (3 tables, 29 figures)

  2. FENDL/E-2.0. Evaluated nuclear data library of neutron-nucleus interaction cross sections and photon production cross sections and photon-atom interaction cross sections for fusion applications. Version 1, March 1997. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.

    1998-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron-nucleus interaction cross sections, photon production cross sections and photon-atom interaction cross sections for fusion applications. It is part of the evaluated nuclear data library for fusion applications FENDL-2. The data are available cost-free from the Nuclear Data Section upon request. The data can also be retrieved by the user via online access through international computer networks. (author)

  3. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.

    1980-04-01

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  4. FENDL/E. Evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross sections for fusion applications. Version 1.1 of November 1994

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.; Ganesan, S.; McLaughlin, P.K.

    1996-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross-sections for fusion applications. It is part of FENDL, the evaluated nuclear data library for fusion applications. The nuclear data are available cost-free for distribution to interested scientists upon request. The data can also be retrieved by the user via online access through international computer networks. (author). 11 refs, 1 tab

  5. Development of improved procedures for evaluation of neutron cross sections for reactor neutron dosimetry

    International Nuclear Information System (INIS)

    Vonach, H.

    1980-06-01

    The cross-sections for the four important neutron dosimetry reactions 19 F(n,2n) 18 F, 31 P(n,p) 31 Si, 93 Nb(n,n')sup(93m)Nb and 103 Rh(n,n')sup(103m)Rh were evaluated in the neutron energy range from threshold to 20 MeV. For the 19 F(n,2n) reaction the evaluation could be based entirely on experimental data; for the reactions 31 P(n,p) 31 Si and 103 Rh(n,n')sup(103m)Rh large gaps in the experimental excitation functions and large discrepancies between the existing data made it necessary to supplement the experimental data by cross-section calculations and to give about equal weight to the experimental and calculated cross-sections. For the 93 Nb(n,n')sup(93m)Nb reaction the evaluation had to be based entirely on the theoretically calculated cross-sections. The cross-section calculations were performed using the statistical model of nuclear reactions allowing for precompound processes in the first reaction step and errors of the calculated cross-sections were estimated from their sensitivity to the various input parameters. Cross-section values were evaluated for energy groups between 0.1 MeV and 1 MeV wide, the width depending on both the slope of the excitation functions and the density of the available data. For each evaluated cross-section also an uncertainty (on a 1 sigma confidence level) was derived taking into account the errors given by the experimentalists, the general consistency of the experimental data and the estimated errors of the theoretically calculated cross-sections. In addition relative correlation matrices were derived for each evaluated excitation function describing the correlations between the uncertainties of the cross-sections at different energies. The correlations between the cross-section uncertainties for different reactions were found to be negligible. The results of this evaluation as well as those of Ref. 1 will be combined with the ENDF/B-V dosimetry file into an international neutron dosimetry file by the nuclear data section of

  6. Evaluation of the D(γ,n) reaction cross section

    International Nuclear Information System (INIS)

    Murata, T.

    1994-01-01

    Evaluation was performed for the cross section of photo-disintegration of Deuteron in the photon energy range between the threshold energy of the reaction (2.224 MeV) and pion production threshold (140 MeV). Angular distributions of the emitted neutrons were also evaluated. (author)

  7. Evaluation of 28,29,30Si neutron induced cross sections for ENDF/B-VI

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Leal, L.C.; Epperson, S.J.

    1997-04-01

    Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. The evaluations are based on analysis of experimental data, supplemented by results of nuclear model calculations. The computational methods and the parameters required as input to the nuclear model codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced reaction cross sections, associated angular and energy distributions, and gamma-ray production cross sections is included. Extensive comparisons of the evaluated cross sections to measured data are shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly. These quantities are fundamental to studies of neutron heating and radiation damage

  8. Contribution to uncertainties evaluation for fast reactors neutronic cross sections

    International Nuclear Information System (INIS)

    Privas, Edwin

    2015-01-01

    The thesis has been motivated by a wish to increase the uncertainty knowledge on nuclear data, for safety criteria. It aims the cross sections required by core calculation for sodium fast reactors (SFR), and new tools to evaluate its.The main objective of this work is to provide new tools in order to create coherent evaluated files, with reliable and mastered uncertainties. To answer those problematic, several methods have been implemented within the CONRAD code, which is developed at CEA of Cadarache. After a summary of all the elements required to understand the evaluation world, stochastic methods are presented in order to solve the Bayesian inference. They give the evaluator more information about probability density and they also can be used as validation tools. The algorithms have been successfully tested, despite long calculation time. Then, microscopic constraints have been implemented in CONRAD. They are defined as new information that should be taken into account during the evaluation process. An algorithm has been developed in order to solve, for example, continuity issues between two energy domains, with the Lagrange multiplier formalism. Another method is given by using a marginalization procedure, in order to either complete an existing evaluation with new covariance or add systematic uncertainty on an experiment described by two theories. The algorithms are well performed along examples, such the 238 U total cross section. The last parts focus on the integral data feedback, using methods of integral data assimilation to reduce the uncertainties on cross sections. This work ends with uncertainty reduction on key nuclear reactions, such the capture and fission cross sections of 238 U and 239 Pu, thanks to PROFIL and PROFIL-2 experiments in Phenix and the Jezebel benchmark. (author) [fr

  9. Evaluation of the n + 3H Cross Section at En=14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Quaglioni, S; Anderson, J D; Dietrich, F S; McNabb, D P; Hale, G M

    2010-02-10

    The n + {sup 3}H cross section is important for NIF diagnostics. As the d-{sup 3}H fusion at NIF generates neutrons with an energy of 14 MeV, the precise knowledge of the n + {sup 3}H cross section and in particular the elastic cross section at that energy is crucial. Experimental data at E{sub n} = 14 MeV are not accurate with large disagreements among different sets of measurements. On the other hand, the mirror reaction p-{sup 3}He is well studied and accurate data are available in a wide range of proton energies. We use several theoretical approaches to evaluate the n-{sup 3}H cross section by fine-tuning the theory to reproduce the p-{sup 3}He elastic differential cross sections. The good agreement between the R-matrix analysis and scaled ab initio calculations gives us confidence that our evaluated n + {sup 3}H cross section is accurate with an uncertainty on the order of 5%.

  10. Resonance analysis and evaluation of the 235U neutron induced cross sections

    International Nuclear Information System (INIS)

    Leal, L.C.

    1990-06-01

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the 235 U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Δ 3 -statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the 235 U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the 235 U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs

  11. Status of recent fast capture cross section evaluations for important fission product nuclides

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1982-01-01

    A comparison is made between recent evaluations of fission-product cross sections as given in the CNEN/CEA, ENDF/B-IV, ENDF/V-V, JENDL-1, RCN-2 and RCN-3 data libraries. The intercomparison is restricted to 24 important fission products in a fast power reactor. The evaluation methods used to obtain the various data files are reviewed and possible shortcomings are indicated. A survey is given of the experimental data based used in the various evaluations. Some graphs are included showing the new ENDF/B-V and RCN-3 fastcapture cross-section evaluations. Further intercomparisons are made by means of multi-group and one-group cross sections. It is shown that lumped fission-product cross sections calculated from the most recent versions of the data files are in quite good agreement with each other. This review concludes with a discussion on observed discrepancies and requests for new measurements. 78 references

  12. Methods and procedures for evaluation of neutron-induced activation cross sections

    International Nuclear Information System (INIS)

    Gardner, M.A.

    1981-09-01

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed

  13. Methods and procedures for evaluation of neutron-induced activation cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, M.A.

    1981-09-01

    One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed.

  14. Evaluation of fusion-evaporation cross-section calculations

    Science.gov (United States)

    Blank, B.; Canchel, G.; Seis, F.; Delahaye, P.

    2018-02-01

    Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the 100Sn region.

  15. Evaluation of the 235U fission cross-section from 100 eV to 20 MeV

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1976-01-01

    The evaluation of the 235 U fission cross section from 100 eV to 20 MeV for ENDF/B-V is described. The evaluated average cross sections from 100 eV to 200 keV are given, and it is proposed to include structure in the cross section in this energy region. Above 200 keV, the cross section is given as a smooth curve, and is recommended as a standard. Preliminary error estimates in the cross section are also given

  16. Neutron cross section standards evaluations for ENDF/B-VI

    International Nuclear Information System (INIS)

    Carlson, A.D.; Poenitz, W.P.; Hale, G.M.; Peelle, R.W.

    1985-01-01

    The neutron cross section standards are now being evaluated as the initial phase in the development of the new ENDF/B-VI file. These standards evaluations are following a somewhat different process compared with that used for earlier versions of ENDF. The primary effort is concentrated on a simultaneous evaluation using a generalized least squares program, R-matrix evaluations, and a procedure for combining the results of these evaluations. The ENDF/B-VI standards evaluation procedure is outlined, and preliminary simultaneous evaluation and R-matrix results are presented. 16 refs., 7 figs

  17. Evaluation of cross sections for 14 important neutron-dosimetry reactions

    International Nuclear Information System (INIS)

    Wagner, M.; Vonach, H.; Pavlik, A.; Strohmaier, B.; Tagesen, S.; Martinez-Rico, J.

    1990-01-01

    The evaluation of the cross sections for the neutron dosimetry reactions 24 Mg(n,p) 24 Na, 27 Al(n,α) 24 Na, 58 Ni(n,2n) 57 Ni, 64 Zn(n,p) 64 Cu, 90 Zr(n,2n) 89 Zr and 93 Nb(n,n') 93m Nb carried out at the IRK about ten years ago were updated taking into account recent experimental results. Besides, new evaluations were performed for four additional dosimetry reactions, namely 52 Cr(n,2n) 51 Cr, 59 Co(n,2n) 58 Co, 93 Nb(n,2n) 92m Nb and 197 Au(n,2n) 196 Au. The deadlines for the retrieval of data for the different reactions lay between March 1989 and February 1990. The evaluations comprise the neutron energy range from threshold to 20 MeV, in a few cases this range is extended up to 21 MeV or 30 MeV. Cross sections and their uncertainties were evaluated in energy groups with widths of 0.1 MeV to 2.0 MeV, and relative correlation matrices of the evaluated cross sections at different energies were derived. The results of the evaluations are compared to the previous ones and to other recent evaluations reported in the literature. The main results of our previous evaluations for the reactiosn 19 F(n,2n) 18 F, 31 P(n,p) 31 Si, 63 Cu(n,2n) 62 Cu and 103 Rh(n,n') 103m Rh which remain unchanged are also given for completeness. The evaluations reported in this work will be included in the new version of the IRDF (International Reactor Dosimetry File) of the IAEA in ENDF/B-VI format. (orig.)

  18. Evaluated (n,p) cross sections of 46Ti, 47Ti and 48Ti

    International Nuclear Information System (INIS)

    Philis, C.; Bersillon, O.; Smith, D.; Smith, A.

    1977-01-01

    Microscopic evaluated neutron cross sections for the reactions 46 Ti(n;p) 46 Sc, 47 Ti(n;p) 47 Sc and 48 Ti(n;p) 48 Sc are obtained from threshold (or zero energy) to 20 MeV. The results are presented in graphical and numerical (ENDF format) form. The microscopic evaluated cross sections are compared with measured fission-spectrum-averaged values

  19. Measurement, calculation and evaluation of photon production cross-sections

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1990-11-01

    The meeting proceedings were divided into three sessions devoted to the following topics: Experimental measurement and techniques (3 papers), calculation of photon cross-sections (9 papers), and evaluation (2 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  20. Database for 238U inelastic scattering cross section evaluation

    International Nuclear Information System (INIS)

    Kanda, Yukinori; Fujikawa, Noboru; Kawano, Toshihiko

    1993-10-01

    There are discrepancies among evaluated neutron inelastic scattering cross sections for 238 U in the evaluated nuclear data files, JENDL-3, ENDF/B-VI, JEF-2, BROND-2 and CENDL-2. Re-evaluating them is internationally being discussed to obtain the best outcome which can be accepted in common at the present by experts in the world. This report has been compiled to review the discrepancies among the evaluations in the present data files and to provide a common database for the re-evaluation work (author)

  1. Activation cross section data file, (1)

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro; Iijima, Shungo.

    1989-09-01

    To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)

  2. Evaluation and calculation of neutron transactinide cross-sections

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1980-01-01

    This paper reviews the state of the art of nuclear theory and its application to the evaluation and calculation of neutron reaction cross sections of transactinium isotopes. In particular, the paper describes the current evaluation of the total files of neutron reaction data for 240 Pu and 241 Pu in the energy range between 10 -5 eV and 15 MeV based on a thorough analysis of available experimental data and on the use of modern theoretical concepts, and the work in progress on the evaluation of the total neutron reaction data file for 242 Pu and 241 Am. (author)

  3. Cross sectional evaluation of awareness of prevention of dental ...

    African Journals Online (AJOL)

    Cross sectional evaluation of awareness of prevention of dental caries among general paediatricians in Ghaziabad district, India. ... Pre‑tested, structured and self administered questionnaire was used in the survey and data analysis was done by using 'SPSS' software version 16.0 (IBM, United States). Results: Our study ...

  4. Evaluation of the neutron cross sections for Pu-240

    International Nuclear Information System (INIS)

    Weston, L.W.; Arthur, E.D.

    1987-04-01

    The present evaluation is proposed to supersede the ENDF/B-V, Revision 2 file for 240 Pu. In this work, resonance parameters, cross sections, energy distributions, and angular distributions have been modified. These changes are outlined in detail and appropriate references included. 37 refs., 21 figs., 2 tabs

  5. Evaluation of Cm-247 neutron cross sections in the resonance region

    International Nuclear Information System (INIS)

    Martinelli, T.; Menapace, E.; Motta, M.; Vaccari, M.

    1980-01-01

    The neutron cross sections of Cm-247 are evaluated in the resonance (resolved and unresolved) region up to 10 keV. Average resonance parameters (i.e. spacing D, fission and radiative widths, neutron strength functions) are determined for unresolved region calculations. Moreover for a better comparison with the experimental data, fission cross section is calculated up to 10 MeV. In addition, the average number of neutrons emitted per fission as a function of energy is estimated

  6. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  7. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  8. Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2005-01-01

    U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit. The accuracy of fission product neutron cross sections is paramount to the accuracy of criticality analyses that credit fission products in two respects: (1) the microscopic cross sections determine the reactivity worth of the fission products in spent fuel and (2) the cross sections determine the reaction rates during irradiation and thus influence the accuracy of predicted final concentrations of the fission products in the spent fuel. This report evaluates and quantifies the importance of the fission product cross sections in predicting concentrations of fission products proposed for use in burnup credit. The study includes an assessment of the major fission products in burnup credit and their production precursors. Finally, the cross-section importances, or sensitivities, are combined with the importance of each major fission product to the system eigenvalue (k eff ) to determine the net importance of cross sections to k eff . The importances established the following fission products, listed in descending order of priority, that are most likely to benefit burnup credit when their cross-section uncertainties are reduced: 151 Sm, 103 Rh, 155 Eu, 150 Sm, 152 Sm, 153 Eu, 154 Eu, and 143 Nd

  9. Evaluation of sodium-23 neutron capture cross section data for the ENDF/B V-III file

    International Nuclear Information System (INIS)

    Paik, N.C.; Pitterle, T.A.

    1975-01-01

    The evaluation of neutron cross sections of 23 Na, material number 1156, for the ENDF/B File is described. Cross sections were evaluated between 10 -5 eV and 15 MeV. Experimental data available up to March 1971 were included in the evaluation

  10. Neutron cross section and covariance data evaluation of experimental data for 27Al

    International Nuclear Information System (INIS)

    Li Chunjuan; Liu Jianfeng; Liu Tingjin

    2006-01-01

    The evaluation of neutron cross section and covariance data for 27 Al in the energy range from 210 keV to 20 MeV was carried out on the basis of the experimental data mainly taken from EXFOR library. After the experimental data and their errors were analyzed, selected and corrected, SPCC code was used to fit the data and merge the covariance matrix. The evaluated neutron cross section data and covariance matrix for 27 Al given can be collected for the evaluated library and also can be used as the basis of theoretical calculation concerned. (authors)

  11. Evaluated activation cross-sections and intercomparison of the ...

    Indian Academy of Sciences (India)

    mental data cross-section with the theoretical codes, to study the quality of the theoretical ... the cross-section, angular distribution, double differential data, gamma ..... TALYS. TENDL. Figure 6. Excitation function of the 87Sr(p, 2n)86Y reaction.

  12. New evaluated neutron cross section libraries for the GEANT4 code

    International Nuclear Information System (INIS)

    Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Capote, R.

    2012-04-01

    The so-called High Precision neutron physics model implemented in the GEANT4 simulation package allows simulating the transport of neutrons with energies up to 20 MeV. It relies on the G4NDL cross section libraries, prepared by the GEANT4 collaboration from evaluated cross section files and distributed freely together with the code. Even though the performance of the G4NDL library has been improved over the time, users running complex simulations which involve the transport of neutrons do need more flexibility, in particular when assessing the uncertainties in the simulation results due to the neutron (and hence the nuclear) data library used. For this reason, a software tool has been developed for transforming any evaluated neutron cross section library in the ENDF-6 format into the G4NDL format. Furthermore, eight different releases of ENDF-B, JEFF, JENDL, CENDL and BROND national libraries have been translated into the G4NDL format and are distributed by the IAEA nuclear data service at www-nds.iaea.org/geant4. In this way, GEANT4 users have access to the complete list of standard evaluated neutron data libraries when performing Monte Carlo simulations with GEANT4. Consistency checks and a first validation of the libraries have been made following the methods described in this report. (author)

  13. Evaluation of cross-section uncertainties using physical constraints for 238U, 239Pu

    International Nuclear Information System (INIS)

    De Saint Jean, Cyrille; Privas, Edwin; Archier, Pascal; Noguere, Gilles; Litaize, Olivier; Leconte, Pierre; Bernard, David

    2014-01-01

    Neutron-induced reactions between 0 eV and 20 MeV are based on various physical properties such as nuclear reaction models, microscopic and integral measurements. Most of the time, the evaluation work is done independently between the resolved resonance range and the continuum, giving rise to mismatches for the cross-sections, larger uncertainties on boundary and no cross-correlation between high-energy domain and resonance range. In addition the use of integral experiment is sometimes only related to central values (evaluation is 'working fine' on a dedicated set of benchmarks) and reductions of uncertainties are not straightforward on cross-sections themselves: working fine could be mathematically reflected by a reduced uncertainty. As the CIELO initiative is to bring experts in each field to propose/discuss these matters, after having presented the status of 238 U and 239 Pu cross-sections covariances evaluation (for JEFF-3.2 as well as the WPEC SG34 subgroup), this paper will present several methodologies that may be used to avoid such effects on covariances. A first idea based on the use of experiments overlapping two energy domains appeared in the near past. It was reviewed and extended to the use of systematic uncertainties (normalisation for example) and for integral experiments as well. In addition, we propose a methodology taking into account physical constraints on an overlapping energy domain where both nuclear reaction models are used (continuity of both cross-sections and derivatives for example). The use of Lagrange multiplier (related to these constraints) in a classical generalised least square procedure will be exposed. Some academic examples will then be presented for both point-wise and multi-group cross-sections to present the methodologies. In addition, new results for 239 Pu will be presented on resonance range and higher energies to reduce capture and fission cross-section uncertainties by using integral experiments (JEZEBEL experiment as

  14. Evaluation of angular distributions and production cross-sections for discrete gamma lines in iron

    International Nuclear Information System (INIS)

    Savin, M.V.; Livke, A.V.; Zvenigorodskij, A.G.

    2001-01-01

    The experimental data were compiled and the angular distributions and production cross-sections for the E γ = 846.8, 1238.3 and 1810.8 keV discrete gamma-lines evaluated. The Legendre polynomial coefficients describing the angular distributions in the energy range up to E n = 14.0 MeV and cross-section values in the E n = 0.85-19.0 MeV range were evaluated. (author)

  15. Evaluation of neutron cross sections to 40 MeV for 5456Fe

    International Nuclear Information System (INIS)

    Arthur, E.D.; Young, P.G.

    1980-01-01

    Cross sections for neutron-induced reactions on 54 56 Fe were calculated by employing several nuclear models: optical, Hauser-Feshbach, preequilibrium and DWBA - in the energy range between 3 and 40 MeV. As a prelude to the calculations, the necessary input parameters were determined or verified through analysis of a large body of experimental data for both neutron- and proton-induced reactions in this mass and energy region. This technique also led to cross sections in which the simultaneous influence of available data types added to their consistency and reliability. Calculated cross sections as well as neutron and gamma-ray emission spectra were incorporated into an ENDF evaluation suitable for use to 40 MeV. 12 figures, 1 table

  16. Evaluation of photonuclear reaction cross-sections using the reduction method for large systematic uncertainties

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Efimkin, N.G.; Ishkhanov, B.S.; Sapunenko, V.V.

    1994-12-01

    The authors describe a method based on the reduction method for the evaluation of photonuclear reaction cross-sections obtained under conditions where there are large systematic uncertainties (different instrumental functions, calibration and normalization errors). The evaluation method involves using the actual instrumental function (photon spectrum) of each individual experiment to reduce the data to a representation generated by an instrumental function of better quality. The objective is to find the most reasonably achievable monoenergetic representation of the information on the reaction cross-section derived from the results of various experiments and to take into account the calibration and normalization errors in these experiments. The method was used to obtain the evaluated total photoneutron reaction cross-section (γ,xn) for a large number of nuclei. Data obtained for 16 O and 208 Pb are presented. (author). 36 refs, 6 figs, 4 tabs

  17. Comparative analysis of the neutron cross-sections of iron from various evaluated data libraries

    International Nuclear Information System (INIS)

    Bychkov, V.M.; Vozyakov, V.V.; Manokhin, V.N.; Smoll, F.; Resner, P.; Seeliger, D.; Hermsdorf, D.

    1983-09-01

    The comparative analysis of neutron cross-sections of iron from evaluated nuclear data libraries SOKRATOR, KEDAK, ENDL is done in energy interval from 0.025 eV to 20 MeV. Some of iron cross-sections from SOKRATOR library are revised and new data, which are obtained by using new experimental data and more comprehensive theoretical methods, are recommended. As a result the new version of the iron neutron cross-section file (BNF-2012) is produced for SOKRATOR library. (author)

  18. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  19. Data interpretation, objective evaluation procedures and mathematical techniques for the evaluation of energy-dependent ratio, shape and cross section data

    International Nuclear Information System (INIS)

    Poenitz, W.P.

    1980-01-01

    The evaluation of several energy-dependent neutron cross sections which are of importance for practical applications is considered. The evaluation process is defined as the procedure which is used to derive the best knowledge of these cross sections based on the available direct experimental data information, and, using theoretical models, on the auxiliary data base. The experimental data base represents a multiple overdetermination of the unknown cross sections with various correlations between the measured values. Obtaining the least-squares estimator is considered as the standard mathematical procedure to derive a consistent set of evaluated cross section values. Various approximations made in order to avoid the monstrous system of normal equations are considered and the feasibility of the exact solution is demonstrated. The variance-covariance of the result, its reliability and the improvements obtained in iterative steps are discussed. Finally, the inclusion of auxiliary, supplementary information is considered. 45 references

  20. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  1. Measurement, calculation and evaluation of photon production cross-sections

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1990-03-01

    The IAEA Specialists' Meeting on Measurement, Calculation and Evaluation of Photon Production Cross-Sections was held in Smolenice, Czechoslovakia, 5-7 February 1990. The meeting was hosted by the Institute of Physics of the Electro-Physical Research Centre, Slovak Academy of Sciences, Bratislava. This report contains the conclusions and recommendations of this meeting. The papers which the participants have presented at the meeting will be published as an INDC Report. (author)

  2. Activities of the cross-section compilation and evaluation centers at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chernick, J.

    1967-01-01

    The growth of the compilation and evaluation efforts at the Brookhaven National Laboratory are reviewed. The current work of the Sigma Center is discussed, including the status of the publication of supplements to BNL-325 and the current state of the SCISRS-I tape. Future needs for BNL-325 type publications and SCISRS-II cross-section tapes are outlined. The history of the Cross-Section Evaluation Center at the Brookhaven National Laboratory is similarly reviewed. The status of current work is discussed, including the growth of the ENDF/A tape. The status of US efforts to produce a cross-section tape (ENDF7B) at an early date to satisfy the needs of US reactor designers is discussed. The continued importance of integral experiments and their accurate analysis to provide checks of the cross-section tapes is pointed out. The role of the Brookhaven National Laboratory in collaboration on an international basis is reviewed, including its current relationship to the ENEA Neutron Data Compilation Centre, the International Atomic Energy Agency and other nuclear centres. (author)

  3. Evaluation of nuclear reaction cross section of some isotopes of ...

    African Journals Online (AJOL)

    Coupled-channels optical model code OPTMAN is used as an alternative to experimental approach to evaluate the total reaction cross section for four different isotopes of Plutonium as an example of heavy rotational nuclei of the transuranium elements over an energy range of 10 to 20 MeV. The selected isotopes are the ...

  4. Evaluation of cross sections of Th-232 and U-233

    International Nuclear Information System (INIS)

    Dias, A.M.

    1978-01-01

    The cross sections in multigroups of Th-232 and U-233 are evaluated by comparison of theoretical results and experimental data obtained through experiments on the fast reactors IBR-I, EBR-II, BR-I and AETR. The deviation between calculated values and experimental results is about 10%. They are therefore satisfatory for neutronic calculations [pt

  5. ZZ DOSCROS, Neutron Cross-Section Library for Spectra Unfolding and Integral Parameter Evaluation

    International Nuclear Information System (INIS)

    Zijp, Willem L.; Nolthenius, Henk J.; Rieffe, Henk Ch.

    1987-01-01

    1 - Description of problem or function: Format: SAND-II; Number of groups: 640 fine group cross section values; Nuclides: Li, B, F, Na, Mg, Al, S, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Nb, Mo, Rh, Pd, Ag, In, Sb, I, Cs, La, Eu, Sm, Dy, Lu, Ta, W, Re, Au, Th, U, Np, Pu. Origin: ENDF/B-V mainly, ENDF/B-IV, INDL/V. This library forms in combination with the DAMSIG81 library a convenient source of evaluated energy dependent cross section sets which may be used in the determination of neutron spectra by means of adjustment (or unfolding) procedures or which can be used for the determination of integral parameters (such as damage-to-activation ratio) useful in characterising the neutron spectra. The energy dependent fine group cross section data are presented in a 640 group structure of the SAND-II type. This group structure has 45 energy groups per energy decade below 1 MeV and a group width of 100 KeV above 1 MeV. The total energy span of this group structure is from 10 -10 MeV to 20 MeV. The library has the SAND-II format, which implies that a special part of the library has to contain cover cross section data sets. These cross section data sets are required in the SAND-II program for taking into account the influence of special detector surroundings which may be used during an irradiation. 2 - Method of solution: The selection of the reactions from the evaluated nuclear data libraries was determined by various properties of the reactions for neutron metrology. For this reason all the well- known reactions of the ENDF/B-V dosimetry file are included but these data are supplemented with cross section sets for less well known metrology reactions which may become of interest

  6. Neutron cross section and covariance data evaluation of experimental data for {sup 27}Al

    Energy Technology Data Exchange (ETDEWEB)

    Chunjuan, Li; Jianfeng, Liu [Physics Department , Zhengzhou Univ., Zhengzhou (China); Tingjin, Liu [China Nuclear Data Center, China Inst. of Atomic Energy, Beijing (China)

    2006-07-15

    The evaluation of neutron cross section and covariance data for {sup 27}Al in the energy range from 210 keV to 20 MeV was carried out on the basis of the experimental data mainly taken from EXFOR library. After the experimental data and their errors were analyzed, selected and corrected, SPCC code was used to fit the data and merge the covariance matrix. The evaluated neutron cross section data and covariance matrix for {sup 27}Al given can be collected for the evaluated library and also can be used as the basis of theoretical calculation concerned. (authors)

  7. Evaluation of fission spectra and cross sections by zero-leakage core experiments

    International Nuclear Information System (INIS)

    Iijima, T.; Mukaiyama, T.

    1979-01-01

    A series of unit k-infinity core experiments were performed in FCA of JAERI to obtain the information on the equivalence of 239 Pu to 235 U in fast reactors, and to examine the inelastic slowing down cross section of 238 U. Three assemblies were built. Each assembly consists of a test zone (about 44l) of nearly unit k-infinity, a 20% enriched uranium driver and a natural uranium blanket. Assembly IV-1 (first built in 1969 and rebuilt in 1972) is an all uranium system, and Assemblies IV-1-P, IV-1-P' have a plutonium/natural uranium test zone. Three assemblies are nearly the same from the view-point of the slowing down cross section in the main energy region of the neutron spectrum, since 238 U occupies the most part of the composition. The main difference between Assembly IV-1 and the latter two is the difference in the fissile material. Fission rate ratios and k-infinity values were measured to obtain knowledge of the fission spectra and cross sections important for the criticality. In order to evaluate the inelastic slowing down cross section of 238 U, neutron spectra were measured with various methods. The analysis was done with four cross section sets. The agreement of k-infinity values between the experiment and the calculation is unsatisfactory, especially for Pu/NU systems

  8. Evaluated neutron-induced cross sections for 40Ca from 20 to 40 MeV

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Fu, C.Y.; Larson, D.C.

    1982-09-01

    Nuclear model codes were used to compute cross sections for neutron-induced reactions on 40 Ca for incident energies from 20 to 40 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Computed cross sections along with emission spectra for each product were combined into an Evaluated Nuclear Data File (ENDF) using the proposed format for charged-particle reactions. Discussion of the models used, the resulting calculations, and the final evaluated data file are presented

  9. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  10. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    International Nuclear Information System (INIS)

    OH, S.Y.; CHANG, J.; MUGHABGHAB, S.

    2000-01-01

    Neutron cross section evaluations of the fission-product isotopes, 95 Mo, 99 Tc, 101 Ru, 103 Rh, 105 Pd, 109 Ag, 131 Xe, 133 Cs, 141 Pr, 141 Nd, 147 Sm, 149 Sm, 150 Sm, 151 Sm, 152 Sm, 153 Eu, 155 Gd, and 157 Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of 155 Gd and 157 Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations

  11. Evaluation of the 56Fe(n,p)56Mn cross sections for ENDF/B-III

    International Nuclear Information System (INIS)

    Dudey, N.D.; Kennerley, R.

    1975-01-01

    The literature examined in this review includes all references in CINDA 71 and its supplements plus some very recent measurements near the reaction threshold. All reference cross sections have been renormalized to ENDF/B-III cross sections and weighted least-squared fitting routines were used to systematize the evaluations

  12. New approach to analyzing and evaluating cross sections for partial photoneutron reactions

    International Nuclear Information System (INIS)

    Varlamov, V. V.; Ishkhanov, B. S.; Orlin, V. N.

    2012-01-01

    The presence of substantial systematic discrepancies between the results of different experiments devoted to determining cross sections for partial photoneutron reactions—first of all, (γ, n), (γ, 2n), and (γ, 3n) reactions—is a strong motivation for studying the reliability and authenticity of these data and for developing methods for taking into account and removing the discrepancies in question. In order to solve the first problem, we introduce objective absolute criteria involving transitional photoneutron-multiplicity functions F 1 , F 2 , F 3 , …; by definition, their values cannot exceed 1.0, 0.5, 0.33, …, respectively. With the aim of solving the second problem, we propose a new experimental-theoretical approach. In this approach, reaction cross sections are evaluated by simultaneously employing experimental data on the cross section for the total photoneutron yield, σ expt (γ, xn) = σ expt (γ, n) + 2σ expt (γ, 2n) + 3σ expt (γ, 3n) + …, which are free from drawbacks plaguing experimental methods for sorting neutrons in multiplicity, and the results obtained by calculating the functions F theor 1 , F theor 2 , F theor 3 , … on the basis of the modern model of photonuclear reactions. The reliability and authenticity of data on the cross sections for (γ, n), (γ, 2n), and (γ, 3n) partial reactions—σ eval (γ, in) = F i theor σ expt (γ, xn)—were evaluated for the 90 Zr, 115 In, 112,114,116,117,118,119,120,122,124 Sn, 159 Tb, and 197 Au nuclei.

  13. Statistical analysis of correlated experimental data and neutron cross section evaluation

    International Nuclear Information System (INIS)

    Badikov, S.A.

