WorldWideScience

Sample records for crop rotation soil

  1. Crop rotation and soil amendments: impacts on cotton and maize ...

    African Journals Online (AJOL)

    No significant interactions were found between crop rotation and soil amendment techniques. This suggests the possibility to save on fertilizers for maize while a minimum input is essential to support good cotton seed production. A crop rotation including a legume combined with organic manures is suitable to ensure a ...

  2. Impacts of crop rotations on soil organic carbon sequestration

    Science.gov (United States)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  3. EFFICIENCY OF FERTILIZATION AND SOIL CULTIVATION IN CROP ROTATION

    OpenAIRE

    Candráková, Eva; Richard POSPIŠIL; ONDREJČÍKOVÁ, Zora

    2009-01-01

    The experiment with the crop rotation: winter wheat, pea, corn, spring barley and cow-grass were founded in 2001- 2004. We examined the effect of the preceding crop, the soil cultivation and fertilization on yield of grain of the main product. The methods of soil cultivation: tillage to the depth of 0.25 m, to the depth of 0.15 m and cultivation where we used disk tools to the depth of 0.10 m. In the variants of fertilization had been used fertilization of the artificial fertilizer with the b...

  4. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.

    Science.gov (United States)

    Dias, Teresa; Dukes, Angela; Antunes, Pedro M

    2015-02-01

    There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient use and the reduction of pests and specialist pathogen loads. However, despite the recognized importance of plant-soil microbial interactions and feedbacks for crop yield and soil health, this is ignored in the selection and management of crops for rotation systems. We review the literature and propose criteria for the design of crop rotations focusing on the roles of soil biota and feedback on crop productivity and soil health. We consider that identifying specific key organisms or consortia capable of influencing plant productivity is more important as a predictor of soil health and crop productivity than assessing the overall soil microbial diversity per se. As such, we propose that setting up soil feedback studies and applying genetic sequencing tools towards the development of soil biotic community databases has a strong potential to enable the establishment of improved soil health indicators for optimized crop rotations. © 2014 Society of Chemical Industry.

  5. Soil microarthropods (Acari and Collembola) in two crop rotations on a heavy marine clay soil

    OpenAIRE

    Jagers Op Akkerhuis, Gerard; Ley, F.; Zwetsloot, Henk; Ponge, Jean-François; Brussaard, Lijbert

    1988-01-01

    International audience; In 1983 and 1984 an inventory was made of the edaphic mites and springtails in a six-year rotation, a three-year rotation and a three-year rotation in which the soil was disinfectedwith metamsodium after the potato crop was harvested. The aim was to find possible direct or indirect biological factors related to the yield loss observed in the three-year rotation potato crop. The test site was situated on a heavy marine clay soil. Samples were taken four times in the cou...

  6. Soil tillage practices and crops rotations effects on yields and ...

    African Journals Online (AJOL)

    Objective: To improve soil chemical properties and crops productivity, this study was conducted from 2008 to 2015, on lixisoil in a research station, using reduced soil tillage and leguminous plant cover. Methodology and Results: Three soil tillage practices in main plot (T1 = no tillage with direct sowing, T2 = minimum tillage ...

  7. Effect of crop rotation on soil nutrient balance and weediness in soddy podzolic organic farming fields

    Science.gov (United States)

    Zarina, Livija; Zarina, Liga

    2017-04-01

    The nutrient balance in different crop rotations under organic cropping system has been investigated in Latvia at the Institute of Agricultural Resources and Economics since 2006. Latvia is located in a humid and moderate climatic region where the rainfall exceeds evaporation (soil moisture coefficient > 1) and the soil moisture regime is characteristic with percolation. The average annual precipitation is 670-850 mm. The average temperature varies from -6.7° C in January to 16.5 °C in July. The growing season is 175 - 185 days. The most widespread are podzolic soils and mainly they are present in agricultural fields in all regions of Latvia. In a wider sense the goal of the soil management in organic farming is a creation of the biologically active flora and fauna in the soil by maintaining a high level of soil organic matter which is good for crops nutrient balance. Crop rotation is a central component of organic farming systems and has many benefits, including growth of soil microbial activity, which may increase nutrient availability. The aim of the present study was to calculate nutrient balance for each crop in the rotations and average in each rotation. Taking into account that crop rotations can limit build-up of weeds, additionally within the ERA-net CORE Organic Plus transnational programs supported project PRODIVA the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was summarized. It was found that the nutrient balance was influenced by nutrients uptake by biomass of growing crops in crop rotation. The number of weeds in the organic farming fields with crop rotation is dependent on the cultivated crops and the succession of crops in the crop rotation.

  8. Crop rotations for increased soil carbon: perenniality as a guiding principle.

    Science.gov (United States)

    King, Alison E; Blesh, Jennifer

    2018-01-01

    More diverse crop rotations have been promoted for their potential to remediate the range of ecosystem services compromised by biologically simplified grain-based agroecosystems, including increasing soil organic carbon (SOC). We hypothesized that functional diversity offers a more predictive means of characterizing the impact of crop rotations on SOC concentrations than species diversity per se. Furthermore, we hypothesized that functional diversity can either increase or decrease SOC depending on its associated carbon (C) input to soil. We compiled a database of 27 cropping system sites and 169 cropping systems, recorded the species and functional diversity of crop rotations, SOC concentrations (g C kg/soil), nitrogen (N) fertilizer applications (kg N·ha-1 ·yr-1 ), and estimated C input to soil (Mg C·ha-1 ·yr-1 ). We categorized crop rotations into three broad categories: grain-only rotations, grain rotations with cover crops, and grain rotations with perennial crops. We divided the grain-only rotations into two sub-categories: cereal-only rotations and those that included both cereals and a legume grain. We compared changes in SOC and C input using mean effect sizes and 95% bootstrapped confidence intervals. Cover cropped and perennial cropped rotations, relative to grain-only rotations, increased C input by 42% and 23% and SOC concentrations by 6.3% and 12.5%, respectively. Within grain-only rotations, cereal + legume grain rotations decreased total C input (-16%), root C input (-12%), and SOC (-5.3%) relative to cereal-only rotations. We found no effect of species diversity on SOC within grain-only rotations. N fertilizer rates mediated the effect of functional diversity on SOC within grain-only crop rotations: at low N fertilizer rates (≤75 kg N·ha-1 ·yr-1 ), the decrease in SOC with cereal + legume grain rotations was less than at high N fertilizer rates. Our results show that increasing the functional diversity of crop rotations is more

  9. The use of crop rotation for mapping soil organic content in farmland

    Science.gov (United States)

    Yang, Lin; Song, Min; Zhu, A.-Xing; Qin, Chengzhi

    2017-04-01

    Most of the current digital soil mapping uses natural environmental covariates. However, human activities have significantly impacted the development of soil properties since half a century, and therefore become an important factor affecting soil spatial variability. Many researches have done field experiments to show how soil properties are impacted and changed by human activities, however, spatial variation data of human activities as environmental covariates have been rarely used in digital soil mapping. In this paper, we took crop rotation as an example of agricultural activities, and explored its effectiveness in characterizing and mapping the spatial variability of soil. The cultivated area of Xuanzhou city and Langxi County in Anhui Province was chosen as the study area. Three main crop rotations,including double-rice, wheat-rice,and oilseed rape-cotton were observed through field investigation in 2010. The spatial distribution of the three crop rotations in the study area was obtained by multi-phase remote sensing image interpretation using a supervised classification method. One-way analysis of variance (ANOVA) for topsoil organic content in the three crop rotation groups was performed. Factor importance of seven natural environmental covariates, crop rotation, Land use and NDVI were generated by variable importance criterion of Random Forest. Different combinations of environmental covariates were selected according to the importance rankings of environmental covariates for predicting SOC using Random Forest and Soil Landscape Inference Model (SOLIM). A cross validation was generated to evaluated the mapping accuracies. The results showed that there were siginificant differences of topsoil organic content among the three crop rotation groups. The crop rotation is more important than parent material, land use or NDVI according to the importance ranking calculated by Random Forest. In addition, crop rotation improved the mapping accuracy, especially for the

  10. Soil microbial biomass and function are altered by 12 years of crop rotation

    Science.gov (United States)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems

  11. Soil carbon fractions in response to long-term crop rotations in the Loess Plateau of China

    Science.gov (United States)

    Diversified crop rotations may enhance C fractions and soil quality by affecting the quality and quantity of crop residue returned to the soil compared with monocropping and fallow. We evaluated the effect of 30-yr-old diversified crop rotations on soil C fractions at 0- to 15- and 15- to 30-cm dept...

  12. Soil total carbon and nitrogen and crop yields after eight years of tillage, crop rotation, and cultural practice

    Science.gov (United States)

    Information on the long-term effect of management practices on soil C and N stocks is lacking. An experiment was conducted from 2004 to 2011 in the northern Great Plains, USA to examine the effects of tillage, crop rotation, and cultural practice on annualized crop biomass (stems + leaves) residue r...

  13. SOIL PHYSICAL QUALITY INDICES UNDER TECHNICAL CROP ROTATION

    Directory of Open Access Journals (Sweden)

    Gheorghe Jigau

    2011-12-01

    Full Text Available The multiple processes which assists in the physical indices evolution of soil quality, within technical rotation are correlated, this being materialized in their hierarchization to the different integration levels and structural functional organization of the soil system. More pronounced, the technical anthropic modifications affect the levels aggregate – horizon – profile (pedon being concretized in the agrogen layer compaction and profile stratification. Integrated index of the agrogen modifications are characteristic for the pore space, specially the volume, size, pore space stability and continuity.

  14. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    Science.gov (United States)

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  15. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    Science.gov (United States)

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  16. Impact of wheat / faba bean mixed cropping or rotation systems on soil microbial functionalities

    Directory of Open Access Journals (Sweden)

    Sanâa Wahbi

    2016-09-01

    Full Text Available Cropping systems based on carefully designed species mixtures reveal many potential advantages in terms of enhancing crop productivity, reducing pest and diseases and enhacing ecological serices. Associating cereals and legume production either through intercropping or rotations might be a relevant strategy of producing both type of culture, while benefiting from combined nitrogen fixed by the legume through its symbiotic association with nitrogen-fixing bacteria, and from a better use of P and water through mycorrhizal associations. These practices also participate to the diversification of agricultural productions, enabling to secure the regularity of income returns across the seasonal and climatic uncertainties. In this context, we designed a field experiment aiming to estimate the two years impact of these practices on wheat yield and on soil microbial activities as estimated through Substrate Induced Respiration (SIR method and mycorrhizal soil infectivity (MSI measurement. It is expected that understanding soil microbial functionalities in response to these agricultural practices might allows to target the best type of combination, in regard to crop productivity. We found that the tested cropping systems largely impacted soil microbial functionalities and mycorrhizal soil infectivity. Intercropping gave better results in terms of crop productivity than the rotation practice after 2 cropping seasons. Benefits resulting from intercrop should be highly linked with changes recorded on soil microbial functionalities.

  17. Environmental impacts of different crop rotations in terms of soil compaction.

    Science.gov (United States)

    Götze, Philipp; Rücknagel, Jan; Jacobs, Anna; Märländer, Bernward; Koch, Heinz-Josef; Christen, Olaf

    2016-10-01

    Avoiding soil compaction caused by agricultural management is a key aim of sustainable land management, and the soil compaction risk should be considered when assessing the environmental impacts of land use systems. Therefore this project compares different crop rotations in terms of soil structure and the soil compaction risk. It is based on a field trial in Germany, in which the crop rotations (i) silage maize (SM) monoculture, (ii) catch crop mustard (Mu)_sugar beet (SB)-winter wheat (WW)-WW, (iii) Mu_SM-WW-WW and (iv) SB-WW-Mu_SM are established since 2010. Based on the cultivation dates, the operation specific soil compaction risks and the soil compaction risk of the entire crop rotations are modelled at two soil depths (20 and 35 cm). To this end, based on assumptions of the equipment currently used in practice by a model farm, two scenarios are modelled (100 and 50% hopper load for SB and WW harvest). In addition, after one complete rotation, in 2013 and in 2014, the physical soil parameters saturated hydraulic conductivity (kS) and air capacity (AC) were determined at soil depths 2-8, 12-18, 22-28 and 32-38 cm in order to quantify the soil structure. At both soil depths, the modelled soil compaction risks for the crop rotations including SB (Mu_SB-WW-WW, SB-WW-Mu_SM) are higher (20 cm: medium to very high risks; 35 cm: no to medium risks) than for those without SB (SM monoculture, Mu_SM-WW-WW; 20 cm: medium risks; 35 cm: no to low risks). This increased soil compaction risk is largely influenced by the SB harvest in years where soil water content is high. Halving the hopper load and adjusting the tyre inflation pressure reduces the soil compaction risk for the crop rotation as a whole. Under these conditions, there are no to low soil compaction risks for all variants in the subsoil (soil depth 35 cm). Soil structure is mainly influenced in the topsoil (2-8 cm) related to the cultivation of Mu as a catch crop and WW as a preceding crop. Concerning k

  18. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    Science.gov (United States)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    Crop fertilization provides vital plant nutrients (e.g. NPK) to ensure yield security but is also associated with negative environmental impacts. In particular, inorganic, mineral nitrogen (Nmin) fertilization leads to emissions during its energy intensive production as well as Nmin leaching to receiving waters. Incorporating legumes into crop rotations can provide organic N to the soil and subsequent crops, reducing the need for mineral N fertilizer and its negative environmental impacts. An added bonus is the potential to enhance soil organic carbon stocks, thereby reducing atmospheric CO2 concentrations. In this study we assessed the effects of legumes in rotation and fertilization regimes on the depth distribution - down to 1 m - of total soil nitrogen (Ntot), soil organic carbon (SOC) as well as isotopic composition (δ13C, δ15N), electrical conductivity and bulk density as well as agricultural yields at a long-term field experiment in Gießen, Germany. Fertilization had significant but small impacts on the soil chemical environment, most particularly the salt content of the soil, with PK fertilization increasing electrical conductivity throughout the soil profile. Similarly, fertilization resulted in a small reduction of soil pH throughout the soil profile. N fertilization, in particular, significantly increased yields, whereas PK fertilizer had only marginal yield effects, indicating that these systems are N limited. This N limitation was confirmed by significant yield benefits with leguminous crops in rotation, even in combination with mineral N fertilizer. The soil was physically and chemically influenced by the choice of crop rotation. Adding clover as a green mulch crop once every 4 years resulted in an enrichment of total N and SOC at the surface compared with fava beans and maize, but only in combination with PK fertilization. In contrast, fava beans and to a lesser extent maize in rotation lowered bulk densities in the subsoil compared with clover

  19. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    Science.gov (United States)

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping.

  20. Impact of Wheat/Faba Bean Mixed Cropping or Rotation Systems on Soil Microbial Functionalities.

    Science.gov (United States)

    Wahbi, Sanâa; Prin, Yves; Thioulouse, Jean; Sanguin, Hervé; Baudoin, Ezékiel; Maghraoui, Tasnime; Oufdou, Khalid; Le Roux, Christine; Galiana, Antoine; Hafidi, Mohamed; Duponnois, Robin

    2016-01-01

    Cropping systems based on carefully designed species mixtures reveal many potential advantages in terms of enhancing crop productivity, reducing pest and diseases, and enhancing ecological services. Associating cereals and legume production either through intercropping or rotations might be a relevant strategy of producing both type of culture, while benefiting from combined nitrogen fixed by the legume through its symbiotic association with nitrogen-fixing bacteria, and from a better use of P and water through mycorrhizal associations. These practices also participate to the diversification of agricultural productions, enabling to secure the regularity of income returns across the seasonal and climatic uncertainties. In this context, we designed a field experiment aiming to estimate the 2 years impact of these practices on wheat yield and on soil microbial activities as estimated through Substrate Induced Respiration method and mycorrhizal soil infectivity (MSI) measurement. It is expected that understanding soil microbial functionalities in response to these agricultural practices might allows to target the best type of combination, in regard to crop productivity. We found that the tested cropping systems largely impacted soil microbial functionalities and MSI. Intercropping gave better results in terms of crop productivity than the rotation practice after two cropping seasons. Benefits resulting from intercrop should be highly linked with changes recorded on soil microbial functionalities.

  1. Does crop rotational diversity increase soil microbial resistance and resilience to drought and flooding?

    Science.gov (United States)

    Schnecker, Jörg; Calderon, Francisco; Cavigelli, Michel; Lehman, Michael; Tiemann, Lisa; Grandy, Stuart

    2017-04-01

    Future climate scenarios indicate more frequent and stronger extreme weather events. This includes more severe droughts but also an increase in heavy rain events and flooding. Agricultural systems are of special interest in this context because of their role in food security but also because of their potentially changing role in global carbon and nutrient cycling under these extreme conditions. Plant diversification strategies like more complex crop rotations which support more diverse soil microbial communities with higher functional redundancy might be more resistant to drought and flooding and could help to reduce impacts on microbial carbon and nutrient cycling. To test how crop diversification affects the response of soil microbial processes to drought and flooding and reoccurring drought and flooding, we manipulated water regimes in lab incubation experiments using soils from four long term rotation experiments across the USA, including a low (one or two crops) vs. high (>3 crops) diversity rotations at each site. The sites range from low precipitation (Colorado), over intermediate precipitation (Michigan and South Dakota) to high precipitation in Maryland. Replicate sets of samples were either allowed to dry out, were gradually flooded or kept at a constant water content (control). We monitored CO2 production during five stress cycles. Additionally, we determined microbial biomass, enzyme activities and N pools during the first and last stress cycle in soils from the precipitation extremes. After a total incubation length of 165 days and five stress cycles only the soils from short rotations in Maryland and South Dakota that had been subjected to reoccurring drought showed significantly less cumulative CO2 loss compared to their respective controls. All the other sites and rotation length did not significantly differ from control when subjected to reoccurring drought or flooding. A Principal component analysis using all measured parameters of Colorado and

  2. Effects of Monoculture, Crop Rotation, and Soil Moisture Content on Selected Soil Physicochemical and Microbial Parameters in Wheat Fields

    Directory of Open Access Journals (Sweden)

    A. Marais

    2012-01-01

    Full Text Available Different plants are known to have different soil microbial communities associated with them. Agricultural management practices such as fertiliser and pesticide addition, crop rotation, and grazing animals can lead to different microbial communities in the associated agricultural soils. Soil dilution plates, most-probable-number (MPN, community level physiological profiling (CLPP, and buried slide technique as well as some measured soil physicochemical parameters were used to determine changes during the growing season in the ecosystem profile in wheat fields subjected to wheat monoculture or wheat in annual rotation with medic/clover pasture. Statistical analyses showed that soil moisture had an over-riding effect on seasonal fluctuations in soil physicochemical and microbial populations. While within season soil microbial activity could be differentiated between wheat fields under rotational and monoculture management, these differences were not significant.

  3. Effect of crop rotation, cultivar and nematicide on growth and yield of potato (Solanum tuberosum L.) in short rotations on a marine clay soil

    NARCIS (Netherlands)

    Scholte, K.; Jacob, 's J.J.

    1990-01-01

    The effects of cropping frequency on the yield of potato and on the development of soil-borne diseases was studied from 1979 to 1985 in a crop rotation experiment on a marine clay soil. Tuber yield decreased markedly with increasing cropping frequency. The yield of cv. Hertha was reduced by 27% in

  4. Effects of crop rotations and intercropping on soil health

    Science.gov (United States)

    Interest in evaluating the health of soil resources has been motivated by growing cognizance that soil is a critically important component of the earth’s biosphere, functioning not only in the production of food and fiber, but also in ecosystems services and global environmental quality. There was a...

  5. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  6. Recovery of organic fertility in degraded soil through fertilization and crop rotation

    Directory of Open Access Journals (Sweden)

    Wiqar Ahmad

    2014-06-01

    Full Text Available Maintenance and enhancement of the quality of degraded soil are, in essence, dependent upon the improvement of physical, chemical and biological properties of the soil. Improvement in microbial parameters of the degraded soil was studied in the present experiment through the effect of fertilizer sources and levels and cropping patterns in a factorial design in northern Pakistan. The experiment was designed in RCB with split plot arrangements. Cropping patterns i.e. maize–wheat–maize (C1, maize–lentil–maize (C2 and maize–wheat + lentil intercrop-maize (C3 were kept in main plots while fertilizer treatments; the control (T1, 50% NP (T2, 100% NPK or the recommended dose (T3 and 20 t ha−1 farmyard manure integrated with 50% mineral N and 100% P and K (T4 were tested in sub-plots during the study. Maximum and significant improvement in microbial parameters was recorded in T4 with 44, 24, 27 and 24.6% increase in total nitrogen (total N, mineralizable nitrogen (MN, microbial biomass nitrogen (MBN, and microbial biomass carbon (MBC after a 10 day incubation period over the T3, respectively, in the surface soil and 10%, 21%, 24% and 24.2% increase in the corresponding microbial parameters in the sub soil. The cropping patterns having cereal–legume rotation also improved organic soil fertility by 25%, 11.4%, 13% and 44% increase in total N, MN, MBN and MBC after a 10 day incubation period over the cereal-cereal rotation, respectively, in surface and 4%, 11%, 10% and 31% increase in the corresponding microbial parameters in the sub surface soil. The conclusion was that degraded alfisols require 50% N from the organic sources out of its total N requirements along with the inclusion of legumes in the traditional cereal–cereal crop rotation for the recovery of its microbial parameters.

  7. Four-year arable crop rotation impact on beneficial soil surface arthropod fauna restoration

    Directory of Open Access Journals (Sweden)

    Darija LEMIĆ

    2016-12-01

    Full Text Available Sugar beet production in Croatia is demanding and involves a range of activities that affect the successful production. Pests can significantly reduce yield, sugar content and root quality. Sugar beet protection is usually carried out by chemical measures. Chemical measures have long-term negative impact on soil surface Arthropod fauna. The composition and number of fauna species in surface soil layer indicates characteristics and fertility of the soil and is often referred as indicators of soil contamination.The aim of this research was to determine the richness and diversity of the soil surface Arthropod fauna in the sugar beet field and fields on which sugar beet was grown before one, two and three years ago. The research was conducted during 2015, in Lukač, Virovitica – Podravina County. Fauna was collected by pitfall traps (epigeic fauna and perforated probes (endogeic fauna. The total number of collected specimens was 1.493. Eudominant were species from class Insecta, family Carabidae, order Collembola and specimens from class Arachnida and class Arachnida, order Aranaea. Species from order Hymenoptera were recedent. The highest total catch of beneficial soil surface Arthropod fauna was recorded in the oilseed rape field where the sugar beet was grown three years ago. Thin stand crops have more favorable impact on soil surface fauna due to the less intensive chemical protection measures and ability of faster warming of the soil. Agro-technical measures such as protection and crop rotation have significant impact on the number of beneficial soil surface Arthropod fauna which recovered after intensive cultivation of sugar beet, in four-year crop rotation.

  8. Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils

    DEFF Research Database (Denmark)

    Ferrari, Alejandro E.; Ravnskov, Sabine; Larsen, John

    2015-01-01

    . Highrotation (HR) management consisted in maize–wheat–soybean intense rotation including cover crops.Low rotation (LR) management trend to soybean monocultures. Soils from nearby naturalenvironments (NEs) were used as references. Fatty acids concentration in soils (nmol/g) decreased c.a.50% from summer...

  9. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    Tillage and rotation are fundamental factors influencing soil quality and thus the sustainability of cropping systems. Many studies have focused on the effects of either tillage or rotation, but few have quantified the long term integrated effects of both. We studied the issue using a 30-year old...... long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C......–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality...

  10. [Effects of rotations and different green manure utilizations on crop yield and soil fertility].

    Science.gov (United States)

    Yao, Zhi-yuan; Wang, Zheng; Li, Jing; Yu, Chang-wei; Cao, Qun-hu; Cao, Wei-dong; Gao, Ya-jun

    2015-08-01

    A 4-year field experiment was conducted to investigate the influence of three rotation systems and three corresponding leguminous green manure (LGM) application methods on wheat yield and soil properties. The rotation patterns were summer fallow--winter wheat (SW), LGM-- winter wheat (LW) and LGM--spring maize--winter wheat (LMW). The three LGM application methods of LW included: early mulch, early incorporation and late incorporation while the three LGM application methods of LMW were: stalk mulch, stalk incorporation and stalk move-away. The results indicated that for LW, LGM consumed more soil water, thus the wheat yield was not stable. The nitrate storage in 0-200 cm soil after wheat harvest was significantly higher than that of the others, indicating an increasing risk of nitrate leaching. Early mulch under LW had the highest soil organic carbon (SOC) content and storage of SOC (SSOC) in 0-20 cm soil. For LMW, wheat yield was comparatively stable among years, because of higher water storage before wheat seeding, and the nitrate storage in 0-200 cm soil after wheat harvest was significantly lower than LW, which decreased the risk of nitrate leaching. Stalk mulch had higher SOC content in 0-20 cm soil after wheat harvest compared with move-away. In addition, compared with the soil when the experiment started, stalk much also increased SSOC in 0-20 cm soil. In conclusion, LMW with stalk mulch could increase soil water storage, stabilize crop yield, improve soil fertility and decrease 0-200 cm soil nitrate storage. This system could be treated as a good alternative for areas with similar climate.

  11. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    Science.gov (United States)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  12. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    Science.gov (United States)

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  13. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Yang, Ruiping; Mo, Yanling; Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012-2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality.

  14. Managing Cover Crops, Crop Rotation, and Poultry Manure to Increase Soil Health

    Science.gov (United States)

    Public interest has been stimulated by increasing awareness that soil is a critically important component of the earth’s biosphere, functioning not only in the production of food and fiber but also in the maintenance of local, regional, and global environmental quality. A healthy soil is also the ba...

  15. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Science.gov (United States)

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  16. [Effect of Crop Rotation and Biological Manure on Quality and Yield of "Chuju" Chrysanthemum morifolium and Continuous Cropping Soil Enzyme Activities].

