Imaging using cross-hole seismoelectric tomography
Araji, A.H.; Revil, A.; Jardani, A.; Minsley, B.
2011-01-01
We propose a new cross-hole imaging approach based on seismoelectric conversions associated with the transmission of seismic waves from seismic sources located in a borehole to receivers electrodes located in a second borehole. The seismoelectric seismic-to-electric problem is solved using Biot theory coupled with a generalized Ohm's law with an electrokinetic coupling term. The components of the displacement of the solid phase, the fluid pressure, and the electrical potential are solved using a finite element approach with PML boundary conditions for the seismic waves and boundary conditions mimicking an infinite material for the electrostatic problem. We have developed an inversion algorithm using the electrical disturbances recorded in the second borehole to localize the position of the heterogeneities responsible for the seismoelectric conversions. Because of the ill-posed nature of the inverse problem, regularization is used to constrain the solution at each time in the seismoelectric time window comprised between the time of the seismic shot and the time of the first arrival of the seismic waves in the second borehole. All the inverted volumetric current source densities are stacked to produce an image of the position of the heterogeneities between the two boreholes. Two simple synthetic case studies are presented to test this concept. The first case study corresponds to a vertical discontinuity between two homogeneous sub-domains. The second case study corresponds to a poroelastic inclusion embedded into an homogenous poroelastic formation. In both cases, the position of the heterogeneity is fairly well-recovered using only the electrical disturbances associated with the seismoelectric conversions. ?? 2011 Society of Exploration Geophysicists.
Cross-hole Radio Imaging Method with Radiation Parameters Estimation
Ou, Y.; Feng, J.; Li, Y.; Jia, D.; Gao, W.
2017-12-01
To avoid distortions of the radiation pattern and source strength correction, the ray-based amplitude tomography with radiation parameters estimation for cross-hole radio-frequency electromagnetic data has been presented. It has been indicated by the numerical simulations from finite difference time domain (FDTD) method that the radiation pattern and source strength have been seriously affected by the electric material parameters along the borehole, which cannot be corrected accurately. Therefore, the radiation pattern and source strength are treated as unknown parameters with the assumption that radiation pattern changes with the ray angle and the source strength varies with the position of transmitter. The inversion algorithm applies Tikhonov regularization and imposes a variance constraint on the source strength to make the results consistent with the geological features of the boreholes revealed. The results from estimation of these radiation parameters and attenuation simultaneously have shown that an improvement in resolution of anomalies over traditional amplitude tomography can be achieved by the proposed method.
A RAPIDLY SPINNING BLACK HOLE POWERS THE EINSTEIN CROSS
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Mark T.; Miller, Jon M.; Reis, Rubens C. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Walton, Dominic J., E-mail: markrey@umich.edu [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)
2014-09-01
Observations over the past 20 yr have revealed a strong relationship between the properties of the supermassive black hole lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local universe. Herein, we present the results of an analysis of ∼0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the {sup E}instein-cross{sup )}, lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black hole is found to have a spin of a{sub ∗}=0.74{sub −0.03}{sup +0.06} at the 90% confidence level. Placing a lower limit on the spin, we find a {sub *} ≥ 0.65 (4σ). The high value of the spin for the ∼10{sup 9} M {sub ☉} black hole in Q 2237+305 lends further support to the coherent accretion scenario for black hole growth. This is the most distant black hole for which the spin has been directly constrained to date.
Ulysses' rapid crossing of the polar coronal hole boundary
International Nuclear Information System (INIS)
McComas, D.J.; Riley, P.; Gosling, J.T.; Balogh, A.; Forsyth, R.
1998-01-01
The Ulysses spacecraft crossed from the slow dense solar wind characteristic of the solar streamer belt into the fast, less dense flow from the northern polar coronal hole over a very short interval (several days) in late March 1995. The spacecraft, which was at 1.35 AU and ∼19 degree north heliographic latitude, moving northward in its orbit, remained in the fast solar wind from then through summer 1996. This boundary crossing is unique in that the combination of the spacecraft motion and rotation of the structure past the spacecraft caused Ulysses to move smoothly and completely from one regime into the other. In this study we examine this crossing in detail. The crossing is marked by a region of enhanced pressure, typical of stream interaction regions, which extends ∼2x10 7 km across. We find that the transition between the slow and fast regimes occurs on several temporal, and hence spatial, scales. On the shortest scale ( 4 km) the stream interface is a tangential discontinuity where the proton and core electron densities and ion and electron pressures all drop while the magnetic pressure jumps to maintain a rough pressure balance. The alpha to proton ratio also jumps across the stream interface to reach the comparatively constant polar hole value of ∼4.3%. On larger scales (a few x10 6 km) the proton and alpha temperatures rise to their high-speed wind values. Finally, on the largest scale (∼10 8 km) the solar wind speed ramps up from ∼400kms -1 to ∼750kms -1 , typical of polar hole flows. While it seems likely that the stream interface maps back to a sharp boundary near the Sun, the large region of increasing flow speed suggests that there is also an extended gradient in solar wind source speed close to the Sun. copyright 1998 American Geophysical Union
DEFF Research Database (Denmark)
Keskinen, Johanna; Zibar, Majken Caroline Looms; Moreau, Julien
2014-01-01
Chalk sediments form an important reservoir for groundwater onshore and for hydrocarbons in the Danish sector of the North Sea. Cross-hole Ground-penetrating radar (GPR) tomography is an efficient method to investigate subtle porosity variations in the chalk. Traditional ray-based inversion...
Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow
Directory of Open Access Journals (Sweden)
M. E. Taslim
2004-01-01
Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.
Modeling cross-hole slug tests in an unconfined aquifer
Malama, Bwalya; Kuhlman, Kristopher L.; Brauchler, Ralf; Bayer, Peter
2016-09-01
A modified version of a published slug test model for unconfined aquifers is applied to cross-hole slug test data collected in field tests conducted at the Widen site in Switzerland. The model accounts for water-table effects using the linearized kinematic condition. The model also accounts for inertial effects in source and observation wells. The primary objective of this work is to demonstrate applicability of this semi-analytical model to multi-well and multi-level pneumatic slug tests. The pneumatic perturbation was applied at discrete intervals in a source well and monitored at discrete vertical intervals in observation wells. The source and observation well pairs were separated by distances of up to 4 m. The analysis yielded vertical profiles of hydraulic conductivity, specific storage, and specific yield at observation well locations. The hydraulic parameter estimates are compared to results from prior pumping and single-well slug tests conducted at the site, as well as to estimates from particle size analyses of sediment collected from boreholes during well installation. The results are in general agreement with results from prior tests and are indicative of a sand and gravel aquifer. Sensitivity analysis show that model identification of specific yield is strongest at late-time. However, the usefulness of late-time data is limited due to the low signal-to-noise ratios.
Magnified Weak Lensing Cross Correlation Tomography
Energy Technology Data Exchange (ETDEWEB)
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30
This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60
2010-01-01
Background To use a new medium to dynamically visualize serial optical coherence tomography (OCT) scans in order to illustrate and elucidate the pathogenesis of idiopathic macular hole formation, progression, and surgical closure. Case Presentations Two patients at the onset of symptoms with early stage macular holes and one patient following repair were followed with serial OCTs. Images centered at the fovea and at the same orientation were digitally exported and morphed into an Audiovisual Interleaving (avi) movie format. Morphing videos from serial OCTs allowed the OCTs to be viewed dynamically. The videos supported anterior-posterior vitreofoveal traction as the initial event in macular hole formation. Progression of the macular hole occurred with increased cystic thickening of the fovea without evidence of further vitreofoveal traction. During cyst formation, the macular hole enlarged as the edges of the hole became elevated from the retinal pigment epithelium (RPE) with an increase in subretinal fluid. Surgical repair of a macular hole revealed initial closure of the macular hole with subsequent reabsorption of the sub-retinal fluid and restoration of the foveal contour. Conclusions Morphing videos from serial OCTs are a useful tool and helped illustrate and support anterior-posterior vitreofoveal traction with subsequent retinal hydration as the pathogenesis of idiopathic macular holes. PMID:20849638
International Nuclear Information System (INIS)
Gonzalez, P.A.; Moncada, Felipe; Vasquez, Yerko
2012-01-01
We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)
2012-12-15
We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)
DEFF Research Database (Denmark)
Jacobsen, Torben Krogsdal; Brøndsted, Povl
1997-01-01
A study of the strain redistribution around holes in two different cross-woven ceramic matrix composites is presented. The strain redistribution around holes in C-f/SiCm and SiCf/SiCm has been measured experimentally under plane stress conditions. Using micro-mechanics and Continuum Damage...... Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...
Xu, David; Yuan, Alex; Kaiser, Peter K; Srivastava, Sunil K; Singh, Rishi P; Sears, Jonathan E; Martin, Daniel F; Ehlers, Justis P
2013-01-07
To demonstrate a novel algorithm for macular hole (MH) segmentation and volumetric analysis. A computer algorithm was developed for automated MH segmentation in spectral-domain optical coherence tomography (SD-OCT). Algorithm validation was performed by trained graders with performance characterized by absolute accuracy and intraclass correlation coefficient. A retrospective case series of 56 eyes of 55 patients with idiopathic MHs analyzed using the custom algorithm to measure MH volume, base area/diameter, top area/diameter, minimum diameter, and height-to-base diameter ratio. Five eyes were excluded due to poor signal quality (1), motion artifact (1), and failure of surgical closure (3) for a final cohort of 51 eyes. Preoperative MH measurements were correlated with clinical MH stage, baseline, and 6-month postoperative best-corrected Snellen visual acuity (BCVA). The algorithm achieved 96% absolute accuracy and an intraclass correlation of 0.994 compared to trained graders. In univariate analysis, MH volume, base area, base diameter, top area, top diameter, minimum diameter, and MH height were significantly correlated to baseline BCVA (P value from 0.0003-0.011). Volume, base area, base diameter, and height-to-base diameter ratio were significantly correlated to 6-month postoperative BCVA (P value from volumetric analysis of MH geometry and correlates with baseline and postoperative visual function. Further research is needed to better understand the algorithm's role in prognostication and clinical management.
International Nuclear Information System (INIS)
Molina Martin, Julio Cesar; Rodriguez Rodriguez, Violeta; Mendoza Santiesteban, Carlos
2010-01-01
The case of spontaneous closure of a stage 4 idiopathic macular hole at followed up by Optical Coherence Tomography and microperimetry MP1 before and after the closure was presented. The spontaneous closure of a stage 4 macular hole is rare but it can occur in patients with hole upper diameters less than 150 μm. The OCT and the microperimetry MP1 are very useful tools in the diagnosis, prognosis and follow-up of this maculopathy
Macular hole: 10 and 20-MHz ultrasound and spectral-domain optical coherence tomography
Directory of Open Access Journals (Sweden)
Juliana Mantovani Bottós
2012-12-01
Full Text Available PURPOSE: Optical coherence tomography (OCT is valuable for macula evaluation. However, as this technique relies on light energy it cannot be performed in the presence of opaque media. In such cases, the ultrasound (US may predict some macular features. The aim of this study was to characterize images obtained by ultrasound with 10 and 20-MHz transducers comparing to OCT, as well as to analyze the relationship between the vitreous and retina in eyes with macular hole (MH. METHODS: 29 eyes of 22 patients with biomicroscopic evidence of MH at different stages were included. All patients were evaluated using ultrasonography with 10 and 20-MHz transducers and OCT. RESULTS: OCT identified signs of MH in 25 of 29 eyes. The remaining 4 cases not identified by US were pseudoholes caused by epiretinal membranes. In MH stages I (2 eyes and II (1 eye, both transducers were not useful to analyze the macular thickening, but suggestive findings as macular irregularity, operculum or partial posterior vitreous detachment (PVD were highlighted. In stages III (14 eyes and IV (5 eyes, both transducers identified the double hump irregularity and thickening. US could measure the macular thickness and other suggestive findings for MH: operculum, vitreomacular traction and partial or complete PVD. In cases of pseudoholes, US identified irregularities macular contour and a discrete depression. CONCLUSION: 10-MHz US was useful for an overall assessment of the vitreous body as well as its relationship to the retina. The 20-MHz transducer allowed valuable information on the vitreomacular interface and macular contour. OCT provides superior quality for fine morphological study of macular area, except in cases of opaque media. In these cases, and even if OCT is not available, the combined US study is able to provide a valid evaluation of the macular area improving therapeutic approach.
Kumar, Atul; Kakkar, Prateek; Ravani, Raghav Dinesh; Markan, Ashish
2017-07-14
Macular hole-associated retinal detachment in high myopia is described as a final stage in progression of myopic traction maculopathy (MTM). 1â€"3 Shimada et al 4 described the progressive stages of MTM from macular retinoschisis to serous retinal detachment in high myopia. Stage 4 MTM is characterised as disappearance of retinoschisis with progression to retinal detachment due to macular hole formation. It is hypothesised that vitreoschisis and abnormal vitreo-retinal interface create the premacular tangential traction. 5 6 Intraoperative triamcinolone acetonide is used to visualise the residual posterior vitreous cortex (PVC). We hereby describe the utility of microscope-integrated optical coherence tomography (MIOCT) in assisting complete removal of PVC and internal limiting membrane (ILM) peeling with multilayered inverted ILM flap in the treatment of myopic macular hole retinal detachment. MIOCT helped identify vitreoschisis and confirm the position of ILM flaps over the macular hole intraoperatively. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Worm, Paulo Valdeci; Ferreira, Nelson Pires; Ferreira, Marcelo Paglioli; Kraemer, Jorge Luiz; Lenhardt, Rene; Alves, Ronnie Peterson Marcondes; Wunderlich, Ricardo Castilho; Collares, Marcus Vinicius Martins
2012-05-01
Current methods to evaluate the biologic development of bone grafts in human beings do not quantify results accurately. Cranial burr holes are standardized critical bone defects, and the differences between bone powder and bone grafts have been determined in numerous experimental studies. This study evaluated quantitative computed tomography (QCT) as a method to objectively measure cranial bone density after cranial reconstruction with autografts. In each of 8 patients, 2 of 4 surgical burr holes were reconstructed with autogenous wet bone powder collected during skull trephination, and the other 2 holes, with a circular cortical bone fragment removed from the inner table of the cranial bone flap. After 12 months, the reconstructed areas and a sample of normal bone were studied using three-dimensional QCT; bone density was measured in Hounsfield units (HU). Mean (SD) bone density was 1535.89 (141) HU for normal bone (P holes is an excellent model to accurately measure the quality of new bone in cranial reconstructions and also seems to be an appropriate choice of experimental model to clinically test any cranial bone or bone substitute reconstruction.
International Nuclear Information System (INIS)
Allan, C.J.; Keller, N.A.; Lupton, L.R.; Taylor, T.; Tonner, P.D.
1984-10-01
Tomography is a non-intrusive imaging technique being developed at CRNL as an industrial tool for generating quantitative cross-sectional density maps of objects. Of most interest is tomography's ability to: distinguish features within complex geometries where other NDT techniques fail because of the complexity of the geometry; detect/locate small density changes/defects within objects, e.g. void fraction measurements within thick-walled vessels, shrink cavities in castings, etc.; provide quantitative data that can be used in analyses, e.g. of complex processes, or fracture mechanics; and provide objective quantitative data that can be used for (computer-based) quality assurance decisions, thereby reducing and in some cases eliminating the present subjectivity often encountered in NDT. The CRNL program is reviewed and examples are presented to illustrate the potential and the limitations of the technology
Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian
2018-01-01
Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497
Directory of Open Access Journals (Sweden)
Bernd Lennartz
2012-11-01
Full Text Available Kettle holes, small inland water bodies usually less than 1 ha in size, are subjected to pollution, drainage, and structural alteration by intensive land use practices. This study presents the analysis of spectral signatures from kettle holes based on in situ water sampling and reflectance measurements in application for chlorophyll estimation. Water samples and surface reflectance from kettle holes were collected from 6 ponds in 15 field campaigns (5 in 2007 and 10 in 2008, resulting in a total of 80 spectral datasets. We assessed the existing semi-empirical algorithms to determine chlorophyll content for different types of kettle holes using seasonal and cross-seasonal volume reflectance and derivative spectra. Based on this analysis and optical properties of water leaving reflectance from kettle holes, the following typology of the remote signal interpretation was proposed: Submerged vegetation, Phytoplankton dominated and Mixed type.
International Nuclear Information System (INIS)
A. Umari; J.D. Earle; M.F. Fahy
2006-01-01
As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 x 10 -2 for an individual flow path to 2.0 x 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer
Low-frequency instabilities of electron-hole plasmas in crossed fields
International Nuclear Information System (INIS)
Schneider, W.; Kirchesch, P.
1978-01-01
Using local point-contact probes, we observed two types of low-frequency instabilities in n-InSb at 85 K if the samples were exposed to crossed fields. One is a local density instability with threshold frequencies of f = 1 ... 20 Mc, the other a more turbulent current instability. The threshold values of U 0 and B for the onset of these instabilities and the dependence of their amplitudes on the fields have been measured. If a rectangular semiconductor slab is placed in crossed fields, regions of high electric field strength at opposite edges of the contacts are caused by the distortion of the Hall field, giving rise to the generation of electron-hole plasmas by impact ionization. These plasmas are the sources of the observed instabilities. This is especially evident in the case of the local density instability, which originates at the anode high field corner. Several possible reasons for the development of the instabilities are discussed. (orig.) [de
Detecting cross-hole wave interactions and charge malfunctions in underground shots
Energy Technology Data Exchange (ETDEWEB)
Wieland, M.S.
1995-12-31
This report discusses measurement techniques utilized in and trend results obtained from research on delay blasting malfunctions in underground coal shots at the US Bureau of Mines. Charge malfunctions occur during delay blasting in underground or surface mines, rendering the explosive operations more hazardous and less productive. Modern instrumentation techniques reveal several types of reduced charge performance, resulting from cross-hole interactions. Two receptor (wave-target) charge malfunctions were detected in fourteen shots that were undeniable. There were other receptor charges that exhibited under-performance by registering out-of-tolerance or noticeably reduced detonation rates. Delay blasting generates tremendous shock waves and rifting forces that fracture and heave the surrounding stratum and unfortunately damage remaining unfired charges. This report contains two graphs, representing roughly 1% of total records, that show donor (wave-source) charge shock waves and rift (reaction-to-heave) compressions. These debilitating wave impacts precipitate modes of reduced charge performance ranging from weak detonations or misfires to sympathetic detonations. Roughly twenty channels of synchronous traces with 250,000 points each were taken per underground coal-mine shot. The total spectrum of gauge information relates receptor charge performance to the registered wave impact conditions. Such correlations uncover the dominant damage mechanisms, and furnish understanding to remedy charge malfunctions. Reducing charge malfunctions in delay blasting would raise the charge work output, reduce unwanted work-site problems like poor muckpiles or roof/rib damage, and minimize the risk of hazards and incidents stemming from inferior charge performance.
VSP [Vertical Seismic Profiling] and cross hole tomographic imaging for fracture characterization
International Nuclear Information System (INIS)
Majer, E.L.; Peterson, J.E.; Myer, L.R.; Karasaki, K.; Daley, T.M.; Long, J.C.S.
1989-09-01
For the past several years LBL has been carrying out experiments at various fractured rock sites to determine the fundamental nature of the propagation of seismic waves in fractured media. These experiments have been utilizing high frequency (1000 to 10000 Hz.) signals in a cross-hole configuration at scales of several tens of meters. Three component sources and receivers are used to map fracture density, and orientation. The goal of the experiments has been to relate the seismological parameters to the hydrological parameters, if possible, in order to provide a more accurate description of a starting model for hydrological characterization. The work is ultimately aimed at the characterization and monitoring of the Yucca Mountain site for the storage of nuclear waste. In addition to these controlled experiments multicomponent VSP work has been carried out at several sites to determine fracture characteristics. The results to date indicate that both P-wave and S-wave can be used to map the location of fractures. In addition, fractures that are open and conductive are much more visible to seismic waves that non-conductive fractures. The results of these tests indicate direct use in an unsaturated environment. 12 refs., 10 figs
Persaud, Elisha; Levison, Jana; Pehme, Peeter; Novakowski, Kentner; Parker, Beth
2018-01-01
In order to continually improve the current understanding of flow and transport in crystalline bedrock environments, developing and improving fracture system characterization techniques is an important area of study. The presented research examines the installation of flexible, impermeable FLUTe™ liners as a means for assessing cross-hole fracture connectivity. FLUTe™ liners are used to generate a new style of hydraulic pulse, with pressure response monitored in a nearby network of open boreholes drilled in gneissic rock of the Canadian Shield in eastern Ontario, Canada. Borehole liners were installed in six existing 10-15 cm diameter boreholes located 10-35 m apart and drilled to depths ranging between 25-45 m. Liner installation tests were completed consecutively with the number of observation wells available for each test ranging between one and six. The collected pressure response data have been analyzed to identify significant groundwater flow paths between source and observation boreholes as well as to estimate inter-well transmissivity and storativity using a conventional type-curve analysis. While the applied solution relies on a number of general assumptions, it has been found that reasonable comparison can be made to previously completed pulse interference and pumping tests. Results of this research indicate areas where method refinement is necessary, but, nonetheless, highlight the potential for use in crystalline bedrock environments. This method may provide value to future site characterization efforts given that it is complementary to, and can be used in conjunction with, other currently employed borehole liner applications, such as the removal of cross-connection at contaminated sites and the assessment of discrete fracture distributions when boreholes are sealed, recreating natural hydraulic gradient conditions.
Lee, Jaemin; Ameen, Shahid; Lee, Changjin
2016-04-01
After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.
Aguirre, A. D.; Chen, Y.; Ruvinskaya, L.; Devor, A.; Boas, D. A.; Fujimoto, J. G.
2005-08-01
Simultaneous optical coherence tomography (OCT) and video microscopy were performed on the rat somatosensory cortex through a thinned skull during forepaw stimulation. Fractional change measurements in OCT images reveal a functional signal timecourse similar to well understood hemodynamic signal timecourses measured with video microscopy. The precise etiology of the observed OCT functional signal is still under investigation, but these results suggest that OCT can provide high-resolution cross-sectional images of functional neuro-vascular activation.
International Nuclear Information System (INIS)
1985-01-01
Already widely accepted in medicine, tomography can also be useful in industry. The theory behind tomography and a demonstration of the technique to inspect a motorcycle carburetor is presented. To demonstrate the potential of computer assisted tomography (CAT) to accurately locate defects in three dimensions, a sectioned 5 cm gate valve with a shrink cavity made visible by the sectioning was tomographically imaged using a Co-60 source. The tomographic images revealed a larger cavity below the sectioned surface. The position of this cavity was located with an in-plane and axial precision of approximately +-1 mm. The volume of the cavity was estimated to be approximately 40 mm 3
Directory of Open Access Journals (Sweden)
A.C. Nepomuceno
Full Text Available ABSTRACT Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20ºC then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species.
Energy Technology Data Exchange (ETDEWEB)
Nepomuceno, A.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Zanatta, R. [Universidade de Cuiaba, MT (Brazil); Chung, D.G.; Costa, P.F.; Feliciano, M.A.R.; Avante, M.L.; Canola, J.C., E-mail: marcusfeliciano@yahoo.com.br [Faculdade de Ciencias Agrarias e Veterinarias, Jaboticabal, SP (Brazil); Lopes, L.S. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil)
2016-09-15
Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT) examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20 deg C then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species. (author)
International Nuclear Information System (INIS)
Nepomuceno, A.C.; Zanatta, R.; Chung, D.G.; Costa, P.F.; Feliciano, M.A.R.; Avante, M.L.; Canola, J.C.; Lopes, L.S.
2016-01-01
Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT) examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20 deg C then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species. (author)
Neshandar Asli, Hamid; Dalili Kajan, Zahra; Gholizade, Fatemeh
2018-02-21
Cement-retained implant-supported restorations have advantages over screw-retained restorations but are difficult to retrieve. Identifying the approximate location of the screw access hole (SAH) may reduce damage to the prosthesis. The purpose of this in vitro study was to evaluate the ability of cone beam computed tomography (CBCT) imaging to determine the location and direction of SAHs in cement-retained implant prostheses. Five clear acrylic resin casts were made based on a mandibular model. Several implant osteotomies (n=30) were created on the models with surgical burs, and crowns were made using the standard laboratory method with a transfer coping and the closed tray impression technique. CBCT images from the acrylic resin casts were evaluated by a maxillofacial radiologist who was blind to the locations and angles of the osteotomies. The locations of the access holes were determined on multiplanar reconstruction images and transferred to the clinical crown surface as defined points. Based on cross-sectional images, the predicted angle of the access hole was provided to a prosthodontist who was requested to pierce the crown at the proposed location in the specified direction. If the location and/or direction of the access hole were found, the process was considered successful, as the crown could then be removed from the implant abutment through the SAH. The success rate in the detection of the location and direction of the SAH was calculated, and chi-square and Fisher exact tests were applied for data analysis (α=.05). According to the results of this study, the success rate of CBCT to define the location of SAHs was 83.3% and 80% to determine the direction. No significant differences were found among the different dental groups in determination of the location (P=.79) or the direction (P=.53) of the SAHs. Most of the failures in determining the location and direction of the access hole in the buccolingual and mesiodistal directions were in the buccal and
Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI
Energy Technology Data Exchange (ETDEWEB)
Martin, Andrew J., E-mail: andy.martin@globalfoundries.com; Weng, Weihao; Zhu, Zhengmao; Loesing, Rainer; Shaffer, James; Katnani, Ahmad
2016-02-15
Sample preparation for atom probe tomography of 3D semiconductor devices has proven to significantly affect field evaporation and the reliability of reconstructed data. A cross-sectional preparation method is applied to state-of-the-art Si finFET technology on SOI. This preparation approach advantageously provides a conductive path for voltage and heat, offers analysis of many fins within a single tip, and improves resolution across interfaces of particular interest. Measured B and Ge profiles exhibit good correlation with SIMS and EDX and show no signs of B clustering or pile-up near the Si/SiGe interface of the fin. - Highlights: • Cross-section atom probe tomography sample preparation of fins on SOI. • >5 fins captured in single atom probe tip via cross-section method. • Oxides affect collection efficiency, reconstruction accuracy, and data reliability. • Sample orientation affects field evaporation of dissimilar materials. • Data is well-matched to SIMS and EDX analysis.
Directory of Open Access Journals (Sweden)
O. S. Streltsova
2014-07-01
Full Text Available Whether cross-polarization (CP optical coherence tomography (OCT could be used to detect early bladder cancer was ascertained; it was compared with traditional OCT within the framework of blind (closed clinical statistical studies. One hundred and sixteen patients with local nonexophytic (flat pathological processes of the bladder were examined; 360 CP OCT images were obtained and analyzed. The study used an OCT 1300-U CP optical coherence tomographer. CP OCT showed a high (94% sensitivity and a high (84% specificity in the identification of suspected nonexophytic areas in the urinary bladder.
International Nuclear Information System (INIS)
Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Juergen; Meyer, Hans-Georg; Toepfer, Hannes
2013-01-01
As the complexity of rapid single flux quantum (RSFQ) circuits increases, both current and power consumption of the circuits become important design criteria. Various new concepts such as inductive biasing for energy efficient RSFQ circuits and inductively coupled RSFQ cells for current recycling have been proposed to overcome increasingly severe design problems. Both of these techniques use ground plane holes to increase the inductance or coupling factor of superconducting integrated circuit wires. New design tools are consequently required to handle the new topographies. One important issue in such circuit design is the accurate calculation of networks of inductances even in the presence of finite holes in the ground plane. We show how a fast network extraction method using InductEx, which is a pre- and post-processor for the magnetoquasistatic field solver FastHenry, is used to calculate the inductances of a set of SQUIDs (superconducting quantum interference devices) with ground plane holes of different sizes. The results are compared to measurements of physical structures fabricated with the IPHT Jena 1 kA cm −2 RSFQ niobium process to verify accuracy. We then do a parameter study and derive empirical equations for fast and useful estimation of the inductance of wires surrounded by ground plane holes. We also investigate practical circuits and show excellent accuracy. (paper)
Directory of Open Access Journals (Sweden)
Guangchao Li
2012-12-01
Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.
Hagihara, Kazuki; Taniguchi, Rikiya; Yamanaka, Eiji; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya
2017-07-01
Nanoimprint lithography (NIL) is one of the highest potential candidates for next generation lithography in semiconductors. NIL is very useful technology for pattern fabrication in high resolution compared to conventional optical lithography. NIL technology makes use of replication from quartz templates. The cross-sectional profile of the template is directly transferred to the resist profile on a wafer. Accordingly, the management of the cross-sectional profile on the template pattern is much more important than on each photomask. In our previous report, we had studied the performance of measuring cross-sectional profiles using grazing-incidence small-angle X-ray scattering (GISAXS). GISAXS has made it possible to analyze the repeated nanostructure patterns with a 2D X-ray scattering pattern. After various researches, we found the application is very effective in the method of cross-sectional profiling of sub-20 nm half-pitch lines-and-spaces (LS) patterns. In this report, we investigated the capabilities of measuring cross-sectional profiles for hole patterns using GISAXS. Since the pattern density of hole patterns is much lower than that of LS patterns, the intensity of X-ray scattering in hole measurements is much lower. We optimized some measurement conditions to build the hole measurement system. Finally, the results suggested that 3D profile measurement of hole pattern using GISAXS has sufficient performance to manage the cross-sectional profile of template. The measurement system using GISAXS for measuring 3D profiles establishes the cross-sectional profile management essential for the production of high quality quartz hole templates.
Cross-sectional atom probe tomography sample preparation for improved analysis of fins on SOI.