    1998-01-01

    The technique for evaluation of neutron cross sections on the basis of statistical analysis of correlated experimental data is presented. The most important stages of evaluation beginning from compilation of correlation matrix for measurement uncertainties till representation of the analysis results in the ENDF-6 format are described in details. Special attention is paid to restrictions (positive uncertainty) on covariation matrix of approximate parameters uncertainties generated within the method of least square fit which is derived from physical reasons. The requirements for source experimental data assuring satisfaction of the restrictions mentioned above are formulated. Correlation matrices of measurement uncertainties in particular should be also positively determined. Variants of modelling the positively determined correlation matrices of measurement uncertainties in a situation when their consequent calculation on the basis of experimental information is impossible are discussed. The technique described is used for creating the new generation of estimates of dosimetric reactions cross sections for the first version of the Russian dosimetric file (including nontrivial covariation information)

  14. Activities of the Shielding Subcommittee of the ENDF/B Cross Section Evaluation Working Group

    International Nuclear Information System (INIS)

    Roussin, R.W.

    1977-01-01

    The Shielding Subcommittee of the Cross Section Evaluation Working Group (CSEWG) was established in 1967 to help ensure that the content of the ENDF/B cross section library was adequate for treating shielding problems. Early work of the subcommittee concentrated on devising formats for gamma-ray interaction and production data, as well as providing programs for testing the clerical and physics consistency of the files. The Radiation Shielding Information Center (RSIC) collaborated directly with evaluators on behalf of the National Neutron Cross Section Center (NNCSC) to begin testing and adding data sets to be fed into the official ENDF/B libraries. These efforts, which were sponsored by AEC-DRDT (now ERDA-DRDD), were augmented greatly through the Defense Nuclear Agency program of establishing a working cross section library in ENDF format. The effort concentrated on evaluation and testing of materials of interest to DNA programs and providing these for inclusion in the ENDF/B library. Shielding data testing efforts, as a part of the CSEWG Data Testing Program, are now also an integral part of the Shielding Subcommittee effort. Procedures for writing and approving the shielding benchmarks were devised by Shielding Subcommittee members. Data testing benchmark experiments have been documented and analyzed, and the most recent results for ENDF/B-IV are as reported as part of ENDF-230, ''Benchmark Testing of ENDF/B-IV.''

  15. Evaluation for ENDF/B-IV of the neutron cross sections for 235U from 82 eV to 25 keV

    International Nuclear Information System (INIS)

    Peelle, R.W.

    1976-05-01

    Capture and fission cross sections for 235 U in the ''unresolved resonance'' energy region were evaluated to permit determination of local-average resonance parameters for the ENDF/B-IV cross section file. Microscopic data were examined for infinitely dilute average fission and capture cross sections and also for intermediate structure unlikely to be reproduced by statistical fluctuations of resonance widths and spacings within known laws. Evaluated cross sections, averaged over lethargy intervals greater than 0.1, were obtained as an average over selected data sets after appropriate renormalization. Estimated uncertainties are given for these evaluated average cross sections. The ''intermediate'' structure fluctuations common to a few independent data sets were approximated by straight lines joining successive cross sections at 120 selected energy points; the cross sections at the vertices were adjusted to reproduce the evaluated average cross sections over the broad energy regions. Data sources and methods are reviewed, output values are tabulated, and some modified procedures are suggested for future evaluations. Evaluated fission and capture integrals for the resolved resonance region are also tabulated. These are not in agreement with integrals based on the resonance parameters of ENDF/B versions III and IV. 8 tables, 5 figures

  16. Calculation of atom displacement cross section for structure material

    International Nuclear Information System (INIS)

    Liu Ping; Xu Yiping

    2015-01-01

    The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)

  17. Bonderenko self-shielded cross sections and multiband parameters derived from the LLL Evaluated-Nuclear-Data Library (ENDL)

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1978-01-01

    Bonderenko self-shielded cross sections and multiband parameters from the Lawrence Livermore Laboratory Evaluated-Nuclear-Data Library (ENDL) as of July 4, 1978 are presented. These data include total, elastic, capture, and fission cross sections in the TART 175 group structure. Multiband parameters are listed. Bonderenko self-shielded cross section and the multiband parameters are presented on microfiche

  18. Evaluation of the total gamma-ray production cross-sections for nonelastic interaction of fast neutrons with iron nuclei

    International Nuclear Information System (INIS)

    Savin, M.V.; Nefedov, Yu.Ya; Livke, A.V.; Zvenigorodskij, A.G.

    2001-01-01

    Experimental data on the total gamma-ray production cross-sections for inelastic interaction of fast neutrons with iron nuclei were analysed. The total gamma-ray production cross-sections, grouped according to E γ , were evaluated in the neutron energy range 0.5-19 MeV. The statistical spline approximation method was used to evaluate the experimental data. Evaluated data stored in the ENDF, JENDL, BROND, and other libraries on gamma-ray production spectra and cross-sections for inelastic interaction of fast neutrons with iron nuclei, were analysed. (author)

  19. Utilization of cross-section covariance data in FBR core nuclear design and cross-section adjustment

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1994-01-01

    In the core design of large fast breeder reactors (FBRs), it is essentially important to improve the prediction accuracy of nuclear characteristics from the viewpoint of both reducing cost and insuring reliability of the plant. The cross-section errors, that is, covariance data are one of the most dominant sources for the prediction uncertainty of the core parameters, therefore, quantitative evaluation of covariance data is indispensable for FBR core design. The first objective of the present paper is to introduce how the cross-section covariance data are utilized in the FBR core nuclear design works. The second is to delineate the cross-section adjustment study and its application to an FBR design, because this improved design method markedly enhances the needs and importance of the cross-section covariance data. (author)

  20. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    Energy Technology Data Exchange (ETDEWEB)

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  1. Evaluations of cross sections on Zr, Nb, and W up to 200 MeV for JENDL high energy file

    International Nuclear Information System (INIS)

    Kunieda, Satoshi; Shigyo, Nobuhiro; Ishibashi, Kenji

    2005-01-01

    Nuclear data were evaluated on Zr isotopes, 93 Nb and W isotopes for neutron- and proton-induced reactions up to 200 MeV. Optical model potential parameters were determined to give good agreements with experimental values of elastic-scattering, total, and total-reaction cross sections by the traditional phenomenological approach. The GNASH nuclear model code was used for evaluations of particle-production cross sections. Since the direct inelastic-scatterings induced by the excitations of giant resonances are not negligible for medium/heavy nuclei, the calculation was performed to take them into consideration. For composite-particle emission cross sections from pre-equilibrium states, semi-empirical models were utilized to give good agreements with experimental data. Evaluated cross sections were compared with experimental values and the LA150 evaluations. (author)

  2. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  3. Criticality benchmark comparisons leading to cross-section upgrades

    International Nuclear Information System (INIS)

    Alesso, H.P.; Annese, C.E.; Heinrichs, D.P.; Lloyd, W.R.; Lent, E.M.

    1993-01-01

    For several years criticality benchmark calculations with COG. COG is a point-wise Monte Carlo code developed at Lawrence Livermore National Laboratory (LLNL). It solves the Boltzmann equation for the transport of neutrons and photons. The principle consideration in developing COG was that the resulting calculation would be as accurate as the point-wise cross-sectional data, since no physics computational approximations were used. The objective of this paper is to report on COG results for criticality benchmark experiments in concert with MCNP comparisons which are resulting in corrections an upgrades to the point-wise ENDL cross-section data libraries. Benchmarking discrepancies reported here indicated difficulties in the Evaluated Nuclear Data Livermore (ENDL) cross-sections for U-238 at thermal neutron energy levels. This led to a re-evaluation and selection of the appropriate cross-section values from several cross-section sets available (ENDL, ENDF/B-V). Further cross-section upgrades anticipated

  4. Evaluation of neutron cross sections for 244Cm, 246Cm, and 248Cm

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McCrosson, F.J.; Gettys, W.E.

    1977-01-01

    An evaluation of neutron cross sections for 244 246 248 Cm using the ENDF/B format is presented. Primary data input included differential measurements, integral measurements, nuclear model calculations, and reactor production experience

  5. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  6. Electron collision cross sections of mercury

    International Nuclear Information System (INIS)

    Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo

    2006-01-01

    In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)

  7. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  8. ZZ ENDL82, Evaluated Charged Particle, Neutron, Photon Cross-Section Library

    International Nuclear Information System (INIS)

    2001-01-01

    Description of program or function: - Format: Described in the manual; - Number of groups: (energies between 100 eV and 100 MeV); - Nuclides: 94 (Z 1 to 99); - Origin: LLNL Evaluated Nuclear Data Library. ENDL82 is a collection of evaluated data for neutron-induced reactions, photon interactions with matter, and charged-particle-induced reactions. It is maintained in a computer-oriented system. All interpolable quantities for neutron-induced reactions are presented so that linear interpolation between successive entries yields values that are consistent with stated experimental errors, where experiments exist, or that adhere to an assumed law, such as 1/v energy dependence, within a small fraction (typically 1%). In the case of an assumed energy-dependence law for cross sections, this is accomplished by creating a large number of (energy, cross section) pairs by computer and subsequently thinning the points to a specified accuracy, using the subroutine THINER. All angular distributions are differential probabilities normalized to an integral of unity over the cosine of the scattering angle. All energy distributions of secondary particles are presented as normalized Legendre polynomial representations. The linear interpolation will construct an acceptable angular distribution at an intermediate energy

  9. Evaluation of the capture cross section of natural Ti from 10-5eV to 20.106eV

    International Nuclear Information System (INIS)

    Simon, G.; Bersillon, O.; Mosinski, G.; Philis, C.; Trochon, J.; Verges, N.

    1977-01-01

    In the 10 -5 eV - 200 keV energy range a coherent resolved resonance parameter set has been determined for each titanium isotope. From these sets the titanium capture cross section has been calculated with the Reich-Moore formalism and corrected for the missing resonances. From 200 keV up to 20 MeV all the isotopic cross sections were calculated with the help of two statistical model codes NCNR and FISPRO. These calculations have been adjusted on available 50 Ti(n,γ) 51 Ti and Ti(n,γ) experimental results. The elemental titanium capture cross section has been obtained as the weighted sum of the isotopic cross sections. The present evaluation is descriptive of the experimental values. The comparison of the present evaluation with ENDF/BIV shows the ameliorations brought in this cross section: a better description of all the resonances known in the 1 keV - 200 keV energy range; above 200 keV the new data give a more realistic shape showing compound nucleus competition of prominent inelastic scattering channels. As titanium is used as structural material for fast reactors the capture cross section integrals for the two evaluations in different energy ranges are compared. These comparisons show considerable discrepancies in some areas. Thus the new evaluation may change the results of reactor calculations

  10. Program SIGMA1 (version 79-1): Doppler broaden evaluated cross sections in the evaluated nuclear data file/version B (ENDF/B) format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1979-01-01

    Program SIGMA1 Doppler-broadens evaluated cross sections in the ENDF/B format. The program requires that input cross sections be tabulated as linearly interpolable functions of energy in ENDF/B File 3; broadened cross sections, in this same form, replace the original values in the output tape. This report describes the methods used in the code and serves as a user's guide. A listing of the source deck is available on request

  11. Evaluation of activation cross section for (n,2a) and (n,γ) reactions on 63,65,NatCu

    International Nuclear Information System (INIS)

    Ma Gonggui

    1999-01-01

    The cross sections of (n,2n) and (n,γ) for 63,65,Nat Cu are recommended based on the latest experimentally measured data and theoretically calculated results from threshold up to 20 MeV. The evaluated cross sections are given with experimental data and compared with other evaluated data. The present work was done for CENDL-3

  12. Evaluation of fission cross sections and covariances for 233U, 235U, 238U, 239Pu, 240Pu, and 241Pu

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Matsunobu, Hiroyuki; Murata, Toru

    2000-02-01

    A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of 233 U, 235 U, 238 U, 239 Pu, 240 Pu, and 241 Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)

  13. Evaluation of thermal neutron cross-sections and resonance integrals of protactinium, americium, curium, and berkelium isotopes

    International Nuclear Information System (INIS)

    Belanova, T.S.

    1994-12-01

    Data on the thermal neutron fission and capture cross-sections as well as their corresponding resonance integrals are reviewed and analysed. The data are classified according to the form of neutron spectra under investigation. The weighted mean values of the cross-sections and resonance integrals for every type of neutron spectra were adopted as evaluated data. (author). 87 refs, 2 tabs

  14. Neutron standard cross sections in reactor physics - Need and status

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1990-01-01

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  15. The 10B(n,α)7Li cross section

    International Nuclear Information System (INIS)

    1997-01-01

    The data base relevant to an evaluation of the 10 B(n,α) standard cross sections have been improved through interlaboratory collaboration. Changes in the evaluated 10 B(n,α) cross sections resulted form the measurements made since the ENDF/B-VI evaluation have been estimated. 12 refs, 4 figs

  16. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  17. Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on 12C

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Blann, M.; Cox, L.; Young, P.G.; Meigooni, A.

    1995-01-01

    A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on 12 C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements where they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A≤and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV

  18. Evaluation of the 93Nb (n,n')93mNb reaction cross section from the threshold up to 20 MeV

    International Nuclear Information System (INIS)

    Badikov, S.A.; Zolotarev, K.I.; Pashchenko, A.B.

    1992-01-01

    The data base comprising the results of the 93 Nb(n,n') 93m Nb reactions cross section measurements up to 1991 has been compiled. The experimental data have been renormalized to new values of standard cross-sections from the ENDF/B-6 and the IRDF-90 libraries. The evaluation of excitation function for the 93 Nb(n,n') 93m Nb reaction was carried out on the basis of procedure taking the correlation of experimental data into account. The files of evaluated cross-sections and covariance were prepared in the ENDF/B-6 format. The cross-section evaluations from present work and the IRDF-90 library are compared. 37 refs.; 3 figs.; 6 tabs

  19. Developing Scientific Reasoning Through Drawing Cross-Sections

    Science.gov (United States)

    Hannula, K. A.

    2012-12-01

    Cross-sections and 3D models of subsurface geology are typically based on incomplete information (whether surface geologic mapping, well logs, or geophysical data). Creating and evaluating those models requires spatial and quantitative thinking skills (including penetrative thinking, understanding of horizontality, mental rotation and animation, and scaling). However, evaluating the reasonableness of a cross-section or 3D structural model also requires consideration of multiple possible geometries and geologic histories. Teaching students to create good models requires application of the scientific methods of the geosciences (such as evaluation of multiple hypotheses and combining evidence from multiple techniques). Teaching these critical thinking skills, especially combined with teaching spatial thinking skills, is challenging. My Structural Geology and Advanced Structural Geology courses have taken two different approaches to developing both the abilities to visualize and to test multiple models. In the final project in Structural Geology (a 3rd year course with a pre-requisite sophomore mapping course), students create a viable cross-section across part of the Wyoming thrust belt by hand, based on a published 1:62,500 geologic map. The cross-section must meet a number of geometric criteria (such as the template constraint), but is not required to balance. Each student tries many potential geometries while trying to find a viable solution. In most cases, the students don't visualize the implications of the geometries that they try, but have to draw them and then erase their work if it does not meet the criteria for validity. The Advanced Structural Geology course used Midland Valley's Move suite to test the cross-sections that they made in Structural Geology, mostly using the flexural slip unfolding algorithm and testing whether the resulting line lengths balanced. In both exercises, students seemed more confident in the quality of their cross-sections when the

  20. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  1. Evaluation of the (n,p) cross sections of natural Ti and its isotopes from thresholds to 20 MeV

    International Nuclear Information System (INIS)

    Bersillon, O.; Philis, C.; Smith, D.; Smith, A.

    1977-01-01

    The titanium isotopes (n,p) cross sections are based upon renormalized experimental data or deduced from statistical model calculations where measurements were not available. Some of these cross sections, notably the 46 Ti (n,p), 47 Ti (n,p) and 48 Ti (n,p), which find wide use as dosimetry indicators, are compared here with the corresponding ENDF/BIV dosimetry file data. The (n,p) elemental cross section is constructed from the weighted isotopic components. Our evaluation and the corresponding ENDF/BIV data are compared showing the great difference between both results, especially below 10 MeV. Moreover the new data exhibit some structure characteristics of the 47 Ti (n,p) cross section. The present Ti (n,p) data are intended to be included in the ENDF/BV evaluation

  2. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    Science.gov (United States)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  3. Cross-Sectional Analysis of Longitudinal Mediation Processes.

    Science.gov (United States)

    O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio

    2018-01-01

    Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.

  4. Cross section library DOSCROS77 (in the SAND-II format)

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.; Borg, N.J.C.M. van der.

    1977-08-01

    The dosimetry cross section library DOSCROS77 is documented with tables, plots and cross section values averaged over a few reference spectra. This library is based on the ENDF/B-IV dosimetry file, supplemented with some other evaluations. The total number of reaction cross section sets incorporated in this library is 49 (+3 cover cross sections sets). The cross section data are available in a format which is suitable for the program SAND-II

  5. Cross Sections for Inner-Shell Ionization by Electron Impact

    Energy Technology Data Exchange (ETDEWEB)

    Llovet, Xavier, E-mail: xavier@ccit.ub.edu [Centres Científics i Tecnològics, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States); Salvat, Francesc [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Jablonski, Aleksander [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  6. Annotated bibliography covering generation and use of evaluated cross section uncertainty files

    International Nuclear Information System (INIS)

    Peelle, R.W.; Burrows, T.W.

    1983-03-01

    Literature references related to definition, generation, and use of evaluated cross section uncertainty (variance-covariance) files are listed with comments intended primarily to guide the reader toward materials of immediate interest. Papers are also cited that cover covariance information for individual experiments and that relate to production and use of multigroup covariance matrices. Titles are divided among several major categories

  7. Reference Cross Sections for Charged-particle Monitor Reactions

    Science.gov (United States)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  8. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  9. Assessment of the available {sup 233}U cross-section evaluations in the calculation of critical benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.; Wright, R.Q.

    1996-10-01

    In this report we investigate the adequacy of the available {sup 233}U cross-section data for calculation of experimental critical systems. The {sup 233}U evaluations provided in two evaluated nuclear data libraries, the U.S. Data Bank [ENDF/B (Evaluated Nuclear Data Files)] and the Japanese Data Bank [JENDL (Japanese Evaluated Nuclear Data Library)] are examined. Calculations were performed for six thermal and ten fast experimental critical systems using the S{sub n} transport XSDRNPM code. To verify the performance of the {sup 233}U cross-section data for nuclear criticality safety application in which the neutron energy spectrum is predominantly in the epithermal energy range, calculations of four numerical benchmark systems with energy spectra in the intermediate energy range were done. These calculations serve only as an indication of the difference in calculated results that may be expected when the two {sup 233}U cross-section evaluations are used for problems with neutron spectra in the intermediate energy range. Additionally, comparisons of experimental and calculated central fission rate ratios were also made. The study has suggested that an ad hoc {sup 233}U evaluation based on the JENDL library provides better overall results for both fast and thermal experimental critical systems.

  10. Assessment of the Available (Sup 233)U Cross Sections Evaluations in the Calculation of Critical Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.

    1993-01-01

    In this report we investigate the adequacy of the available {sup 233}U cross-section data for calculation of experimental critical systems. The {sup 233}U evaluations provided in two evaluated nuclear data libraries, the U. S. Data Bank [ENDF/B (Evaluated Nuclear Data Files)] and the Japanese Data Bank [JENDL (Japanese Evaluated Nuclear Data Library)] are examined. Calculations were performed for six thermal and ten fast experimental critical systems using the Sn transport XSDRNPM code. To verify the performance of the {sup 233}U cross-section data for nuclear criticality safety application in which the neutron energy spectrum is predominantly in the epithermal energy range, calculations of four numerical benchmark systems with energy spectra in the intermediate energy range were done. These calculations serve only as an indication of the difference in calculated results that may be expected when the two {sup 233}U cross-section evaluations are used for problems with neutron spectra in the intermediate energy range. Additionally, comparisons of experimental and calculated central fission rate ratios were also made. The study has suggested that an ad hoc {sup 233}U evaluation based on the JENDL library provides better overall results for both fast and thermal experimental critical systems.

  11. A unified Monte Carlo approach to fast neutron cross section data evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.; Nuclear Engineering Division

    2008-03-03

    A unified Monte Carlo (UMC) approach to fast neutron cross section data evaluation that incorporates both model-calculated and experimental information is described. The method is based on applications of Bayes Theorem and the Principle of Maximum Entropy as well as on fundamental definitions from probability theory. This report describes the formalism, discusses various practical considerations, and examines a few numerical examples in some detail.

  12. Electron capture cross sections by O+ from atomic He

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2009-01-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  13. Electron capture cross sections by O+ from atomic He

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  14. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  15. Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on {sup 132,134}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Hexi Univ., Zhangye (China). Inst. of New Energy; Wu, Chunlei; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Li, Suyuan [Hexi Univ., Zhangye (China). Inst. of New Energy

    2017-07-01

    Cross sections of the {sup 132}Ba(n,2n){sup 131m,g}Ba and {sup 134}Ba(n,2n){sup 133m,g}Ba reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} have been measured by means of the activation technique at three neutron energies in the range 13-15 MeV. BaCO{sub 3} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The quasimonoenergetic neutrons beam were produced via the {sup 3}H(d,n){sup 4}He reaction at the Pd-300 Neutron Generator of the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  16. Evaluation of {sup 23}Na(n,2n){sup 22}Na reaction cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Manokhin, V N [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-06-01

    Using available experimental data and (n,2n) excitation function systematics {sup 23}Na(n,2n){sup 22}Na reaction cross-sections were evaluated for energies ranging from the reaction threshold to 20 MeV. (author). 21 refs, 1 fig., 2 tabs.

  17. The effect of the decay data on activation cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong

    2002-01-01

    The effect of the decay data on evaluation of activation cross section is investigated. Present work shows that these effects must be considered carefully when activation cross section is evaluated. Sometime they are main reason for causing the discrepancies among the experimental data

  18. Evaluation of tritium production cross-section for neutron-interaction with 7Li

    International Nuclear Information System (INIS)

    Yu Baosheng; Cai Dunjiu

    1987-01-01

    The 7 Li(n, n't) α reaction cross-section has been evaluated and recommended. These experimental data were selected up to the end of 1986, in which main microscopic nuclear data and benchmark measurements were included. These data are retrieved from EXFOR master files of International Atomic Energy Agency, and new information is added in which IAE (the Chinese Institute of Atomic Energy) experimental results is considered

  19. Revision of the inelastic scattering cross section evaluation of 238U for CENDL-2.1

    International Nuclear Information System (INIS)

    Tang Guoyou; Zhang Guohui; Shi Zhaomin; Chen Jinxiang

    1995-11-01

    Revised evaluated data for the inelastic neutron scattering cross-section and the secondary neutron spectrum are presented for U-238 in graphical form, compared with the earlier data that exist in the evaluated nuclear data libraries ENDF/B-6 and JENDL-3. The new data will be included in the Chinese evaluated nuclear data library CENDL-2.1. (author). 14 refs, 9 figs

  20. Evaluation of neutron cross-sections for 242Cm to obtain a complete file

    International Nuclear Information System (INIS)

    Bakhanovich, L.A.; Klepetskij, A.B.; Maslov, V.M.; Porodzinskij, Yu.V.; Sukhovitskij, E.Sh.

    1994-01-01

    Experimental fission, capture, inelastic scattering, (n2n), (n3n) and other cross-sections are scarce or unavailable. As a consequence, theoretical models and parameters systematics have been used extensively in the calculation of these data. Data obtained in this work are compared with previous evaluations. Severe discrepancies were found. (author). 10 refs, 2 figs, 2 tabs

  1. Evaluation of the (n,xn) and (n,xnf) cross sections for heavy nuclei with the statistical model

    International Nuclear Information System (INIS)

    Jary, J.

    1975-01-01

    A method was presented to calculate the (n,xn) and (n,xnf) cross sections for the heavy nuclei having mass numbers of 232 1) without fission, according to the law of conventional statistical models, in the (n,xn) process. Fission can also compete with the emission of neutrons and γ-ray for the nuclei and the excitation energy considered. The fission cross sections of 235 U and 238 U recently evaluated by Sowerby and the fission cross section of 236 U have been used to determine the other parameters needed in the calculation. The fission widths of 239 U and 238 U have been obtained by fitting the first-chance and second-chance fission plateaus of the 238 U cross section. For the fission width of 238 U, good agreement was observed between the authors' results and Landrum and others' experimental data. (Iwase, T.)

  2. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    Science.gov (United States)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  3. Pb(n,2n) cross section at 14.1 MeV

    International Nuclear Information System (INIS)

    Zhou Delin

    1991-01-01

    Pb is a potential candidate for the neutron multiplier of the fusion reactor, so its (n, 2n) cross section at 14 MeV is of importance. This work is carried out to get a new evaluation of Pb (n,2n) cross section at 14.1 MeV for checking the angle-integrated neutron emission cross section. The equal weight averaged value 2252 +- 40 Mb is adopted in the evaluation

  4. Evaluation of neutron and gamma-ray-production cross-section data for lead

    International Nuclear Information System (INIS)

    Fu, C.Y.; Perey, F.G.

    1975-01-01

    A survey was made of the available information on neutron and gamma-ray-production cross-section measurements of lead. From these and from relevant nuclear-structure information on the Pb isotopes, recommended neutron cross-section data sets for lead covering the neutron energy range from 0.00001 eV to 20.0 MeV have been prepared. The cross sections are derived from experimental results available to February 1972 and from calculations based on optical-model, DWBA, and Hauser--Feshbach theories. Comparisons which show good agreement between theoretical and experimental values are displayed in a number of graphs. Also presented graphically are smoothed total cross sections, Legendre coefficients for angular distributions, and a representative energy distribution of gamma rays from resonance capture. 15 tables, 36 figures, 104 references

  5. Data Evaluation of Actinide Cross Sections: 238Pu, 237Pu, and 236Pu

    Energy Technology Data Exchange (ETDEWEB)

    Guaglioni, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jurgenson, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Descalle, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, I. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ormand, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mattoon, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beck, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bailey, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-04

    This report documents the recent evaluation of the 236Pu, 237Pu, and 238Pu cross section sets. Nuclear data evaluation is the fundamental interface that takes measured nuclear cross section data and turns them into a continuous curve that 1) is consistent with other measurements and nuclear reaction theory/models, and 2) is required by down-stream users. All experiments that generate nuclear data need to include an evaluation step for their data to be broadly useful to the end users.

  6. Evaluation Procedures of Random Uncertainties in Theoretical Calculations of Cross Sections and Rate Coefficients

    International Nuclear Information System (INIS)

    Kokoouline, V.; Richardson, W.

    2014-01-01

    Uncertainties in theoretical calculations may include: • Systematic uncertainty: Due to applicability limits of the chosen model. • Random: Within a model, uncertainties of model parameters result in uncertainties of final results (such as cross sections). • If uncertainties of experimental and theoretical data are known, for the purpose of data evaluation (to produce recommended data), one should combine two data sets to produce the best guess data with the smallest possible uncertainty. In many situations, it is possible to assess the accuracy of theoretical calculations because theoretical models usually rely on parameters that are uncertain, but not completely random, i.e. the uncertainties of the parameters of the models are approximately known. If there are one or several such parameters with corresponding uncertainties, even if some or all parameters are correlated, the above approach gives a conceptually simple way to calculate uncertainties of final cross sections (uncertainty propagation). Numerically, the statistical approach to the uncertainty propagation could be computationally expensive. However, in situations, where uncertainties are considered to be as important as the actual cross sections (for data validation or benchmark calculations, for example), such a numerical effort is justified. Having data from different sources (say, from theory and experiment), a systematic statistical approach allows one to compare the data and produce “unbiased” evaluated data with improved uncertainties, if uncertainties of initial data from different sources are available. Without uncertainties, the data evaluation/validation becomes impossible. This is the reason why theoreticians should assess the accuracy of their calculations in one way or another. A statistical and systematic approach, similar to the described above, is preferable.

  7. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    International Nuclear Information System (INIS)

    Leal, Luiz C; Derrien, Herve; Dunn, Michael E; Mueller, Don

    2007-01-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the

  8. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  9. Evaluation of the theoretical uncertainties in the W → lν cross sections at the LHC

    International Nuclear Information System (INIS)

    Adam, Nadia E.; Halyo, Valerie; Zhu Wenhan; Yost, Scott A.

    2008-01-01

    We study the sources of systematic errors in the measurement of the W → lν cross-sections at the LHC. We consider the systematic errors in both the total cross-section and acceptance for anticipated experimental cuts. We include the best available analysis of QCD effects at NNLO in assessing the effect of higher order corrections and PDF and scale uncertainties on the theoretical acceptance. In addition, we evaluate the error due to missing NLO electroweak corrections and propose which MC generators and computational schemes should be implemented to best simulate the events.

  10. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin; Lee, Young Ouk; Cho, Young Sik

    2008-07-15

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found.

  11. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Lee, Young Ouk; Cho, Young Sik

    2008-07-01

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found

  12. Electron capture cross sections by O{sup +} from atomic He

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Dwayne C; Saha, Bidhan C [Department of Physics, Florida A and M University, Tallahassee, FL-32307 (United States)

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  13. Establishment of the BOSPOR-80 machine library of evaluated threshold reaction cross-sections and its testing by means of integral experiments

    International Nuclear Information System (INIS)

    Bychkov, V.M.; Zolotarev, K.I.; Pashchenko, A.B.; Plyaskin, V.I.

    1982-08-01

    A paper was published in 1979 containing a compilation of experimental data on the cross-sections of (n,p), (n,α) and (n,2n) threshold reactions and recommended excitation functions. A further paper considered the development of evaluation methods based on the use of theoretical model calculations, an increase in the number of recommended excitation functions, correction of the recommended cross-sections on the basis of integral experiments and allowance for recent experimental data. To satisfy the wide circle of users, BOSPOR-80 - a machine library of evaluated threshold reaction cross-sections - was set up

  14. GROUPIE2007, Bondarenko Self-Shielded Cross sections from ENDF/B

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of problem or function - GROUPIE reads evaluated data in ENDF/B Format and uses these to calculate unshielded group averaged Cross sections, Bondarenko self-shielded Cross sections, and multiband parameters. The program allows the user to specify arbitrary energy groups and an arbitrary energy-dependent neutron spectrum (weighting function). IAEA0849/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. 2 - Modifications from previous versions: Groupie VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased page size from 120,000 to 600,000 points. 3 - Method of solution: All integrals are performed analytically; in no case is iteration or any approximate form of integration used. GROUPIE reads either the 0 deg. Kelvin Cross sections or the Doppler broadened Cross sections to calculate the self-shielded Cross sections and multiband parameters for 25 values of the 'background' Cross sections (representing the combined effects of all other isotopes and of leakage). 4 - Restrictions on the complexity of the problem: GROUPIE requires that the energy-dependent neutron spectrum and all Cross sections be given in tabular form, with linear interpolation between tabulated values. There is no limit to the size of the table used to describe the spectrum, so the spectrum may be described in as much detail as required. - If only unshielded averages are calculated, the program can handle up to 3000 groups. If self-shielded averages and/or multiband parameters are calculated, the program can handle up to 175 groups. These limits can easily be extended. - The program only uses the

  15. Evaluation of cross sections and calculation of kerma factors for neutrons up to 80 MeV on {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Watanabe, Y. [Kyushu Univ., Fukuoka (Japan); Chiba, S.; Fukahori, T.

    1997-03-01

    We have evaluated the cross sections for neutrons with incident energies from 20 to 80 MeV on {sup 12}C for the JENDL high-energy file. The total cross sections were determined by a generalized least-squares method with available experimental data. The cross sections of elastic and inelastic scattering to the first 2{sup +} were evaluated with the theoretical calculations. The optical potentials necessary for these calculations were derived using a microscopic approach by Jeukenne-Lejeune-Mahaux. For the evaluation of double differential emission cross sections (DDXs), we have developed a code system SCINFUL/DDX in which total 35 reactions including the 3-body simultaneous breakup process (n+{sup 12}C {yields} n+{alpha}+{sup 8}Be) can be taken into consideration in terms of a Monte Carlo method, and have calculated the DDXs of all light-emissions (A{<=}4) and heavier reaction products. The results for protons, deuterons, and alphas showed overall good agreement with experimental data. The code is also applicable for calculations of total and partial kerma factors. Total kerma factors calculated for energies from 20 to 80 MeV were compared with the measurements and the other latest evaluations from the viewpoints of medical application and nuclear heating estimation. (author)

  16. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  17. Update of the evaluation of the cross section of the neutron dosimetry reaction 103Rh(n,n')103mRh

    International Nuclear Information System (INIS)

    Pavlik, A.; Miah, M.M.H.; Strohmaier, B.; Vonach, H.