    Science.gov (United States)

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-05-01

    To investigate the effects of chrysanthemum-wheat rotation system and biological manure on continuous cropping soil enzyme activities and quality and yield of Chrysanthemum morifolium. Field experiments were conducted at the research base of Anhui Jutai Chuju Chrysanthemum morifolium Herbal Technology Co. , Ltd. ,in Shiji Town, Nanqiao Country, Anhui Province. Samples were collected from treatments under chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg/667 m2, conventional chrysanthemum-wheat rotation system and chrysanthemum continuous cropping system. Chrysanthemum-wheat rotation system and biological manure obviously influenced the quality and yield of Chrysanthemum morifolium and continuous cropping soil enzyme activities. Compared with chrysanthemum continuous cropping system, total flavonoids, chlorogenic acid, soluble sugar and free amino acid contents, quantitative of ray floret, inflorescence diameter, diameter of tubular floret, number of branch, number of flower and yield of Chrysanthemum morifolium and the activities of urease, acid phosphatase, invertase and protease in soil were increased to 42.59 mg/g, 2.52 mg/g, 4.04 mg/g, 73.33 mg/100 g, 179.56, 5.57 cm, 1.43 cm, 36.10, 330.00 and 400.09 kg/667 m2, respectively, while hydrogen peroxidase of soil under chrysanthemum-wheat rotation system was decreased. Bio-organic manure application of 200 kg/667 m2 is benefit to soil environment establishment of chrysanthemum-wheat rotation system and enhancement of quality and yield of Chrysanthemum morifolium while reducing the obstacles of continuous cropping.

  17. Crop rotations for grain production

    OpenAIRE

    Olesen, Jørgen E.; Rasmussen, Ilse Ankær; Askegaard, Margrethe

    2000-01-01

    There is an increasing demand for organically grown cereal grains in Denmark, which is expected to cause a change in the typical organic farm structure away from dairy farming and towards arable farming. Such a change may reduce the stability of the farming systems, because of decreasing soil fertility and problems with weed control. There have only been a limited number of studies under temperate conditions in Europe and North America, where different crop rotations have been compared under ...

  18. Soil structural stability assessment with the fluidized bed, aggregate stability, and rainfall simulation on long-term tillage and crop rotation systems

    Science.gov (United States)

    The formation of stable soil aggregates is an important indicator of soil susceptibility to erosion and a factor defining soil health. On cropland, tillage practices and crop rotations have shown to control soil biophysical properties with potential consequences on erosion susceptibility. Thus, the ...

  19. Water erosion during a 17-year period under two crop rotations in four soil management systems on a Southbrazilian Inceptisol

    Science.gov (United States)

    Bertol, Ildegardis; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    Soil erosion still remains a persistent issue in the world, and this in spite of the efforts to ameliorate soil management systems taken into account the point of view of environmental protection against soil losses. In South Brazil water erosion is mainly associated to rainfall events with a great volume and high intensity, which are more or less evenly distributed all over the year. Nowadays, direct drilling is the most widely soil management system used for the main crops of the region. However, some crops still are grown on conventionally tilled soils, which means mainly ploughing and harrowing and less frequently chisel ploughing. In Lages-Santa Catarina State, Brazil, a plot experiment under natural rain was started in 1992 on an Inceptisol with the aim of quantifying soil and water losses. Treatments included bare and vegetated plots. The crop succession was: oats (Avena strigosa), soybean (Glycine max), vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and beans (Phaseolus vulgaris). Soil tillage systems investigated in this study were: i) conventional tillage (CT), ii) reduced tillage (MT), iii) no tillage (NT) under crop rotation and iv) conventional tillage on bare soil (BS). Treatments CT and BS involved ploughing plus twice harrowing, whereas MT involved chisel ploughing plus harrowing. Rainfall erosivity from January 1 1992 to December 31 2009 was calculated. Soil losses from the BS treatment along the 17 year study period were higher than 1200 Mg ha-1. Crop cover significantly reduced erosion, so that under some crops soil losses in the CT treatment were 80% lower than in the BS treatment. In turn soil losses in the MT treatment, where tillage was performed by chiselling and harrowing, were on average about 50% lower than in the CT treatment. No tillage was the most efficient soil management system in reducing soil erosion, so that soil losses in the NT treatment were about 98% lower than in the BS treatment. The three

  20. Long-Term Effects of Rotational Tillage On Visual Evaluation of Soil Structure, Soil Quality and Crop Yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard; Deen, Bill

    year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Measurements were carried out in the topsoil for three different rotations: R1 (C-C-C-C) continuous corn (Zea mays L.), R6. (C-C-O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare...

  1. The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol

    Directory of Open Access Journals (Sweden)

    Eric W. Triplett

    2012-10-01

    Full Text Available Agricultural management alters physical and chemical soil properties, which directly affects microbial life strategies and community composition. The microbial community drives important nutrient cycling processes that can influence soil quality, cropping productivity and environmental sustainability. In this research, a long-term agricultural experiment in a subtropical Acrisol was studied in south Brazil. The plots at this site represent two tillage systems, two nitrogen fertilization regimes and three crop rotation systems. Using Illumina high-throughput sequencing of the 16S rRNA gene, the archaeal and bacterial composition was determined from phylum to species level in the different plot treatments. The relative abundance of these taxes was correlated with measured soil properties. The P, Mg, total organic carbon, total N and mineral N were significantly higher in the no-tillage system. The microbial diversity was higher in the no-tillage system at order, family, genus and species level. In addition, overall microbial composition changed significantly between conventional tillage and no-tillage systems. Anaerobic bacteria, such as clostridia, dominate in no-tilled soil as well as anaerobic methanogenic archaea, which were detected only in the no-tillage system. Microbial diversity was higher in plots in which only cereals (oat and maize were grown. Soil management influenced soil biodiversity on Acrisol by change of composition and abundance of individual species.

  2. Long-term changes in the chemical composition of soil organic matter, depending on fertilization and crop rotation

    Science.gov (United States)

    Tammik, Kerttu; Kauer, Karin; Astover, Alar

    2017-04-01

    The objective of this study was to determine whether it is possible to assess the impact of different management practices (crop rotation, fertilization (organic and mineral fertilizers) on the chemical composition of soil organic matter, using Fourier transform infrared spectroscopy (FTIR). The study is based IOSDV long-term (established in 1989) three field crop rotation (potato-wheat-barely) experiment located in Tartu, Estonia. Soil samples (Stagnic Albeluvisol) were collected from the 0-20 cm depth in the autumn of 2015, air dried, sieved to 2 mm and grinded to obtain homogeneous samples. The content of soil organic matter was measured by the dry combustion method in a varioMax CNS elemental analyser (ELEMENTAR, Germany). The samples were analysed using Thermo-Nicolet iS10 Fourier Transform Infrared Spectrophotometer (FT-IR) and OMNIC software. An intense and sharp peak was recorded in the region of Si-O vibrations of clay minerals and polysaccharides in all samples analysed. The volume of the peak correlated with the quantity of fertilizers administered

  3. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils.

    Science.gov (United States)

    Ruttens, Ann; Boulet, Jana; Weyens, Nele; Smeets, Karen; Adriaensen, Kristin; Meers, Erik; Van Slycken, Stijn; Tack, Filip; Meiresonne, Linda; Thewys, Theo; Witters, Nele; Carleer, Robert; Dupae, Joke; Vangronsveld, Jaco

    2011-01-01

    Phytoremediation, more precisely phytoextraction, has been placed forward as an environmental friendly remediation technique, that can gradually reduce increased soil metal concentrations, in particular the bioavailable fractions. The aim of this study was to investigate the possibilities of growing willows and poplars under short rotation coppice (SRC) on an acid, poor, sandy metal contaminated soil, to combine in this way soil remediation by phytoextraction on one hand, and production of biomass for energy purposes on the other. Above ground biomass productivities were low for poplars to moderate for willows, which was not surprising, taking into account the soil conditions that are not very favorable for growth of these trees. Calculated phytoextraction efficiency was much longer for poplars than these for willows. We calculated that for phytoextraction in this particular case it would take at least 36 years to reach the legal threshold values for cadmium, but in combination with production of feedstock for bioenergy processes, this type of land use can offer an alternative income for local farmers. Based on the data of the first growing cycle, for this particular case, SRC of willows should be recommended.

  4. Incorporating soil health management practices into viable potato cropping systems

    Science.gov (United States)

    Soil health is critical to agricultural sustainability, environmental quality, and ecosystem function, but is generally degraded through intensive potato production. Soil and crop management practices beneficial to soil health, such as crop rotations, cover crops and green manures, organic amendment...

  5. Long-Term Effect of Crop Rotation and Fertilisation on Bioavailability and Fractionation of Copper in Soil on the Loess Plateau in Northwest China.

    Directory of Open Access Journals (Sweden)

    Yifei Zang

    Full Text Available The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure. Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil.

  6. Long-Term Effect of Crop Rotation and Fertilisation on Bioavailability and Fractionation of Copper in Soil on the Loess Plateau in Northwest China.

    Science.gov (United States)

    Zang, Yifei; Wei, Xiaorong; Hao, Mingde

    2015-01-01

    The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol) after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet) and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure). Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA) extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides) in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction) of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil.

  7. Energy crops in rotation. A review

    Energy Technology Data Exchange (ETDEWEB)

    Zegada-Lizarazu, Walter; Monti, Andrea [Department of Agroenvironmental Science and Technology, University of Bologna, Viale G. Fanin, 44 - 40127, Bologna (Italy)

    2011-01-15

    The area under energy crops has increased tenfold over the last 10 years, and there is large consensus that the demand for energy crops will further increase rapidly to cover several millions of hectares in the near future. Information about rotational systems and effects of energy crops should be therefore given top priority. Literature is poor and fragmentary on this topic, especially about rotations in which all crops are exclusively dedicated to energy end uses. Well-planned crop rotations, as compared to continuous monoculture systems, can be expected to reduce the dependence on external inputs through promoting nutrient cycling efficiency, effective use of natural resources, especially water, maintenance of the long-term productivity of the land, control of diseases and pests, and consequently increasing crop yields and sustainability of production systems. The result of all these advantages is widely known as crop sequencing effect, which is due to the additional and positive consequences on soil physical-chemical and biological properties arising from specific crops grown in the same field year after year. In this context, the present review discusses the potential of several rotations with energy crops and their possibilities of being included alongside traditional agriculture systems across different agro-climatic zones within the European Union. Possible rotations dedicated exclusively to the production of biomass for bioenergy are also discussed, as rotations including only energy crops could become common around bio-refineries or power plants. Such rotations, however, show some limitations related to the control of diseases and to the narrow range of available species with high production potential that could be included in a rotation of such characteristics. The information on best-known energy crops such as rapeseed (Brassica napus) and sunflower (Helianthus annuus) suggests that conventional crops can benefit from the introduction of energy crops in

  8. Woody biomass from short rotation energy crops

    Science.gov (United States)

    R.S. Zalesny; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; John Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  9. Response of soil microbial biomass and community structures to conventional and organic farming systems under identical crop rotations.

    Science.gov (United States)

    Esperschütz, Jürgen; Gattinger, Andreas; Mäder, Paul; Schloter, Michael; Fliessbach, Andreas

    2007-07-01

    In this study the influence of different farming systems on microbial community structure was analyzed using soil samples from the DOK long-term field experiment in Switzerland, which comprises organic (BIODYN and BIOORG) and conventional (CONFYM and CONMIN) farming systems as well as an unfertilized control (NOFERT). We examined microbial communities in winter wheat plots at two different points in the crop rotation (after potatoes and after maize). Employing extended polar lipid analysis up to 244 different phospholipid fatty acids (PLFA) and phospholipid ether lipids (PLEL) were detected. Higher concentrations of PLFA and PLEL in BIODYN and BIOORG indicated a significant influence of organic agriculture on microbial biomass. Farmyard manure (FYM) application consistently revealed the strongest, and the preceding crop the weakest, influence on domain-specific biomass, diversity indices and microbial community structures. Esterlinked PLFA from slowly growing bacteria (k-strategists) showed the strongest responses to long-term organic fertilization. Although the highest fungal biomass was found in the two organic systems of the DOK field trial, their contribution to the differentiation of community structures according to the management regime was relatively low. Prokaryotic communities responded most strongly to either conventional or organic farming management.

  10. Growing cover crops in organic arable crop rotations: Best practices from Denmark

    OpenAIRE

    Askegaard, Margrethe

    2017-01-01

    When sown correctly at the right time, in the right position within the rotation, cover crops retain nutrients, conserve water, prevent soil erosion, improve soil fertility and quality, and suppress weeds. Growing cover crops is recognized as a climate-smart agricultural practice. Practical recommendation Where to position and when to time cover crops in the rotation? • Grow cover crops in the 1st and 2nd year after ploughing of clover-grass to avoid nitrogen losses. • Grow nitrog...

  11. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    Science.gov (United States)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    In natural ecosystems with no percolating moisture regime, the biogeochemical cycle can be considered a closed system because the nutrients extracted by the roots will be returned to the soil after a certain time. In organic farming, a cycle model as close as possible is taken as a guideline, but we have to consider that unlike natural ecosystems, where most of the nutrients remain in the cycle, the agrosystems are open cycles. To achieve a sustainable fertility of the soil, the soil nutrient levels, the extractions according to the expected crop yields and the export refunds in the form of crop residues, biological nitrogen fixation, green manure or compost will have to be determined. Nutrient balance should be closed with external inputs, always avoiding to be a source of negative impacts on the environment. In organic farming without exogenous inputs, the effect of the crop rotations is much more noticeable in the nutrient balance than in the conventional farming fields which every year receive inputs of nutrients (nitrogen, phosphorus and potassium) in the form of chemical fertilizers. The most extractive crop rotations are those that produce a greater decrease in soil reserves, and in these cases exogenous inputs to maintain sustainability should be considered; however, in less extractive crop rotations, extractions can be restored by the edaphogenesis processes. In this work, soil organic matter, phosphorus and potassium balances were analyzed in different organic barley-based crop rotations (barley monoculture [b-b] and in rotation with vetch for hay production [B-Vh], vetch as green manure [B-Vm], sunflower [B-S], chickpea [B-C] and fallow [B-F]) in clay soils under a semiarid environment ("La Higueruela" Experimental Farm, Santa Olalla, Toledo, central Spain) over a 16 year period. Additionally, barley monoculture in conventional farming [B-B] was included. In the organic system, the fertilization involved the barley straw in all rotations, the sunflower

  12. Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations

    Science.gov (United States)

    The winter wheat (Triticum aestivum L.) summer fallow rotation typically practiced in the intermediate precipitation zone [300-450 mm (12-18 in)] of the inland Pacific Northwest has proven to be economically stable for producers in this region. However multiple tillage operations are used to control...

  13. Using the DNDC model to compare soil organic carbon dynamics under different crop rotation and fertilizer strategies

    Directory of Open Access Journals (Sweden)

    Lan Mu

    2014-02-01

    Full Text Available Soil organic carbon (SOC plays a vital role in determining soil fertility, water holding capacity and susceptibility to land degradation. On the Chinese Loess Plateau, a large amount of crop residues is regularly removed; therefore, this agricultural area mainly depends on fertilizer inputs to maintain crop yields. This paper aims to use a computer simulation model (DeNitrification and DeComposition, or DNDC to estimate the changes of SOC content and crop yield from 1998 to 2047 under different cropping systems, providing some strategies to maintain the SOC in balance and to increase crop yields. The results demonstrated that: (i single manure application or combined with nitrogen fertilizer could significantly enhance the SOC content and crop yield on the sloped land, terraced field and flat land; and (ⅱ in contrast to sloped land and terraced field, the SOC content and crop yield both continuously increased in flat fields, indicating that the flat field in this region is a good soil surface for carbon sequestration. These results emphasize that application of manure combined with nitrogen fertilizer would be a better management practice to achieve a goal of increasing soil carbon sequestration and food security.

  14. Nitrogen and crop rotation as drivers of the maize-associated soil microbiome

    Science.gov (United States)

    Microbes inhabit an exciting and interesting array of environments, exhibiting striking amounts of diversity and variation. The soil microbiome is one of the most dynamic and diverse microbial environments, where bacteria, fungi, and plant roots all interact to shape food networks and drive ecosyste...

  15. Changes in the biological activity of chestnut soils upon the long-term application of fertilizers in a rotation with oil-bearing crops

    Science.gov (United States)

    Eleshev, R. E.; Bakenova, Z. B.

    2012-11-01

    Experimental studies showed that irrigated chestnut soils on the piedmont of the Zailiiskiy Alatau Range are characterized by the moderate activity of the hydrolytic and redox enzymes. The use of these soils in the crop rotation system increases the hydrolytic activity of the enzymes (invertase, urease, and ATP synthase) by 30% in comparison with the monoculture; at the same time, it does not have a significant impact on the changes in the biological activity of the redox enzymes (catalase and dehydrogenase). The hydrolytic activity of the soils is activated to a greater extent in the crop rotation and in the monoculture against the background application of organic fertilizers. In this case, the recommended rates of mineral fertilizers do not inhibit the activity of the hydrolytic and redox enzymes. An increase in the hydrolytic activity of the enzymes directly affects the yield of oilseed flax. Therefore, indices of the hydrolytic activity of soils can be used as a test for the diagnostics of the efficiency of fertilizers both in crop rotation and monoculture systems.

  16. Crop Rotation and N Input Effects on Mineral Elements in Soil, Corn, and Grain as Revealed by Discriminant Analysis

    Science.gov (United States)

    We were interested in identifying soil, plant, and grain mineral nutrient variables that best discriminate N input treatments as well as rotation treatments from one another. Study objectives were to use multivariate discriminant analysis to measure soil, shoot, and grain mineral nutrient responses...

  17. Measuring and partitioning soil respiration in sharkey shrink-swell clays under plantation grown short-rotation woody crops

    Science.gov (United States)

    Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway Dillaway; Theodor D. Leininger

    2015-01-01

    The Lower Mississippi Alluvial Valley (LMAV) offers an ecological niche for short-rotation woody crop (SRWC) production by mating marginal agricultural land with optimal growing conditions. Approximately 1.7 million ha within the LMAV consist of Sharkey shrink-swell clays. They are considered marginal in terms of traditional agricultural productivity due to their...

  18. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system

    Science.gov (United States)

    Song, Ke; Yang, Jianjun; Xue, Yong; Lv, Weiguang; Zheng, Xianqing; Pan, Jianjun

    2016-11-01

    In this study, a fixed-site field experiment was conducted to study the influence of different combinations of tillage and straw incorporation management on carbon storage in different-sized soil aggregates and on crop yield after three years of rice-wheat rotation. Compared to conventional tillage, the percentages of >2 mm macroaggregates and water-stable macroaggregates in rice-wheat double-conservation tillage (zero-tillage and straw incorporation) were increased 17.22% and 36.38% in the 0-15 cm soil layer and 28.93% and 66.34% in the 15-30 cm soil layer, respectively. Zero tillage and straw incorporation also increased the mean weight diameter and stability of the soil aggregates. In surface soil (0-15 cm), the maximum proportion of total aggregated carbon was retained with 0.25-0.106 mm aggregates, and rice-wheat double-conservation tillage had the greatest ability to hold the organic carbon (33.64 g kg-1). However, different forms occurred at higher levels in the 15-30 cm soil layer under the conventional tillage. In terms of crop yield, the rice grown under conventional tillage and the wheat under zero tillage showed improved equivalent rice yields of 8.77% and 6.17% compared to rice-wheat double-cropping under zero tillage or conventional tillage, respectively.

  19. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.A.; Zhang, S.; Hua, S.; Rao, X.

    2016-11-01

    The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer), N (nitrogen), P (phosphorus), and NP (nitrogen plus phosphorus) in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008) on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil. (Author)

  20. Improving soil microbiology under rice-wheat crop rotation in Indo-Gangetic Plains by optimized resource management.

    Science.gov (United States)

    Sharma, P; Singh, G; Sarkar, Sushil K; Singh, Rana P

    2015-03-01

    The resource-intensive agriculture involving use of chemical fertilizers, irrigation, and tillage practices is a major cause of soil, water, and air pollution. This study was conducted to determine whether integrated use of nutrient, water, and tillage (reduced) can be manipulated to improve the population of plant growth promoting rhizobacteria (Azotobacter, Bacillus, and Pseudomonas) to enhance soil fertility and yield. The study was conducted in the Indo-Gangetic plain (IGP) region of India, where resource-intensive agriculture is practiced. Various combinations of chemical (urea) and organic fertilizers (farmyard manure (FYM), biofertilizer, and green manure) were used on replicated field plots for all the experiments. The effect of integrated resource management (IRM) on activities of Azotobacter, Bacillus, and Pseudomonas and its relation to the yields of rice and wheat crops in subtropical soils of IGP region were also observed. The increased population of all the three microbes, namely, Azotobacter (5.01-7.74 %), Bacillus (3.37-6.79 %), and Pseudomonas (5.21-7.09 %), was observed due to improved structure and increased organic matter in the soil. Similarly, kernel number and 1000 kernel weight were found increased with sole organic N source, three irrigations, and conservation tillage. Thus, it was found that the IRM practices affect the environment positively by increasing the population of beneficial soil microbes and crop yield as compared to high-input agriculture (conventional practices).

  1. The influence of nitrogen fertiliser rate and crop rotation on soil methane flux in rain-fed potato fields in Wuchuan County, China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liwei [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); College of Agronomy, Shenyang Agricultural University, Shenyang 110866 (China); Wuchuan Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture Wuchuan 011700 (China); Pan, Zhihua, E-mail: panzhihua@cau.edu.cn [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Wuchuan Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture Wuchuan 011700 (China); Xu, Hui [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Cheng [College of Agricultural and Biotechnology, China Agricultural University, Beijing 100193 (China); Gao, Lin [School of Resources and Environmental, Anhui Agricultural University, Hefei 230036 (China); Zhao, Peiyi [Institute of Resources Environmental and Detection Technology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031 (China); Wuchuan Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture Wuchuan 011700 (China); Dong, Zhiqiang; Zhang, Jingting; Cui, Guohui; Wang, Sen; Han, Guolin; Zhao, Hui [College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Wuchuan Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture Wuchuan 011700 (China)

    2015-12-15

    As one of the important greenhouse gases, the characteristics and principles of methane exchange characteristics in cultivated lands have become hot topics in current climate change research. This study examines the influences of nitrogen fertilisation, temperature and soil water content on methane exchange characteristic and methane exchange functional gene-pmoA gene abundance based on experimental observations of methane exchange fluxes using the static chamber–gas chromatographic method and measurements of methanotroph gene copy numbers in three growing periods by real-time PCR in rain-fed potato fields. The results indicate that the rain-fed potato fields were a CH{sub 4} sink with an average annual methane absorption (negative emission) of 940.8 ± 103.2 g CH{sub 4}-C/ha/year. The cumulative methane absorption first exhibited flat and subsequently increasing trend with the increase of nitrogen fertilisation from 0 ~ 135 kg N·ha{sup −1}. Methane cumulative absorption significantly increased with the increase of temperature when temperatures were below 19.6 °C. Methane oxidation capacity (methanotroph pmoA gene copy numbers) showed an increasing and subsequently decreasing trend with the increase of soil moisture. Crop rotation was observed to increase the methane absorption in rain-fed potato fields and nearly one time higher than that under continuous cropping. A mechanism concept model of the methane exchange in rain-fed potato fields was advanced in this paper. - Highlights: • Rain-fed potato fields were a CH{sub 4} sink. • Increased nitrogen fertilisation and temperature led to higher CH{sub 4} absorption. • CH{sub 4} oxidation capacity showed a parabolic trend with soil moisture increased. • Crop rotation increased CH{sub 4} absorption one time higher than continuous cropping. • A mechanism concept model of the CH{sub 4} exchange in potato fields was advanced.

  2. Short rotation Wood Crops Program

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  3. Crop rotation modelling - A European model intercomparison

    DEFF Research Database (Denmark)

    Kollas, Chris; Kersebaum, Kurt C; Nendel, Claas

    2015-01-01

    , tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less...

  4. Algal derivatives may protect crops from residual soil salinity: a case study on a tomato-wheat rotation

    Science.gov (United States)

    Di Stasio, Emilio; Raimondi, Giampaolo; Van Oosten, Michael; Maggio, Albino

    2017-04-01

    In coastal areas, summer crops are frequently irrigated with saline water. As a consequence, salts may accumulate in the root zone with detrimental effects on the following winter crops if the rainfall is insufficient to leach them. Two field experiments were performed in 2015-2016 on a field used for tomato (summer) wheat (winter) rotation cropping. The spring-summer experiment was carried in order to evaluate the effect of two algal derivatives (Ascophyllum nodosum), Rygex and Super Fifty, on a tomato crop exposed to increasing salinity and reduced nutrient availability. In the autumn-winter experiment we investigated the effect of residual salts from the previous summer irrigations on plant growth and yield of wheat treated with the same two algal extracts. The salt treatment for the irrigated summer crop was 80 mM NaCl plus a non-salinized control. The nutrient regimes were 100% and 50% of the tomato nutritional requirements. With both the seaweeds applications the salt stressed plants were demonstrated improved Relative Water Content and water potential. Nevertheless the total fresh biomass and the fruit fresh weight were enhanced only in the non salinized controls. Application of algal derivatives increased the total fresh weight over controls in the non salinized plants. The seaweed treatments enhanced the fruit fresh weight with an increase of 30% and 46% for Rygex and Super Fifty, respectively. Preliminary analysis of the ion profile in roots, shoots and leaves, indicates that the seaweed extracts may enhance the assimilation of ions in fruits affecting their nutritional value. The residual salinity of the summer experiment reduced the wheat biomass production. However, the seaweed extracts treatments improved growth under salinity. In the salt stressed plants the Super Fifty application increased shoots and ears by 34% and 23% respectively, compared to the non treated plants. Plant height was increased by application of seaweeds extracts for both the

  5. Nitrogen migration in crop rotations differing in fertilisation

    Energy Technology Data Exchange (ETDEWEB)

    Guzys, S.; Miseviciene, S.