Martin, Andrew J; Weng, Weihao; Zhu, Zhengmao; Loesing, Rainer; Shaffer, James; Katnani, Ahmad
2016-02-01
Sample preparation for atom probe tomography of 3D semiconductor devices has proven to significantly affect field evaporation and the reliability of reconstructed data. A cross-sectional preparation method is applied to state-of-the-art Si finFET technology on SOI. This preparation approach advantageously provides a conductive path for voltage and heat, offers analysis of many fins within a single tip, and improves resolution across interfaces of particular interest. Measured B and Ge profiles exhibit good correlation with SIMS and EDX and show no signs of B clustering or pile-up near the Si/SiGe interface of the fin. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Laila Gonzales Freire
2012-06-01
Full Text Available The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (µCT. Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections, teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (µCT, teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF system (SybronEndo, Orange, USA, and mesiolingual canals, with the EndoSequence (ES system (Brasseler, Savannah, USA. Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05. The canal transportation results were significantly lower (0.056 mm in G2 than in G1 (0.089 mm (p = 0.0012. The µCT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.
Freire, Laila Gonzales; Gavini, Giulio; Cunha, Rodrigo Sanches; Santos, Marcelo dos
2012-01-01
The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (µCT). Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections), teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (µCT), teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF) system (SybronEndo, Orange, USA), and mesiolingual canals, with the EndoSequence (ES) system (Brasseler, Savannah, USA). Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05). The canal transportation results were significantly lower (0.056 mm) in G2 than in G1 (0.089 mm) (p = 0.0012). The µCT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.
Hawking versus Unruh effects, or the difficulty of slowly crossing a black hole horizon
Energy Technology Data Exchange (ETDEWEB)
Barbado, Luis C. [Quantenoptik, Quantennanophysik und Quanteninformation, Fakultät für Physik,Universität Wien, Boltzmanngasse 5, 1090 Wien (Austria); Departamento de Astronomía Extragaláctica, Instituto de Astrofísica de Andalucía (CSIC),Glorieta de la Astronomía s/n, 18008 Granada (Spain); Barceló, Carlos [Departamento de Astronomía Extragaláctica, Instituto de Astrofísica de Andalucía (CSIC),Glorieta de la Astronomía s/n, 18008 Granada (Spain); Garay, Luis J. [Departamento de Física Teórica II, Facultad de Ciencias Fśicas,Universidad Complutense de Madrid, Ciudad Universitaria,Plaza Ciencias 1, 28040 Madrid (Spain); Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia (CSIC),Serrano 121, 28006 Madrid (Spain); Jannes, Gil [Departamento de Ciencias y Tecnología, Universidad Europea de Madrid,Calle Tajo s/n, 28670 Villaviciosa de Odón, Madrid (Spain)
2016-10-28
When analyzing the perception of Hawking radiation by different observers, the Hawking effect becomes mixed with the Unruh effect. The separation of both effects is not always clear in the literature. Here we propose an inconsistency-free interpretation of what constitutes a Hawking effect and what an Unruh effect. An appropriate interpretation is important in order to elucidate what sort of effects a detector might experience depending on its trajectory and the state of the quantum field. Under simplifying assumptions we introduce an analytic formula that separates these two effects. Armed with the previous interpretation we argue that for a free-falling detector to cross the horizon without experiencing high-energy effects, it is necessary that the horizon crossing is not attempted at low velocities.
Terahertz Computed Tomography of NASA Thermal Protection System Materials
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2011-01-01
A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.
Modeling techniques for cross-hole seismic monitoring of CO2 injection in a deep saline aquifer
Da, Federico, ,, Col; Gei, Davide
2017-04-01
In this work, we present a modelling technique for a synthetic, yet realistic, 2D cross-hole seismic monitoring experiment for CO2 injection in a deep saline aquifer. We implement a synthetic (2D) geological formation consisting of a sandstone aquifer, with shaly mudstone intrusions, embedded in very low permeability shales. The aquifer has its top at about 800 m b.s.l., is approximately 200 m thick and it extends about 800 m in the horizontal direction.The formation is very heterogenous with respect to all petrophysical and hydrological properties; furthermore, we consider the grains to be a mixture of quartz and clay. Injection of the CO2 and the propagation of the plume is modelled using STOMP commercial software. The algorithm solves the mass balance equation for wetting and non-wetting phase fluids, as well as for the dissolved salt. It considers advection via Darcy's equation extended to two phase flow and molecular diffusion. Furthermore, dissolution of the CO2 in the brine is considered. We assume the aquifer to be initially in hydrostatic equilibrium and we inject pure CO2 for 2 years. We then compute phase p-wave velocities and quality factor by means of White's mesoscopic theory, which assumes that the partially saturated pore consists of two concentrical spheres; the inner saturated with gas, the outer saturated with brine. Using this p-wave velocity and quality factor map, we compute synthetic cross-hole seismograms by means of a visco-acoustic modelling code. We perform 80 shots along the left borehole, with a source spacing of 5 metres. We then pick the first arrivals (direct wave) on the seismograms and we perform a tomographic inversion using cat3d software. We invert for straight rays, updating the velocity model with a SIRT algorithm at each iteration. Due to the mainly horizontal orientation of the velocity anomalies, we select to invert only for rays having an angle lower than 30° with the horizontal direction. The algorithm converged well
International Nuclear Information System (INIS)
Kamburoglu, K.; Murat, S.; Kolsuz, E.; Kurt, H.; Paksoy, C.; Yueksel, S.
2011-01-01
Since the introduction of cone-beam computed tomography (CBCT), several novel systems with different technical specifications and settings have become commercially available. Therefore, it is essential to evaluate CBCT systems for differences in the subjective quality of images obtained for various dental procedures. We evaluated the subjective image quality of cross-sectional scans obtained from various CBCT systems. Images of three cadaver mandibles were obtained from four different CBCT units: Veraviewepocs 3D 40 x 40 mm field of view (FOV) (voxel size: 0.125 x 0.125 x 0.125 mm), Iluma, low-resolution (voxel size: 0.3 x 0.3 x 0.3 mm), Kodak, 50 x 3.7 cm field of view (FOV) (voxel size: 0.076 x 0.076 x 0.076 mm), and Vatech 12 x 8.5 cm FOV (voxel size: 0.160 x 0.160 x 0.160 mm). We assessed subjective image quality and the visibility of 10 specific features, namely, caries, amalgam restoration, final implant drill, root canal filling, metal crown, mandibular canal, mental foramen, tooth (periodontal ligament space and lamina dura), trabecular pattern, and soft tissue. Images were viewed and scored by five calibrated observers, and image quality was ranked from best to worst. The Veraviewepocs 3D had the highest quality images for most of the assessed features, whereas the Iluma low-resolution scans were rated as the lowest quality images. (author)
International Nuclear Information System (INIS)
Majer, E.L.; Peterson, J.E.; Tura, M.A.; McEvilly, T.V.
1990-01-01
In order to obtain the necessary characterization for the storage of nuclear waste, much higher resolution of the features likely to affect the transport of radionuclides will be required than is normally achieved in conventional surface seismic reflection used in the exploration and characterization of petroleum and geothermal resources. Because fractures represent a significant mechanical anomaly seismic methods using are being investigated as a means to image and characterize the subsurface. Because of inherent limitations in applying the seismic methods solely from the surface, state-of-the-art borehole methods are being investigated to provide high resolution definition within the repository block. Therefore, Vertical Seismic Profiling (VSP) and cross-hole methods are being developed to obtain maximum resolution of the features that will possible affect the transport of fluids. Presented here will be the methods being developed, the strategy being pursued, and the rational for using VSP and crosshole methods at Yucca Mountain. The approach is intended to be an integrated method involving improvements in data acquisition, processing, and interpretation as well as improvements in the fundamental understanding of seismic wave propagation in fractured rock. 33 refs., 4 figs
Rapisarda, S.; Ingram, A.; van der Klis, M.
2017-08-01
Timing properties of black hole X-ray binaries in outburst can be modelled with mass accretion rate fluctuations propagating towards the black hole. Such models predict time lags between energy bands due to propagation delays. First application of a propagating fluctuations model to black hole power spectra showed good agreement with the data. Indeed, hard lags observed from these systems appear to be in agreement with this generic prediction. Our propfluc code allows us to simultaneously predict power spectra, time lags and coherence of the variability as a function of energy. This was successfully applied to the Swift data on the black hole MAXI J1659-152, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. In this work, we attempt to model two high signal-to-noise Rossi X-ray Timing Explorer (RXTE) observations of the black hole XTE J1550-564. We find that neither observation can be adequately explained by the model even when considering, additionally to previous propfluc versions, different propagation speeds of the fluctuations. After extensive exploration of model extensions, we tentatively conclude that the quantitative and qualitative discrepancy between model predictions and data is generic to the propagating fluctuations paradigm. This result encourages further investigation of the fundamental hypotheses of the propagating fluctuations model. We discuss some of these hypotheses with an eye to future works.
van der Burg, Pauline S.; Miedema, Martijn; de Jongh, Franciscus H.C.; Frerichs, Inez; van Kaam, Anton H.
2014-01-01
Objective: Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and
van der Burg, Pauline S.; Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Kaam, Anton H.
2014-01-01
Electrical impedance tomography measures lung volume in a cross-sectional slice of the lung. Whether these cross-sectional volume changes are representative of the whole lung has only been investigated in adults, showing conflicting results. This study aimed to compare cross-sectional and whole lung
Diagnostic potential of iris cross-sectional imaging in albinism using optical coherence tomography.
Sheth, Viral; Gottlob, Irene; Mohammad, Sarim; McLean, Rebecca J; Maconachie, Gail D E; Kumar, Anil; Degg, Christopher; Proudlock, Frank A
2013-10-01
To characterize in vivo anatomic abnormalities of the iris in albinism compared with healthy controls using anterior segment optical coherence tomography (AS-OCT) and to explore the diagnostic potential of this technique for albinism. We also investigated the relationship between iris abnormalities and other phenotypical features of albinism. Prospective cross-sectional study. A total of 55 individuals with albinism and 45 healthy controls. We acquired 4.37×4.37-mm volumetric scans (743 A-scans, 50 B-scans) of the nasal and temporal iris in both eyes using AS-OCT (3-μm axial resolution). Iris layers were segmented and thicknesses were measured using ImageJ software. Iris transillumination grading was graded using Summers and colleagues' classification. Retinal OCT, eye movement recordings, best-corrected visual acuity (BCVA), visual evoked potential (VEP), and grading of skin and hair pigmentation were used to quantify other phenotypical features associated with albinism. Iris AS-OCT measurements included (1) total iris thickness, (2) stroma/anterior border (SAB) layer thickness, and (3) posterior epithelial layer (PEL) thickness. Correlation with other phenotypical measurements, including (1) iris transillumination grading, (2) retinal layer measurements at the fovea, (3) nystagmus intensity, (4) BCVA, (5) VEP asymmetry, (6) skin pigmentation, and (7) hair pigmentation (of head hair, lashes, and brows). The mean iris thickness was 10.7% thicker in controls (379.3 ± 44.0 μm) compared with the albinism group (342.5 ± 52.6 μm; P>0.001), SAB layers were 5.8% thicker in controls (315.1 ± 43.8 μm) compared with the albinism group (297.7 ± 50.0 μm; P=0.044), and PEL was 44.0% thicker in controls (64.1 ± 11.7 μm) compared with the albinism group (44.5 ± 13.9 μm; Palbinism. Phenotypic features of albinism, such as skin and hair pigmentation, BCVA, and nystagmus intensity, were significantly correlated to AS-OCT iris thickness measurements. We have
DEFF Research Database (Denmark)
Willerslev, Anne; Li, Xiao Qiang; Munch, Inger Christine
2018-01-01
PURPOSE: To examine retinal blood flow at arteriovenous crossings using spectral-domain optical coherence tomography (SD-OCT). METHODS: Retrospective observational case series of 11 arteriovenous crossings in 10 eyes examined by SD-OCT and fluorescein angiography on suspicion of manifest or immin...
Computer tomography and calculation of bone biomechanics in cross-sections of long bones
Czech Academy of Sciences Publication Activity Database
Sailer, R.; Sládek, Vladimír; Berner, M.; Estl, M.
Supplement 36, - (2003), s. 182 ISSN 0002-9483. [Annual meeting of the American Association of Physical Anthropologists /72./. 23.04.2003-26.04.2003, Tempe] Institutional research plan: CEZ:AV0Z6093917 Keywords : computer tomography * biomechanical analysis Subject RIV: AC - Archeology, Anthropology , Ethnology
International Nuclear Information System (INIS)
Feast, M.W.
1981-01-01
This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied
International Nuclear Information System (INIS)
Werner, Clement M.L.; Copeland, Carol E.; Stromberg, Jeff; Ruckstuhl, Thomas
2010-01-01
To find a correlation between the cross-over ratio of the cross-over sign on conventional anteroposterior (AP) pelvic radiographs and retroversion measurements ('roof-edge angle' and 'equatorial-edge angle) on computed tomography (CT) scans. This would facilitate the interpretation of the cross-over sign regarding the amount of acetabular retroversion. Correctly projected AP pelvic radiographs (2,925 hips) were examined for the presence of the cross-over sign (COS), and the overlap ratio of the COS was measured. On CT scans of the same patients the 'roof-edge angle' (RE angle) and the 'equatorial-edge angle' (EE angle) were also calculated. A statistically significant but only weak relationship could be found between the overlap ratio of the COS and the 'roof-edge angle' (P < 0.0001; correlation coefficient -0.486) and between this ratio and the 'equatorial-edge angle' (P < 0.0001; correlation coefficient -0.395). A relationship between the overlap ratio and orientation measurements on CT scans could be found, but it was less strong than expected. (orig.)
Nielsen, Lars; Looms, Majken C.; Hansen, Thomas M.; Cordua, Knud S.; Stemmerik, Lars
2010-05-01
Carbonates found in the near-surface of southeast Zealand, eastern Denmark, are analogous to deposits serving as groundwater and hydrocarbon reservoirs in the Danish region. The study site is located in the Boesdal limestone quarry. A 20 by 20 m area of the bottom of the quarry was levelled using a bulldozer, and a grid of 100 MHz and 250 Mhz reflection profiles were collected to facilitate geological interpretation of structures in the uppermost part of the subsurface. Secondly, four 15 m deep boreholes were drilled in a square geometry with side lengths of 5 m. Core material was recovered from the boreholes for lithological control and to facilitate laboratory measurements of porosity and permeability. Cross-hole GPR data were collected between boreholes with 100 MHz Sensors&Software antennae. The distance between source and receiver antenna positions in the boreholes was set to 0.25 m. Mounded features observed in the upper ca. 7 m of the subsurface imaged by the reflection GPR data are interpreted to represent bryozoan mounds similar to mounds mapped by others along cliff and quarry profiles close to our study site. Below the base of the mounds, the reflection signals become too weak to facilitate deeper imaging of the carbonates. The section studied with the cross-hole data is water-saturated. Simple 1D modelling of the cross-hole data indicates a strong drop in GPR velocity at 7 to 8 m depth. Different 2D inversion strategies are tested for fine scale resolution of the inter-borehole heterogeneity. Sequential simulation strategies seem to be successful with respect to extracting well-defined correlation lengths and variance estimates of the velocity fluctuations. A strategy in which the intervals above and below 8 m depth are treated as separate heterogeneous media appears to be more successful in generating well-defined statistical parameters for the GPR velocity field of the subsurface than the typical strategy in which the total rock section covered by the
Jones, R.; Aparicio, C.; Chityala, R.; Chen, R.; Fok, A.; Rudney, J.
2012-01-01
A cross-polarization 1310-nm optical coherence tomography system (CP-OCT), using a beam splitter based design, was used to assess ex vivo growth of complex multi-species dental biofilms. These biofilm microcosms were derived from plaque samples along the interface of composite or amalgam restoration in children with a history of early childhood caries. This paper presents a method of measuring the mean biofilm height of mature biofilms using CP-OCT. For our in vivo application, the novel swept source based CP-OCT intraoral probe (Santec Co. Komaki, Japan) dimensions and system image acquisition speed (20 image frames/second) allowed imaging pediatric subjects as young as 4 years old. The subsurface enamel under the interface of composite resin restorations of pediatric subjects were imaged using CP-OCT. Cavitated secondary caries is clearly evident from sound resin composite restorations.
Fujiwara, Kazuo; Matoba, Osamu
2011-12-01
A common-path swept-source optical coherence tomography (SS-OCT) is a promising scheme for implementing a high-speed and stable OCT system. We investigate the capability of a common-path SS-OCT system to perform the cross-sectional imaging of valuable documents translated at high speed for the check of its security feature. The influence of transport speeds, up to 2000 mm/s, on the depth resolution and the signal intensity is experimentally evaluated using a SS-OCT system equipped with a swept source at a center wavelength of 1335 nm and with a sweep repetition rate of 50 kHz. The degradation of the measured signal is in good agreement with theory. © 2011 Optical Society of America
International Nuclear Information System (INIS)
Makihara, Masahiro; Nishikawa, Keiichi; Kuroyanagi, Kinya
2001-01-01
To clarify the validity of cross-sectional imaging with rotational panoramic x-ray machine for preoperative assessment of the dental implant site, the imaging properties were compared with those of spiral tomography and multi-planer reconstruction (MPR) manipulation of x-ray computed tomography. Cross-sectional imaging of the maxilla and mandible of an edentulous dry skull was performed by each technique at an image layer thickness of 1 mm. Steel spheres were used to identify cross-sectional planes and measure distance. Six oral radiologists scored the image clarity of structures with 5-grade rating scales and measured the distance between images of 2 steel spheres. Each measured distance was divided by the magnification factor. The actual distance was also measured on the skull. The score and the distance were statistically compared. The Spearman's rank correlation coefficients for the score and the absolute values of the difference in distances measured by different observers were calculated as test units to compare inter-observer agreements statistically. The same observation and measurement were repeated to compare intra-observer agreement. Image clarity of the linear tomography available with a panoramic machine was comparable to spiral tomography and superior to MPR, except for the cortical bone on the lingual side. The inter- and intra-observer agreements were comparable. The accuracy for measurement of distance, the inter- and intra-observer agreements were also comparable to the spiral tomography and superior to those of MPR. Therefore, it is concluded that cross-sectional imaging with a rotational panoramic x-ray machine is useful for preoperative assessment of the dental implant site. (author)
Zhou, C.; Liu, L.; Lane, J.W.
2001-01-01
A nonlinear tomographic inversion method that uses first-arrival travel-time and amplitude-spectra information from cross-hole radar measurements was developed to simultaneously reconstruct electromagnetic velocity and attenuation distribution in earth materials. Inversion methods were developed to analyze single cross-hole tomography surveys and differential tomography surveys. Assuming the earth behaves as a linear system, the inversion methods do not require estimation of source radiation pattern, receiver coupling, or geometrical spreading. The data analysis and tomographic inversion algorithm were applied to synthetic test data and to cross-hole radar field data provided by the US Geological Survey (USGS). The cross-hole radar field data were acquired at the USGS fractured-rock field research site at Mirror Lake near Thornton, New Hampshire, before and after injection of a saline tracer, to monitor the transport of electrically conductive fluids in the image plane. Results from the synthetic data test demonstrate the algorithm computational efficiency and indicate that the method robustly can reconstruct electromagnetic (EM) wave velocity and attenuation distribution in earth materials. The field test results outline zones of velocity and attenuation anomalies consistent with the finding of previous investigators; however, the tomograms appear to be quite smooth. Further work is needed to effectively find the optimal smoothness criterion in applying the Tikhonov regularization in the nonlinear inversion algorithms for cross-hole radar tomography. ?? 2001 Elsevier Science B.V. All rights reserved.
Abdinian, Mehrdad; Nazeri, Rahman; Ghaiour, Marzieh
2017-07-01
When a patient has cone beam computed tomography (CBCT) images based on the treatment plan, it is possible to use these images for evaluation of caries, and there is no need for new radiographs, according to the "as low as reasonably achievable" (ALARA) principle. The aim of this study was to determine the effect of filtration and thickness of CBCT cross-sections on detection of proximal caries. In this in-vitro study, 100 teeth were placed in the dental sockets of a dry skull, and were fixed in normal proximal contacts. CBCT images were taken and were evaluated by two observers on the panoramic view at 1-, 3- and 5-mm-thick cross-sections, with the use of filtrations 0, 1 and 2. Afterwards, the samples were sectioned and underwent a histological evaluation. McNemar's test was used to compare the findings on CBCT images and histological evaluation. Receiver operating characteristic (ROC) curves and logistic regression were used to evaluate the diagnostic accuracy of different cross-sections. The maximum AZ-value was achieved at 3-mm thickness/filtration 2. However, the differences between 1-mm thickness/filtration 2 and 1-mm thickness/filtration 1 were not significant (P=0.728 and 0.868, respectively). The minimum AZ-value was achieved at 5-mm thickness/filtration 0. Although CBCT is not sufficiently effective in detecting caries, the best cross-sections for detection of proximal caries were achieved at 3-mm thickness/filtration 2, 1-mm thickness/filtration 2 and 1-mm thickness/filtration 1.
Directory of Open Access Journals (Sweden)
Mehrdad Abdinian
2017-10-01
Full Text Available Objectives: When a patient has cone beam computed tomography (CBCT images based on the treatment plan, it is possible to use these images for evaluation of caries, and there is no need for new radiographs, according to the "as low as reasonably achievable" (ALARA principle. The aim of this study was to determine the effect of filtration and thickness of CBCT cross-sections on detection of proximal caries.Materials and Methods: In this in-vitro study, 100 teeth were placed in the dental sockets of a dry skull, and were fixed in normal proximal contacts. CBCT images were taken and were evaluated by two observers on the panoramic view at 1-, 3- and 5-mm-thick cross-sections, with the use of filtrations 0, 1 and 2. Afterwards, the samples were sectioned and underwent a histological evaluation. McNemar’s test was used to compare the findings on CBCT images and histological evaluation. Receiver operating characteristic (ROC curves and logistic regression were used to evaluate the diagnostic accuracy of different cross-sections.Results: The maximum AZ-value was achieved at 3-mm thickness/filtration 2. However, the differences between 1-mm thickness/filtration 2 and 1-mm thickness/filtration 1 were not significant (P=0.728 and 0.868, respectively. The minimum AZ-value was achieved at 5-mm thickness/filtration 0.Conclusions: Although CBCT is not sufficiently effective in detecting caries, the best cross-sections for detection of proximal caries were achieved at 3-mm thickness/filtration 2, 1-mm thickness/filtration 2 and 1-mm thickness/filtration 1.
Computed Tomography (CT) -- Sinuses
Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography ( ... cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even ...
Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.
2013-01-01
In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations
Clinical monitoring of early caries lesions using cross polarization optical coherence tomography
Fried, Daniel; Staninec, Michal; Darling, Cynthia L.; Chan, Kenneth H.; Pelzner, Roger B.
New methods are needed for the nondestructive measurement of tooth demineralization and remineralization and to monitor the progression of incipient caries lesions (tooth decay) for effective nonsurgical intervention and to evaluate the performance of anti-caries treatments such as chemical treatments or laser irradiation. Studies have shown that optical coherence tomography (OCT) has great potential to fulfill this role, since it can be used to measure the depth and severity of early lesions with an axial resolution exceeding 10-μm. It is easy to apply in vivo and it can be used to image the convoluted topography of tooth occlusal surfaces. In this paper we present early results from two clinical studies underway to measure the effect of fluoride intervention on early lesions. CP-OCT was used to monitor early lesions on enamel and root surfaces before and after intervention with fluoride varnish. The lesion depth and internal structure were resolved for all the lesions examined and some lesions had well defined surface zones of lower reflectivity that may be indicative of arrested lesions. Changes were also noted in the structure of some of the lesions after fluoride intervention.
Gladkova, N. D.; Zagaynova, E. V.; Streltsova, O. S.; Kiseleva, E. B.; Karabut, M. M.; Snopova, L. B.; Yunusova, E. E.; Tararova, E.; Gelikonov, V. M.
2010-02-01
We consider the cross-polarization OCT (CP OCT) that is focused on comparison of images resulting from cross-polarization and co-polarization scattering simultaneously. This technique provides information about microstructural and biochemical alterations in depolarizing tissue components (collagen). We found that mature type I collagen gives a strong signal in orthogonal polarization. CP OCT images of benign inflammatory processes always feature signal in orthogonal polarization, with layers and borders persisting to be well defined. In the presence of precancerous alterations, signal in orthogonal polarization is available in the image but it is irregular, disappearing in some areas. A CP OCT image of bladder cancer in orthogonal polarization either shows no signal at all or a weak signal.
DEFF Research Database (Denmark)
Nielsen, Lars; Looms, Majken Caroline; Hansen, Thomas Mejer
Carbonates found in the near-surface of southeast Zealand, eastern Denmark, are analogous to deposits serving as groundwater and hydrocarbon reservoirs in the Danish region. The study site is located in the Boesdal limestone quarry. A 20 by 20 m area of the bottom of the quarry was levelled using...... successful in generating well-defined statistical parameters for the GPR velocity field of the subsurface than the typical strategy in which the total rock section covered by the cross-hole data is regarded as the same type of medium. Modelling strategies in which porosity data from the boreholes...... are included in the inversion algorithm are tested and compared to the results obtained using the more traditional approaches. The GPR investigations may contribute to setting the framework for future fine-grained models designed to simulate fluid and gas flow in groundwater and hydrocarbon reservoirs....
International Nuclear Information System (INIS)
Yamamoto, Y.L.; Thompson, C.J.; Meyer, E.; Robertson, J.S.; Feindel, W.
1977-01-01
Dynamic positron emission tomographic studies were performed on over 120 patients with occlusive cerebrovascular disease, arteriovenous malformations, and brain tumors, using the positron section scanner, consisting of a ring of 32 scintillation detectors. The radiopharmaceuticals were nondiffusible 68 Ga-EDTA for transit time and uptake studies and the diffusible tracer, 77 Kr, for quantitative regional cerebral blood flow studies in every square centimeter of the cross section of the head. The results of dynamic positron emission tomography in correlation with the results from the gamma scintillation camera dynamic studies and computed tomography (CT) scans are discussed
Dhaini, Ahmad R; Abdul Fattah, Maamoun; El-Oud, Sara Maria; Awwad, Shady T
2018-03-13
To evaluate a proposed technology for offering objective grading and mapping of corneal haze as detected by corneal spectral domain optical coherence tomography after corneal cross-linking. This was a retrospective study to evaluate corneal optical coherence tomography images performed on 44 eyes of 44 patients who underwent corneal cross-linking between January 2014 and May 2015, at the American University of Beirut Medical Center. Overall average brightness of the cornea was markedly increased from 43.4% (±6.0) at baseline to 50.2% (±4.4) at 1 month, 47.9% (±4.4) at 3 months, and 46.4% (±5.7) at 6 months with P <0.001, <0.001, and 0.005, respectively. In the anterior stroma, the average brightness significantly increased at 1, 3, and 6 months with values of 54.8% (±3.9), 52.5% (±5.2), and 49.7% (±6.9) with P <0.001, <0.001, and 0.003, respectively. In the mid stroma, the change was clinically significant at 1 and 3 months, whereas in the posterior stroma, it was only significant at 1 month compared with baseline (P = 0.003). Overall, haze was mostly present at 1 month after surgery in all regions, especially in the anterior (32.1%; ±19.2) and mid stromal regions (9.1%; ±18.8), P <0.001 and 0.001, respectively. In contrast, haze in the posterior stromal region peaks at 3 and 6 months after surgery. Anterior stromal haze was the greatest in intensity and area and it was present for a longer time span than mid and posterior stromal haze. At 12 months, the anterior stroma had still more haze intensity than preoperatively. This image-based software can provide objective and valuable quantitative measurements of corneal haze, which may impact clinical decision-making after different corneal surgeries.
Katterbauer, Klemens
2014-01-01
Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting
Noda, Mitsuaki; Saegusa, Yasuhiro; Takahashi, Masayasu; Takada, Yuma; Fujita, Masahiro; Shinohara, Issei
2017-01-01
In patients with femoral intertrochanteric fractures treated by cephalomedullary (CM) nailing, abduction force reportedly decreased by 25-30% during the postoperative follow-up period. The purpose of the current study is to evaluate the cross-sectional area (CSA) and adipose tissue ratio (ATR) of the gluteus medius muscle on the postoperative computed tomography (CT) view, expecting this graphic study will support clinical results. A total of 27 patients with femoral intertrochanteric fractures treated by CM femoral nail implants completed the study. The mean age at osteosynthesis was 83 years (range: 72-94 years). The mean postoperative follow-up period was 23 months. The three CT axial slice views were defined as slices A, B, and C corresponding to proximal, midway, and distal part of gluteus medius, respectively. The CSA and ATR were assessed bilaterally. The mean and standard deviation of CSA values (mm 2 ) between the nonoperated/ operated side were as follows: slice A: 2225.8 ± 621.2/1984.5 ± 425.8; slice B: 2145.1 ± 538.3/1854.9 ± 383.9; and slice C: 1711.0 ± 459.0/1434.5 ± 396.9 ( p gluteus medius is significantly changed in CSA and ATR. The damage possibly triggers decrease in muscular strength of hip abduction in the postoperative follow-up period. This measurement is objective, and needed no patient's endurance and cooperation.
Amino acid similarity accounts for T cell cross-reactivity and for "holes" in the T cell repertoire
DEFF Research Database (Denmark)
Pletscher-Frankild, Sune; de Boer, Rob J.; Lund, Ole
2008-01-01
Background: Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can recognize highly diverse peptides, some sharing no obvious...... sequence identity. The emerging realization in the field is that T cell receptors (TcR) recognize multiple distinct ligands. Principal Findings: First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is position dependent and that biochemically similar amino...... to demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the tendency to respond mostly to peptides that do not resemble self...
Seismic Travel Time Tomography in Modeling Low Velocity Anomalies between the Boreholes
Octova, A.; Sule, R.