    1995-10-01

    On the occasion of a new measurement of the excitation function of the reaction 103 Rh(n,n') 103m Rh in the energy range between 5.69 and 12.0 MeV performed at the present institute in collaboration wit the PTB Braunschweig, the cross section of this reaction, which is part of the International Reactor Dosimetry Field (IRDF-90), was re-evaluated. Whereas the energy range of the evaluation, namely from threshold to 20 MeV, was kept unchanged with respect to IRDF-90, the underlying data base was extended by the experiment mentioned as well as by another measurement, and revised with regard to judgement and normalization of older data in the light of recent information. Based on the experimental data upgraded in this way, new model calculations were carried out, which in the energy region 14 - 20 MeV served to supplement the experimental cross sections for this evaluation. The cross sections and their uncertainties were evaluated in energy groups with widths of 0.2 to 1.0 MeV, and the relative correlation matrix of the evaluated cross sections at the different energies was calculated. The results presented here supersede the corresponding values published in Physics Data 13-5 and included to the IRDF-90. (author). 26 refs, 4 figs, 6 tabs

  18. Plutonium-239 fission cross-section between 1 and 100 keV - International Evaluation Co-operation Volume 5

    International Nuclear Information System (INIS)

    Fort, E.; Salvatores, M.; Derrien, H.; Lagrange, Ch.; Kawai, M.; Nakajima, J.; Takano, H.; Weston, L.W.; Young, P.G.; Wagemans, C.

    1994-01-01

    A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). The following report was issued by a Subgroup investigating the fission cross-section of Plutonium-239 in the energy range 1 to 100 keV. This cross section is of particular importance for fast reactor applications, such as k eff , sodium void reactivity coefficient and control rod worth. An analysis of recent experimental data by L. Weston et al. give significantly lower cross-section values that the simultaneous evaluation performed by W. Poenitz for the ENDF/B-VI library. The objective of the subgroup was to resolve this discrepancy. One experimental program and one evaluation one have been agreed upon: The experimental program which essentially aims at normalisation checking has been performed in Geel and Oak Ridge. It supports an upward re-normalisation by ∼3.1%. The evaluation program has not been completed and even, as a consequence of the experimental results, loses a part of its justification. But some acquired results are important and can be used for future 239 Pu evaluations. The JEFF-2

  19. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  20. R-Matrix Evaluation of 16O neutron cross sections up to 6.3 MeV

    International Nuclear Information System (INIS)

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; Wright, R.Q.

    2000-01-01

    In this paper the authors describe an evaluation of 16 O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were performed with the computer code SAMMY [LA98] which utilizes Bayes' method, a generalized least squares technique

  1. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    Science.gov (United States)

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  2. Development of automatic cross section compilation system for MCNP

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Sakurai, Kiyoshi

    1999-01-01

    A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)

  3. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  4. A re-evaluation of 32S(n,p) cross sections from threshold to 5 MeV

    International Nuclear Information System (INIS)

    Fu, C.Y.

    1989-01-01

    Two evaluations of the 32 S(n,p) reaction cross sections, currently being used for the Nagasaki and Hiroshima dosimetry studies, yielded results that differ significantly. These two evaluations were reviewed and both were found to be quite old and without benefit of modern theoretical guidance and recent experimental data, hence inadequate in view of its relative importance for the present application. The necessity for a re-evaluation is further enhanced by the fact that: the present data search has uncovered a relatively high-quality data set that was not known previously, a generalized Bayes-theorem code is now available for averaging the various data sets with uncertainties and generating uncertainties for the results, effects on data combination of differing energy resolution in the various measurements can now be accounted for, and the ENDF/B-VI standards for 238 U(n,f) cross sections have become available for renormalizing two of the available data sets. The re-evaluation is performed to 5 MeV, the upper energy limit for the present purpose. 8 refs., 2 figs

  5. Comparative evaluation of photon cross section libraries for materials of interest in PET Monte Carlo simulations

    CERN Document Server

    Zaidi, H

    1999-01-01

    the many applications of Monte Carlo modelling in nuclear medicine imaging make it desirable to increase the accuracy and computational speed of Monte Carlo codes. The accuracy of Monte Carlo simulations strongly depends on the accuracy in the probability functions and thus on the cross section libraries used for photon transport calculations. A comparison between different photon cross section libraries and parametrizations implemented in Monte Carlo simulation packages developed for positron emission tomography and the most recent Evaluated Photon Data Library (EPDL97) developed by the Lawrence Livermore National Laboratory was performed for several human tissues and common detector materials for energies from 1 keV to 1 MeV. Different photon cross section libraries and parametrizations show quite large variations as compared to the EPDL97 coefficients. This latter library is more accurate and was carefully designed in the form of look-up tables providing efficient data storage, access, and management. Toge...

  6. Some problem areas in capture cross-section measurements

    International Nuclear Information System (INIS)

    Moxon, M.C.; Gayther, D.B.; Sowerby, M.G.

    1975-01-01

    This paper outlines some of the problems that have been encountered and are envisaged in the measurement and evaluation of capture cross-sections. Particular emphasis is placed on the cross-sections of the structural materials (Fe, Ni, Cr) used in fast reactors. The topics considered are the influence of scattered neutrons in capture detectors, the determination of background, sample thickness corrections, and the theoretical representation of resonance parameters. (author)

  7. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  8. Bodies with noncircular cross sections and bank-to-turn missiles

    Science.gov (United States)

    Jackson, C. M., Jr.; Sawyer, W. C.

    1992-01-01

    A development status evaluation is presented for the aerodynamics of missile configurations with noncircular cross-sections and bank-to-turn maneuvering systems, giving attention to cases with elliptical and square cross-sections, as well as bodies with variable cross-sections. The assessment of bank-to-turn missile performance notes inherent stability/control problems. A summary and index are provided for aerodynamic data on monoplanar configurations, including those which incorporate airbreathing propulsion systems.

  9. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  10. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  11. Compilation and evaluation of 14-MeV neutron-activation cross sections for nuclear technology applications. Set I

    International Nuclear Information System (INIS)

    Evain, B.P.; Smith, D.L.; Lucchese, P.

    1985-04-01

    Available 14-MeV experimental neutron activation cross sections are compiled and evaluated for the following reactions of interest for nuclear-energy technology applications: 27 Al(n,p) 27 Mg, Si(n,X) 28 Al, Ti(n,X) 46 Sc, Ti(n,X) 47 Sc, Ti(n,X) 48 Sc, 51 V(n,p) 51 Ti, 51 V(n,α) 48 Sc, Cr(n,X) 52 V, 55 Mn(n,α) 52 V, 55 Mn(n,2n) 54 Mn, Fe(n,X) 54 Mn, 54 Fe(n,α) 51 Cr, 59 Co(n,p) 59 Fe, 59 Co(n,α) 56 Mn, 59 Co(n,2n) 58 Co, 65 Cu(n,p) 65 Ni, Zn(n,X) 64 Cu, 64 Zn(n,2n) 63 Zn, 113 In(n,n')/sup 113m/In, 115 In(n,n') /sup 115m/In. The compiled values are listed and plotted for reference without adjustments. From these collected results those values for which adequate supplementary information on nuclear constants, standards and experimental errors is provided are selected for use in reaction-by-reaction evaluations. These data are adjusted as needed to account for recent revisions in the nuclear constants and cross section standards. The adjusted results are subsequently transformed to equivalent cross sections at 14.7 MeV for the evaluation process. The evaluations are performed utilizing a least-squares method which considers correlations between the experimental data. 440 refs., 41 figs., 46 tabs

  12. Evaluation of the (n,p) cross sections for natural Ni and its isotopes {sup 58,60,61,62,64}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Gonggui, Ma; Shiming, Wang; Kun, Zhang [Sichuan Univ., Chengdu (China). Inst. of Nuclear Science and Technology

    1996-06-01

    Nickel is a very important structure material in nuclear engineering. The neutron activation cross section of the (n,p) reaction is very important for fusion reactor from the view point of monitoring neutron field. The cross sections {sup 58,60,61,62,64}Ni(n,p){sup 58,60,61,62,64}Co were evaluated based on measured data and theoretical calculation from threshold to 20 MeV. The present evaluations agree well with the measured data of Ni isotopes. (6 figs.).

  13. Review of multigroup nuclear cross-section processing

    Energy Technology Data Exchange (ETDEWEB)

    Trubey, D.K.; Hendrickson, H.R. (comps.)

    1978-10-01

    These proceedings consist of 18 papers given at a seminar--workshop on ''Multigroup Nuclear Cross-Section Processing'' held at Oak Ridge, Tennessee, March 14--16, 1978. The papers describe various computer code systems and computing algorithms for producing multigroup neutron and gamma-ray cross sections from evaluated data, and experience with several reference data libraries. Separate abstracts were prepared for 13 of the papers. The remaining five have already been cited in ERA, and may be located by referring to the entry CONF-780334-- in the Report Number Index. (RWR)

  14. EVALUATION OF NEUTRON CROSS SECTIONS FOR A COMPLETE SET OF Nd ISOTOPES.

    Energy Technology Data Exchange (ETDEWEB)

    KIM,H.; HERMAN, M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; LEE. Y.-O.

    2007-10-29

    Neutron cross sections for a complete set of Nd isotopes, {sup 142,143,144,145,146,147,148,150}Nd, were evaluated in the incident energy range from 10{sup -5} eV to 20 MeV. In the low energy region, including thermal and resolved resonances, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. In the unresolved resonance region we performed additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data. In the fast neutron region, we used the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. The results are compared to the existing nuclear data libraries, including ENDF/B-VI.8, JENDL-3.3 and JEFF-3.1, and to the available experimental data. The new evaluations are suitable for neutron transport calculations and they were adopted by the new evaluated nuclear data file of the United States, ENDF/B-VII.0, released in December 2006.

  15. Evaluation of neutron cross sections for a complete set of Dy isotopes

    International Nuclear Information System (INIS)

    Kim, Hyeong Il; Herman, M.; Mughabghab, S.F.; Oblozinsky, P.; Lee, Young-Ouk

    2008-01-01

    Neutron cross sections for a complete set of Dy isotopes, 156,158,160,161,162,163,164 Dy, were evaluated in the incident energy range from 10 -5 eV to 20 MeV. In the low energy region, including thermal and resolved resonances, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. In the unresolved resonance region we performed additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data. In the fast neutron region, we used the nuclear reaction model code EMPIRE-2.19 with the model parameters adjusted to the experimental data. The results are compared with the available experimental data and with the existing nuclear data libraries, including ENDF/B-VI.8 and JEFF-3.1. The new evaluations are suitable for neutron transport calculations and they were adopted by the new US evaluated nuclear data library, ENDF/B-VII.0, released in December 2006

  16. Application of the SAMINT methodology to the new cross section evaluations of 63Cu and 65Cu∗

    Directory of Open Access Journals (Sweden)

    Sobes Vladimir

    2017-01-01

    Full Text Available The SAMINT methodology allows coupling of differential and integral data evaluations in a continuous-energy framework. Prior to development of the SAMINT code, integral experimental data such as in the International Criticality Safety Benchmark Experiments Project remained a tool for validation of completed nuclear data evaluations. Now, SAMINT extracts information from integral benchmarks in the form of calculated sensitivity coefficients by Monte Carlo codes such as CE TSUNAMI-3D or MCNP6 and combines it with the results of experimental cross section measurements to produce an updated cross section evaluation utilizing information from both sets of data. The use of the generalized linear least squares methodology ensures that proper weight is given to both the differential and integral data. SAMINT is not intended to bias nuclear data toward specific integral experiments, but it should be used to supplement evaluation of differential experimental data. This work demonstrates the application of the SAMINT methodology to the new Oak Ridge National Laboratory (ORNL evaluations of the resonance parameters for two isotopes of copper: 63Cu and 65Cu.

  17. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  18. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1976-09-01

    A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed

  19. Cross sections of the lumped fission products for the AMZ library

    International Nuclear Information System (INIS)

    Ono, S.; Corcueca, R.P.; Nascimento, J.A.

    1985-01-01

    The preparation of the lumped fission product cross section for the AMZ library is described. For this purpose 100 nuclides were selected. The cross sections for each nuclide were generated by the NJOY code with evaluated nuclear data from ENDF/B-V, complemented with ENDF/B-IV data. A comparison is performed between the data obtained and the lumped fission product cross section of JFS-II [pt

  20. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  1. The analysis and evaluation by the method of reduction of total photoneutron reaction cross sections in the range of giant dipole resonance

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Efimkin, N.G.; Ishkhanov, B.S.; Sapunenko, V.V.; Stepanov, M.E.

    1993-01-01

    The method based on the method of reduction is proposed for the evaluation of photonuclear reaction cross sections have been obtained at significant systematic uncertainties (different apparatus functions, calibration and normalization uncertainties). The evaluation method consists of using the real apparatus function (photon spectrum) of each individual experiment to reduce the data to a representation generated by an apparatus function of better quality. The task is to find the most reasonably achievable monoenergetic representation (MRAMR) of the information about cross section contained in different experiment observables and to take into account the experimental uncertainties of calibration and normalization procedures. The method was used to obtain the evaluated total photoneutron (γ, xn) reaction cross sections for 16 O, 28 Si, nat Cu, 141 Pr, and 208 Pb are presented. 79 refs., 19 figs., 6 tabs

  2. Experience in using the covariances of some ENDF/B-V dosimetry cross sections: proposed improvements and addition of cross-reaction covariances

    International Nuclear Information System (INIS)

    Fu, C.Y.; Hetrick, D.M.

    1982-01-01

    Recent ratio data, with carefully evaluated covariances, were combined with eleven of the ENDF/B-V dosimetry cross sections using the generalized least-squares method. The purpose was to improve these evaluated cross sections and covariances, as well as to generate values for the cross-reaction covariances. The results represent improved cross sections as well as realistic and usable covariances. The latter are necessary for meaningful intergral-differential comparisons and for spectrum unfolding

  3. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  4. Measurement committee of the US cross section evaluation working group. Annual report, 1995

    International Nuclear Information System (INIS)

    Smith, D.L.; McLane, V.

    1995-08-01

    The Cross Section Evaluation Working Group is a long-standing committee charged with the responsibility for organizing and overseeing the U.S. cross-section evaluation effort. It's main product is the official U.S. evaluated nuclear data file, ENDF; the current version of this file is Version VI. All evaluations included in ENDF are reviewed and approved by CSEWG and issued by the U.S. Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the U.S. nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This was based on recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the U.S. were declining at an alarming rate. The mission of the Committee is to establish a network of experimentalists in the U.S. which would provide encouragement to the national nuclear data measurement effort through improved communication and facilitation of collaborative activities. The Committee currently has 19 members, and interested scientists are welcome to join the network simply by contacting the Chairman. For reference, the names of the current members and contact information are contained in this report. This annual report is the first such document issued by the Committee. It contains voluntary contributions from 10 laboratories in the U.S. which have been prepared by members of the Committee and submitted to the Chairman for compilation and editing. This report is being distributed in hard copy and is also available on-line via the National Nuclear Data Center, Brookhaven National Laboratory. It is hoped that the information provided here on the work that is going on at the reporting laboratories will prove interesting and stimulating to the readers

  5. Electromagnetic-gravitational conversion cross sections in external electromagnetic fields

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.

    1994-09-01

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs

  6. R-matrix evaluation of 16O neutron cross sections up to 6.3 MeV

    International Nuclear Information System (INIS)

    Sayer, R.O.; Leal, L.C.; Larson, N.M.; Spencer, R.R.; Wright, R.O.

    2002-01-01

    We have evaluated 16 O neutron cross sections in the resolved resonance region with the multilevel Reich-Moore code SAMMY. Resonance parameters were determined by a consistent analysis, including both Doppler and resolution broadening effects. To properly treat the α particle exit channel, an algorithm to calculate charged particle penetrabilities and shifts was incorporated into SAMMY. (author)

  7. ACTIV87 Fast neutron activation cross section file 1987

    International Nuclear Information System (INIS)

    Manokhin, V.N.; Pashchenko, A.B.; Plyaskin, V.I.; Bychkov, V.M.; Pronyaev, V.G.; Schwerer, O.

    1989-10-01

    This document summarizes the content of the Fast Neutron Activation Cross Section File based on data from different evaluated data libraries and individual evaluations in ENDF/B-5 format. The entire file or selective retrievals from it are available on magnetic tape, free of charge, from the IAEA Nuclear Data Section. (author)

  8. Nuclear Data Processing for Generation of Stainless Steel Cross-Sections Data

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2007-01-01

    Stainless steel has been used as important material in nuclear reactor and also in non nuclear industries. Nuclear data processing for generation of composite mixture cross-sections from several nuclides have been made. Provided evaluated nuclear data file (ENDF) such as ENDF/B- VI.8, JEFF-3.1 and JENDL-3.3 files were employed. Raw nuclear data cross-sections on file ENDF should be prepared and processed before it used in calculation. Sequence of nuclear data processing for generation of mixture cross-sections data from several nuclides is started from LINEAR, RECENT, SIGMA1 and MIXER codes taken from PREPR02000 utility code. Nuclear data processing is started from linearization of nuclear cross-sections data by using LINEAR code and counting background contribution of resonance parameter (MF2) with RECENT code (0 K) at energy ranges from 10 -5 to 10 7 eV. Afterward, the neutron cross-sections data should be processed and broadened to desire temperature (300 K) by using SIGMA1 code. Consistency of each cross-sections which used in nuclear data processing is checked and verified using FIXUP code. The next step is to define the composite mixture density (gr/cm 3 ) of stainless steel SUS-310 and weight fraction of each nuclide composition prior used it in MIXER code. All of the stainless steel SUS-310 cross sections are condensed to 650 energy groups structure (TART-energy structure) by using GROUPIE code to evaluate, analysis and review it more easily. The total, elastic scattering, non-elastic scattering and capture cross- sections of stainless steel SUS-310 have been made of ENDF/B-VI.8, JEFF-3.1 and JENDL-3.3 files. The stainless steel cross-sections made of ENDF/B- VI.8 file was taken as reference during validation process. The validation result of total cross-sections for stainless steel SUS-310 is clearly observed that the differences of total cross-sections error in nuclear data processing is relatively low than 0.01%. (author)

  9. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  10. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  11. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  12. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Bourselier, Jean-Christophe

    2005-08-15

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by {sup 28}Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs.

  13. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    International Nuclear Information System (INIS)

    Bourselier, Jean-Christophe

    2005-08-01

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by 28 Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs

  14. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1978-01-01

    A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)

  15. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  16. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1976-05-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  17. Evaluation of fission cross sections and covariances for {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Matsunobu, Hiroyuki [Data Engineering, Inc. (Japan); Murata, Toru [AITEL Corporation, Tokyo (JP)] [and others

    2000-02-01

    A simultaneous evaluation code SOK (Simultaneous evaluation on KALMAN) has been developed, which is a least-squares fitting program to absolute and relative measurements. The SOK code was employed to evaluate the fission cross sections of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu for the evaluated nuclear data library JENDL-3.3. Procedures of the simultaneous evaluation and the experimental database of the fission cross sections are described. The fission cross sections obtained were compared with evaluated values given in JENDL-3.2 and ENDF/B-VI. (author)

  18. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  19. Sampling pig farms at the abattoir in a cross-sectional study - Evaluation of a sampling method.

    Science.gov (United States)

    Birkegård, Anna Camilla; Halasa, Tariq; Toft, Nils

    2017-09-15

    A cross-sectional study design is relatively inexpensive, fast and easy to conduct when compared to other study designs. Careful planning is essential to obtaining a representative sample of the population, and the recommended approach is to use simple random sampling from an exhaustive list of units in the target population. This approach is rarely feasible in practice, and other sampling procedures must often be adopted. For example, when slaughter pigs are the target population, sampling the pigs on the slaughter line may be an alternative to on-site sampling at a list of farms. However, it is difficult to sample a large number of farms from an exact predefined list, due to the logistics and workflow of an abattoir. Therefore, it is necessary to have a systematic sampling procedure and to evaluate the obtained sample with respect to the study objective. We propose a method for 1) planning, 2) conducting, and 3) evaluating the representativeness and reproducibility of a cross-sectional study when simple random sampling is not possible. We used an example of a cross-sectional study with the aim of quantifying the association of antimicrobial resistance and antimicrobial consumption in Danish slaughter pigs. It was not possible to visit farms within the designated timeframe. Therefore, it was decided to use convenience sampling at the abattoir. Our approach was carried out in three steps: 1) planning: using data from meat inspection to plan at which abattoirs and how many farms to sample; 2) conducting: sampling was carried out at five abattoirs; 3) evaluation: representativeness was evaluated by comparing sampled and non-sampled farms, and the reproducibility of the study was assessed through simulated sampling based on meat inspection data from the period where the actual data collection was carried out. In the cross-sectional study samples were taken from 681 Danish pig farms, during five weeks from February to March 2015. The evaluation showed that the sampling

  20. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  1. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  2. Augmented Cross-Sectional Prevalence Testing for Estimating HIV Incidence

    OpenAIRE

    Wang, R.; Lagakos, S. W.

    2010-01-01

    Estimation of an HIV incidence rate based on a cross-sectional sample of individuals evaluated with both a sensitive and less-sensitive diagnostic test offers important advantages to incidence estimation based on a longitudinal cohort study. However, the reliability of the cross-sectional approach has been called into question because of two major concerns. One is the difficulty in obtaining a reliable external approximation for the mean “window period” between detectability of HIV infection ...

  3. The total neutron cross sections for 14N and 24Mg

    International Nuclear Information System (INIS)

    Bommer, J.

    This report contains tables of the total neutron cross sections of 14 N and 24 Mg as determined in a recent measurement for neutron energies between 1 and 5.3 MeV. Graphic representations and details on the evaluation of the cross sections are included. (orig.) [de

  4. Poster - 18: New features in EGSnrc for photon cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, David W.O. [The Ottawa Hospital Cancer Centre, National Research Council Canada, Carleton University (Canada)

    2016-08-15

    Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministic calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.

  5. Evaluated cross section libraries and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Young, P.G.

    1995-07-01

    We present evaluations of the interaction of 20 to 100 MeV neutrons with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra, for light ejectiles with A{<=}4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al.. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. The evaluated data libraries are available as electronic files.

  6. Recent progress in fast neutron activation cross section data

    International Nuclear Information System (INIS)

    Michaelis, W.

    A brief review is given of some significant investigations performed during the past few years in the area of fast neutron activation cross sections that may be relevant for the use of nuclear techniques in the exploration of mineral resources, in process and quality control in industry as well as for general analytical purposes. Differential capture cross sections are considered for the natural elements or isotopes of Fe, Cu, Se, Y, Nb, Cd, In, Gd, W, Os and Au. Some of the data are compared with statistical model calculations. Experimental and evaluated average cross sections for capture and threshold reactions in the spontaneous fission neutron field of 252 Cf are reviewed taking into account the elements or isotopes of Mg, Al, Si, S, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Cd, In, Ba, Ta and Au. A summary of recent studies of differential cross sections for threshold reactions comprises data on Al, Si, S, Ti, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ta, W and Au. Besides experimental investigations, evaluations and theoretical model calculations are considered. Cross sections at 14 MeV and in the region around this energy are reviewed for Na, Mg, Al, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Sr, Zr, Nb, In, Er, Yb, Ta, W, Os, Ir, Au and Pb. Particular emphasis is laid on (n,p), (n,2n) and (n,α) reactions. (n,n') reactions are allowed for if the half-life of the metastable state excited permits elemental analyses by common experimental techniques. (orig.)

  7. Comparison of fission and capture cross sections of minor actinides

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Iwamoto, Osamu

    2003-01-01

    The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals. (author)

  8. Total cross section of 242Pu between 0.7 and 170 MeV

    International Nuclear Information System (INIS)

    Moore, M.S.; Lisowski, P.W.; Morgan, G.L.; Auchampaugh, G.F.

    1979-01-01

    Various evaluations of the neutron cross sections of 242 Pu lead to widely different predictions of bulk neutronics properties such as critical mass. These evaluations also show rather different behavior of the energy dependence of the total cross section. The total cross section of 242 Pu from 0.7 to 170 MeV was measured to a statistical accuracy of = 0.5% below 6 MeV, using 8 g of high purity material and the WNR pulsed neutron facility. Recent evaluations by Madland and Young and by Lagrange and Jary are found to be reasonably consistent with the data obtained. Best agreement, however, is found by using a relationship between the total cross sections for 238 U, 239 Pu, and 235 U. The remarkable accuracy of this description for 242 Pu suggests that it could be extended to other deformed actinides for which inadequate amounts of material exist for direct measurements of sigma/sub T/ in the MeV region, as an evaluation constraint

  9. Re/Os cosmochronometer: measurement of neutron cross sections

    International Nuclear Information System (INIS)

    Mosconi, M.

    2007-01-01

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of 187 Re (t 1/2 =41.2 Gyr) into 187 Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the 187 Re/ 187 Os pair, provide the possibility to identify the radiogenic fraction of 187 Os exclusively by nuclear physics considerations. Apart from its radiogenic component, 187 Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, 187 Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of 187 Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of 187 Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of 186 Os, 187 Os and 188 Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for 186 Os, 187 Os, and 188 Os, respectively. Since, the first excited state in 187 Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, γ) experiments and by an improved measurements of the inelastic scattering cross section for

  10. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  11. Activities of the JILA Atomic Collisions Cross Sections Data Center

    International Nuclear Information System (INIS)

    Gallagher, J.W.

    1983-01-01

    The JILA Atomic Collisions Cross Sections Data Center compiles, critically evaluates, and reviews cross sections and rates for low energy (<100 keV) collisions of electrons, photons, and heavy particles with atoms, ions, and simple molecules. Reports are prepared which provide easily accessible recommended data with error limits, list the fundamental literature related to specific topics, identify regions where data are missing, and point out inconsistencies in existing data. The general methodology used in producing evaluated compilations is described. Recently completed projects and work in progress are reported

  12. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  13. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  14. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo [ed.

    1992-06-15

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.

  15. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo

    1992-06-01

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10 -5 eV to 20 MeV. Almost all the cross section data are reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in other tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum. (author)

  16. Validation of cross sections for Monte Carlo simulation of the photoelectric effect

    CERN Document Server

    Han, Min Cheol; Pia, Maria Grazia; Basaglia, Tullio; Batic, Matej; Hoff, Gabriela; Kim, Chan Hyeong; Saracco, Paolo

    2016-01-01

    Several total and partial photoionization cross section calculations, based on both theoretical and empirical approaches, are quantitatively evaluated with statistical analyses using a large collection of experimental data retrieved from the literature to identify the state of the art for modeling the photoelectric effect in Monte Carlo particle transport. Some of the examined cross section models are available in general purpose Monte Carlo systems, while others have been implemented and subjected to validation tests for the first time to estimate whether they could improve the accuracy of particle transport codes. The validation process identifies Scofield's 1973 non-relativistic calculations, tabulated in the Evaluated Photon Data Library(EPDL), as the one best reproducing experimental measurements of total cross sections. Specialized total cross section models, some of which derive from more recent calculations, do not provide significant improvements. Scofield's non-relativistic calculations are not surp...

  17. Reaction cross section calculation of some alkaline earth elements

    Science.gov (United States)

    Tel, Eyyup; Kavun, Yusuf; Sarpün, Ismail Hakki

    2017-09-01

    Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  18. Compilation and evaluation of 14-MeV neutron-activation cross sections for nuclear technology applications. Set I

    Energy Technology Data Exchange (ETDEWEB)

    Evain, B.P.; Smith, D.L.; Lucchese, P.

    1985-04-01

    Available 14-MeV experimental neutron activation cross sections are compiled and evaluated for the following reactions of interest for nuclear-energy technology applications: /sup 27/Al(n,p)/sup 27/Mg, Si(n,X)/sup 28/Al, Ti(n,X)/sup 46/Sc, Ti(n,X)/sup 47/Sc, Ti(n,X)/sup 48/Sc, /sup 51/V(n,p)/sup 51/Ti, /sup 51/V(n,..cap alpha..)/sup 48/Sc, Cr(n,X)/sup 52/V, /sup 55/Mn(n,..cap alpha..)/sup 52/V, /sup 55/Mn(n,2n)/sup 54/Mn, Fe(n,X)/sup 54/Mn, /sup 54/Fe(n,..cap alpha..)/sup 51/Cr, /sup 59/Co(n,p)/sup 59/Fe, /sup 59/Co(n,..cap alpha..)/sup 56/Mn, /sup 59/Co(n,2n)/sup 58/Co, /sup 65/Cu(n,p)/sup 65/Ni, Zn(n,X)/sup 64/Cu, /sup 64/Zn(n,2n)/sup 63/Zn, /sup 113/In(n,n')/sup 113m/In, /sup 115/In(n,n') /sup 115m/In. The compiled values are listed and plotted for reference without adjustments. From these collected results those values for which adequate supplementary information on nuclear constants, standards and experimental errors is provided are selected for use in reaction-by-reaction evaluations. These data are adjusted as needed to account for recent revisions in the nuclear constants and cross section standards. The adjusted results are subsequently transformed to equivalent cross sections at 14.7 MeV for the evaluation process. The evaluations are performed utilizing a least-squares method which considers correlations between the experimental data. 440 refs., 41 figs., 46 tabs.

  19. Cross-section fluctuations and self-shielding effects in the unresolved resonance region - International Evaluation Co-operation volume 15

    International Nuclear Information System (INIS)

    Froehner, F.H.; Larson, Duane C.; Tagesen, Siegfried; Petrizzi, Luigi; Hasegawa, Akira; Nakagawa, Tsuneo; Hogenbirk, Alfred; Weigmann, H.

    1995-01-01

    A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). NEA/NSC Subgroup 15 has had the task to assess self-shielding effects in the unresolved resonance range of structural materials, in particular their importance at various energies, and possible ways to deal with them in shielding and activation work. The principal results achieved are summarised briefly, in particular: - New data base consisting of high-resolution transmission data measured at Oak Ridge and Geel; - Improved theoretical understanding of cross-section fluctuations, including their prediction, that has been derived from the Hauser-Feshbach theory; - Benchmark results on the importance of self-shielding in iron at various energies; - Consequences for information storage in evaluated nuclear data files; - Practical utilisation of self-shielding information from evaluated files. Benchmark results as well as the Hauser-Feshbach theory show that self-shielding effects are important up to a 4-or 5-MeV neutron energy. Fluctuation factors extracted from high-resolution total cross-section data can be

  20. The shell structure effects in neutron cross section calculation by a ...

    African Journals Online (AJOL)

    The role of the shell structure properties of the nucleus in the calculation of neutron-induced reaction cross-section data based on nuclear reaction theory has been investigated. In this investigation, measured, evaluated and calculated (n.p) reaction cross-section data on la spherical nucleus (i.e. 112Sn) and a deformed ...

  1. Energy-averaged neutron cross sections of fast-reactor structural materials

    International Nuclear Information System (INIS)

    Smith, A.; McKnight, R.; Smith, D.

    1978-02-01

    The status of energy-averaged cross sections of fast-reactor structural materials is outlined with emphasis on U.S. data programs in the neutron-energy range 1-10 MeV. Areas of outstanding accomplishment and significant uncertainty are noted with recommendations for future efforts. Attention is primarily given to the main constituents of stainless steel (e.g., Fe, Ni, and Cr) and, secondarily, to alternate structural materials (e.g., V, Ti, Nb, Mo, Zr). Generally, the mass regions of interest are A approximately 50 to 60 and A approximately 90 to 100. Neutron total and elastic-scattering cross sections are discussed with the implication on the non-elastic-cross sections. Cross sections governing discrete-inelastic-neutron-energy transfers are examined in detail. Cross sections for the reactions (n;p), (n;n',p), (n;α), (n;n',α) and (n;2n') are reviewed in the context of fast-reactor performance and/or diagnostics. The primary orientation of the discussion is experimental with some additional attention to the applications of theory, the problems of evaluation and the data sensitivity of representative fast-reactor systems

  2. Thermal neutron capture cross sections resonance integrals and g-factors

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    2003-02-01

    The thermal radiative capture cross sections and resonance integrals of elements and isotopes with atomic numbers from 1 to 83 (as well as 232 Th and 238 U) have been re-evaluated by taking into consideration all known pertinent data published since 1979. This work has been undertaken as part of an IAEA co-ordinated research project on 'Prompt capture gamma-ray activation analysis'. Westcott g-factors for radiative capture cross sections at a temperature of 300K were computed by utilizing the INTER code and ENDF-B/VI (Release 8) library files. The temperature dependence of the Westcott g-factor is illustrated for 113 Cd, 124 Xe and 157 Gd at temperatures of 150, 294 and 400K. Comparisons have also been made of the newly evaluated capture cross sections of 6 Li, 7 Li, 12 C and 207 Pb with those determined by the k 0 method. (author)

  3. Evaluated 182,183,184,186W Neutron Cross Sections and Covariances in the Resolved Resonance Region

    International Nuclear Information System (INIS)

    Pigni, Marco T; Leal, Luiz C

    2015-01-01

    Oak Ridge National Laboratory (ORNL) has recently completed the resonance parameter evaluation of four tungsten isotopes, i.e., 182,183,184,186 W, in the neutron energy range of thermal up to several keV. This nuclear data work was performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide improved tungsten cross section and covariance data for criticality safety analyses. The evaluation methodology uses the Reich-Moore approximation of the R-matrix formalism of the code SAMMY to fit high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility (GELINA), as well as other experimental data sets on natural tungsten available in the EXFOR library. In the analyzed energy range, this work nearly doubles the resolved resonance region (RRR) present in the latest US nuclear data library ENDF/B-VII.1. In view of the interest in tungsten for distinct types of nuclear applications and the relatively homogeneous distribution of the isotopic tungsten - namely, 182 W(26.5%), 183 W(14.31%), 184 W(30.64%), and 186 W(28.43%) - the completion of these four evaluations represents a significant contribution to the improvement of the ENDF library. This paper presents an overview of the evaluated resonance parameters and related covariances for total and capture cross sections on the four tungsten isotopes.