    2015-07-01

    Inappropriate use of nitrogen fertilisers is becoming a global problem; however, continuous fertilisation with N fertiliser ensures large and constant harvests. To evaluate the relationships of differently fertilised cultivated plant rotation with N metabolism in the agroecosystem the research was conducted between 2006 and 2013 at Lipliūnai, Lithuania, in fields with calcareous gley brown soil, i.e. Endocalcari Endohypogleyic Cambisol (CMg-n-w-can). The research area covered three drained plots where crop rotation of differently fertilised cereals and perennial grasses were applied. The greatest productivity was found in a higher fertilisation (TII, 843 kg N/ha) cereals crop rotation. With less fertilisation (TI, 540 kg N/ha) crop rotation productivity of cereals and perennial grasses (TIII, 218 kg N/ha) was 11-35% lower. The highest amount of mineral soil N (average 76 kg/ha) was found in TI. It was influenced by fertilisation (r=0.71) and crop productivity (r=0.39). TIII tended to reduce Nmin (12.1 mg/L) and Ntotal (12.8 mg/L) concentrations in drainage water and leaching of these elements (7 and 8 kg/ha). Nmin and Ntotal concentrations in the water depended on crop productivity respectively (r=0.48; r=0.36), quantity of mineral soil N (r=0.65; r=0.59), fertilisation (r=0.59; r=0.52), and N balance (r=0.26; r=0.35). Cereal crop rotation increased N leaching by 12-42%. The use of all crop rotations resulted in a negative N balance. Nitrogen balance depended on fertilisation with N fertiliser (r=0.55). The application of perennial grasses crop rotation in agricultural fields was the best environmental tool, reducing N migration to drainage. (Author)

  6. IMPORTANCE OF PREDECESSORS IN MODERN CROP ROTATION

    Directory of Open Access Journals (Sweden)

    Gavrail Kundurdzhiev

    2016-06-01

    Full Text Available The paper examines the peculiarities of modern systems of field crop rotations. A review is made of the criteria for selecting the precursors for basic cereals in arable crop rotations in Bulgaria. It reflects the results of years of comparative field trials with different combinations of factors - genotype-fertilization-predecessor. Conclusions are made on the impact of the predecessor on the energy productivity of crops.

  7. The influence of nitrogen fertiliser rate and crop rotation on soil methane flux in rain-fed potato fields in Wuchuan County, China.

    Science.gov (United States)

    Wang, Liwei; Pan, Zhihua; Xu, Hui; Wang, Cheng; Gao, Lin; Zhao, Peiyi; Dong, Zhiqiang; Zhang, Jingting; Cui, Guohui; Wang, Sen; Han, Guolin; Zhao, Hui

    2015-12-15

    As one of the important greenhouse gases, the characteristics and principles of methane exchange characteristics in cultivated lands have become hot topics in current climate change research. This study examines the influences of nitrogen fertilisation, temperature and soil water content on methane exchange characteristic and methane exchange functional gene-pmoA gene abundance based on experimental observations of methane exchange fluxes using the static chamber-gas chromatographic method and measurements of methanotroph gene copy numbers in three growing periods by real-time PCR in rain-fed potato fields. The results indicate that the rain-fed potato fields were a CH4 sink with an average annual methane absorption (negative emission) of 940.8±103.2 g CH4-C/ha/year. The cumulative methane absorption first exhibited flat and subsequently increasing trend with the increase of nitrogen fertilisation from 0~135 kg N·ha(-1). Methane cumulative absorption significantly increased with the increase of temperature when temperatures were below 19.6 °C. Methane oxidation capacity (methanotroph pmoA gene copy numbers) showed an increasing and subsequently decreasing trend with the increase of soil moisture. Crop rotation was observed to increase the methane absorption in rain-fed potato fields and nearly one time higher than that under continuous cropping. A mechanism concept model of the methane exchange in rain-fed potato fields was advanced in this paper. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Overall assessment of soil quality on humid sandy loams: Effects of location, rotation and tillage

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Hansen, Elly Møller; Rickson, J.M.

    2015-01-01

    Conservation tillage and diversified crop rotations have been suggested as appropriate alternative soil management systems to sustain soil quality. The purpose of this study was to quantify the effect of implementing three crop rotations (R2–R4) on soil structural changes and the “productivity...... function” of soil. R2 is a winter-dominated crop rotation (winter wheat was the main crop) with straw residues incorporated. R3 is a mix of winter and spring crops with straw residues removed. R4 is the same mix of crops as in R3, but with straw residues incorporated. Three tillage systems were used...... the correlation between the soil quality indices and relative crop yield. Relevant soil properties for calculating the soil quality indices were measured or obtained from previous publications. Crop rotation affected the soil structure and RY. The winter-dominated crop rotation (R2) resulted in the poorest soil...

  9. Woody biomass from short rotation energy crops. Chapter 2

    Science.gov (United States)

    R.S., Jr. Zalesny Jr.; M.W. Cunningham; R.B. Hall; J. Mirck; D.L. Rockwood; J.A. Stanturf; T.A. Volk

    2011-01-01

    Short rotation woody crops (SRWCs) are ideal for woody biomass production and management systems because they are renewable energy feedstocks for biofuels, bioenergy, and bioproducts that can be strategically placed in the landscape to conserve soil and water, recycle nutrients, and sequester carbon. This chapter is a synthesis of the regional implications of producing...

  10. Assessment of soil attributes and crop productivity after diversification of the ubiquitous corn-soybean rotation in the northwestern U.S. Corn Belt

    Science.gov (United States)

    Highly specialized cash-grain production systems based upon corn-soybean rotations under tilled soil management are common in the northwestern U.S. Corn Belt. This study, initiated in 1997, was conducted to determine if diversification of this ubiquitous corn-soybean rotation would affect soil char...

  11. Soil compaction across the old rotation

    Science.gov (United States)

    Evaluating soil compaction levels across the Old Rotation, the world’s oldest continuous cotton (Gossypium hirsutum L.) experiment, has not been conducted since the experiment transitioned to conservation tillage and high residue cover crops with and without irrigation. Our objective was to charact...

  12. Cover crop termination timing is critical in organic rotational no-till systems

    Science.gov (United States)

    Cover crop-based rotational no-till enables organic farmers to reduce labor and build soil health. In these systems, cover crops are terminated with a roller-crimper and cash crops are direct-seeded into the mulch. A cropping system experiment was conducted at three locations in the Mid-Atlantic t...

  13. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.

    Science.gov (United States)

    Fumagalli, Pietro; Comolli, Roberto; Ferrè, Chiara; Ghiani, Alessandra; Gentili, Rodolfo; Citterio, Sandra

    2014-12-01

    Most of the plants employed to remove metals from contaminated soils are annuals and have a seed-to-seed life cycle of a few months, usually over spring and summer. Consequently, for most of the year, fields are not actively cleaned but are completely bare and subject to erosion by water and wind. The objective of this study was to evaluate the benefits of using Lupinus albus as a winter crop in a rotation sequence with a summer crop ideally selected for phytoextraction, such as industrial hemp. Lupin plants were grown in two alkaline soil plots (heavy metal-contaminated and uncontaminated) of approximately 400 m(2) each after the cultivation and harvest of industrial hemp. A smaller-scale parallel pot experiment was also performed to better understand the lupin behavior in increasing concentrations of Cd, Cu, Ni and Zn. White lupin grew well in alkaline conditions, covering the soil during the winter season. In few months plants were approximately 40-50 cm high in both control and contaminated plots. In fields where the bioavailable fraction of metals was low (less than 12%), plants showed a high tolerance to these contaminants. However, their growth was affected in some pot treatments in which the concentrations of assimilable Cu, Zn and Ni were higher, ranging from approximately 40-70% of the total concentrations. The lupin's ability to absorb heavy metals and translocate them to shoots was negligible with respect to the magnitude of contamination, suggesting that this plant is not suitable for extending the period of phytoextraction. However, it is entirely exploitable as green manure, avoiding the application of chemical amendments during phytoremediation. In addition, in polluted fields, white lupin cultivation increased the soil concentration of live bacteria and the bioavailable percentage of metals. On average live bacteria counts per gram of soil were 65×10(6)±18×10(6) and 99×10(6)±22*10(6) before and after cultivation, respectively. The percentages

  14. Soil water and mineral nitrogen content as influenced by crop ...

    African Journals Online (AJOL)

    ) and wheat–medic rotation (McWMcW) and tillage, conventional-till (CT), minimum-till (MT), no-till (NT) and zero-till (ZT) were studied. Crop rotation did not influence soil moisture content. Soil water content in CT tended to be lower compared ...

  15. ECONOMIC BACKGROUND CROP ROTATION AS A WAY TO PREVENT THE DEGRADATION OF AGRICULTURAL LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Shevchenko O.

    2017-05-01

    Full Text Available This article explores that to successfully combat land degradation on lands occupied in agriculture, it is necessary to conduct complex soil conservation measures constitute a single interconnected system and protect soil from degradation. Found that rotation – a reasonable compromise between the main requirements of production, organization of territory and environment, placing crops in view of a favorable combination; compliance with acceptable saturation parameters optimally varying cultures, and thus the possible timing of a return to their previous cultivation while taking into account the duration of the accepted rotation. Determined that the implementation and observance of crop rotation and better ensure the replenishment of nutrients of the soil, improving and maintaining its favorable physical properties, prevent the emergence of weeds, pests and pathogens cultivated crops and preventing the depletion of soil degradation processes and development. Found that scientifically based crop rotation is the basis for the use of all complex farming practices, differentiated cultivation, rational use of fertilizers and caring for plants. Rotation is correct – it agroecosystem, which created the best conditions for growth and development of various crops, thus providing a growing high and stable yields, obtaining high quality products. Soil and climatic conditions, specialty farms, crops structure and their biological characteristics defined as the type of crop rotation and crop rotation order. Each rotation should be selected such status, which would provide the greatest yield per unit area of rational use of all land. Therefore, proper placement crops in crop rotation must necessarily take into account the requirements of crops to their predecessor, thus it must evaluate not only the direct action of the first culture, but also take into account the impact of the latter on the following crops rotation. On unproductive and degraded lands is

  16. Environmental effectiveness of GAEC cross-compliance standard 2.2 "Maintaining the level of soil organic matter through crop rotation" and economic evaluation of the competitiveness gap for farmers

    Directory of Open Access Journals (Sweden)

    Lamberto Borrelli

    2015-11-01

    Full Text Available Within the Project MO.NA.CO was evaluated the Environmental effectiveness of GAEC cross-compliance standard 2.2 “Maintaining the level of soil organic matter through crop rotation” and economic evaluation of the competitiveness gap for farmers who support or not the cross-compliance regime. The monitoring was performed in nine experimental farms of the Council for Agricultural Research and Economics (CREA distributed throughout Italy and with different soil and climatic conditions. Were also evaluated the soil organic matter and some yield parameters, in a cereal monocropping (treatment counterfactual and a two-year rotation cereal-legume or forage (treatment factual. The two-years application of the standard “crop rotations” has produced contrasting results with regards to the storage of soil organic matter through crop rotation and these were not sufficient to demonstrate a statistically significant effect of treatment in any of the farms considered in monitoring, only in those farms subjected to more years of monitoring was recorded only a slight effect of the standard as a trend. The variations of organic matter in soils in response to changes in the culture technique or in the management of the soil may have long lag times and two years of time are not sufficient to demonstrate the dynamics of SOM associated with the treatment, also in consideration of the large inter annual variability recorded in different monitored sites.

  17. Tile drain losses of nitrogen and phosphorus from fields under integrated and organic crop rotations. A four-year study on a clay soil in southwest Sweden.

    Science.gov (United States)

    Stenberg, Maria; Ulén, Barbro; Söderström, Mats; Roland, Björn; Delin, Karl; Helander, Carl-Anders

    2012-09-15

    In order to explore the influence of site-specific soil properties on nitrogen (N) and phosphorus (P) losses between individual fields and crop sequences, 16 drained fields with clay soils were investigated in a four-year study. Mean total N (TN) loss was 6.6-11.1 from a conventional, 14.3-21.5 from an organic and 13.1-23.9 kg ha(-1) year(-1) from an integrated cropping system across a 4 year period, with 75% in nitrate form (NO(3)-N). Mean total P (TP) loss was 0.96-3.03, 0.99-4.63 and 0.76-2.67 kg ha(-1) year(-1), from the three systems respectively during the same period, with 25% in dissolved reactive form (DRP). Median N efficiency was calculated to be 70% including gains from estimated N fixation. According to principal component factor (PCA) analysis, field characteristics and cropping system were generally more important for losses of N and P than year. Accumulation of soil mineral N in the autumn and (estimated) N fixation was important for N leaching. No P fertilisers were used at the site in either cropping system. Total P concentration in drainage water from each of the fields was marginally significantly (ptopsoil (r=0.52), measured in hydrochloric acid extract (P-HCl). Mean DRP concentrations were significantly (ptopsoil (r=0.63). Good establishment of a crop with efficient nutrient uptake and good soil structure was general preconditions for low nutrient leaching. Incorporation of ley by tillage operations in the summer before autumn crop establishment and repeated operations in autumn as well, increased N leaching. Crop management in sequences with leguminous crops needs to be considered carefully when designing cropping systems high efficiency in N utilisation and low environmental impact. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management

    DEFF Research Database (Denmark)

    Askegaard, M; Olesen, Jørgen E; Rasmussen, Ilse Ankjær

    2011-01-01

    (coarse sand > loamy sand > sandy loam) and catch crops (without > with). Including a grass-clover green manure on 25% of the area did not increase N leaching compared with crop rotations without green manure. Also the application of animal manure did not influence N leaching, probably because even...... in Denmark (12 years in total). The experimental treatments were: (i) crop rotation, (ii) catch crop and (iii) animal manure. Nitrate leaching was estimated from measured soil nitrate concentration in ceramic suction cells and modelled drainage. There were significant effects on annual N leaching of location...... in the manured treatments the application rate was lower than crop demand. The results identify management of crop and soil during autumn as the main determinant of N leaching. Nitrate leaching was lowest for a catch crop soil cover during autumn and winter (avg. 20 kg N ha−1), a soil cover of weeds...

  19. Integration of annual and perennial cover crops for improving soil health

    Science.gov (United States)

    Annual and perennial cover crops in rotation provide environmental services and benefit soil health. Environmentally, cover crops can fill gaps in the rotation where the field may otherwise be fallow, thereby reducing soil erosion. Additionally, using cover crops as a nutrient capture tool can red...

  20. Spatial methods for deriving crop rotation history

    Science.gov (United States)

    Mueller-Warrant, George W.; Trippe, Kristin M.; Whittaker, Gerald W.; Anderson, Nicole P.; Sullivan, Clare S.

    2017-08-01

    Benefits of converting 11 years of remote sensing classification data into cropping history of agricultural fields included measuring lengths of rotation cycles and identifying specific sequences of intervening crops grown between final years of old grass seed stands and establishment of new ones. Spatial and non-spatial methods were complementary. Individual-year classification errors were often correctable in spreadsheet-based non-spatial analysis, whereas their presence in spatial data generally led to exclusion of fields from further analysis. Markov-model testing of non-spatial data revealed that year-to-year cropping sequences did not match average frequencies for transitions among crops grown in western Oregon, implying that rotations into new grass seed stands were influenced by growers' desires to achieve specific objectives. Moran's I spatial analysis of length of time between consecutive grass seed stands revealed that clustering of fields was relatively uncommon, with high and low value clusters only accounting for 7.1 and 6.2% of fields.

  1. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  2. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must... nutrients and soil fertility through rotations, cover crops, and the application of plant and animal...

  3. Identifying representative crop rotation patterns and grassland loss in the US Western Corn Belt

    Energy Technology Data Exchange (ETDEWEB)

    Sahajpal, Ritvik; Zhang, Xuesong; Izaurralde, Roberto C.; Gelfand, Ilya; Hurtt, George C.

    2014-10-01

    Crop rotations (the practice of growing crops on the same land in sequential seasons) reside at the core of agronomic management as they can influence key ecosystem services such as crop yields, carbon and nutrient cycling, soil erosion, water quality, pest and disease control. Despite the availability of the Cropland Data Layer (CDL) which provides remotely sensed data on crop type in the US on an annual basis, crop rotation patterns remain poorly mapped due to the lack of tools that allow for consistent and efficient analysis of multi-year CDLs. This study presents the Representative Crop Rotations Using Edit Distance (RECRUIT) algorithm, implemented as a Python software package, to select representative crop rotations by combining and analyzing multi-year CDLs. Using CDLs from 2010 to 2012 for 5 states in the US Midwest, we demonstrate the performance and parameter sensitivity of RECRUIT in selecting representative crop rotations that preserve crop area and capture land-use changes. Selecting only 82 representative crop rotations accounted for over 90% of the spatio-temporal variability of the more than 13,000 rotations obtained from combining the multi-year CDLs. Furthermore, the accuracy of the crop rotation product compared favorably with total state-wide planted crop area available from agricultural census data. The RECRUIT derived crop rotation product was used to detect land-use conversion from grassland to crop cultivation in a wetland dominated part of the US Midwest. Monoculture corn and monoculture soybean cropping were found to comprise the dominant land-use on the newly cultivated lands.

  4. Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat-soybean/fallow, 2009-2014

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2016-01-01

    infrared heaters and its control (C) combined with a nitrogen (N1) fertilization treatment (315 kg N ha−1 y−1) and no nitrogen treatment (N0) was conducted over five years at an agricultural research station in the North China Plain in a winter wheat–soybean double cropping system. N2O fluxes were measured...... moisture. The effect of lower soil moisture on N2O fluxes exceeded that of higher temperature, leading to less N2O being released by the drier soils under warming. Nitrogen fertilizer increased N2O emissions without warming, but did not routinely increase N2O emissions under warming treatment. In the N0......Nitrous oxide (N2O) emissions from agricultural soils play an important role in the global greenhouse gas budget. However, the response of N2O emissions from nitrogen fertilized agricultural soils to climate warming is not yet well understood. A field experiment with simulated warming (T) using...

  5. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems.

    Science.gov (United States)

    Alluvione, Francesco; Halvorson, Ardell D; Del Grosso, Stephen J

    2009-01-01

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO(2)) and methane (CH(4)) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: (i) tillage intensity [no-till (NT) and conventional moldboard plow tillage (CT)] in a continuous corn rotation; (ii) N fertilization levels [0-246 kg N ha(-1) for corn (Zea mays L.); 0 and 56 kg N ha(-1) for dry bean (Phaseolus vulgaris L.); 0 and 112 kg N ha(-1) for barley (Hordeum distichon L.)]; and (iii) crop rotation under NT soil management [corn-barley (NT-CB); continuous corn (NT-CC); corn-dry bean (NT-CDb)] on CO(2) and CH(4) flux from a clay loam soil. Carbon dioxide and CH(4) fluxes were monitored one to three times per week using vented nonsteady state closed chambers. No-till reduced (14%) growing season (154 d) cumulative CO(2) emissions relative to CT (NT: 2.08 Mg CO(2)-C ha(-1); CT: 2.41 Mg CO(2)-C ha(-1)), while N fertilization had no effect. Significantly lower (18%) growing season CO(2) fluxes were found in NT-CDb than NT-CC and NT-CB (11.4, 13.2 and 13.9 kg CO(2)-C ha(-1)d(-1) respectively). Growing season CH(4) emissions were higher in NT (20.2 g CH(4) ha(-1)) than in CT (1.2 g CH(4) ha(-1)). Nitrogen fertilization and cropping rotation did not affect CH(4) flux. Implementation of NT for 7 yr with no N fertilization was not adequate for restoring the CH(4) oxidation capacity of this clay loam soil relative to CT plowed and fertilized soil.

  6. Crop rotation and its ability to suppress perennial weeds

    OpenAIRE

    Askegaard, Margrethe

    2016-01-01

    The appropriate combination of crops and green manures prevents spread of perennial weeds and increases crop yields and quality. Weed-suppressing crop rotations are absolutely essential for sustainable organic arable farming. Practical recommendation Basic rules • Implement green manures, such as clover or lucerne, in at least 20 % of the rotation. • Do not grow more than 50 % of cereals with low weed competitiveness in the rotation. Do not cultivate such crops for more than 2 con...

  7. Converging strategies by farmers and scientists to improve soil fertility and enhance crop production in Benin

    NARCIS (Netherlands)

    Saidou, A.

    2006-01-01

    Keywords: Farmer perception, indigenous knowledge, extensive cassava, earthworm casts, arbuscular mycorrhiza, crop rotation, nutrient uptake, soil fertility, co-research, land tenure.Farmers in the transitional zone of Benin claim that extensive cassava cropping and prior cotton fertiliser enhance

  8. Vertical migration of {sup 60}Co, {sup 137}Cs and {sup 226}Ra in agricultural soils as observed in lysimeters under crop rotation

    Energy Technology Data Exchange (ETDEWEB)

    Shinonaga, T. [Division of Environmental and Life Science, ARC Seibersdorf Research, A-2444 Seibersdorf (Austria)]. E-mail: t.shinonaga@iaea.org; Schimmack, W. [Institute of Radiation Protection, GSF-National Research Center for Environment and Health, D-85764 Neuherberg (Germany); Gerzabek, M.H. [Division of Environmental and Life Science, ARC Seibersdorf Research, A-2444 Seibersdorf (Austria); Department for Forest and Soil Sciences, University of Natural Resources and Applied Life Science, Gregor-Mendel-Strasse 33, A-1180 Vienna (Austria)

    2005-07-01

    In most studies quantifying the migration parameters - apparent migration velocity and apparent dispersion coefficient - of radionuclides in the soil by model calculations, these parameters are determined for undisturbed soils. For soils disturbed by ploughing, however, no such data are available in the literature. Therefore, in the present study, the migration parameters of {sup 137}Cs, {sup 60}Co and {sup 226}Ra were estimated for ploughed soils by means of a convection-dispersion model. The depth distributions of the radionuclides were determined in four lysimeters (area: 1 m{sup 2}, depth of soil monolith: 0.75 m) filled with artificially contaminated soils of different types in July 1990. The lysimeters were cropped with agricultural plants. The soil in each lysimeter was ploughed manually once a year until 1996 (plough depth 20 cm). In July 1999, soil samples were collected from three pits in each lysimeter. The depth distributions of all radionuclides proved to be very similar in each soil pit. The spatial variability of the depth distributions of a given radionuclide within the lysimeters was about the same as their variability between the four lysimeters. Evaluation of the migration parameters revealed that the convective transport of the radionuclides was always rather small or even zero, while the dispersive transport caused a 'melting' process of the initially sharp activity edge at the lower border of the Ap horizon. These results are explained by the high evapotranspiration (80-90% of the total precipitation plus irrigation) and the small amounts of seepage water during the observation period of 9 years.

  9. The role of short-rotation woody crops in sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, J.P. [National Council of the Paper Industry for Air and Stream Improvement, Medford, MA (United States); Tolbert, V.R. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society`s needs.

  10. Combining cropland data layers to identify alfalfa-annual crop rotation patterns and opportunities

    Science.gov (United States)

    Alfalfa (Medicago sativa L.) can provide many economic and environmental benefits to crop rotations. Our objectives were to quantify alfalfa stand lengths, identify the two crops following alfalfa, and determine the soil and temporal factors affecting them. The USDA-NASS cropland data layers for 200...

  11. Evaluation of the CropSyst Model during Wheat-Maize Rotations on the North China Plain for Identifying Soil Evaporation Losses

    Directory of Open Access Journals (Sweden)

    Muhammad Umair

    2017-09-01

    Full Text Available The North China Plain (NCP is a major grain production zone that plays a critical role in ensuring China's food supply. Irrigation is commonly used during grain production; however, the high annual water deficit [precipitation (P minus evapotranspiration (ET] in typical irrigated cropland does not support double cropping systems (such as maize and wheat and this has resulted in the steep decline in the water table (~0.8 m year−1 at the Luancheng station that has taken place since the 1970s. The current study aimed to adapt and check the ability of the CropSyst model (Suite-4 to simulate actual evapotranspiration (ETa, biomass, and grain yield, and to identify major evaporation (E losses from winter wheat (WW and summer maize (SM rotations. Field experiments were conducted at the Luancheng Agro-ecosystem station, NCP, in 2010–2011 to 2012–2013. The CropSyst model was calibrated on wheat/maize (from weekly leaf area/biomass data available for 2012–2013 and validated onto measured ETa, biomass, and grain yield at the experimental station from 2010–2011 to 2011–2012, by using model calibration parameters. The revalidation was performed with the ETa, biomass, grain yield, and simulated ETa partition for 2008–2009 WW [ETa partition was measured by the Micro-lysimeter (MLM and isotopes approach available for this year]. For the WW crop, E was 30% of total ETa; but from 2010–11 to 2013, the annual average E was ~40% of ETa for the WW and SM rotation. Furthermore, the WW and SM rotation from 2010–2011 to 2012–2013 was divided into three growth periods; (i pre-sowing irrigation (PSI; sowing at field capacity to emergence period (EP, (ii EP to canopy cover period (CC and (iii CC to harvesting period (HP, and E from each growth period was ~10, 60, and 30%, respectively. In general, error statistics such as RMSE, Willmott's d, and NRMSE in the model evaluation for wheat ETa (maize ETa were 38.3 mm, 0.81, and 9.24% (31.74 mm, 0.73, and 11

  12. Evaluation of the CropSyst Model during Wheat-Maize Rotations on the North China Plain for Identifying Soil Evaporation Losses

    Science.gov (United States)

    Umair, Muhammad; Shen, Yanjun; Qi, Yongqing; Zhang, Yucui; Ahmad, Ayesha; Pei, Hongwei; Liu, Meiying

    2017-01-01

    The North China Plain (NCP) is a major grain production zone that plays a critical role in ensuring China's food supply. Irrigation is commonly used during grain production; however, the high annual water deficit [precipitation (P) minus evapotranspiration (ET)] in typical irrigated cropland does not support double cropping systems (such as maize and wheat) and this has resulted in the steep decline in the water table (~0.8 m year−1 at the Luancheng station) that has taken place since the 1970s. The current study aimed to adapt and check the ability of the CropSyst model (Suite-4) to simulate actual evapotranspiration (ETa), biomass, and grain yield, and to identify major evaporation (E) losses from winter wheat (WW) and summer maize (SM) rotations. Field experiments were conducted at the Luancheng Agro-ecosystem station, NCP, in 2010–2011 to 2012–2013. The CropSyst model was calibrated on wheat/maize (from weekly leaf area/biomass data available for 2012–2013) and validated onto measured ETa, biomass, and grain yield at the experimental station from 2010–2011 to 2011–2012, by using model calibration parameters. The revalidation was performed with the ETa, biomass, grain yield, and simulated ETa partition for 2008–2009 WW [ETa partition was measured by the Micro-lysimeter (MLM) and isotopes approach available for this year]. For the WW crop, E was 30% of total ETa; but from 2010–11 to 2013, the annual average E was ~40% of ETa for the WW and SM rotation. Furthermore, the WW and SM rotation from 2010–2011 to 2012–2013 was divided into three growth periods; (i) pre-sowing irrigation (PSI; sowing at field capacity) to emergence period (EP), (ii) EP to canopy cover period (CC) and (iii) CC to harvesting period (HP), and E from each growth period was ~10, 60, and 30%, respectively. In general, error statistics such as RMSE, Willmott's d, and NRMSE in the model evaluation for wheat ETa (maize ETa) were 38.3 mm, 0.81, and 9.24% (31.74 mm, 0.73, and 11

  13. Comparing crop rotations between organic and conventional farming.

    Science.gov (United States)

    Barbieri, Pietro; Pellerin, Sylvain; Nesme, Thomas

    2017-10-23

    Cropland use activities are major drivers of global environmental changes and of farming system resilience. Rotating crops is a critical land-use driver, and a farmers' key strategy to control environmental stresses and crop performances. Evidence has accumulated that crop rotations have been dramatically simplified over the last 50 years. In contrast, organic farming stands as an alternative production way that promotes crop diversification. However, our understanding of crop rotations is surprisingly limited. In order to understand if organic farming would result in more diversified and multifunctional landscapes, we provide here a novel, systematic comparison of organic-to-conventional crop rotations at the global scale based on a meta-analysis of the scientific literature, paired with an independent analysis of organic-to-conventional land-use. We show that organic farming leads to differences in land-use compared to conventional: overall, crop rotations are 15% longer and result in higher diversity and evener crop species distribution. These changes are driven by a higher abundance of temporary fodders, catch and cover-crops, mostly to the detriment of cereals. We also highlighted differences in organic rotations between Europe and North-America, two leading regions for organic production. This increased complexity of organic crop rotations is likely to enhance ecosystem service provisioning to agroecosystems.