2018-04-01
Travel time cross-hole seismic tomography is applied to describing the structure of the subsurface. The sources are placed at one borehole and some receivers are placed in the others. First arrival travel time data that received by each receiver is used as the input data in seismic tomography method. This research is devided into three steps. The first step is reconstructing the synthetic model based on field parameters. Field parameters are divided into 24 receivers and 45 receivers. The second step is applying inversion process for the field data that consists of five pairs bore holes. The last step is testing quality of tomogram with resolution test. Data processing using FAST software produces an explicit shape and resemble the initial model reconstruction of synthetic model with 45 receivers. The tomography processing in field data indicates cavities in several place between the bore holes. Cavities are identified on BH2A-BH1, BH4A-BH2A and BH4A-BH5 with elongated and rounded structure. In resolution tests using a checker-board, anomalies still can be identified up to 2 meter x 2 meter size. Travel time cross-hole seismic tomography analysis proves this mothod is very good to describing subsurface structure and boundary layer. Size and anomalies position can be recognized and interpreted easily.
Energy Technology Data Exchange (ETDEWEB)
Cappelluti, N.; Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Kashlinsky, A.; Mather, J. C.; Moseley, S. H. [Observational Cosmology Laboratory, Code 665, Goddard Space Flight Center, Greenbelt MD 20771 (United States); Arendt, R. G.; Finoguenov, A. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Fazio, G. G. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Miyaji, T. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Km 103 Carret. Tijunana-Ensenada, Ensenada 22860, BC (Mexico)
2013-05-20
In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an {approx_equal} 8' Multiplication-Sign 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 {mu}m and 4.5 {mu}m and the Chandra [0.5-2] keV data has been detected, at angular scales {approx}> 20'', with an overall significance of {approx_equal} 3.8{sigma} and {approx_equal} 5.6{sigma}, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 {mu}m and 4.5 {mu}m magnitudes m{sub AB} {approx}> 25-26 and [0.5-2] keV X-ray fluxes <<7 Multiplication-Sign 10{sup -17} erg cm{sup 2} s{sup -1}. We determine that at least 15%-25% of the large scale power of the CIB fluctuations is correlated with the spatial power spectrum of the X-ray fluctuations. If this correlation is attributed to emission from accretion processes at both IR and X-ray wavelengths, this implies a much higher fraction of accreting black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations.
Cork quality estimation by using Compton tomography
Brunetti, A; Golosio, B; Luciano, P; Ruggero, A
2002-01-01
The quality control of cork stoppers is mandatory in order to guarantee the perfect conservation of the wine. Several techniques have been developed but until now the quality control was essentially related to the status of the external surface. Thus possible cracks or holes inside the stopper will be hidden. In this paper a new technique based on X-ray Compton tomography is described. It is a non-destructive technique that allows one to reconstruct and visualize the cross-section of the cork stopper analyzed, and so to put in evidence the presence of internal imperfections. Some results are reported and compared with visual classification.
Cork quality estimation by using Compton tomography
Brunetti, Antonio; Cesareo, Roberto; Golosio, Bruno; Luciano, Pietro; Ruggero, Alessandro
2002-11-01
The quality control of cork stoppers is mandatory in order to guarantee the perfect conservation of the wine. Several techniques have been developed but until now the quality control was essentially related to the status of the external surface. Thus possible cracks or holes inside the stopper will be hidden. In this paper a new technique based on X-ray Compton tomography is described. It is a non-destructive technique that allows one to reconstruct and visualize the cross-section of the cork stopper analyzed, and so to put in evidence the presence of internal imperfections. Some results are reported and compared with visual classification.
Directory of Open Access Journals (Sweden)
Andreas Englert
2016-10-01
Full Text Available Experiments using electrical resistivity tomography (ERT have shown promising results in reducing the uncertainty of solute plume characteristics related to estimates based on the analysis of local point measurements only. To explore the similarities and differences between two cross-borehole ERT inversion approaches for characterizing salt tracer plumes, namely the classical smoothness-constrained inversion and a geostatistically based approach, we performed two-dimensional synthetic experiments. Simplifying assumptions about the solute transport model and the electrical forward and inverse model allowed us to study the sensitivity of the ERT inversion approaches towards a variety of basic conditions, including the number of boreholes, measurement schemes, contrast between the plume and background electrical conductivity, use of a priori knowledge, and point conditioning. The results show that geostatistically based and smoothness-constrained inversions of electrical resistance data yield plume characteristics of similar quality, which can be further improved when point measurements are incorporated and advantageous measurement schemes are chosen. As expected, an increased number of boreholes included in the ERT measurement layout can highly improve the quality of inferred plume characteristics, while in this case the benefits of point conditioning and advantageous measurement schemes diminish. Both ERT inversion approaches are similarly sensitive to the noise level of the data and the contrast between the solute plume and background electrical conductivity, and robust with regard to biased input parameters, such as mean concentration, variance, and correlation length of the plume. Although sophisticated inversion schemes have recently become available, in which flow and transport as well as electrical forward models are coupled, these schemes effectively rely on a relatively simple geometrical parameterization of the hydrogeological model
Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.
2014-12-01
Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.
Energy Technology Data Exchange (ETDEWEB)
Kanemitsu, Hiroshi; Ishikawa, Kyozo (Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine)
1982-08-01
Left ventricular (LV) thrombi are rarely recognized during life, though they are not infrequently found at post-mortem examination of patients succumbed to valvular disease, acute myocardial infarction, and cardiomyopathy. We presented five cases in which LV thrombi were detected by cross-sectional echocardiography (CSE) and confirmed by computed tomography. The main purpose of this study was to compare the echocardiographic findings of the LV thrombi with the manifestations of the LV thrombi on the computed tomograms, with a hope to augment the clinical utility of CSE in a detection of the LV thrombi. CSE was recorded from the apical and four chamber views in addition to the conventional approach. A computed tomographic whole-body scanner which utilized a continuously rotating gantry and pulsed anode with x-ray radiation collimated to form a thin fan-shaped beam was used. A complete section scan was performed in 3 seconds. Sustained enhancement was obtained with a rapid intravenous infusion of 30% meglumine iothalamate. Most of the LV thrombi were found to have shaggy irregular borders and/or showed a mobile mass echo at the apex. Computed tomographic findings suggestive of LV thrombi appeared as a defects, which was apparently different in quality from the surrounding myocardium or valvular apparatus. These findings were quite consistent with those of CSE with respect to the number and the location of the LV thrombi. Consequently, it may be concluded that CSE is a useful adjunct in a detection of LV thrombi and an additional use of computed tomogram will certainly open up a promising way to a more secure diagnosis of LV thrombi.
Kießling, N.; Bieberle, A.; Hampel, U.
2008-10-01
Limited energy resolution in scintillation type gamma ray detectors leads to systematic errors in photon counting because the pulse height discrimination stages cannot accurately discriminate interactions with full respectively partial deposition of isotopic emission energy. The resulting error is a systematic positive count rate offset originating from erroneously counted scattered photons. The origin of scattering may be the detector itself (scintillation crystals and other construction material) as well as components of the setup, including the object of investigation. In this article results of a simulation study are presented which was carried out to assess the role of different design parameters for the count rate accuracy of a high resolution gamma ray detector used for transmission tomography. Thereby the simulation software Geant4 Application for Emission Tomography (GATE) was used. As a target parameter we evaluated the radiation cross-talk, which is the amount of erroneously counted interactions from photons which have undergone Compton scattering in neighbouring crystals. For the given detector design it was found that cross-talk obtained from the simulated data is in good agreement with experimentally determined cross-talk. It could further be shown by virtual detector design changes that radiation cross-talk can be reduced only to a degree that would still require additional software correction measures, such as scattering correction algorithms, if quantitative accuracy it demanded.
Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio
2018-01-01
The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.
International Nuclear Information System (INIS)
Lyutikov, Maxim; McKinney, Jonathan C.
2011-01-01
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
DEFF Research Database (Denmark)
Männer, J.; Thrane, Lars; Norozi, K.
2008-01-01
The embryonic heart tube consists of an outer myocardial tube, a middle layer of cardiac jelly, and an inner endocardial tube. It is said that tubular hearts pump the blood by peristaltoid contractions. The traditional concept of cardiac peristalsis sees the cyclic deformations of pulsating heart...... tubes as concentric narrowing and widening of tubes of circular cross-section. We have visualized the cross-sectional deformations of contracting embryonic hearts in chick embryos (HH-stages 9-17) using real-time high-resolution optical coherence tomography. Cardiac contractions are detected from HH...... of the endocardial tube is the consequence of an uneven distribution of the cardiac jelly. Our data show that the cyclic deformations of pulsating embryonic heart tubes run other than originally thought. There is evidence that heart tubes of elliptic cross-section might pump blood with a higher mechanical efficiency...
Light geodesics near an evaporating black hole
Energy Technology Data Exchange (ETDEWEB)
Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch
2015-10-16
Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.
International Nuclear Information System (INIS)
Frolov, Valeri P.; Mukohyama, Shinji
2011-01-01
The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.
International Nuclear Information System (INIS)
Simet, Melanie; Dodelson, Scott; Kubo, Jeffrey M.; Annis, James T.; Hao Jiangang; Johnston, David; Lin, Huan; Soares-Santos, Marcelle; Reis, Ribamar R. R.; Seo, Hee-Jong
2012-01-01
The shapes of distant galaxies are sheared by intervening galaxy clusters. We examine this effect in Stripe 82, a 275 deg 2 region observed multiple times in the Sloan Digital Sky Survey (SDSS) and co-added to achieve greater depth. We obtain a mass-richness calibration that is similar to other SDSS analyses, demonstrating that the co-addition process did not adversely affect the lensing signal. We also propose a new parameterization of the effect of tomography on the cluster lensing signal which does not require binning in redshift, and we show that using this parameterization we can detect tomography for stacked clusters at varying redshifts. Finally, due to the sensitivity of the tomographic detection to accurately marginalize over the effect of the cluster mass, we show that tomography at low redshift (where dependence on exact cosmological models is weak) can be used to constrain mass profiles in clusters.
International Nuclear Information System (INIS)
Blandford, R.D.; Thorne, K.S.
1979-01-01
Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)
White holes and eternal black holes
International Nuclear Information System (INIS)
Hsu, Stephen D H
2012-01-01
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)
El-Shafey, A; Kassab, A
2013-04-01
The purpose of the present study was to provide a detailed computed tomography (CT) and cross-sectional anatomic reference of the normal metatarsus and digits for the camel and buffalo, as well as to compare between metatarsus and digits in these animals to outstand a basis for diagnosis of their diseases. Advantages, including depiction of detailed cross-sectional anatomy, improved contrast resolution and computer reformatting, make it a potentially valuable diagnostic technique. The hind limbs of 12 healthy adult camel and buffalo were used. Clinically relevant anatomic structures were identified and labelled at each level in the corresponding images (CT and anatomic slices). CT images were used to identify the bony and soft tissue structures of the metatarsus and digits. The knowledge of normal anatomy of the camel and buffalo metatarsus and digits would serve as initial reference to the evaluation of CT images in these species. © 2012 Blackwell Verlag GmbH.
Sabry, Dalia; El-Kannishy, Amr; Kamel, Rania; Abou Samra, Waleed
2016-07-01
The purpose of this study was to report en face optical coherence tomography (OCT) inner retinal changes after internal limiting membrane (ILM) peeling for idiopathic full-thickness macular hole (IFTMH) and to correlate these findings with macular ganglion cell inner plexiform layer (GC-IPL) analysis. This prospective study included 20 patients with IFTMH treated using pars plana vitrectomy with ILM peeling. All patients were analyzed using en face OCT at 6 months after surgery to determinate the effect of ILM peeling on the inner retinal layers. Correlation between the GC-IPL en face OCT findings and that obtained by three-dimensional volumetric OCT scanning also was performed. Seven patients (35%) showed defects in the retinal nerve fiber layer (RNFL) that appeared as multiple dark dots with no visible defects at the GC-IPL, either with en face OCT or 3D volumetric OCT scanning. Thirteen patients (65%) showed a similar combination of RNFL defects and well-circumscribed defects in the underlying GC-IPL. These defects could be visualized on en face OCT display, and they correlated with areas of GC-IPL thinning detected in the 3D volumetric OCT scanning. With ILM peeling, en face OCT scanning showed two forms of inner retinal layers changes. The first form was the concentric macular dark spots (CMDS) with intact GC-IPL. The second form appeared in the CMDS with evident localized defects in the underlying GC-IPL. These defects correlate with the areas of GC-IPL thinning detected using 3D volumetric OCT scanning.
Directory of Open Access Journals (Sweden)
Steven R. Cranmer
2009-09-01
Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.
Directory of Open Access Journals (Sweden)
Adam Klaus
2005-09-01
, determine how fluidpathways are distributed within an active hydrothermalsystem, and elucidate relations between fluid circulation,alteration, microbiology, and seismic properties. Thecomplete experimental program will comprise two IODPexpeditions (the first having been Expedition 301, thesecond to be scheduled, an offset seismic experiment, andlong-term monitoring and cross-hole tests facilitated withsubmersible and remotely operated vehicle (ROV expeditionsextending 6–10 years after the first IODP expedition.The experimental program will also take advantage ofopportunities related to a plate-scale network of long-termobservatories (NEPTUNE currently being planned.
Calmet, Xavier; Winstanley, Elizabeth
2014-01-01
Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.
Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E
2015-02-01
Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.
Energy Technology Data Exchange (ETDEWEB)
Cumbest, R. J.
1999-01-05
The objectives of the pilot study were to investigate the limitations of the technique for imaging the presence, extent, and boundaries of the low-resistance intervals and associated carbonate sediments.
Quantum information erasure inside black holes
International Nuclear Information System (INIS)
Lowe, David A.; Thorlacius, Larus
2015-01-01
An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.
Quantum information erasure inside black holes
Energy Technology Data Exchange (ETDEWEB)
Lowe, David A. [Department of Physics, Brown University,Providence, RI, 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107 Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics,Stockholm University, AlbaNova University Centre, 10691 Stockholm (Sweden)
2015-12-15
An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.
Computed tomography scanner applied to soil compaction studies
International Nuclear Information System (INIS)
Vaz, C.M.P.
1989-11-01
The soil compaction problem was studied using a first generation computed tomography scanner (CT). This apparatus gets images of soil cross sections samples, with resolution of a few millimeters. We performed the following laboratory and field experiments: basic experiments of equipment calibrations and resolutions studies; measurements of compacted soil thin layers; measurements of soil compaction caused by agricultural tools; stress-strain modelling in confined soil sample, with several moisture degree; characterizations of soil bulk density profile with samples collected in a hole (trench), comparing with a cone penetrometer technique. (author)
Haraguchi, Yuji; Hasegawa, Akiyuki; Matsuura, Katsuhisa; Kobayashi, Mari; Iwana, Shin-Ichi; Kabetani, Yasuhiro; Shimizu, Tatsuya
2017-01-01
Three-dimensional (3D) tissues are engineered by stacking cell sheets, and these tissues have been applied in clinical regenerative therapies. The optimal fabrication technique of 3D human tissues and the real-time observation system for these tissues are important in tissue engineering, regenerative medicine, cardiac physiology, and the safety testing of candidate chemicals. In this study, for aiming the clinical application, 3D human cardiac tissues were rapidly fabricated by human induced pluripotent stem (iPS) cell-derived cardiac cell sheets with centrifugation, and the structures and beatings in the cardiac tissues were observed cross-sectionally and noninvasively by two optical coherence tomography (OCT) systems. The fabrication time was reduced to approximately one-quarter by centrifugation. The cross-sectional observation showed that multilayered cardiac cell sheets adhered tightly just after centrifugation. Additionally, the cross-sectional transmissions of beatings within multilayered human cardiac tissues were clearly detected by OCT. The observation showed the synchronous beatings of the thicker 3D human cardiac tissues, which were fabricated rapidly by cell sheet technology and centrifugation. The rapid tissue-fabrication technique and OCT technology will show a powerful potential in cardiac tissue engineering, regenerative medicine, and drug discovery research.
International Nuclear Information System (INIS)
Carter, B.
1980-01-01
In years 1920 as a result of quantum mechanics principles governing the structure of ordinary matter, a sudden importance for a problem raised a long time ago by Laplace: what happens when a massive body becomes so dense that even light cannot escape from its gravitational field. It is difficult to conceive how could be avoided in the actual universe the accumulation of important masses of cold matter having been submitted to gravitational breaking down followed by the formation of what is called to day a black hole [fr
Shimada, Yasushi; Nakagawa, Hisaichi; Sadr, Alireza; Wada, Ikumi; Nakajima, Masatoshi; Nikaido, Toru; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori
2014-07-01
The aim of this study was to determine the diagnostic accuracy of swept-source optical coherent tomography (SS-OCT) in detecting and estimating the depth of proximal caries in posterior teeth in vivo. SS-OCT images and bitewing radiographs were obtained from 86 proximal surfaces of 53 patients. Six examiners scored the locations according to a caries lesion depth scale (0-4) using SS-OCT and the radiographs. The results were compared with clinical observations obtained after the treatment. SS-OCT could detect the presence of proximal caries in tomograms that were synthesized based on the backscatter signal obtained from the proximal carious lesion through occlusal enamel. SS-OCT showed significantly higher sensitivity and larger area under the receiver operating characteristic curve than radiographs for the detection of cavitated enamel lesions and dentin caries (Student's t -test, p proximal lesions in the clinical environment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...
Directory of Open Access Journals (Sweden)
Julio César Molina Martín
2010-12-01
Full Text Available Se presenta un caso de cierre espontáneo de agujero macular idiopático seguido por tomografía de coherencia óptica y microperimetría MP1 antes y después del cierre. El cierre espontáneo de un estadio 4 no ocurre con frecuencia, sin embargo, puede aparecer fundamentalmente en pacientes con diámetro superior del agujero menor a 150 micras. La tomografía de coherencia óptica y la microperimetría constituyen herramientas útiles en el diagnóstico, pronóstico y seguimiento de esta entidad.The case of spontaneous closure of a stage 4 idiopathic macular hole at followed up by Optical Coherence Tomography and microperimetry MP1 before and after the closure was presented. The spontaneous closure of a stage 4 macular hole is rare but it can occur in patients with hole upper diameters less than 150 µm. The OCT and the microperimetry MP1 are very useful tools in the diagnosis, prognosis and follow-up of this maculopathy.
Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations
Energy Technology Data Exchange (ETDEWEB)
Dvali, Gia [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gußmann, Alexander, E-mail: alexander.gussmann@physik.uni-muenchen.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany)
2016-12-15
We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.
International Nuclear Information System (INIS)
Maillol, J.M.; Sen, N.
1999-01-01
The history of subsidence, fires, flooding and other kinds of environmental hazards related to shallow coal workings in India goes back to colonial times some 300 years ago. As coal production accelerated in modern times, so did the environmental and socio-economic drawbacks related to exploitation. In the mid-1980s, a hydropneumatic sand-stowing method was developed to fill in abandoned galleries but their exact location had to be known. Unfortunately, most of these old workings are uncharted and consequently large tracts of land cannot be stabilized. A research program making use of integrated surface, borehole and cross-hole geophysical methods was undertaken over a five-year span to try to solve this problem. Surface geophysical methods, being cheaper and faster than their cross- and downhole counterparts, were used to cover larger areas on an exploratory basis, while cross-hole methods were employed to locate more accurately one or a network of galleries to be perforated by drillhole(s) and used as a conduit for sand stowing. The authors report the results of one of the cross-hole geophysical methods: electrical resistivity tomography (ERT). A pole-dipole configuration is used and both cross-hole and surface-borehole methodologies are tested. Forward modelling and inversion of synthetic data making use of downhole and surface physical and geometrical parameters are presented first. This phase is followed by the inversion of real data. It is concluded that ERT is not applicable for the detection of dry voids, but is effective in a waterlogged environment which is estimated to represent 85--90% of the cases. In waterlogged galleries, ERT is applicable in both cross-hole and surface-downhole modes, the latter allowing a larger surface coverage at low cost. ERT is thus a reliable geophysical tool to image water-filled voids and an adequate technique to address environmental and geotechnical problems
Directory of Open Access Journals (Sweden)
Ji Young Lee
2014-12-01
Full Text Available AIM: To analyze changes of the optic nerve head (ONH and peripapillary region during intraocular pressure (IOP elevation in patients using spectral domain optical coherence tomography (SD-OCT.METHODS: Both an optic disc 200×200 cube scan and a high-definition 5-line raster scan were obtained from open angle glaucoma patients presented with monocular elevation of IOP (≥30 mm Hg using SD-OCT. Additional baseline characteristics included age, gender, diagnosis, best-corrected visual acuity, refractive error, findings of slit lamp biomicroscopy, findings of dilated stereoscopic examination of the ONH and fundus, IOP, pachymetry findings, and the results of visual field.RESULTS: The 24 patients were selected and divided into two groups:group 1 patients had no history of IOP elevation or glaucoma (n=14, and group 2 patients did have history of IOP elevation or glaucoma (n=10. In each patient, the study eye with elevated IOP was classified into group H (high, and the fellow eye was classified into group L (low. The mean deviation (MD differed significantly between groups H and L when all eyes were considered (P=0.047 and in group 2 (P=0.042, not in group 1 (P=0.893. Retinal nerve fiber layer (RNFL average thickness (P=0.050, rim area (P=0.015, vertical cup/disc ratio (P=0.011, cup volume (P=0.028, inferior quadrant RNFL thickness (P=0.017, and clock-hour (1, 5, and 6 RNFL thicknesses (P=0.050, 0.012, and 0.018, respectively, cup depth (P=0.008, central prelaminar layer thickness (P=0.023, mid-inferior prelaminar layer thickness (P=0.023, and nasal retinal slope (P=0.034 were significantly different between the eyes with groups H and L.CONCLUSION:RNFL average thickness, rim area, vertical cup/disc ratio, cup volume, inferior quadrant RNFL thickness, and clock-hour (1, 5, and 6 RNFL thicknesses significantly changed during acute IOP elevation.
Nonisolated dynamic black holes and white holes
International Nuclear Information System (INIS)
McClure, M. L.; Anderson, Kaem; Bardahl, Kirk
2008-01-01
Modifying the Kerr-Schild transformation used to generate black and white hole spacetimes, new dynamic black and white holes are obtained using a time-dependent Kerr-Schild scalar field. Physical solutions are found for black holes that shrink with time and for white holes that expand with time. The black hole spacetimes are physical only in the vicinity of the black hole, with the physical region increasing in radius with time. The white hole spacetimes are physical throughout. Unlike the standard Schwarzschild solution the singularities are nonisolated, since the time dependence introduces a mass-energy distribution. The surfaces in the metrics where g tt =g rr =0 are dynamic, moving inward with time for the black holes and outward for the white holes, which leads to a question of whether these spacetimes truly have event horizons--a problem shared with Vaidya's cosmological black hole spacetimes. By finding a surface that shrinks or expands at the same rate as the null geodesics move, and within which null geodesics move inward or outward faster than the surfaces shrink or expand, respectively, it is verified that these do in fact behave like black and white holes
Collins, Frank A.; Saude, Frank; Sep, Martin J.
1996-01-01
Tool designed for use in aligning holes in plates or other structural members to be joined by bolt through holes. Holes aligned without exerting forces perpendicular to planes of holes. Tool features screw-driven-wedge design similar to (but simpler than) that of some automotive exhaust-pipe-expanding tools.
International Nuclear Information System (INIS)
Penrose, R.
1980-01-01
Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)
Deburring small intersecting holes
Energy Technology Data Exchange (ETDEWEB)
Gillespie, L.K.
1980-08-01
Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.
International Nuclear Information System (INIS)
Cherepashchuk, Anatolii M
2003-01-01
Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)
Khan, Moiz; Elathamna, Eiad N; Lin, Wei-Shao; Harris, Bryan T; Farman, Allan G; Scheetz, James P; Morton, Dean; Scarfe, William C
2015-01-01
To compare the choice and placement of virtual dental implants in the posterior edentulous bounded regions using the full cross-sectional and transaxial capabilities of cone beam computed tomography (CBCT) vs reformatted panoramic images and three-dimensional (3D) virtual models. Fifty-two cases with posterior bounded edentulous regions (61 dental implant sites) were identified from a retrospective audit of 4,014 radiographic volumes. Two image sets were created from selected CBCT data: (1) a combination of reformatted panoramic imaging and a 3D model (PIref/3D), and (2) the full 3D power in CBCT image volume analyses (XS). One virtual implant was placed by consensus of three prosthodontists in each image set: PIref/3D and XS. The choice of implant length and the perceived need for ridge augmentation were recorded for implant placement in both test situations. All the virtual implant placements from both PIref/3D and XS image sets were inspected retrospectively using virtual 3D models, and the number of exposed threads on both the buccal and lingual/palatal aspects of the virtual dental implant was evaluated. The chi-square and paired t tests were used with the level of significance set at α = .05. Shorter implants were chosen more often using XS than PIref/3D (P = .001). Fewer threads were exposed when placed with XS than with PIref/3D (P = .001). The use of XS reduced the perceived need for ridge augmentation compared with PIref/3D (P = .001). The use of the full 3D power of CBCT (including cross-sectional images in all three orthagonal planes and transaxially) provides supplemental information that significantly changes the choice of virtual implant length and vertical position of the implant, and reduces the frequency of perceived need for ridge augmentation before implant placement.
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki [Nagasaki Univ. (Japan). School of Medicine
2000-07-01
We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)
Kawasaki, Yoshiteru; Hirano, Tetsuya; Miyatake, Katsutoshi; Fujii, Koji; Takeda, Yoshitsugu
2014-07-01
Coracoid base fracture accompanied by acromioclavicular joint dislocation with intact coracoclavicular ligaments is a rare injury. Generally, an open reduction with screw fixation is the first treatment choice, as it protects the important structures around the coracoid process. This report presents a new technique of screw fixation for coracoid base fracture and provides anatomic information on cross-sectional size of the coracoid base obtained by computed tomography (CT). An axial image of the coracoid base was visualized over the neck of the scapula, and a guidewire was inserted into this circle under fluoroscopic guidance. The wire was inserted easily into the neck of scapula across the coracoid base fracture with imaging in only 1 plane. In addition, 25 measurements of the coracoid base were made in 25 subjects on axial CT images. Average length of the long and short axes at the thinnest part of the coracoid base was 13.9 ± 2.0 mm (range 10.6-17.0) and 10.5 ± 2.2 mm (6.6-15.1), respectively. This new screw fixation technique and measurement data on the coracoid base may be beneficial for safety screw fixation of coracoid base fracture.
Drilling history core hole DC-8
Energy Technology Data Exchange (ETDEWEB)
1978-10-01
Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.
Drilling history core hole DC-8
International Nuclear Information System (INIS)
1978-10-01
Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored
Brassey, Charlotte A; Kitchener, Andrew C; Withers, Philip J; Manning, Phillip L; Sellers, William I
2013-03-01
The limb bones of an elephant are considered to experience similar peak locomotory stresses as a shrew. "Safety factors" are maintained across the entire range of body masses through a combination of robusticity of long bones, postural variation, and modification of gait. The relative contributions of these variables remain uncertain. To test the role of shape change, we undertook X-ray tomographic scans of the leg bones of 60 species of mammals and birds, and extracted geometric properties. The maximum resistible forces the bones could withstand before yield under compressive, bending, and torsional loads were calculated using standard engineering equations incorporating curvature. Positive allometric scaling of cross-sectional properties with body mass was insufficient to prevent negative allometry of bending (F(b) ) and torsional maximum force (F(t) ) (and hence decreasing safety factors) in mammalian (femur F(b) ∞M(b) (0.76) , F(t) ∞M(b) (0.80) ; tibia F(b) ∞M(b) (0.80) , F(t) ∞M(b) (0.76) ) and avian hindlimbs (tibiotarsus F(b) ∞M(b) (0.88) , F(t) ∞M(b) (0.89) ) with the exception of avian femoral F(b) and F(t) . The minimum angle from horizontal a bone must be held while maintaining a given safety factor under combined compressive and bending loads increases with M(b) , with the exception of the avian femur. Postural erectness is shown as an effective means of achieving stress similarity in mammals. The scaling behavior of the avian femur is discussed in light of unusual posture and kinematics. Copyright © 2013 Wiley Periodicals, Inc.
Zhang, J.; Revil, A.
2015-04-01
The early detection of the oil-water encroachment front is of prime interest during the water flooding of an oil reservoir to maximize the production of oil and to avoid the oil-water encroachment front to come too close to production wells. We propose a new 4-D inversion approach based on the Gauss-Newton approach to invert cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods.
Bronnikov, K A; Fabris, J C
2006-06-30
We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.
Glory scattering by black holes
International Nuclear Information System (INIS)
Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.
1985-01-01
We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes
International Nuclear Information System (INIS)
Costa, Miguel S.; Perry, Malcolm J.
2000-01-01
We revisit the geometry representing l collinear Schwarzschild black holes. It is seen that the black holes' horizons are deformed by their mutual gravitational attraction. The geometry has a string like conical singularity that connects the holes but has nevertheless a well defined action. Using standard gravitational thermodynamics techniques we determine the free energy for two black holes at fixed temperature and distance, their entropy and mutual force. When the black holes are far apart the results agree with Newtonian gravity expectations. This analyses is generalized to the case of charged black holes. Then we consider black holes embedded in string/M-theory as bound states of branes. Using the effective string description of these bound states and for large separation we reproduce exactly the semi-classical result for the entropy, including the correction associated with the interaction between the holes
International Nuclear Information System (INIS)
Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke
2009-01-01
Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.
International Nuclear Information System (INIS)
Mirell, S.G.
1979-01-01
The physical bases of computerized tomography are presented, the following items being discussed:attenuation of a photon beam by an absorbent material, reconstruction algorithms and detection systems. Image statistics is also presented. The emission computerized tomography is discussed. Clinical results of computerized tomography are presented. (M.A.) [pt
Politzer, David
2015-01-01
The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alte...
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
International Nuclear Information System (INIS)
Gibbons, G.
1976-01-01
Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)
Children's (Pediatric) CT (Computed Tomography)
Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric ... cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even ...
Moss, I.G.; Shiiki, N.; Winstanley, E.
2000-01-01
Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...
Ballistic hole magnetic microscopy
Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.
2005-01-01
A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.