  4. Sensitivity coefficients for the 238U neutron-capture shielded-group cross sections

    International Nuclear Information System (INIS)

    Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.

    1981-01-01

    In the unresolved resonance region cross sections are represented with statistical resonance parameters. The average values of these parameters are chosen in order to fit evaluated infinitely dilute group cross sections. The sensitivity of the shielded group cross sections to the choice of mean resonance data has recently been investigated for the case of 235 U and 239 Pu by Ganesan and by Antsipov et al; similar sensitivity studies for 238 U are reported

  5. Calculation and evaluation of the activation cross sections for 187Re(n,2n)186m,gRe reactions

    International Nuclear Information System (INIS)

    Huang Xiaolong; Lu Hanlin; Zhou Chunmei

    1998-01-01

    The activation cross sections for 187 Re(n,2n) 186m,g Re reactions are calculated using UNF code. The calculations are in good agreement with the re-evaluated measured data. Finally the excitation function for 187 Re(n,2n) 186m,g Re reactions are evaluated and recommended based on present calculations and evaluated decay data

  6. Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1979-01-01

    It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references

  7. Neutron cross section evaluations of europium isotopes in 1 keV - 30 MeV energy range. Format - validation - comparison; Evaluation de sections efficaces pour des neutrons incidents sur des isotopes d'europium aux energies 1 keV - 30 MeV. Format - validation - comparaison

    Energy Technology Data Exchange (ETDEWEB)

    Dossantos-Uzarralde, P.; Le Luel, C.; Bauge, E. [CEA Bruyeres le Chatel, 91 (France). Dept. de Physique Theorique et Appliquee

    2004-07-01

    This paper presents neutron cross section evaluations of Europium isotopes. The cross sections are evaluated in 1 keV - 30 MeV energy range for the isotopes {sup 146}Eu, {sup 147}Eu, {sup 148}Eu, {sup 149}Eu, {sup 150}Eu, {sup 151}Eu, {sup 152}Eu, {sup 153}Eu, {sup 154}Eu in their ground state. This evaluation includes cross section productions of the long life isomeric states. Special attention is put on the options used for the description of the files written in ENDF-6 format. The final issue is a proposal of a new breed of ENDF-6 formatted neutron activation file. (authors)

  8. Evaluation of the 237Np neutron cross sections in the energy range from 10-5 eV to 5 MeV

    International Nuclear Information System (INIS)

    Derrien, H.; Fort, E.

    1979-01-01

    The 237 Np neutron cross-sections have been evaluated in the energy range from thermal to 5 MeV. A set of resonance parameters including a negative level, is recommanded after examination of the available experimental data. This set is used 1) to calculate the cross-sections from the thermal region to 150 ev, and 2) to provide the statistical parameters suitable to the calculations in the unresolved region. At higher energies, the transmission coefficients Te are calculated by the coupled channel optical model code ECIS. They are then used as input in the statistical model code FISINGA. The optical model parameters, including the deformation parameters, are those used by Lagrange for the Pu isotopes, slightly modified to reproduce at 40 KeV the total cross-sections obtained from the pure statistical parameters. The recommendations of Lynn concerning the level density parameters have been used. In this paper we describe the various steps of the evaluation

  9. Reaction cross section calculation of some alkaline earth elements

    Directory of Open Access Journals (Sweden)

    Tel Eyyup

    2017-01-01

    Full Text Available Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  10. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  11. Re/Os cosmochronometer: measurement of neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, M.

    2007-12-21

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of {sup 187}Re (t{sub 1/2}=41.2 Gyr) into {sup 187}Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the {sup 187}Re/{sup 187}Os pair, provide the possibility to identify the radiogenic fraction of {sup 187}Os exclusively by nuclear physics considerations. Apart from its radiogenic component, {sup 187}Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, {sup 187}Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of {sup 187}Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of {sup 187}Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of {sup 186}Os, {sup 187}Os and {sup 188}Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively. Since, the first excited state in {sup 187}Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, {gamma

  12. Measurement and Basic Physics Committee of the U.S. Cross-Section Evaluation Working Group annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L. [ed.] [comp.] [Argonne National Lab., IL (United States); McLane, V. [ed.] [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-10-01

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. It`s main product is the official US evaluated nuclear data file, ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the Us and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  13. The 53Cr(γ,p)52V cross section

    International Nuclear Information System (INIS)

    Baciu, G.; Catana, D.; Galateanu, V.; Niculescu, R.I.V.

    1979-01-01

    The cross section of the photonuclear reaction 53 Cr(γ,p) 52 V between 14.4 MeV and 27 MeV was determined by the activation method. Chromium with natural isotopic abundance was irradiated in the bremsstrahlung beam of a betatron and γ rays were measured with a Ge(Li) spectrometer. Interfering reactions 52 Cr(n,p) 52 V and 54 Cr(γ,np) 52 V were evaluated. The stucture of the cross section curve is interpreted in terms of isospin splitting. (author)

  14. Formats and processing of evaluated nuclear data into multigroup cross-sections

    International Nuclear Information System (INIS)

    Motta, M.

    1984-01-01

    The first part of these lectures concerns the data in nuclear files and their manipulation. The structure of the data files as divided into the resonance region (subdivided into the resolved and the unresolved regions) and the continuum region is presented. The reactions concerned are the elastic scattering; the radiative capture and the fission methods for averaging the cross sections are given. Then, the group averaging formulas and the self-shielding factors are presented in some detail. The second part concerns a presentation of nuclear data files handling and conversion. The main libraries are listed and several maintenance computer codes presented. The way the conversion among different files is handled is also presented. The listings of several BASIC programs for different cross section calculations are given. These codes are self-guided

  15. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  16. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  17. Advanced Monte Carlo procedure for the IFMIF d-Li neutron source term based on evaluated cross section data

    International Nuclear Information System (INIS)

    Simakov, S.P.; Fischer, U.; Moellendorff, U. von; Schmuck, I.; Konobeev, A.Yu.; Korovin, Yu.A.; Pereslavtsev, P.

    2002-01-01

    A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ 6,7 Li cross section data. A new code M c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M c DeLicious code was checked against available experimental data and calculation results of M c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M c DeLicious along with newly evaluated d+ 6,7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data

  18. Advanced Monte Carlo procedure for the IFMIF d-Li neutron source term based on evaluated cross section data

    CERN Document Server

    Simakov, S P; Moellendorff, U V; Schmuck, I; Konobeev, A Y; Korovin, Y A; Pereslavtsev, P

    2002-01-01

    A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ sup 6 sup , sup 7 Li cross section data. A new code M sup c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M sup c DeLicious code was checked against available experimental data and calculation results of M sup c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M sup c DeLicious along with newly evaluated d+ sup 6 sup , sup 7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data.

  19. Total neutron cross section of lead

    International Nuclear Information System (INIS)

    Kanda, K.; Aizawa, O.

    1976-01-01

    The total thermal-neutron cross section of natural lead under various physical conditions was measured by the transmission method. It became clear that the total cross section at room temperature previously reported is lower than the present data. The total cross section at 400, 500, and 600 0 C, above the melting point of lead, 327 0 C, was also measured, and the changes in the cross section as a function of temperature were examined, especially near and below the melting point. The data obtained for the randomly oriented polycrystalline state at room temperature were in reasonable agreement with the theoretical values calculated by the THRUSH and UNCLE-TOM codes

  20. Description of the ENDF-NJOY system for the generation of cross sections libraries

    International Nuclear Information System (INIS)

    Alonso V, G.

    1991-01-01

    The physics of nuclear reactors requires of a great number of data to be able to evaluate the different phenomena that happen in a nuclear reactor; these data are mainly the microscopic neutron cross sections, but it is also required of data of radioactive decay and of nuclear structure for a great number of materials as well as of the cross sections of the photons and the production of these for the neutron interaction. These data group in nuclear databases, being the main ones: ENDF Nuclear Evaluated File, ENDL Dates Nuclear Evaluated Library it Dates (of the Laboratory Lawrence Livermore). JENDL Japanese Nuclear Evaluated Library Dates. Soviet SOKRATOR Nuclear Evaluated KEDAF Nuclear Karlsruhe File Dates. JEF Join Evaluated File (coordinated by NEA Data Bank). The existent codes that execute neutron and photon calculations require libraries of data that are very different some of other and of the databases. Of here that it is required of a series of processing codes that use the database like enter and its generate a secondary library of cross sections, which is read as enter for a code of spectra generation. Generally average cross sections by group are obtained; this library is that it is used in the codes that execute neutron calculations. (Author)

  1. Fast-neutron total and scattering cross sections of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V.

  2. Fast-neutron total and scattering cross sections of niobium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V

  3. Sex disparities in tuberculosis suspect evaluation: a cross-sectional analysis in rural Uganda.

    Science.gov (United States)

    Miller, C R; Davis, J L; Katamba, A; Sserwanga, A; Kakeeto, S; Kizito, F; Cattamanchi, A

    2013-04-01

    Six primary health care centers in rural Uganda. To compare the quality of tuberculosis (TB) evaluation for men and women presenting to primary health care facilities in high-burden settings. Cross-sectional study using indicators derived from the International Standards of Tuberculosis Care (ISTC) to compare the quality of TB evaluation services provided to men and women. Of 161 230 patient visits between January 2009 and December 2010, 112 329 (69.7%) were women. We considered 3308 (2.1%) patients with cough ≥2 weeks as TB suspects, of whom 1871 (56.6%) were women. Female TB suspects were less likely to be referred for sputum smear examination (45.9% vs. 61.6%, P ISTC (33.0% vs. 45.6%, P ISTC-recommended care (RR 0.79, 95%CI 0.72-0.86, P < 0.001). Strategies to ensure that women receive appropriate TB evaluation could provide a valuable opportunity for increasing case detection while also promoting equitable and universal access to care.

  4. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  5. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  6. Effect of new cross-section evaluations on criticality and neutron energy spectrum of a typical material test research reactor

    International Nuclear Information System (INIS)

    Ahmad, Siraj-ul-Islam; Ahmad, Nasir; Aslam

    2004-01-01

    Several new WIMSD libraries based on recent cross-section evaluations such as IAEA, ENDFB-VI, JENDL, and JEF have been made available by IAEA. These libraries were used for the computation of multiplication factor and energy spectrum for Pakistan Research Reactor-1 (PARR-1). Methodology was validated for benchmark problems made available by IAEA and comparison with reference results. The value of effective multiplication factors for all newly released libraries are 1.8-3.2% less than that of 1981 WIMSD library. The effect of various cross-section libraries on neutron energy spectrum was also studied. Differences of about -10% to 12.5% were found in thermal flux using the newly released libraries as compared with that obtained using 1981 WIMSD library. From the analysis, it was found that the main source of the difference is the cross-sections of hydrogen bound in water. When these cross-sections of hydrogen (bound in water) from new libraries were used along with all other data in 1981 WIMSD library, the k eff obtained in this way has a difference of only 0.02-0.8% with that obtained from new libraries, while the flux spectrum agreed within 1% below 1 MeV with new libraries

  7. Differences between LASL- and ANL-processed cross sections

    International Nuclear Information System (INIS)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis

  8. ACT-1000. Group activation cross-section library for WWER-1000 type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zolotarev, K I; Pashchenko, A B [National Research Centre - A.I. Leipunsky Institute for Physics and Power Engineering, Obninsk (Russian Federation)

    2001-10-01

    The ACT-1000, a problem-oriented library of group-averaged activation cross-sections for WWER-1000 type reactors, is based on evaluated microscopic cross-section data files. The ACT-1000 data library was designed for calculating induced activity for the main dose-generated nuclides contained in WWER-1000 structural materials. In preparing the ACT-1000 library, 47 group-averaged cross-section data for the 10{sup -9}-17.33 MeV energy range were used to calculate the spatial-energy neutron flux distribution. (author)

  9. Benchmarking the evaluated proton differential cross sections suitable for the EBS analysis of natSi and 16O

    Science.gov (United States)

    Kokkoris, M.; Dede, S.; Kantre, K.; Lagoyannis, A.; Ntemou, E.; Paneta, V.; Preketes-Sigalas, K.; Provatas, G.; Vlastou, R.; Bogdanović-Radović, I.; Siketić, Z.; Obajdin, N.

    2017-08-01

    The evaluated proton differential cross sections suitable for the Elastic Backscattering Spectroscopy (EBS) analysis of natSi and 16O, as obtained from SigmaCalc 2.0, have been benchmarked over a wide energy and angular range at two different accelerator laboratories, namely at N.C.S.R. 'Demokritos', Athens, Greece and at Ruđer Bošković Institute (RBI), Zagreb, Croatia, using a variety of high-purity thick targets of known stoichiometry. The results are presented in graphical and tabular forms, while the observed discrepancies, as well as, the limits in accuracy of the benchmarking procedure, along with target related effects, are thoroughly discussed and analysed. In the case of oxygen the agreement between simulated and experimental spectra was generally good, while for silicon serious discrepancies were observed above Ep,lab = 2.5 MeV, suggesting that a further tuning of the appropriate nuclear model parameters in the evaluated differential cross-section datasets is required.

  10. Neutron capture cross section standards for BNL 325, Fourth Edition

    International Nuclear Information System (INIS)

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: 55 Mn(n,γ), 59 Co(n,γ) and 197 Au(n,γ). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed

  11. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  12. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  13. Neutron-induced Fission Cross Sections of Am and Cm isotopes (Final Report of Research Contract 14485). Resonance and Fast Neutron Induced Fission Cross Sections of Americium and Curium Nuclides (Third-year Progress Report of Research Contract 14485)

    International Nuclear Information System (INIS)

    Alekseev, A.A.; Bergman, A.A.; Berlev, A.I.; Koptelov, E.A.; Egorov, A.S.; Samylin, B.F.; Trufanov, A.M.; Fursov, B.I.; Shorin, V.S.

    2012-01-01

    The neutron induced fission cross sections of Am and Cm isotopes were measured relative to 239 Pu in the neutron energy range from 1 eV to 20 keV at the INR RAS lead slowing down spectrometer LSDS-100. The fission resonance integrals were also estimated using the measured cross section data. The results have been compared with the available experimental and evaluated data. This analysis has shown the present status of the measured fission cross sections and the necessity to revise the evaluated cross sections libraries for the minor actinides. (author)

  14. Comparison of 235U fission cross sections in JENDL-3.3 and ENDF/B-VI

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Carlson, Allan D.; Matsunobu, Hiroyuki; Nakagawa, Tsuneo; Shibata, Keiichi

    2002-01-01

    Comparisons of evaluated fission cross sections for 235 U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the 235 U prompt fission neutron spectrum, the 252 Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a 9 Be(d, xn) reaction. For 235 U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For 252 Cf and 9 Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  15. Effects of target shape and reflection on laser radar cross sections.

    Science.gov (United States)

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  16. Measurement of aluminum activation cross section and gas production cross section for 0.4 and 3-GeV protons

    Directory of Open Access Journals (Sweden)

    Meigo Shin-ichiro

    2017-01-01

    Full Text Available To estimate the lifetime and the radiation dose of the proton beam window used in the spallation neutron source at J-PARC, it is necessary to understand the accuracy of the production cross section of 3-GeV protons. To obtain data on aluminum, the reaction cross section of aluminum was measured at the entrance of the beam dump placed in the 3-GeV proton synchrotron. Owing to the use of well-calibrated current transformers and a well-collimated beam, the present data has good accuracy. After irradiation, the cross sections of Al(p,x7Be, Al(p,x22Na-22 and Al(p,x24Na were obtained by gamma-ray spectroscopy using a Ge detector. It was found that the evaluated data of JENDL/HE-2007 agree well with the current experimental data, whereas intra-nuclear cascade models (Bertini, INCL-4.6, and JAM with the GEM statistical decay model underestimate by about 30% in general. Moreover, gas production, such as T and He, and the cross sections were measured for carbon, which was utilized as the muon production target in J-PARC. The experiment was performed with 3-GeV proton having beam power of 0.5 MW, and the gasses emitted in the process were observed using a quadrupole mass spectrometer in the vacuum line for beam transport to the mercury target. It was found that the JENDL/HE-2007 data agree well with the present experimental data.

  17. Unresolved resonance range cross section, probability tables and self shielding factor

    International Nuclear Information System (INIS)

    Sublet, J.Ch.; Blomquist, R.N.; Goluoglu, S.; Mac Farlane, R.E.

    2009-07-01

    The performance and methodology of 4 processing codes have been compared in the unresolved resonance range of a selected set of isotopes. Those isotopes have been chosen to encompass most cases encountered in the unresolved energy range contained in major libraries like Endf/B-7 or Jeff-3.1.1. The code results comparison is accompanied by data format and formalism examinations and processing code fine-interpretation study. After some improvements, the results showed generally good agreement, although not perfect with infinite dilute cross-sections. However, much larger differences occur when shelf-shielded effective cross-sections are compared. The infinitely dilute cross-section are often plot checked but it is the probability table derived and shelf-shielded cross sections that are used and interpreted in criticality and transport calculations. This suggests that the current evaluation data format and formalism, in the unresolved resonance range should be tightened up, ambiguities removed. In addition production of the shelf shielded cross-sections should be converged to a much greater accuracy. (author)

  18. Integral-capture measurements and cross-section adjustments for Nd, Sm, and Eu

    International Nuclear Information System (INIS)

    Anderl, R.A.; Schmittroth, F.; Harker, Y.D.

    1981-07-01

    Integral-capture reaction rates are reported for 143 Nd, 144 Nd, 145 Nd, 147 Sm, 151 Eu, 152 Eu, 153 Eu, and 154 Eu irradiated in different neutron spectra in EBR-II. These reaction rates are based primarily on mass-spectrometric measurements of the isotopic atom ratios of the capture product to the target nuclide. The neutron spectra are characterized using passive neutron dosimetry and spectrum-unfolding with the FERRET least-squares data analysis code. Reaction rates for the neutron spectrum monitors were determined by the radiometric technique using Ge(Li) spectrometers. These rates are also reported here. The integral data for the rare-earth samples and for the spectrum monitors were used in multigroup flux/cross-section adtustment analyses with FERRET to generate adjustments to 47 group representations of the ENDF/B-IV capture cross sections for the rare-earth isotopes. These adjusted cross sections are in good agreement with recent differential data and with adjusted cross sections based on STEK integral data. Examples are given of the use of the adjusted cross sections and covariance matrices for cross-section evaluation

  19. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  20. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  1. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  2. The evaluation of H total cross section from 20 MeV to 2 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Tingjin, Liu [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    The H total cross section was evaluated in the neutron energy region from 20 to 2000 MeV. The recommended experimental data were fitted by using Spline fit program with knot optimization, the fit values are taken as recommended ones. The data are compared with those from ENDF/B-6 (<100 MeV), the differences are 0.5%{approx}2.0% from 20 to 40 MeV, and almost the same in the energy region 40{approx}100 MeV.

  3. Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, S.T.; Cullen, D.E. (Lawrence Livermore National Lab., CA (United States)); Seltzer, S.M. (National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Center for Radiation Research)

    1991-11-12

    Energy-dependent evaluated electron interaction cross sections and related parameters are presented for elements H through Fm (Z = 1 to 100). Data are given over the energy range from 10 eV to 100 GeV. Cross sections and average energy deposits are presented in tabulated and graphic form. In addition, ionization cross sections and average energy deposits for each shell are presented in graphic form. This information is derived from the Livermore Evaluated Electron Data Library (EEDL) as of July, 1991.

  4. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ν, the average number of neutrons per fission, are also given

  5. Measurement and Basic Physics Committee of the US cross-section evaluation working group. Annual report 1996

    International Nuclear Information System (INIS)

    Smith, D.L.; McLane, V.

    1996-11-01

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with the responsibility for organizing and overseeing the U.S. cross-section evaluation effort. It's main product is the official U.S. evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF are reviewed and approved by CSEWG and issued by the U.S. Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the U.S. nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the U.S. were declining at an alarming rate and needed all possible encouragement to avoid the loss of this resource. The mission of the Committee is to maintain a network of experimentalists in the U.S. that would provide needed encouragement to the national nuclear data measurement effort through improved communication and facilitation of collaborative activities. In 1994, an additional charge was added to the responsibilities of this Committee, namely, to serve as an interface between the more applied interests represented in CSEWG and the basic nuclear science community. This annual report is the second such document issued by the Committee. It contains voluntary contributions from eleven laboratories in the U.S. which have been prepared by members of the Committee and submitted to the Chairman for compilation and editing. It is hoped that the information provided here on the work that is going on at the reporting laboratories will prove interesting and stimulating to the readers

  6. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  7. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  8. Electron transport in silicon nanowires having different cross-sections

    Directory of Open Access Journals (Sweden)

    Muscato Orazio

    2016-06-01

    Full Text Available Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.

  9. Evaluation of the 46Ti(n,2n)45Ti and 54Fe(n,2n)53m+gFe reaction cross sections for neutron dosimetry in fusion facilities

    International Nuclear Information System (INIS)

    Badikov, S.A.; Ignatyuk, A.V.; Zolotarev, K.I.; Pashchenko, A.B.

    1993-11-01

    The reaction cross-sections of 46 Ti(n,2n) 45 Ti and 54 Fe(n,2n) 53m+g Fe, which are important for fusion reactor neutron dosimetry, were evaluated using a generalized least squares method. The experimental cross-section data of all measurements performed up to January 1993, were critically reviewed. The evaluated cross-section data are presented in analytical form and in ENDF-6 format, including covariance data. (author)

  10. Evaluation of Neutron-induced Cross Sections and their Related Covariances with Physical Constraints

    Science.gov (United States)

    De Saint Jean, C.; Archier, P.; Privas, E.; Noguère, G.; Habert, B.; Tamagno, P.

    2018-02-01

    Nuclear data, along with numerical methods and the associated calculation schemes, continue to play a key role in reactor design, reactor core operating parameters calculations, fuel cycle management and criticality safety calculations. Due to the intensive use of Monte-Carlo calculations reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the quality of nuclear data used. This paper gives a broad picture of all ingredients treated by nuclear data evaluators during their analyses. After giving an introduction to nuclear data evaluation, we present implications of using the Bayesian inference to obtain evaluated cross sections and related uncertainties. In particular, a focus is made on systematic uncertainties appearing in the analysis of differential measurements as well as advantages and drawbacks one may encounter by analyzing integral experiments. The evaluation work is in general done independently in the resonance and in the continuum energy ranges giving rise to inconsistencies in evaluated files. For future evaluations on the whole energy range, we call attention to two innovative methods used to analyze several nuclear reaction models and impose constraints. Finally, we discuss suggestions for possible improvements in the evaluation process to master the quantification of uncertainties. These are associated with experiments (microscopic and integral), nuclear reaction theories and the Bayesian inference.

  11. Updated ozone absorption cross section will reduce air quality compliance

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-12-01

    et al. (2015 as 1.8 % smaller than the accepted value (Hearn, 1961 used for the preceding 50 years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross-section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  12. Neutron capture cross section of ^243Am

    Science.gov (United States)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  13. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-06-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  14. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Z. [CERN, Geneva (Switzerland)

    2010-06-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  15. NNLO jet cross sections by subtraction

    CERN Document Server

    Somogyi, Gabor; Trocsanyi, Zoltan

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of [1-4], over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  16. Evaluation of cross sections for neutron interactions with {sup 238}U in the energy region between 5 keV and 150 keV

    Energy Technology Data Exchange (ETDEWEB)

    Sirakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Capote, R.; Trkov, A. [International Atomic Energy Agency, NAPC-Nuclear Data Section, Vienna (Austria); Gritzay, O. [Institute for Nuclear Research, Kyiv (Ukraine); Kim, H.I. [Korea Atomic Energy Research Institute, Nuclear Data Center, Daejeon (Korea, Republic of); Kopecky, S.; Paradela, C.; Schillebeeckx, P. [European Commission, Joint Research Centre, Geel (Belgium); Kos, B. [Jozef Stefan Institute, Ljubljana (Slovenia); Pronyaev, V.G. [Rosatom State Corporation, Atomsrandart, Moscow (Russian Federation)

    2017-10-15

    Cross sections for neutron interactions with {sup 238}U in the energy region from 5 keV to 150 keV have been evaluated. Average total and capture cross sections have been derived from a least squares analysis using experimental data reported in the literature. The resulting cross sections have been parameterised in terms of average resonance parameters maintaining full consistency with results of optical model calculations by using a dispersive coupled channel optical model potential. The average compound partial cross sections have been expressed in terms of transmission coefficients by applying the Hauser-Feshbach statistical reaction theory including width-fluctuations. A generalized single-level representation compatible with the energy-dependent options of the ENDF-6 format has been applied using standard boundary conditions. The results have been transferred into a full ENDF-6 compatible data file. (orig.)

  17. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration

    International Nuclear Information System (INIS)

    Khakoo, M. A.; Wrkich, J.; Larsen, M.; Kleiban, G.; Kanik, I.; Trajmar, S.; Brunger, M.J.; Teubner, P.J.O.; Crowe, A.; Fontes, C.J.; Clark, R.E.H.; Zeman, V.; Bartschat, K.; Madison, D.H.; Srivastava, R.; Stauffer, A.D.

    2002-01-01

    Electron-impact differential cross-section measurements for the excitation of the 2p 5 3s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n=2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We also present results from calculations of these differential cross sections using the R-matrix and unitarized first-order many-body theory, the distorted-wave Born approximation, and relativistic distorted-wave methods. Comparison with available experimental differential cross sections and differential cross-section ratios is also presented

  18. Reconstruction of point cross-section from ENDF data file for Monte Carlo applications

    International Nuclear Information System (INIS)

    Kumawat, H.; Saxena, A.; Carminati, F.; )

    2016-12-01

    Monte Carlo neutron transport codes are one of the best tools to simulate complex systems like fission and fusion reactors, Accelerator Driven Sub-critical systems, radio-activity management of spent fuel and waste, optimization and characterization of neutron detectors, optimization of Boron Neutron Capture Therapy, imaging etc. The neutron cross-section and secondary particle emission properties are the main input parameters of such codes. The fission, capture and elastic scattering cross-sections have complex resonating structures. Evaluated Nuclear Data File (ENDF) contains these cross-sections and secondary parameters. We report the development of reconstruction procedure to generate point cross-sections and probabilities from ENDF data file. The cross-sections are compared with the values obtained from PREPRO and in some cases NJOY codes. The results are in good agreement. (author)

  19. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  20. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  1. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  2. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  3. Graphs of the cross sections in the Alternate Monte Carlo Cross Section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Seamon, R.E.; Soran, P.D.

    1980-06-01

    Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes

  4. Activity of flavonoids through λ sub max and electron cross-section

    International Nuclear Information System (INIS)

    Murthy, V.R.; Sreenivasulu, M.

    1997-01-01

    Flavonoids are widespread groups of natural constituents and present in the drugs in the form of mono or diglycosides. Being physiologically active, flavonoids are important in the field of pharmacological and clinical applications. Not many physical properties of flavonoids have been studied so far excepting UV and NMR studies. This paper deals with the evaluation of electron ionization cross section through λ sub max, a parameter available from UV studies. Electron ionization cross section was primarily conceived to be of use in radiation chemical data, mass spectroscopic and thermodynamic studies. But later attempts to correlate electron ionization cross-section with structural and related parameters prompted the authors to derive an explicit expression relating λ sub max and electron ionization cross-section (Q). The application of this method to correlate Q through λ sub max and interpret the results in terms of chemical activity are discussed

  5. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  6. FIXUP2007, ENDF Format Redundant Cross-Sections Check

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: FIXUP is designed to read evaluated data in the ENDF/B format, perform corrections and output the results in the ENDF/B format. One of the most important functions of this code is to redefine all redundant cross sections to be exactly equal to the sum of its parts. IAEA1309/11: This version includes the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Fixup VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 data points 2 - Method of solution: FIXUP: All MAT numbers on an ENDF/B tape are processed; each MAT is treated separately. Within each MAT, each section before and after MF=3 is read, checked/corrected and output. When MF=3 is located, all cross sections are read, sections deleted, created, checked/corrected (based on user input) and after several intermediate stages written to output. 3 - Restrictions on the complexity of the problem: The program uses only the ENDF/B BCD format tape and copy all sections except File 3 as read. It is assumed that the data is correctly coded. No error checking is performed. Since File 3 data are in identical format for ENDF/B versions I through VI, the program can be used with all these versions. - All data in file 3 and 23 must be linearly interpolable

  7. Atlas of photoneutron cross sections obtained with monoenergetic photons

    International Nuclear Information System (INIS)

    Dietrich, S.S.; Berman, B.L.

    1988-01-01

    Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc

  8. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  9. Parametric equations for calculation of macroscopic cross sections

    International Nuclear Information System (INIS)

    Botelho, Mario Hugo; Carvalho, Fernando

    2015-01-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  10. Status of standard cross section library and future plan

    International Nuclear Information System (INIS)

    Zukeran, Atsushi

    2001-01-01

    JSSTDL-300 multi-group cross section library with 300 neutron energy groups coupled with 104 group γ-ray cross sections was developed for general users in nuclear reactor physics and/or design, whose source data is the evaluated nuclear data library JENDL-3.2. For the purpose of a standard or common use, several famous cross section libraries worldwide used, i.e., ABBN-25, GAM-123, VITAMIN-C/J(E+C), MGCL-137, BERMUDA-12 and FNS-125 for neutron, and LANL-12, -24-, -48, and CSEWG-94 for γ-ray, are consulted about setting the common energy group structure. Furthermore, in order to expand the applicability, the top energy is set on 20 MeV and the lowest energy is 10 -5 eV. In the thermal neutron energy region, the JSSTDL-300 has about 20 energy groups. Besides, many utility codes for group collapsing and for data format transformation are provided for general users. (author)

  11. ISSUES IN NEUTRON CROSS SECTION COVARIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Mattoon, C.M.; Oblozinsky,P.

    2010-04-30

    We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.

  12. MOX Cross-Section Libraries for ORIGEN-ARP

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2003-01-01

    The use of mixed-oxide (MOX) fuel in commercial nuclear power reactors operated in Europe has expanded rapidly over the past decade. The predicted characteristics of MOX fuel such as the nuclide inventories, thermal power from decay heat, and radiation sources are required for design and safety evaluations, and can provide valuable information for non-destructive safeguards verification activities. This report describes the development of computational methods and cross-section libraries suitable for the analysis of irradiated MOX fuel with the widely-used and recognized ORIGEN-ARP isotope generation and depletion code of the SCALE (Standardized Computer Analyses for Licensing Evaluation) code system. The MOX libraries are designed to be used with the Automatic Rapid Processing (ARP) module of SCALE that interpolates appropriate values of the cross sections from a database of parameterized cross-section libraries to create a problem-dependent library for the burnup analysis. The methods in ORIGEN-ARP, originally designed for uranium-based fuels only, have been significantly upgraded to handle the larger number of interpolation parameters associated with MOX fuels. The new methods have been incorporated in a new version of the ARP code that can generate libraries for low-enriched uranium (LEU) and MOX fuel types. The MOX data libraries and interpolation algorithms in ORIGEN-ARP have been verified using a database of declared isotopic concentrations for 1042 European MOX fuel assemblies. The methods and data are validated using a numerical MOX fuel benchmark established by the Organization for Economic Cooperation and Development (OECD) Working Group on burnup credit and nuclide assay measurements for irradiated MOX fuel performed as part of the Belgonucleaire ARIANE International Program

  13. Benford's law and cross-sections of A(n,α)B reactions

    International Nuclear Information System (INIS)

    Liu, X.J.; Ni, D.D.; Zhang, X.P.; Ren, Z.Z.