  14. Rotação de culturas para trigo, após quatro anos: efeitos na fertilidade do solo em plantio direto Crop rotation systems for wheat, after four years: effects on soil fertility under no-tillage

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    1999-06-01

    Full Text Available A fertilidade do solo foi avaliada, após quatro anos (1990 a 1994, num latossolo bruno álico, em Guarapuava, PR, Brasil, em quatro sistemas de rotação de culturas para trigo: sistema I (trigo/soja; sistema II (trigo/soja e aveia branca/soja; sistema III (trigo/soja, ervilhaca/ milho e aveia branca/soja; e sistema IV (trigo/soja, aveia branca/soja, cevada/soja e ervilhaca/ milho. As culturas, tanto de inverno como de verão, foram estabelecidas sob plantio direto. O delineamento experimental foi de blocos ao acaso com quatro repetições. Através de contrastes, foram comparados os sistemas e as profundidades de amostragem de solo. Em todos os sistemas de rotação de culturas, na camada de solo 0 a 5cm, observaram-se valores maiores de pH e de Ca+Mg e menores de Al (com exceção do sistema III, em relação à camada 15 a 20cm. Houve elevação dos teores de Ca+Mg, de K e de P na camada de solo com a maior concentração de raízes (0 a 10cm. Os valores de matéria orgânica do solo decresceram progressivamente da camada 0 a 5cm para a camada 15 a 20cm.Soil fertility parameters were evaluated after four years (1990 to 1994 on a alic dusky latosol located in Guarapuava, Paraná, Brazil, under four wheat crop rotation systems as follows: system I (wheat/soybean; system II (wheat/soybean and white oats/soybean; system III (wheat/soybean, common vetch/corn, and white oats/soybean; and system IV (wheat/soybean, white oats/soybean, barley/soybean and common vetch/cor. Both winter and summer crops were seeded under no tillage. A randomized complete block design, with four replications, was used. Crop systems and soil samples at different depths were compared using the contrast procedure. All crop rotation systems, in the 0 to 5cm soil layer, higher values were observed for pH in water and Ca+Mg and lower contents for Al (except system III, as compared to the 15 to 20cm layer. Raising in Ca+Mg, K, and P levels occurred in the soil layer with the

  15. Phosphorus and potassium balance in soil under crop rotation and fertilizationBalanço de fósforo e potássio no solo sob rotação de culturas e adubações

    Directory of Open Access Journals (Sweden)

    Fabio Steiner

    2012-12-01

    Full Text Available The use of crop rotation and manure application can provide sustainability for an agricultural production system by improving soil quality and increasing nutrient use efficiency. This study aimed to evaluate the effect of mineral, organic and mineral+organic fertilization on grain yield and on soil phosphorus and potassium balance, in two crop systems under no-till, with and without rotation of cover crops. The experiment was carried out from 2006 to 2008 on a clayey Rhodic Hapludox in Marechal Cândido Rondon, Paraná State, Brazil. The cropping sequence in the rotation system involving cover crops was black oat + hairy vetch + forage turnip/corn/pigeon pea/wheat/mucuna + brachiaria + sunn hemp, and in the succession system was wheat/corn/wheat/soybean. Organic and mineral+organic fertilizations consisted of the application of solely manure and manure combined with mineral fertilizer, respectively. Soil P and K balances were calculated after the second year of the experiment, up to a depth of 0.40 m. First year corn yields were higher in the crop succession system accompanied by mineral fertilization. In the second year, wheat and soybean yield did not vary between crop systems and nutrient sources, demonstrating the residual effect of crop rotation and manure use. Crop rotation with cover crops resulted in an increase in soil K levels by promoting the recycling of this nutrient in the soil. In both crop systems, the application of mineral and organic fertilizers – either in isolation or in combination – resulted in a negative soil P and K balance in the short term. This represents a threat to the sustainability of the agricultural production system in the long term, due to the depletion of soil nutrient reserves. A utilização de rotação de culturas e a aplicação de esterco pode conferir sustentabilidade ao sistema de produção agrícola, por melhorar a qualidade do solo e aumentar a eficiência de uso de nutrientes. O objetivo deste

  16. Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome.

    Science.gov (United States)

    Benitez, Maria-Soledad; Osborne, Shannon L; Lehman, R Michael

    2017-11-16

    To evaluate crop rotation effects on maize seedling performance and its associated microbiome, maize plants were grown in the greenhouse in soils preceded by either maize, pea, soybean or sunflower. Soils originated from a replicated field experiment evaluating different four-year rotation combinations. In the greenhouse, a stressor was introduced by soil infestation with western corn rootworm (WCR) or Fusarium graminearum. Under non-infested conditions, maize seedlings grown in soils preceded by sunflower or pea had greater vigor. Stress with WCR or F. graminearum resulted in significant root damage. WCR root damage was equivalent for seedlings regardless of soil provenance; whereas F. graminearum root damage was significantly lower in maize grown in soils preceded by sunflower. Infestation with WCR affected specific microbial taxa (Acinetobacter, Smaragdicoccus, Aeromicrobium, Actinomucor). Similarly, F. graminearum affected fungal endophytes including Trichoderma and Endogone. In contrast to the biological stressors, rotation sequence had a greater effect on rhizosphere microbiome composition, with larger effects observed for fungi compared to bacteria. In particular, relative abundance of Glomeromycota was significantly higher in soils preceded by sunflower or maize. Defining the microbial players involved in crop rotational effects in maize will promote selection and adoption of favorable crop rotation sequences.

  17. Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio; Guirado, Nivaldo; Teramoto, Juliana Rolim Salome [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicaba, SP (Brazil). Polo Regional Centro Sul; Azcon, Rozario [Consejo Superior de Investigaciones Cientificas (CSIC), Granada (Spain). Estacao Experimental de Zaidin; Cantarela, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Solos e Recursos Ambientais; Ambrosano, Glaucia Maria Bovi [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Odontologia Social], Email: ambrosano@apta.sp.gov.br; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Inst. de Zootecnia; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Ungaro, Maria Regina Goncalves [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Plantas Graniferas

    2010-07-01

    Sugarcane (Saccharum spp.) is an important crop for sugar production and agro-energy purposes in Brazil. In the sugarcane production system after a 4- to 8-year cycle crop rotation may be used before replanting sugarcane to improve soil conditions and give an extra income. This study had the objective of characterizing the biomass and the natural colonization of arbuscular mycorrhizal fungi (AMF) of leguminous green manure and sunflower (Helianthus annuus L.) in rotation with sugarcane. Their effect on stalk and sugar yield of sugarcane cv. IAC 87-3396 grown subsequently was also studied. Cane yield was harvested in three subsequent cuttings. Peanut cv. IAC-Caiapo, sunflower cv. IAC-Uruguai and velvet bean (Mucuna aterrimum Piper and Tracy) were the rotational crops that resulted in the greater percentage of AMF. Sunflower was the specie that most extracted nutrients from the soil, followed by peanut cv. IAC-Tatu and mung bean (Vigna radiata L. Wilczek). The colonization with AMF had a positive correlation with sugarcane plant height, at the first cut (p = 0.01 and R = 0.52) but not with the stalk or cane yields. Sunflower was the rotational crop that brought about the greatest yield increase of the subsequent sugarcane crop: 46% increase in stalk yield and 50% in sugar yield compared with the control. Except for both peanut varieties, all rotational crops caused an increase in net income of the cropping system in the average of three sugarcane harvests. (author)

  18. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  19. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  20. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis.

    Science.gov (United States)

    McDaniel, M D; Tiemann, L K; Grandy, A S

    2014-04-01

    Our increasing dependence on a small number of agricultural crops, such as corn, is leading to reductions in agricultural biodiversity. Reductions in the number of crops in rotation or the replacement of rotations by monocultures are responsible for this loss of biodiversity. The belowground implications of simplifying agricultural plant communities remain unresolved; however, agroecosystem sustainability will be severely compromised if reductions in biodiversity reduce soil C and N concentrations, alter microbial communities, and degrade soil ecosystem functions as reported in natural communities. We conducted a meta-analysis of 122 studies to examine crop rotation effects on total soil C and N concentrations, and the faster cycling microbial biomass C and N pools that play key roles in soil nutrient cycling and physical processes such as aggregate formation. We specifically examined how rotation crop type and management practices influence C and N dynamics in different climates and soil types. We found that adding one or more crops in rotation to a monoculture increased total soil C by 3.6% and total N by 5.3%, but when rotations included a cover crop (i.e., crops that are not harvested but produced to enrich the soil and capture inorganic N), total C increased by 8.5% and total N 12.8%. Rotations substantially increased the soil microbial biomass C (20.7%) and N (26.1%) pools, and these overwhelming effects on microbial biomass were not moderated by crop type or management practices. Crop rotations, especially those that include cover crops, sustain soil quality and productivity by enhancing soil C, N, and microbial biomass, making them a cornerstone for sustainable agroecosystems.

  1. Effect of Rotation Crops on Heterodera glycines Population Density in a Greenhouse Screening Study.

    Science.gov (United States)

    Warnke, S A; Chen, S Y; Wyse, D L; Johnson, G A; Porter, P M

    2006-09-01

    Crop rotation is a common means of reducing pathogen populations in soil. Several rotation crops have been shown to reduce soybean cyst nematode (Heterodera glycines) populations, but a comprehensive study of the optimal crops is needed. A greenhouse study was conducted to determine the effect of growth and decomposition of 46 crops on population density of H. glycines. Crops were sown in soil infested with H. glycines. Plants were maintained until 75 days after planting, when the soil was mixed, a sample of the soil removed to determine egg density, and shoots and roots chopped and mixed into the soil. After 56 days, soil samples were again taken for egg counts, and a susceptible soybean ('Sturdy') was planted in the soil as a bioassay to determine egg viability. Sunn hemp (Crotalaria juncea), forage pea (Pisum sativum), lab-lab bean (Lablab purpureus), Illinois bundleflower (Desman-thus illinoensis), and alfalfa (Medicago sativa) generally resulted in smaller egg population density in soil or number of cysts formed on soybean in the bioassay than the fallow control. Sunn hemp most consistently showed the lowest numbers of eggs and cysts. As a group, legumes resulted in lower egg population densities than monocots, Brassica species, and other dicots.

  2. Nutrient management of soil grown crops

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The management of the fertilization of soil grown crops in greenhouses can be distinguished in the addition of fertilizers before cultivation, the base dressing and those added during the cultivations period of the crops, the top dressing. The growing period of the crops in greenhouse production

  3. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    OpenAIRE

    Ella, Victor B.; Reyes, Manuel R.; Mercado, Jr., Agustin; Adrian, Ares; Padre, Rafael

    2016-01-01

    Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS) have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Phil...

  4. Effects of cropping systems on soil biology

    Science.gov (United States)

    The need for fertilizer use to enhance soil nutrient pools to achieve good crop yield is essential to modern agriculture. Specific management practices, including cover cropping, that increase the activities of soil microorganisms to fix N and mobilize P and micronutrients may reduce annual inputs ...

  5. Can non-inversion tillage and straw retainment reduce N leaching in cereal based crop rotations?

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Melander, Bo

    2010-01-01

    the effect of tillage, straw retainment and cropping sequences, including cover crops, on nitrate leaching. The experiments were established in autumn 2002 on a loamy sand with 92 g clay kg-1 and a sandy loam with 147 g clay kg-1. The tillage treatments were stubble cultivation to 8-10 cm or 3-4 cm, direct...... drilling, or ploughing to 20 cm. The hypothesis was that (i) decreasing soil tillage intensity would decrease leaching compared to ploughing, (ii) leaving straw in the field would decrease leaching compared to removing straw, and (iii) a spring/winter crop rotation with catch crops would be more efficient...... in reducing nitrate leaching than a winter crop rotation. Overall, we were not able to confirm the three hypotheses. The effect of soil tillage on leaching might be blurred because the studied crop rotations had a high proportion of winter crops and because catch crops were grown whenever the alternative...

  6. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    African Journals Online (AJOL)

    In this study the effects of no-tillage and eight crop rotations (established in 1985) on chemical properties of a Rhodic Ferralsol (Typic Haplorthox, Soil Taxonomy) and on nutrient uptake by maize (Zea mays L.) and soybean (Glycine max L. Merrill) leaves were assessed in the state of São Paulo, Brazil, using a randomized ...

  7. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  8. Economic analysis of stockless, horticultural crop rotations on a model farm in temperate zone organic systems

    OpenAIRE

    SCHMUTZ Ulrich; Firth, Chris; Rayns, Francis

    2005-01-01

    Research draws on an organic research farm site in central England with a temperate zone climate - fairly common for the northern lowlands of Europe. The soil type is a sandy loam with 591 mm rainfall. Detailed economic and agronomic data have been collected since conversion began in 1995. The economic analysis discusses rotational gross and net margins of more than 30 different rotations with different fertility building and vegetable crops (potatoes, cabbages, onions, carrots, leeks and par...

  9. Adapting crop rotations to climate change in regional impact modelling assessments.

    Science.gov (United States)

    Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank

    2018-03-01

    The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used

  10. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  11. Effects of Neonicotinoids and Crop Rotation for Managing Wireworms in Wheat Crops.

    Science.gov (United States)

    Esser, Aaron D; Milosavljević, Ivan; Crowder, David W

    2015-08-01

    Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. ESTIMATION OF RESOURCE-HEALING ROLE LUPINE AND STRAW IN THE GRAIN-ROW CROP ROTATION

    Directory of Open Access Journals (Sweden)

    Tatyana ANISIMOVA

    2014-03-01

    Full Text Available In field experiences on soddy-podzolic sandy soil of Meshchersky lowland high agroeconomic efficiency of an adaptive link of a crop rotation with, grown up on grain, a potato and barley is established, at entering winter wheat straw under lupine . Straw in a combination with lupine has proved to be a perspective reserve of reproduction of fertility of soils without participation of nitrogen of mineral fertilizers.

  13. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.

    Science.gov (United States)

    Singh, Raman Jeet; Meena, Roshan Lal; Sharma, N K; Kumar, Suresh; Kumar, Kuldeep; Kumar, Dileep

    2016-02-01

    Reducing the carbon footprint and increasing energy use efficiency of crop rotations are the two most important sustainability issues of the modern agriculture. Present study was undertaken to assess economics, energy, and environmental parameters of common diversified crop rotations (maize-tomato, and maize-toria-wheat) vis-a-vis traditional crop rotations like maize-wheat, maize + ginger and rice-wheat of the north-western Himalayan region of India. Results revealed that maize-tomato and maize + ginger crop rotations being on par with each other produced significantly higher system productivity in terms of maize equivalent yield (30.2-36.2 t/ha) than other crop rotations (5.04-7.68 t/ha). But interestingly in terms of energy efficiencies, traditional maize-wheat system (energy efficiency 7.9, human energy profitability of 177.8 and energy profitability of 6.9 MJ/ha) was significantly superior over other systems. Maize + ginger rotation showed greater competitive advantage over other rotations because of less consumption of non-renewable energy resources. Similarly, maize-tomato rotation had ability of the production process to exploit natural resources due to 14-38% less use of commercial or purchased energy sources over other crop rotations. Vegetable-based crop rotations (maize + ginger and maize-tomato) maintained significantly the least carbon footprint (0.008 and 0.019 kg CO2 eq./kg grain, respectively) and the highest profitability (154,322 and 274,161 Rs./ha net return, respectively) over other crop rotations. As the greatest inputs of energy and carbon across the five crop rotations were nitrogen fertilizer (15-29% and 17-28%, respectively), diesel (14-24% and 8-19%, respectively) and irrigation (10-27% and 11-44%, respectively), therefore, alternative sources like organic farming, conservation agriculture practices, soil and water conservation measures, rain water harvesting etc. should be encouraged to reduce dependency of direct energy and external

  14. Impacts of crop growth dynamics on soil quality at the regional scale

    Science.gov (United States)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  15. Weed control through crop rotation and alternative management practices

    Directory of Open Access Journals (Sweden)

    Böhm, Herwart

    2014-02-01

    Full Text Available Economic as well as agricultural and socio-political changes have an impact on crop management and thus also on crop rotation design and the related effects on the weed flora. Likewise other changes in cultivation such as reduced tillage practices, earlier sowing date, etc. cause an increase in weed infestation resp. an increased use of herbicides and if so contribute to herbicide resistance. The positive effects of crop rotation, but also of alternative management practices such as choice of varieties, catch crops, mixed cropping, green chop, and the share of predators, as well as methods of direct non-chemical weed control are presented and discussed for both, conventional and organic farming. If alternative management methods should be more practiced, especially trade-offs need to be broken, or incentives be offered.

  16. Irrigation treatments, water use efficiency and crop sustainability in cereal-forage rotations in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2012-10-01

    Full Text Available Agricultural systems based on crop rotation are beneficial to crop sustainability and productivity. Wheat-forage rotations combined with irrigation are the agronomic techniques best able to exploit Mediterranean environmental conditions. This paper describes a long-term field trial to ascertain the effect of combined irrigation and durum wheat-forage rotations on crop yield and soil chemical properties. The two forage crops: annual grass-clover winter binary mixture and perennial lucerne were carried out through 1991-2008 under rainfed and irrigated treatments. The experiments were used to highlight the effect of irrigation and wheat-forage crop rotations on water use efficiency (WUE and sustainability of organic matter (OM in topsoil. Irrigation increased the dry matter (DM of annual binary mixture and lucerne by 49.1% and 66.9%, respectively. Continuous wheat rotation reduced seed yield (SY, stability of production, and crude protein (CP characteristics of kernel and OM in topsoil. The yearly gain in wheat after forage crops was 0.04 t (ha yr-1 under rainfed and 0.07 t (ha yr-1 under irrigation treatments. The CP and soil OM of wheat forage crops rotations, compared with those of continuous wheat under rainfed and irrigated was a 0.8 and 0.5 % increase in CP and 5.1 and 4.4 in OM, respectively. The rotations of annual grass-clover winter binary mixture and lucerne meadow under both irrigated treatments increased the OM over continuous wheat (9.3 % and 8.5 in annual grass-clover winter binary mixture and 12.5 and 9.5 lucerne meadow under rainfed and irrigation, respectively. Irrigation reduced the impact of weather on crop growing, reducing water use efficiency (mean over rotations for DM production (15.5 in meadow and 17.5 in annual grass-clover winter binary mixture [L water (kg DM-1] and wheat SY. However, the agronomic benefits achieved by forage crops in topsoil are exhausted after three years of continuous wheat rotation.

  17. Rice production in relation to soil quality under different rice-based cropping systems

    Science.gov (United States)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  18. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Science.gov (United States)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  19. Soil erosion: perennial crop plantations

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Plantation agriculture is an important form of land-use in the tropics. Large areas of natural and regenerated forest have been cleared for growing oil palm, rubber, cocoa, coffee, and other perennial tree crops. These crops grown both on large scale plantations and by smallholders are important

  20. INFLUÊNCIA DO PREPARO DE SOLO E DA ROTAÇÃO DE CULTURAS NA SEVERIDADE DE PODRIDÕES RADICULARES NO FEIJOEIRO COMUM EFFECTS OF SOIL TILLAGE SYSTEM AND CROP ROTATION ON DRY BEAN ROOT ROT SEVERITY

    Directory of Open Access Journals (Sweden)

    Pedro Marques da Silveira

    2007-09-01

    Full Text Available

    As podridões radiculares do feijoeiro são causadas pelos fungos Rhizoctonia solani Kühn e Fusarium solani f. sp. phaseoli Snyd. & Hans. Neste trabalho testou-se a combinação dos fatores preparo de solo e rotação de culturas, além de se avaliarem seus efeitos sobre as podridões radiculares do feijoeiro. Os tipos de preparo de solo consistiram em: arado+grade (P1, arado (P2, grade (P3 e plantio direto (P4. As rotações de culturas foram: arroz-feijão (R1, milho-feijão (R2, arroz/calopogônio (Calopogonium muconoides-feijão (R3 e milho-feijão-milho-feijão-arroz-feijão (R4. A severidade de F. solani f. sp. phaseoli, avaliada aos 25 dias após o plantio, apresentou interação significativa, sendo a maior severidade encontrada na combinação da rotação R3 com o preparo de solo P1, e a menor severidade, na combinação da rotação R2 com o preparo de solo P3. Diferenças estatísticas ocorreram na severidade da doença provocada por R. solani. O preparo de solo P3 apresentou maior severidade que P4, e, entre as rotações, R3 apresentou a maior severidade da doença.

    PALAVRAS-CHAVE: Rhizoctonia solani; Fusarium solani f. sp. phaseoli; práticas culturais; fungos.

    Dry bean root rot is caused by the fungi Rhizoctonia solani Kühn and Fusarium solani f. sp. phaseoli Snyd. & Hans.The effects of the interaction between soil tillage systems andcrop rotation on the severity of root rot was tested. The soiltillage systems consisted of plough+harrow (P1, plough (P2,harrow (P3 and no tillage (P4 and the crop rotation treatmentswere rice-bean (R1, corn-bean (R2, rice/Calopogonium muconoides-bean (R3 and corn

  1. Response of soil fungi and biological processes to crop residues in no-tillage system

    Directory of Open Access Journals (Sweden)

    Priscila de Oliveira

    2016-03-01

    Full Text Available Soil management and crop rotation can directly affect the soil microbial community. This study aimed at determining soil quality indicators and soilborne fungi in a no-tillage system. A randomized blocks design, in a 3 × 2 factorial arrangement, was used. Three cover crops (palisade grass, millet and common bean provided straw and root residues to the following crops of corn and soybean. The common bean-soybean sequence provided little soil covering and higher metabolic quotient and soil basal respiration and total enzymatic activity, as well as a general increase of soilborne fungi. The principal component analysis revealed that 76.61 % of the variance can be explained by the three first components, with cover crops, soil basal respiration and metabolic quotient regarded as the main qualitative and quantitative sources of variance in the first component. Carbon from the microbial biomass was the soil quality indicator best correlated to crop yield and negatively correlated to Fusarium solani density. The Rhizoctonia solani population was correlated with higher metabolic quotient and soil total enzymatic activity and basal respiration. The palisade grass crop favored soil fungistasis and enhancement of antagonist Trichoderma spp. populations. The multivariate approach demonstrated the association of soil fungi with soil quality indicators, as well as a higher influence of cover crops on the variance observed, in comparison to cash crops.

  2. Cultivar specific plant-soil feedback overrules soil legacy effects of elevated ozone in a rice-wheat rotation system

    NARCIS (Netherlands)

    Li, Qi; Yang, Yue; Bao, Xuelian; Zhu, Jianguo; Liang, Wenju; Bezemer, T. Martijn

    2016-01-01

    Abstract Tropospheric ozone has been recognized as one of the most important air pollutants. Many studies have shown that elevated ozone negatively impacts yields of important crops such as wheat or rice, but how ozone influences soil ecosystems of these crops and plant growth in rotation systems is

  3. 7 CFR 205.205 - Crop rotation practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Crop rotation practice standard. 205.205 Section 205.205 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC...