International Nuclear Information System (INIS)
Arsiwalla, Xerxes D.; Verlinde, Erik P.
2010-01-01
We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.
Kirshbaum, Mark A.; Spear, Brianne D.
2012-01-01
This study updates a stratigraphic cross section published as plate 2 in Kirschbaum and Hettinger (2004) Digital Data Series 69-G (http://pubs.usgs.gov/dds/dds-069/dds-069-g/). The datum is a marine/tidal ravinement surface within the Cozzette Sandstone Member of the Iles Formation and the Thompson Canyon Sandstone and Sulphur Canyon Sandstone Beds of the Neslen Formation. One of the cores shown was included on the original cross section, and new core descriptions have been added to the upper part of the cored interval. A new core description (S178) is included in this report. Cores are stored in the U.S. Geological Survey Core Research Facility at the Denver Federal Center, Colorado. The following information has also been added to help define the stratigraphic framework: 1) At least five claystones interpreted as altered volcanic ashes have been identified and may give future workers a correlation tool within the largely continental section. 2) Thickness and general geometry of the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone have been added to provide additional stratigraphic context. 3) The geometry in the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone has been added to provide additional stratigraphic context. 4) Ammonite collections are from Gill and Hail. The zone of Didymoceras nebrascense projected into the East Salt Wash area is based on correlation of the flooding surface at the base of the Cozzette Member to this point as shown in Kirschbaum and Hettinger. 5) A leaf locality of the Denver Museum of Nature and Science is shown in its approximate stratigraphic position near Thompson Canyon. 6) A dinosaur locality of the Natural History Museum of Utah is shown in the Horse Canyon area measured section at the stratigraphic position where it was extracted.
Wijers, R.A.M.J.
1996-01-01
Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes
Czech Academy of Sciences Publication Activity Database
Novotný, Miroslav; Skácelová, Z.; Mrlina, Jan; Mlčoch, B.; Růžek, Bohuslav
2009-01-01
Roč. 30, č. 6 (2009), s. 561-600 ISSN 0169-3298 R&D Projects: GA AV ČR IAA300460602; GA MŽP SB/630/3/02 Institutional research plan: CEZ:AV0Z30120515 Keywords : depth-recursive refraction tomography * lateral resolution * German Continental Deep Drilling Project (KTB) * Zone Erbendorf-Vohenstrauss (ZEV) * low-velocity zones Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.179, year: 2009
van Vugt, Jeroen L A; Levolger, Stef; Gharbharan, Arvind; Koek, Marcel; Niessen, Wiro J; Burger, Jacobus W A; Willemsen, Sten P; de Bruin, Ron W F; IJzermans, Jan N M
2017-04-01
The association between body composition (e.g. sarcopenia or visceral obesity) and treatment outcomes, such as survival, using single-slice computed tomography (CT)-based measurements has recently been studied in various patient groups. These studies have been conducted with different software programmes, each with their specific characteristics, of which the inter-observer, intra-observer, and inter-software correlation are unknown. Therefore, a comparative study was performed. Fifty abdominal CT scans were randomly selected from 50 different patients and independently assessed by two observers. Cross-sectional muscle area (CSMA, i.e. rectus abdominis, oblique and transverse abdominal muscles, paraspinal muscles, and the psoas muscle), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) were segmented by using standard Hounsfield unit ranges and computed for regions of interest. The inter-software, intra-observer, and inter-observer agreement for CSMA, VAT, and SAT measurements using FatSeg, OsiriX, ImageJ, and sliceOmatic were calculated using intra-class correlation coefficients (ICCs) and Bland-Altman analyses. Cohen's κ was calculated for the agreement of sarcopenia and visceral obesity assessment. The Jaccard similarity coefficient was used to compare the similarity and diversity of measurements. Bland-Altman analyses and ICC indicated that the CSMA, VAT, and SAT measurements between the different software programmes were highly comparable (ICC 0.979-1.000, P software programmes were found. Accordingly, excellent Jaccard similarity coefficients were found for all comparisons (mean ≥ 0.964). FatSeg, OsiriX, ImageJ, and sliceOmatic showed an excellent agreement for CSMA, VAT, and SAT measurements on abdominal CT scans. Furthermore, excellent inter-observer and intra-observer agreement were achieved. Therefore, results of studies using these different software programmes can reliably be compared. © 2016 The Authors. Journal
Manschot, Jan; Sen, Ashoke
2012-01-01
Middle cohomology states on the Higgs branch of supersymmetric quiver quantum mechanics - also known as pure Higgs states - have recently emerged as possible microscopic candidates for single-centered black hole micro-states, as they carry zero angular momentum and appear to be robust under wall-crossing. Using the connection between quiver quantum mechanics on the Coulomb branch and the quantum mechanics of multi-centered black holes, we propose a general algorithm for reconstructing the full moduli-dependent cohomology of the moduli space of an arbitrary quiver, in terms of the BPS invariants of the pure Higgs states. We analyze many examples of quivers with loops, including all cyclic Abelian quivers and several examples with two loops or non-Abelian gauge groups, and provide supporting evidence for this proposal. We also develop methods to count pure Higgs states directly.
Influence of access hole parameters on neutron moisture probe readings
International Nuclear Information System (INIS)
Abeele, W.V.
1978-04-01
Computing soil moisture content with a neutron probe requires use of a calibration curve that considers the thermal neutron capture cross section of the hole liner as well as the hole diameter. The influence of steel, polyvinyl chloride, and aluminum casings that fit 0.051 to 0.102-hole diameters was determined by comparison with neutron probe readings in uncased holes of corresponding diameters. Eccentricity of probe location was considered a potentially significant variable. The relationship between hole diameter and count rate also was investigated. The experiment was run in disturbed Bandelier tuff with an average dry density of 1.2 g . cm -3 and moisture content of 1.3 to 35.5% by volume. The casing material and hole diameter influenced the probe readings significantly, whereas eccentric location of the probe did not. Regression analyses showed an almost perfect inverse linear correlation between hole diameter and count rate
Castellano, Isabel; Geleijns, Jacob
After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
International Nuclear Information System (INIS)
Horowitz, G.T.; Ross, S.F.
1997-01-01
It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society
Nonextremal stringy black hole
International Nuclear Information System (INIS)
Suzuki, K.
1997-01-01
We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society
Holes help control temperature
Chhatpar, C. K.
1981-01-01
Study of passive thermal control for the Solar Terrestrial Subsatellite (STSS) has found that array of "see through" holes substantially improves performance of system. Holes in payload mounting plates allow line of sight radiative heat transfer between hot and cold ends of spacecraft and between mounting plates and ends. Temperature gradients between plates are thereby reduced, as is temperature of each plate. Holes and selected exterior paints and finishes keep payload cool for all orientations and operating modes of STSS.
Bilateral macular holes in X-linked retinoschisis: Now the spectrum is wider
Directory of Open Access Journals (Sweden)
Manoj Gautam
2011-01-01
Full Text Available Bilateral occurrence of macular hole in X-linked retinoschisis is an extremely rare event. Spectral domain optical coherence tomography (OCT findings revealed that formation of a macular hole is secondary to the retinoschisis process alone. Bilateral macular holes should be added to the spectrum of X-linked retinoschisis variations and the retinoschisis process alone should be accounted for their formation.
Suboccipital burr holes and craniectomies.
Ribas, Guilherme C; Rhoton, Albert L; Cruz, Oswaldo R; Peace, David
2005-08-15
The goal of this study was to delimit the external cranial projection of the transverse and sigmoid sinuses, and to establish initial strategic systematized burr hole sites for lateral infratentorial suboccipital approaches based on external cranial landmarks particularly related to the lambdoid, occipitomastoid, and parietomastoid sutures. The external cranial projection of the transverse and sigmoid sinuses was studied through their external outlining obtained with the aid of multiple small perforations made from inside to outside along the inner margins of the sinuses of 50 paired temporoparietooccipital regions in 25 dried adult human skulls. The burr hole placement was studied by evaluating the supratentorial, over-the-sinuses, and infratentorial components of 1-cm-diameter openings made at strategic sites identified in the initial part of the study, which was performed in another 50 paired temporoparietooccipital regions. The asterion and the midpoint of the inion-asterion line were found to be particularly related to the inferior half of the transverse sinus; the transverse and sigmoid sinuses' transition occurs 1 cm anteriorly to the asterion across the parietomastoid suture, and the most superior part of the sigmoid sinus is located anteriorly to the occipitomastoid suture, with its posterior margin crossing this suture posteriorly to the most superior aspect of the mastoid process, which is located at the most superior level of the mastoid notch. Burr holes made at the midpoint of the inion-asterion line, at the asterion, 1 cm anterior to the asterion, just inferiorly to the parietomastoid suture, and over the occipitomastoid suture at the most superior level of the mastoid notch are appropriate to expose the inferior half of the transverse sinus at its midpoint, the inferior half of the transverse sinus at its most lateral aspect, the transverse and sigmoid sinuses' transition, and the posterior margin of the basal aspect of the sigmoid sinus
Caves in caves: Post depositional holes in stalagmites
Shtober Zisu, Nurit; Schwarcz, Henry P.; Chow, Tom; Konyer, Norman B.; Noseworthy, Michael D.
2010-05-01
Previous studies of speleothems for the purposes of isotopic analysis and U-series dating have resulted in preparation of stalagmites by sectioning longitudinally along the growth axis. We frequently observe holes in such sections, both along the growth axis, and laterally to it, ranging in size up to several mm in diameter. Our initial supposition was that these holes are produced during the growth of the stalagmite under constant dripping conditions, but it was found that two kinds of holes exist within the stalagmites. "Axial holes" were formed syngenetically as is shown by the depression of growth layers into the holes and the persistence of the axial hole over many cm of the growth history. Some cut the active growth surface of the stalagmite. "Off-axis holes" are seen in many stalagmites (as well as stalactites); they cut discordantly through growth layers, and never terminate at a growth surface. They range in size from a few mm to several cm in maximum dimension, and may not be coaxially oriented. They are lined with micron-sized, randomly oriented calcite crystals and under which lies an organic-rich coating. We used CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) scanning in order to locate holes, and to search for water trapped in these macro-inclusions. These methods, allow us to visualize the holes without destruction of the stalagmite, the holes and the surrounding calcite. To our best knowledge, the present paper is the first to combine CT and MRI methods in the study of fluid inclusions in rocks, or in visualizing the distribution of holes in speleothems. CT scans reveal abundant off-axis holes in some speleothems, while most display at least a few holes. MRI scans shows that, in uncut speleothems, these holes never contain water (although Genty et al. [2002] found water-filled holes in some stalagmites). Off-axis holes may be a result of bioerosion, possibly bacterial, followed by partial refilling of the hole with calcite which is
Determinación de heterogeneidad y anisotropía en aluvión por micro-tomografía sísmica de cross-hole
Directory of Open Access Journals (Sweden)
Armando L Imhof
2012-06-01
Full Text Available Con el propósito de analizar el comportamiento sísmico de muestras de suelo a escala de laboratorio; se desarrolló e implementó un sistema tomográfico basado en transmisión de ondas en el rango acústico en dominios bi-dimensionales con escasa cobertura espacial (cross-hole para determinar diferentes propiedades de materiales granulares en general y en la detección de anomalías. El objetivo fué, a partir de la medición de ondas compresionales, detectar variaciones en el grado de compactación del mismo, buscando la determinación de heterogeneidad y anisotropía. Para los ensayos se utilizaron 14 piezocristales de propósito general de 6kHz de frecuencia resonante como emisores (7 y receptores (7 de ondas mecánicas en el rango acústico, montándose en lados opuestos en un marco rígido rectangular de madera blanda. El conjunto marco-sensores se introdujo en un recipiente metálico de forma cilíndrica que se llenó luego con arena clasificada de río. 10ms de repetición; aplicados directamente sobre los transductores. El receptor consistió en un amplificador de bajo ruido de dos canales con filtros pasa-altos de 100Hz a la entrada, con ganancias regulables aproximadamente entre los 40 y 80dB. Se conectó el sistema a un DSO Tektronix TDS 210 con interfase RS232 para almacenamiento de datos a PC. Los resultados posibilitaron detectar tanto heterogeneidad como anisotropía vertical en el material debido al peso de las capas suprayacentes (anisotropía por esfuerzo que produjeron un aumento en la densidad del material y por lo tanto incremento de la velocidad y curvatura de rayos. Con los datos se pudo establecer una ley de incremento de velocidades en función de la profundidad.In order to analyze the seismic behavior of soil samples at laboratory scale, it was developed and implemented a tomographic system based on wave transmission on the acoustic range in bi-dimensional domains with limited spatial coverage (cross-hole, to
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
International Nuclear Information System (INIS)
Ravndal, F.
1978-01-01
Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Black hole candidates. In the case of X-ray sources such as Cyg X-1, the mass of the compact object inferred from combined optical and X-ray data, suggest M_compact object > 3.4 M_sun => Black Hole! A remarkable discovery!! Thus X-ray emitting binary systems ...
de Boer, J.; Papadodimas, K.; Verlinde, E.
2009-01-01
Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the
DEFF Research Database (Denmark)
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Arsiwalla, X.D.; Verlinde, E.P.
2010-01-01
We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of ...
Lifshitz topological black holes
International Nuclear Information System (INIS)
Mann, R.B.
2009-01-01
I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
as a star or dispersing altogether. Were we engineers with advanced technology, we might attempt to find that critical amount of energy necessary to form a black hole. However, despite some fears to the contrary, such technology does not exist, so instead we investigate this critical regime numerically. The first step is to pick ...
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
denotes the partial derivatives of . The construction of a numerical method with which ... which configurations form black holes and which disperse (the only two options in this model). The problem in picturing such a space is that it is infinite ..... 4.1 The future: Less symmetry. The work described above all assumes spherical ...
Capture of particles from plunge orbits by a black hole
International Nuclear Information System (INIS)
Young, P.J.
1976-01-01
Photon and ''parabolic'' particle orbits around a Kerr-Newman black hole are considered, both for uncharged particles moving along geodesics and for charged particles under the influence of the Lorentz force (neglecting radiative processes). Investigation of the radial equation of motion gives conditions under which a photon or particle is captured from a ''plunge'' orbit when incident from a large distance; the cross sections and accreted angular momenta are calculated for various fluxes of particles incident on the black hole. For example, the cross section of an extreme Kerr (a = 1) black hole to an isotropic flux of particles is 0.90 of that for a Schwarzschild hole, and the accreted angular momentum per unit mass of swallowed flux is -0.828 leading to rapid spin-down of the hole. The periastra of ''escape'' orbits are considered, and also the minimum periastron corresponding to the unstable spherical orbit that divides plunge and escape orbits. The evolution of the spin and charge of a black hole accreting particles and photons is discussed, including that of primordial black holes. It is shown that such black holes may be of the Schwarzschild type having spun-down due to consumption of radiation and particles at early times and subsequent neutralization in an ionized intergalactic medium. The statistics of proton and electron capture by the smallest surviving primordial black holes, M = 10 15 g, suggests that they are most likely to be found possessing a single quantum of positive charge
Influence of access hole parameters on neutron moisture probe readings
International Nuclear Information System (INIS)
Abeele, W.V.
1979-10-01
Computing soil moisture content with a neutron probe requires use of a calibration curve that considers the thermal neutron capture cross section of the hole liner, as well as the hole diameter. The influence of steel, polyvinyl chloride, and aluminum casings that fit 0.051- to 0.102-m hole diameters was determined by comparison with neutron probe readings in uncased holes of corresponding diameters. Eccentricity of probe location was considered a potentially significant variable. The experiment was run in disturbed Bandelier tuff with an average dry density of 1.35g . cm -3 and moisture content of 3.8 to 26.7% by volume. The casing material and hole diameter influenced the probe readings significantly, whereas eccentric location of the probe did not. Regression analyses showed an almost perfect inverse linear correlation between hole diameter and count rate
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2010-01-01
We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.
ULTRAMASSIVE BLACK HOLE COALESCENCE
International Nuclear Information System (INIS)
Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter
2015-01-01
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production
Directory of Open Access Journals (Sweden)
Peter Distelmaier
2014-04-01
Full Text Available Purpose: The presented case raises questions regarding the favorable scheduling of planned postoperative care and the ideal observation interval to decide for reoperations in macular hole surgery. Furthermore a discussion about the use of short- and long-acting gas tamponades in macular hole surgery is encouraged. Methods: We present an interventional case report and a short review of the pertinent literature. Results: We report a case of spontaneous delayed macular hole closure after vitreoretinal surgery had been performed initially without the expected success. A 73-year-old male Caucasian patient presented at our clinic with a stage 2 macular hole in his left eye. He underwent 23-gauge pars plana vitrectomy and internal limiting membrane peeling with a 20% C2F6-gas tamponade. Sixteen days after the procedure, an OCT scan revealed a persistent stage 2 macular hole, and the patient was scheduled for reoperation. Surprisingly, at the date of planned surgery, which was another 11 days later, the macular hole had resolved spontaneously without any further intervention. Conclusions: So far no common opinion exists regarding the use of short- or long-acting gas in macular hole surgery. Our case of delayed macular hole closure after complete resorption of the gas tamponade raises questions about the need and duration of strict prone positioning after surgery. Furthermore short-acting gas might be as efficient as long-acting gas. We suggest to wait with a second intervention at least 4 weeks after the initial surgery, since a delayed macular hole closure is possible.
Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site
Energy Technology Data Exchange (ETDEWEB)
Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen
1999-07-01
Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Black hole production at the CERN LHC: String balls and black holes from pp and lead-lead collisions
International Nuclear Information System (INIS)
Chamblin, Andrew; Nayak, Gouranga C.
2002-01-01
If the fundamental Planck scale is near a TeV, then parton collisions with high enough center-of-mass energy should produce black holes. The production rate for such black holes at the CERN LHC has been extensively studied for the case of a proton-proton collision. In this paper, we extend this analysis to a lead-lead collision at LHC. We find that the cross section for small black holes which may in principle be produced in such a collision is either enhanced or suppressed, depending upon the black hole mass. For example, for black holes with a mass around 3 TeV we find that the differential black hole production cross section, dσ/dM, in a typical lead-lead collision is up to 90 times larger than that for black holes produced in a typical proton-proton collision. We also discuss the cross sections for 'string ball' production in these collisions. For string balls of mass about 1 (2) TeV, we find that the differential production cross section in a typical lead-lead collision may be enhanced by a factor up to 3300 (850) times that of a proton-proton collision at LHC
Andreev reflections and the quantum physics of black holes
Manikandan, Sreenath K.; Jordan, Andrew N.
2017-12-01
We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
International Nuclear Information System (INIS)
Ahmed, Mainuddin
2005-01-01
A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)
Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.
2016-07-01
Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.
Monten, Ruben; Toldo, Chiara
2018-02-01
We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.
International Nuclear Information System (INIS)
't Hooft, G.
1987-01-01
No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references
International Nuclear Information System (INIS)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory
Wang, S.; Butler, K. E.; Serban, D.; Petersen, B.; Grimmett, M.
2016-12-01
Nitrate is a necessary nutrient for crops, but high surface water and groundwater concentrations can negatively affect aquatic ecosystem and human health. At AAFC-AAC Harrington Research Farm (PEI, Canada), 3D cross-hole electrical resistivity imaging (ERI) is being used to investigate the percolation of a conductive tracer (KCl) through a 17 m thick vadose zone as a proxy for the transport of nitrate under natural recharge conditions. The objectives are to investigate the effect of heterogeneity on transport pathways and infer how long it would take for changes in farming practices at the surface to affect nitrate loading to the underlying aquifer. The resistivity array consists of 96 permanently installed electrodes - 24 at 0.68 m spacing in each of three 16 m deep boreholes arranged in a triangle with 9 m sides, and 24 at 1 m spacing buried in shallow trenches connecting the boreholes. A background survey revealed five sub-horizontal layers of alternating resistivity in general agreement with the geology of 6 m soil and glacial till overburden overlying interbedded sandstone and shaley sandstone layers. On March 27th, 2015, 1.1 m of snow was removed from a 15.2 m2 area positioned symmetrically inside the triangular array and 100 kg of granular KCl was distributed on the ground surface. The removed snow was immediately replaced to await the spring thaw. Post-tracer surveys indicate tracer had percolated to depths of 1 m, 1.2 m, 3.0 m and 3.5 m by the 4th, 26th, 30th, and 46th days after tracer application. Its movement slowed significantly by early May, 2015, with the end of snow melt. Tracer spread laterally very slowly through the summer and early fall, 2015, but has remained within the triangular array. The shallow conductivity anomaly produced by the tracer diminished significantly over the winter and spring of 2016 but showed little evidence of bulk matrix flow below 3.5 m depth. It is speculated that fractures in the glacial till, too thin to be resolved by
The Thermodynamics of Black Holes
Directory of Open Access Journals (Sweden)
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
From Rindler horizon to mini black holes at LHC
Energy Technology Data Exchange (ETDEWEB)
Ghaffary, Tooraj [Islamic Azad University, Department of Science, Shiraz Branch, Shiraz (Iran, Islamic Republic of)
2017-02-15
Recently researchers (A. Sepehri et al., Astrophys. Space Sci. 344, 79 (2013)) have considered the signature of superstring balls near mini black holes at LHC and calculate the information loss for these types of strings. Motivated by their work, we consider the evolution of events in high energy experiments from lower energies for which the Rindler horizon is formed to higher energies in which mini black holes and string balls are emerged. Extending the Gottesman and Preskill method to string theory, we find the information loss for excited strings ''string balls'' in mini black holes at LHC and calculate the information transformation from the collapsing matter to the state of outgoing Hawking radiation for strings. We come to the conclusion that information transformation for high energy strings is complete. Then the thermal distribution of excited strings near mini black holes at LHC is calculated. In order to obtain the total string cross section near black holes produced in proton-proton collision, we multiply the black hole production cross section by the thermal distribution of strings. It is observed that many high energy excited strings are produced near the event horizon of TeV black holes. These excited strings evaporate to standard model particles like Higgs boson and top quark at Hagedorn temperature. We derive the production cross section for these particles due to string ball decay at LHC and consider their decay to light particles like bottom quarks and gluons. (orig.)
Okuda, Tetsuhiko; Higashide, Tomomi; Kobayashi, Koh; Ikuno, Yasushi; Sugiyama, Kazuhisa
2016-01-01
To describe the closure of a macular hole over residual subretinal fluid in patients with macular hole retinal detachment in high myopia who had been treated using an inverted internal limiting membrane flap technique. Three patients with macular hole retinal detachment in high myopia underwent pars plana vitrectomy using the inverted internal limiting membrane flap technique. One patient received a silicone oil injection, and the other two patients received a long-acting gas injection at the end of the surgery. After surgery, spectral domain ocular coherence tomography examination was performed. In the patient with the silicone oil injection, spectral domain optical coherence tomography revealed that the macular hole was sealed with an inverted internal limiting membrane flap in the presence of subretinal fluid 1 day after surgery. The inner retinal layers gradually regained a more physiologic configuration over the residual subretinal fluid. In all patients, macular holes were completely closed over the subretinal fluid, which was gradually absorbed. Using the inverted internal limiting membrane flap technique, macular holes were closed over residual subretinal fluid in patients with macular hole retinal detachment. The results indicate that reattachment of the retina may not be necessary for closure of macular holes.
Marsh, T. R.
I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.
Single photon emission computerized tomography
International Nuclear Information System (INIS)
Hooge, P. de.
1983-01-01
In this thesis two single-photon emission tomographic techniques are presented: (a) longitudinal tomography with a rotating slanting-hole collimator, and (b) transversal tomography with a rotating gamma camera. These methods overcome the disadvantages of conventional scintigraphy. Both detection systems and the image construction methods are explained and comparisons with conventional scintigraphy are drawn. One chapter is dedicated to the determination of system parameters like spatial resolution, contrast, detector uniformity, and size of the object, by phantom studies. In separate chapters the results are presented of detection of tumors and metastases in the liver and the liver hilus; skeletal diseases; various pathological aberrations of the brain; and myocardial perfusion. The possible use of these two ect's for other organs and body areas is discussed in the last chapter. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Fujimoto, M.; Watanabe, T.; Ashida, Y.; Sassa, K. [Kyoto University, Kyoto (Japan). Faculty of Engineering
1997-05-27
With regard to the elastic wave exploration, discussions have been given on the relationship between frequency and resolution in P-wave velocity tomography using the initial travel time. The discussions were carried out by using a new analysis method which incorporates the concept of Fresnel volume into tomography analysis. The following two arrangements were used in the calculation: a cross hole arrangement, in which seismic source and vibration receiving points were arranged so as to surround the three directions of a region extending 250 m in the horizontal direction and 500 m in the vertical direction, and observation is performed between two wells, and a permeation VSP arrangement in which the seismic source is installed on the ground surface and receiving points installed in wells. Restructuring was performed on the velocity structure by using a total of 819 observation travel times. This method has derived results of the restructuring according to frequencies of the seismic source used for the exploration. The resolution shown in the result of the restructuring has become higher as elastic waves with higher frequency are used, and the size of the structure identified from the restructuring result has decreased. This fact reveals that sufficient considerations must be given on frequencies of elastic waves used according to size of objects to be explored. 4 refs., 4 figs.
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Furmann, John M.
2003-03-01
Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.
Black hole gravitohydromagnetics
Punsly, Brian
2008-01-01
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...
Correlation between choroidal thickness and macular hole
Directory of Open Access Journals (Sweden)
Li-Li Wang
2018-01-01
Full Text Available AIM:To explore the correlation between choroidal thickness and macular hole, and to provide a theoretical basis for diagnosis and treatment of macular hole. METHODS: This study included 40 cases of monocular idiopathic macular hole patients who were treated in ophthalmology of our hospital from June 2015 to June 2016 and 40 cases of healthy people. Sicked eyes of idiopathic macular hole patients(40 eyeswere set as the Group A, uninjured side eyes(40 eyeswere set as the Group B, eyes of 40 cases of healthy people(40 normal eyeswere set as the Group C. Choroidal thickness of macular fovea, macular fovea 1mm, 3mm at 9 points, 4 directions in the upper, lower, nasal and temporal regions were measured through coherent optical tomography of enhanced deep imaging(enhanced depth image optical coherence tomography, EDI-OCT. They were recorded as SFCT, SCT1mm, SCT3mm, ICT1mm, ICT3mm, NCT1mm, NCT3mm, TCT1mm, TCT3mm, and correlation analysis between SFCT and age was analyzed. RESULTS: Average SFCT of Group A, B had no significant difference, data of the Group C was significantly higher than those of the Group A, B, there was statistical significance(P1mm, SCT3mm, ICT1mm, ICT3mm, NCT1mm, NCT3mm, TCT1mm, TCT3mm of the Group A, B had no significant difference(P>0.05, and choroidal thickness at each point of the Group C was significantly higher than that of Group A and B, there was statistical significance(Pr=-0.065, P=0.148; r=-0.057, P=0.658, SFCT of the Group C was negatively correlated with age(r=-0.343, P=0.041. CONCLUSION: The pathogenesis of idiopathic macular hole may be related to the sharp decrease of choroidal thickness, choroidal thickness of uninjured side eyes reduces more sharply than normal population and choroidal vascular metabolism reduces may be pathogenic.
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
Roldán-Molina, A; Nunez, Alvaro S; Duine, R A
2017-02-10
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Good, Michael R. R.; Ong, Yen Chin
2015-02-01
A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.
Hawking, Stephen W.
1995-01-01
One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...
International Nuclear Information System (INIS)
Susskind, L.; Griffin, P.
1994-01-01
A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)
2011-09-22
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.
Growth of Primordial Black Holes
Harada, Tomohiro
Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.
Napoli, Pietro Emanuele; Coronella, Franco; Satta, Giovanni Maria; Iovino, Claudio; Sanna, Raffaele; Fossarello, Maurizio
2016-01-01
To compare a novel spectral-domain optical coherence tomography (SD-OCT) technique with traditional lid transillumination for evaluation of meibomian glands (MGs) and to assess the relation of MG morphologic changes to the glandular atrophy. Evaluation of diagnostic technology. Sixty-one patients with obstructive MGD (30 men, 31 women; age [mean ± standard deviation] 45.1 ± 12.1 years), and 75 control subjects (32 men, 43 women; 44.1 ± 12.5 years) were recruited in order to have a balanced distribution of glandular features. Agreement between SD-OCT and lid transillumination examination for the detection of drop-out (partial or complete loss of MGs) and microscopic changes (i.e. shortening, distortion, segmentation and entanglement), as well as the relationship between morphological features and MG atrophy were evaluated. Agreement between the two meibographic techniques, bias in symmetry of classification, and association analysis between microscopic changes and MG dropout. Overall agreement for all morphological features was substantial (Cohen kappa coefficient = 0.77; ptechniques, particularly for MG dropout, which supports the reliability of our novel, simple and patient-friendly SD-OCT approach.
Choroidal thickness in Malaysian eyes with full-thickness macular holes
Directory of Open Access Journals (Sweden)
Chew Y Tan
2018-02-01
Full Text Available AIM: To compare choroidal thickness at the macula in eyes with unilateral idiopathic full-thickness macular holes(FTMHwith that of unaffected fellow eyes, and eyes of normal control patients.METHODS: Cross-sectional study. Thirty patients with unilateral idiopathic FTMH and thirty age, sex, and race-matched controls were recruited. Axial lengths were measured using laser interferometry. Enhanced depth imaging optical coherence tomography images were obtained using Heidelberg spectral-domain optical coherence tomography. Choroidal thickness was measured at the fovea, and at 1 mm and 2 mm nasally, temporally, superiorly and inferiorly from the center of the fovea. Statistical analysis was performed using independent and paired t-tests, chi-square tests, and Pearson correlation tests(PRESULTS: The mean subfoveal choroidal thickness was 201.0±44.0 μm in the FTMH group, 225.3±51.4 μm in the fellow eye group and 262.3±70.3 μm in the control group. The choroid was thinner in FTMH eyes at all locations when compared to control eyes(PPP>0.05. Choroidal thickness was generally highest subfoveally and lowest nasally. Subfoveal choroidal thickness was negatively correlated with age(r=-0.278, P=0.032, and axial length(r=-0.328, P=0.011.CONCLUSION: Choroidal thickness is lower in both eyes of patients with unilateral FTMH compared to healthy control eyes.