    2011-01-01

    Benford's law, also called the first-digit law, states that in lists of numbers from many quite disparate databases, the leading digit is distributed in a non-uniform but actually logarithmic way. We have investigated the first-digit distribution of experimental cross-sections of A(n, α)B reactions. In the case of below-barrier α -particle emission from compound nucleus, it is found that the (n, α) reaction cross-sections approximately follow the first-digit distribution indicated by Benford's law. The origin of this first-digit distribution is discussed within the framework of the statistical model. In addition, Benford's law is used to test the evaluated cross-sections of A(n, α)B reactions. (orig.)

  14. CFRMF spectrum update and application to dosimeter cross-section data testing

    International Nuclear Information System (INIS)

    Anderl, R.A.; Harker, Y.D.; Millsap, D.A.; Rogers, J.W.; Ryskamp, J.M.

    1982-01-01

    The Coupled Fast Reactivity Measurements Facility (CFRMF) at the Idaho National Engineering Laboratory (INEL) is a Cross Section Evaluation Working Group (CSEWG) benchmark for data testing of dosimetry, fission-product and actinide cross sections important to fast-reactor technology. In this paper we present the results of our work in updating the CFRMF spectrum characterization and in applying CFRMF integral data to testing ENDF/B-V dosimeter cross sections. Updated characterization of the central neutron spectrum includes the results of neutronics calculations with ENDF/B-V nuclear data, the generation of a fine-group spectrum representation for integral data-testing applications, and a sensitivity and uncertainty analysis which provides a flux-spectrum covariance matrix related to uncertainties and correlations in the nuclear data used in a neutronics calculation. Our application of CFRMF integral data to cross section testing has included both conventional integral testing analyses and least-squares-adjustment analyses with the FERRET code. The conventional integral data-testing analysis, based on C/E ratios, indicates discrepancies outside the estimated integral test uncertainty for the 6 Li(n,He), 10 B(n,He), 47 Ti(n,p), 58 Fe(n,γ), 197 Au(n,γ) and 232 Th(n,γ) cross sections. The integral test uncertainty included contributions from the measured integral data and from the spectrum and cross sections used to obtain the calculated integral data. Within the uncertainty and correlation specifications for the input spectrum and dosimeter cross sections, the least-squares-adjustment analysis indicated a high degree of consistency between the measured integral data and the ENDF/B-V dosimeter cross sections for all reactions except 10 B

  15. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  16. Measurement of reaction cross sections of {sup 129}I induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The cross sections were measured for the {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions by DT neutrons, at OKTAVIAN facility of Osaka University, Japan. The foil activation method was used in the measurement. The sample was a sealed source of {sup 129}I, which was covered with a Cd foil. The irradiations were performed for 75 minutes to obtain the cross section of reaction producing {sup 128}I (T{sub 1/2}=24.99m) and 22 hours for the {sup 130}I (T{sub 1/2}=12.36h), respectively. The gamma-rays emitted from the irradiated sample were measured with a high purity Ge detector. The measured cross sections of {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions were 0.92{+-}0.11 barn and 0.013{+-}0.002 barn, respectively. For the {sup 129}I(n,2n){sup 128}I reaction, the evaluation of JENDL-3.2 overestimates cross section about 60% to the experimental result. However, especially for the {sup 129}I(n,{gamma}) reaction, the measured cross section may include the contribution from the neutrons in MeV region as well as epithermal ones. Also, the obtained cross section of the {sup 129}I(n,{gamma}){sup 130}I reaction was evaluated as an effective production cross section of {sup 130}I including {sup 129}I(n,{gamma}){sup 130m}I reaction. In order to remove the contribution from the epithermal and MeV region neutrons. A new method was proposed for the measurement of (n,{gamma}) reaction cross section. (author)

  17. Group cross-section processing method and common nuclear group cross-section library based on JENDL-3 nuclear data file

    International Nuclear Information System (INIS)

    Hasegawa, Akira

    1991-01-01

    A common group cross-section library has been developed in JAERI. This system is called 'JSSTDL-295n-104γ (neutron:295 gamma:104) group constants library system', which is composed of a common 295n-104γ group cross-section library based on JENDL-3 nuclear data file and its utility codes. This system is applicable to fast and fusion reactors. In this paper, firstly outline of group cross-section processing adopted in Prof. GROUCH-G/B system is described in detail which is a common step for all group cross-section library generation. Next available group cross-section libraries developed in Japan based on JENDL-3 are briefly reviewed. Lastly newly developed JSSTDL library system is presented with some special attention to the JENDL-3 data. (author)

  18. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  19. Evaluation of ETOG-3Q/ETOG-3, FLANGE-II, XLACS, NJOY and linear/recent/groupie codes for calculations of resonance and reference cross sections

    International Nuclear Information System (INIS)

    Anaf, J.; Chalhoub, E.S.

    1991-01-01

    The NJOY and LINEAR/RECENT/GROUPIE calculational procedures for the resolved and unresolved resonance contributions and background cross sections are evaluated. Elastic scattering, fission and capture multigroup cross sections generated by these codes and the previously validated ETOG-3Q, ETOG-3, FLANGE-II and XLACS are compared. Constant weighting function and zero Kelvin temperature are considered. Discrepancies are presented and analyzed. (author)

  20. DOSCROS81. ECN Cross-Section Library for neutron dosimetry. Summary of contents and documentation

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1982-01-01

    This document summarizes the contents and documentation of the Cross Section Library DOSCROS81 (640 groups in an extended SAND-II format). The library is based on ENDF/B-5 dosimetry file, supplemented with some other evaluations. The total number of reaction cross section sets incorporated in this library is 70 (+3 cover cross section sets). The entire library can be obtained free of charge from the IAEA Nuclear Data Section. A revised version is called DOSCROS81A. (author)

  1. Evaluation of satisfaction with work-life balance among U.S. Gynecologic Oncology fellows: A cross-sectional study.

    Science.gov (United States)

    Szender, J Brian; Grzankowski, Kassondra S; Eng, Kevin H; Odunsi, Kunle; Frederick, Peter J

    2016-04-01

    To characterize the state of satisfaction with work-life balance (WLB) among gynecologic oncology fellows in training, risk factors for dissatisfaction, and the impact of dissatisfaction on career plans. A cross-sectional evaluation of gynecologic oncology fellows was performed using a web-based survey. Demographic data, fellowship characteristics, and career plans were surveyed. The primary outcomes were satisfaction with WLB and career choices. p balance.

  2. Reversing the established order: Should adrenal venous sampling precede cross-sectional imaging in the evaluation of primary aldosteronism?

    Science.gov (United States)

    Asmar, Melissa; Wachtel, Heather; Yan, Yan; Fraker, Douglas L; Cohen, Debbie; Trerotola, Scott O

    2015-08-01

    Adrenal venous sampling (AVS) is the definitive evaluation for primary aldosteronism (PA). Pre-AVS cross-sectional imaging does not reduce the need for AVS. The goal of this study was to examine whether performing AVS prior to imaging could decrease the use of imaging in the evaluation of PA at a high volume, experienced center. We performed a retrospective analysis of all AVS procedures (n = 337) done for PA from 2001-2013. Patients whose cross-sectional imaging reports were unavailable (n = 90) or AVS was non-diagnostic (n = 12) were excluded. AVS was performed using modified Mayo technique. Univariate analysis utilized the χ² test and fisher's exact test. Of the 235 patients analyzed, 63% (n = 148) were male. The mean age was 55 ± 11 years. AVS was non-lateralizing in 43% (n = 101); these patients might have avoided imaging with an AVS-first approach. Imaging and AVS were concordant in 52% (n = 123). In patients ≤40yo (n = 23), 35% (n = 8) had no lateralization on AVS, and might have avoided imaging in an AVS-first approach. Imaging and AVS were concordant in 52% (n = 12) of patients ≤ 40yo, versus 52% (n = 111) of patients > 40 yo (P = 0.987). An AVS-first, imaging-second approach could have avoided CT/MRI in 43% of patients. At a high volume, experienced center, performing AVS first on patients with PA may reduce unnecessary cross-sectional imaging studies. © 2015 Wiley Periodicals, Inc.

  3. Review and calculation of Mott scattering cross section by unscreened point nuclei

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    1992-01-01

    A new tabulation of the ratio of the ''exact'' Mott cross section for unscreened point nuclei to the classical Rutherford cross section for electrons and positions has been made. Because of the infinite slowly converging series appearing in this ratio we have made two series transformations. With this evaluation the ratio reached convergence within six significant figures after less than a hundred terms and very low computing time. So the ratios evaluated have less relative error than those in the literature and covers a greater range of energy and atomic number. (orig.)

  4. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  5. Maxwellian-averaged cross sections calculated from JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohsaka, Toshiro; Igashira, Masayuki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-01

    Maxwellian-averaged cross sections of neutron capture, fission, (n,p) and (n,{alpha}) reactions are calculated from the Japanese Evaluated Nuclear Data Library, JENDL-3.2, for applications in the astrophysics. The calculation was made in the temperature (kT) range from 1 keV to 1 MeV. Results are listed in tables. The Maxwellian-averaged capture cross sections were compared with recommendations of other authors and recent experimental data. Large discrepancies were found among them especially in the light mass nuclides. Since JENDL-3.2 reproduces relatively well the recent experimental data, we conclude that JENDL-3.2 is superior to the others in such a mass region. (author)

  6. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  7. Triple-humped fission barrier model for a new {sup 238}U neutron cross-section evaluation and first validations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, M.J. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Morillon, B. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France); Romain, P. [CEA/DIF/DPTA/Service de Physique Nucleaire, B.P. 12, F-91680 Bruyeres-le-Chatel (France)]. E-mail: pascal.romain@cea.fr

    2005-01-15

    A new neutron-induced cross-section evaluation of {sup 238}U from 1 keV up to 200 MeV has been performed using only nuclear reactions models. A new fission penetrability model taking into account a triple humped barrier has been developed. A clear improvement has been observed for K-effective validation tests (up to 30 MeV) with this new evaluation. This improvement is mainly due to a better treatment of the inelastic exit channel.

  8. Neutron capture cross section standards for BNL-325

    International Nuclear Information System (INIS)

    Holden, N.E.

    1980-01-01

    The most common cross section standards for capture reactions in the thermal neutron energy region are gold, cobalt, and manganese. In preparation for the fourth edition of BNL-325, data on the thermal cross section and resonance integral were evaluated for these three standards. For gold, only measurements below the Bragg scattering cutoff were used and extrapolated to a neutron velocity of 2200 meters/second. A non 1/v correction due to the 4.9 eV resonance was made. The resonance integral is based on Jirlow's integral measurement and Tellier's parameters. The resonance integrals for cobalt and manganese are based solely on integral measurements because the capture widths of the first major resonance either vary by 20% in various measurements (cobalt), or have never been measured (manganese). Recommended thermal cross sections and resonance integrals are respectively gold: 98.65/plus or minus/0.9 barns, 1550/plus or minus/28 barns; cobalt: 37.18/plus or minus/0.06 barns, 74.2/plus or minus/2.0 barns and manganese: 13.3/plus or minus/0.2 barns, and 14.0/plus or minus/0.3 barns. 72 refs

  9. Total and Compound Formation Cross Sections for Americium Nuclei: Recommendations for Coupled-Channels Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-11

    Calculations for total cross sections and compound-nucleus (CN) formation cross sections for americium isotopes are described, for use in the 2017 NA-22 evaluation effort. The code ECIS 2006 was used in conjunction with Frank Dietrich's wrapper `runtemplate'.

  10. Capture cross sections for very heavy systems

    International Nuclear Information System (INIS)

    Rowley, N.; Grar, N.; Ntshangase, S.S.

    2006-01-01

    In intermediate-mass systems, collective excitations of the target and projectile can greatly enhance the sub-barrier capture cross section σ cap by giving rise to a distribution of Coulomb barriers. For such systems, capture essentially leads directly to fusion (formation of a compound nucleus (CN)), which then decays through the emission of light particles (neutrons, protons, and alpha particles). Thus the evaporation-residue (ER) cross section is essentially equal to σ cap . For heavier systems the experimental situation is significantly more complicated due to the presence of quasifission (QF) (rapid separation into two fragments before the CN is formed) and by fusion-fission (FF) of the CN itself. Thus three cross sections need to be measured in order to evaluate σ cap . Although the ER essentially recoil along the beam direction. QF and FF fragments are scattered to all angles and require the measurement of angular distribution in order to obtain the excitation function and barrier distribution for capture. Two other approaches to this problem exist. If QF is not important, one can still measure just the ER cross section and try to reconstruct the corresponding σ cap through use of an evaporation-model code that takes account of the FF degree of freedom. Some earlier results on σ cap obtained in this way will be re-analyzed with detail coupled-channels calculations, and the extra-push phenomenon discussed. One may also try to obtain σ cap by exploiting unitarity, that is, by measuring instead the flux of particles corresponding to quasielastic (QE) scattering from the Coulomb barrier. Some new QE results obtained for the 86 Kr + 208 Pb system at iThemba LABS in South Africa will be presented [ru

  11. A computer code for calculating neutron cross-sections from resonance parameter data

    International Nuclear Information System (INIS)

    Mill, A.J.

    1979-08-01

    A computer code, XSEC, has been written which calculates neutron cross-sections from resonance data. Although the program was originally written in order to identify neutron 'windows' in enriched nuclides, it may be used to evaluate the total neutron cross-section of any medium mass nuclide at intermediate energies. XSEC has proved very useful in identifying suitable nuclides for use as neutron filters at intermediate energies. (author)

  12. Hydrogen scattering cross section, 1H(n,n)1H

    International Nuclear Information System (INIS)

    Stewart, L.

    1979-07-01

    The status of the hydrogen scattering cross section is reviewed with particular emphasis on standards applications. The ENDF/B-V evaluation is described in detail and compared with experimental data. 58 references

  13. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  14. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    International Nuclear Information System (INIS)

    Blideanu, Valentin; Garcia, Mauricio; Joyer, Philippe; Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco; Ortiz, Felix; Sanz, Javier; Sauvan, Patrick

    2011-01-01

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  15. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    Energy Technology Data Exchange (ETDEWEB)

    Blideanu, Valentin [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Garcia, Mauricio [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Joyer, Philippe, E-mail: philippe.joyer@cea.fr [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Ortiz, Felix [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Sanz, Javier; Sauvan, Patrick [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain)

    2011-10-01

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  16. Errors analysis in the evaluation of particle concentration by PDA on a turbulent two-phase jet: application for cross section and transit time methods

    Science.gov (United States)

    Calvo, Esteban; García, Juan A.; García, Ignacio; Aísa, Luis A.

    2009-09-01

    Phase-Doppler anemometry (PDA) is a powerful tool for two-phase flow measurements and testing. Particle concentration and mass flux can also be evaluated using the raw particle data supplied by this technique. The calculation starts from each particle velocity, diameter, transit time data, and the total measurement time. There are two main evaluation strategies. The first one uses the probe volume effective cross section, and it is usually simplified assuming that particles follow quasi one-directional trajectories. In the text, it will be called the cross section method. The second one includes a set of methods which will be denoted as “Generalized Integral Methods” (GIM). Concentration algorithms such as the transit time method (TTM) and the integral volume method (IVM) are particular cases of the GIM. In any case, a previous calibration of the measurement volume geometry is necessary to apply the referred concentration evaluation methods. In this study, concentrations and mass fluxes both evaluated by the cross-section method and the TTM are compared. Experimental data are obtained from a particle-laden jet generated by a convergent nozzle. Errors due to trajectory dispersion, burst splitting, and multi-particle signals are discussed.

  17. Errors analysis in the evaluation of particle concentration by PDA on a turbulent two-phase jet: application for cross section and transit time methods

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Esteban; Garcia, Juan A.; Garcia, Ignacio; Aisa, Luis A. [University of Zaragoza, Area de Mecanica de Fluidos, Centro Politecnico Superior, Zaragoza (Spain)

    2009-09-15

    Phase-Doppler anemometry (PDA) is a powerful tool for two-phase flow measurements and testing. Particle concentration and mass flux can also be evaluated using the raw particle data supplied by this technique. The calculation starts from each particle velocity, diameter, transit time data, and the total measurement time. There are two main evaluation strategies. The first one uses the probe volume effective cross section, and it is usually simplified assuming that particles follow quasi one-directional trajectories. In the text, it will be called the cross section method. The second one includes a set of methods which will be denoted as ''Generalized Integral Methods'' (GIM). Concentration algorithms such as the transit time method (TTM) and the integral volume method (IVM) are particular cases of the GIM. In any case, a previous calibration of the measurement volume geometry is necessary to apply the referred concentration evaluation methods. In this study, concentrations and mass fluxes both evaluated by the cross-section method and the TTM are compared. Experimental data are obtained from a particle-laden jet generated by a convergent nozzle. Errors due to trajectory dispersion, burst splitting, and multi-particle signals are discussed. (orig.)

  18. Cross-section calculations for neutron-induced reactions up to 50 MeV

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro.

    1996-01-01

    In the field of accelerator development, medium-energy reaction cross-section data for structural materials of accelerator and shielding components are required, especially for radiation protection purposes. For a d + Li stripping reaction neutron source used in materials research, neutron reaction cross sections up to 50 MeV are necessary for the design study of neutron irradiation facilities. The current version of SINCROS-II is able to calculate neutron and proton-induced reaction cross sections up to ∼ 50 MeV with some modifications and extensions of the cross-section calculation code. The production of isotopes when structural materials and other materials are bombarded with neutrons or protons is calculated using a revised code in the SINCROS-II system. The parameters used in the cross-section calculations are mainly examined with proton-induced reactions because the experimental data for neutrons above 20 MeV are rare. The status of medium mass nuclide evaluations for aluminum, silicon, chromium, manganese, and copper is presented. These data are useful to estimate the radiation and transmutation of nuclei in the materials

  19. Revisiting the U-238 thermal capture cross section and gamma-raymission probabilities from Np-239 decay

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A.; Molnar, G.L.; Revay, Zs.; Mughabghab, S.F.; Firestone,R.B.; Pronyaev, V.G.; Nichols, A.L.; Moxon, M.C.

    2005-03-03

    The precise value of the thermal capture cross section of238U is uncertain, and evaluated cross sections from various sourcesdiffer by more than their assigned uncertainties. A number of theoriginal publications have been reviewed to assess the discrepant data,corrections were made for more recent standard cross sections andotherconstants, and one new measurement was analyzed. Due to the strongcorrelations in activation measurements, the gamma-ray emissionprobabilities from the beta decay of 239Np were also analyzed. As aresult of the analysis, a value of 2.683 +- 0.012 barns was derived forthe thermal capture cross section of 238U. A new evaluation of thegamma-ray emission probabilities from 239Np decay was alsoundertaken.

  20. Summary report of the consultants' meeting on improvement of the standard cross sections for light elements

    International Nuclear Information System (INIS)

    Carlson, A.D.; Muir, D.W.; Pronyaev, V.G.

    2001-06-01

    This report summarizes the results of the Consultants' Meeting on Improvement of the Standard Cross Sections for Light Elements. The approaches and computer programs used for evaluation of neutron standard cross sections and their uncertainties were presented by the participants. Special attention was paid to the reasons for strong uncertainty reduction observed in the model fits. The meeting participants discussed the plan of the INDC recommended Co-ordinated Research Project (CRP) on 'Improvement of the Standard Cross Sections for Light Elements'. This CRP will address the problem of uncertainty reduction along with other methodological improvements needed in order to produce a new, and internationally accepted, evaluation of neutron standard cross sections for light elements. (author)

  1. Calculation and evaluation of cross-sections and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B. [California Univ., Livermor, CA (United States). Lawrence Livermore National Lab.; Young, P.G.

    1997-03-01

    We present evaluations of the interaction of neutrons with energies between 20 and 100 MeV with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra for light ejectiles with A {<=} 4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. (author). 52 refs.

  2. Comparison of {sup 235}U fission cross sections in JENDL-3.3 and ENDF/B-VI

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Carlson, Allan D. [National Institute of Standards and Technology (United States); Matsunobu, Hiroyuki [Data Engineering, Inc., Fujisawa, Kanagawa (Japan); Nakagawa, Tsuneo; Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Talou, Patrick; Young, Philip G.; Chadwick, Mark B. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2002-01-01

    Comparisons of evaluated fission cross sections for {sup 235}U in JENDL-3.3 and ENDF/B-VI are carried out. The comparisons are made for both the differential and integral data. The fission cross sections as well as the fission ratios are compared with the experimental data in detail. Spectrum averaged cross sections are calculated and compared with the measurements. The employed spectra are the {sup 235}U prompt fission neutron spectrum, the {sup 252}Cf spontaneous fission neutron spectrum, and the neutron spectrum produced by a {sup 9}Be(d, xn) reaction. For {sup 235}U prompt fission neutron spectrum, the ENDF/B-VI evaluation reproduces experimental averaged cross sections. For {sup 252}Cf and {sup 9}Be(d, xn) neutron spectra, the JENDL-3.3 evaluation gives better results than ENDF/B-VI. (author)

  3. Dielectronic recombination cross sections for H-like ions

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Badnell, N.R.; Griffin, D.C.

    1990-01-01

    Dielectronic recombination cross sections for several H-like atomic ions are calculated in an isolated-resonance, distorted-wave approximation. Fine-structure and configuration-interaction effects are examined in detail for the O 7+ cross section. Hartree-Fock, intermediate-coupled, multiconfiguration dielectronic recombination cross sections for O 7+ are then compared with the recent experimental measurements obtained with the Test Storage Ring in Heidelberg. The cross-section spectra line up well in energy and the shape of the main resonance structures are comparable. The experimental integrated cross sections differ by up to 20% from theory, but this may be due in part to uncertainties in the electron distribution function

  4. Comparative analysis among several cross section sets

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1983-01-01

    Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author) [pt

  5. Performance of JEF2.2 based continuous energy cross sections in predicting the multiplication factor of critical systems

    International Nuclear Information System (INIS)

    John, T.M.; de Leege, P.F.A.; Hoogenboom, J.E.

    1996-01-01

    The continuous energy representation of cross sections for neutronics calculations avoids the requirement of resonance self shielding and the assumptions about the neutron spectrum used for weighing cross sections, required in the preparation of a multigroup cross sections library. The cross sections library prepared for a particular temperature of the nuclide is valid irrespective of the environment of the nuclide and can be used in calculations for many types of reactors. It is comparatively easier to incorporate them in Monte Carlo simulation of neutron transport. The Monte Carlo code MCNP is capable of using a continuous energy representation of nuclear cross sections in simulation of neutron or photon transport. The ACER module of NJOY is able to generate the continuous energy cross section of any nuclide in a format that can be used by MCNP, from any evaluated data file in ENDF/B format. Continuous energy cross sections prepared from the evaluated data file JEF2.2 was used to analyse some standard critical benchmarks and also the critical configuration of the HOR, a 2 MW research reactor at Delft, the Netherlands. Results show that continuous energy cross sections prepared from JEF2.2 evaluated file predicts the multiplication factor of critical systems very close to unity. (author). 6 refs., 2 tabs., 1 fig

  6. Measurement and basic physics committee of the U.S. cross-section evaluation working group, annual report 1997

    International Nuclear Information System (INIS)

    Smith, D.L.; McLane, V.

    1998-01-01

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing

  7. MEASUREMENT AND BASIC PHYSICS COMMITTEE OF THE U.S. CROSS-SECTION EVALUATION WORKING GROUP, ANNUAL REPORT 1997

    Energy Technology Data Exchange (ETDEWEB)

    SMITH,D.L.; MCLANE,V.

    1998-10-20

    The Cross-Section Evaluation Working Group (CSEWG) is a long-standing committee charged with responsibility for organizing and overseeing the US cross-section evaluation effort. Its main product is the official US evaluated nuclear data file, ENDF. The current version of this file is Version VI. All evaluations included in ENDF, as well as periodic modifications and updates to the file, are reviewed and approved by CSEWG and issued by the US Nuclear Data Center, Brookhaven National Laboratory. CSEWG is comprised of volunteers from the US nuclear data community who possess expertise in evaluation methodologies and who collectively have been responsible for producing most of the evaluations included in ENDF. In 1992 CSEWG added the Measurements Committee to its list of standing committees and subcommittees. This action was based on a recognition of the importance of experimental data in the evaluation process as well as the realization that measurement activities in the US were declining at an alarming rate and needed considerable encouragement to avoid the loss of this resource. The mission of the Committee is to maintain contact with experimentalists in the US and to encourage them to contribute to the national nuclear data effort. Improved communication and the facilitation of collaborative activities are among the tools employed in achieving this objective. In 1994 the Committee was given an additional mission, namely, to serve as an interface between the applied interests represented in CSEWG and the basic nuclear science community. Accordingly, its name was changed to the Measurement and Basic Physics Committee. The present annual report is the third such document issued by the Committee. It contains voluntary contributions from several laboratories in the US. Their contributions were submitted to the Chairman for compilation and editing.

  8. Optimization of multi-group cross sections for fast reactor analysis

    International Nuclear Information System (INIS)

    Chin, M. R.; Manalo, K. L.; Edgar, C. A.; Paul, J. N.; Molinar, M. P.; Redd, E. M.; Yi, C.; Sjoden, G. E.

    2013-01-01

    The selection of the number of broad energy groups, collapsed broad energy group boundaries, and their associated evaluation into collapsed macroscopic cross sections from a general 238-group ENDF/B-VII library dramatically impacted the k eigenvalue for fast reactor analysis. An analysis was undertaken to assess the minimum number of energy groups that would preserve problem physics; this involved studies using the 3D deterministic transport parallel code PENTRAN, the 2D deterministic transport code SCALE6.1, the Monte Carlo based MCNP5 code, and the YGROUP cross section collapsing tool on a spatially discretized MOX fuel pin comprised of 21% PUO 2 -UO 2 with sodium coolant. The various cases resulted in a few hundred pcm difference between cross section libraries that included the 238 multi-group reference, and cross sections rendered using various reaction and adjoint weighted cross sections rendered by the YGROUP tool, and a reference continuous energy MCNP case. Particular emphasis was placed on the higher energies characteristic of fission neutrons in a fast spectrum; adjoint computations were performed to determine the average per-group adjoint fission importance for the MOX fuel pin. This study concluded that at least 10 energy groups for neutron transport calculations are required to accurately predict the eigenvalue for a fast reactor system to within 250 pcm of the 238 group case. In addition, the cross section collapsing/weighting schemes within YGROUP that provided a collapsed library rendering eigenvalues closest to the reference were the contribution collapsed, reaction rate weighted scheme. A brief analysis on homogenization of the MOX fuel pin is also provided, although more work is in progress in this area. (authors)

  9. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  10. Partial cross sections near the higher resonances

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-07-01

    As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961

  11. Covariance matrices for nuclear cross sections derived from nuclear model calculations

    International Nuclear Information System (INIS)

    Smith, D. L.

    2005-01-01

    The growing need for covariance information to accompany the evaluated cross section data libraries utilized in contemporary nuclear applications is spurring the development of new methods to provide this information. Many of the current general purpose libraries of evaluated nuclear data used in applications are derived either almost entirely from nuclear model calculations or from nuclear model calculations benchmarked by available experimental data. Consequently, a consistent method for generating covariance information under these circumstances is required. This report discusses a new approach to producing covariance matrices for cross sections calculated using nuclear models. The present method involves establishing uncertainty information for the underlying parameters of nuclear models used in the calculations and then propagating these uncertainties through to the derived cross sections and related nuclear quantities by means of a Monte Carlo technique rather than the more conventional matrix error propagation approach used in some alternative methods. The formalism to be used in such analyses is discussed in this report along with various issues and caveats that need to be considered in order to proceed with a practical implementation of the methodology

  12. Integrated system for production of neutronics and photonics calculational constants. Program SIGMA1 (Version 77-1): Doppler broaden evaluated cross sections in the Evaluated Nuclear Data File/Version B (ENDF/B) format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1977-01-01

    A code, SIGMA1, has been designed to Doppler broaden evaluated cross sections in the ENDF/B format. The code can only be applied to tabulated data that vary linearly in energy and cross section between tabulated points. This report describes the methods used in the code and serves as a user's guide to the code

  13. Evaluation and Compilation of Neutron Activation Cross Sections for Medical Isotope Production

    International Nuclear Information System (INIS)

    Binney, Stephen E.

    2004-01-01

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory

  14. Photoneutron cross sections for {sup 59}Co. Systematic uncertainties of data from various experiments

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Davydov, A.I. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Ishkhanov, B.S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation)

    2017-09-15

    Data on partial photoneutron reaction cross sections (γ, 1n), (γ, 2n), and (γ, 3n) for {sup 59}Co obtained in two experiments carried out at Livermore (USA) were analyzed. The sources of radiation in both experiments were the monoenergetic photon beams from the annihilation in flight of relativistic positrons. The total yield was sorted by the neutron multiplicity, taking into account the difference in the neutron energy spectra for different multiplicity. The two quoted studies differ in the method of determining the neutron. Significant systematic disagreements between the results of the two experiments exist. They are considered to be caused by large systematic uncertainties in partial cross sections, since they do not satisfy physical criteria for reliability of the data. To obtain reliable cross sections of partial and total photoneutron reactions a new method combining experimental data and theoretical evaluation was used. It is based on the experimental neutron yield cross section which is rather independent of neutron multiplicity and the transitional neutron multiplicity functions of the combined photonucleon reaction model (CPNRM). The model transitional multiplicity functions were used for the decomposition of the neutron yield cross section into the contributions of partial reactions. The results of the new evaluation noticeably differ from the partial cross sections obtained in the two experimental studies are under discussion. (orig.)

  15. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, Claudia

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. The analysis is performed using 36pb-1 of pp collisions produced at the LHC with a center-of-mass energy of 7 TeV. The observed upper limit is set at 261 pb at 95% confidence level, where the expected Standard Model cross-section for the ttbar process is 165+11-16 pb. In the future, when the LHC luminosity increases, it is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic f...

  16. Evaluation of computational models and cross sections used by MCNP6 for simulation of electron backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Poškus, Andrius, E-mail: andrius.poskus@ff.vu.lt

    2016-02-01

    This work evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in Monte Carlo simulations of electron backscattering from thick layers of Be, C, Al, Cu, Ag, Au and U at incident electron energies from 200 eV to 15 MeV. The CH method is used in simulations performed with MCNP6.1, and the SE method is used in simulations performed with an open-source single-event code MCNelectron written by the author of this paper. Both MCNP6.1 and MCNelectron use mainly ENDF/B-VI.8 library data, but MCNelectron allows replacing cross sections of certain types of interactions by alternative datasets from other sources. The SE method is evaluated both using only ENDF/B-VI.8 cross sections (the “SE-ENDF/B method”, which is equivalent to using MCNP6.1 in SE mode) and with an alternative set of elastic scattering cross sections obtained from relativistic (Dirac) partial-wave (DPW) calculations (the “SE-DPW method”). It is shown that at energies from 200 eV to 300 keV the estimates of the backscattering coefficients obtained using the SE-DPW method are typically within 10% of the experimental data, which is approximately the same accuracy that is achieved using MCNP6.1 in CH mode. At energies below 1 keV and above 300 keV, the SE-DPW method is much more accurate than the SE-ENDF/B method due to lack of angular distribution data in the ENDF/B library in those energy ranges. At energies from 500 keV to 15 MeV, the CH approximation is roughly twice more accurate than the SE-DPW method, with the average relative errors equal 7% and 14%, respectively. The energy probability density functions (PDFs) of backscattered electrons for Al and Cu, calculated using the SE method with DPW cross sections when energy of incident electrons is 20 keV, have an average absolute error as low as 4% of the average PDF. This error is approximately twice less than the error of the corresponding PDF calculated using the CH approximation. It is concluded

  17. Study of the influence of decay data in activation reaction cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Lu Hanlin

    2002-01-01

    The effect of the decay data on the measured activation cross section is investigated carefully and testified by several examples. These decay data include the half-life of the product, γ branching ratio of the product and decay scheme. Present work shows that these effects must be considered carefully when evaluating the activation reaction cross section. Sometimes they are main reason for causing the discrepancies among the experimental data

  18. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  19. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  20. Theoretical Predictions of Cross-Sections of the Super-Heavy Elements

    Science.gov (United States)

    Bouriquet, B.; Kosenko, G.; Abe, Y.