  4. Micronutrients in Soils, Crops, and Livestock

    Science.gov (United States)

    Gupta, Umesh C.; Wu, Kening; Liang, Siyuan

    Micronutrient concentrations are generally higher in the surface soil and decrease with soil depth. In spite of the high concentration of most micronutrients in soils, only a small fraction is available to plants. Micronutrients, also known as trace elements, are required in microquantities but their lack can cause serious crop production and animal health problems. Crops vary considerably in their response to various micronutrients. Brassicas and legumes are highly responsive to molybdenum (Mo) and boron (B), whereas corn and other cereals are more responsive to zinc (Zn) and copper (Cu). Micronutrient deficiencies are more common in humid temperate regions, as well as in humid tropical regions, because of intense leaching associated with high precipitation. Soil pH is one of the most important factors affecting the availability of micronutrients to plants. With increasing pH, the availability of these nutrients is reduced with the exception of Mo whose availability increases as soil pH increases. In most plant species, leaves contain higher amounts of nutrients than other plant parts. Therefore, whenever possible, leaves should be sampled to characterize the micronutrient status of crops. Deficiency symptoms for most micronutrients appear on the younger leaves at the top of the plant, whereas toxicity symptoms generally appear on the older leaves of plants. As summarized by Deckers and Steinnes, micronutrient deficiencies are widespread in developing countries, which have much poorer soil resources than the fertile soils of Europe and North America. Many of these areas lie in the humid tropics with extremely infertile, highly weathered, and/or highly leached soils, which are intensely deficient in nutrients. The rest of such soils are in the semiarid and areas adjacent to the latter, where alkaline and calcareous soil conditions severely limit the availability of micronutrients to plants. Frequently, the Cu, iron (Fe), manganese (Mn), Zn, and selenium (Se) levels

  5. Biological nitrogen fixation in three long-term organic and conventional arable crop rotation experiments in Denmark

    DEFF Research Database (Denmark)

    Pandey, Arjun; Li, Fucui; Askegaard, Margrethe

    2017-01-01

    Biological nitrogen (N) fixation (BNF) by legumes in organic cropping systems has been perceived as a strategy to substitute N import from conventional sources. However, the N contribution by legumes varies considerably depending on legumes species, as well as local soil and climatic conditions...... of legumes. Therefore, this study aimed to estimate BNF in long-term experiments with a range of organic and conventional arable crop rotations at three sites in Denmark varying in climate and soils (coarse sand, loamy sand and sandy loam) and to identify possible causes of differences in the amount of BNF....... The experiment included 4-year crop rotations with three treatment factors in a factorial design: (i) rotations, i.e. organic with a year of grass-clover (OGC), organic with a year of grain legumes (OGL), and conventional with a year of grain legumes (CGL), (ii) with (+CC) and without (−CC) cover crops, and (iii...

  6. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  7. Introducción de cultivos de cobertura en la rotación soja-maíz: efecto sobre algunas propiedades del suelo Inclusion of cover crops in a soybean-corn rotation: effect on some soil properties

    Directory of Open Access Journals (Sweden)

    Silvina Beatriz Restovich

    2011-07-01

    -tillage (NT show a progressive decline in their physical and chemical fertility. The inclusion of cover crops (CC in these agricultural systems could help mitigate these types of degradation. The objectives of this study were: 1 to evaluate the effect of different CC on some soil properties (porosity distribution, structural stability, bulk density, soil organic carbon (SOC and labile carbon and 2 to analyze the evolution of these properties during the inclusion of CC in a soybean-corn rotation under NT. In 2005, a two-year study was carried out on a silt loam Typic Argiudoll using different winter species as CC: barley (Hordeum vulgare L., ryegrass (Lolium multiflorum L., oats (Avena sativa L., rescue grass (Brumus unioloides L., vetch (Vicia sativa L., rape seed (Brassica napus L. and forage radish (Raphanus sativus L., a mixture of vetch and oats, and a control without CC. We measured an increase in soil macroporosity and structural stability and an increase in SOC content and the labile fraction. These changes were of moderate to low magnitude, occurring mainly near the soil surface (0-5 cm; they were associated with moments of important residue contributions and disappeared in periods of heavy rain. The rotations that included CC accumulated more SOC. Forage radish outstanded as a generator of porosity and oats as a stabilizer of the porous system.

  8. Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Meyer-Aurich, A; Olesen, Jørgen E

    2014-01-01

    . The results showed significantly lower carbon footprint of the crops from the ‘Biogas’ rotation (assuming that biogas replaces fossil gas) whereas the remaining crop rotations had comparable carbon footprints per kg cash crop. The study showed considerable contributions caused by the green manure crop (grass...... organic arable crop rotations with different sources of N supply. Data from long-term field experiments at three different locations in Denmark were used to analyse three different organic cropping systems (‘Slurry’, ‘Biogas’ and ‘Mulching’), one conventional cropping system (‘Conventional’) and a “No...... input” system as reference systems. The ‘Slurry’ and ‘Conventional’ rotations received slurry and mineral fertilizer, respectively, whereas the ‘No input’ was unfertilized. The ‘Mulching’ and ‘Biogas’ rotations had one year of grass-clover instead of a faba bean crop. The grass-clover biomass...

  9. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    Nitrogen (N) cycling within agriculture constitutes a source of direct and indirect emissions of the potent greenhouse gas nitrous oxide (N2O). We analysed relationships between N2O emissions and C and N balances of four arable cropping systems under conventional or organic management within a long......-term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green...... manure). Crops in both organic and conventional systems received N at rates below the optimum for crop production. Soil N2O emissions were monitored in 2008–2009 in six selected crops which could be combined with data from other monitoring programs to calculate N2O emission factors for each of the 16...

  10. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    Science.gov (United States)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips

  11. THE NUTRIENTS BALANCE OF CROP ROTATION AS AN INDICATOR OF SUSTAINABLE FARMING ON ARABLE LAND

    Directory of Open Access Journals (Sweden)

    Eva Hanáčková

    2009-03-01

    Full Text Available The nutrient balance of five crop rotation systems under conventional and minimal tillage with interaction of different fertilization treatments was investigated at the experimental station of Slovak Agricultural University in Nitra Dolná Malanta, during 2004-2005. The five-field crop rotation of maize (Zea mays L. - winter wheat (Triticum aestivum L. - spring barley (Hordeum vulgare L. underseeded with red clover - red clover (Trifolium pratense - common pea (Pisum sativum L. and mustard as catch crop was used. The most serious deficit of nitrogen (- 62.2 kg.ha-1.yr-1, phosphorus (- 24.0 kg.ha-1.yr-1 and potassium (- 89.2 kg.ha-1.yr-1 was on control treatments. Deficit of nitrogen was also found-out in treatments with mineral fertilizers application. However higher deficit of nitrogen (- 25.4 kg.ha-1.yr- 1 was registered under conventional tillage. In treatment fertilized with mineral fertilizers together with by - product of pre - crop incorporation into soil (PZ, small balance surplus of nitrogen (8 kg.ha-1.yr-1 - B1, 11.5 kg. ha-1.yr-1 - B2, respectively was calculated. The positive balance of phosphorus achieved in treatments with into soil incorporated by - products of pre - crops (in both systems of soil cultivation amounting value of 3.9 kg.ha-1.yr-1 can contribute to good supply of phosphorous in soil. The negative balance of potassium fluctuating from - 89.2 kg.ha-1.yr-1 (control treatment to - 22 kg.ha-1.yr-1 (PZ is acceptable owing to high content of available potassium in soil of experimental stand.

  12. A Decade of Carbon Flux Measurements with Annual and Perennial Crop Rotations on the Canadian Prairies

    Science.gov (United States)

    Amiro, B. D.; Tenuta, M.; Gao, X.; Gervais, M.

    2016-12-01

    The Fluxnet database has over 100 cropland sites, some of which have long-term (over a decade) measurements. Carbon neutrality is one goal of sustainable agriculture, although measurements over many annual cropping systems have indicated that soil carbon is often lost. Croplands are complex systems because the CO2 exchange depends on the type of crop, soil, weather, and management decisions such as planting date, nutrient fertilization and pest management strategy. Crop rotations are often used to decrease pest pressure, and can range from a simple 2-crop system, to have 4 or more crops in series. Carbon dioxide exchange has been measured using the flux-gradient technique since 2006 in agricultural systems in Manitoba, Canada. Two cropping systems are being followed: one that is a rotation of annual crops (corn, faba bean, spring wheat, rapeseed, barley, spring wheat, corn, soybean, spring wheat, soybean); and the other with a perennial phase of alfalfa/grass in years 3 to 6. Net ecosystem production ranged from a gain of 330 g C m-2 y-1 in corn to a loss of 75 g C m-2 y-1 in a poor spring-wheat crop. Over a decade, net ecosystem production for the annual cropping system was not significantly different from zero (carbon neutral), but the addition of the perennial phase increased the sink to 130 g C m-2 y-1. Once harvest removals were included, there was a net loss of carbon ranging from 77 g C m-2 y-1 in the annual system to 52 g C m-2 y-1 in the annual-perennial system; but neither of these were significantly different from zero. Termination of the perennial phase of the rotation only caused short-term increases in respiration. We conclude that both these systems were close to carbon-neutral over a decade even though they were tilled with a short growing season (90 to 130 days). We discuss the need for more datasets on agricultural systems to inform management options to increase the soil carbon sink.

  13. Diurnal fluxes of HONO above a crop rotation

    Directory of Open Access Journals (Sweden)

    S. Laufs

    2017-06-01

    Full Text Available Nitrous acid (HONO fluxes were measured above an agricultural field site near Paris during different seasons. Above bare soil, different crops were measured using the aerodynamic gradient (AG method. Two LOPAPs (LOng Path Absorption Photometer were used to determine the HONO gradients between two heights. During daytime mainly positive HONO fluxes were observed, which showed strong correlation with the product of the NO2 concentration and the long wavelength UV light intensity, expressed by the photolysis frequency J(NO2. These results are consistent with HONO formation by photosensitized heterogeneous conversion of NO2 on soil surfaces as observed in recent laboratory studies. An additional influence of the soil temperature on the HONO flux can be explained by the temperature-dependent HONO adsorption on the soil surface. A parameterization of the HONO flux at this location with NO2 concentration, J(NO2, soil temperature and humidity fits reasonably well all flux observations at this location.

  14. Nitrate leaching from an organic dairy crop rotation: the effect of manure type, N-input and improved crop rotation

    OpenAIRE

    Eriksen, J.; Askegaard, M.; Kristensen, K.

    2004-01-01

    Four management systems combining high and low livestock densities (0.7 and 1.4 LU ha-1) and different types of organic manure (slurry and straw based FYM) were applied to an organic dairy crop rotation (barley [undersown] – grass-clover – grass-clover – barley/pea – oats – fodder beet) between 1998 and 2001. The effects of the management systems on crop yields and nitrate leaching were measured. In all four years nitrate leaching, as determined using ceramic suction cups, was higher in the t...

  15. Comparison of the effects of different crop rotation systems on winter ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... sunflower-wheat-fodder pea + sunflower crop rotation system both in the first and second three year ... that binary cropping system consisting of wheat- ... The first 3 year (1995-1998) application plan for the crop rotation trials in which wheat was used as main crop. Year 1.System 2.System 3.System. 4.

  16. Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems.

    Science.gov (United States)

    Ghimire, Rajan; Norton, Jay B; Stahl, Peter D; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  17. Cropping systems and control of soil erosion in a Mediterranean environment

    Science.gov (United States)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  18. Impact of Location, Cropping History, Tillage, and Chlorpyrifos on Soil Arthropods in Peanut.

    Science.gov (United States)

    Cardoza, Yasmin J; Drake, Wendy L; Jordan, David L; Schroeder-Moreno, Michelle S; Arellano, Consuelo; Brandenburg, Rick L

    2015-08-01

    Demand for agricultural production systems that are both economically viable and environmentally conscious continues to increase. In recent years, reduced tillage systems, and grass and pasture rotations have been investigated to help maintain or improve soil quality, increase crop yield, and decrease labor requirements for production. However, documentation of the effects of reduced tillage, fescue rotation systems as well as other management practices, including pesticides, on pest damage and soil arthropod activity in peanut production for the Mid-Atlantic US region is still limited. Therefore, this project was implemented to assess impacts of fescue-based rotation systems on pests and other soil organisms when compared with cash crop rotation systems over four locations in eastern North Carolina. In addition, the effects of tillage (strip vs. conventional) and soil chlorpyrifos application on pod damage and soil-dwelling organisms were also evaluated. Soil arthropod populations were assessed by deploying pitfall traps containing 50% ethanol in each of the sampled plots. Results from the present study provide evidence that location significantly impacts pest damage and soil arthropod diversity in peanut fields. Cropping history also influenced arthropod diversity, with higher diversity in fescue compared with cash crop fields. Corn rootworm damage to pods was higher at one of our locations (Rocky Mount) compared with all others. Cropping history (fescue vs. cash crop) did not have an effect on rootworm damage, but increased numbers of hymenopterans, acarina, heteropterans, and collembolans in fescue compared with cash crop fields. Interestingly, there was an overall tendency for higher number of soil arthropods in traps placed in chlorpyrifos-treated plots compared with nontreated controls. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Effects of Different Tillage and Straw Return on Soil Organic Carbon in a Rice-Wheat Rotation System

    OpenAIRE

    Liqun Zhu; Naijuan Hu; Minfang Yang; Xinhua Zhan; Zhengwen Zhang

    2014-01-01

    Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess th...

  20. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  1. Organic farming and cover crops as an alternative to mineral fertilizers to improve soil physical properties

    Science.gov (United States)

    Sánchez de Cima, Diego; Luik, Anne; Reintam, Endla

    2015-10-01

    For testing how cover crops and different fertilization managements affect the soil physical properties in a plough based tillage system, a five-year crop rotation experiment (field pea, white potato, common barley undersown with red clover, red clover, and winter wheat) was set. The rotation was managed under four different farming systems: two conventional: with and without mineral fertilizers and two organic, both with winter cover crops (later ploughed and used as green manure) and one where cattle manure was added yearly. The measurements conducted were penetration resistance, soil water content, porosity, water permeability, and organic carbon. Yearly variations were linked to the number of tillage operations, and a cumulative effect of soil organic carbon in the soil as a result of the different fertilization amendments, organic or mineral. All the systems showed similar tendencies along the three years of study and differences were only found between the control and the other systems. Mineral fertilizers enhanced the overall physical soil conditions due to the higher yield in the system. In the organic systems, cover crops and cattle manure did not have a significant effect on soil physical properties in comparison with the conventional ones, which were kept bare during the winter period. The extra organic matter boosted the positive effect of crop rotation, but the higher number of tillage operations in both organic systems counteracted this effect to a greater or lesser extent.

  2. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Factors affecting soil organic matter conservation in Mediterranean hillside winter cereals-legumes cropping systems

    Directory of Open Access Journals (Sweden)

    Elisa Marraccini

    2012-09-01

    Full Text Available Soil conservation is an important issue for farming and environmental protection in Mediterranean areas. Hillside farming systems, based on winter cereals and legumes, are common in these areas and are the target of several environmental policies. Soil organic matter (SOM is widely used to assess the environmental performance of these cropping systems. Nevertheless, few studies have considered soil conservation practices in hillside systems in terms of implementing more effective agro-environmental policies for these areas. This paper compares the SOM conservation of different winter cereal based cropping systems within Mediterranean hillside crops/livestock farms. Seventeen cropping systems were characterised by on-farm surveys in the inland hilly area of Grosseto (Tuscany, Italy. For each cropping system, we performed a SOM balance, based on Hénin-Dupuis’ equation, using either local environmental databases or data from on-farm surveys. Differences between cropping systems were analysed by the Kruskal-Wallis test. On average, the cropping systems identified did not guarantee SOM conservation and varied considerably from farm to farm, however, some practices seemed to have a positive performance, e.g. cropping systems of cattle farms. According to the literature, annual SOM balance differs significantly depending on crop rotation length and longer crop rotations performed better than shorter ones. However, we found a local effect indicating that this better performance was influenced by local farmers' cooperatives, which to some extent counteracted the negative effect of crop rotation length. There were significant differences in the performance of dairy sheep and cattle farms (-1031 kg ha-1 yr-1 vs. +103 kg ha-1 yr-1, respectively. This suggests that the presence of livestock did not have the same favourable effect on soil conservation in Mediterranean systems and that this factor should be more investigated. Surprisingly, in our sample

  4. Closed Loop Short Rotation Woody Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael [CRC Development, LLC, Oakland, CA (United States)

    2012-09-30

    CRC Development LLC is pursuing commercialization of shrub willow crops to evaluate and confirm estimates of yield, harvesting, transportation and renewable energy conversion costs and to provide a diverse resource in its supply portfolio.The goal of Closed Loop Short Rotation Woody Biomass Energy Crops is supply expansion in Central New York to facilitate the commercialization of willow biomass crops as part of the mix of woody biomass feedstocks for bioenergy and bioproducts. CRC Development LLC established the first commercial willow biomass plantation acreage in North America was established on the Tug Hill in the spring of 2006 and expanded in 2007. This was the first 230- acres toward the goal of 10,000 regional acres. This project replaces some 2007-drought damaged acreage and installs a total of 630-acre new planting acres in order to demonstrate to regional agricultural producers and rural land-owners the economic vitality of closed loop short rotation woody biomass energy crops when deployed commercially in order to motivate new grower entry into the market-place. The willow biomass will directly help stabilize the fuel supply for the Lyonsdale Biomass facility, which produces 19 MWe of power and exports 15,000 pph of process steam to Burrows Paper. This project will also provide feedstock to The Biorefinery in New York for the manufacture of renewable, CO2-neutral liquid transportation fuels, chemicals and polymers. This project helps end dependency on imported fossil fuels, adds to region economic and environmental vitality and contributes to national security through improved energy independence.

  5. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    soil features resulted in a positive impact on the water permeability of the soil. Availability of soil moisture during the crop growth resulted in better plant water status. Subsequent release of conserved soil water regulated proper plant water status, soil structure, and lowered soil penetrometer resistance. Productions obtained at STC did not have significant differences for the wheat and maize crop but were higher for soybean. The advantages of minimum soil tillage systems for Romanian pedo-climatic conditions can be used to improve methods in low producing soils with reduced structural stability on sloped fields, as well as measures of water and soil conservation on the whole agroecosystem. Presently, it is necessary to make a change concerning the concept of conservation practices and to consider a new approach regarding the good agricultural practice. We need to focus on an upper level concerning conservation by focusing on soil quality. Carbon management is necessary for a complexity of matters including soil, water management, field productivity, biological fuel and climatic change. In conclusion a Sustainable Agriculture includes a range of complementary agricultural practices: (i) minimum soil tillage (through a system of reduced tillage or no-tillage) to preserve the structure, fauna and soil organic matter; (ii) permanent soil cover (cover crops, residues and mulches) to protect the soil and help to remove and control weeds; (iii) various combinations and rotations of the crops which stimulate the micro-organisms in the soil and controls pests, weeds and plant diseases. Acknowledgements: This paper was performed under the frame of the Partnership in priority domains - PNII, developed with the support of MEN-UEFISCDI, project no. PN-II-PT-PCCA-2013-4-0015: Expert System for Risk Monitoring in Agriculture and Adaptation of Conservative Agricultural Technologies to Climate Change, and International Cooperation Program - Sub-3.1. Bilateral AGROCEO c. no. 21BM

  6. Regional crop productivity and greenhouse gas emissions from Swiss soils under organic farming

    Science.gov (United States)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2016-04-01

    There is worldwide concern about the increase in atmospheric greenhouse gases (GHG) and their impact on climate change and food security. As a sustainable alternative, organic cropping in various forms has been promoted to minimize the environmental impacts of conventional practices. However, relatively little is known about the potential to reduce GHG emissions while maintaining crop productivity through the large-scale adoption of organic practices. Therefore, we simulated and compared regional crop production, soil organic carbon status, and net soil GHG emissions under organic and conventional practices. Grid-level (2.2 km by 2.2 km) simulation was performed using previously validated DailyDayCent by considering typical crop rotations. Regional model estimates are presented and discussed specifically with the focus on Swiss organic and conventional cropping systems, which differ by type and intensity of manuring, tillage, and cover crop.

  7. Estimating effectiveness of crop management for reduction of soil erosion and runoff

    Science.gov (United States)

    Hlavcova, K.; Studvova, Z.; Kohnova, S.; Szolgay, J.

    2017-10-01

    The paper focuses on erosion processes in the Svacenický Creek catchment which is a small sub-catchment of the Myjava River basin. To simulate soil loss and sediment transport the USLE/SDR and WaTEM/SEDEM models were applied. The models were validated by comparing the simulated results with the actual bathymetry of a polder at the catchment outlet. Methods of crop management based on rotation and strip cropping were applied for the reduction of soil loss and sediment transport. The comparison shows that the greatest intensities of soil loss were achieved by the bare soil without vegetation and from the planting of maize for corn. The lowest values were achieved from the planting of winter wheat. At the end the effectiveness of row crops and strip cropping for decreasing design floods from the catchment was estimated.

  8. [Effects of different tillage and fertilization modes on the soil physical and chemical properties and crop yield under winter wheat/spring corn rotation on dryland of east Gansu, Northwest China].

    Science.gov (United States)

    Zhang, Jian-jun; Wang, Yong; Fan, Ting-lu; Guo, Tian-wen; Zhao, Gang; Dang, Yi; Wang, Lei; Li, Shang-zhong

    2013-04-01

    Based on the 7-year field experiment on the dryland of east Gansu of Northwest China in 2005-2011, this paper analyzed the variations of soil moisture content, bulk density, and nutrients content at harvest time of winter wheat and of the grain yield under no-tillage and conventional tillage and five fertilization modes, and approached the effects of different tillage and fertilization modes on the soil water storage and conservation, soil fertility, and grain yield under winter wheat/ spring corn rotation. In 2011, the soil moisture content in 0-200 cm layer and the soil bulk density and soil organic matter and available nitrogen and phosphorus contents in 0-20 cm and 20-40 cm layers under different fertilization modes were higher under no-tillage than under conventional tillage. Under the same tillage modes, the contents of soil organic matter and available nitrogen and available phosphorus were higher under the combined application of organic and inorganic fertilizers, as compared with other fertilization modes. The soil available potassium content under different tillage and fertilization modes decreased with years. The grain yield under conventional tillage was higher than that under no-tillage. Under the same tillage modes, the grain yield was the highest under the combined application of organic and inorganic fertilizers, and the lowest under no fertilization. In sum, no-tillage had the superiority than conventional tillage in improving the soil water storage and conservation and soil fertility, and the combined application of organic and inorganic fertilizers under conventional tillage could obtain the best grain yield.

  9. The potential of cover crops for improving soil function

    Science.gov (United States)

    Stoate, Chris; Crotty, Felicity

    2017-04-01

    Cover crops can be grown over the autumn and winter ensuring green cover throughout the year. They have been described as improving soil structure, reducing soil erosion and potentially even a form of grass weed control. These crops retain nutrients within the plant, potentially making them available for future crops, as well as increasing soil organic matter. Over the last three years, we have investigated how different cover crop regimes affect soil quality. Three separate experiments over each autumn/winter period have investigated how different cover crops affect soil biology, physics and chemistry, with each experiment building on the previous one. There have been significant effects of cover crops on soil structure, as well as significantly lower weed biomass and increased yields in the following crop - in comparison to bare stubble. For example, the effect of drilling the cover crops on soil structure in comparison to a bare stubble control that had not been driven on by machinery was quantified, and over the winter period the soil structure of the cover crop treatments changed, with compaction reduced in the cover crop treatments, whilst the bare stubble control remained unchanged. Weeds were found in significantly lower biomass in the cover crop mixes in comparison to the bare stubble control, and significantly lower weed biomass continued to be found in the following spring oat crop where the cover crops had been, indicating a weed suppressive effect that has a continued legacy in the following crop. The following spring oats have shown similar results in the last two years, with higher yields in the previous cover crop areas compared to the bare stubble controls. Overall, these results are indicating that cover crops have the potential to provide improvements to soil quality, reduce weeds and improve yields. We discuss the economic implications.

  10. Congo grass grown in rotation with soybean affects phosphorus bound to soil carbon

    Directory of Open Access Journals (Sweden)

    Alexandre Merlin

    2014-06-01

    Full Text Available The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

  11. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation

    DEFF Research Database (Denmark)

    Acharya, Bharat Sharma; Rasmussen, Jim; Eriksen, Jørgen

    2012-01-01

    Grasslands are potential carbon sinks to reduce unprecedented increase in atmospheric CO2. Effect of age (1–4-year-old) and management (slurry, grazing multispecies mixture) of a grass phase mixed crop rotation on carbon sequestration and emissions upon cultivation was compared with 17-year......-old grassland and a pea field as reference. Aboveground and root biomass were determined and soils were incubated to study CO2 emissions after soil disturbance. Aboveground biomass was highest in 1-year-old grassland with slurry application and lowest in 4-year-old grassland without slurry application. Root...... in the CO2 emissions within 1–4-year-old grasslands. Only the 17-year-old grassland showed markedly higher CO2 emissions (4.9 ± 1.1 g CO2 kg−1 soil). Differences in aboveground and root biomass did not affect CO2 emissions, and slurry application did not either. The substantial increase in root biomass...

  12. Water flow in soil from organic dairy rotations

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Eriksen, Jørgen; Krogh, Paul Henning

    2017-01-01

    Managed grasslands are characterized by rotations of leys and arable crops. The regime of water flow evolves during the leys because of earthworm and root activity, climate and agricultural practices (fertilizer, cutting and cattle trampling). The effects of duration of the leys, cattle trampling...... and fertilizer practice on the movement of water through sandy loam soil profiles were investigated in managed grassland of a dairy operation. Experiments using tracer chemicals were performed, with or without cattle slurry application, with cutting or grazing, in the 1st and the 3rd year of ley, and in winter...... rye. Each plot was irrigated for an hour with 18·5 mm of water containing a conservative tracer, potassium bromide; 24 h after irrigation, macropores >1 mm were recorded visually on a horizontal plan of 0·7 m2 at five depths (10, 30, 40, 70 and 100 cm). The bromide (Br−) concentration in soil was also...

  13. Nitrous oxide emission from soils amended with crop residues

    NARCIS (Netherlands)

    Velthof, G.L.; Kuikman, P.J.; Oenema, O.