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Neitzke, A.; Pioline, B.; Vandoren, S.
2007-01-01
Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann
International Nuclear Information System (INIS)
Borsten, L.
2011-01-01
An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.
Borsten, L.
2011-07-01
An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.
Dance of Two Monster Black Holes
Kohler, Susanna
2016-03-01
This past December, researchers all over the world watched an outburst from the enormous black hole in OJ 287 an outburst that had been predicted years ago using the general theory of relativity.Outbursts from Black-Hole OrbitsOJ 287 is one of the largest supermassive black holes known, weighing in at 18 billion solar masses. Located about 3.5 billion light-years away, this monster quasar is bright enough that it was first observed as early as the 1890s. What makes OJ 287 especially interesting, however, is that its light curve exhibits prominent outbursts roughly every 12 years.Diagram illustrating the orbit of the secondary black hole (shown in blue) in OJ 287 from 2000 to 2023. We see outbursts (the yellow bubbles) every time the secondary black hole crosses the accretion disk (shown in red, ina side view) surrounding the primary (the black circle). [Valtonen et al. 2016]What causes the outbursts? Astronomers think that there is a second supermassive black hole, ~100 times smaller, inspiraling as it orbits the central monster and set to merge within the next 10,000 years. In this model, the primary black hole of OJ 287 is surrounded by a hot accretion disk. As the secondary black hole orbits the primary, it regularly punches through this accretion disk, heating the material and causing the release of expanding bubbles of hot gas pulled from the disk. This gas then radiates thermally, causing the outbursts we see.Attempts to model this scenario using Newtonian orbits all fail; the timing of the secondary black holes crossings through the accretion disk (as measured by when we see the outbursts) can only be explained by a model incorporating general-relativistic effects on the orbit. Careful observations and precise timing of these outbursts therefore provide an excellent test of general relativity.Watching a Predicted CrossingThe model of OJ 287 predicted another disk crossing in December 2015, so professional and amateur astronomers around the world readied more
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)
2015-03-26
We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.
Absorption of scalars by extremal black holes in string theory
Moura, Filipe
2017-09-01
We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical α ' corrections. Classically one has the relation σ = 4 GS between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald's entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in d=4 and d=5 dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of α ' corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in d=5). We argue that the relation σ = 4 GS should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.
Directory of Open Access Journals (Sweden)
Merzenich Hiltrud
2012-02-01
Full Text Available Abstract Background Computed tomography (CT is a major source of ionizing radiation exposure in medical diagnostic. Compared to adults, children are supposed to be more susceptible to health risks related to radiation. The purpose of a cross-sectional survey among office-based physicians in Germany was the assessment of medical practice in paediatric CT referrals and to investigate physicians' knowledge of radiation doses and potential health risks of radiation exposure from CT in children. Methods A standardized questionnaire was distributed to all paediatricians and surgeons in two defined study areas. Furthermore, the study population included a random sample of general practitioners in the two areas. The questionnaire covered the frequency of referrals for paediatric CT examinations, the medical diagnoses leading to paediatric CT referrals, physicians' knowledge of radiation doses and potential health risks of radiation exposure from CT in children. Results A total of 295 (36.4% physicians responded. 59% of the doctors had not referred a child to CT in the past year, and approximately 30% referred only 1-5 children annually. The most frequent indications for a CT examination in children were trauma or a suspected cancer. 42% of the referrals were related to minor diagnoses or unspecific symptoms. The participants underestimated the radiation exposure due to CT and they overestimated the radiation exposure due to conventional X-ray examinations. Conclusions In Germany, the frequency of referrals of children to computed tomography is moderate. The knowledge on the risks from radiation exposure among office-based physicians in our sample varied, but there was a tendency to underestimate potential CT risks. Advanced radiological training might lead to considerable amendments in terms of knowledge and practice of CT referral.
Directory of Open Access Journals (Sweden)
Pietro Emanuele Napoli
Full Text Available To compare a novel spectral-domain optical coherence tomography (SD-OCT technique with traditional lid transillumination for evaluation of meibomian glands (MGs and to assess the relation of MG morphologic changes to the glandular atrophy.Evaluation of diagnostic technology.Sixty-one patients with obstructive MGD (30 men, 31 women; age [mean ± standard deviation] 45.1 ± 12.1 years, and 75 control subjects (32 men, 43 women; 44.1 ± 12.5 years were recruited in order to have a balanced distribution of glandular features.Agreement between SD-OCT and lid transillumination examination for the detection of drop-out (partial or complete loss of MGs and microscopic changes (i.e. shortening, distortion, segmentation and entanglement, as well as the relationship between morphological features and MG atrophy were evaluated.Agreement between the two meibographic techniques, bias in symmetry of classification, and association analysis between microscopic changes and MG dropout.Overall agreement for all morphological features was substantial (Cohen kappa coefficient = 0.77; p<0.001, even if, the majority of disagreement occurred for cases with segmentation, where agreement was present in only 108 (81.82% of 132 eyes with adequate images for interpretation, and where SD-OCT tended to diagnose more cases not detected by traditional lid transillumination (McNemar test, p<0.001. Moreover, segmentation and distortion pattern negatively correlated with the degree of drop-out, whereas shortening and entanglement pattern demonstrated only a weak correlation (Spearman's ρ was -0.691, -0.491, -0.359, -0.385, respectively.Each method has its advantages but in general there was close agreement between these meibographic techniques, particularly for MG dropout, which supports the reliability of our novel, simple and patient-friendly SD-OCT approach.
Dreger, Steffen; Krille, Lucian; Maier, Werner; Pokora, Roman; Blettner, Maria; Zeeb, Hajo
2016-01-01
Conflicting findings were observed in recent studies assessing the association between patients' area-level socio-economic status and the received number of computed tomography (CT) examinations in children. The aim was to investigate the association between area-level socio-economic status and variation in CT examination practice for pediatric patients in Germany. Data from Radiology Information Systems for children aged 0 to Deprivation (GIMD) was used to assess regional deprivation. The GIMD scores were classified into least, medium and most deprived areas and linked with the patient's last known postal code. A multinomial logistic regression model was used to assess the association between patients' CT numbers and regional deprivation adjusting for age, sex, and location of residence (urban/rural). A total of 37,810 pediatric patients received 59,571 CT scans during the study period. 27,287 (72%) children received only one CT, while n = 885 (2.3%) received six or more. Increasing numbers of CT examinations in non-cancer patients were significantly associated with higher regional deprivation, which increased, although CI overlap, for higher CT categories: '2-3 CT' odds ratio (OR) = 1.45, 95%CI: 1.40-1.50; '4-5 CT' OR = 1.48, 95%CI: 1.38-1.59; '6+CT' OR = 1.54, 95%CI: 1.41-1.69. In addition, male sex, higher age categories, and specific body regions were positively associated with increased numbers of CT examinations. We observed a positive association between regional deprivation and CT numbers in non-cancer pediatric patients. Limitations of the ecological approach and the lack of differentiation of CT details have to be acknowledged. More information on CT indications is necessary for a full assessment of this finding. In addition, further work on ways to assess socio-economic status more accurately may be required.
Neutrino constraints that transform black holes into grey holes
International Nuclear Information System (INIS)
Ruderfer, M.
1982-01-01
Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)
Indian Academy of Sciences (India)
most sensitive scientific instrument ever ... sion, expelling a lot of the mass, but leaving behind a black hole that is at least ... hole, and indeed such a phenomenon may explain the disappear- ance of a star in the galaxy N6946 [21]. The collapse of stars into black holes might account for some of the extraordinarily powerful ...
Warped products and black holes
International Nuclear Information System (INIS)
Hong, Soon-Tae
2005-01-01
We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes
Measurements and characterization of a hole trap in neutron-irradiated silicon
International Nuclear Information System (INIS)
Avset, B.S.
1996-04-01
The report describes measurements on a hole trap in neutron irradiated silicon diodes made one high resistivity phosphorus doped floatzone silicon. The hole trap was detected by Deep Level Transient Spectroscopy. This measurement gave a trap activation energy of 0.475 MeV. Other measurements showed that the trap has very small capture cross sections for both holes and electrons (10 -18 to 10 -20 cm 2 ) and that the hole capture cross section is temperature dependent. The energy level position of the trap has been estimated to be between 0.25 and 0.29 eV from the valence band. 25 refs., 21 figs., 4 tabs
Single night postoperative prone posturing in idiopathic macular hole surgery.
LENUS (Irish Health Repository)
2012-02-01
Purpose. To evaluate the role of postoperative prone posturing for a single night in the outcome of trans pars plana vitrectomy (TPPV) with internal limiting membrane (ILM) peel and 20% perfluoroethane (C2F6) internal tamponade for idiopathic macular hole. Methods. This prospective trial enrolled 14 eyes in 14 consecutive patients with idiopathic macular hole. All eyes underwent TPPV with vision blue assisted ILM peeling with and without phacoemulsification and intraocular lens (IOL) for macular hole. Intraocular gas tamponade (20% C2F6) was used in all cases with postoperative face-down posturing overnight and without specific posturing afterwards. LogMAR visual acuity, appearance by slit-lamp biomicroscopy, and ocular coherence tomography (OCT) scans were compared preoperatively and postoperatively to assess outcome. Results. Among 14 eyes recruited, all eyes were phakic; 50% of patients underwent concurrent phacoemulsification with IOL. The macular holes were categorized preoperatively by OCT appearance, 4 (28.57%) were stage 2, 7 (50%) were stage 3, and 3 (21.43%) were stage 4. Mean macular hole size was 0.35 disk diameters. Symptoms of macular hole had been present for an average of 6.5 months. All holes (100%) were closed 3 and 6 months postoperatively. Mean visual acuity (logMAR) was improved to 0.61 at 3 months and was stable at 6 months after the surgery. None of the eyes had worse vision postoperatively. Conclusions. Vitrectomy with ILM peeling and 20% C2F6 gas with a brief postoperative 1 night prone posturing regimen is a reasonable approach to achieve anatomic closure in idiopathic macular hole. Concurrent cataract extraction did not alter outcomes and was not associated with any additional complications.
Directory of Open Access Journals (Sweden)
Alan Diego Negretto
2007-10-01
Full Text Available OBJETIVO: Avaliar a anatomia do buraco macular idiopático (BMI a partir da tomografia de coerência óptica (OCT e construir índice prognóstico que possa ser correlacionado com os resultados visuais e o fechamento anatômico. MÉTODOS: Estudo prospectivo, no qual 22 olhos com BMI foram avaliados pelo OCT no pré-operatório da cirurgia do BMI. Foi criado o índice prognóstico do buraco macular (IPBM que foi correlacionado com o resultado anatômico e a acuidade visual pós-operatória seis meses após a cirurgia. RESULTADOS: Dezesseis olhos (72,7% obtiveram fechamento anatômico ao final de seis meses de acompanhamento. Na análise do IPBM, houve diferença significativa entre o grupo 1 (BM aberto e o grupo 2 (BM fechado (p=0,0018. O risco de insucesso para o fechamento anatômico é 11 vezes maior quando o diâmetro da base interna for superior a 600 µm ou o IPBM for inferior a 0,6 (p=0,0495. No que diz respeito à AV final, observou-se que o IPBM tem correlação negativa significante na AV (p=0,001. CONCLUSÃO: O IPBM se apresentou como o melhor preditor de fechamento anatômico e acuidade visual pós-operatória entre as variáveis aqui estudadas. Responde por 41% da acuidade visual pós-operatória final, nos levando a crer que outros fatores, como o tempo de história e a degeneração dos fotorreceptores nestes BM mais antigos, possam estar envolvidos nos resultados visuais.PURPOSE: To evaluate the anatomy of idiopathic macular hole (IMH using Optical Coherence Tomography (OCT and to construct a prognostic index that can be correlated with the visual outcomes and the anatomical closing. METHODS: Prospective study, in which 22 eyes with IMH had been evaluated through OCT in the daily postoperative period of IMH surgery. The Prognostic of Macular Hole Index (PMHI was created which was correlated with the anatomical result and the postoperative visual acuity (VA six months after surgery. RESULTS: Sixteen eyes (72.7% got anatomical
Uro, Mathieu; Beauchet, Olivier; Cherif, Mehdi; Graffe, Alix; Milea, Dan; Annweiler, Cedric
2015-01-01
Vitamin D deficiency is associated with smaller volume of optic chiasm in older adults, indicating a possible loss of the visual axons and their cellular bodies. Our objective was to determine whether vitamin D deficiency in older adults is associated with reduced thickness of the ganglion cell complex (GCC) and of the retinal nerve fibre layer (RNFL), as measured with high-definition optical coherence tomography (HD-OCT). Eighty-five French older community-dwellers without open-angle glaucoma and patent age-related macular degeneration (mean, 71.1±4.7 years; 45.9% female) from the GAIT study were separated into 2 groups according to serum 25OHD level (i.e., deficient≤25 nmol/L or sufficient>25 nmol/L). Measurements of GCC and RNFL thickness were performed using HD-OCT. Age, gender, body mass index, number of comorbidities, dementia, functional autonomy, intracranial volume, visual acuity, serum calcium concentration and season of testing were considered as potential confounders. Mean serum 25OHD concentration was 58.4±26.8 nmol/L. Mean logMAR visual acuity was 0.03±0.06. Mean visual field mean deviation was -1.25±2.29 dB. Patients with vitamin D deficiency (n=11) had a reduced mean GCC thickness compared to those without vitamin D deficiency (72.1±7.4 μm versus 77.5±7.5 μm, P=0.028). There was no difference of the mean RNFL thickness in these two groups (P=0.133). After adjustment for potential confounders, vitamin D deficiency was associated with reduced GCC thickness (ß=-5.12, P=0.048) but not RNFL thickness (ß=-9.98, P=0.061). Specifically, vitamin D deficiency correlated with the superior medial GCC area (P=0.017) and superior temporal GCC area (P=0.010). Vitamin D deficiency in older patients is associated with reduced mean GCC thickness, which can represent an early stage of optic nerve damage, prior to RNFL loss.
Directory of Open Access Journals (Sweden)
Mathieu Uro
Full Text Available Vitamin D deficiency is associated with smaller volume of optic chiasm in older adults, indicating a possible loss of the visual axons and their cellular bodies. Our objective was to determine whether vitamin D deficiency in older adults is associated with reduced thickness of the ganglion cell complex (GCC and of the retinal nerve fibre layer (RNFL, as measured with high-definition optical coherence tomography (HD-OCT.Eighty-five French older community-dwellers without open-angle glaucoma and patent age-related macular degeneration (mean, 71.1±4.7 years; 45.9% female from the GAIT study were separated into 2 groups according to serum 25OHD level (i.e., deficient≤25 nmol/L or sufficient>25 nmol/L. Measurements of GCC and RNFL thickness were performed using HD-OCT. Age, gender, body mass index, number of comorbidities, dementia, functional autonomy, intracranial volume, visual acuity, serum calcium concentration and season of testing were considered as potential confounders.Mean serum 25OHD concentration was 58.4±26.8 nmol/L. Mean logMAR visual acuity was 0.03±0.06. Mean visual field mean deviation was -1.25±2.29 dB. Patients with vitamin D deficiency (n=11 had a reduced mean GCC thickness compared to those without vitamin D deficiency (72.1±7.4 μm versus 77.5±7.5 μm, P=0.028. There was no difference of the mean RNFL thickness in these two groups (P=0.133. After adjustment for potential confounders, vitamin D deficiency was associated with reduced GCC thickness (ß=-5.12, P=0.048 but not RNFL thickness (ß=-9.98, P=0.061. Specifically, vitamin D deficiency correlated with the superior medial GCC area (P=0.017 and superior temporal GCC area (P=0.010.Vitamin D deficiency in older patients is associated with reduced mean GCC thickness, which can represent an early stage of optic nerve damage, prior to RNFL loss.
Statistical mechanics of black holes
International Nuclear Information System (INIS)
Harms, B.; Leblanc, Y.
1992-01-01
We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed
Moon, Taeyoon; Myung, Yun Soo; Son, Edwin J.
2011-01-01
We study the $f(R)$-Maxwell black hole imposed by constant curvature and its all thermodynamic quantities, which may lead to the Reissner-Nordstr\\"om-AdS black hole by redefining Newtonian constant and charge. Further, we obtain the $f(R)$-Yang-Mills black hole imposed by constant curvature, which is related to the Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then, we confirm th...
Polchinski, Joseph
2015-04-01
Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.
Rotating black hole and quintessence
International Nuclear Information System (INIS)
Ghosh, Sushant G.
2016-01-01
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e 2 ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter ω and so is the ergoregion. (orig.)
Internal structure of black holes
International Nuclear Information System (INIS)
Cvetic, Mirjam
2013-01-01
Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)
International Nuclear Information System (INIS)
Boslough, J.
1985-01-01
This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)
International Nuclear Information System (INIS)
Mathur, Samir D
2012-01-01
The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.
Computed Tomography (CT) -- Head
Full Text Available ... Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special ... the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a CT ...
Positron Emission Tomography - Computed Tomography (PET/CT)
... News Physician Resources Professions Site Index A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) ... Emission Tomography – Computed Tomography (PET/CT)? What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, ...
Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron
2015-04-01
enhance capillary trapping of CO₂, and may indeed be equitable features for the immobilisation of large volumes of CO₂. However, previous investigations using static microstructural analysis or bulk petrophysical measurements have been incapable of capturing the fundamental pore scale fluid processes at work in such systems. As a consequence, considerable ambiguity remains over the role of microfaults in determining the eventual fate of CO2 injected into sandstone saline aquifers. With this in mind, the present work seeks to investigate the influence of microfaults over the injection of supercritical CO₂ within sandstone saline aquifers. By employing high temperature-elevated pressure fluid tomography, we are able to directly image at pore scale scCO2-brine primary drainage within a sandstone micro-core (Orange Quarry, Bassin de Sud-est, France) intersected by a single cataclastic fault. The time series data reveals that intra-fault capillary heterogeneity plays an important role in the breaching of microfaults by the non-wetting phase (i.e. scCO2). Such low entry pressure regions facilitate bypass of the fault, suggesting that the capacity of microfaults within clean sandstones to act as major baffles or barriers to a buoyantly migrating CO2 plume may have been previously overestimated.
Microstates of a neutral black hole in M theory.
Emparan, Roberto; Horowitz, Gary T
2006-10-06
We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.
Tomography with energy dispersive diffraction
Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.
2017-09-01
X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.
Directory of Open Access Journals (Sweden)
Engin Bilge Ozgurhan
2014-01-01
Full Text Available Purpose. To evaluate the depth of corneal stromal demarcation line using AS-OCT and confocal microscopy after two different protocols of accelerated corneal collagen cross-linking procedures (CXL. Methods. Patients with keratoconus were divided into two groups. Peschke CXL device (Peschke CCL-VARIO Meditrade GmbH applied UVA light with an intended irradiance of 18.0 mW/cm2 for 5 minutes after applying riboflavin for 20 minutes (group 1 and 30 minutes (group 2. One month postoperatively, corneal stromal demarcation line was measured using AS-OCT and confocal microscopy. Results. This study enrolled 34 eyes of 34 patients (17 eyes in group 1 and 17 eyes in group 2. The mean depth of the corneal stromal demarcation line was 208.64±18.41 μm in group 1 and 240.37±18.89 μm in group 2 measured with AS OCT, while it was 210.29±18.66 μm in group 1 and 239.37±20.07 μm in group 2 measured with confocal microscopy. Corneal stromal demarcation line depth measured with AS OCT or confocal microscopy was significantly deeper in group 2 than group 1 (P<0.01. Conclusion. The group in which riboflavin was applied for 30 minutes showed significantly deeper corneal stromal demarcation line than the group in which riboflavin was applied for 20 minutes.
$W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes
Ellis, John; Nanopoulos, Dimitri V
2016-01-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...
Statistical black-hole thermodynamics
International Nuclear Information System (INIS)
Bekenstein, J.D.
1975-01-01
Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole
Gravitational collapse to a Kerr-Newman black hole
Nathanail, Antonios; Most, Elias R.; Rezzolla, Luciano
2017-07-01
We present the first systematic study of the gravitational collapse of rotating and magnetized neutron stars to charged and rotating (Kerr-Newman) black holes. In particular, we consider the collapse of magnetized and rotating neutron stars assuming that no pair-creation takes place and that the charge density in the magnetosphere is so low that the stellar exterior can be described as an electrovacuum. Under these assumptions, which are rather reasonable for a pulsar that has crossed the 'death line', we show that when the star is rotating, it acquires a net initial electrical charge, which is then trapped inside the apparent horizon of the newly formed back hole. We analyse a number of different quantities to validate that the black hole produced is indeed a Kerr-Newman one and show that, in the absence of rotation or magnetic field, the end result of the collapse is a Schwarzschild or Kerr black hole, respectively.
Black Holes, Worm Holes, and Future Space Propulsion
Barret, Chris
2000-01-01
NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.
Li, Qi; Zhang, Gang; Xiong, Xin; Wang, Xing-Chen; Yang, Wen-Song; Li, Ke-Wei; Wei, Xiao; Xie, Peng
2016-07-01
Early hematoma growth is a devastating neurological complication after intracerebral hemorrhage. We aim to report and evaluate the usefulness of computed tomography (CT) black hole sign in predicting hematoma growth in patients with intracerebral hemorrhage. Patients with intracerebral hemorrhage were screened for the presence of CT black hole sign on admission head CT performed within 6 hours after onset of symptoms. The black hole sign was defined as hypoattenuatting area encapsulated within the hyperattenuating hematoma with a clearly defined border. The sensitivity, specificity, and positive and negative predictive values of CT black hole sign in predicting hematoma expansion were calculated. Logistic regression analyses were used to assess the presence of the black hole sign and early hematoma growth. A total of 206 patients were enrolled. Black hole sign was found in 30 (14.6%) of 206 patients on the baseline CT scan. The black hole sign was more common in patients with hematoma growth (31.9%) than those without hematoma growth (5.8%; Phole sign in predicting early hematoma growth were 31.9%, 94.1%, 73.3%, and 73.2%, respectively. The time-to-admission CT scan, baseline hematoma volume, and the presence of black hole sign on admission CT independently predict hematoma growth in multivariate model. The CT black hole sign could be used as a simple and easy-to-use predictor for early hematoma growth in patients with intracerebral hemorrhage. © 2016 American Heart Association, Inc.
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron
2004-01-01
[figure removed for brevity, see original site] Figure 1 At a rock called 'Clovis,' the rock abrasion tool on NASA's Mars Exploration Rover Spirit cut a 9-millimeter (0.35-inch) hole during the rover's 216th martian day, or sol (Aug. 11, 2004). The hole is the deepest drilled in a rock on Mars so far. This approximately true-color view was made from images taken by Spirit's panoramic camera on sol 226 (Aug. 21, 2004) at around 12:50 p.m. local true solar time -- early afternoon in Gusev Crater on Mars. To the right is a 'brush flower' of circles produced by scrubbing the surface of the rock with the abrasion tool's wire brush. Scientists used rover's Moessbauer spectrometer and alpha particle X-ray spectrometer to look for iron-bearing minerals and determine the elemental chemical composition of the rock. This composite combines images taken with the camera's 750-, 530-, and 430-nanometer filters. The grayish-blue hue in this image suggests that the interior of the rock contains iron minerals that are less oxidized than minerals on the surface. The diameter of the hole cut into the rock is 4.5 centimeters (1.8 inches). Data on the graph (Figure 1) from the alpha particle X-ray spectrometer instrument on the robotic arm of NASA's Mars Exploration Rover Spirit reveal the elemental chemistry of two rocks, 'Ebenezer' and 'Clovis,' (see PIA06914) in the 'Columbia Hills.' Scientists found, through comparison of the rocks' chemistry, that Ebenezer and Clovis have very different compositions from the rocks on the Gusev plains.
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Quantum effects in black holes
International Nuclear Information System (INIS)
Frolov, V.P.
1979-01-01
A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered
Particle creation by black holes
International Nuclear Information System (INIS)
Hawking, S.W.
1975-01-01
In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de
Visser, Matt; Volovik, Grigory E
2009-01-01
Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Origin of supermassive black holes
Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.
2007-01-01
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Destroying extremal magnetized black holes
Siahaan, Haryanto M.
2017-07-01
The gedanken experiment by Wald to destroy a black hole using a test particle in the equatorial plane is adapted to the case of extremal magnetized black holes. We find that the presence of external magnetic fields resulting from the "Ernst magnetization" permits a test particle to have strong enough energy to destroy the black hole. However, the corresponding effective potentials show that such particles would never reach the horizon.
Statistical Hair on Black Holes
International Nuclear Information System (INIS)
Strominger, A.
1996-01-01
The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society
On black hole horizon fluctuations
International Nuclear Information System (INIS)
Tuchin, K.L.
1999-01-01
A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken
Black holes and the multiverse
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Braneworld Black Hole Gravitational Lensing
International Nuclear Information System (INIS)
Liang Jun
2017-01-01
A class of braneworld black holes, which I called as Bronnikov–Melnikov–Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio–Fabbri–Mazzacurati (CFM) black holes. (paper)
Can Black Hole Relax Unitarily?
Solodukhin, S. N.
2005-03-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Nariai black holes with quintessence
Fernando, Sharmanthie
2014-01-01
In this paper we study the properties of Schwarzschild black hole surrounded by quintessence matter. The main objective of the paper is to show the existence of Nariai type black hole for special values of the parameters in the theory. The Nariai black hole with the quintessence has the topology $dS_2 \\times S_2$ with $dS_2$ with a different scalar curvature than what would be expected for the Schwarzschild-de Sitter degenerate black hole. Temperature and the entropy for the Schwarzschild-de ...
Exploring higher dimensional black holes at the Large Hadron Collider
International Nuclear Information System (INIS)
Harris, Christopher M.; Palmer, Matthew J.; Parker, Michael A.; Richardson, Peter; Sabetfakhri, Ali; Webber, Bryan R.
2005-01-01
In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20%, determine the Planck mass to 15% and the number of extra dimensions to ±0.75
Computed Tomography (CT) -- Head
Full Text Available ... typically a large, box-like machine with a hole, or short tunnel, in the center. You will ... be removed by the technologist, and the tiny hole made by the needle will be covered with ...
Computed Tomography (CT) -- Sinuses
Full Text Available ... typically a large, box-like machine with a hole, or short tunnel, in the center. You will ... be removed by the technologist, and the tiny hole made by the needle will be covered with ...
Compera, Denise; Entchev, Enrico; Haritoglou, Christos; Scheler, Renate; Mayer, Wolfgang J; Wolf, Armin; Kampik, Anselm; Schumann, Ricarda G
2015-08-01
To compare immunocytochemical and ultrastructural characteristics of "lamellar hole-associated epiretinal proliferation" in lamellar macular holes with "conventional epiretinal membrane" in macular pseudoholes. A consecutive observational case series, laboratory investigation. We analyzed surgically excised flat-mounted internal limiting membrane specimens and epiretinal membrane specimens removed from 25 eyes of 25 patients with lamellar macular holes (11 eyes) and macular pseudoholes (14 eyes) using interference and phase-contrast microscopy, immunocytochemistry, and transmission electron microscopy. By spectral-domain optical coherence tomography, epiretinal material of homogenous reflectivity without contractive properties was categorized as lamellar hole-associated epiretinal proliferation, whereas tractional epiretinal membranes presenting contractive properties were termed conventional epiretinal membrane. Lamellar hole-associated epiretinal proliferation was seen in 73% of eyes with lamellar macular hole. Eyes with macular pseudohole presented with conventional epiretinal membrane. In lamellar hole-associated epiretinal proliferation, positive immunoreactivity for anti-glial fibrillary acidic protein, hyalocyte markers, and anti-collagen type I and III was seen. In contrast, specimens of macular pseudoholes were positive for α-smooth muscle actin and anti-glial fibrillary acidic protein, predominantly. Cellular ultrastructure showed that lamellar hole-associated epiretinal proliferation of lamellar macular holes mainly consisted of fibroblasts and hyalocytes, whereas myofibroblasts dominated in conventional epiretinal membranes of macular pseudoholes. Cells within lamellar hole-associated epiretinal proliferation appear to originate from vitreous and possess less contractive properties than cells of conventional epiretinal membranes. Our findings point to differences in pathogenesis in a subgroup of lamellar macular holes presenting lamellar hole
Analysis and simulation of BGK electron holes
Directory of Open Access Journals (Sweden)
L. Muschietti
1999-01-01
Full Text Available Recent observations from satellites crossing regions of magnetic-field-aligned electron streams reveal solitary potential structures that move at speeds much greater than the ion acoustic/thermal velocity. The structures appear as positive potential pulses rapidly drifting along the magnetic field, and are electrostatic in their rest frame. We interpret them as BGK electron holes supported by a drifting population of trapped electrons. Using Laplace transforms, we analyse the behavior of one phase-space electron hole. The resulting potential shapes and electron distribution functions are self-consistent and compatible with the field and particle data associated with the observed pulses. In particular, the spatial width increases with increasing amplitude. The stability of the analytic solution is tested by means of a two-dimensional particle-in-cell simulation code with open boundaries. We consider a strongly magnetized parameter regime in which the bounce frequency of the trapped electrons is much less than their gyrofrequency. Our investigation includes the influence of the ions, which in the frame of the hole appear as an incident beam, and impinge on the BGK potential with considerable energy. The nonlinear structure is remarkably resilient
Positron emission tomography camera
International Nuclear Information System (INIS)
Anon.