    The evaluation of the residue cross-sections of reactionssynthesising superheavy elements has been achieved by the combination of the two-step model for fusion and the evaporation code (KEWPIE) for survival probability. The theoretical scheme of those calculations is presented, and some encouraging results are given, together with some difficulties. With this approach, the measured excitation functions of the 1n reactions producing elements with Z=108, 110, 111 and 112 are well reproduced. Thus, the model has been used to predict the cross-sections of the reactions leading to the formation of the elements with Z=113 and Z=114.

  1. Theoretical predictions of cross-sections of the super-heavy elements

    International Nuclear Information System (INIS)

    Bouriquet, B.; Abe, Y.; Kosenko, G.

    2004-01-01

    The evaluation of the residue cross-sections of reactions synthesising superheavy elements has been achieved by the combination of the two-step model for fusion and the evaporation code (KEWPIE) for survival probability. The theoretical scheme of those calculations is presented, and some encouraging results are given, together with some difficulties. With this approach, the measured excitation functions of the 1n reactions producing elements with Z = 108, 110, 111 and 112 are well reproduced. Thus, the model has been used to predict the cross-sections of the reactions leading to the formation of the elements with Z = 113 and Z = 114. (author)

  2. Neutron total and scattering cross sections of 6Li in the few MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file

  3. Resonances in photoionization. Cross section for vibrationally excited H2

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Jungen, Ch.

    2011-01-01

    Complete text of publication follows. Diatomic molecular Hydrogen is the most abundant molecule in interstellar molecular clouds. The modeling of these environments relies on accurate cross sections for the various relevant processes. Among them, the photoionization plays a major role in the kinetics and in the energy exchanges involving H 2 . The recent discovery of vibrationally excited molecular hydrogen in extragalactic environments revealed the need for accurate evaluation of the corresponding photoionization cross sections. In the present work we report theoretical photoionization cross sections for excitation from excited vibrational levels of the ground state, dealing with the Q(N = 1) (ΔN = 0, where N is the total angular momentum of the molecule) transitions which account for roughly one third of the total photoabsorption cross section. We will focus on the v' = 1 excited level of the ground electronic state. Our calculations are based on Multichannel Quantum Defect Theory (MQDT), which allows us to take into account of the full manifold of Rydberg states and their interactions with the electronic continuum. We have carried out two types of MQDT calculations. First, we omitted all open channels and calculated energy levels, wave functions and spontaneous emission Einstein coefficients, making use of the theoretical method presented in [2]. In a second set of calculations we included the open ionization channels in the computations getting the continuum phase shifts, channel mixing coefficients and channel dipole moments and finally the photoabsorption/ photoionization cross section. The cross section is dominated by the presence of resonance structures corresponding to excitation of various vibrational levels of bound electronic states which lie above the ionization threshold. In order to assess the importance of the resonances we have calculated for each vibrational interval (the energy interval between two consecutive ionization thresholds) the

  4. Cross section data for ionization of important cyanides

    International Nuclear Information System (INIS)

    Kaur, Jaspreet; Antony, Bobby

    2015-01-01

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  5. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  6. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  7. Neutron cross sections of 28 fission product nuclides adopted in JENDL-1

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Nakagawa, Tsuneo; Igarasi, Sin-iti; Matsunobu, Hiroyuki; Kawai, Masayoshi; Iijima, Shungo.

    1981-02-01

    This is the final report concerning the evaluated neutron cross sections of 28 fission product nuclides adopted in the first version of Japanese Evaluated Nuclear Data Library (JENDL-1). These 28 nuclides were selected as being most important for fast reactor calculations, and are 90 Sr, 93 Zr, 95 Mo, 97 Mo, 99 Tc, 101 Ru, 102 Ru, 103 Rh, 104 Ru, 105 Pd, 106 Ru, 107 Pd, 109 Ag, 129 I, 131 Xe, 133 Cs, 135 Cs, 137 Cs, 143 Nd, 144 Ce, 144 Nd, 145 Nd, 147 Pm, 147 Sm, 149 Sm, 151 Sm, 153 Eu and 155 Eu. The status of the experimental data was reviewed over the whole energy range. The present evaluation was performed on the basis of the measured data with the aid of theoretical calculations. The optical and statical models were used for evaluation of the smooth cross sections. An improved method was developed in treating the multilevel Breit-Wigner formula for the resonance region. Various physical parameters and the level schemes, adopted in the present work are discussed by comparing with those used in the other evaluations such as ENDF/B-IV, CEA, CNEN-2 and RCN-2. Furthermore, the evaluation method and results are described in detail for each nuclide. The evaluated total, capture and inelastic scattering cross sections are compared with the other evaluated data and some recent measured data. Some problems of the present work are pointed out and ways of their improvement are suggested. (author)

  8. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    Science.gov (United States)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  9. ZZ SNLRML, Dosimetry Cross-Section Recommendations

    International Nuclear Information System (INIS)

    1996-01-01

    Description of program or function: Format: SAND-II; Number of groups: 640 group SAND-II group structure. Nuclides: Cd, B, Au, S, Ni, Li, F, Na, Mg, Al, Si, P, Sc, Ti, Mn, Fe, Co, Cu, Zn, Zr, Nb, Mo, Rh, Ag, In, I, Th, U, Np, Pu, Am. Origin: ENDF/B-VI, ENDF/B-V, IRDF-90, JENDL-3, JEF 2.2 and GLUCS data with special modifications from private communications. Weighting spectrum: flat. SNLRML is a reactor dosimetry library that draws upon all available evaluated cross section libraries and selects the best evaluation for application to research reactor spectrum determinations. Many of the components of the SNLRML come from the ENDF/B-VI and IRDF-90 (DLC-0161) libraries. The library format was selected for easy interface with spectrum determination codes such as SAND-II (CCC-0112 and LSL-M2 (PSR-233) and the new PSR-0345/SNL/SAND-II has been enhanced to interface with SNLRML. The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross section in wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-0547) and MCNP (CCC-0200), in order to compare calculated and measured activities for benchmark reactor experiments

  10. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  11. Verification of the cross-section and depletion chain processing module of DRAGON 3.06

    International Nuclear Information System (INIS)

    Chambon, R.; Marleau, G.; Zkiek, A.

    2008-01-01

    In this paper we present a verification of the module of the lattice code DRAGON 3.06 used for processing microscopic cross-section libraries, including their associated depletion chain. This verification is performed by reprogramming the capabilities of DRAGON in another language (MATLAB) and testing them on different problems typical of the CANDU reactor. The verification procedure consists in first programming MATLAB m-files to read the different cross section libraries in ASCII format and to compute the reference cross-sections and depletion chains. The same information is also recovered from the output files of DRAGON (using different m-files) and the resulting cross sections and depletion chain are compared with the reference library, the differences being evaluated and tabulated. The results show that the cross-section calculations and the depletion chains are correctly processed in version 3.06 of DRAGON. (author)

  12. Cross sections for (p,n) and (d,2n) reactions on /sup 79/Br and /sup 127/I: An evaluation of literature and model calculated results

    Energy Technology Data Exchange (ETDEWEB)

    Lanier, R.G.; Mustafa, M.G.; West, H.I. Jr.

    1989-02-01

    We have evaluated (p,n) and (d,2n) cross sections on /sup 79/Br and /sup 127/I, and made these cross sections available for test diagnostics. We believe that these interim cross sections are of reasonable accuracy and should be used for diagnostic interpretations until more precise measurements can be made. Our evaluation consisted of a literature search and an examination of the available experimental data. These data were supplemented by statistical model calculations using both the STAPRE and ALICE codes. We found reasonably good measured data (from threshold to the peak of the excitation function) for the (p,n) reaction on both /sup 79/Br and /sup 127/I. The literature data for the (d,2n) reaction on /sup 127/I are questionable and no data were found for the (d,2n) reaction on /sup 79/Br. We have, therefore, relied completely on calculations for the (d,2n) cross sections for both /sup 79/Br and /sup 127/I. 4 figs., 5 tabs.

  13. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  14. Nosocomial tuberculosis prevention in Portuguese hospitals: a cross-sectional evaluation.

    Science.gov (United States)

    Sousa, M; Gomes, M; Gaio, A R; Duarte, R

    2017-08-01

    Measures to control tuberculous infection are crucial to prevent nosocomial transmission and protect health care workers (HCWs). In Portugal, the extent of implementation of tuberculosis (TB) control measures in hospitals is not known. To determine the current implementation of preventive measures for tuberculous infection at administrative, environmental and personal levels in Portuguese hospitals. A cross-sectional evaluation was performed using two anonymous questionnaires: one sent to all the hospital infection control (IC) committees and the other sent to all pulmonologists and physicians specialising in infectious disease. Fourteen IC committees and 72 physicians responded. According to the IC committees, 92% of hospitals had a written TB control plan, but only 37% of the physicians said there was always/almost always a fast track for diagnosing suspected pulmonary TB cases. The majority of the hospitals had an isolation policy (85%) and these patients were always/almost always admitted in separate rooms, according to 70% of physicians. Both HCWs and TB patients used respiratory protection equipment (92%). These findings indicate that the most basic TB IC measures had been undertaken, but some TB IC measures were not fully implemented at all hospitals. An institutional effort should be made to solve this problem and strengthen TB prevention activities.

  15. Methodology series module 3: Cross-sectional studies

    Directory of Open Access Journals (Sweden)

    Maninder Singh Setia

    2016-01-01

    Full Text Available Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case–control studies (participants selected based on the outcome status or cohort studies (participants selected based on the exposure status, the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  16. Methodology Series Module 3: Cross-sectional Studies.

    Science.gov (United States)

    Setia, Maninder Singh

    2016-01-01

    Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case-control studies (participants selected based on the outcome status) or cohort studies (participants selected based on the exposure status), the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  17. ZZ RRDF-98, Cross-sections and covariance matrices for 22 neutron induced dosimetry reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Ignatyuk, A.V.; Mahokhin, V.N.; Pashchenko, A.B.

    2005-01-01

    1 - Description of program or function: Format: ENDF-6 format; Number of groups: Continuous energy; Dosimetry reactions: 6-C-12(n,2n), 8-O-16(n,2n), 9-F-19(n,2n), 12-Mg-24(n,p), 22-Ti-46(n,2n), 22-Ti-46(n,p), 22-Ti-47(n,x), 22-Ti-48(n,p), 22-Ti-48(n,x), 22-Ti-49(n,x), 23-V-51(n,alpha), 26-Fe-54(n,2n), 26-Fe-54(n,alpha), 26-Fe-56(n,p), 27-Co-59(n,alpha), 29-Cu-63(n,alpha), 33-As-75(n,2n), 41-Nb-93(n,2n), 41-Nb-93(n,n'), 45-Rh-103(n,n'), 49-In-115(n,n'), 59-Pr-141(n,2n); Origin: Russian Federation; Weighting spectrum: None. RRDF-98 contains original evaluations of cross section data performed at the Institute of Physics and Power Engineering, Obninsk, for 22 neutron induced dosimetry reactions. The dataset also contains the corresponding covariance matrices. 2 - Methods: The evaluation of excitation functions was performed on the basis of statistical analysis of corrected experimental data in the framework of generalized least squares method and taking into account the results of optical-statistical STAPRE and GNASH calculations. The experimental cross section data including the most recent results were critically reviewed and processed in this study. If necessary, the data were normalized in order to make adjustments in relevant cross sections and decay schemes. The covariance matrices were prepared and the evaluated cross section data are presented in ENDF-6 format (Files 3, 33). For estimation of correlations between experimental data the total uncertainties of measured cross sections have been separated into statistical and systematic parts and correlation coefficients between components of systematic parts were assigned according to information given in the original publications and EXFOR library. Then the correlation matrix of cross sections measured within one experiment was calculated and approximated by matrix with a constant (average) correlation coefficient. The overall correlation matrix was composed of such sub-matrices in the assumption that the cross

  18. Calculational tools for the evaluation of nuclear cross-section and spectra data

    International Nuclear Information System (INIS)

    Gardner, M.A.

    1985-01-01

    A technique based on discrete energy levels rather than energy level densities is presented for nuclear reaction calculations. The validity of the technique is demonstrated via theoretical and experimental agreement for cross sections, isomer-ratios and gamma-ray strength functions. 50 refs., 7 figs

  19. Compilation of cross-sections. Pt. 1

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1983-01-01

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  20. Compilation of cross-sections. Pt. 4

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1987-01-01

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  1. Gingival recession: a cross-sectional clinical investigation.

    Science.gov (United States)

    Goutoudi, P; Koidis, P T; Konstantinidis, A

    1997-06-01

    In this cross-sectional study, risk and potentially causative factors of gingival recession were examined and their relationship to apical migration of the gingival margin evaluated. Thirty eight patients (18-60 years), displaying one or more sites with gingival recession but without any significant periodontal disease participated. A total of 28 parameters were evaluated in both 'test' teeth (50 teeth with gingival recession) and 'control' teeth (50 contralateral teeth). The results revealed that gingival margin recession was associated with both high inflammatory and plaque scores, with decreased widths of keratinized and attached gingiva and with the subjects' toothbrush bristle hardness.

  2. Preparation of multigroup lumped fission product cross-sections from ENDF/B-VI for FBRs

    International Nuclear Information System (INIS)

    Devan, K.; Gopalakrishnan, V.; Mohanakrishnan, P.; Sridharan, M.S.

    1997-01-01

    Multigroup pseudo fission product cross-sections were computed from the American evaluated nuclear data library ENDF/B-VI, corresponding to various burnups of the proposed 500 MWe prototype fast breeder reactor (PFBR), in India. The data were derived from the cross-sections of 111 selected fission products that account for almost complete capture of fission products in an FBR. The dependence of burnup on the pseudo fission product cross-sections, and comparison with other data sets, viz. JNDC, ENDF/B-IV and ABBN, are discussed. (author)

  3. Challenging fission cross section simulation with long standing macro-microscopic model of nucleus potential energy surface

    International Nuclear Information System (INIS)

    Tamagno, Pierre

    2015-01-01

    The work presented here aims to improve models used in the fission cross section evaluation. The results give insights for a significant breakthrough in this field and yielded large extensions of the evaluation code CONRAD. Partial cross sections are inherently strongly correlated together as of the competition of the related reactions must yield the total cross section. Therefore improving fission cross section benefits to all partial cross sections. A sound framework for the simulation of competitive reactions had to be settled in order to further investigate on the fission reaction; this was implemented using the TALYS reference code as guideline. After ensuring consistency and consistency of the framework, focus was made on fission. Perspective resulting from the use of macroscopic-microscopic models such as the FRDM and FRLDM were analyzed; these models have been implemented and validated on experimental data and benchmarks. To comply with evaluation requirements in terms of computation time, several specific numerical methods have been used and parts of the program were written to run on GPU. These macroscopic-microscopic models yield potential energy surfaces that can be used to extract a one-dimensional fission barrier. This latter can then be used to obtained fission transmission coefficients that can be used in a Hauser-Feshbach model. This method has been finally tested for the calculation of the average fission cross section for 239 Pu(n,f). (author) [fr

  4. NDS multigroup cross section libraries

    International Nuclear Information System (INIS)

    DayDay, N.

    1981-12-01

    A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)

  5. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  6. Measurement of the 241Am neutron capture cross section at the n_TOF facility at CERN

    Directory of Open Access Journals (Sweden)

    Mendoza E.

    2017-01-01

    Full Text Available New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241Am(n,γ cross section at the n_TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241Am(n,γ cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.

  7. Evaluation of cross sections for neutron monitor reactions {sup 90}Zr(n,x){sup 89,88}Zr, {sup 88,87,86}Y from threshold to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Baosheng, Yu; Qingbiao, Shen; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    The cross sections for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions in intermediate energy region are useful in neutron field monitor, safety and material damage research. Below 20 MeV, the evaluated cross sections for {sup 90}Zr(n,2n){sup 89}Zr reaction are recommended based on the recent experimental data, including the new measured results in CIAE (Above 20 MeV). The measured cross sections are still insufficient to do evaluation. So the evaluation for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions from threshold to 100 MeV are based on experimental and calculated data. (2 figs.).

  8. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  9. Nuclear level density effects on the evaluated cross-sections of nickel isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1995-01-01

    A detailed investigation has been made to estimate the effect of various level density options on the computed neutron induced reaction cross-sections of Ni-58 and Ni-60 covering the energy range 5-25 MeV in the framework of the multistep Hauser-Feshbach statistical model scheme which accounts for the pre-equilibrium decay according to the Kalbach exciton model and gamma-ray competition according to the giant dipole radiation model of Brink and Axel. Various level density options considered in this paper are based on the Original Gilbert-Cameron, Improved Gilbert-Cameron, Back-Shifted Fermi gas and the Ingatyuk-Smirenkin-Tishin approaches. The effect of these different level density prescriptions is brought out with special reference to (n,p) (n,2n) (n,α) and total production cross-sections for neutron, hydrogen, helium and gamma-rays which are of technological importance for fission and fusion based reactor systems. (author). 18 refs, 2 figs

  10. EJ2-MCNPlib. Contents of the JEF-2.2 based neutron cross-section library for MCNP4A

    International Nuclear Information System (INIS)

    Hogenbirk, A.; Oppe, J.

    1995-05-01

    In this report a description is given of the EJ2-MCNPlib library. The EJ2-MCNPlib library is to be used for reactivity/critically calculations and general neutron/photon transport calculations with the Monte Carlo code MCNP4A. The library is based on the European JEF-2.2 nuclear data evaluation and contains data for all (i.e. 313) nuclides available on this evaluation.The cross-section data were generated using the NJOY cross-section processing code system, version 91.118. For easy reference cross-section plots are given in this report for the total, elastic and absorption cross sections for all nuclides on the EJ2-MCNPlib library. Furthermore, for verification purposes a graphical intercomparison is given of the results of standard benchmark calculations performed with JEF-2.2 cross-section data and with ENDF/B-V cross-section data (whenever available). 6 refs

  11. Validation of tungsten cross sections in the neutron energy region up to 100 keV

    Science.gov (United States)

    Pigni, Marco T.; Žerovnik, Gašper; Leal, Luiz. C.; Trkov, Andrej

    2017-09-01

    Following a series of recent cross section evaluations on tungsten isotopes performed at Oak Ridge National Laboratory (ORNL), this paper presents the validation work carried out to test the performance of the evaluated cross sections based on lead-slowing-down (LSD) benchmarks conducted in Grenoble. ORNL completed the resonance parameter evaluation of four tungsten isotopes - 182,183,184,186W - in August 2014 and submitted it as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The evaluations were performed with support from the US Nuclear Criticality Safety Program in an effort to provide improved tungsten cross section and covariance data for criticality safety sensitivity analyses. The validation analysis based on the LSD benchmarks showed an improved agreement with the experimental response when the ORNL tungsten evaluations were included in the ENDF/B-VII.1 library. Comparison with the results obtained with the JEFF-3.2 nuclear data library are also discussed.

  12. Statistical Modelling of Resonant Cross Section Structure in URR, Model of the Characteristic Function

    International Nuclear Information System (INIS)

    Koyumdjieva, N.

    2006-01-01

    A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006

  13. Model cross section calculations using LAHET

    International Nuclear Information System (INIS)

    Prael, R.E.

    1992-01-01

    The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented

  14. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  15. cmpXLatt: Westinghouse automated testing tool for nodal cross section models

    International Nuclear Information System (INIS)

    Guimaraes, Petri Forslund; Rönnberg, Kristian

    2011-01-01

    The procedure for evaluating the merits of different nodal cross section representation models is normally both cumbersome and time consuming, and includes many manual steps when preparing appropriate benchmark problems. Therefore, a computer tool called cmpXLatt has been developed at Westinghouse in order to facilitate the process of performing comparisons between nodal diffusion theory results and corresponding transport theory results on a single node basis. Due to the large number of state points that can be evaluated by cmpXLatt, a systematic and comprehensive way of performing verification and validation of nodal cross section models is provided. This paper presents the main features of cmpXLatt and demonstrates the benefits of using cmpXLatt in a real life application. (author)

  16. The evaluated neutron cross sections and resonance integrals of fission products with Z = 57-62

    International Nuclear Information System (INIS)

    Fedorova, A.F.; Pisanko, Zh.I.; Novoselov, G.M.

    1976-01-01

    Neutron cross sections at a neutron velocity of V=2200 m/s, and resonance integrals for fission products with Z=57-71 are estimated. In obtaining the recommended values the results of the neutron cross sections and resonance integrals for elements used as references were normalized in accordance with the latest adjusted values. In the course of estimation, preference was given to the more accurate methods for obtaining the measured values and to the more recent investigations

  17. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  18. Fast-neutron total and scattering cross sections of 103Rh

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Fast-neutron total cross sections of 103 Rh are measured with 30 to 50 keV resolutions from 0.7 to 4.5 MeV. Differential elastic- and inelastic-scattering cross sections are measured from 1.45 to 3.85 MeV. Scattered-neutron groups corresponding to excited levels at 334 +- 13, 536 +- 7, 648 +- 25, 796 +- 20, 864 +- 22, 1120 +- 22, 1279 +- 50, 1481 +- 27, 1683 +- 39, 1840 +- 79, 1991 +- 71 and 2050 (tentative) keV are observed. An optical-statistical model is derived from the elastic-scattering results. The experimental values are compared with comparable quantities given in the ENDF/B-V evaluation

  19. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  20. Experimental determination of resonance absorption cross sections for Zircaloy-2 and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A; Markovic, V [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1968-05-15

    The integral absorption cross section for the neutron spectrum and the thermal absorption cross section for zircaloy-2 have been determined using the pile oscillator technique. Using both values and a measured ratio of the epithermal to the thermal flux, the effective resonance integrals were obtained. After subtraction of the contributions for alloy and impurity elements, the effective resonance integrals for zirconium were evaluated. An extrapolated value of 0.91{+-}0.10 was obtained for the dilute integral. (author)

  1. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1980-06-01

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  2. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  3. Influence of the ab initio n–d cross sections in the critical heavy-water benchmarks

    International Nuclear Information System (INIS)

    Morillon, B.; Lazauskas, R.; Carbonell, J.

    2013-01-01

    Highlights: ► We solve the three nucleon problem using different NN potential (MT, AV18 and INOY) to calculate the Neutron–deuteron cross sections. ► These cross sections are compared to the existing experimental data and to international libraries. ► We describe the different sets of heavy water benchmarks for which the Monte Carlo simulations have been performed including our new Neutron–deuteron cross sections. ► The results obtained by the ab initio INOY potential have been compared with the calculations based on the international library cross sections and are found to be of the same quality. - Abstract: The n–d elastic and breakup cross sections are computed by solving the three-body Faddeev equations for realistic and semi-realistic nucleon–nucleon potentials. These cross sections are inserted in the Monte Carlo simulation of the nuclear processes considered in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook). The results obtained using thes ab initio n–d cross sections are compared with those provided by the most renown international libraries

  4. Vibrational enhancement of total breakup cross sections

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1984-01-01

    This paper considers the role of multi-two-body bound states, namely vibrational excitations, on total three-body breakup cross-sections. Total cross-sections are usually easy to measure, and they play a fundamental role in chemical kinetics. (orig.)

  5. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  6. Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case

    CERN Document Server

    Leong, L S; Audouin, L; Berthier, B; Le Naour, C; Stéphan, C; Paradela, C; Tarrío, D; Duran, I

    2014-01-01

    The Np-237 neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n\\_TOF facility at CERN. When compared to previous measurements the n\\_TOF fission cross section appears to be higher by 5-7\\% beyond the fission threshold. To check the relevance of the n\\_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of Np-237, surrounded by uranium highly enriched in U-235 so as to approach criticality with fast neutrons. The multiplication factor k(eff) of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII. 0 evaluation of the Np-237 fission cross section by the n\\_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in U-235 which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that t...

  7. Impact of newly-measured gadolinium cross sections on BWR fuel rod reaction rate distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Perret, G.; Murphy, M.; Grimm, P.; Seiler, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Recent measurements of capture and total cross sections performed at the Rensselaer Polytechnic Institute in the USA confirmed many of the gadolinium thermal and resonant neutron cross section parameters within uncertainties, but they also showed up important discrepancies well out of uncertainties, such as an approx11% overestimation of the {sup 157}Gd thermal capture cross section in ENDF/B-VI and -VII with respect to the newly measured data. In this work, the impact of the newly measured gadolinium cross sections on BWR reactor physics parameters has been preliminarily evaluated. The comparisons of rod-by-rod fission rate and modified conversion ratio predictions with selected cold critical experiments at the PROTEUS reactor in Switzerland show the potential to resolve long-term unexplained discrepancies. (authors)

  8. Estimation of 242Cm neutron cross sections for total file creation

    International Nuclear Information System (INIS)

    Bakhanovich, L.A.; Klepatskij, A.B.; Maslov, V.M.; Porodzinskij, Yu.V.; Sukhovitskij, E.Sh.

    1989-01-01

    Description of evaluation of 242 Cm neutron cross sections in 10 -5 eV-20 MeV energy range is given. Due to the lack of experimental data the evaluation is largely based on the application of theoretical models and systematics. The data obtained are compared to evaluations by other authors. 10 refs.; 2 figs.; 2 tabs

  9. Summary of the Workshop on Neutron Cross Section Covariances

    International Nuclear Information System (INIS)

    Smith, Donald L.

    2008-01-01

    A Workshop on Neutron Cross Section Covariances was held from June 24-27, 2008, in Port Jefferson, New York. This Workshop was organized by the National Nuclear Data Center, Brookhaven National Laboratory, to provide a forum for reporting on the status of the growing field of neutron cross section covariances for applications and for discussing future directions of the work in this field. The Workshop focused on the following four major topical areas: covariance methodology, recent covariance evaluations, covariance applications, and user perspectives. Attention was given to the entire spectrum of neutron cross section covariance concerns ranging from light nuclei to the actinides, and from the thermal energy region to 20 MeV. The papers presented at this conference explored topics ranging from fundamental nuclear physics concerns to very specific applications in advanced reactor design and nuclear criticality safety. This paper provides a summary of this workshop. Brief comments on the highlights of each Workshop contribution are provided. In addition, a perspective on the achievements and shortcomings of the Workshop as well as on the future direction of research in this field is offered

  10. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  11. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  12. Augmented cross-sectional studies with abbreviated follow-up for estimating HIV incidence.

    Science.gov (United States)

    Claggett, B; Lagakos, S W; Wang, R

    2012-03-01

    Cross-sectional HIV incidence estimation based on a sensitive and less-sensitive test offers great advantages over the traditional cohort study. However, its use has been limited due to concerns about the false negative rate of the less-sensitive test, reflecting the phenomenon that some subjects may remain negative permanently on the less-sensitive test. Wang and Lagakos (2010, Biometrics 66, 864-874) propose an augmented cross-sectional design that provides one way to estimate the size of the infected population who remain negative permanently and subsequently incorporate this information in the cross-sectional incidence estimator. In an augmented cross-sectional study, subjects who test negative on the less-sensitive test in the cross-sectional survey are followed forward for transition into the nonrecent state, at which time they would test positive on the less-sensitive test. However, considerable uncertainty exists regarding the appropriate length of follow-up and the size of the infected population who remain nonreactive permanently to the less-sensitive test. In this article, we assess the impact of varying follow-up time on the resulting incidence estimators from an augmented cross-sectional study, evaluate the robustness of cross-sectional estimators to assumptions about the existence and the size of the subpopulation who will remain negative permanently, and propose a new estimator based on abbreviated follow-up time (AF). Compared to the original estimator from an augmented cross-sectional study, the AF estimator allows shorter follow-up time and does not require estimation of the mean window period, defined as the average time between detectability of HIV infection with the sensitive and less-sensitive tests. It is shown to perform well in a wide range of settings. We discuss when the AF estimator would be expected to perform well and offer design considerations for an augmented cross-sectional study with abbreviated follow-up. © 2011, The

  13. The evaluated neutron cross sections and resonance integrals of fission products with Z=63-71

    International Nuclear Information System (INIS)

    Fedorova, A.F.; Pisanko, Zh.I.; Novoselov, G.M.

    1976-01-01

    Neutron cross sections at a neutron velocity of V=2200 m/s, and the resonance integrals for fission products with Z=63-71 are estimated. In obtaining the recommended values the results were normalized of the neutron cross sections and resonance integrals for elements used as references in accordance with the latest adjusted values. In the course of estimation, preference was given to the more accurate measuring methods and the more recent investigations. Scientific publications up to 1975 have been used

  14. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  15. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  16. Analysis of Sodium-23 Data Cross-Sections for Coolant on Generation IV Reactor - SFR

    International Nuclear Information System (INIS)

    Suwoto; Zuhair

    2009-01-01

    The integral tests of sodium-23 neutron cross-sections for coolant contained in JENDL-3.3, ENDF/B-VII.0, BROND-2.2 and JEFF-3.1 files have been performed. Cross-sections analysis of sodium-23 such as total cross-sections, elastic scattering, in-elastic scattering and radiative capture cross-sections for several temperature i.e. 300K, 800K and 1500K. The sodium-23 total cross-sections analysis based on MAEKER, R.E. experimental result through Broomstick experiment calculation. Differences between among other evaluated nuclear data file for elastic scattering, in-elastic scattering and radiative capture cross-sections were done analyzed and compared to ENDF/B-VII.0 as standard reference. Analysis of total cross-sections sodium-23 through broomstick calculation show JENDL-3.3 file give the best result on C/E statistical average value is 1.1043 compared to another nuclear data files. Differences sodium-23 total cross-sections on JEFF-3.1 file for all temperature work specially for energy 40keV and 1MeV-2MeV is about 0.2%. Meanwhile, relative small differences on in-elastic total scattering cross-sections are shown for all temperatures are about ±0.1% in JENDL-3.3. On the other hand, BROND-2.2 file give ±6% higher on sodium-23 in-elastic total scattering cross sections for energy range 450keV-550keV. Clearly significant differences on sodium-23 radiative capture cross sections for BROND-2.2 file especially in energy 109.659keV is somewhat higher than 446%, otherwise JENDL-3.3 and JEFF-3.1 give 16% higher than ENDF/B-VII.0 file. Overall result show that JENDL-3.3, ENDFB-VII.0, BROND-2.2 and JEFF-3.1 have little bit differences in total, elastic scattering, in-elastic scattering total cross sections, except BROND-2.2 file due to radiative capture cross-sections with larger discrepancies. (author)

  17. Positive Scattering Cross Sections using Constrained Least Squares

    International Nuclear Information System (INIS)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-01-01

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  18. Calculation of 235U(n,n') cross sections for ENDF/B-VI

    International Nuclear Information System (INIS)

    Young, P.G.; Arthur, E.D.

    1988-01-01

    Cross sections for neutron-induced reactions on 235 U between 0.01 and 20 MeV have been calculated in a preliminary analysis for the ENDF/B-VI evaluation with particular emphasis on neutron inelastic scattering. A deformed optical model potential that fits total, elastic, inelastic, and low-energy average resonance data is used to calculate direct (n,n') cross sections and transmission coefficients for a Hauser-Feshbach statistical theory analysis using a multiple fission barrier representation. Direct cross sections for higher-lying vibrational states are provided from DWBA calculations, normalized using B(E/ital l/) values determined from (d,d') and Coulomb excitation data. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. Further modifications to fit 235 U(n,f) data were small, and the final fission parameters are generally consistent with published values. The results from this preliminary analysis are compared with the ENDF/B-V evaluation as well as with experimental data. 26 refs., 5 figs., 3 tabs

  19. Uncertainties of Electron Capture Cross Sections In Be4+ + H(1s) Collisions

    International Nuclear Information System (INIS)

    Méndez, L.; Illescas, Clara; Jorge, Alba; Errea, L.F.; Rabadán, I.; Suárez, J.

    2014-01-01

    We have considered one-electron systems where the theoretical methods are well established. The use of different computational alternatives enables the accurate evaluation of nl-partial cross sections in a wide range of collision energies. In the presentation we have analyzed the uncertainties of n-partial charge exchange (CX) cross sections in Be 4+ + H(1s) collisions, which are relevant in tokamak plasmas and experimental data are not available.

  20. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  1. Neutrino-induced neutral-current reaction cross sections for r-process nuclei

    CERN Document Server

    Langanke, K

    2002-01-01

    Neutrino-induced reactions play an important role during and after the r-process, if the latter occurs in an environment with extreme neutrino fluxes such as the neutrino-driven wind model or neutron star mergers. Recently we have evaluated the charged-current neutrino-nucleus cross sections relevant for r-process simulations. We extend our approach here to the neutral-current cross sections. Our tabulation considers neutron-rich nuclei with neutron numbers N=41-135 and charge numbers Z=21-82 and lists total as well as partial neutron spallation cross sections. The calculations have been performed within the random phase approximation considering multipole transitions with J<=3 and both parities. The supernova neutrino spectrum is described by a Fermi-Dirac distribution with various temperature parameters between T=2.8 MeV and T=10 MeV and with the degeneracy parameters alpha=0 and alpha=3.