    2002-01-01

    Crop residues incorporated in soil are a potentially important source of nitrous oxide (N2O), though poorly quantified. Here, we report on the N2O emission from 10 crop residues added to a sandy and a clay soil, both with and without additional nitrate (NO3-). In the sandy soil, total nitrous oxide

  14. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha-1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha-1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields.

    Science.gov (United States)

    Hai-Ming, Tang; Xiao-Ping, Xiao; Wen-Guang, Tang; Ye-Chun, Lin; Ke, Wang; Guang-Li, Yang

    2014-01-01

    Residue management in cropping systems is useful to improve soil quality. However, the studies on the effects of residue management on the enzyme activities and microbial community of soils in South China are few. Therefore, the effects of incorporating winter cover crop residue with a double-cropping rice (Oryza sativa L.) system on soil enzyme activities and microbial community in Southern China fields were studied. The experiment has conducted at the experimental station of the Institute of Soil and Fertilizer Research, Hunan Academy of Agricultural Science, China since winter 2004. Four winter cropping systems were used: rice-rice-ryegrass (Lolium multiflorum L.) (R-R-Ry), rice-rice-Chinese milk vetch (Astragalus sinicus L.) (R-R-Mv), rice-rice-rape (Brassica napus L.) (R-R-Ra) and rice-rice with winter fallow (R-R-Fa). The result indicated that the enzyme activities in the R-R-Ry, R-R-Mv and R-R-Ra systems were significantly higher (Pcover crops into rotations may increase enzyme activities and microbial community in soil and therefore improve soil quality.

  16. Cereal yield and quality as affected by N availability in organic and conventional crop rotations in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2011-01-01

    The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring...... systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark...... barley–(faba bean or grass-clover)–potato–winter wheat. Experiments were done at three locations representative of the different soil types and climatic conditions in Denmark. The three organic systems that included faba bean as the N fixing crop comprised a system with manure (stored pig slurry...

  17. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    Science.gov (United States)

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean

  18. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana.

    Science.gov (United States)

    Naab, Jesse B; Mahama, George Y; Yahaya, Iddrisu; Prasad, P V V

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean-maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers' managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20-29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along

  19. Soil Chemistry Factors Confounding Crop Salinity Tolerance—A Review

    Directory of Open Access Journals (Sweden)

    Pichu Rengasamy

    2016-10-01

    Full Text Available The yield response of various crops to salinity under field conditions is affected by soil processes and environmental conditions. The composition of dissolved ions depend on soil chemical processes such as cation or anion exchange, oxidation-reduction reactions, ion adsorption, chemical speciation, complex formation, mineral weathering, solubility, and precipitation. The nature of cations and anions determine soil pH, which in turn affects crop growth. While the ionic composition of soil solution determine the osmotic and ion specific effects on crops, the exchangeable ions indirectly affect the crop growth by influencing soil strength, water and air movement, waterlogging, and soil crusting. This review mainly focuses on the soil chemistry processes that frustrate crop salinity tolerance which partly explain the poor results under field conditions of salt tolerant genotypes selected in the laboratory.

  20. Linking N Cycling to Microbial Function Within Soil Microenvironments in Cover Crop Systems

    Science.gov (United States)

    Kong, A. Y.; Scow, K. M.; Hristova, K.; Six, J.

    2007-12-01

    Cover crops have emerged as a crop management strategy to achieve agricultural sustainability and maintain environmental quality. Thus, fundamental knowledge of microbial-mediated C and N cycling is vital to understanding soil organic matter (SOM) dynamics in cover cropped agroecosystems. We investigated the effects of short-term cover crop-C input on N processing by microbial communities within SOM microenvironments and in bulk soil, across a gradient of organic to conventional crop management. We hypothesized that cover crop C and N inputs promote soil aggregation, which increases the abundance of ammonia oxidizing bacteria (AOB) and stimulates greater microbial cycling of N within soil microenvironments, thereby leading to potential increases in N stabilization coupled with decreases in N loss. Our hypothesis was tested on the long-term organic, low-input, and conventional maize-tomato rotations at the Center for Integrated Farming Systems experiment (Davis, CA). We collected soil samples (0-15cm) across the cover crop and subsequent maize growing seasons and then isolated three SOM fractions soil: coarse particulate organic matter (cPOM; >250um), microaggregates (53-250um), and silt-and-clay (<53um). Total C and N were measured on both bulk soil and SOM fractions. Real-time polymerase chain reaction (PCR) using primers for the functional genes, amoA and nosZ, were employed to quantify AOB and denitrifier population sizes, respectively. We also measured gross ammonification and nitrification rates in short-term 15N-incubations of the bulk soil to link cover crop induced N cycling to N-transforming bacteria. Total soil C and N concentrations and soil aggregation were higher in the organic than conventional and low-input systems. The amoA and no Z copy numbers g-1 dry soil were highest in the microaggregate fraction and similar between the cPOM and silt-and-clay fractions, among all cropping treatments. Abundances of AOB and denitrifiers were lower in bulk soil

  1. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  2. Morphostructural characterization of soil conventionally tilled with mechanized and animal traction with and without cover crop

    Directory of Open Access Journals (Sweden)

    Ricardo Ralisch

    2010-12-01

    Full Text Available The structural stability and restructuring ability of a soil are related to the methods of crop management and soil preparation. A recommended strategy to reduce the effects of soil preparation is to use crop rotation and cover crops that help conserve and restore the soil structure. The aim of this study was to evaluate and quantify the homogeneous morphological units in soil under conventional mechanized tillage and animal traction, as well as to assess the effect on the soil structure of intercropping with jack bean (Canavalia ensiformis L.. Profiles were analyzed in April of 2006, in five counties in the Southern-Central region of Paraná State (Brazil, on family farms producing maize (Zea mays L., sometimes intercropped with jack bean. The current structures in the crop profile were analyzed using Geographic Information Systems (GIS and subsequently principal component analysis (PCA to generate statistics. Morphostructural soil analysis showed a predominance of compact units in areas of high-intensity cultivation under mechanized traction. The cover crop did not improve the structure of the soil with low porosity and compact units that hamper the root system growth. In areas exposed to animal traction, a predominance of cracked units was observed, where roots grew around the clods and along the gaps between them.

  3. Carbon balance of the typical grain crop rotation in Moscow region assessed by eddy covariance method

    Science.gov (United States)

    Meshalkina, Joulia; Yaroslavtsev, Alexis; Vassenev, Ivan

    2017-04-01

    Croplands could have equal or even greater net ecosystem production than several natural ecosystems (Hollinger et al., 2004), so agriculture plays a substantial role in mitigation strategies for the reduction of carbon dioxide emissions. In Central Russia, where agricultural soils carbon loses are 9 time higher than natural (forest's) soils ones (Stolbovoi, 2002), the reduction of carbon dioxide emissions in agroecosystems must be the central focus of the scientific efforts. Although the balance of the CO2 mostly attributed to management practices, limited information exists regarding the crop rotation overall as potential of C sequestration. In this study, we present data on carbon balance of the typical grain crop rotation in Moscow region followed for 4 years by measuring CO2 fluxes by paired eddy covariance stations (EC). The study was conducted at the Precision Farming Experimental Fields of the Russian Timiryazev State Agricultural University, Moscow, Russia. The experimental site has a temperate and continental climate and situated in south taiga zone with Arable Sod-Podzoluvisols (Albeluvisols Umbric). Two fields of the four-course rotation were studied in 2013-2016. Crop rotation included winter wheat (Triticum sativum L.), barley (Hordeum vulgare L.), potato crop (Solanum tuberosum L.) and cereal-legume mixture (Vicia sativa L. and Avena sativa L.). Crops sowing occurred during the period from mid-April to mid-May depending on weather conditions. Winter wheat was sown in the very beginning of September and the next year it occurred from under the snow in the phase of tillering. White mustard (Sinapis alba) was sown for green manure after harvesting winter wheat in mid of July. Barley was harvested in mid of August, potato crop was harvested in September. Cereal-legume mixture on herbage was collected depending on the weather from early July to mid-August. Carbon uptake (NEE negative values) was registered only for the fields with winter wheat and white

  4. Evaluating Soil Compaction for an Annual Winter Grazing/Vegetable Production Rotation in North-Central

    Science.gov (United States)

    Degraded soils of Alabama have demonstrated the ability to respond well to conservation tillage in a large variety of crops. Winter annual grazing/sod-based rotations with summer vegetable production can offer reduced economic risks for producers but may change tillage requirements for vegetable pro...

  5. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    Directory of Open Access Journals (Sweden)

    Victor B. Ella

    2016-01-01

    Full Text Available Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Philippines. Results showed that soil organic carbon (SOC at 0- 5-cm depth for all CAPS treatments generally increased with time while SOC under the plow-based system tended to decline over time for both the high (120, 60 and 60 kg N P K ha-1 and moderate (60-30-30 kg N P K ha-1 fertility levels. The cropping system with maize + Stylosanthes guianensis in the first year followed by Stylosanthes guianensis and fallow in the second year, and the cassava + Stylosanthes guianensis exhibited the highest rate of SOC increase for high and moderate fertility levels, respectively. After one, two, and three cropping seasons, plots under CAPS had significantly higher soil residual water content (RWC than under plow-based systems. Results of this study suggest that conservation agriculture has a positive impact on soil quality, while till systems negatively impact soil characteristics.

  6. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  7. LLWR techniques for quantifying potential soil compaction consequences of crop

    Science.gov (United States)

    Harvesting crop residues for bioenergy or bio-product production may decrease soil organic matter (SOM), resulting in the degradation of soil physical properties and ultimately soil productivity. Using the Least Limiting Water Range (LLWR) to evaluate improvement or degradation of soil physical pro...

  8. Coastal bermudagrass rotation and fallow for management of nematodes and soilborne fungi on vegetable crops.

    Science.gov (United States)

    Johnson, A W; Burton, G W; Sumner, D R; Handoo, Z

    1997-12-01

    The efficacy of clean fallow, bermudagrass (Cynodon dactylon) as a rotational crop, and fenamiphos for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus), snapbean (Phaseolus vulgaris), and pepper (Capsicum annuum) production was evaluated in field tests from 1993 to 1995. Numbers of M. incognita in the soil and root-gall indices were greater on okra than on snapbean or pepper. Application of fenamiphos at 6.7 kg a.i./ha did not suppress numbers of nematodes on any sampling date when compared with untreated plots. The lack of efficacy could be the result of microbial degradation of the nematicide. Application of fenamiphos suppressed root-gall development on okra following fallow and 1-year sod in 1993, but not thereafter. A few galls were observed on roots of snapbean following 2- and 3-year fallow but none following 1-, 2-, and 3-year bermudagrass sod. Population densities of Pythium aphanidermatum, P. myriotylum, and Rhizoctonia solani in soil after planting vegetables were suppressed by 2- or 3-year sod compared with fallow but were not affected by fenamiphos. Yields of snapbean, pepper, and okra did not differ between fallow and 1-year sod. In the final year of the study, yields of all crops were greater following 3-year sod than following fallow. Application of fenamiphos prior to planting each crop following fallow or sod did not affect yields.

  9. Response of some crops grown in rotation with wheat to the residues of sulfonylurea herbicides in Khuzestan province

    Directory of Open Access Journals (Sweden)

    Reza Poorazar

    2016-04-01

    Full Text Available Maize and mungbean rotational responses to sulfonylurea herbicides applied on wheat at the previous year were investigated in two separated experiments at Ahvaz in 2006 and 2007. In the first experiment, 10 treatments of herbicides applied to wheat at the year before planting, and after wheat harvesting, the maize crop was planted. Treatments consisted of Chevaliar (idosulfosulfuron + mesosulfuron at 0.4L/ha, Apyrus (sulfosulfuron at 28, 42, 56 and 68 g/ha, megaton (chlorsulfuron at 20 g/ha, bromicide + topic ("bromoxynil + MCPA"+ clodinafop-propargyl at 1.5+0.8 L/ha, Total (sulfosulfuron +mesosulfuron at 45 g/ha, atlantis (idosulfuron + mesosulfuron at 1.5 L/ha and non-treated control. The second experiment was the same as the first one, but the rotational crop following wheat was mungbean. Grain yield, biological yield and harvest index of rotational crops were analyzed. According to the result, when mungbean and maize were planted in rotation with wheat, residues of megaton and apyrus at 56 and 68 g/ha, had the most negative impacts on their yields. So that yield reduction were 37%, 24% and 21% in mungbean and 36%, 10% and 17% in maize, respectively. Therefore, it is needed to pay more attention to the response of rotational crops following wheat to residues of sulfonylurea herbicides in soil.

  10. The Potential Research of Catch Crop in Decrease Soil Nitrate Under Greenhouse Vegetable Production

    Directory of Open Access Journals (Sweden)

    YIN Xing

    2015-06-01

    Full Text Available In order to clarify the impact of catch crops on greenhouse vegetable soil nitrate, explore the mechanism of barrier and controll soil nitrogen leaching losses in greenhouse, and provide a theoretical basis for control nitrogen leaching and prevention of groundwater pollution, this study selected the traditional greenhouse vegetable rotation system in North China plain as research subjects, using field situ remediation technologies on deep-root planting catch crops in the vegetable fallow period by sweet corn, Achyranthes bidentata and white Chrysanthemum. The results showed that: nitrogen content and nitrogen uptake of sweet corn and sweet corn with Achyranthes bidentata intercropping were the highest, respectively 20.11 t·hm-2, 19.62 t·hm-2 and 240.34 kg·hm-2, 287.56 kg·hm-2, significantly higher than white Chrysanthemum. The density of root length and root dry weight decreased with soil depth in the profiles, root length density was demonstrated in order as: intercropping sweet corn> sweet corn> white Chrysanthemum> intercropping Achyranthes bidentata blume. The reduction of NO3--N of sweet corn reached 907.87 kg·hm-2 in soil profile 0~200 cm, significantly higher than sweet corn and hyssop intercropping and white Chrysanthemums. In the interim period of vegetable crop rotation, planting catch crops could effectively reduce nitrate accumulation in the soil, control the soil profile nitrate leaching down.

  11. Salt Affected Soils Evaluation and Reclamative Approaches for Crop ...

    African Journals Online (AJOL)

    In this study, a field experiment was conducted on salt (saline) affected soils during the cropping seasons of 2004/2005 and 2005/2006 to evaluate the soil properties, determine their effects on two test crop performances, and its reclaim ability under three different approaches. Reclamative approaches were employed not ...

  12. Sustainability versus yield in agricultural soils under various crop production practices - a microbial perspective

    Science.gov (United States)

    Pereg, Lily; Aldorri, Sind; McMillan, Mary

    2017-04-01

    Wheat and cotton are important food and cash crops often grown in rotation on black, grey and red clay soil, in Australia. The common practice of nitrogen and phosphate fertilizers have been solely in the form of agrochemicals, however, a few growers have incorporated manure or composted plant material into the soil before planting. While the cotton yield in studied farms was comparable, we found that the use of such organic amendments significantly enhanced the pool of nitrogen cycling genes, suggesting increased potential of soil microbial function as well as increased microbial metabolic diversity and abundance. Therefore, the regular use of organic amendments contributed to improved soil sustainability.

  13. Potassium Fertilization for Long Term No-Till Crop Rotation in the Central-Southern Region of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Renan Costa Beber Vieira

    Full Text Available ABSTRACT Fertilization programs for annual crops in the state of Paraná, southern Brazil, are based on studies that focused on conventional tillage and were established more than 30 years ago. The primary purpose of this study was to assess potassium (K fertilization on long-term (>30 years no-tillage soybean, corn, wheat, and barley crops grown in rotation on Oxisols in the central-southern region of Paraná. A total of 47 experiments were carried out from 2008 to 2013, three of which addressed K calibration and the other 44, crop response to K fertilization. Critical K soil-test value and interpretation classes were established from the ratio between relative crop yield [RY = (yield without K/max yield × 100] and soil K levels. Winter cereals were found to be more demanding of K than were soybean and corn; also, the former governed critical K soil-test value for crop rotation: 0.23 cmolc dm-3 in the 0.00-0.20 m soil layer. Recommended fertilization rates for soils in the low and medium soil K levels were established by using the build-up approach for soil correction; and those for the high and very high soil K levels were established by removing K at harvest and assessing economic return in crop response experiments. The K rates calculated for the high yield classes exceeded those currently recommended for use in Paraná.

  14. Redistribution of phosphorus in soil through cover crop roots

    Directory of Open Access Journals (Sweden)

    Júlio C. Franchini

    2004-07-01

    Full Text Available The objective of this study was to evaluate if cover crops can absorb P from the upper layers and transport it in their roots to subsoil layers. Samples of an Oxisol were placed in PVC columns. Super phosphate fertilizer was applied to the 0-10 cm soil surface layers. The cover crops tested were: Avena strigosa, Avena sativa, Secale cereale, Pisum sativum subsp arvense, Pisum sativum, Vicia villosa, Vicia sativa, Lupinus angustifoliu, Lupinus albus, and Triticum aestivum. After a growth period of 80 days the cover crop shoots were cut off and the soil was divided into 10cm layers and the roots of each layer were washed out. The roots and shoots were analyzed separated for total P contribution to the soil. Considerable amount of P was present in the roots of cover crops. Vicia sativa contained more than 60% of total plant P in the roots. The contribution of Vicia sativa to soil P bellow the fertilized zone was about 7 kg ha-1. It thus appeared that there existed a possibility of P redistribution into the soil under no tillage by using cover crops in rotation with cash crops. Vicia sativa was the most efficient cover crop species as P carrier into the roots from superficial layer to lower layers.Em plantio direto o P acumula-se próximo da subsuperfície do solo. Devido a importância do P para o desenvolvimento do sistema radicular é benéfico a sua transferência da superfície para a subsuperfície do solo. O objetivo foi avaliar se as plantas de cobertura do solo podem absorver P na superfície e transferi-la através das raízes para a subsuperfície do solo. Amostras de um latossolo com baixo teor de P disponível foram transferidas para colunas de PVC. Superfosfato triplo foi aplicado na camada de 0 a 10 cm de profundidade. Avaliaram-se as seguintes plantas de cobertura: Avena strigosa, Avena sativa, Secale cereale, Pisum sativum subsp arvense, Pisum sativum, Vicia villosa, Vicia sativa, Lupinus angustifoliu, Lupinus albus, e Triticum

  15. Rotação de culturas no sistema plantio direto em Tibagi (PR: I - Sequestro de carbono no solo Crop rotation under no-tillage in Tibagi (Paraná State, Brazil: I - Soil carbon sequestration

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto

    2009-08-01

    Full Text Available Os manejos conservacionistas, como o sistema plantio direto (SPD, podem ser considerados uma atividade com potencial para sequestrar C no solo. Os objetivos deste trabalho foram quantificar os estoques de C no solo e, juntamente com a dedução das emissões de óxido nitroso (N2O, calcular o sequestro de C do solo sob SPD com diferentes tempos de implantação em duas sucessões de culturas. O experimento foi instalado na Fazenda Santa Branca, em Tibagi (PR, em um Latossolo Vermelho distroférrico de textura argilosa. Os tratamentos, dispostos em faixas não casualizadas com parcelas subdivididas, foram: plantio direto por 12 anos com sucessões milho/trigo e soja/trigo (PD12 M/T e PD12 S/T, respectivamente e por 22 anos (PD22 M/T e PD22 S/T, respectivamente. Os estoques de C no solo aumentaram com o tempo de implantação do SPD; o incremento no C do solo em 10 anos foi de 35 %, com uma taxa anual de acúmulo de 1,94 t ha-1 ano-1 . A simulação do estoque de C do solo com o uso do modelo unicompartimental mostrou que o elevado aporte de resíduos culturais e a rotação de culturas com uso de leguminosas reduziram a mineralização da matéria orgânica, o que favoreceu o acúmulo de C no solo. As emissões de N2O foram 25 % mais elevadas na sucessão milho/trigo, em relação à soja/trigo, e os diferentes tempos de SPD não promoveram aumento das emissões do N2O. O balanço entre a taxa de acúmulo de C e a emissão de óxido nitroso mostrou que o sistema apresentou saldo positivo no acúmulo de C no solo, o que significou o sequestro de CO2 de 6 t ha-1 ano-1 .Conservationist soil management systems such as no-tillage (NT can be considered activities with potential to increase soil carbon sequestration. The objective of this study was to quantify the soil C stocks and, along estimations of the nitrous oxide (N2O emissions, calculate the soil C sequestration under NT for different times of implantation in two crop successions. The

  16. Influence of Cultivation and Cropping Systems on Production of Soil Sediment on Agricultural Land

    Science.gov (United States)

    Poposka, Hristina; Mukaetov, Dusko

    2017-04-01

    Soil conservation practices and in particular soil tillage and crop cultivation patterns are becoming an important issue in agricultural production. Combating soil erosion and diminishing its negative impact on agricultural soil imposes as a matter of vital interest which gained even greater significance, in a pronounced negative impact of climate change. Main objective of the three-year research and monitoring program was to evaluate the effects of the easy-to-use adaptive measures on intensity of soil erosion, and soil properties considering to be of crucial importance on run-off velocity and sediment loss, like: soil structure stability, soil infiltration rate, soil organic matter and soil moisture conservation. The influence of soil tillage practices and different cropping systems on soil intensity and sediment loss, has been monitored on specially designed soil erosion fields with standard dimensions (20m length x 4m. width), on a sloppy terrain (12% slope). The experimental field is located on heavily textured Chromic cambisol on saprolite. This is the predominant soil type on the sloppy terrains in the country, usually under intensive agricultural activities Soil texture and physical characteristics were thoroughly investigated in order to determine the base soil conditions. The influence of downslope and contour ploughing on quantity of eroded sediment has been monitored in three consecutive years. The eroded sediment has been collected periodically on a weekly base and after intensive rainfalls. The intensity of soil erosion under most widespread cropping systems in the country, like: a) cereals as a monoculture, b) crop rotation, and c) perennial grass, was monitored as well. The collected sediment was examined in order to determine the quantity of soil organic matter and nutrient loss (nitrogen, phosphorus and potassium). Soil chemical properties are examined after each vegetative season in order to quantify the effect of tillage and cropping systems on

  17. Can the agricultural AquaCrop model simulate water use and yield of a poplar short-rotation coppice?

    Science.gov (United States)

    Horemans, Joanna A; Van Gaelen, Hanne; Raes, Dirk; Zenone, Terenzio; Ceulemans, Reinhart

    2017-06-01

    We calibrated and evaluated the agricultural model AquaCrop for the simulation of water use and yield of a short-rotation coppice (SRC) plantation with poplar (Populus) in East Flanders (Belgium) during the second and the third rotation (first 2 years only). Differences in crop development and growth during the course of the rotations were taken into account during the model calibration. Overall, the AquaCrop model showed good performance for the daily simulation of soil water content (R2 of 0.57-0.85), of green canopy cover (R2 > 0.87), of evapotranspiration (ET; R2 > 0.76), and of potential yield. The simulated, total yearly water use of the SRC ranged between 55% and 85% of the water use of a reference grass ecosystem calculated under the same environmental conditions. Crop transpiration was between 67% and 93% of total ET, with lower percentages in the first than in the second year of each rotation. The observed (dry mass) yield ranged from 6.61 to 14.76 Mg ha-1 yr-1. A yield gap of around 30% was observed between the second and the third rotation, as well as between simulated and observed yield during the third rotation. This could possibly be explained by the expansion of the understory (weed) layer; the relative cover of understory weeds was 22% in the third year of the third rotation. The agricultural AquaCrop model simulated total water use and potential yield of the operational SRC in a reliable way. As the plantation was extensively managed, potential effects of irrigation and/or fertilization on ET and on yield were not considered in this study.

  18. Site-Specific Compaction, Soil Physical Property, and Crop Yield Relationships for Claypan Soils

    Science.gov (United States)

    Soil compaction is a concern in crop production and environmental protection. Compaction is most often quantified in the field, albeit indirectly, using cone penetrometer measurements of soil strength. The objective of this research was to relate soil compaction to soil physical properties and crop ...

  19. Biofuels, bioenergy, and bioproducts from sustainable agricultural and forest crops: proceedings of the short rotation crops international conference

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Rob Mitchell; Jim, eds. Richardson

    2008-01-01

    The goal of this conference was to initiate and provide opportunities for an international forum on the science and application of producing both agricultural and forest crops for biofuels, bioenergy, and bioproducts. There is a substantial global need for development of such systems and technologies that can economically and sustainably produce short rotation crops...

  20. Effect of integrated forage rotation and manure management on yield, nutrient balance and soil organic matter

    Directory of Open Access Journals (Sweden)

    Cesare Tomasoni

    2011-03-01

    Full Text Available This paper reports results from a field experiment established in 1995 and still on going. It is located in Lodi, in the irrigated lowlands of Lombardy, Northern Italy. The experiment compares two rotations: the annual double cropping system, Italian ryegrass + silage maize (R1; and the 6-year rotation, in which three years of double crop Italian ryegrass + silage maize are followed by three years of alfalfa harvested for hay (R6 Each rotation have received two types of dairy manure: i farmyard manure (FYM; ii semi-liquid manure (SLM. The intent was to apply to each unit land area the excreta produced by the number of adult dairy cows sustained, in terms of net energy, by the forage produced in each rotation, corresponding to about 6 adult cows ha-1 for R1 and 4 adult cows ha-1 for R6. Manure was applied with (N1 or without (N0 an extra supply of mineral N in the form of urea. The objectives of this study were: i to assess whether the recycling of two types of manure in two forage rotation systems can sustain crop yields in the medium and long term without additional N fertilization; ii to evaluate the nutrient balance of these integrated forage rotations and manure management systems; iii to compare the effects of farmyard manure and semi-liquid manure on soil organic matter. The application of FYM, compared to SLM, increased yield of silage maize by 19% and alfalfa by 23%, while Italian ryegrass was not influenced by the manure treatment. Yet, silage maize produced 6% more in rotation R6 compared to rotation R1. The mineral nitrogen fertilization increased yield of Italian ryegrass by 11% and of silage maize by 10%. Alfalfa, not directly fertilized with mineral nitrogen, was not influenced by the nitrogen applied to the other crops in rotation. The application of FYM, compared to SLM, increased soil organic matter (SOM by +37 % for the rotation R1, and by +20% for the rotation R6. Conversely, no significant difference on SOM was observed

  1. Crop rotation and tillage system effects on reducing ryegrass ...

    African Journals Online (AJOL)

    rotation treatments under minimum-tillage differed significantly from the control. In the field wheat–medic–wheat–medic rotations under no-tillage out-performed all other rotations, followed by wheat–lupin–wheat–canola under minimumtillage.