1986-01-01
A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance
Energy Technology Data Exchange (ETDEWEB)
Tamura, Akio, E-mail: a.akahane@gmail.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Kato, Kenichi, E-mail: kkato@iwate-med.ac.jp [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Kamata, Masayoshi, E-mail: kamataaoi@yahoo.co.jp [Iwate Medical University Hospital, 19-1 Uchimaru, Morioka 020-8505 (Japan); Suzuki, Tomohiro, E-mail: suzukitomohiro123@gmail.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Suzuki, Michiko, E-mail: mamimichiko@me.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Nakayama, Manabu, E-mail: gakuymgt@yahoo.co.jp [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Tomabechi, Makiko, E-mail: mtomabechi@mac.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Nakasato, Tatsuhiko, E-mail: nakasato77@gmail.com [Department of Radiology, Southern Tohoku Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama 963-8563 (Japan); Ehara, Shigeru, E-mail: ehara@iwate-med.ac.jp [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan)
2017-02-15
Highlights: • We compared 24-gauge side-hole and conventional 22-gauge end-hole catheters in MDCT. • The 24-gauge side-hole catheter is noninferior to the 22-gauge end-hole catheter. • The 24-gauge side-hole catheter is safe and facilitates optimal enhancement quality. • The 24-gauge side-hole catheter is suitable for patients with narrow or fragile veins. - Abstract: Purpose: To compare the 24-gauge side-holes catheter and conventional 22-gauge end-hole catheter in terms of safety, injection pressure, and contrast enhancement on multi-detector computed tomography (MDCT). Materials & methods: In a randomized single-center study, 180 patients were randomized to either the 24-gauge side-holes catheter or the 22-gauge end-hole catheter groups. The primary endpoint was safety during intravenous administration of contrast material for MDCT, using a non-inferiority analysis (lower limit 95% CI greater than −10% non-inferiority margin for the group difference). The secondary endpoints were injection pressure and contrast enhancement. Results: A total of 174 patients were analyzed for safety during intravenous contrast material administration for MDCT. The overall extravasation rate was 1.1% (2/174 patients); 1 (1.2%) minor episode occurred in the 24-gauge side-holes catheter group and 1 (1.1%) in the 22-gauge end-hole catheter group (difference: 0.1%, 95% CI: −3.17% to 3.28%, non-inferiority P = 1). The mean maximum pressure was higher with the 24-gauge side-holes catheter than with the 22-gauge end-hole catheter (8.16 ± 0.95 kg/cm{sup 2} vs. 4.79 ± 0.63 kg/cm{sup 2}, P < 0.001). The mean contrast enhancement of the abdominal aorta, celiac artery, superior mesenteric artery, and pancreatic parenchyma in the two groups were not significantly different. Conclusion: In conclusion, our study showed that the 24-gauge side-holes catheter is safe and suitable for delivering iodine with a concentration of 300 mg/mL at a flow-rate of 3 mL/s, and it may contribute to
International Nuclear Information System (INIS)
Tamura, Akio; Kato, Kenichi; Kamata, Masayoshi; Suzuki, Tomohiro; Suzuki, Michiko; Nakayama, Manabu; Tomabechi, Makiko; Nakasato, Tatsuhiko; Ehara, Shigeru
2017-01-01
Highlights: • We compared 24-gauge side-hole and conventional 22-gauge end-hole catheters in MDCT. • The 24-gauge side-hole catheter is noninferior to the 22-gauge end-hole catheter. • The 24-gauge side-hole catheter is safe and facilitates optimal enhancement quality. • The 24-gauge side-hole catheter is suitable for patients with narrow or fragile veins. - Abstract: Purpose: To compare the 24-gauge side-holes catheter and conventional 22-gauge end-hole catheter in terms of safety, injection pressure, and contrast enhancement on multi-detector computed tomography (MDCT). Materials & methods: In a randomized single-center study, 180 patients were randomized to either the 24-gauge side-holes catheter or the 22-gauge end-hole catheter groups. The primary endpoint was safety during intravenous administration of contrast material for MDCT, using a non-inferiority analysis (lower limit 95% CI greater than −10% non-inferiority margin for the group difference). The secondary endpoints were injection pressure and contrast enhancement. Results: A total of 174 patients were analyzed for safety during intravenous contrast material administration for MDCT. The overall extravasation rate was 1.1% (2/174 patients); 1 (1.2%) minor episode occurred in the 24-gauge side-holes catheter group and 1 (1.1%) in the 22-gauge end-hole catheter group (difference: 0.1%, 95% CI: −3.17% to 3.28%, non-inferiority P = 1). The mean maximum pressure was higher with the 24-gauge side-holes catheter than with the 22-gauge end-hole catheter (8.16 ± 0.95 kg/cm 2 vs. 4.79 ± 0.63 kg/cm 2 , P < 0.001). The mean contrast enhancement of the abdominal aorta, celiac artery, superior mesenteric artery, and pancreatic parenchyma in the two groups were not significantly different. Conclusion: In conclusion, our study showed that the 24-gauge side-holes catheter is safe and suitable for delivering iodine with a concentration of 300 mg/mL at a flow-rate of 3 mL/s, and it may contribute to the care
Indian Academy of Sciences (India)
was discovered in the constellation Cygnus; a bright X-ray emit- ter associated with a twin-star system, and christened Cygnus X-. 1. It has a massive star and a black hole orbiting each other. With an optical telescope it is the companion star of the black hole which is visible, which produces stellar winds blowing away from.
Black holes and quantum mechanics
t Hooft, G.|info:eu-repo/dai/nl/074127888
2010-01-01
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these
DEFF Research Database (Denmark)
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....
ATLAS simulated black hole event
Pequenão, J
2008-01-01
The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).
Drilling miniature holes, Part III
Energy Technology Data Exchange (ETDEWEB)
Gillespie, L.K.
1978-07-01
Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.
What, no black hole evaporation
International Nuclear Information System (INIS)
Hajicek, P.; Israel, W.
1980-01-01
Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)
Magnetic fields around black holes
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Joyce, Geoffrey F; Zissimopoulos, Julie; Goldman, Dana P
2013-12-01
Despite its success, Medicare Part D has been widely criticized for the gap in coverage, the so-called "doughnut hole". We compare the use of prescription drugs among beneficiaries subject to the coverage gap with usage among beneficiaries who are not exposed to it. We find that the coverage gap does, indeed, disrupt the use of prescription drugs among seniors with diabetes. But the declines in usage are modest and concentrated among higher cost, brand-name medications. Demand for high cost medications such as antipsychotics, antiasthmatics, and drugs of the central nervous system decline by 8-18% in the coverage gap, while use of lower cost medications with high generic penetration such as beta blockers, ACE inhibitors and antidepressants decline by 3-5% after reaching the gap. More importantly, lower adherence to medications is not associated with increases in medical service use. Copyright © 2013 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hubeny, V.
2005-01-12
We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.
International Nuclear Information System (INIS)
Torn, K.
1976-01-01
Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications
Compressibility of rotating black holes
International Nuclear Information System (INIS)
Dolan, Brian P.
2011-01-01
Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
Are LIGO's Black Holes Made From Smaller Black Holes?
Kohler, Susanna
2017-05-01
The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that
Caged black holes: Black holes in compactified spacetimes. I. Theory
International Nuclear Information System (INIS)
Kol, Barak; Sorkin, Evgeny; Piran, Tsvi
2004-01-01
In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes
Black hole decay as geodesic motion
International Nuclear Information System (INIS)
Gupta, Kumar S.; Sen, Siddhartha
2003-01-01
We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes
Black holes and quantum processes in them
International Nuclear Information System (INIS)
Frolov, V.P.
1976-01-01
The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them
ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature
Zhou, Xinbang; Gong, Zhenfeng
2017-12-01
In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.
ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature
Zhou, Xinbang; Gong, Zhenfeng
2018-03-01
In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field distribution and birefringence values of circular-core, rectangular-core, and triangular-core side-hole fibers are presented. Our analysis shows the triangular-core side-hole fiber has low temperature sensitivity which weakens the cross sensitivity of temperature and strain. Additionally, an optimized structure design of the side-hole fiber is presented which can be used for the sensing application.
Black holes: the membrane paradigm
International Nuclear Information System (INIS)
Thorne, K.S.; Price, R.H.; Macdonald, D.A.
1986-01-01
The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole
A nonsingular rotating black hole
International Nuclear Information System (INIS)
Ghosh, Sushant G.
2015-01-01
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
A Lovelock black hole bestiary
International Nuclear Information System (INIS)
Camanho, Xián O; Edelstein, José D
2013-01-01
We revisit the study of (A)dS black holes in Lovelock theories. We present a new tool that allows to attack this problem in full generality. In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies, many distinctive and interesting features are observed. Among them, the existence of maximally symmetric vacua does not support black holes in vast regions of the space of gravitational couplings, multi-horizon black holes and branches of solutions that suggest the existence of a rich diagram of phase transitions. The appearance of naked singularities seems unavoidable in some cases, raising the question about the fate of the cosmic censorship conjecture in these theories. There is a preferred branch of solutions for planar black holes, as well as for non-planar black holes with high enough mass or temperature. Our study clarifies the role of all branches of solutions, including asymptotically dS black holes, and whether they should be considered when studying these theories in the context of AdS/CFT. (paper)
Unveiling the edge of time black holes, white holes, wormholes
Gribbin, John
1992-01-01
Acclaimed science writer John Gribbin recounts dramatic stories that have led scientists to believe black holes and their more mysterious kin are not only real, but might actually provide a passage to other universes and travel through time.
Quantum Mechanics of Black Holes
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Tunnelling from Goedel black holes
International Nuclear Information System (INIS)
Kerner, Ryan; Mann, R. B.
2007-01-01
We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons
Black Holes: A Traveler's Guide
Pickover, Clifford A.
1998-03-01
BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Vacuum metastability with black holes
International Nuclear Information System (INIS)
Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd
2015-01-01
We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.
Gravitational polarizability of black holes
International Nuclear Information System (INIS)
Damour, Thibault; Lecian, Orchidea Maria
2009-01-01
The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.
Black holes and Higgs stability
Tetradis, Nikolaos
2016-09-20
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
Model problems for gravitationally perturbed black holes
International Nuclear Information System (INIS)
Price, R.H.; Thorne, K.S.; Macdonald, D.A.; Crowley, R.J.; Redmount, I.H.
1986-01-01
The membrane formalism is applied to various types of gravitational perturbations of a black hole. Attention is given to the disturbance of the horizon of a black hole by compact masses lowered toward a nonrotating hole and the deformations experienced by a rotating hole. Nonaxisymmetric gravitational tidal fields in rigid motion about a rotating hole are considered, along with the behavior of massive particle moving along the equator of a rotating hole, and the spindown of a rotating hole in an external tidal field. The extraction of rotational energy from a black hole by orbiting bodies is examined, as are superradiant scattering of gravitational waves and the quasi-normal modes of a black hole. The perturbations imparted to a black hole by a compact body plunging into the membrane (a stretched horizon) at a velocity close to the local light speed and by a radially accelerated particle above the horizon of a nonrotating hole are also explored
Computed Tomography (CT) -- Sinuses
Full Text Available ... the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT of the sinuses is primarily used ...
Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem
International Nuclear Information System (INIS)
William Charlton
2007-01-01
Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions
Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem
Energy Technology Data Exchange (ETDEWEB)
William Charlton
2007-07-01
Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.
Parker, E. N.
1991-01-01
It has been shown that the coronal hole, and the associated high-speed stream in the solar wind, are powered by a heat input of the order of 500,000 ergs/sq cm s, with most of the heat injected in the first 1-2 solar radii, and perhaps 100,000 ergs/sq cm s introduced at distances of several solar radii to provide the high speed of the issuing solar wind. The traditional view has been that this energy is obtained from Alfven waves generated in the subphotospheric convection, which dissipate as they propagate outward, converting the wave energy into heat. This paper reviews the generation of waves and the known wave dissipation mechanisms, to show that the necessary Alfven waves are not produced under the conditions presently understood to exist in the sun, nor would such waves dissipate significantly in the first 1-2 solar radii if they existed. Wave dissipation occurs only over distances of the order of 5 solar radii or more.
International Nuclear Information System (INIS)
Narayan, Ramesh
2005-01-01
This paper reviews the current status of black hole (BH) astrophysics, focusing on topics of interest to a physics audience. Astronomers have discovered dozens of compact objects with masses greater than 3M o-dot , the likely maximum mass of a neutron star. These objects are identified as BH candidates. Some of the candidates have masses ∼5M o-dot -20M o-dot and are found in x-ray binaries, while the rest have masses ∼10 6 M o-dot -10 9.5 M o-dot and are found in galactic nuclei. A variety of methods are being tried to estimate the spin parameters of the candidate BHs. There is strong circumstantial evidence that many of the objects have event horizons, so there is good reason to believe that the candidates are true BHs. Recent MHD simulations of magnetized plasma accreting on rotating BHs seem to hint that relativistic jets may be produced by a magnetic analogue of the Penrose process
Erratic Black Hole Regulates Itself
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Phase transition for black holes with scalar hair and topological black holes
Myung, Yun Soo
2008-01-01
We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by usi...
Fermionic greybody factors of two and five-dimensional dilatonic black holes
Energy Technology Data Exchange (ETDEWEB)
Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)
2014-08-15
We study fermionic perturbations in the background of a two and five-dimensional dilatonic black holes. Then, we compute the reflection and transmission coefficients and the absorption cross section for fermionic fields, and we show numerically that the absorption cross section vanishes in the low and high frequency limit. Also we find that beyond a certain value of the horizon radius r{sub 0} the absorption cross section for five-dimensional dilatonic black hole is constant. Besides, we have find that the absorption cross section decreases for higher angular momentum, and it decreases when the mass of the fermionic field increases. (orig.)
International Nuclear Information System (INIS)
Feng Hanliang; Jiao Xiaojing
2010-01-01
As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)
Spectral and Diffraction Tomography
Lionheart, William
2016-01-01
We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry
International Nuclear Information System (INIS)
Reivich, M.; Alavi, A.
1985-01-01
This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology
Computed Tomography (CT) -- Head
Full Text Available ... Perfusion of the Head CT Angiography (CTA) Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - Head Videos related to Computed Tomography ( ...
Black holes and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)
2010-07-15
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.
Black hole evaporation: a paradigm
International Nuclear Information System (INIS)
Ashtekar, Abhay; Bojowald, Martin
2005-01-01
A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved
Role of Lamellar Hole-Associated Epiretinal Proliferation in Lamellar Macular Holes.
dell'Omo, Roberto; Virgili, Gianni; Rizzo, Stanislao; De Turris, Serena; Coclite, Giovanni; Giorgio, Dario; dell'Omo, Ermanno; Costagliola, Ciro
2017-03-01
To compare the morphologic and functional characteristics and response to surgery of lamellar macular holes (LMHs) with and without lamellar hole-associated epiretinal proliferation (LHEP) and standard epiretinal membrane (ERM). Retrospective observational case series. Setting: Vitreoretinal clinical practice. Eigthy-four eyes of 84 patients. The included eyes must present an irregular foveal contour and schitic or cavitated lamellar separation of neurosensory retina on spectral-domain optical coherence tomography (SDOCT) and an area of increased autofluorescence on blue fundus autofluorescence (B-FAF). Twenty-six eyes underwent pars plana vitrectomy (PPV). Logarithm of minimum angle of resolution (logMAR) best-corrected visual acuity (BCVA) and evolution of morphologic characteristics. Standard ERM alone, LHEP alone, and concomitant ERM and LHEP were found in 51.2%, 13.1%, and 35.7% of the cases, respectively. A substantial stability of functional and morphologic parameters throughout the follow-up period was observed in the eyes that did not undergo surgery indipendently from the associated epiretinal material. The most significant change, observed in the preoperative period, in the eyes that underwent surgery, was the thinning of the central foveal thickness (CFT, P < .001). In the operated eyes, logMAR BCVA continuosly improved during the postoperative period (P = .006), CFT was found increased, and diameters of the hole were found reduced since the first month after operation (P < .001). In eyes with LMHs, presence of LHEP without any trace of standard ERM is rare. The presence of LHEP does not seem to influence the natural course of the disease and the response to surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.
Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho
2017-11-01
We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.
EDITORIAL: Industrial Process Tomography
Anton Johansen, Geir; Wang, Mi
2008-09-01
There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen
Terahertz superconducting plasmonic hole array
Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili
2010-01-01
We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applicatio...
Black holes from extended inflation
International Nuclear Information System (INIS)
Hsu, S.D.H.; Lawrence Berkeley Lab., CA
1990-01-01
It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)
Frampton, Paul H.
2009-01-01
While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.
Clinical observation on vitreous surgery in treating idiopathic macular hole
Directory of Open Access Journals (Sweden)
Min Liu
2013-12-01
Full Text Available AIM: To observe the surgical effect and influential factors of idiopathic macular hole(IMHtreated with vitrectomy and internal limiting membrane peeling combined with intravitreal gas tamponade.METHODS: The clinical data of 22 IMH patients(23 eyeswere retrospectively analyzed. All the patients were diagnosed with IMH by optical coherence tomography(OCTand their macular hole patterns were measured before and after surgery by OCT in addition to the routine examinations. All patients were treated with vitrectomy, internal limiting membrane peeling combined with gas injection(air or inert gas. The postoperative visual acuity, macular hole closure rate and the incidence of surgical complications were observed. The correlation between the patients' age, course of disease, preoperative best corrected visual acuity(BCVA, macular hole diameter, the type of vitreous cavity filling gas, the postoperative BCVA, and the macular hole closure rate was analyzed with SPSS 13.0 statistical software.RESULTS: Postoperative OCT examination results showed that the macular hole closure rate was 100%. The macular hole closure rate was 79%(11 eyes of 14 eyesafter the first intravitreal air injection and 100%(9 eyesafter fist intravitreal inert gas injection(100mL/L C3F8. There was no significant difference between the air injection and inert gas injection(χ2=2.1214, P>0.05. The mean preoperational BCVA was 0.11±0.05 and the mean postoperative BCVA 0.23±0.12; there was a statistically significant difference between them(t=4.023,Pt=3.92, PPr=-0.415, P=0.256, duration of disease(r=0.193, P= 0.498, preoperative VA(r=0.152, P=0.673had no significant influence on IMH visual outcomes.CONCLUSION: The vitrectomy combined with internal limiting membrane peeling and intravitreal gas tamponade is an effective treatment for IMH; the macular hole diameter is the major influence factor in the postoperative closure and visual prognosis of IMH; while the preoperative visual acuity
The Distribution and Annihilation of Dark Matter Around Black Holes
Schnittman, Jeremy D.
2015-01-01
We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter (DM) particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple DM models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the DM annihilation cross-section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding 600%, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.
Analytic continuation of the rotating black hole state counting
Energy Technology Data Exchange (ETDEWEB)
Achour, Jibril Ben [Departement of Physics, Center for Field Theory and Particles Physics, Fudan University,20433 Shanghai (China); Noui, Karim [Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350),Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Laboratoire APC - Astroparticule et Cosmologie, Université Paris Diderot Paris 7,75013 Paris (France); Perez, Alejandro [Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de Toulon,13288 Marseille (France)
2016-08-24
In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ=±i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.
Effect of thallium impurity on hole scattering in lead telluride
International Nuclear Information System (INIS)
Kajdanov, V.I.; Nemov, S.A.
1981-01-01
Hole mobility in PbTe monocrystalline specimens in the temperature range from 4.2 to 300 K has been investigated. Detected is a sharp increase in scattering cross section of light and heavy holes in the specimens having the Hall hole concentration p approximately (5+-9)x10 19 cm -3 explained by resonant scattering into a band of quasilocal states of thallium located lower than the ceiling of heavy carrier zone by 0.01+-0.01 eV. Very large differences in resonant scattering of current carriers into the quasilocal states of In and Tl in PbTe result from the inertial polarizability of a crystal. The same mechanism is used to explain long-lived relaxation of zone electron concentration in lead telluride and Pbsub(1-x)Snsub(x)Te doped with indium [ru
Black hole lasers in Bose-Einstein condensates
International Nuclear Information System (INIS)
Finazzi, S; Parentani, R
2010-01-01
We consider elongated condensates that cross twice the speed of sound. In the absence of periodic boundary conditions, the phonon spectrum possesses a discrete and finite set of complex frequency modes that induce a laser effect. This effect constitutes a dynamical instability and is due to the fact that the supersonic region acts as a resonant cavity. We numerically compute the complex frequencies and density-density correlation function. We obtain patterns with very specific signatures. In terms of the gravitational analogy, the flows we consider correspond to a pair of black hole and white hole horizons, and the laser effect can be conceived as self-amplified Hawking radiation. This is verified by comparing the outgoing flux at early time with the standard black hole radiation.
Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.
2003-01-01
Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.
International Nuclear Information System (INIS)
Camenzind, M.
2005-01-01
While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)
Black Hole Spin Measurement Uncertainty
Salvesen, Greg; Begelman, Mitchell C.
2018-01-01
Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.
Atomic structure in black hole
International Nuclear Information System (INIS)
Nagatani, Yukinori
2006-01-01
We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)
Formation and Coalescence of Electron Solitary Holes
DEFF Research Database (Denmark)
Saeki, K.; Michelsen, Poul; Pécseli, H. L.
1979-01-01
Electron solitary holes were observed in a magnetized collisionless plasma. These holes were identified as Bernstein-Green-Kruskal equilibria, thus being purely kinetic phenomena. The electron hole does not damp even though its velocity is close to the electron thermal velocity. Two holes attract...
Black Hole Complementary Principle and Noncommutative Membrane
International Nuclear Information System (INIS)
Wei Ren
2006-01-01
In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...
Black holes as parts of entangled systems
Basini, G.; Capozziello, S.; Longo, G.
A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.
International Nuclear Information System (INIS)
Boyd, D.P.
1989-01-01
This paper reports on computed tomographic (CT) scanning which has improved computer-assisted imaging modalities for radiologic diagnosis. The advantage of this modality is its ability to image thin cross-sectional planes of the body, thus uncovering density information in three dimensions without tissue superposition problems. Because this enables vastly superior imaging of soft tissues in the brain and body, CT scanning was immediately successful and continues to grow in importance as improvements are made in speed, resolution, and cost efficiency. CT scanners are used for general purposes, and the more advanced machines are generally preferred in large hospitals, where volume and variety of usage justifies the cost. For imaging in the abdomen, a scanner with a rapid speed is preferred because peristalsis, involuntary motion of the diaphram, and even cardiac motion are present and can significantly degrade image quality. When contrast media is used in imaging to demonstrate scanner, immediate review of images, and multiformat hardcopy production. A second console is reserved for the radiologist to read images and perform the several types of image analysis that are available. Since CT images contain quantitative information in terms of density values and contours of organs, quantitation of volumes, areas, and masses is possible. This is accomplished with region-of- interest methods, which involve the electronic outlining of the selected region of the television display monitor with a trackball-controlled cursor. In addition, various image- processing options, such as edge enhancement (for viewing fine details of edges) or smoothing filters (for enhancing the detectability of low-contrast lesions) are useful tools
Corda, Christian
2013-12-01
Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.
Wong, Roger; Howard, Catherine; Orobona, Giancarlo Dellʼaversana
2018-04-01
To describe the safety and efficacy of a technique to close large thickness macular holes. A consecutive retrospective interventional case series of 16 patients with macular holes greater than 650 microns in "aperture" diameter were included. The technique involves vitrectomy, followed by internal limiting membrane peeling. The macula is detached using subretinal injection of saline. Fluid-air exchange is performed to promote detachment and stretch of the retina. After this, the standard fluid-air exchange is performed and perfluoropropane gas is injected. Face-down posturing is advised. Adverse effects, preoperative, and postoperative visual acuities were recorded. Optical coherence tomography scans were also taken. The mean hole size was 739 microns (SD: 62 microns; mean base diameter: 1,311 microns). Eighty-three percent (14 of 16) of eyes had successful hole closure after the procedure. At 12-month follow-up, no worsening in visual acuity was reported, and improvement in visual acuity was noted in 14 of 16 eyes. No patients lost vision because of the procedure. It is possible to achieve anatomical closure of large macular holes using RETMA. No patients experienced visual loss. The level of visual improvement is likely limited because of the size and chronicity of these holes.
Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes
Graber, James S.
1999-01-01
A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.
Paasche, Hendrik
2018-01-01
Site characterization requires detailed and ideally spatially continuous information about the subsurface. Geophysical tomographic experiments allow for spatially continuous imaging of physical parameter variations, e.g., seismic wave propagation velocities. Such physical parameters are often related to typical geotechnical or hydrological target parameters, e.g. as achieved from 1D direct push or borehole logging. Here, the probabilistic inference of 2D tip resistance, sleeve friction, and relative dielectric permittivity distributions in near-surface sediments is constrained by ill-posed cross-borehole seismic P- and S-wave and radar wave traveltime tomography. In doing so, we follow a discovery science strategy employing a fully data-driven approach capable of accounting for tomographic ambiguity and differences in spatial resolution between the geophysical tomograms and the geotechnical logging data used for calibration. We compare the outcome to results achieved employing classical hypothesis-driven approaches, i.e., deterministic transfer functions derived empirically for the inference of 2D sleeve friction from S-wave velocity tomograms and theoretically for the inference of 2D dielectric permittivity from radar wave velocity tomograms. The data-driven approach offers maximal flexibility in combination with very relaxed considerations about the character of the expected links. This makes it a versatile tool applicable to almost any combination of data sets. However, error propagation may be critical and justify thinking about a hypothesis-driven pre-selection of an optimal database going along with the risk of excluding relevant information from the analyses. Results achieved by transfer function rely on information about the nature of the link and optimal calibration settings drawn as retrospective hypothesis by other authors. Applying such transfer functions at other sites turns them into a priori valid hypothesis, which can, particularly for empirically
Impact of Holes on the Buckling of RHS Steel Column
Directory of Open Access Journals (Sweden)
Najla'a H. AL-Shareef
2018-03-01
Full Text Available This study presented an experimental and theoretical study on the effect of hole on the behavior of rectangular hollow steel columns subjected to axial compression load. Specimens were tested to investigated the ultimate capacity and the load- axial displacement behavior of steel columns. In this paper finite element analysis is done by using general purpose ANSYS 12.0 to investigate the behavior of rectangular hollow steel column with hole. In the experimental work, rectangular hollow steel columns with rounded corners were used in the constriction of the specimens which have dimensions of cross section (50*80mm and height of (250 and 500mm with thickness of (1.25,4 and 6mm with hole ((α*80*80mm when α is equal to (0.2,0.4,0.6 and 0.8. Twenty four columns under compression load were tested in order to investigate the effect of hole on the ultimate load of rectangular hollow steel column. The experimental results indicated that the typical failure mode for all the tested hollow specimen was the local buckling. The tested results indicated that the increasing of hole dimension leads to reduction in ultimate loads of tested column to 75%. The results show the reducing of load by 94.7% due to decreasing the thickness of column while the hole size is constant (0.2*80*80. The buckling load decreases by 84.62% when hole position changes from Lo=0.25L to 0.75L. Holes can be made in the middle of column with dimension up to 0.4 of column's length. The AISC (2005 presents the values closest to the experimental results for the nominal yielding compressive strength. The effect for increasing of slendeness ratio and thickness to area ratio(t/A leading to decreacing the critical stresses and the failure of column with large size of hole and (t/A ratio less than 0.74% was due to lacal buckling while the global buckling failure was abserve for column with small size of hole and (t/A ratio above than 0.74%. The compersion between the experimental
Black holes from fluid mechanics
Lahiri, Subhaneil
2009-12-01
We use the AdS/CFT correspondence in a regime where the field theory is well described by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces. In particular, we use the fluid description to study the thermodynamics of the black holes and the existence of exotic horizon topologies in higher dimensions. First we test this method by comparing large rotating black holes in global AdSD spaces to stationary solutions of the relativistic Navier-Stokes equations on SD-2. Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory on AdS5 x S 5 and M theory on AdS4 x S7 and AdS7 x S 4. We then construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS 5, and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional gravity. We also study the stability of these solutions to small fluctuations, which provides an indirect method for studying Gregory-Laflamme instabilities. We also extend the construction to higher dimensions, allowing one to study the existence of new black hole topologies and their phase diagram.
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Thermodynamics of Horava-Lifshitz black holes
International Nuclear Information System (INIS)
Myung, Yun Soo; Kim, Yong-Wan
2010-01-01
We study black holes in the Horava-Lifshitz gravity with a parameter λ. For 1/3≤λ 3, the black holes behave the Reissner-Nordstroem type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild-AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes. (orig.)
Detecting Black Hole Binaries by Gaia
Yamaguchi, Masaki S.; Kawanaka, Norita; Bulik, Tomasz; Piran, Tsvi
2017-01-01
We study the prospect of the Gaia satellite to identify black hole binary systems by detecting the orbital motion of the companion stars. Taking into account the initial mass function, mass transfer, common envelope phase, interstellar absorption and identifiability of black holes, we estimate the number of black hole binaries detected by Gaia and their distributions with respect to the black hole mass for several models with different parameters. We find that $\\sim 300-6000$ black hole binar...
Stationary strings near a higher-dimensional rotating black hole
International Nuclear Information System (INIS)
Frolov, Valeri P.; Stevens, Kory A.
2004-01-01
We study stationary string configurations in a space-time of a higher-dimensional rotating black hole. We demonstrate that the Nambu-Goto equations for a stationary string in the 5D (five-dimensional) Myers-Perry metric allow a separation of variables. We present these equations in the first-order form and study their properties. We prove that the only stationary string configuration that crosses the infinite redshift surface and remains regular there is a principal Killing string. A worldsheet of such a string is generated by a principal null geodesic and a timelike at infinity Killing vector field. We obtain principal Killing string solutions in the Myers-Perry metrics with an arbitrary number of dimensions. It is shown that due to the interaction of a string with a rotating black hole, there is an angular momentum transfer from the black hole to the string. We calculate the rate of this transfer in a space-time with an arbitrary number of dimensions. This effect slows down the rotation of the black hole. We discuss possible final stationary configurations of a rotating black hole interacting with a string
Experimental tomography of NOON states with large photon numbers
Israel, Y.; Afek, I.; Rosen, S.; Ambar, O.; Silberberg, Y.