  2. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, C; The ATLAS collaboration

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. It is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic final state and the state-of-the-art of the b-jet trigger performance estimation are presented in this contribution.

  3. Performance of Traffic Noise Barriers with Varying Cross-Section

    Directory of Open Access Journals (Sweden)

    Sanja Grubeša

    2011-05-01

    Full Text Available The efficiency of noise barriers largely depends on their geometry. In this paper, the performance of noise barriers was simulated using the numerical Boundary Element Method (BEM. Traffic noise was particularly considered with its standardized noise spectrum adapted to human hearing. The cross-section of the barriers was varied with the goal of finding the optimum shape in comparison to classical rectangular barriers. The barrier performance was calculated at different receiver points for a fixed barrier height and source position. The magnitude of the insertion loss parameter was used to evaluate the performance change, both in one-third octave bands and as the broadband mean insertion loss value. The proposed barriers of varying cross-section were also compared with a typical T-shape barrier of the same height.

  4. Evaluation of ETOG-3Q, ETOG-3, FLANGE-II, XLACS, NJOY and LINEAR/RECENT/GROUPIE computer codes concerning to the resonance contribution and background cross sections

    International Nuclear Information System (INIS)

    Anaf, J.; Chalhoub, E.S.

    1988-12-01

    The NJOY and LINEAR/RECENT/GROUPIE calculational procedures for the resolved and unresolved resonance contributions and background cross sections are evaluated. Elastic scattering, fission and capture multigroup cross sections generated by these codes and the previously validated ETOG-3Q, ETOG-3, FLANGE-II and XLACS are compared. Constant weighting function and zero Kelvin temperature are considered. Discrepancies are presented and analysed. (author) [pt

  5. Differential α-production cross sections of iron and nickel for 4.3 to 14.1 MeV Neutrons

    International Nuclear Information System (INIS)

    Baba, Mamoru; Ito, Nobuo; Matsuyama, Isamu

    1994-01-01

    The cross section data for neutron-induced α-production are of prime importance in the evaluation of the radiation damage and nuclear heating in fusion and fast reactors. For the evaluation, energy and angular doubly differential cross sections are also required to calculate primary knock-on atom spectra. However, the experimental (n, xα) data are few and discrepant, therefore, the new experimental data are required urgently to improve the accuracy of the (n, xα) cross section data. The authors have measured the double differential (n, xα) cross sections of Fe and Ni in the neutron energy range of 4.3-14.1 MeV using a specially developed gridded ionization chamber. The present work was undertaken as a part of IAEA Coordinated Research Program for neutron-induced He production cross sections. The gridded ionization chamber and the experimental method were reported previously. Three-signals from the common cathode and two anodes were accumulated as two sets of two-dimensional data. The experimental two-dimensional data for the anode and cathode signals were transformed into the double differential cross sections. The results of the double differential cross sections, angular distributions, angle-integrated spectra in the center of mass system and total α-production cross sections are shown. (K.I.)

  6. Ionization of molecules by electron impact: Differential and total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Rezkallah, Z. [Laboratoire de Physique Quantique et Systemes Dynamiques, Departement de physique, Faculte des sciences, Universite Ferhat Abbas, Setif 19000 (Algeria); Houamer, S., E-mail: hosalim@yahoo.com [Laboratoire de Physique Quantique et Systemes Dynamiques, Departement de physique, Faculte des sciences, Universite Ferhat Abbas, Setif 19000 (Algeria); Dal Cappello, C. [Laboratoire de Physique Moleculaire et des Collisions, Universite Paul Verlaine-Metz, Institut de Physique, 1 Boulevard Arago, 57078 Metz Cedex 3 (France); Charpentier, I. [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz UMR 7554, ile du Saulcy, 57045 Metz Cedex 1 (France); Roy, A.C. [School of Mathematical Sciences, Ramakrishna Mission Vivekananda University, Belur Math 711202, West Bengal (India)

    2011-12-01

    The first Born approximation is applied to calculate differential and total ionization cross sections of a set of small molecules, namely, HF, H{sub 2}O, NH{sub 3} and CH{sub 4} by electron impact. The molecular targets are described by single center molecular orbitals consisting of linear combinations of atomic orbitals (MO-LCAO). First, we have considered electron momentum spectroscopy experiments to check the accuracy of the wave functions. The triply, doubly, singly differential and total cross sections are then evaluated in a systematic way for a variety of kinematics. The results are discussed and compared with experiments.

  7. Cross sections for hadron and lepton production processes

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    1976-01-01

    Charged heavy lepton production in proton-proton collisions is studied. Motivated by recent experimental results from the Stanford Linear Accelerator Center a parton model analysis is given of the reaction p + p → L + + L - + x → μ +- + e/ -+ / + neutrinos + x. Results are presented for the total cross section and the differential cross sections with respect to the invariant mass squared of the final charged leptons and the transverse momenta of each one of them. The two-photon mechanism for pair production in colliding beam exeriments is considered. Through the use of mapped invariant integration variables, a reliable exact numerical calculation of the cross section for the production of muon and pion pairs by the two-photon mechanism is provided. Results are given for the exact total cross sections and also the differential cross sections with respect to the invariant mass squared of the pair. These are compared to the results obtained from the equivalent photon approximation method

  8. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  9. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  10. Distorted eikonal cross sections: A time-dependent view

    International Nuclear Information System (INIS)

    Turner, R.E.

    1982-01-01

    For Hamiltonians with two potentials, differential cross sections are written as time-correlation functions of reference and distorted transition operators. Distorted eikonal differential cross sections are defined in terms of straight-line and reference classical trajectories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross sections are presented in terms of time-ordered cosine and sine memory functions through the use of the Zwanzig-Feshbach projection-operator method

  11. Discussion of electron cross sections for transport calculations

    International Nuclear Information System (INIS)

    Berger, M.J.

    1983-01-01

    This paper deals with selected aspects of the cross sections needed as input for transport calculations and for the modeling of radiation effects in biological materials. Attention is centered mainly on the cross sections for inelastic interactions between electrons and water molecules and the use of these cross sections for the calculation of energy degradation spectra and of ionization and excitation yields. 40 references, 3 figures, 1 table

  12. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  13. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  14. Calculation of neutron cross sections on iron up to 40 MeV

    International Nuclear Information System (INIS)

    Arthur, E.D.; Young, P.G.

    1980-01-01

    The development of high energy d + Li neutron sources for fusion materials radiation damage studies will require neutron cross sections up to 40 MeV. Experimental data above 15 MeV are generally sparse or nonexistent, and reliance must be placed upon nuclear-model calculations to produce the needed cross sections. To satisfy such requirements for the Fusion Materials Irradiation Test Facility (FMIT), neutron cross sections have been calculated for 54 56 Fe between 3 and 40 MeV. These results were joined to the existing ENDF/B-V evaluation below 3 MeV. In this energy range, most neutron reactions can be described using the Hauser-Feshbach statistical model with corrections for preequilibrium and direct-reaction effects. To properly use these models to obtain realistic cross sections, emphasis must be placed upon the determination of suitable input parameters (optical model sets, gamma-ray strength functions, level densities) valid over the energy range of the calculation. To do this, several types of independent data were used to arrive at consistent parameter sets as described

  15. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Trocsanyi, Z. [CERN PH-TH, on leave from University of Debrecen and Institute of Nuclear Research of HAS, H-4001 P.O.Box 51 (Hungary)

    2010-08-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  16. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  17. Integrated system for production of neutronics and photonics calculational constants. Volume 21, Part C, Program SIGMAL (version 79-1): Doppler-broaden evaluated cross sections in the Livermore-Evaluated Nuclear Data Library (ENDL) format

    International Nuclear Information System (INIS)

    Cullen, D.E.

    1979-01-01

    A code, SIGMAL, to Doppler-broaden evaluated cross sections in the ENDL format was designed. This code can Doppler-broaden cross sections that result from neutrons, protons, deuterons, tritons, 3 He, or alpha particles incident on any target nuclei. The code allows broadening to up to 100 final temperatures, either directly from the initial temperature or by bootstrapping to successively higher temperatures. 6 figures, 2 tables

  18. Experimental validation of lead cross sections for scale and MCNP

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1995-01-01

    Moving spent nuclear fuel between facilities often requires the use of lead-shielded casks. Criticality safety that is based upon calculations requires experimental validation of the fuel matrix and lead cross section libraries. A series of critical experiments using a high-enriched uranium-aluminum fuel element with a variety of reflectors, including lead, has been identified. Twenty-one configurations were evaluated in this study. The fuel element was modelled for KENO V.a and MCNP 4a using various cross section sets. The experiments addressed in this report can be used to validate lead-reflected calculations. Factors influencing calculated k eff which require further study include diameters of styrofoam inserts and homogenization

  19. Integral test on activation cross section of tag gas nuclides using fast neutron spectrum fields

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Takafumi; Suzuki, Soju [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    Activation cross sections of tag gas nuclides, which will be used for the failed fuel detection and location in FBR plants, were evaluated by the irradiation tests in the fast neutron spectrum fields in JOYO and YAYOI. The comparison of their measured radioactivities and the calculated values using the JENDL-3.2 cross section set showed that the C/E values ranged from 0.8 to 2.8 for the calibration tests in YAYOI and that the present accuracies of these cross sections were confirmed. (author)

  20. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  1. Effective Cross Section of Cold Formed Steel Column Under Axial Compression

    Science.gov (United States)

    Manikandan, P.; Pradeep, T.

    2018-06-01

    The compressive resistance of cold-formed steel (CFS) section may be governed by local, distortional or overall buckling and any apparent interaction between these modes. A new inventive stiffened CFS section is elected in this study, selected cross sections geometries and lengths are chosen such that all the types of buckling modes are met with. Buckling plot is plotted using linear elastic buckling analysis software (CUFSM). Using the test results obtained in the literature, the developed finite element model is calibrated and furthers a total of 126 parametric study is conducted such as a consequence of dimensions and the length of the cross section, thickness and yield stress. The FEA included relevant material and geometric imperfections. All the columns are analyzed under pin end conditions with axial compression. The analysis results demonstrate that the DSM equations generally assess the strength of stiffened section conservatively. Modifications to the DSM equations are recommended to evaluate the strength of stiffened section more precisely.

  2. Effective Cross Section of Cold Formed Steel Column Under Axial Compression

    Science.gov (United States)

    Manikandan, P.; Pradeep, T.

    2018-02-01

    The compressive resistance of cold-formed steel (CFS) section may be governed by local, distortional or overall buckling and any apparent interaction between these modes. A new inventive stiffened CFS section is elected in this study, selected cross sections geometries and lengths are chosen such that all the types of buckling modes are met with. Buckling plot is plotted using linear elastic buckling analysis software (CUFSM). Using the test results obtained in the literature, the developed finite element model is calibrated and furthers a total of 126 parametric study is conducted such as a consequence of dimensions and the length of the cross section, thickness and yield stress. The FEA included relevant material and geometric imperfections. All the columns are analyzed under pin end conditions with axial compression. The analysis results demonstrate that the DSM equations generally assess the strength of stiffened section conservatively. Modifications to the DSM equations are recommended to evaluate the strength of stiffened section more precisely.

  3. Evaluation of neutron monitor cross sections for 59Co(n,x)56,57,58Co, 52,54,56Mn, 59Fe reactions

    International Nuclear Information System (INIS)

    Yu Baosheng; Shen Qingbiao; Cai Dunjiu

    1996-01-01

    The neutron monitor cross sections for 59 Co(n,x) 56,57,58 Co, 52,54,56 Mn, 59 Fe reactions were evaluated based on recent experimental data and theoretical calculations from threshold energy to 100 MeV. (8 figs.)

  4. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  5. JSD1000: multi-group cross section sets for shielding materials

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    A multi-group cross section library for shielding safety analysis has been produced by using ENDF/B-IV. The library consists of ultra-fine group cross sections, fine-group cross sections, secondary gamma-ray production cross sections and effective macroscopic cross sections for typical shielding materials. Temperature dependent data at 300, 560 and 900 K have been also provided. Angular distributions of the group to group transfer cross section are defined by a new method of ''Direct Angular Representation'' (DAR) instead of the method of finite Legendre expansion. The library designated JSD1000 are stored in a direct access data base named DATA-POOL and data manipulations are available by using the DATA-POOL access package. The 3824 neutron group data of the ultra-fine group cross sections and the 100 neutron, 20 photon group cross sections are applicable to shielding safety analyses of nuclear facilities. This report provides detailed specifications and the access method for the JSD1000 library. (author)

  6. Supplier-induced demand: re-examining identification and misspecification in cross-sectional analysis.

    Science.gov (United States)

    Peacock, Stuart J; Richardson, Jeffrey R J

    2007-09-01

    This paper re-examines criticisms of cross-sectional methods used to test for supplier-induced demand (SID) and re-evaluates the empirical evidence using data from Australian medical services. Cross-sectional studies of SID have been criticised on two grounds. First, and most important, the inclusion of the doctor supply in the demand equation leads to an identification problem. This criticism is shown to be invalid, as the doctor supply variable is stochastic and depends upon a variety of other variables including the desirability of the location. Second, cross-sectional studies of SID fail diagnostic tests and produce artefactual findings due to model misspecification. Contrary to this, the re-evaluation of cross-sectional Australian data indicate that demand equations that do not include the doctor supply are misspecified. Empirical evidence from the re-evaluation of Australian medical services data supports the notion of SID. Demand and supply equations are well specified and have very good explanatory power. The demand equation is identified and the desirability of a location is an important predictor of the doctor supply. Results show an average price elasticity of demand of 0.22 and an average elasticity of demand with respect to the doctor supply of 0.46, with the impact of SID becoming stronger as the doctor supply rises. The conclusion we draw from this paper is that two of the main criticisms of the empirical evidence supporting the SID hypothesis have been inappropriately levelled at the methods used. More importantly, SID provides a satisfactory, and robust, explanation of the empirical data on the demand for medical services in Australia.

  7. Differential cross sections for gamma-ray production by 14 MeV neutrons with several elements in structural materials

    International Nuclear Information System (INIS)

    Murata, Isao; Yamamoto, Junji; Takahashi, Akito

    1988-01-01

    Energy differential cross sections for the gamma-rays produced from the (n,xγ) reactions by 14 MeV neutrons were measured in the gamma-ray energy range from 700 keV to 10 MeV using an NaI spectrometer. Results were obtained for the 8 natural elements; C, Al, Si, Cr, Fe, Ni, Cu and Mo. For prominent discrete gamma-rays in the differential cross sections, the production cross sections were determined by measuring angular distributions with a Ge detector. The gamma-ray energy covered the range between 500 and 3000 keV. The energy distributions have been compared with the differential cross sections evaluated in the nuclear data files of JENDL-3T, ENDL and ENDF/B-IV. The evaluations in JENDL-3T agreed fairly well with the measurements concerning the continuum energy spectra for secondary photons. Discrepancies appeared, however, for Si, Cr and Ni at the energies where the discrete gamma-rays were dominant. The ENDL evaluations were largely deviated from the experimental data. The production cross sections for the discrete gamma-rays in ENDL and ENDF/B-IV were available for the comparison with some of the measured cross sections. Results are presented for C, Al and Si. (author)

  8. Using restored cross sections to evaluate magma emplacement, White Horse Mountains, Eastern Nevada, U.S.A.

    Science.gov (United States)

    Marko, Wayne T.; Yoshinobu, Aaron S.

    2011-03-01

    New field observations and cross section restoration from the Jurassic White Horse pluton-host rock system, Goshute Range, eastern Nevada, USA, indicate a sequential variation of host rock rheology attending magma emplacement. The pluton intruded weakly to nondeformed Devonian-Mississippian limestone, argillite and quartzite at shallow crustal levels (ca. 7 km). The contact aureole is well exposed along the southern, eastern and northern margin of the intrusive body and is less than 1 km wide. Rocks outside of the aureole are sub-horizontal and do not contain a penetrative fabric or are gently folded (interlimb angles > 120°) about sub-vertical axial planes. Within the contact aureole, continuous and discontinuous spaced, axial planar foliations and harmonic to disharmonic, tight to isoclinal folds wrap around the eastern margin of the pluton. Folds verge toward and away from the pluton and rim anticlines, synclines, and monoclines with wavelength in excess of 250 m are preserved along the pluton margin. The spatial proximity of these ductile structures to the pluton and the apparent increase in intensity of structure development approaching the pluton is compatible with contraction within the aureole attending pluton emplacement. However, all of the above structures are truncated by the intrusive contact at various scales. Granodioritic dikes ranging in thickness from 1 m up to ˜ 10 m emanate from the intrusion and cut host rock structure at high angles and turn to propagate towards one another, parallel to the pluton margin and host rock anisotropy. Such features are interpreted to reflect the last stages of diking and brittle deformation that modified the pluton contact after emplacement-related folding of the carbonate rocks, but before final solidification of the pluton. Eight serial geologic cross sections were constructed and evaluated to place geometric constraints on the shape and growth of the White Horse intrusion. Based on line-length restoration of

  9. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  10. The total collision cross section in the glory region

    International Nuclear Information System (INIS)

    Biesen, J.J.H. van den.

    1982-01-01

    Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)

  11. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  12. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  13. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    2001-01-01

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However, it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy

  14. Electron-impact ionization cross section of rubidium

    International Nuclear Information System (INIS)

    Kim, Y.; Migdalek, J.; Siegel, W.; Bieron, J.

    1998-01-01

    A theoretical model for electron-impact ionization cross section has been applied to Rb and the theoretical cross section (from the threshold to 1 keV in incident energy) is in good agreement with the recent experimental data obtained using Rb atoms trapped in a magneto-optical trap. The theoretical model, called the binary-encounter endash dipole (BED) model, combines a modified Mott cross section with the high-energy behavior of Born cross sections. To obtain the continuum dipole oscillator strength df/dE of the 5s electron required in the BED model, we used Dirac-Fock continuum wave functions with a core polarization potential that reproduced the known position of the Cooper minimum in the photoionization cross section. For inner-shell ionization, we used a simpler version of df/dE, which retained the hydrogenic shape. The contributions of the 4p→4d, 5s, and 5p autoionizing excitations were estimated using the plane-wave Born approximation. As a by-product, we also present the dipole oscillator strengths for the 5s→np 1/2 and 5s→np 3/2 transitions for high principal quantum numbers n near the ionization threshold obtained from the Dirac-Fock wave functions with the same core polarization potential as that used for the continuum wave functions. copyright 1998 The American Physical Society

  15. Measurement of 14 MeV neutron cross section of {sup 129}I with foil activation method

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Nakano, Daisuke; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The {sup 129}I, which is one of the most famous fission products (FPs), is of very important concern from the standpoint of waste transmutation due to its extremely long half life. The accurate reaction cross section data of {sup 129}I induced by 14 MeV neutrons are indispensable when evaluating the performance to transmute it in a fusion reactor. However, there was no available experimental data reported until now. We measured 14 MeV neutron induced reaction cross sections of {sup 129}I to give the reference cross section data for evaluation of transmutation performance and nuclear data, using OKTAVIAN facility of Osaka university, Japan. Since the available amount of {sup 129}I as a sample is quite small, probably less than 1 mg, the foil activation method was adopted in the measurement. The sample was a sealed source of {sup 129}I and the {gamma}-rays from the irradiated sample were measured with a Hp-Ge detector. Several {gamma}-rays peaks which could be expected to be caused by two nuclear reactions of {sup 129}I(n,2n) and {sup 129}I(n,{gamma}) were observed. We confirmed that these peaks corresponded to those of {sup 128}I and {sup 130}I through ascertaining each energy and half life. From the measurement, the cross section of {sup 129}I(n,2n) and the effective production cross section of {sup 130}I produced by the {sup 129}I(n,{gamma}){sup 130}I reaction including the contribution of {sup 129}I(n,{gamma}){sup 130m}I reaction, that were estimated to be 1.1{+-}0.1 b and 0.032{+-}0.003 b, respectively at 14.8 MeV, were obtained with an acceptable accuracy of about 10 %, though the errors caused by the uncertainty of {gamma} decay scheme data still existed. The measured cross sections were compared with the evaluated nuclear data of JENDL-3.2 and ENDF/B-VI. For the {sup 129}I(n,2n) reaction, the evaluations overestimate the cross section by 30-40 %, while for the {sup 129}I(n,{gamma}) reaction, the evaluations underestimate by at least one order of magnitude

  16. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  17. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  18. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  19. A CVD diamond detector for (n,α) cross-section measurements

    International Nuclear Information System (INIS)

    Weiss, C.

    2014-01-01

    the discrepancies between the measurements by Harvey 1976 and Koehler 1999. The results from the measurement of this reaction with the DM-D at n⎽TOF in 2012 confirm rather the measurement of Harvey, given a resonance integral 6.7% below these data and 12.4% above the results of Koehler. The determined cross-section confirms that the current evaluated nuclear data files overestimate the cross-section at the resonance. (author)

  20. A cross-sectional study of peripartum blood transfusion in the ...

    African Journals Online (AJOL)

    A cross-sectional study of peripartum blood transfusion in the Eastern Cape, South Africa. ... To assess the incidence of peripartum transfusion in a sample of Eastern Cape, SA hospitals to evaluate generalisability of preceding study findings. Methods. Hospital chart reviews were conducted of all deliveries at three large ...

  1. FIZCON, ENDF/B Cross-Sections Redundancy Check

    International Nuclear Information System (INIS)

    Dunford, Charles L.

    2007-01-01

    1 - Description of program or function: FIZCON is a program for checking that an evaluated data file has valid data and conforms to recommended procedures. Version 7.01 (April 2005): set success flag after return from beginning; fixed valid level check for an isomer; fixed subsection energy range test in ckf9; changed lower limit on potential scattering test; fixed error in j-value test when l=0 and i=0; added one more significant figure to union grid check and sum up output messages; partial fission cross sections mt=19,20,21 and 38 did not require secondary energy distributions in file 5; corrected product test for elastic scattering; moved potential scattering test to psyche. Version 7.02 (May 2005): Fixed resonance parameter sum test. 2 - Method of solution: FIZCON can recognise the difference between ENDF-6 and ENDF-5 formats and performs its tests accordingly. Some of the tests performed include: data arrays are in increasing energy order; resonance parameter widths add up to the total; Q-values are reasonable and consistent; no required sections are missing and all cover the proper energy range; secondary distributions are normalized to 1.0; energy conservation in decay spectra. Optional tests can be performed to check the redundant cross sections, and algorithms can be used to check for possible incorrect entry of data values (Deviant Point test)

  2. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    International Nuclear Information System (INIS)

    Chadwick, M.B.

    1998-01-01

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given

  3. ORACLE: an adjusted cross-section and covariance library for fast-reactor analysis

    International Nuclear Information System (INIS)

    Yeivin, Y.; Marable, J.H.; Weisbin, C.R.; Wagschal, J.J.

    1980-01-01

    Benchmark integral-experiment values from six fast critical-reactor assemblies and two standard neutron fields are combined with corresponding calculations using group cross sections based on ENDF/B-V in a least-squares data adjustment using evaluated covariances from ENDF/B-V and supporting covariance evaluations. Purpose is to produce an adjusted cross-section and covariance library which is based on well-documented data and methods and which is suitable for fast-reactor design. By use of such a library, data- and methods-related biases of calculated performance parameters should be reduced and uncertainties of the calculated values minimized. Consistency of the extensive data base is analyzed using the chi-square test. This adjusted library ORACLE will be available shortly

  4. Kalpakkam multigroup cross section set for fast reactor applications - status and performance

    International Nuclear Information System (INIS)

    Ramanadhan, M.M.; Gopalakrishnan, M.M.

    1986-01-01

    This report documents the status of the presently created set of multigroup constants at Kalpakkam. The list of nuclides processed and the details of multigroup structure are given. Also included are the particulars of dilutions and temperatures for each nuclide in the multigroup cross section set for which self shielding factors have been calculated. Using this new multigroup cross section set, measured integral quantities such as K-eff, central reaction rate ratios, central reactivity worths etc. were calculated for a few fast critical benchmark assemblies and the calculated values of neutronic parameters obtained were compared with those obtained using the available Cadarache cross section library and those published in literature for ENDF/B-IV based set and Japanese evaluated nuclear data library (JENDL). The details of analyses are documented along with the conclusions. (author). 17 refs., 12 tabs

  5. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  6. View-CXS neutron and photon cross-sections viewer

    International Nuclear Information System (INIS)

    Subbaiah, K.V.; Sunil Sunny, C.

    2004-01-01

    A graphical user-friendly interface is developed in Visual Basic (VB)-6 to view the variation of neutron and photon interaction cross-sections of different isotopes as a function of energy. VB subroutines developed read the binary data files of cross-sections created in MCNP-ACE (Briesmeister, J.F., 1993. MCNP - a general purpose Monte Carlo N-Particle Transport code. Version 4A. LANL, USA), ANISN-DLC (Engle W.W. Jr., 1967, A User's Manual for ANISN, K-1693; ORNL, 1974. 100 group neutron cross section data based on ENDF/B-III. Oak Ridge National Laboratory, USA) and KENO-AMPX (Petrie, L.M., Landers, N.F., 1984 KENO-Va- An Improved Monte Carlo Criticality Program with Super Grouping. RSICC-CCC-548, USA) formats using LAHEY-77 Fortran Compiler. The information on isotopes present in each library will be displayed with the help of database files prepared using Micro-Soft ACESS. The cross-section data can be viewed in different presentation styles namely, line graphs, bar graphs, histograms etc., with different color and symbol options. The cross-section plots generated can be saved as Bit-Map file to embed in any other text files. This software enables inter comparison of cross-sections from different type of libraries for isotopes as well as mixtures. Provision is made to view the cross-sections for nuclear reactions such as (n,γ), (n,f), (n,α), etc. The software can be obtained from Radiation Safety Information and Computational Centre (RSICC), ORNL, USA with the code package identification number PSR-514. The software package needs a hard disk space of about 80 MB when installed and works in WINDOWS-95/98/2000 operating systems

  7. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  8. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  9. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  10. Fission-neutron displacement cross sections in metals

    International Nuclear Information System (INIS)

    Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo

    1985-01-01

    The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)

  11. Compact fitting formulas for electron-impact cross sections

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1992-01-01

    Compact fitting formulas, which contain four fitting constants, are presented for electron-impact excitation and ionization cross sections of atoms and ions. These formulas can fit experimental and theoretical cross sections remarkably well, when resonant structures are smoothed out, from threshold to high incident electron energies (<10 keV), beyond which relativistic formulas are more appropriate. Examples of fitted cross sections for some atoms and ions are presented. The basic form of the formula is valid for both atoms and molecules

  12. Photon - axion conversion cross sections in an electromagnetic field

    International Nuclear Information System (INIS)

    Dang Van Soa; Ha Huy Bang

    1999-12-01

    Photon - axion conversions in static magnetic fields and in a periodic field with frequency equal to the axion mass are reconsidered in detail by Feynman methods. The differential cross sections are presented and numerical evaluations are given. It is shown that there is a resonant conversion for the considered process. Some estimates for experiments are given from our results. (author)

  13. Interaction cross-sections and matter radii of A = 20 isobars

    International Nuclear Information System (INIS)

    Chulkov, L.; Bochkarev, O.; Geissel, H.; Golovkov, M.; Janas, Z.; Keller, H.; Kobayashi, T.; Muenzenberg, G.; Nickel, F.; Ogloblin, A.; Patra, S.; Piechaczek, A.; Roeckl, E.; Schwab, W.; Suemmerer, K.; Suzuki, T.; Tanihata, I.; Yoshida, K.

    1995-11-01

    High-energy interaction cross-sections of A=20 nuclei ( 20 N, 20 O, 20 F, 20 Ne, 20 Na, 20 Mg) on carbon were measured with accuracies of ∼1%. The nuclear matter rms radii derived from the measured cross-sections show an irregular dependence on isospin projection. The largest difference in radii, which amounts to approximately 0.2 fm, has been obtained for the mirror nuclei 20 O and 20 Mg. The influenc of nuclear deformation and binding energy on the radii is discussed. By evaluating the difference in rms radii of neutron and proton distributions, evidence has been found for the existence of a proton skin for 20 Mg and of a neutron skin for 20 N. (orig.)

  14. Solar fusion cross sections II: the pp chain and CNO cycles

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E G; Bemmerer, D; Bertulani, C A; Chen, J -W; Costantini, H; Couder, M; Cyburt, R; Davids, B; Freedman, S J; Gai, M; Garcia, A; Gazit, D; Gialanella, L; Greife, U; Hass, M; Heeger, K; Haxton, W C; Imbriani, G; Itahashi, T; Junghans, A; Kubodera, K; Langanke, K; Leitner, D; Leitner, M; Marcucci, L E; Motobayashi, T; Mukhamedzhanov, A; Nollett, Kenneth M; Nunes, F M; Park, T -S; Parker, P D; Prati, P; Ramsey-Musolf, M J; Hamish Robertson, R G; Schiavilla, R; Simpson, E C; Snover, K A; Spitaleri, C; Strieder, F; Suemmerer, K; Trautvetter, R E; Tribble, R E; Typel, S; Uberseder, E; Vetter, P; Wiescher, M

    2011-04-01

    The available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production are summarized and critically evaluated. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8B solar neutrinos. Opportunities for further increasing the precision of key rates are also discussed, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to 1998, Rev. Mod. Phys. 70, 1265.

  15. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  16. Evaluation of neutron cross-sections of {sup 127}I important for radiation transport calculations in large NaI detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pronayaev, V G [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-06-01

    Evaluations were made of neutron inelastic scattering cross-sections with excitation of discrete levels of the residual nucleus, the (n,2n) reaction, secondary neutron emission spectra and secondary photons for reactions which contribute substantially to production of photons for {sup 127}I with the use of the theoretical model for neutrons with an initial energy of 60 keV-20 MeV. (author). 10 refs, 3 figs.

  17. Microscopic description of production cross sections including deexcitation effects

    Science.gov (United States)

    Sekizawa, Kazuyuki

    2017-07-01

    Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing

  18. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  19. MXS cross-section preprocessor user's manual

    International Nuclear Information System (INIS)

    Parker, F.; Ishikawa, M.; Luck, L.

    1987-03-01

    The MXS preprocessor has been designed to reduce the execution time of programs using isotopic cross-section data and to both reduce the execution time and improve the accuracy of shielding-factor interpolation in the SIMMER-II accident analysis program. MXS is a dual-purpose preprocessing code to: (1) mix isotopes into materials and (2) fit analytic functions to the shelf-shielding data. The program uses the isotope microscopic neutron cross-section data from the CCCC standard interface file ISOTXS and the isotope Bondarenko self-shielding data from the CCCC standard interface file BRKOXS to generate cross-section and self-shielding data for materials. The materials may be a mixture of several isotopes. The self-shielding data for the materials may be the actual shielding factors or a set of coefficients for functions representing the background dependence of the shielding factors. A set of additional data is given to describe the functions necessary to interpolate the shielding factors over temperature

  20. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  1. NNLO jet cross sections by subtraction

    Science.gov (United States)

    Somogyi, G.; Bolzoni, P.; Trócsányi, Z.

    2010-08-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 06, 024 (2005), arXiv:hep-ph/0502226; G. Somogyi and Z. Trócsányi, (2006), arXiv:hep-ph/0609041; G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 01, 070 (2007), arXiv:hep-ph/0609042; G. Somogyi and Z. Trócsányi, JHEP 01, 052 (2007), arXiv:hep-ph/0609043] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  2. Development of modern CANDU PHWR cross-section libraries for SCALE

    International Nuclear Information System (INIS)

    Shoman, Nathan T.; Skutnik, Steven E.