  2. Sclerotium rolfsii dynamics in soil as affected by crop sequences

    NARCIS (Netherlands)

    Leoni, C.; Braak, ter C.J.F.; Gilsanz, J.C.; Dogliotti, S.; Rossing, W.A.H.; Bruggen, van A.H.C.

    2014-01-01

    Crop rotation has been used for the management of soilborne diseases for centuries, but has not often been planned based on scientific knowledge. Our objective was to generate information on Sclerotium rolfsii dynamics under different crop or intercrop activities, and design and test a research

  3. Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.

    Science.gov (United States)

    Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.

    2015-04-01

    Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.

  4. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality

    Science.gov (United States)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  5. [A study on the rotation of crops among Panax quinquefolium, Perilla frutescens and Coix lacryma-jobi].

    Science.gov (United States)

    Zhao, Yang-Jing; Wang, Yu-Ping; Yang, Jun-Shan; Liu, Dong

    2005-01-01

    To provide evidence for establishing an efficient method of growing Panax quinquefolium by rotation of crops. Four-year old P. quinquefolium was cultivated in water and soil cultures. Biological assays were conducted with the aqueous extracts of P. quinquefolius, Fructus Perillae and roots of Coix lacryma-jobi. P. quinquefolium was cultivated in the soil where purple Perilla frutesens and C. lacryma-jobi were grown previously. The effects of rotation were determined. The stems, leaves and fibrous roots of Panax quinquefolium contained allelopathic substances. When the concentration of the allelopathic substances exceeded 1g per kg soil, P. quinquefolius could not grow. On the other hand, when the concentration of allelopathic substances fell below 0.2 g per kg soil, the rate of seedling growth was decreased by 25%. When P. quinquefolius was cultivated in the soil in which purple Perilla frutesens had previously grown, or in the soil supplemented with Fructus Perillae, the rates of seedling growth and the yield were raised by 26.8% and 11.5% tively, in comparison with the controls. Rotation of Panax quinquefolium and Perilla frutesens was shown to be a good way for the cultivation of the former. During the growing process, application of Fructus Perillae to the soil could further enhance the growth and of Panax quinquefolium.

  6. Spatial distribution and controlling factors of heavy metals contents in paddy soil and crop grains of rice-wheat cropping system along highway in East China.

    Science.gov (United States)

    Feng, Jinfei; Zhao, Jian; Bian, Xinmin; Zhang, Weijian

    2012-10-01

    There is consensus concerning the heavy metal pollution from traffic emission on roadside agricultural land. However, few efforts have been paid on examining the contamination characteristics of heavy metals in roadside paddy-upland rotation field, and especially in combination with detailed quantitative analysis. In this study, we investigated the concentrations of heavy metals (Pb, Cd, Cr and Zn) in soil and crop grains of the rice-wheat cropping system along a major highway in East China in 2008 and analyzed the spatial distribution characteristics of heavy metals and their influencing factors with GIS and Classification and Regression Trees (CART). Significantly elevated levels of heavy metals in soil, rice and wheat grains indicated the heavy metals contamination of traffic emission in roadside rice-wheat rotation field. The contamination levels of Cd, Cr and Zn in wheat grain were higher than rice grain, while that of Pb showed an opposite trend. Obvious dissimilarities in the spatial distributions of heavy metals contents were found between in the soil, rice and wheat grains, indicating that the heavy metals contents in the roadside crop grains were not only determined by the concentrations of heavy metals in the paddy soil. Results of CART analysis showed that the spatial variation of the heavy metals contents in crop grains was mainly affected by the soil organic matter or soil pH, followed by the distance from highway and wind direction. Our findings have important implications for the environmental assessment and crop planning for food security along the highway.

  7. Evolution of Soil Biochemical Parameters in Rainfed Crops: Effect of Organic and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Marta M. Moreno

    2012-01-01

    Full Text Available In organic farming, crop fertilization is largely based on the decomposition of organic matter and biological fixation of nutrients. It is therefore necessary to develop studies conducted to know and understand the soil biological processes for the natural nutrient supplies. The effect of three fertilizer managements (chemical with synthetic fertilizers, organic with 2500 kg compost ha−1, and no fertilizer in a rainfed crop rotation (durum wheat-fallow-barley-vetch as green manure on different soil biochemical parameters in semi-arid conditions was investigated. Soil organic matter, microbial biomass carbon, organic matter mineralization, CO2 production-to-ATP ratio, and NO3-N content were analysed. Fertilization was only applied to cereals. The results showed the scarce effect of the organic fertilization on soil quality, which resulted more dependent on weather conditions. Only soil organic matter and NO3-N were affected by fertilization (significantly higher in the inorganic treatment, 1.28 g 100 g−1 and 17.3 ppm, resp.. Soil organic matter was maintained throughout the study period by the inclusion of a legume in the cropping system and the burying of crop residues. In fallow, soil microbial biomass carbon increased considerably (816 ng g−1, and NO3-N at the end of this period was around 35 ppm, equivalent to 100 kg N ha−1.

  8. [Influence of continuous cropping on growth of Artemisia annua and bacterial communities in soil].

    Science.gov (United States)

    Li, Qian; Yuan, Ling; Yang, Shui-Ping; Cheng, Yu-Yuan; Cui, Guang-Lin; Huang, Jian-Guo

    2016-05-01

    In this study, several types of Artemisia annua in soil, including the soil which had not been planted, or planted for one year, or continuously planted for three or five years were collected, in order to study the influences of continuous cropping on the growth of A. annua, content of artemisinin, available nutrient of soil, and bacterial community structure through adopting routine analysis and Illumina MiSeq high-throughput sequencing. The results showed that continuous cropping inhibited significantly the growth of A. annua and reduced leaf biomass, content and yield of artemisinin, with the maximum decreasing amplitude of 30.20%, 7.70% and 35.58% respectively. The content of soil organic matter, available nitrogen, available phosphorus and 16S rRNA sequence number were increased to different extents after continuous cropping of A. annua. According to the results of high-throughput sequencing, 634-812 types of common bacteria belonged to 21 categories were planted in different soil of A. annua with different planting years, which represented that the distribution distance of the point of bacterial community with different years among coordinate system of principal component was relative distant, and community structure had significant changes (Preproduction of soil bacteria, and influenced the supply and transform of soil nutrient, leading to a poor growth and resulting in reduction of artemisinin content and yield. Therefore, it is necessary to advocate crop rotation in the process of planting A. annua. Copyright© by the Chinese Pharmaceutical Association.

  9. Impact of diverse soil microbial communities on crop residues decomposition

    Science.gov (United States)

    Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard

    2017-04-01

    Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N

  10. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  11. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    Science.gov (United States)

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  12. Long-term Tillage and Nitrogen Fertilization Effects on Soil Properties and Crop Yields

    OpenAIRE

    Muhajir Utomo; Irwan Sukri Banuwa; Henrie Buchari; Yunita Anggraini; Berthiria

    2013-01-01

    The impact of agricultural intensification on soil degradation now is occurring in tropical countries. The objective of this study was to determine the effect of long-term tillage and N fertilization on soil properties and crop yields in corn-soybean rotation. This long-term study which initiated since 1987 was carried out on a Typic Fragiudult soil at Politeknik Negeri Lampung, Sumatra (105o13’45.5"-105o13’48.0"E, 05o21’19.6"-05o21’19.7"S) in 2010 and 2011. A factoria...

  13. Biowaste compost effects on productive and qualitative characteristics of some field crops and on soil fertility

    Directory of Open Access Journals (Sweden)

    Giovanni Fecondo

    2015-06-01

    Full Text Available Biowaste compost exploitation is a way of recovering agricultural soil fertility that in these last decades decreased up to a desertification limit. In order to test compost efficacy on crop yield and soil fertility, in the period 2011-2013 at COTIR experimental farm, a trial comparing different amounts of compost on two crop rotations was carried out. Crop rotations tested were durum wheat-sunflower-durum wheat and tomato-durum wheat-pepper. Results showed that the use of 40 t ha–1 of compost increased wheat grain yield and protein content if compared to control and mineral fertilised treatment. Compost application at 40 t ha–1 increased also yield of pepper in the first two harvest times, while during the third harvest, which included green and red berries, (the yield was statistically different only if compared to control treatment. Moreover, compost improved soil fertility both in terms of organic matter and main nutritional elements, while a negative aspect of its use was the increase of soil electric conductivity, although no negative effect on crops yield were observed.

  14. Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Buhler, D.D. [USDA-Agricultural Research Service National Soil Tilth Lab., Ames, IA (United States); Netzer, D.A.; Riemenschneider, D.E. [USDA-Forest Service, Forestry Sciences Lab., Rhinelander, WI (United States); Hartzler, R.G. [Iowa State Univ., Ames, IA (United States). Dept. of Agrimony

    1998-12-31

    Weed management is a key element of any crop production system. Weeds are a particular problem in the production of short rotation woody and perennial herbaceous biomass crops due to the shortage of registered herbicides and integrated weed management systems. Herbicides will be an important component of weed management of biomass crops. However, producers should take a broader view of weeds and incorporate all available weed management tactics in these production systems. In both short rotation poplar and herbaceous perennial crops, weed control during the establishment period is most critical. New plantings of these species grow very slowly and do not compete well with weeds until a canopy develops. Effective weed control can double the growth of short rotation poplar crops and affect the variability of the resulting stand. In crops like switchgrass, uncontrolled weeds during establishment can result in stand failure. Cultural practices such as site preparation, using weed-free seed, fallowing, selecting the proper planting dates, companion crops and controlling weeds in previous crops must be combined with herbicides to develop integrated management systems. Weeds may also cause problems in established stands through competition with the biomass crop and by contaminating the product. Effective and economical weed management systems will be essential for the development of short rotation woody and herbaceous perennial biomass crop production systems. (Author)

  15. Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2014-01-01

    in Denmark, differing in soil and climate, and representative of the selected production systems. The CO2 effects were modelled using projected CO2 concentrations for the A1B emission scenario. Crop rotations were irrigated (sandy soil) and unirrigated (sandy loam soil), and all included systems...... rather than single crops for impact assessments. Potato and sugar beet in arable farming and grain maize in pig farming contributed most to the productivity increase in the future scenarios. The highest productivity was obtained in the arable system on the sandy loam soil, with an increase of 20......% on average in 2080 with respect to the baseline. Irrigation and fertilization rates would need to be increased in the future to achieve optimum yields. Growing catch crops reduces N leaching, but current catch crop management might not be sufficient to control the potential increase of leaching and more...

  16. Effect of organic and conventional crop rotation, fertilization, and crop protection practices on metal contents in wheat (Triticum aestivum).

    Science.gov (United States)

    Cooper, Julia; Sanderson, Roy; Cakmak, Ismail; Ozturk, Levent; Shotton, Peter; Carmichael, Andrew; Haghighi, Reza Sadrabadi; Tetard-Jones, Catherine; Volakakis, Nikos; Eyre, Mick; Leifert, Carlo

    2011-05-11

    The effects of organic versus conventional crop management practices (crop rotation, crop protection, and fertility management strategies) on wheat yields and grain metal (Al, Cd, Cu, Ni, Pb, and Zn) concentrations were investigated in a long-term field trial. The interactions between crop management practices and the season that the crop was grown were investigated using univariate and redundancy analysis approaches. Grain yields were highest where conventional fertility management and crop protection practices were used, but growing wheat after a previous crop of grass/clover was shown to partially compensate for yield reductions due to the use of organic fertility management. All metals except for Pb were significantly affected by crop management practices and the year that the wheat was grown. Grain Cd and Cu levels were higher on average when conventional fertility management practices were used. Al and Cu were higher on average when conventional crop protection practices were used. The results demonstrate that there is potential to manage metal concentrations in the diet by adopting specific crop management practices shown to affect crop uptake of metals.

  17. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil.

    Science.gov (United States)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio

    2013-04-01

    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  18. Relating soil biochemistry to sustainable crop production

    Science.gov (United States)

    Amino acids, amino sugars, carbohydrates, phenols, and fatty acids together comprise appreciable proportions of soil organic matter (SOM). Their cycling contribute to soil processes, including nitrogen availability, carbon sequestration and aggregation. For example, soil accumulation of phenols has ...

  19. Dissolved Organic Carbon and Nitrogen in Andisol for Six Crop Rotations with Different Soil Management Intensity Carbono y Nitrógeno Orgánicos Disueltos en un Andisol Sometido a Seis Rotaciones de Cultivos con Diferente Intensidad en el Manejo del Suelo

    Directory of Open Access Journals (Sweden)

    Pablo Undurraga D

    2009-09-01

    Full Text Available Soil organic matter (OM content is a quality indicator, but is an inadequate indicator in the short-term because these changes take place slowly, so dissolved organic components have emerged as an alternative. In volcanic soil subjected to different crop rotations with distinct land use intensity, dissolved organic C and N (DOC and DON were determined as well as their relationship with total C and N contents in the soil, considering the effects of crop rotation, fertilization level, and soil depth. In humid samples of Humic Haploxerands collected at four depths up to 40 cm, DOC and DON contents were determined by extraction with K2SO4 and filtered. Results indicated interaction between the studied factors, DOC fluctuated between 67.8 and 151.7 mg kg-1 with the highest value with intensive management in rotations that included corn (Zea mays L. associated with a higher fertilization. DON fluctuated between 4.62 and 37.4 mg kg-1 with the highest value in non-intensive rotations that included prairie. With respect to total C, DOC reached 0.40% with intensive management and the lowest value in non-intensive management. DON showed values between 0.13 and 0.68% with respect to total N with intensive and non-intensive management, respectively. Tillage management affected DOC and DON contents depending on the fertilization level and the depth at which it was determined, and were also affected by the crop included in the rotation, thus making these parameters good indicators to evaluate the effects of agronomic management in the short-term.El contenido de materia orgánica (OM del suelo es un indicador de su calidad, sin embargo los cambios se producen lentamente, no siendo un indicador adecuado en el corto plazo, surgiendo los componentes orgánicos disueltos como una alternativa. En un suelo volcánico sometido a diferentes rotaciones de cultivos con distinta intensidad en el uso de suelo, se determinó el C y N orgánicos disueltos (DOC y DON y su

  20. Tillage and cover cropping effects on soil properties and crop production in Illinois

    Science.gov (United States)

    Cover crops (CCs) have been heralded for their potential to improve soil properties, retain nutrients in the field, and increase subsequent crop yields yet support for these claims within the state of Illinois remains limited. We assessed the effects of integrating five sets of CCs into a corn-soybe...

  1. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    OpenAIRE

    Ioan GRAD; Camelia MĂNESCU; Teodor MATEOC; Nicoleta MATEOC-SÎRB

    2014-01-01

    The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc..) they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydr...

  2. Cadmium in fertilizers, soil, crops and foods - the Swedish situation

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, S.; Landner, L. [Swedish Environmental Research Group (MFG)

    1998-03-01

    The aim of this report is to review available information on the fluxes of cadmium (Cd) to agricultural soils and crops in Sweden from phosphorus fertilizers (P-fertilizer) and other sources, and to discuss how the content of Cd in soil, crops and human food may be influenced by the specific environmental conditions in Sweden, as well as by the agricultural practices used in the country 62 refs, 15 figs, 18 tabs. With 5 page summary in Swedish

  3. Modelling of soil salinity and halophyte crop production

    NARCIS (Netherlands)

    Vermue, E.; Metselaar, K.; Zee, van der S.E.A.T.M.

    2013-01-01

    In crop modelling the soil, plant and atmosphere system is regarded as a continuum with regard to root water uptake and transpiration. Crop production, often assumed to be linearly related with transpiration, depends on several factors, including water and nutrient availability and salinity. The

  4. Soil properties and not inputs control carbon, nitrogen, phosphorus ratios in cropped soils in the long-term

    Science.gov (United States)

    Frossard, E.; Buchmann, N.; Bünemann, E. K.; Kiba, D. I.; Lompo, F.; Oberson, A.; Tamburini, F.; Traoré, O. Y. A.

    2015-09-01

    Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies explicitly considered the effects of agricultural management practices on soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long-term. Thus, we analysed the C, N and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK cropping system trial (Switzerland). In each of these trials, there was a large range of C, N and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and

  5. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  6. Preceding crop affects grain cadmium and zinc of wheat grown in saline soils of central Iran.

    Science.gov (United States)

    Khoshgoftarmanesh, Amir H; Chaney, Rufus L

    2007-01-01

    Enhanced Cd concentrations in wheat (Triticum aestivum L.) grain produced on saline soils of central Iran have been recently reported. Because wheat bread is a major dietary component for the Iranian people, practical approaches to decrease Cd concentration in wheat grain were investigated. This study investigated the influence of sunflower-wheat vs. cotton-wheat rotations on extractable Cd and on Cd uptake by wheat in these salt-affected soils. Two fields with different levels of Cd contamination (1.5 and 3.2 mg total Cd kg(-1) dry soil) were cropped with different rotations (cotton-wheat and sunflower-wheat) in Qom province, central Iran. Seeds of cotton (Gossypium L.) or sunflower (Helianthus annuus L. cv. Record) were planted in plots. After harvesting of the plants and removal of crop residues, wheat (cv. Rushan) was seeded in all plots. For both studied soils, the concentrations of Cd extracted by 0.04 M EDTA and 1 M CaCl(2) were significantly (P sunflower. Accordingly, the total amount of Cd in sunflower shoot was significantly (P sunflower were significantly different; wheat shoots after cotton accumulated more Cd (two to four times) than after sunflower. Wheat grain Cd concentration after sunflower was much lower (more than seven times) than after cotton. The results of this study showed that sunflower in rotation with wheat in salt-affected soils of central Iran significantly reduced the risk of Cd transfer to wheat grain.

  7. Effects of Stubble Management on Soil Fertility and Crop Yield of Rainfed Area in Western Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    G. B. Huang

    2012-01-01

    Full Text Available The combination of continuous cereal cropping, tillage and stubble removal reduces soil fertility and increases soil erosion on sloping land. The objective of the present study was to assessment soil fertility changes under stubble removal and stubble retention in the Loess Plateau where soil is prone to severe erosion. It was indicated that soil N increased a lot for and two stubble retention treatments had the higher N balance at the end of two rotations. Soil K balance performed that soil K was in deficient for all treatments and two stubble retention treatments had lower deficit K. The treatments with stubble retention produced higher grain yields than the stubble removal treatments. It was concluded that stubble retention should be conducted to increase crops productivity, improve soil fertility as well as agriculture sustainability in the Loess plateau, China.

  8. Understanding soil organic matter dynamics to ecologically increase crop yields

    Science.gov (United States)

    Koorneef, Guusje; Zandbergen, Jelmer; Pulleman, Mirjam; Comans, Rob

    2017-04-01

    There is an increasing societal interest to develop farming systems that produce high yields while maintaining or even improving ecosystem functioning. Organic farming is such an ecological-intensive system with generally lower yields but better ecosystem functioning than conventional farming systems. In this project we therefore study how we can accelerate the development of soils in organically managed farming systems to improve yield. We specifically aim to unravel how the quality and quantity of Soil Organic Matter (SOM) drives crop yields. We hypothesize that a higher quality and quantity of different SOM pools leads to enhanced ecosystem functioning (e.g. nutrient availability, water provisioning) through mutual links between soil biota with their physico-chemical environment. To test our hypothesis we will link spatio-temporal variation in crop quality (e.g. leaf-N content) and quantity to variation in biotic and abiotic soil properties in an on-going long-term experiment at the Vredepeel, the Netherlands. We will specifically focus on the possible mechanisms via which SOM dynamics can improve soil functions to achieve high crop yields. We will identify the different SOM pools (e.g. SOM in macro- and microaggregates) and SOM dynamics and link that to soil functioning (e.g. nutrient cycling) and crop yield. Understanding the underlying mechanisms via which SOM influences soil functioning and crop yield will provide tools to accelerate the transition towards a sustainable intensification of farming systems.

  9. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Directory of Open Access Journals (Sweden)

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  10. Reduced soil cultivation and organic fertilization on organic farms: effects on crop yield and soil physical traits

    Science.gov (United States)

    Surböck, Andreas; Gollner, Gabriele; Klik, Andreas; Freyer, Bernhard; Friedel, Jürgen K.

    2017-04-01

    A continuous investment in soil fertility is necessary to achieve sustainable yields in organic arable farming. Crucial factors here besides the crop rotation are organic fertilization and the soil tillage system. On this topic, an operational group (Project BIOBO*) was established in the frame of an European Innovation Partnership in 2016 consisting of organic farmers, consultants and scientists in the farming region of eastern Austria. The aim of this group is the development and testing of innovative, reduced soil cultivation, green manure and organic fertilization systems under on-farm and on-station conditions to facilitate the sharing and transfer of experience and knowledge within and outside the group. Possibilities for optimization of the farm-specific reduced soil tillage system in combination with green manuring are being studied in field trials on six organic farms. The aim is to determine, how these measures contribute to an increase in soil organic matter contents, yields and income, to an improved nitrogen and nutrient supply to the crops, as well as support soil fertility in general. Within a long-term monitoring project (MUBIL), the effects of different organic fertilization systems on plant and soil traits have been investigated since 2003, when the farm was converted to organic management. The examined organic fertilization systems, i.e. four treatments representing stockless and livestock keeping systems, differ in lucerne management and the supply of organic manure (communal compost, farmyard manure, digestate from a biogas plant). Previous results of this on-station experiment have shown an improvement of some soil properties, especially soil physical properties, since 2003 in all fertilization systems and without differences between them. The infiltration rate of rainwater has increased because of higher hydraulic conductivity. The aggregate stability has shown also positive trends, which reduces the susceptibility to soil erosion by wind and

  11. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    Science.gov (United States)

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  12. Effects of crop rotation on weed density, biomass and yield of wheat (Titicum aestivum L.)

    OpenAIRE

    A. Zareafeizabadi; H.R. Rostamzadeh

    2016-01-01

    In order to study the weed populations in wheat, under different crop rotations an experiment was carried out at Agricultural Research Station of Jolgeh Rokh, Iran. During growing season this project was done in five years, based on Randomized Complete Bloch Design with three replications, on Crop rotations included: wheat monoculture for the whole period (WWWWW), wheat- wheat- wheat- canola- wheat (WWWCW), wheat- sugar beet- wheat-sugar beet- wheat (WSWSW), wheat- potato- wheat- potato- whea...

  13. Ipomea asarifolia (Desr), A Potential Cover Crop for Soil Fertility ...

    African Journals Online (AJOL)

    *1A.A. Abdullahi, 2S.A. Ibrahim, 1S. Yusuf, 1M. Audu, 3N. Abdu, 1S.S. Noma and 4H. Shuaibu. 1Department of Soil Science and Agricultural Engineering, Usmanu Danfodiyo University, Sokoto, Nigeria. 2Crop Production Programme, Abubakar Tafawa Balewa University, Bauchi, Nigeria. 3Soil Sceince Department, Ahmadu ...

  14. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    Optimal use of management systems including tillage and winter cover crops is recommended to improve soil quality and sustain agricultural production. The effects on soil properties of three tillage systems (as main plot) including direct drilling (D), harrowing to a depth of 8 to 10 cm (H...

  15. Effects of crop management, soil type, and climate on N2O emissions from Austrian Soils

    Science.gov (United States)

    Zechmeister-Boltenstern, Sophie; Sigmund, Elisabeth; Kasper, Martina; Kitzler, Barbara; Haas, Edwin; Wandl, Michael; Strauss, Peter; Poetzelsberger, Elisabeth; Dersch, Georg; Winiwarter, Wilfried; Amon, Barbara

    2015-04-01

    Within the project FarmClim ("Farming for a better climate") we assessed recent N2O emissions from two selected regions in Austria. Our aim was to deepen the understanding of Austrian N2O fluxes regarding region specific properties. Currently, N2O emissions are estimated with the IPCC default emission factor which only considers the amount of N-input as an influencing factor for N2O emissions. We evaluated the IPCC default emission factor for its validity under spatially distinct environmental conditions. For this two regions for modeling with LandscapeDNDC have been identified in this project. The benefit of using LandscapeDNDC is the detailed illustration of microbial processes in the soil. Required input data to run the model included daily climate data, vegetation properties, soil characteristics and land management. The analysis of present agricultural practices was basis for assessing the hot spots and hot moments of nitrogen emissions on a regional scale. During our work with LandscapeDNDC we were able to adapt specific model algorithms to Austrian agricultural conditions. The model revealed a strong dependency of N2O emissions on soil type. We could estimate how strongly soil texture affects N2O emissions. Based on detailed soil maps with high spatial resolution we calculated region specific contribution to N2O emissions. Accordingly we differentiated regions with deviating gas fluxes compared to the predictions by the IPCC inventory methodology. Taking region specific management practices into account (tillage, irrigation, residuals) calculation of crop rotation (fallow, catch crop, winter wheat, barley, winter barley, sugar beet, corn, potato, onion and rapeseed) resulted in N2O emissions differing by a factor of 30 depending on preceding crop and climate. A maximum of 2% of N fertilizer input was emitted as N2O. Residual N in the soil was a major factor stimulating N2O emissions. Interannual variability was affected by varying N-deposition even in case

  16. Medium-term effect of perennial energy crops on soil organic carbon storage

    Directory of Open Access Journals (Sweden)

    Enrico Ceotto

    2011-11-01

    Full Text Available The scope of this study was to evaluate the effect of perennial energy crops on soil organic carbon (SOC storage. A field experiment was undertaken in 2002 at Anzola dell’Emilia in the lower Po Valley, Northern Italy. Five perennial energy crops were established on a land area which had been previously cultivated with arable crops for at least 20 years. The compared crops are: the herbaceous perennials giant reed and miscanthus, and the woody species poplar, willow and black locust, managed as short rotation coppice (SRC. SOC was measured in 2009, seven years after the start of the experiment, on an upper soil layer of 0.0-0.2 m and a lower soil layer of 0.2-0.4 m. The study aimed to compare the SOC storage of energy crops with alternative land use. Therefore, two adjacent areas were sampled in the same soil layers: i arable land in steady state, cultivated with rainfed annual crops; ii natural meadow established at the start of the experiment. The conversion of arable land into perennial energy crops resulted in SOC storage, in the upper soil layer (0.0-0.2 m ranging from 1150 to 1950 kg C ha-1 year-1 during the 7-year period. No significant differences were detected in SOC among crop species. We found no relationship between the harvested dry matter and the SOC storage. The conversion of arable land into perennial energy crops provides a substantial SOC sequestration benefit even when the hidden C cost of N industrial fertilizers is taken into account. While the SOC increased, the total N content in the soil remained fairly constant. This is probably due to the low rate of nitrogen applied to the perennial crops. However, our data are preliminary and the number of years in which the SOC continues to increase needs to be quantified, especially for the herbaceous species giant reed and miscanthus, with a supposedly long duration of the useful cropping cycle of 20 years or longer.