2012-02-01
We have performed experimental quantum state tomography of NOON states with up to four photons. The measured states are generated by mixing photons from a classical coherent state with down-converted photon pairs. We show that the fidelity between the produced states and the ideal NOON states is high. The fidelity is limited by the overlap of the two-photon down-converted state with any two photons originating from the coherent state, for which we introduce and measure a figure of merit. A second limitation on the fidelity set by the total setup transmission is discussed. We also apply the same tomography procedure for characterizing correlated photon hole states.
Black holes turn white fast, otherwise stay black: no half measures
International Nuclear Information System (INIS)
Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.
2016-01-01
Recently, various authors have proposed that the dominant ultraviolet effect in the gravitational collapse of massive stars to black holes is the transition between a black-hole geometry and a white-hole geometry, though their proposals are radically different in terms of their physical interpretation and characteristic time scales http://dx.doi.org/10.1142/S021827181442022X, http://dx.doi.org/10.1103/PhysRevD.92.104020. Several decades ago, it was shown by Eardley that white holes are highly unstable to the accretion of small amounts of matter, being rapidly turned into black holes http://dx.doi.org/10.1103/PhysRevLett.33.442. Studying the crossing of null shells on geometries describing the black-hole to white-hole transition, we obtain the conditions for the instability to develop in terms of the parameters of these geometries. We conclude that transitions with long characteristic time scales are pathologically unstable: occasional perturbations away from the perfect vacuum around these compact objects, even if being imperceptibly small, suffocate the white-hole explosion. On the other hand, geometries with short characteristic time scales are shown to be robust against perturbations, so that the corresponding processes could take place in real astrophysical scenarios. This motivates a conjecture about the transition amplitudes of different decay channels for black holes in a suitable ultraviolet completion of general relativity.
Energy Technology Data Exchange (ETDEWEB)
Sakashita, S. [OYO Corp., Tokyo (Japan)
1996-10-01
EM tomography was applied to detect buried pipes. Underground radar exploration method is limited to 10m in depth. Positive use of bored holes is desirable, and in such case, magnetic logging based on the magnetic susceptibility (MS) contrast between buried body and surrounding ground is effective. The primary magnetic field is generated by coil current, and the secondary one is generated by the primary one responding to foreign bodies in the ground. Since the measured primary magnetic field of low frequency within 10Hz can be treated as static magnetic field responding to MS in the ground, it is useful to determine MS distributions. Since the measured magnetic field of high frequency within 100kHz can be treated as induction field responding to conductivity in the ground, it is useful to determine resistivity distributions. The EM tomography which can image both above distributions by using electromagnetic wave in a wide frequency range, was applied to detect buried pipes. The EM tomography could detect an buried foreign body of 3m in diameter at 10m in distance between bored holes. The theoretical equation for analysis was also derived. 5 refs., 9 figs., 1 tab.
Cone beam tomography of the heart using single-photon emission-computed tomography
International Nuclear Information System (INIS)
Gullberg, G.T.; Christian, P.E.; Zeng, G.L.; Datz, F.L.; Morgan, H.T.
1991-01-01
The authors evaluated cone beam single-photon emission-computed tomography (SPECT) of the heart. A new cone beam reconstruction algorithm was used to reconstruct data collected from short scan acquisitions (of slightly more than 180 degrees) of a detector anteriorally traversing a noncircular orbit. The less than 360 degrees acquisition was used to minimize the attenuation artifacts that result from reconstructing posterior projections of 201T1 emissions from the heart. The algorithm includes a new method for reconstructing truncated projections of background tissue activity that eliminates reconstruction ring artifacts. Phantom and patient results are presented which compare a high-resolution cone beam collimator (50-cm focal length; 6.0-mm full width at half maximum [FWHM] at 10 cm) to a low-energy general purpose (LEGP) parallel hole collimator (8.2-mm FWHM at 10 cm) which is 1.33 times more sensitive. The cone beam tomographic results are free of reconstruction artifacts and show improved spatial and contrast resolution over that obtained with the LEGP parallel hole collimator. The limited angular sampling restrictions and truncation problems associated with cone beam tomography do not deter from obtaining diagnostic information. However, even though these preliminary results are encouraging, a thorough clinical study is still needed to investigate the specificity and sensitivity of cone beam tomography
Mouton, Isabelle; Printemps, Tony; Grenier, Adeline; Gambacorti, Narciso; Pinna, Elisa; Tiddia, Mariavitalia; Vacca, Annalisa; Mula, Guido
2017-11-01
In this contribution, we propose a protocol for analysis and accurate reconstruction of nanoporous materials by atom probe tomography (APT). The existence of several holes in porous materials makes both the direct APT analysis and reconstruction almost inaccessible. In the past, a solution has been proposed by filling pores with electron beam-induced deposition. Here, we present an alternative solution using an electro-chemical method allowing to fill even small and dense pores, making APT analysis possible. Concerning the 3D reconstruction, the microstructural features observed by electron tomography are used to finely calibrate the APT reconstruction parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
Violent flickering in Black Holes
2008-10-01
Unique observations of the flickering light from the surroundings of two black holes provide new insights into the colossal energy that flows at their hearts. By mapping out how well the variations in visible light match those in X-rays on very short timescales, astronomers have shown that magnetic fields must play a crucial role in the way black holes swallow matter. Flickering black hole ESO PR Photo 36/08 Flickering black hole Like the flame from a candle, light coming from the surroundings of a black hole is not constant -- it flares, sputters and sparkles. "The rapid flickering of light from a black hole is most commonly observed at X-ray wavelengths," says Poshak Gandhi, who led the international team that reports these results. "This new study is one of only a handful to date that also explore the fast variations in visible light, and, most importantly how these fluctuations relate to those in X-rays." The observations tracked the shimmering of the black holes simultaneously using two different instruments, one on the ground and one in space. The X-ray data were taken using NASA's Rossi X-ray Timing Explorer satellite. The visible light was collected with the high speed camera ULTRACAM, a visiting instrument at ESO's Very Large Telescope (VLT), recording up to 20 images a second. ULTRACAM was developed by team members Vik Dhillon and Tom Marsh. "These are among the fastest observations of a black hole ever obtained with a large optical telescope," says Dhillon. To their surprise, astronomers discovered that the brightness fluctuations in the visible light were even more rapid than those seen in X-rays. In addition, the visible-light and X-ray variations were found not to be simultaneous, but to follow a repeated and remarkable pattern: just before an X-ray flare the visible light dims, and then surges to a bright flash for a tiny fraction of a second before rapidly decreasing again. None of this radiation emerges directly from the black hole, but from the
Black holes, qubits and octonions
International Nuclear Information System (INIS)
Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.
2009-01-01
We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems
Turbocharging Quantum Tomography
Energy Technology Data Exchange (ETDEWEB)
Blume-Kohout, Robin J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gamble, John King [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Maunz, Peter Lukas Wilhelm [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Scholten, Travis L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudinger, Kenneth Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-01-01
Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.
Black holes: a slanted overview
International Nuclear Information System (INIS)
Vishveshwara, C.V.
1988-01-01
The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)
Cosmology with primordial black holes
International Nuclear Information System (INIS)
Lindley, D.
1981-09-01
Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
Scalar scattering from charged black holes on the brane
de Oliveira, Ednilton S.
2018-03-01
The differential scattering cross section of massless scalar fields localized on the 3-brane of charged static black holes in the ADD model is analyzed. While results valid over the entire range of the scattering angle can be obtained only via a numerical approach, analytical results can be obtained via the geodesic, Born and glory approximations. Comparison between numerical and analytical results leads to excellent agreement. The increase of the charge intensity has the consequence of increasing the width of the interference fringes in the scattering cross section. Its influence on the intensity of the scattered flux, however, depends on the dimensionality of the spacetime. Analyses for the special cases of uncharged and extremely charged black holes are included.
Black holes and galaxy formation
Propst, Raphael J
2010-01-01
Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.
Massive Black Holes and Galaxies
CERN. Geneva
2016-01-01
Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.
The black hole quantum atmosphere
Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele
2017-11-01
Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.
The black hole quantum atmosphere
Directory of Open Access Journals (Sweden)
Ramit Dey
2017-11-01
Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.
Directory of Open Access Journals (Sweden)
Phillip M. Ligrani
1996-01-01
Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Geometric inequalities for black holes
International Nuclear Information System (INIS)
Dain, Sergio
2013-01-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Computed tomography for radiographers
International Nuclear Information System (INIS)
Brooker, M.
1986-01-01
Computed tomography is regarded by many as a complicated union of sophisticated x-ray equipment and computer technology. This book overcomes these complexities. The rigid technicalities of the machinery and the clinical aspects of computed tomography are discussed including the preparation of patients, both physically and mentally, for scanning. Furthermore, the author also explains how to set up and run a computed tomography department, including advice on how the room should be designed
Black holes a very short introduction
Blundell, Katherine
2015-01-01
Black holes are a constant source of fascination to many due to their mysterious nature. Black Holes: A Very Short Introduction addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one. It explains how black holes form and grow—by stealing material that belongs to stars—as well as how many there may be in the Universe. It also explores the large black holes found in the centres of galaxies, and how black holes power quasars and lie behind other spectacular phenomena in the cosmos.
DEFF Research Database (Denmark)
Christensen, Ulrik Correll
2009-01-01
procedure. Morphological studies of closed macular holes with contrast-enhanced optical coherence tomography (OCT) found thinning and discontinuity of the central photoreceptor layer matrix that were highly specific for predicting the likelihood of an eye having regained reading vision 12 months after...
Bell, Lauren; Hooper, Richard; Bunce, Catey; Pasu, Saruban; Bainbridge, James
2017-06-13
The treatment of idiopathic full-thickness macular holes involves surgery to close the hole. Some surgeons advise patients to adopt a face-down position to increase the likelihood of successful macular hole closure. However, patients often find the face-down positioning arduous. There is a lack of conclusive evidence that face-down positioning improves the outcome. The 'Positioning In Macular hole Surgery' (PIMS) trial will assess whether advice to position face-down after surgery improves the surgical success rate for the closure of large (≥400 μm) macular holes. The PIMS trial is a multicentre, parallel-group, superiority clinical trial with 1:1 randomisation. Patients (n = 192) with macular holes (≥400 μm) will be randomised after surgery to either face-down positioning or face-forward positioning for at least 8 h (which can be either consecutive or nonconsecutive) a day, for 5 days following surgery. Inclusion criteria are: presence of an idiopathic full-thickness macular hole ≥400 μm in diameter, as measured by optical coherence tomography (OCT) scans, on either or both eyes; patients electing to have surgery for a macular hole, with or without simultaneous phacoemulsification and intraocular lens implant; ability and willingness to position face-down or in an inactive face-forward position; a history of visual loss suggesting a macular hole of 12 months' or less duration. The primary outcome is successful macular hole closure at 3 months post surgery. The treatment effect will be reported as an odds ratio with 95% confidence interval, adjusted for size of macular hole and phakic lens status at baseline. Secondary outcome measures at 3 months are: further surgery for macular holes performed or planned (of those with unsuccessful closure); patient-reported experience of positioning; whether patients report they would still have elected to have the operation given what they know at follow-up; best-corrected visual acuity (BCVA) measured
Interior structure of rotating black holes. III. Charged black holes
International Nuclear Information System (INIS)
Hamilton, Andrew J. S.
2011-01-01
This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.
Primordial black hole and wormhole formation by domain walls
Deng, Heling; Garriga, Jaume; Vilenkin, Alexander
2017-04-01
In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ``supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.
Primordial black hole and wormhole formation by domain walls
International Nuclear Information System (INIS)
Deng, Heling; Garriga, Jaume; Vilenkin, Alexander
2017-01-01
In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ''supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.
Energy Technology Data Exchange (ETDEWEB)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.; Yu, X. D. [School of Electronic Information, Wuhan University, Wuhan (China); Sahraoui, F.; Contel, O. Le [Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Palaiseau (France); He, J. S. [School of Earth and Space Sciences, Peking University, Beijing (China); Zhao, J. S. [Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Deng, X. H.; Pang, Y.; Li, H. M. [Institute of Space Science and Technology, Nanchang University, Nanchang (China); Zhou, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); Fu, H. S.; Yang, J. [School of Space and Environment, Beihang University, Beijing (China); Shi, Q. Q. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai (China); Lavraud, B. [Institut de Recherche and Astrophysique et Planétologie, Université de Toulouse (UPS), Toulouse (France); Pollock, C. J.; Giles, B. L. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T., E-mail: shiyonghuang@whu.edu.cn [Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA (United States); and others
2017-02-20
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {sub e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
Worm, Paulo V; Ferreira, Nelson P; Faria, Mario B; Ferreira, Marcelo P; Kraemer, Jorge L; Collares, Marcus V M
2010-12-22
As a consequence of the progressive evolution of neurosurgical techniques, there has been increasing concern with the esthetic aspects of burr holes. Therefore, the objective of this study was to compare the use of cortical bone graft and bone dust for correcting cranial deformities caused by neurosurgical trephines. Twenty-three patients were enrolled for cranial burr hole reconstruction with a 1-year follow-up. A total of 108 burr holes were treated; 36 burr holes were reconstructed with autogenous cortical bone discs (33.3%), and the remaining 72 with autogenous wet bone powder (66.6%). A trephine was specifically designed to produce this coin-shaped bone plug of 14 mm in diameter, which fit perfectly over the burr holes. The reconstructions were studied 12 months after the surgical procedure, using three-dimensional quantitative computed tomography. Additionally, general and plastic surgeons blinded for the study evaluated the cosmetic results of those areas, attributing scores from 0 to 10. The mean bone densities were 987.95 ± 186.83 Hounsfield units (HU) for bone fragment and 473.55 ± 220.34 HU for bone dust (P holes because of their lower degree of bone resorption and, consequently, better cosmetic results. The lack of donor site morbidity associated with procedural low cost qualifies the cortical autograft as the first choice for correcting cranial defects created by neurosurgical trephines.
Application of Genetic Algorithms in Seismic Tomography
Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos
2010-05-01
application of hybrid genetic algorithms in seismic tomography is examined and the efficiency of least squares and genetic methods as representative of the local and global optimization, respectively, is presented and evaluated. The robustness of both optimization methods has been tested and compared for the same source-receiver geometry and characteristics of the model structure (anomalies, etc.). A set of seismic refraction synthetic (noise free) data was used for modeling. Specifically, cross-well, down-hole and typical refraction studies using 24 geophones and 5 shoots were used to confirm the applicability of the genetic algorithms in seismic tomography. To solve the forward modeling and estimate the traveltimes, the revisited ray bending method was used supplemented by an approximate computation of the first Fresnel volume. The root mean square (rms) error as the misfit function was used and calculated for the entire random velocity model for each generation. After the end of each generation and based on the misfit of the individuals (velocity models), the selection, crossover and mutation (typical process steps of genetic algorithms) were selected continuing the evolution theory and coding the new generation. To optimize the computation time, since the whole procedure is quite time consuming, the Matlab Distributed Computing Environment (MDCE) was used in a multicore engine. During the tests, we noticed that the fast convergence that the algorithm initially exhibits (first 5 generations) is followed by progressively slower improvements of the reconstructed velocity models. Thus, to improve the final tomographic models, a hybrid genetic algorithm (GA) approach was adopted by combining the GAs with a local optimization method after several generations, on the basis of the convergence of the resulting models. This approach is shown to be efficient, as it directs the solution search towards a model region close to the global minimum solution.
Logging in the campus: borehole research and monitoring in a test hole in Barcelona (Spain)
Jurado, M. J.; Crespo, J.; Espallargas, R.
2012-04-01
Almera-1 hole was drilled for research purposes in the University of Barcelona campus area. The hole is 214m deep and was drilled in Quaternary to Paleozoic rocks in a urban area, next to the Institute of Earth Sciences (CSIC) borehole research lab. The main objectives for drilling a research hole were both the study of the poorly known subsurface geology and structure in this urban area and the construction of a dedicated infrastructure for logging tools tests, calibrations and long term monitoring. A direct connection to the lab was built to facilitate long term measuring experiments tool powering and data monitoring. A second auxiliary hole, Almera-2 50m deep was drilled to carry out cross-hole and tomographic experiments and hydrological monitoring. The upper section of Almera-1 hole is cased with PVC and the lowermost is an open hole section in paleozoic rock. The entire hole was logged in open hole mode (before casing) and also after the hole was cased in order to study the effect of the PVC casing on different logging tools responses (total and spectral gamma radioactivity through casing, acoustic televiewer through casing, full wave sonic through casing and magnetic susceptibility through casing). The comparison shows the effect on each of these tools response of the PVC casing. Also how the tools responses are more or less affected by the attenuation caused by the PVC of the rock signal and how this is more or less critical in the diverse lithologies represented in the Almera-1 hole. Wireline drilling was used to obtain best core recovery and to carry out log-core comparative analyses for logging tool response calibration and log-core correlation. The results obtained in the study of gamma ray (total and spectral), magnetic susceptibility and acoustic petrophysics are shown.
Dynamics of Coronal Hole Boundaries
International Nuclear Information System (INIS)
Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.; DeVore, C. R.; Wyper, P. F.
2017-01-01
Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.
Indian Academy of Sciences (India)
Current technologies have enabled glimpses at the many facetsof black holes, which we know to be plentiful in our cosmos.A panoramic view of the evidence for them is presented hereacross the large range of masses that they span. Author Affiliations. Prajval Shastri. Resonance – Journal of Science Education.
'Black holes': escaping the void.
Waldron, Sharn
2013-02-01
The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. © 2013, The Society of Analytical Psychology.
Stellar dynamics and black holes
Indian Academy of Sciences (India)
Stellar dynamics and black holes. DAVID MERRITT. Department of Physics, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester,. NY 14623, USA. E-mail: merritt@astro.rit.edu. Abstract. Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review ...
Energy Technology Data Exchange (ETDEWEB)
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-06
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Black Holes and Exotic Spinors
Directory of Open Access Journals (Sweden)
J. M. Hoff da Silva
2016-05-01
Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.
Dvali, Gia
2014-01-01
It is a common wisdom that properties of macroscopic bodies are well described by (semi)classical physics. As we have suggested this wisdom is not applicable to black holes. Despite being macroscopic, black holes are quantum objects. They represent Bose-Einstein condensates of N-soft gravitons at the quantum critical point, where N Bogoliubov modes become gapless. As a result, physics governing arbitrarily-large black holes (e.g., of galactic size) is a quantum physics of the collective Bogoiliubov modes. This fact introduces a new intrinsically-quantum corrections in form of 1/N, as opposed to exp(-N). These corrections are unaccounted by the usual semiclassical expansion in h and cannot be recast in form of a quantum back-reaction to classical metric. Instead the metric itself becomes an approximate entity. These 1/N corrections abolish the presumed properties of black holes, such as non existence of hair, and are the key to nullifying the so-called information paradox.
Improving accuracy of holes honing
Directory of Open Access Journals (Sweden)
Ivan М. Buykli
2015-03-01
Full Text Available Currently, in precision engineering industry tolerances for linear dimensions and tolerances on shape of surfaces of processing parts are steadily tightened These requirements are especially relevant in processing of holes. Aim of the research is to improve accuracy and to enhance the technological capabilities of holes honing process and, particularly, of blind holes honing. Based on formal logic the analysis of formation of processing errors is executed on the basis of consideration of schemes of irregularity of dimensional wear and tear along the length of the cutting elements. With this, the possibilities of compensating this irregularities and, accordingly, of control of accuracy of processing applied to the honing of both throughout and blind holes are specified. At the same time, a new method of honing is developed, it is protected by the patent of Ukraine for invention. The method can be implemented both on an existing machine tools at insignificant modernization of its system of processing cycle control and on newly designed ones.
Black Holes: A Selected Bibliography.
Fraknoi, Andrew
1991-01-01
Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…
Children's (Pediatric) CT (Computed Tomography)
Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) ... are the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known as a ...
A Black Hole Spectral Signature
Titarchuk, Lev; Laurent, Philippe
2000-03-01
An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be
Black hole entropy, curved space and monsters
International Nuclear Information System (INIS)
Hsu, Stephen D.H.; Reeb, David
2008-01-01
We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states
Circuit board hole coordinate locator concept
Samuel, L. W.
1969-01-01
Fixed light source registers the x and y coordinates of holes in a fixed opaque template. A first surface parabolic mirror and a set of photocells are used to detect the passage of light through the individual holes.
Entropy of black holes with multiple horizons
He, Yun; Ma, Meng-Sen; Zhao, Ren
2018-05-01
We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.
Effect of valence holes kinetics on material excitation in tracks of swift heavy ions
International Nuclear Information System (INIS)
Rymzhanov, R.A.; Medvedev, N.A.; Volkov, A.E.
2015-01-01
A considerable part of the excess energy of the electronic subsystem of a solid penetrated by a swift heavy ion (SHI) is accumulated in valence holes. Spatial redistribution of these holes can affect subsequent relaxation, resulting in ionizations of new electrons by hole impacts as well as energy transfer to the target lattice. A new version of the Monte Carlo code TREKIS is applied to study this effect in Al 2 O 3 for SHI tracks. The complex dielectric function (CDF) formalism is used to calculate the cross sections of interaction of involved charged particles (an ion, electrons, holes) with the target giving us ability to take into account collective response of a target to excitations. We compare the radial distributions of the densities and energies of excited electrons and valence holes at different times to those obtained under the assumption of immobile holes used in earlier works. The comparison shows a significant difference between these distributions within the track core, where the majority of slow electrons and valence holes are located at femtosecond timescales after the ion impact. The study demonstrates that the energy deposited by valence holes into the lattice in nanometric tracks is comparable to the energy transferred by excited electrons. Radii of structure transformations in tracks produced by these energy exchange channels are in a good agreement with experiments.
Yu, Zhiyuan; Zheng, Jun; Ma, Lu; Guo, Rui; Li, Mou; Wang, Xiaoze; Lin, Sen; Li, Hao; You, Chao
2017-09-01
In patients with spontaneous intracerebral hemorrhage (sICH), hematoma expansion (HE) is associated with poor outcome. Spot sign and black hole sign are neuroimaging predictors for HE. This study was aimed to compare the predictive value of two signs for HE. Within 6 h after onset of sICH, patients were screened for the computed tomography angiography spot sign and the non-contrast computed tomography black hole sign. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of two signs for HE prediction were calculated. The accuracy of two signs in predicting HE was analyzed by receiver-operator analysis. A total of 129 patients were included in this study. Spot sign was identified in 30 (23.3%) patients and black hole sign in 29 (22.5%) patients, respectively. Of 32 patients with HE, spot sign was observed in 19 (59.4%) and black hole sign was found in 14 (43.8%). The occurrence of black hole sign was significantly associated with spot sign (P black hole sign for predicting HE were 43.75, 84.54, 48.28, and 82.00%, respectively. The area under the curve was 0.740 for spot sign and 0.641 for black hole sign. (P = 0.228) Both spot sign and black hole sign appeared to have good predictive value for HE, and spot sign seemed to be a better predictor.
Residual stress field of ballised holes
International Nuclear Information System (INIS)
Lai, Man On; He, Zhimin
2012-01-01
Ballising, involving pushing a slightly over-sized ball made of hard material through a hole, is a kind of cold working process. Applying ballising process to fastener holes produces compressive residual stress on the edge of the holes, and therefore increases the fatigue life of the components or structures. Quantification of the residual stress field is critical to define and precede the ballising process. In this article, the ballised holes are modeled as cold-expanded holes. Elastic-perfectly plastic theory is employed to analyze the holes with cold expansion process. For theoretical simplification, an axially symmetrical thin plate with a cold expanded hole is assumed. The elasticplastic boundaries and residual stress distribution surrounding the cold expanded hole are derived. With the analysis, the residual stress field can be obtained together with actual cold expansion process in which only the diameters of hole before and after cold expansion need to be measured. As it is a non-destructive method, it provides a convenient way to estimate the elastic-plastic boundaries and residual stresses of cold worked holes. The approach is later extended to the case involving two cold-worked holes. A ballised hole is looked upon as a cold expanded hole and therefore is investigated by the approach. Specimens ballised with different interference levels are investigated. The effects of interference levels and specimen size on residual stresses are studied. The overall residual stresses of plates with two ballised holes are obtained by superposing the residual stresses induced on a single ballised hole. The effects of distance between the centers of the two holes with different interference levels on the residual stress field are revealed
Bosonic instability of charged black holes
International Nuclear Information System (INIS)
Gaina, A.B.; Ternov, I.M.
1986-01-01
The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole
Black hole holography and mean field evolution
Lowe, David A.; Thorlacius, Larus
2018-01-01
Holographic theories representing black holes are expected to exhibit quantum chaos. We argue if the laws of quantum mechanics are expected to hold for observers inside such black holes, then such holographic theories must have a mean field approximation valid for typical black hole states, and for timescales approaching the scrambling time. Using simple spin models as examples, we examine the predictions of such an approach for observers inside black holes, and more speculatively inside cosmological horizons.
Black holes and traversible wormholes: a synthesis
Hayward, Sean A.
2002-01-01
A unified framework for black holes and traversible wormholes is described, where both are locally defined by outer trapping horizons, two-way traversible for wormholes and one-way traversible for black or white holes. In a two-dimensional dilaton gravity model, examples are given of: construction of wormholes from black holes; operation of wormholes for transport, including back-reaction; maintenance of an operating wormhole; and collapse of wormholes to black holes. In spherically symmetric...
Will black holes eventually engulf the Universe?
International Nuclear Information System (INIS)
Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.
2006-01-01
The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models
Building blocks of a black hole
Bekenstein, Jacob D.; Gour, Gilad
2002-01-01
What is the nature of the energy spectrum of a black hole ? The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As stressed long ago by by Mukhanov, such eigenvalues must be exponentially degenerate with respect to the area quantum number if one is to understand black hole entropy as reflecting degeneracy of the observable states. Here we construct the black hole states by means of a pair of "creation operators" subject to a particular...
Radiation from the LTB black hole
Firouzjaee, J. T.; Mansouri, Reza
2011-01-01
Does a dynamical black hole embedded in a cosmological FRW background emit Hawking radiation where a globally defined event horizon does not exist? What are the differences to the Schwarzschild black hole? What about the first law of black hole mechanics? We face these questions using the LTB cosmological black hole model recently published. Using the Hamilton-Jacobi and radial null geodesic-methods suitable for dynamical cases, we show that it is the apparent horizon which contributes to the...
An industrial demonstration of computer assisted tomography
International Nuclear Information System (INIS)
Lupton, L.R.
1985-09-01
Computerized tomography (CT) is a nondestructive testing technique for generating quantitative density (linear attenuation coefficient) maps of a cross section through an object. By using a series of parallel tomographic images taken at different elevations, a three-dimensional (3-D) map of the object can be obtained. To demonstrate the power of tomography, a 3-D region of a motorcycle carburetor has been imaged using twenty-four parallel two-dimensional images. From these data, new images in planes orthogonal to the original planes have been generated, thereby improving the user's ability to visualize the position of components within the carburetor. The data have also been used to demonstrate the relationship between tomography and radiography
Computed Tomography (CT) -- Sinuses
Full Text Available ... CT scanner is typically a large, box-like machine with a hole, or short tunnel, in the ... Then, the table will move slowly through the machine as the actual CT scanning is performed. Depending ...
Computed Tomography (CT) -- Head
Full Text Available ... CT scanner is typically a large, box-like machine with a hole, or short tunnel, in the ... Then, the table will move slowly through the machine as the actual CT scanning is performed. Depending ...
Computed Tomography (CT) -- Head
Full Text Available ... about pregnancy and x-rays. top of page What does the equipment look like? The CT scanner is typically a large, box-like machine with a hole, or short tunnel, in the center. You will ...
Computed Tomography (CT) -- Sinuses
Full Text Available ... about pregnancy and x-rays. top of page What does the equipment look like? The CT scanner is typically a large, box-like machine with a hole, or short tunnel, in the center. You will ...
Design study of hole positions and hole shapes for crack tip stress releasing
DEFF Research Database (Denmark)
Pedersen, Pauli
2004-01-01
The method of hole drilling near or at the crack tip is often used in fatigue damage repair. From a design optimization point of view, two questions are posed: Where should the hole(s) be drilled? And is there a better shape of the hole than a circular one? For the first question, we extend earli...
On black holes and gravitational waves
Loinger, Angelo
2002-01-01
Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.
Compensating Scientism through "The Black Hole."
Roth, Lane
The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…
Area spectra of near extremal black holes
International Nuclear Information System (INIS)
Chen, Deyou; Yang, Haitang; Zu, Xiaotao
2010-01-01
Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)
Extremal black holes in N=2 supergravity
Katmadas, S.
2011-01-01
An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),
On Quantum Contributions to Black Hole Growth
Spaans, M.
2013-01-01
The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years.
Black Hole Monodromy and Conformal Field Theory
Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.
2013-01-01
The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event
Black Hole Dynamic Potentials Koustubh Ajit Kabe
Indian Academy of Sciences (India)
In the following paper, certain black hole dynamic potentials have been ... the equations of the laws of black hole dynamics as given by Bekenstein and those ..... work. This makes K, the energy which is available for work in time-reversible pro- cesses (white holes) observing constancy of surface gravity. Since the area of the.
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
loops [8]. In 1974, Hawking discovered that the black holes emit thermal radiation due to quantum effects [9]. So the black holes get evaporated depending upon their masses. Smaller the masses of the PBHs, quicker they evaporate. But the density of a black hole varies inversely with its mass. So high density is needed for ...
Black holes under external inﬂuence
Indian Academy of Sciences (India)
In particular we pay attention to the effect of the expulsion of the ﬂux of external ﬁelds across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating ...
The fuzzball proposal for black holes
Skenderis, K.; Taylor, M.
2008-01-01
The fuzzball proposal states that associated with a black hole of entropy S, there are expS horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...