    2016-01-01

    Highlights: • New ORIGEN libraries for CANDU 28 and 37-element fuel assemblies have been created. • These new reactor data libraries are based on modern ENDF/B-VII.0 cross-section data. • The updated CANDU data libraries show good agreement with radiochemical assay data. • Eu-154 overestimated when using ENDF-VII.0 due to a lower thermal capture cross-section. - Abstract: A new set of SCALE fuel lattice models have been developed for the 28-element and 37-element CANDU fuel assembly designs using modern cross-section data from ENDF-B/VII.0 in order to produce new reactor data libraries for SCALE/ORIGEN depletion analyses. These new libraries are intended to provide users with a convenient means of evaluating depletion of CANDU fuel assemblies using ORIGEN through pre-generated cross sections based on SCALE lattice physics calculations. The performance of the new CANDU ORIGEN libraries in depletion analysis benchmarks to radiochemical assay data were compared to the previous version of the CANDU libraries provided with SCALE (based on WIMS-AECL models). Benchmark comparisons with available radiochemical assay data indicate that the new cross-section libraries perform well at matching major actinide species (U/Pu), which are generally within 1–4% of experimental values. The library also showed similar or better results over the WIMS-AECL library regarding fission product species and minor actinoids (Np, Am, and Cm). However, a notable exception was in calculated inventories of "1"5"4Eu and "1"5"5Eu, where the new library employing modern nuclear data (ENDF/B-VII.0) performed substantially poorer than the previous WIMS-AECL library (which used ENDF-B/VI.8 cross-sections for these species). The cause for this discrepancy appears to be due to differences in the "1"5"4Eu thermal capture cross-section between ENDF/B-VI.8 and ENDF/B-VII.0, an effect which is exacerbated by the highly thermalized flux of a CANDU heavy water reactor compared to that of a typical

  3. 54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV

    Science.gov (United States)

    Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.

    2018-04-01

    Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.

  4. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  5. LHCb cross-section measurements with heavy flavour jets

    CERN Multimedia

    Michielin, Emanuele

    2017-01-01

    Cross-section measurements of jets originating from the hadronization of beauty ($b$) and charm ($c$) quarks at LHCb give the unique opportunity to probe Parton Distribution Functions (PDFs) at low and large momentum fraction and to test the Standard Model in the forward region. In this poster the production of $t\\bar{t}$ pairs in the forward region, the measurement of the $W+b\\bar{b}$ and $W+c\\bar{c}$ cross-section and the measurement of the $Z\\rightarrow b\\bar{b}$ cross-section are presented.

  6. The effective cross section for double parton scattering within a holographic AdS/QCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Traini, Marco, E-mail: marcoclaudio.traini@unitn.it [Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento (Italy); Rinaldi, Matteo [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Vento, Vicente [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain)

    2017-05-10

    A first attempt to apply the AdS/QCD framework for a bottom–up approach to the evaluation of the effective cross section for double parton scattering in proton–proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.

  7. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    sphere was surrounded by enriched uranium 235 U so as to approach criticality with fast neutrons. The simulation predicts a multiplication factor k eff in better agreement with the experiment (the deviation of 750 pcm is reduced to 250 pcm) when we replace the ENDF/B- VII.0 evaluation of the 237 Np fission cross section by the n-TOF data. We also explore the hypothesis of deficiencies of the inelastic cross section in 235 U which has been invoked by some authors to explain the deviation of 750 pcm. The large distortion that should be applied to the inelastic cross sections in order to reconcile the critical experiment with its simulation is incompatible with existing measurements. Also we show that the ν-bar of 237 Np can hardly be incriminated because of the high accuracy of the existing data. Fission rate ratios or averaged fission cross sections measured in several fast neutron fields seem to give contradictory results on the validation of the 237 Np cross section but at least one of the benchmark experiments, where the active deposits have been well calibrated for the number of atoms, favors the n-TOF data set. These outcomes support the hypothesis of a higher fission cross section of 237 Np. (author)

  8. New Standard Evaluated Neutron Cross Section Libraries for the GEANT4 Code and First Verification

    CERN Document Server

    Mendoza, Emilio; Koi, Tatsumi; Guerrero, Carlos

    2014-01-01

    The Monte Carlo simulation of the interaction of neutrons with matter relies on evaluated nuclear data libraries and models. The evaluated libraries are compilations of measured physical parameters (such as cross sections) combined with predictions of nuclear model calculations which have been adjusted to reproduce the experimental data. The results obtained from the simulations depend largely on the accuracy of the underlying nuclear data used, and thus it is important to have access to the nuclear data libraries available, either of general use or compiled for specific applications, and to perform exhaustive validations which cover the wide scope of application of the simulation code. In this paper we describe the work performed in order to extend the capabilities of the GEANT4 toolkit for the simulation of the interaction of neutrons with matter at neutron energies up to 20 MeV and a first verification of the results obtained. Such a work is of relevance for applications as diverse as the simulation of a n...

  9. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  10. Influence of cross-section structure on unfolded neutron spectra

    International Nuclear Information System (INIS)

    Ertek, C.; Vlasov, M.F.; Cross, B.; Smith, P.M.

    1979-01-01

    The influence of cross-section structure on neutron spectra unfolded by multiple foil activation technique, SAND-II case, has been studied. For three reactions with evident structure in neutron cross-section above threshold: 27Al(n,α)24Na, 31P(n,p)31Si and 32S(n,p)32P, two remarkably different sets of evaluated data were selected from the available evaluations; one set of data was ''smooth'', the structure having been averaged over by a smooth curve; the other set was ''sharp'' with structure given in detail. These data were used in unfolding procedure together with other reactions, the same in both cases (as well as input spectra and measured reaction rates). It was found that during unfolding calculations less iteration steps were needed to unfold the neutron flux spectrum with the set of ''sharp'' data. In case of ''smooth'' data it was difficult to obtain an agreement between measured and calculated activity values even by increasing the number of iteration steps. Contrary to expectations, considerable deformation of unfolded neutron flux spectrum has been observed in the case of the ''smooth'' data set. (author)

  11. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the gener......A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used...... for the generation of beam finite element models which correctly account for effects stemming from material anisotropy and inhomogeneity in cross sections of arbitrary geometry. These type of modelling approach allows for an accurate yet computationally inexpensive representation of a general class of three...

  12. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  13. Cross-section crushing behaviour of hat-sections (Part II: Analytical modelling)

    NARCIS (Netherlands)

    Hofmeyer, H.

    2005-01-01

    Hat-sections are often used to experimentally investigate building sheeting subject to a concentrated load and bending. In car doors, hat-sections are used for side-impact protection. Their crushing behaviour can partly be explained by only observing their cross-sectional behaviour [1]. This

  14. Asymptotic behaviour of pion-pion total cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Greynat, David [Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”,Via Cintia, 80126 Napoli (Italy); Rafael, Eduardo de [Aix-Marseille Université, CNRS,CPT, UMR 7332, 13288 Marseille (France); Université de Toulon, CNRS,CPT, UMR 7332, 83957 La Garde (France); Vulvert, Grégory [Departament de Física Teórica, IFIC,CSIC - Universitat de València, Apt. Correus 22085, E-46071 València (Spain)

    2014-03-24

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log{sup 2} s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π{sup +}π{sup −}, π{sup ±}π{sup 0} and π{sup 0}π{sup 0} scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N{sub c} and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N{sub c} QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N{sub c} counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ{sub π{sup ±}π{sup 0total}}(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N{sub c} Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections.

  15. Asymptotic behaviour of pion-pion total cross-sections

    International Nuclear Information System (INIS)

    Greynat, David; Rafael, Eduardo de; Vulvert, Grégory

    2014-01-01

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log 2  s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π + π − , π ± π 0 and π 0 π 0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N c and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N c QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ π ± π 0 total (s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  16. ZZ HPICE/F, Gamma Interaction Cross-Section Library in ENDF/B Format for Transport Calculation

    International Nuclear Information System (INIS)

    1984-01-01

    Nature of physical problem solved: Format: ENDF/B file 23; Number of groups: Point Cross Sections, energies 1 keV to 100 MeV. Nuclides: Z = 1-83, 86, 90, 92 an 94. Origin: Lawrence Livermore Laboratory; Weighting spectrum: none. The data are for use in general purpose gamma-ray transport codes. The Lawrence Livermore Laboratory has a continuing program to evaluate photon cross section. The data are given in units of (barns/atom) for energies 1 keV to 100 MeV and for elements Z = 1-83, 86, 90, 92 and 94. The MAT numbers are equal to the atomic numbers (Z). The following cross sections are tabulated: MT cross section type: 501 total; 502 coherent scattering; 504 incoherent scattering; 516 pair production (includes triplet); 603 photoelectric

  17. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  18. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  19. Status of neutron cross sections for reactor dosimetry

    International Nuclear Information System (INIS)

    Vlasov, M.F.; Fabry, A.; McElroy, W.N.

    1977-03-01

    The status of current international efforts to develop standardized sets of evaluated energy-dependent (differential) neutron cross sections for reactor dosimetry is reviewed. The status and availability of differential data are considered, some recent results of the data testing of the ENDF/B-IV dosimetry file using 252 Cf and 235 U benchmark reference neutron fields are presented, and a brief review is given of the current efforts to characterize and identify dosimetry benchmark radiation fields

  20. Gold standard capture cross section from 100 keV to 15 MeV

    International Nuclear Information System (INIS)

    Ryves, T.B.

    1982-01-01

    The capture cross section of gold is now generally accepted as the principal reference standard, and therefore in this review only gold is considered. Recent measurements of the gold capture cross section in the unresolved region are discussed and compared with the ENDF/B-V evaluation. It is concluded that in the energy interval 100 to 2000 keV the present uncertainty in the evaluation is +-8%, in the interval 2 to 3.5 MeV the uncertainty is +-4%, in ther interval 3.5 to 14 MeV more measurements are needed before a realistic error can be assigned, and from 14 to 15 MeV the uncertainty is +-10%. Several recommendations for future work have been made

  1. Total cross sections for heavy flavour production at HERA

    CERN Document Server

    Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G

    1995-01-01

    We compute total cross sections for charm and bottom photoproduction at HERA energies, and discuss the relevant theoretical uncertainties. In particular we discuss the problems arising from the small-x region, the uncertainties in the gluon parton density, and the uncertainties in the hadronic component of the cross section. Total electroproduction cross sections, calculated in the Weizs\\"acker-Williams approximation, are also given.

  2. Heavy flavour hadro-production cross-sections

    CERN Document Server

    Wöhri, H K

    2003-01-01

    Hadro-production data on charm and beauty absolute cross-sections, collected by experiments at CERN, DESY and Fermilab, are reviewed. The measurements, corrected for the 'time evolution' of the branching ratios, are compared to calculations done with Pythia, as a function of the collision energy, using the latest parametrizations of the parton densities. We then estimate some charm and beauty production cross-sections relevant for future measurements, including nuclear effectes in the PDFs. We finish by briefly addressing the relevance, in heavy-ion collisions, of beauty production as feed-down for J/psi production.

  3. Evaluation of 54Fe(n,2n)53m+gFe reaction cross sections for high energy dosimetry applications

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Pashchenko, A.B.

    2001-01-01

    The new evaluation of excitation function for the high energy threshold 54 Fe(n,2n) 53m+g Fe dosimetry reaction in the energy range from the threshold to 20 MeV is briefly described. The cross section uncertainties and the covariance matrix were estimated simultaneously from the analysis. The adopted curve is compared to the available processed experimental data and the existing FEI-93, ENDF/B-VI and JENDL-3.2 evaluations. The ENDF-6 formatted data file is available from the Web site of the Russian Nuclear Data Center (RNDC) online (http://www.rndc.ippe.obninsk.ru). (author)

  4. The evaluation of the 237Np fission cross section in the 20 KeV - 20 MeV energy range

    International Nuclear Information System (INIS)

    Dushin, V.N.; Kalinin, V.A.; Shpakov, V.I.

    1997-01-01

    The results of the development of nuclear data evaluation based on the generalized least squares method is presented. The method to interpolate experimental data measured at arbitrary energy points, and their transfer to a fixed energy grid is described. The results of the 237 Np fission cross section measurements performed until 1988 were critically analyzed. A 781 x 781 covariant matrix was derived from the correlation analysis of the experimental results. The results of the evaluation, and the associated correlation matrix was obtained using the generalized least square method. (author). 34 refs, 4 figs, 2 tabs

  5. Evaluation of n + 16 Fe reaction cross section at 14 MeV incident ...

    African Journals Online (AJOL)

    Cross section calculations have been carried out by some earlier scientists independent of energy surface imaginary potential. These have been characterized by a lot of disparity between authors and literature values. In this work, special attention was devoted to the increase in the accuracy of the calculation of nuclear ...

  6. Neutron scattering cross sections of uranium-238

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.

    1979-01-01

    The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures

  7. Expected anomalies of the neutron cross section near the liquid-glass transition

    International Nuclear Information System (INIS)

    Gotze, W.

    1987-01-01

    In the frameworks of a microscopic theory the anomalies of the neutron cross section near the liquid-glass transition are discussed. The central concept of the theory is the correlation function for density fluctuations of wave vector q and frequency ω. Its absorptive part is proportional to the dynamical structure factor S(q, ω), this is the scattering law for coherent neutron scattering. Tagged particle motion is evaluated as well and it yields the incoherent neutron scattering cross section S i (q, ω) in. The predictions of the theory for S(q, ω) and Si (q, ω) a q-ω domain are given

  8. On unambiguous parametrization of neutron cross-sections in the low-energy region

    International Nuclear Information System (INIS)

    Novoselov, G.M.; Kolomiets, V.M.

    1982-08-01

    One of the most important aims of analysis in the resonance region is the evaluation of neutron resonance parameters on the basis of a given formalism of the theory of nuclear reactions. However, the task of finding resonance parameters from experimental data on the energy dependence of cross-sections is subject to a number of difficulties. These difficulties are not only of a theoretical character associated with the selection of one version or another of the theory taking into account the effects necessary (interference between resonances, Doppler effect etc.), but also involve problems of principle. Whether the set of parameters found is the only possible one within the context of a single formalism used remains open. The specific features of processing the experimental data are such that even with good resolution a number of overlapping resonances (occurring as a result of the fluctuation in inter-level distances or the Doppler effect) may be classified as an isolated resonance. Moreover, even given a very weak inter-level interference and Doppler effect, unambiguous parametrization of the cross-sections is not always possible. In the present paper these questions (the choice of the approximation needed for describing experimentally observed cross-sections, allowance for inter-level interference and the Doppler effect and the possibility of ambiguous reproduction of the resonance structure of cross-sections) are examined with reference to the parametrization of the total cross-sections for non-fissionable nuclei in the low-neutron-energy region

  9. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Science.gov (United States)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  10. single-top quark production cross section using the ATLAS detector

    CERN Document Server

    Feng, Cunfeng; The ATLAS collaboration

    2014-01-01

    Measurements of single top-quark production cross section in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. For this process, for the first time a fiducial cross section measured within the detector acceptance is presented and the modelling uncertainty when extrapolating to the total inclusive cross section is assessed with a large number of different Monte Carlo generators. The result is in good agreement with the most up-to-date theory predictions. Furthermore, the single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. Differential cross sections are measured as a function of the transverse momentum and the absolute value of the rapidity of top and anti-top quarks. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. The s-channel production is explored and l...

  11. Effects of cross-section on mechanical properties of Au nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Vazinishayan, Ali; Yang, Shuming, E-mail: shuming.yang@mail.xjtu.edu.cn; Duongthipthewa, Anchalee; Wang, Yiming [State Key Laboratory for manufacturing system engineering, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2016-02-15

    The aim of this paper is study of the effects of multiple cross-section of Au nanowire on mechanical properties. Different cross-section models of Au nanowires including circular, hexagonal, pentagonal and rectangular were simulated by finite element modeling using ABAQUS. In this study, the bending technique was applied so that both ends of the model were clamped with mid-span under loading condition. The cross-sections had the length of 400 nm and the diameter of 40 nm, except the circular cross-section while the rest of the cross-sections had an equivalent diameter. Von Misses stresses distribution were used to define the stress distribution in the cross-section under loading condition, and elastic deformation was analyzed by the beam theory. The results disclosed that the circular and the rectangular models had highest and lowest strengths against plastic deformation, respectively.

  12. Invisible anti-cloak with elliptic cross section using phase complement

    International Nuclear Information System (INIS)

    Yang Yu-Qi; Zhang Min; Yue Jian-Xiang

    2011-01-01

    Based on the theory of phase complement, an anti-cloak with circular cross section can be made invisible to an object outside its domain. As the cloak with elliptic cross section is more effective to make objects invisible than that with circular cross section, a scaled coordinate system is proposed to design equivalent materials of invisible anti-cloak with elliptic cross section using phase complement. The cloaks with conventional dielectric and double negative parameters are both simulated with the geometrical transformations. The results show that the cloak with elliptic cross section through phase complement can effectively hide the outside objects. (classical areas of phenomenology)

  13. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yixin.

    1985-01-01

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  14. Photoionization cross sections: present status and future needs

    International Nuclear Information System (INIS)

    Manson, S.T.

    1988-01-01

    The existing experimental data situation for photoionization cross section of ground-state atoms, excited states and positive ions is reviewed. The ability of theory to predict these cross sections is also discussed. The likely progress for the near future is presented [pt

  15. An Equivalent cross-section Framework for improving computational efficiency in Distributed Hydrologic Modelling

    Science.gov (United States)

    Khan, Urooj; Tuteja, Narendra; Ajami, Hoori; Sharma, Ashish

    2014-05-01

    the accuracy of equivalent cross-section approach, the sub-basins are also divided into equally spaced multiple hillslope cross-sections. These cross-sections are simulated in a fully distributed settings using the 2-dimensional, Richards' equation based distributed hydrological model. The simulated fluxes are multiplied by the contributing area of each cross-section to get total fluxes from each sub-basin referred as reference fluxes. The equivalent cross-section approach is investigated for seven first order sub-basins of the McLaughlin catchment of the Snowy River, NSW, Australia, and evaluated in Wagga-Wagga experimental catchment. Our results show that the simulated fluxes using an equivalent cross-section approach are very close to the reference fluxes whereas computational time is reduced of the order of ~4 to ~22 times in comparison to the fully distributed settings. The transpiration and soil evaporation are the dominant fluxes and constitute ~85% of actual rainfall. Overall, the accuracy achieved in dominant fluxes is higher than the other fluxes. The simulated soil moistures from equivalent cross-section approach are compared with the in-situ soil moisture observations in the Wagga-Wagga experimental catchment in NSW, and results found to be consistent. Our results illustrate that the equivalent cross-section approach reduces the computational time significantly while maintaining the same order of accuracy in predicting the hydrological fluxes. As a result, this approach provides a great potential for implementation of distributed hydrological models at regional scales.

  16. Neutrino-nucleus cross sections for oscillation experiments

    Science.gov (United States)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams

  17. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    Science.gov (United States)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  18. Differences between cross-section libraries for neutron dosimetry

    International Nuclear Information System (INIS)

    Tardelli, T.C.; Stecher, L.C.; Coelho, T.S.; Castro, V.A. De; Cavalieri, T.A.; Menzel, F.; Giarola, R.S.; Domingos, D.B.; Yoriyaz, H.

    2013-01-01

    Absorbed dose calculations depend on a consistent set of nuclear data used in simulations in computer codes. Nuclear data are stored in libraries, however, the information available about the differences in dose caused by different libraries are rare. The libraries are processed by a computer system to be able to be used by a radiation transport code. One of the systems capable of processing nuclear data is the NJOY system. The objective of this study is to evaluate the nuclear data libraries for neutrons available in the literature, and to quantify the differences in absorbed dose obtained using the libraries JENDL 4.0, JEFF 3.3.1 and ENDF/B.VII. The absorbed dose calculation was performed on a simple geometric model, as spheres, and in anthropomorphic model of the human body based on the ICRP-110 for neutron transport simulation using the MCNP5 code. The results were compared with literature data. The results obtained with cross sections from the libraries JEFF and ENDF/B.VII have shown to be identical in most cases, except for one case where the difference has exceeded 10%. The results obtained with JENDL library has shown to be considerably different in most cases comparing to other two libraries. Some differences were over 200%. The dose calculations showed differences between the libraries, which is justified by differences in the cross sections. It has been observed that the cross sections values of certain nuclides assume quite different values in different libraries. These differences in turn cause considerable differences in dose calculations. (author)

  19. Computation of electron-impact K-shell ionization cross sections of atoms

    International Nuclear Information System (INIS)

    Uddin, M.A.; Haque, A.K.F.; Billah, M. Masum; Basak, A.K.; Karim, K.R.; Saha, B.C.

    2005-01-01

    The total cross sections of electron impact single K-shell ionization of atomic targets, with a wide range of atomic numbers from Z=6-50, are evaluated in the energy range up to about 10 MeV employing the recently proposed modified version of the improved binary-encounter dipole (RQIBED) model [Uddin et al., Phys. Rev. A 70, 032706 (2004)], which incorporates the ionic and relativistic effects. The experimental cross sections for all targets are reproduced satisfactorily even in the relativistic energies using fixed generic values of the two parameters in the RQIBED model. The relativistic effect is found to be significant in all targets except for C, being profound in Ag and Sn

  20. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  1. Status of pseudo fission product cross sections for fast reactors. Results of the SWG 17, International working party on evaluation coordination of the nuclear science committee, NEA- OECD

    International Nuclear Information System (INIS)

    Gruppelaar, H.; Kloosterman, J.L.; Pijlgroms, B.J.; Rimpault, G.; Smith, P.; Ignatyuk, A.; Koshcheev, V.; Nikolaev, M.; Thsiboulia, A.; Kawai, M.; Nakagawa, T.; Watanabe, T.; Zukeran, A.; Nakajima, Y.; Matsunobu, H.

    1998-08-01

    Within the framework of the SWG17 benchmark organized by a Working Party of the Nuclear Science Committee of the Nuclear Energy Agency (NEA), a comparison of lumped or pseudo fission product cross sections for fast reactors has been made. Four institutions participated with data libraries based on the JEF2.2, EAF-4.2, BROND-2, FONDL-2.1, ADL-3 and JENDL-3.2 evaluated nuclear data files. Several parameters have been compared with each other: the one-group cross sections and reactivity worths of the lumped nuclide for several partial absorption and scattering cross sections, and the one-group cross sections of the individual fission products. Also graphs of the multi-group cross sections of the lumped nuclide have been compared, as well as graphs of capture cross sections for 27 nuclides. From two contributions based on JEF2.2, it can be concluded that the data processing influences the capture cross section by about 1% and the inelastic scattering cross section by 2%. The differences between the lumped cross sections of the different data libraries are surprisingly small: maximum 6% for capture and 9% for the inelastic scattering. Similar results are obtained for the reactivity effects. Since the reactivity worth of the lumped nuclide is dominated by the capture reaction, the maximum spread in the total reactivity worth is still only 5.3%. There is a systematic difference between total, elastic and capture cross sections of JENDL-3.2 and JEF2.2 of the same order of magnitude. Possible reasons for this discrepancy have been indicated. The one-group capture and inelastic scattering cross sections of most of the important individual fission products differ by less than 10% (root mean square values). Larger differences are observed for unstable nuclides where there is a lack of experimental data. For the (n,2n) group cross sections, which are rather sensitive to the weighting spectrum in the fast energy range, these differences are several tens of percents. The final

  2. Priority cross-sections. Joint Nordic analyses of important cross-sections in the Nordel system. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Nordic Grid Master Plan 2002 shed light on the energy and power balance for the Nordel area but with special focus on 2005. There was a lot to suggest that the tradi-tional transport patterns with frequent southbound transports would change and be more frequently replaced by northbound transports. Against this background, a number of cross-sections were identified within the Nordel area where expansion is expected to have considerable significance for the Nordic elec-tricity market. The present report 'Priority Cross-sections' concludes the work which was started with the grid master plan. The priority cross-sections are subjected to a technical and socio-economic analysis. The analysis aims to understand the transports in the Nordel system and to support Nor-del when prioritizing forthcoming initiatives. The market price is the driving force for the initiatives which will be carried out on the supply and demand side. The commissioning and decommissioning of commercial pro-duction capacity is determined by the market players, and the task of the transmission system operators (TSOs) is to ensure a robust infrastructure for the smooth operation of the electricity market. (au)

  3. Power corrections to the universal heavy WIMP-nucleon cross section

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien-Yi; Hill, Richard J.; Solon, Mikhail P.; Wijangco, Alexander M.

    2018-06-01

    WIMP-nucleon scattering is analyzed at order $1/M$ in Heavy WIMP Effective Theory. The $1/M$ power corrections, where $M\\gg m_W$ is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total $1/M$ correction, and a total cross section close to the universal limit for $M \\gtrsim {\\rm few} \\times 100\\,{\\rm GeV}$. For the SU(2) composite scalar, the $1/M$ corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total $1/M$ correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.

  4. Power corrections to the universal heavy WIMP-nucleon cross section

    Science.gov (United States)

    Chen, Chien-Yi; Hill, Richard J.; Solon, Mikhail P.; Wijangco, Alexander M.

    2018-06-01

    WIMP-nucleon scattering is analyzed at order 1 / M in Heavy WIMP Effective Theory. The 1 / M power corrections, where M ≫mW is the WIMP mass, distinguish between different underlying UV models with the same universal limit and their impact on direct detection rates can be enhanced relative to naive expectations due to generic amplitude-level cancellations at leading order. The necessary one- and two-loop matching calculations onto the low-energy effective theory for WIMP interactions with Standard Model quarks and gluons are performed for the case of an electroweak SU(2) triplet WIMP, considering both the cases of elementary fermions and composite scalars. The low-velocity WIMP-nucleon scattering cross section is evaluated and compared with current experimental limits and projected future sensitivities. Our results provide the most robust prediction for electroweak triplet Majorana fermion dark matter direct detection rates; for this case, a cancellation between two sources of power corrections yields a small total 1 / M correction, and a total cross section close to the universal limit for M ≳ few × 100GeV. For the SU(2) composite scalar, the 1 / M corrections introduce dependence on underlying strong dynamics. Using a leading chiral logarithm evaluation, the total 1 / M correction has a larger magnitude and uncertainty than in the fermionic case, with a sign that further suppresses the total cross section. These examples provide definite targets for future direct detection experiments and motivate large scale detectors capable of probing to the neutrino floor in the TeV mass regime.

  5. Progress on calculation of direct inelastic scattering cross section of neutron

    Energy Technology Data Exchange (ETDEWEB)

    Zhenpeng, Chen [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1996-06-01

    For n+ {sup 238}U inelastic scattering cross, there exist discrepancies among the available evaluations in various libraries. This is partly duo to the difference of direct inelastic scattering cross section calculated with coupled channel optical model (CCOM). The research on the level frame used in CCOM calculation, the research on used parameters of spherical optical model in CCOM calculation and the research on the amplitude of octupole phonon {beta}{sub 3} were presented. (2 figs.).

  6. 238U subthreshold neutron induced fission cross section

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1976-01-01

    High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb

  7. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  8. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  9. Experimental cross section evaluation for innovative 99Mo production via the (α,n) reaction on 96Zr target

    International Nuclear Information System (INIS)

    Pupillo, Gaia; Gambaccini, M.; Esposito, J.; Haddad, F.; Michel, N.

    2014-01-01

    The recent crisis of 99 Mo production by nuclear reactors caused an unexpected worldwide 99m Tc shortening, forcing the international scientific community to find alternative production routes for these vital nuclides. One of the possibilities is to replace the current reactor-based method with the accelerator-based one. The aim of this work is the experimental evaluation of the 96 Zr(α,n) 99 Mo reaction, using the well known stacked foil technique with natural Zr targets, in the energy range 33-8 MeV. The results were compared with the published experimental values, finding good agreement in the trend of the cross section but at higher peak value. The results refer to 100% enriched 96 Zr target. The cross section values measured in the different irradiations show excellent agreement and indicate that the ideal energy range for 99 Mo production is 13-25 MeV. In comparison with the literature, there is good agreement in the trend of the cross section but at higher peak value. The 96 Zr(α,n) 99 Mo reaction is an interesting alternative production route of 99 Mo aimed at the realization of 99 Mo/ 99 mTc generators. Using enriched 96 Zr as target, 99 Mo is the only radioactive Mo-isotope produced, while using natural Zr as target, the resulting 99 Mo still has an high radioisotopic purity (only the radioactive 93 Mo is co-produced), but a lower specific activity. In both cases no Tc-nuclides are directly produced in target and the high purity 99m Tc results only from the decay of 99 Mo

  10. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  11. Validation of new 240Pu cross section and covariance data via criticality calculation

    International Nuclear Information System (INIS)

    Kim, Do Heon; Gil, Choong-Sup; Kim, Hyeong Il; Lee, Young-Ouk; Leal, Luiz C.; Dunn, Michael E.

    2011-01-01

    Recent collaboration between KAERI and ORNL has completed an evaluation for 240 Pu neutron cross section with covariance data. The new 240 Pu cross section data has been validated through 28 criticality safety benchmark problems taken from the ICSBEP and/or CSEWG specifications with MCNP calculations. The calculation results based on the new evaluation have been compared with those based on recent evaluations such as ENDF/B-VII.0, JEFF-3.1.1, and JENDL-4.0. In addition, the new 240 Pu covariance data has been tested for some criticality benchmarks via the DANTSYS/SUSD3D-based nuclear data sensitivity and uncertainty analysis of k eff . The k eff uncertainty estimates by the new covariance data has been compared with those by JENDL-4.0, JENDL-3.3, and Low-Fidelity covariance data. (author)

  12. Application of the cross section covariance data to fast reactor core design

    International Nuclear Information System (INIS)

    Sugino, Kazuteru

    2013-01-01

    In order to contribute to the validation of the cross-section covariance data, an equality was investigated between uncertainties of core characteristics evaluated by the conventional mock-up experimental approach and the current uncertainty quantification one. (author)

  13. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  14. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  15. MINERvA - neutrino nucleus cross section experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Recent results from MINERvA, a neutrino cross section experiment at Fermilab, are presented. MINERVA has the goal of providing precision results which will have important impact on oscillation experiments.  Initial data runs for muon neutrino and antineutrino beams of ~3.5 GeV have produced a large number of new results. This seminar will introduce the experiment and describe results for quasielastic, pion production, and inclusive cross sections.

  16. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  17. Calculations and Evaluations of Cross Sections for n + 204,206,207,208,natPb Reactions in the En ≤ 250 MeV Energy Range

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhang Zhengjun; Cai Chonghai

    2005-01-01

    The quality and reliability of the computational simulation of a macroscopic nuclear device are directly related to the quality of the underlying basic nuclear data. To meet these needs, according to advanced nuclear models that account for details of nuclear structure and the quantum nature of nuclear reaction and the experimental data of total, nonelastic, and elastic scattering cross sections, and elastic scattering angular distributions of Pb and its isotopes, all cross sections of neutron-induced reaction, angular distributions, energy spectra, especially the double-differential cross sections for neutron, proton, deuteron, triton, helium, and alpha emissions are calculated and analyzed for n + 204,206,207,208,nat Pb at incident neutron energies below 20 MeV by using the UNF nuclear model code. At neutron incident energies 20 n ≤ 250 MeV, MEND codes are used. Theoretical calculations are compared with existing experimental data and other evaluated data from ENDF/B-VI and JENDL-3

  18. Up to date cross sections library for Thermos and Record codes

    International Nuclear Information System (INIS)

    Hernandez Lopez, H.

    1993-01-01

    Reactor cell analysis is the first step in determining reactor core behavior and is required in the reload licensing process. For best results, reactor cell analysis should be carried out with libraries of up to date, accurate cross sections produced with well described methods from standard evaluated nuclear data. At first step in this work were determined the library structure for RECORD and THERMOS and were prepared the cross sections libraries using the NJOY nuclear data processing system and the ENDF-B/IV evaluated nuclear data. These libraries were used by the codes and some samples were perform, the result show some differences against the results obtained using the previous libraries. By other hand the libraries contain various adjustments to correct for deficiencies in nuclear data or analytical methods. These adjustments doesn't have any documentation, although some of them were identified in this work. (Author). 25 refs, 78 figs, 55 tabs

  19. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  20. Evaluation of neutron- and proton-induced cross sections of {sup 27}Al up to 2 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa [Korea Atomic Energy Research Institute, Yusung, Taejon (Korea, Republic of); Fukahori, Tokio; Chiba, Satoshi

    1999-03-01

    We have evaluated neutron and proton nuclear data of {sup 27}Al for energies up to 2 GeV. The best set of optical model parameters were obtained above 20 MeV for neutron and above reaction threshold for proton up to 250 MeV with the phenomenological potential forms proposed by Chiba. The transmission coefficients for neutron and proton derived from the optical models are fed into the GNASH code system to calculate angle-energy correlated emission spectra for light ejectiles and gamma rays. For energies above 250 MeV and below 2 GeV, the total, reaction and elastic scattering cross sections were evaluated by an empirical fit and recent systematics. Emitted nucleon and pion were estimated by use of QMD + SDM (Quantum Molecular Dynamics + Statistical Decay Model). (author)