Microscopic Calabi-Yau black holes in string theory
International Nuclear Information System (INIS)
Ansari, Saeid
2011-01-01
In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S 2 of an AdS 2 x S 2 x CY 3 geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS 2 /QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS 2 geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)
Microscopic Calabi-Yau black holes in string theory
Energy Technology Data Exchange (ETDEWEB)
Ansari, Saeid
2011-07-22
In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S{sup 2} of an AdS{sub 2} x S{sup 2} x CY{sub 3} geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS{sub 2}/QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS{sub 2} geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)
The stable problem of the black-hole connected region in the Schwarzschild black hole
Tian, Guihua
2005-01-01
The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...
Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes
Takahashi, Rohta
2004-01-01
Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...
Chandra Catches "Piranha" Black Holes
2007-07-01
Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never
Black holes, qubits and octonions
Energy Technology Data Exchange (ETDEWEB)
Borsten, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: leron.borsten@imperial.ac.uk; Dahanayake, D. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: duminda.dahanayake@imperial.ac.uk; Duff, M.J. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: m.duff@imperial.ac.uk; Ebrahim, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom); Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Theory Group, Martin Fisher School of Physics, Brandeis University, MS057, 415 South Street, Waltham, MA 02454 (United States)], E-mail: hebrahim@brandeis.edu; Rubens, W. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: william.rubens06@imperial.ac.uk
2009-02-15
We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)]{sup 3} invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T{sup 6} provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E{sub 7} contains [SL(2)]{sup 7} invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E{sub 7} has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of
Phase transition for black holes with scalar hair and topological black holes
International Nuclear Information System (INIS)
Myung, Yun Soo
2008-01-01
We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole
Modified dispersion relations and black hole physics
International Nuclear Information System (INIS)
Ling Yi; Li Xiang; Hu Bo
2006-01-01
A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter
Dyonic black hole in heterotic string theory
International Nuclear Information System (INIS)
Jatkar, D.P.; Mukherji, S.
1997-01-01
We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)
Hawking radiation and strong gravity black holes
International Nuclear Information System (INIS)
Qadir, A.; Sayed, W.A.
1979-01-01
It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.)
Black-hole creation in quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)
1997-11-01
It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.
Black hole entropy and quantum information
Duff, M J
2006-01-01
We review some recently established connections between the mathematics of black hole entropy in string theory and that of multipartite entanglement in quantum information theory. In the case of N=2 black holes and the entanglement of three qubits, the quartic [SL(2)]^3 invariant, Cayley's hyperdeterminant, provides both the black hole entropy and the measure of tripartite entanglement. In the case of N=8 black holes and the entanglement of seven qubits, the quartic E_7 invariant of Cartan provides both the black hole entropy and the measure of a particular tripartite entanglement encoded in the Fano plane.
Preliminary prediction of inflow into the D-holes at the Stripa Mine
International Nuclear Information System (INIS)
Long, J.C.S.; Karasaki, K.; Davey, A.; Peterson, J.; Landsfeld, M.; Kemeny, J.; Martel, S.
1990-02-01
Lawrence Berkeley Laboratory (LBL) is contracted by the US Department of Energy to provide an auxiliary modeling effort for the Stripa Project. Within this effort, we are making calculations of inflow to the Simulated Drift Experiment (SDE), i.e. inflow to six parallel, closely spaced D-holes, using a preliminary set of data collected in five other holes, the N- and W-holes during Stages 1 and 2 of the Site Characterization and Validation (SCV) project. Our approach has been to focus on the fracture zones rather than the general set of ubiquitous fractures. Approximately 90% of all the water flowing in the rock is flowing in fracture zones which are neither uniformly conductive nor are they infinitely extensive. Our approach has been to adopt the fracture zone locations as they have been identified with geophysics. We use geologic sense and the original geophysical data to add one zone where significant water inflow has been observed that can not be explained with the other geophysical zones. This report covers LBL's preliminary prediction of flow into the D-holes. Care should be taken in interpreting the results given in this report. As explained below, the approach that LBL has designed for developing a fracture hydrology model requires cross-hole hydrologic data. Cross-hole tests are planned for Stage 3 but were unavailable in Stage 1. As such, we have inferred from available data what a cross-hole test might show and used this synthetic data to make a preliminary calculation of the inflow into the D-holes. Then using all the Stage 3 data we will calculate flow into the Validation Drift itself. The report mainly demonstrates the use of our methodology and the simulated results should be considered preliminary
Black hole with quantum potential
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)
2016-08-15
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Black hole with quantum potential
Directory of Open Access Journals (Sweden)
Ahmed Farag Ali
2016-08-01
Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
International Nuclear Information System (INIS)
Carlitz, R.D.; Willey, R.S.
1987-01-01
We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In the context of a moving-mirror analog model for the Hawking radiation process, we conclude that the period of Hawking radiation must be followed by a much longer period during which the remnant mass (of order m/sub P/) may be radiated away. We are able to place a lower bound on the time required for this radiation process, which translates into a lower bound for the lifetime of the black hole. Particles which are emitted during the decay of the remnant, like the particles which comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from the decaying remnant is correlated with one particle emitted as Hawking radiation. The state which results after the remnant has evaporated is one which locally appears to be thermal, but which on a much larger scale is marked by extensive correlations
Black holes in magnetic monopoles
Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.
1991-01-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.
Accelerating and rotating black holes
International Nuclear Information System (INIS)
Griffiths, J B; Podolsky, J
2005-01-01
An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalized form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter l and the Plebanski-Demianski parameter n is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed
Black Holes Shed Light on Galaxy Formation
2000-01-01
This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.
Plasma horizons of a charged black hole
International Nuclear Information System (INIS)
Hanni, R.S.
1977-01-01
The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)
Slow relaxation of rapidly rotating black holes
International Nuclear Information System (INIS)
Hod, Shahar
2008-01-01
We study analytically the relaxation phase of perturbed, rapidly rotating black holes. In particular, we derive a simple formula for the fundamental quasinormal resonances of near-extremal Kerr black holes. The formula is expressed in terms of the black hole physical parameters: ω=mΩ-i2πT BH (n+(1/2)), where T BH and Ω are the temperature and angular velocity of the black hole, and m is the azimuthal harmonic index of a corotating equatorial mode. This formula implies that the relaxation period τ∼1/ω of the black hole becomes extremely long as the extremal limit T BH →0 is approached. The analytically derived formula is shown to agree with direct numerical computations of the black hole resonances. We use our results to demonstrate analytically the fact that near-extremal Kerr black holes saturate the recently proposed universal relaxation bound.
Black-hole bomb and superradiant instabilities
International Nuclear Information System (INIS)
Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.; Yoshida, Shijun
2004-01-01
A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing time scales and oscillation frequencies as a function of the mirror's location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable
Black-hole thermodynamics and Riemann surfaces
International Nuclear Information System (INIS)
Krasnov, Kirill
2003-01-01
We use the analytic continuation procedure proposed in our earlier works to study the thermodynamics of black holes in 2 + 1 dimensions. A general black hole in 2 + 1 dimensions has g handles hidden behind h horizons. The result of the analytic continuation of a black-hole spacetime is a hyperbolic 3-manifold having the topology of a handlebody. The boundary of this handlebody is a compact Riemann surface of genus G = 2g + h - 1. Conformal moduli of this surface encode in a simple way the physical characteristics of the black hole. The moduli space of black holes of a given type (g, h) is then the Schottky space at genus G. The (logarithm of the) thermodynamic partition function of the hole is the Kaehler potential for the Weil-Peterson metric on the Schottky space. The Bekenstein bound on the black-hole entropy leads us to conjecture a new strong bound on this Kaehler potential
International Nuclear Information System (INIS)
Debney, G.; Farnsworth, D.
1983-01-01
Motivated by the fact that 2m/r is of the order of magnitude unity for the observable universe, we explore the possibility that a Schwarzschild or black hole cosmological model is appropriate. Luminosity distance and frequency shifts of freely-falling, standard, monochromatic objects are viewed by a freely-falling observer. The observer is inside r=2m. The observer in such a world does not see the same universe as do astronomers. (author)
Gravitating discs around black holes
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Huré, J.-M.; Semerák, O.
2004-01-01
Roč. 21, č. 7 (2004), R1-R5 ISSN 0264-9381 R&D Projects: GA ČR GA205/03/0902; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.941, year: 2004
Directory of Open Access Journals (Sweden)
Aruna Rajagopal
2014-10-01
Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Entanglement Entropy of Black Holes
Directory of Open Access Journals (Sweden)
Sergey N. Solodukhin
2011-10-01
Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
XFEM Modelling of Multi-holes Plate with Single-row and Staggered Holes Configurations
Directory of Open Access Journals (Sweden)
Supar Khairi
2017-01-01
Full Text Available Joint efficiency is the key to composite structures assembly design, good structures response is dependent upon multi-holes behavior as subjected to remote loading. Current benchmarking work were following experimental testing series taken from literature on multi-holes problem. Eleven multi-hole configurations were investigated with various pitch and gage distance of staggered holes and non-staggered holes (single-row holes. Various failure modes were exhibited, most staggered holes demonstrates staggered crack path but non-staggered holes series displayed crack path along net-section plane. Stress distribution were carried out and good agreement were exhibited in experimental observation as reported in the respective literature. Consequently, strength prediction work were carried out under quasi-static loading, most showed discrepancy between 8% -31%, better prediction were exhibited in thicker and non-staggered holes plate combinations.
Testing effective string models of black holes with fixed scalars
International Nuclear Information System (INIS)
Krasnitz, M.; Klebanov, I.R.
1997-01-01
We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society
Graviton emission from a higher-dimensional black hole
International Nuclear Information System (INIS)
Cornell, Alan S.; Naylor, Wade; Sasaki, Misao
2006-01-01
We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M) 1/(n-1) ω ∼ 1, where M is the mass of the black hole and ω is the energy of the emitted gravitons in (2+n)-dimensions. To find easily tractable solutions we work in the limit l >> 1, where l is the angular momentum quantum number of the graviton
The Scattering of Massive Holes by Supercritical Impurity
Kuleshov, V. M.; Mur, V. D.; Fedotov, A. M.; Lozovik, Yu E.
2017-12-01
The properties of charge carriers in doped graphene are considered. The closed set of explicit equations determining the spectrum and wavefunctions of charge carriers for total angular momentum J = M + 1/2 = 0, ±1/2, ±1… is obtained for the case of the Coulomb potential modified at small distances. The critical values Zcr of the dopant charge at which the energy level with the given quantum numbers crosses the lower continuum boundary are determined. For Z Zcr , the position ε 0 and width γ of the lowest quasidiscrete state, which may manifest itself as a resonance in hole-dopant scattering, are calculated. It’s shown that there is no electron-hole pairs creation because of unitarity of the partial scattering matrix.
International Nuclear Information System (INIS)
Iio, Masahiro
1982-01-01
Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)
Cardiac positron emission tomography
International Nuclear Information System (INIS)
Eftekhari, M.; Ejmalian, G.
2003-01-01
Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions
Computed Tomography (CT) -- Sinuses
Full Text Available ... tomography, more commonly known as a CT or CAT scan, is a diagnostic medical test that, like ... imaging provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...
Computed Tomography (CT) - Spine
... the removal of fluid from a localized infection ( abscess ). In patients with narrowing ( stenosis ) of the spine ... Survey Images × Image Gallery Computed Tomography (CT or CAT scan) equipment View full size with caption Do ...
Computed Tomography (CT) -- Head
Full Text Available ... the limitations of CT Scanning of the Head? What is CT Scanning of the Head? Computed tomography, ... than regular radiographs (x-rays). top of page What are some common uses of the procedure? CT ...
Computed Tomography (CT) -- Sinuses
Full Text Available ... are the limitations of CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed ... nasal cavity by small openings. top of page What are some common uses of the procedure? CT ...
Computer tomography in otolaryngology
Energy Technology Data Exchange (ETDEWEB)
Gradzki, J. (Akademia Medyczna, Poznan (Poland))
1981-01-01
The principles of design and the action of computer tomography which was applied also for the diagnosis of nose, ear and throat diseases are discussed. Computer tomography makes possible visualization of the structures of the nose, nasal sinuses and facial skeleton in transverse and eoronal planes. The method enables an accurate evaluation of the position and size of neoplasms in these regions and differentiation of inflammatory exudates against malignant masses. In otology computer tomography is used particularly in the diagnosis of pontocerebellar angle tumours and otogenic brain abscesses. Computer tomography of the larynx and pharynx provides new diagnostic data owing to the possibility of obtaining transverse sections and visualization of cartilage. Computer tomograms of some cases are presented.
Computed Tomography (CT) -- Sinuses
Full Text Available ... vessels. CT examinations are fast and simple; in emergency cases, they can reveal internal injuries and bleeding ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...
Computed Tomography (CT) -- Head
Full Text Available ... of a stroke. a stroke, especially with a new technique called Perfusion CT. brain tumors. enlarged brain ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...
Informationally incomplete quantum tomography
Teo, Yong Siah; Řeháček, Jaroslav; Hradil, Zdenĕk
2013-11-01
In quantum-state tomography on sources with quantum degrees of freedom of large Hilbert spaces, inference of quantum states of light for instance, a complete characterization of the quantum states for these sources is often not feasible owing to limited resources. As such, the concepts of informationally incomplete state estimation becomes important. These concepts are ideal for applications to quantum channel/ process tomography, which typically requires a much larger number of measurement settings for a full characterization of a quantum channel. Some key aspects of both quantumstate and quantum-process tomography are arranged together in the form of a tutorial review article that is catered to students and researchers who are new to the field of quantum tomography, with focus on maximum-likelihood related techniques as instructive examples to illustrate these ideas.
Computed Tomography (CT) -- Head
Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others American Stroke Association National Stroke Association ... Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine ...
Intracoronary optical coherence tomography
DEFF Research Database (Denmark)
Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei
2017-01-01
By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT)...
Computed Tomography (CT) -- Sinuses
Full Text Available ... tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...
Computed Tomography (CT) -- Head
Full Text Available ... tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...
Electrical Impedance Tomography Technology
National Aeronautics and Space Administration — The goal for the Electrical Impedance Tomography Technology (EITT) project is to develop a reliable portable, lightweight device providing two-dimensional...
Computed Tomography (CT) -- Head
Full Text Available ... of the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT scanning of the head is typically ...
Process tomography: Seeing is believing
International Nuclear Information System (INIS)
Ondrey, G.; Parkinson, G.
1995-01-01
As the chemical process industries try new ways to optimize their processes, they are taking a closer look at tomography. Already well established in medical diagnostics, the technique has found some CPI applications but has long been considered too expensive and impractical for routine use. Promising to change this perception are recent developments in tomographic sensors, image processing algorithms, as well as data processing. Of particular interest to the CPI is tomography's ability t provide real-time cross sectional images of conditions inside process equipment, allowing operators to see what's going on in such opaque regions as packed catalyst beds, multiphase solutions, powder mixers, and fluidized beds. The images contain a wealth of data that can be used to: design equipment, verify simulation models and calculations derived via computational fluid dynamics, monitor fluid flow and environmental conditions, and image velocity profiles. One interesting application is as a way of inspecting radioactive waste drums to decide where they should be sent for permanent storage. Another use being studied is the monitoring of air sparging of contaminated areas
Introduction to Seismic Tomography
Energy Technology Data Exchange (ETDEWEB)
Rowe, Charlotte Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-21
Tomography is a method of obtaining an image of a 3d object by observing the behavior of energy transmissions through the object. The image is obtained by Interrogating the object with Energy sources at a variety of Locations and observing the Object’s effects on the energy at a Variety of sensors. Tomography was first Used to build 3-dimensional Scans through Human bodies. These Are called computed Tomographic (ct) scans.
Merger transitions in brane-black-hole systems: Criticality, scaling, and self-similarity
International Nuclear Information System (INIS)
Frolov, Valeri P.
2006-01-01
We propose a toy model for studying merger transitions in a curved spacetime with an arbitrary number of dimensions. This model includes a bulk N-dimensional static spherically symmetric black hole and a test D-dimensional brane (D≤N-1) interacting with the black hole. The brane is asymptotically flat and allows a O(D-1) group of symmetry. Such a brane-black-hole (BBH) system has two different phases. The first one is formed by solutions describing a brane crossing the horizon of the bulk black hole. In this case the internal induced geometry of the brane describes a D-dimensional black hole. The other phase consists of solutions for branes which do not intersect the horizon, and the induced geometry does not have a horizon. We study a critical solution at the threshold of the brane-black-hole formation, and the solutions which are close to it. In particular, we demonstrate that there exists a striking similarity of the merger transition, during which the phase of the BBH system is changed, both with the Choptuik critical collapse and with the merger transitions in the higher dimensional caged black-hole-black-string system
Quantum capacity of quantum black holes
Adami, Chris; Bradler, Kamil
2014-03-01
The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.
Charged spinning black holes as particle accelerators
International Nuclear Information System (INIS)
Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune
2010-01-01
It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.
Spontaneous Closure of a Fully Developed Macular Hole in a Severely Myopic Eye
Directory of Open Access Journals (Sweden)
C. Bruè
2014-01-01
Full Text Available Purpose. Myopic macular holes can be difficult to close with surgery and are frequently associated with retinal detachment. We report on a case of a macular hole in a severely myopic eye that underwent spontaneous closure. Methods. An observational case study. Results. A 55-year-old female was referred to Ophthalmology for a central scotoma and metamorphopsia in the right eye. Visual acuity was 1/20 in both eyes. Fundus examination showed loss of the foveal depression, with a small yellow ring in the center of the fovea in the right eye, and a tilted optic disc and peripapillary staphyloma bilaterally. Spectral domain optical coherence tomography (SD-OCT revealed a fully developed macular hole with a rim of thickened and slightly elevated retina in the right eye. The patient refused surgery. After 4 years of follow-up, her visual acuity improved to 20/40 in the right eye, and SD-OCT revealed spontaneous sealing of the macular hole without bare retinal pigment epithelium. Conclusions. Myopic macular holes represent a challenge regarding their management, and the prognosis is often poor.
Directory of Open Access Journals (Sweden)
Dengjiang Wang
2016-11-01
Full Text Available This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately.
What happens at the horizon(s) of an extreme black hole?
International Nuclear Information System (INIS)
Murata, Keiju; Reall, Harvey S; Tanahashi, Norihiro
2013-01-01
A massless scalar field exhibits an instability at the event horizon of an extreme black hole. We study numerically the nonlinear evolution of this instability for spherically symmetric perturbations of an extreme Reissner–Nordstrom (RN) black hole. We find that generically the endpoint of the instability is a non-extreme RN solution. However, there exist fine-tuned initial perturbations for which the instability never decays. In this case, the perturbed spacetime describes a time-dependent extreme black hole. Such solutions settle down to extreme RN outside, but not on, the event horizon. The event horizon remains smooth but certain observers who cross it at late time experience large gradients there. Our results indicate that these dynamical extreme black holes admit a C 1 extension across an inner (Cauchy) horizon. (paper)
Small scale imaging using ultrasonic tomography
International Nuclear Information System (INIS)
Zakaria, Z.; Abdul Rahim, R.; Megat Ali, M.S.A.; Baharuddin, M.Y.; Jahidin, A.H.
2009-01-01
Ultrasound technology progressed through the 1960 from simple A-mode and B-mode scans to today M-mode and Doppler two dimensional (2-D) and even three dimensional (3-D) systems. Modern ultrasound imaging has its roots in sonar technology after it was first described by Lord John Rayleigh over 100 years ago on the interaction of acoustic waves with media. Tomography technique was developed as a diagnostic tool in the medical area since the early of 1970s. This research initially focused on how to retrieve a cross sectional images from living and non-living things. After a decade, the application of tomography systems span into the industrial area. However, the long exposure time of medical radiation-based method cannot tolerate the dynamic changes in industrial process two phase liquid/ gas flow system. An alternative system such as a process tomography systems, can give information on the nature of the flow regime characteristic. The overall aim of this paper is to investigate the use of a small scale ultrasonic tomography method based on ultrasonic transmission mode tomography for online monitoring of liquid/ gas flow in pipe/ vessel system through ultrasonic transceivers application. This non-invasive technique applied sixteen transceivers as the sensing elements to cover the pipe/ vessel cross section. The paper also details the transceivers selection criteria, hardware setup, the electronic measurement circuit and also the image reconstruction algorithm applied. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases. (author)
Energy Technology Data Exchange (ETDEWEB)
Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others
1995-09-01
A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.
Black Hole Window into p-Wave Dark Matter Annihilation.
Shelton, Jessie; Shapiro, Stuart L; Fields, Brian D
2015-12-04
We present a new method to measure or constrain p-wave-suppressed cross sections for dark matter (DM) annihilations inside the steep density spikes induced by supermassive black holes. We demonstrate that the high DM densities, together with the increased velocity dispersion, within such spikes combine to make thermal p-wave annihilation cross sections potentially visible in γ-ray observations of the Galactic center (GC). The resulting DM signal is a bright central point source with emission originating from DM annihilations in the absence of a detectable spatially extended signal from the halo. We define two simple reference theories of DM with a thermal p-wave annihilation cross section and establish new limits on the combined particle and astrophysical parameter space of these models, demonstrating that Fermi Large Area Telescope is currently sensitive to thermal p-wave DM over a wide range of possible scenarios for the DM distribution in the GC.
BSW process of the slowly evaporating charged black hole
Wang, Liancheng; He, Feng; Fu, Xiangyun
2015-01-01
In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.
Boosting jet power in black hole spacetimes.
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis
2011-08-02
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Escape of Black Holes from the Brane
International Nuclear Information System (INIS)
Flachi, Antonino; Tanaka, Takahiro
2005-01-01
TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the 'black hole plus brane' system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes
Hidden conformal symmetry of extremal black holes
International Nuclear Information System (INIS)
Chen Bin; Long Jiang; Zhang Jiaju
2010-01-01
We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.
Information Retention by Stringy Black Holes
Ellis, John
2015-01-01
Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.
Seeding black holes in cosmological simulations
Taylor, P.; Kobayashi, C.
2014-08-01
We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.
What does a black hole look like?
Bailyn, Charles D
2014-01-01
Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...
Charged topological black hole pair creation
International Nuclear Information System (INIS)
Mann, R.B.
1998-01-01
I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)
Reversible Carnot cycle outside a black hole
International Nuclear Information System (INIS)
Xi-Hao, Deng; Si-Jie, Gao
2009-01-01
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T 1 and a black hole with Hawking temperature T H . By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – T H /T 1 . Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)
Hawking temperature of constant curvature black holes
International Nuclear Information System (INIS)
Cai Ronggen; Myung, Yun Soo
2011-01-01
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Terahertz superconducting plasmonic hole array.
Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Wu, Judy; Zhang, Weili
2010-11-01
We demonstrate a superconductor array of subwavelength holes with active thermal control over the resonant transmission induced by surface plasmon polaritons. The array was lithographically fabricated on a high-temperature yttrium barium copper oxide superconductor and characterized by terahertz time-domain spectroscopy. We observe a clear transition from a virtual excitation of the surface plasmon mode to a real surface plasmon mode. The highly controllable superconducting plasmonic crystals may find promising applications in the design of low-loss, large- dynamic-range amplitude modulation and surface-plasmon-based terahertz devices.
Extremal Black Holes and Attractors
Ferrara, S
2010-01-01
These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formula for the critical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also discussed.
Samardzija, Nikola
1995-01-01
A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.
Correlative Microscopy of Lamellar Hole-Associated Epiretinal Proliferation
Directory of Open Access Journals (Sweden)
Denise Compera
2015-01-01
Full Text Available Purpose. To describe morphology of lamellar hole-associated epiretinal proliferation (LHEP removed from eyes with lamellar macular holes (LMH. Methods. Based on optical coherence tomography data, 10 specimens of LHEP were removed from 10 eyes with LMH during standard vitrectomy. Specimens were prepared for correlative light and electron microscopy (CLEM using an immunonanogold particle of 1.4 nm diameter that was combined with a fluorescein moiety, both having been attached to a single antibody fragment. As primary antibodies, we used antiglial fibrillary acidic protein (GFAP, anti-CD45, anti-CD64, anti-α-smooth muscle actin (α-SMA, and anticollagen type I and type II. Results. In LHEP, GFAP-positive cells possess ultrastructural characteristics of fibroblasts and hyalocytes. They represent the major cell types and were densely packed in cell agglomerations on vitreous collagen strands. Epiretinal cells of LHEP rarely demonstrated contractive properties as α-SMA-positive myofibroblasts were an infrequent finding. Conclusion. CLEM indicates that epiretinal cells in LHEP might originate from the vitreous and that remodelling processes of vitreous collagen may play an important role in pathogenesis of eyes with LMH.
NASA Observatory Confirms Black Hole Limits
2005-02-01
The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, T. [Dia Consultants Company, Tokyo (Japan)
1996-10-01
Nonlinear full-wave tomography (FWT) is under investigation to improve the estimation accuracy of Vp/Vs distributions. Full-wave tomography is one of the underground structure exploration methods mainly using Tarantola`s nonlinear local optimization method (LOM). Numerical experiment for FWT was carried out assuming relatively weak nonlinear underground structure. In the case of inversion by local optimization method, adequate preconditioning is important. Utilization of geological information is also effective in estimating low-frequency components of a model. As far as data are obtained under proper observation arrangement, even in actual field, precise estimation of Vp/Vs distributions is possible by FWT using explosion in a hole as wave source. In full-wave tomography, selection of observation arrangement is essential for both Vp and Vs. However, the proper arrangement is different between Vp and Vs. Approach to different analyses for Vp and Vs is also necessary by using only proper data for Vp and Vs among obtained data sets. 4 figs.
Superradiance by mini black holes with mirror
Lee, Jong-Phil
2011-01-01
The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger a...
Geometrothermodynamics of higher dimensional black holes
Bravetti, Alessandro; Momeni, Davood; Myrzakulov, Ratbay; Quevedo, Hernando
2013-08-01
We study the thermodynamics and geometrothermodynamics of different black hole configurations in more than four spacetime dimensions. We use the response functions to find the conditions under which second order phase transitions occur in higher-dimensional static Reissner-Nordström and stationary Kerr black holes. Our results indicate that the equilibrium manifold of all these black hole configurations is in general curved and that curvature singularities appear exactly at those places where second order phase transitions occur.
An electromagnetic hole separation survey tool
International Nuclear Information System (INIS)
Goldwire, H.C. Jr.
1993-01-01
The authors describe an electromagnetic survey tool developed by others, which can be used to accurately determine the offset distances between various points in nearby emplacement holes or adits (e.g., the satellite hole offset from an emplacement hole at the device horizon in a vertical geometry emplacement). The technique was demonstrated on a vertical event at the Nevada Test Site. The basic theory of operation, sample data, and analyzed results are presented and compared to results obtained by conventional survey means
Effective Stringy Description of Schwarzschild Black Holes
Krasnov , Kirill; Solodukhin , Sergey N.
2004-01-01
We start by pointing out that certain Riemann surfaces appear rather naturally in the context of wave equations in the black hole background. For a given black hole there are two closely related surfaces. One is the Riemann surface of complexified ``tortoise'' coordinate. The other Riemann surface appears when the radial wave equation is interpreted as the Fuchsian differential equation. We study these surfaces in detail for the BTZ and Schwarzschild black holes in four and higher dimensions....
Observability of Quantum State of Black Hole
David, J R; Mandal, G; Wadia, S R; David, Justin R.; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.
1997-01-01
We analyze terms subleading to Rutherford in the $S$-matrix between black hole and probes of successively high energies. We show that by an appropriate choice of the probe one can read off the quantum state of the black hole from the S-matrix, staying asymptotically far from the BH all the time. We interpret the scattering experiment as scattering off classical stringy backgrounds which explicitly depend on the internal quantum numbers of the black hole.
Black hole mergers in the universe
Zwart, Simon Portegies; McMillan, Stephen
1999-01-01
Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation...
A New Model of Black Hole Formation
Directory of Open Access Journals (Sweden)
Thayer G. D.
2013-10-01
Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.
Gravitational lensing by a Horndeski black hole
Energy Technology Data Exchange (ETDEWEB)
Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2017-11-15
In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)
Unified geometric description of black hole thermodynamics
International Nuclear Information System (INIS)
Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto
2008-01-01
In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.
Measuring the spins of accreting black holes
International Nuclear Information System (INIS)
McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A
2011-01-01
A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.
Low-mass black holes as the remnants of primordial black hole formation.
Greene, Jenny E
2012-01-01
Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.
On the thermodynamics of hairy black holes
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)
2015-04-09
We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.
Black hole evaporation in conformal gravity
Energy Technology Data Exchange (ETDEWEB)
Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China); Porey, Shiladitya, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: shilp@iitk.ac.in, E-mail: rachwal@fudan.edu.cn [Department of Physics, Indian Institute of Technology, 208016 Kanpur (India)
2017-09-01
We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.
Micro black holes and the democratic transition
International Nuclear Information System (INIS)
Dvali, Gia; Pujolas, Oriol
2009-01-01
Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.
Black Hole Universe Model and Dark Energy
Zhang, Tianxi
2011-01-01
Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.
Charged black holes in phantom cosmology
Energy Technology Data Exchange (ETDEWEB)
Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)
2008-11-15
In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)
Destroying black holes with test bodies
Energy Technology Data Exchange (ETDEWEB)
Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-04-01
If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.
Noncommutative Black Holes at the LHC
Villhauer, Elena Michelle
2017-12-01
Based on the latest public results, 13 TeV data from the Large Hadron Collider at CERN has not indicated any evidence of hitherto tested models of quantum black holes, semiclassical black holes, or string balls. Such models have predicted signatures of particles with high transverse momenta. Noncommutative black holes remain an untested model of TeV-scale gravity that offers the starkly different signature of particles with relatively low transverse momenta. Considerations for a search for charged noncommutative black holes using the ATLAS detector will be discussed.
Tidal interactions with Kerr black holes
International Nuclear Information System (INIS)
Hiscock, W.A.
1977-01-01
The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation
Particle accelerators inside spinning black holes.
Lake, Kayll
2010-05-28
On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Rotating black holes and Coriolis effect
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)
2016-10-10
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.