  17. Use of Brassica and other disease-suppressive rotation crops in potato production systems

    Science.gov (United States)

    Soilborne diseases of potato can be persistent, difficult-to-control problems in potato production. The use of disease-suppressive crops, as rotation, cover, or green manure crops, can potentially reduce multiple soilborne potato diseases. Brassica spp. and related plants suppress diseases through m...

  18. Update on the use of disease-suppressive crops in potato rotations

    Science.gov (United States)

    Numerous soilborne diseases can be persistent, difficult-to-control problems in potato production. The use of disease-suppressive crops, as rotation, cover, or green manure crops, can potentially reduce multiple soilborne potato diseases. Brassica spp. and related plants suppress diseases through mu...

  19. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  20. ECOGEN - Soil ecological and economic evaluation of genetically modified crops

    DEFF Research Database (Denmark)

    Krogh, P. H

    2007-01-01

    ECOGEN is a project funded by the EU under the 6th Framework Programme. Based on results obtained from soil biodiversity studies and economic evaluations, ECOGEN assessed the impact on soil organisms of different agricultural management practices, including those involving genetically modified (GM......) crops. Soil organisms form a complex ecosystem that is crucial to the productivity of agricultural soils. ECOGEN evaluated the diversity and function of soil organisms in various agricultural soils using selected parameters. Soils from fields where GM maize was grown were compared to soils from fields...... commercialised in the US in 1998 and has been planted on millions of hectares worldwide since then. In the ecological assessment, the effects of Bt maize were assessed at three levels of increasing complexity: Laboratory tests on single species: the main groups of soil organisms covered were bacteria, protozoa...

  1. Evaluation of Crops Sensitivity to Atrazine Soil Residual

    Directory of Open Access Journals (Sweden)

    E Izadi

    2012-02-01

    Full Text Available Abstract In order to study the sensitivity of 9 crops to atrazine soil residual, two separate experiments were conducted in field and greenhouse conditions. First experiment was conducted in a field with treated soil by atrazine based on split plot and the results evaluated in greenhouse conditions. Treatments in the field experiment included two organic manure application rates (0 and 50 t/ha as main plots and 2 atrazine application rates (2 and 4 kg/ha atrazine a.i. as sob plots. After corn harvesting soil was sampled at 0-15 cm surface layer in each plots in 15 points, after mixing the samples. Wheat, barley, sugar beet, pea, lens and colza planted in pots at greenhouse. Second experiment conducted in greenhouse conditions for evaluation of atrazine soil residual in completely randomized design. Treatments included atrazine soil residual concentrations (0, 0.2, 0.5, 1, 5, 10 and 15 mg/kg soil and crops included wheat, barley, sugar beet, pea, lens, rape, bean and tomato. Results showed that atrazine residue had no effect on crops growth in field experiment treated with atrazine. It seems that atrazine residue in filed soil is lower that its damage threshold for crops or maybe for its fast removal in field than in control conditions. But in bioassay experiment (greenhouse experiment crops response to atrazine residues were different. Results showed that onion and pea were most susceptible ant tolerant crops between studied species and based of ED50 parameter the other crops tolerance to total residue ranked as: pea< bean< lentil< sugar beet< tomato< barley< wheat< rape< onion. Keywords: Atrazine residue, Pea, Bean, Lentil, Sugar beet, Barley, Wheat, Rape, Tomato

  2. Soil properties, crop production and greenhouse gas emissions in organic and conventional cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen E; Porter, John Roy

    2010-01-01

    : total soil organic carbon (SOC), total N, microbial biomass N (MBN), potentially mineralizable N (PMN), and levels of potential ammonium oxidation (PAO) and denitrifying enzyme activity (DEA). In situ measurements of soil heterotrophic carbon dioxide (CO2) respiration and nitrous oxide emissions were...... crops, respectively. Nevertheless, SOC levels in 2008 were similar across systems. The cumulative soil respiration for the period February to August 2008 ranged between 2 and 3 t CO2–C ha−1 and was correlated (r = 0.95) with average C inputs. In the organic cropping systems, pig slurry application...... and inclusion of catch crops generally increased soil respiration, PMN and PAO. At field capacity, relative gas diffusivity at 0–5 cm depth was >50% higher in the organic than the inorganic fertilizer-based system (P

  3. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    Science.gov (United States)

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Energy product options for Eucalyptus species grown as short rotation woody crops

    Science.gov (United States)

    Donald Rockwood; Alan W. Rudie; Sally A. Ralph; J.Y. Zhu; Jerrold E. Winandy

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida...

  5. Practicality of Biochar Additions to Enhance Soil and Crop Productivity

    Directory of Open Access Journals (Sweden)

    David M. Filiberto

    2013-10-01

    Full Text Available The benefits of biochar to soils for agricultural purposes are numerous. Biochar may be added to soils with the intention to improve the soil, displace an amount of conventional fossil fuel based fertilizers, and sequester carbon. However, the variable application rates, uncertain feedstock effects, and initial soil state provide a wide range of cost for marginally improved yield from biochar additions, which is often economically impracticable. The need for further clarity on optimizing biochar application to various crop yields is necessary if it is to gain widespread acceptance as a soil amendment.

  6. Crop residue decomposition, residual soil organic matter and nitrogen mineralization in arable soils with contrasting textures

    NARCIS (Netherlands)

    Matus, F.J.

    1994-01-01

    To evaluate the significance of cropping, soil texture and soil structure for the decomposition of 14C- and 15N-labelled crop residues, a study was conducted in a sand and a

  7. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations.

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir

    Full Text Available A field study was conducted to compare the formationand bacterial communities of rhizosheaths of wheat grown under wheat-cotton and wheat-rice rotation and to study the effects of bacterial inoculation on plant growth. Inoculation of Azospirillum sp. WS-1 and Bacillus sp. T-34 to wheat plants increased root length, root and shoot dry weight and dry weight of rhizosheathsoil when compared to non-inoculated control plants, and under both crop rotations. Comparing both crop rotations, root length, root and shoot dry weight and dry weight of soil attached with roots were higher under wheat-cotton rotation. Organic acids (citric acid, malic acid, acetic acid and oxalic acid were detected in rhizosheaths from both rotations, with malic acid being most abundant with 24.8±2 and 21.3±1.5 μg g(-1 dry soil in wheat-cotton and wheat-rice rotation, respectively. Two sugars (sucrose, glucose were detected in wheat rhizosheath under both rotations, with highest concentrations of sucrose (4.08±0.5 μg g(-1 and 7.36±1.0 μg g(-1 and glucose (3.12±0.5 μg g(-1 and 3.01± μg g(-1 being detected in rhizosheaths of non-inoculated control plants under both rotations. Diversity of rhizosheath-associated bacteria was evaluated by cultivation, as well as by 454-pyrosequencing of PCR-tagged 16S rRNA gene amplicons. A total of 14 and 12 bacterial isolates predominantly belonging to the genera Arthrobacter, Azospirillum, Bacillus, Enterobacter and Pseudomonaswere obtained from the rhizosheath of wheat grown under wheat-cotton and wheat-rice rotation, respectively. Analysis of pyrosequencing data revealed Proteobacteria, Bacteriodetes and Verrucomicrobia as the most abundant phyla in wheat-rice rotation, whereas Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, Planctomycetes and Cyanobacteria were predominant in wheat-cotton rotation. From a total of 46,971 sequences, 10.9% showed ≥97% similarity with 16S rRNA genes of 32 genera previously shown to include

  8. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment.

  9. Propriedades físicas do solo sob preparo convencional e semeadura direta em rotação e sucessão de culturas, comparadas às do campo nativo Physical soil properties of conventional tillage and no-tillage, in crop rotation and succession, compared with natural pasture

    Directory of Open Access Journals (Sweden)

    I. Bertol

    2004-02-01

    sustentabilidade da semeadura direta no que se refere à estabilidade dos agregados em água. Os sistemas de cultivo não influenciaram as propriedades físicas do solo.In soils with naturally favorable characteristics for cultivation, conventional tillage degrades the physical soil properties, since this management system causes the rupture of aggregates, soil compaction, and eliminates soil cover. No-tillage, on the other hand, maintains soil cover and improves physical properties, but consolidates the surface layer. Our study was conducted on a Haplumbrept soil, from May 1995 to April 2001. Five soil tillage treatments were used: conventional tillage crop rotation (CTR, conventional tillage crop succession (CTS, no-tillage crop rotation (NTR, no-tillage crop succession (NTS, and natural pasture (NP, in four replications each. The crop sequences were bean/fallow/maize/fallow/soybean/fallow in CTR, maize/fallow/maize/fallow/maize/fallow in CTS, bean/oat/maize/turnip/soybean/vetch in NTR and maize/vetch/maize/vetch/maize/vetch in NTS. Soil density, macroporosity, microporosity, total porosity, organic carbon, and water aggregate stability (MWD were evaluated in April 2001 for the soil layers 0-2.5, 2.5-5, 5-10, 10-15, 15-20, and 20-30 cm. In the 0-10 cm layer, soil density was higher in no-tillage than conventional tillage and natural pasture, while macroporosity, total porosity, and the macroporosity/total porosity relation was higher in conventional tillage in the mean for cropping systems, in this layer. Organic carbon, MWD, and sensibility index for MWD means of layers and tillage systems were higher in no-tillage and natural pasture than in conventional tillage.

  10. The Impact of Multifunctional Crop Rotation on the Yield of Milk Thistle Fruits in the Years 2012 – 2015

    Directory of Open Access Journals (Sweden)

    Miroslav HABÁN

    2016-12-01

    Full Text Available Milk thistle can be an annual, rarely a biennial medicinal plant. Polyfactorial field experiment was established during the vegetation period of the years 2012–2015. Three evaluated factors were as follows: crop residues – intercrop – fertilization. Milk thistle was integrated to four crop rotation design with following order of crops: 1. common pea 2. winter wheat 3. milk thistle 4. maize. Milk thistle was subjected to the experimental treatments as follows: 1. K – straw of forecrop removed from the field, R – straw incorporated into soil, 2. M – white mustard as a freezing-out intercrop, B – no intercrop, 3. O – no fertilization, F – with fertilization, 4. experimental year (2012, 2013, 2014, 2015. The recalculated yield of Silybi mariani fructus ranged in the amount from 297 kg*ha-1 (RMO treatment – with crop residues, with intercrop and without the use of fertilizers, year 2015 to 745 kg*ha-1 (KMF treatment – without crop residues, with intercrop and the use of fertilizers, year 2013. Statistical testing of individual factors found highly significant effect of year and highly significant effect of fertilization, and statistically inconclusive effect of sowing intercrop and ploughing crop residues. In the experiment was found a statistically significant difference between yield on the treatments without fertilization and the use of mineral fertilizers.

  11. Soil Organic Carbon under Native and Cropped Land Use

    Science.gov (United States)

    Follett, R. F.; Kimble, J. M.; Pruessner, E.; Samson-Liebig, S.; Waltman, S. W.

    2009-12-01

    Soil samples were collected from soil pits at depths of 0 to 5 and 5 to 10 cm and by genetic soil-horizon thereafter, with data reported to 1 m depth. Weights of soil organic carbon (SOC) by profile layer were calculated using thicknesses, bulk densities, and C analyses data. Recalculation for discrete depth increments from the horizon data was necessary to statistically analyze and report the SOC for depth increments of 0 to 10, 10 to 20, 20 to 30, 30 to 60, and 60 to 100 cm. The Soil Extent Mapping Tool of the NRCS provided a snapshot, by soil survey area, of where and the size of the areas by county of the soil series sampled in this study. Estimated combined acreage of the 21 soil series, for these 30 paired native and cropped sites, was 9 Mha within 18 states. To estimate the equivalent amount of SOC represented required that the data be area-weighted and statistically analyzed. On an area-weighted basis 131,890 and 98,470 kg SOC per ha were found in the top 100 cm of the native and cropped sites, respectively. Comparison of the difference of ‘native minus cropped’ as an estimate of area weighted SOC losses from cropped soils in for the 0-to 100 cm depth was that 43, 58, and 75% of the total was from the 0-to 10, 0-to 20, and 0-to 30 cm depths, respectively. The area-weighted average-decrease of SOC within the 0-to 100 cm depth (native minus cropped) was 3.0 Tg SOC across 9 Mha. If similar differences exist between native vs. cropped land across the entire 137.6 Mha of US cropland, a total SOC loss would be equivalent to 46 Tg SOC, or equivalent to 170 Tg (0.17 Pg) CO2.

  12. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.

    Science.gov (United States)

    De Haan, Robert L; Schuiteman, Matthew A; Vos, Ronald J

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.

  13. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  14. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    Science.gov (United States)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  15. [Use of Remote Sensing for Crop and Soil Analysis

    Science.gov (United States)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  16. Tillage System and Cover Crop Effects on Soil Quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    2014-01-01

    depths, pore characteristics did not differ significantly among tillage treatments. At the 12- to 16-cm depth, negative effects of reduced tillage (D and H) were recorded for total porosity and air-filled porosity at −10 kPa (that is, >30-μm pores). Generally, the use of a cover crop increased air......Information about the quantitative effect of conservation tillage combined with a cover crop on soil structure is still limited. This study examined the effect of these management practices on soil pore characteristics of a sandy loam soil in a long-term field trial. The tillage treatments (main....... The cover crop thus alleviated the effect of tillage pan compaction in all tillage treatments....

  17. THE INFLUENCE OF MINIMUM TILLAGE SYSTEMS UPON THE SOIL PROPERTIES, YIELD AND ENERGY EFFICIENCY IN SOME ARABLE CROPS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2006-05-01

    Full Text Available The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control, yield and energy efficiency in the case of maize (Zea mays L., soyabean (Glycine hispida L. and winter wheat (Triticum aestivum L. in a three years crop rotation. For all cultures within the crop rotation, the weed encroachment is maximum for the disc harrow and rotary harrow soil tillage, followed by the chisel and paraplow. The weed encroachment is minimum for the conventional ploughing tillage technology. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control.

  18. A spatial ecology study on the effects of field conditions and crop rotation on the incidence of Plectris aliena (Coleoptera: Scarabaeidae) grub damage to sweetpotato roots.

    Science.gov (United States)

    Brill, Nancy L; Osborne, Jason; Abney, Mark R

    2013-10-01

    A farmscape study was conducted in commercial sweetpotato (Ipomoea batatas (L.) Lam) fields in Columbus County, NC, in 2010 and 2011 to investigate the effects of the following field conditions: soil drainage class, soil texture, field size, border habitat, land elevation, and the previous year's crop rotation on the incidence of damage caused by Plectris aliena Chapman (Coleoptera:Scarabaeidae) larval feeding. Soil drainage and crop rotation significantly affected the incidence of damage to roots, with well drained soils having a low estimated incidence of damaged roots (0.004) compared with all other drainage classes (0.009-0.011 incidence of damaged roots). Fields with soybeans [Glycine max (L.) Merr] planted the preceding year had the highest incidence of root damage (0.15) compared with all other crops. The effects of border habitats, which were adjacent to grower fields where roots were sampled, showed that as the location of the roots was closer to borders of soybean (planted the year before) or grass fields, the chance of damage to roots decreased. Results indicate that growers can use crop rotation as a management technique and avoid planting sweetpotatoes the year after soybeans to reduce the incidence of P. aliena larval feeding on sweetpotato roots. Environmental conditions such as fields with poor drainage and certain border habitats may be avoided, or selected, by growers to reduce risk of damage to roots by P. aliena.

  19. Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence.

    Science.gov (United States)

    Sainju, Upendra M; Allen, Brett L; Caesar-TonThat, Thecan; Lenssen, Andrew W

    2015-01-01

    Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-year effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and cation exchange capacity (CEC) at the 0-120 cm depth and annualized crop yield in the northern Great Plains, USA. Treatments were no-till continuous spring wheat (Triticum aestivum L.) (NTCW), spring till continuous spring wheat (STCW), fall and spring till continuous spring wheat (FSTCW), fall and spring till spring wheat-barley (Hordeum vulgare L., 1984-1999) followed by spring wheat-pea (Pisum sativum L., 2000-2013) (FSTW-B/P), and spring till spring wheat-fallow (STW-F, traditional system). At 0-7.5 cm, P, K, Zn, Na, and CEC were 23-60% were greater, but pH, buffer pH, and Ca were 6-31% lower in NTCW, STCW, and FSTW-B/P than STW-F. At 7.5-15 cm, K was 23-52% greater, but pH, buffer pH, and Mg were 3-21% lower in NTCW, STCW, FSTCW, FSTW-B/P than STW-F. At 60-120 cm, soil chemical properties varied with treatments. Annualized crop yield was 23-30% lower in STW-F than the other treatments. Continuous N fertilization probably reduced soil pH, Ca, and Mg, but greater crop residue returned to the soil increased P, K, Na, Zn, and CEC in NTCW and STCW compared to STW-F. Reduced tillage with continuous cropping may be adopted for maintaining long-term soil fertility and crop yields compared with the traditional system.

  20. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  1. Impact of catch crop mixtures and soils on microbial diversity and nitrogen cycling communities in agroecosystems

    Science.gov (United States)

    Burbano, Claudia S.; Große, Julia; Hurek, Thomas; Reinhold-Hurek, Barbara

    2017-04-01

    In light of the projected world's population growth, food supplies will necessary have to increase. Soils are an essential component for achieving this expansion and its quality and fertility are crucial for bio-economic productivity. Catch crops can be an option to preserve or even improve soil productivity because of their effect on soil fertility and health. A long-term field experiment of the CATCHY project (Catch-cropping as an agrarian tool for continuing soil health and yield-increase) with two contrasting crop rotations was established in two different locations in Northern and Southern Germany. Single catch crops (white mustard, Egyptian clover, phacelia and bristle oat), catch crop mixtures (a mixture of the above and a commercial mixture) and main crops (wheat and maize) have been grown. To investigate how catch crops can affect the microbial diversity and particularly the microbial nitrogen cycling communities, we are studying first the short-term effect of different catch crop mixtures on the microbiomes associated with soils and roots. We compared these microbiomes with wheat plants, representing the microbial community before a catch crop treatment. Roots, rhizosphere and bulk soils were collected from representative samples of wheat plants from one field. The same compartments were also sampled from one fallow treatment and three catch crops variants from three fields each. The variants consisted of white mustard and the two catch crop mixtures. All fields were sampled by triplicate. Quantitative analyses were carried out by qPCR based on key functional marker genes for mineralization (ureC), nitrification (amoA), dissimilatory nitrate and nitrite reduction to ammonium -DNRA- (nrfA), denitrification (nirK, nirS, nosZ), and nitrogen fixation (nifH). These genes were targeted at the DNA and RNA level for the characterization of the microbial population and the actual transcription activity, respectively. We detected the presence and activity of

  2. Living cover crops have immediate impacts on soil microbial community structure and function

    Science.gov (United States)

    Cover cropping is a widely promoted strategy to enhance soil health in agricultural systems. Despite a substantial body of literature demonstrating links between cover crops and soil biology, an important component of soil health, research evaluating how specific cover crop species influence soil mi...

  3. Agroforestry systems in northern Vietnam with Tephrosia candida as an alternative to short-fallow crop rotations

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Fagerstroem, M.H. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2000-07-01

    Tephrosia candida was experimentally tested on-farm as an improved fallow species (TepFa), in hedgerows, (TepAl) and in a mulch transfer system (TepMu) in an upland rice (Oryza sativa) system on sloping land in northern Vietnam during the period 1996-1999. The objectives of this study were: (1) to investigate whether the existing monocropping (Mono) and short-fallow crop rotations (NaFa) are sustainable systems with respect to soil erosion and concomitant nutrient losses; (2) to determine whether agroforestry systems with Tephrosia (TepFa, TepAl, TepMu) can improve nutrient cycling and nutrient balances, for instance by preventing nutrient losses through erosion, as well as sustaining upland rice yields. A criteria system, including soil and nutrient losses, nutrient balances, changes of P-available pools, returns on labour and farmers' response, was used for comparing the systems tested. Only TepFa gave a positive input-output balance for both P and N. TepFa increased soil N and seemed to positively affect the release of soil labile P. However, the cost of Tephrosia seeds made the Net Present Value (NPV) of the Tephrosia fallow crop rotation system negative. TepMu increased upland rice yield by 50% compared to Mono. As a result, NPV was positive and sufficient rice for one more person could be produced per ha and year. However, the yield increase could cause a depletion of plant-available P, and the timing for pruning and mulching activities coincided with the farming activities in paddy fields. TepAl increased soil N, gave a neutral overall effect on crop yield but a negative NPV. NaFa gave a positive and highest NPV. In general, TepFa and TepMu were shown to increase crop yield per hectare with acceptable returns on labour and also to do better than Mono and NaFa with respect to preventing soil and nutrient losses through erosion. Recommendations are made for further research to focus on alternatives to maintain soil P, mechanisms of P pool reallocation and

  4. Economic evaluation of a crop rotation portfolio for irrigated farms in central Chile

    Directory of Open Access Journals (Sweden)

    Jorge González U

    2013-09-01

    Full Text Available The sustainable use of productive resources by agricultural producers in the central valley of Chile should be compatible with economic results so that producers can select an appropriate rotation or succession of annual crops and pasture. The objective of this work was to evaluate the economic behavior of four food crop and supplementary forage rotations using indicators of profitability and profit variability. Productive data were used from a long-term experiment (16 yr in the central valley of Chile under conditions of irrigation. With productive data and information on historic input/output prices, the real net margin per rotation (RNMR and its coefficient of variation (CV were determined. The results indicated that the highest economic benefits and greatest economic stability were obtained with rotations that only included crops, namely sugar beet (Beta vulgaris L. subsp. vulgaris-wheat (Triticum aestivum L.-bean (Phaseolus vulgaris L.-barley (Hordeum vulgare L. (CR2 and corn (Zea mays L.-wheat-bean-barley (CR4. These rotations included crops with low CV of the net margin, such as wheat, barley and beans, with values between 0.31 and 0.34. The rotations with crops and pasture, sugar beet-wheat-red clover (Trifolium pratense L. (2 (CR1 and corn-wheat-red clover (2 (CR3 had lower net margins and more variability of this indicator. Red clover had the highest CV value (1.00. The selection of crops for rotations and their sequence were determining factors in the economic behavior of rotations, affecting the level of RNMR and the degree of inter-annual variability of this indicator. Thus, differences among rotations of 47% in net margin were determined (CR2 vs. CR1, which only differed in the replacement of pasture with red clover (2 by bean-barley. The economic analysis based on the net margin and its variability allow for discriminating among rotations, providing valuable information for producers in deciding which crops to use in rotations.

  5. Dynamics of verticillium species microsclerotia in field soils in response to fumigation, cropping patterns, and flooding.

    Science.gov (United States)

    Short, Dylan P G; Sandoya, German; Vallad, Gary E; Koike, Steven T; Xiao, Chang-Lin; Wu, Bo-Ming; Gurung, Suraj; Hayes, Ryan J; Subbarao, Krishna V

    2015-05-01

    Verticillium dahliae is a soilborne, economically significant fungal plant pathogen that persists in the soil for up to 14 years as melanized microsclerotia (ms). Similarly, V. longisporum is a very significant production constraint on members of the family Brassicaceae. Management of Verticillium wilt has relied on methods that reduce ms below crop-specific thresholds at which little or no disease develops. Methyl bromide, a broad-spectrum biocide, has been used as a preplant soil fumigant for over 50 years to reduce V. dahliae ms. However, reductions in the number of ms in the vertical and horizontal soil profiles and the rate at which soil recolonization occurs has not been studied. The dynamics of ms in soil before and after methyl bromide+chloropicrin fumigation were followed over 3 years in six 8-by-8-m sites in two fields. In separate fields, the dynamics of ms in the 60-cm-deep vertical soil profile pre- and postfumigation with methyl bromide+chloropicrin followed by various cropping patterns were studied over 4 years. Finally, ms densities were assessed in six 8-by-8-m sites in a separate field prior to and following a natural 6-week flood. Methyl bromide+chloripicrin significantly reduced but did not eliminate V. dahliae ms in either the vertical or horizontal soil profiles. In field studies, increases in ms were highly dependent upon the crop rotation pattern followed postfumigation. In the vertical soil profile, densities of ms were highest in the top 5 to 20 cm of soil but were consistently detected at 60-cm depths. Six weeks of natural flooding significantly reduced (on average, approximately 65% in the total viable counts of ms) but did not eliminate viable ms of V. longisporum.

  6. Crop diversity effects on soil health

    Science.gov (United States)

    Concurrent demands for abundant, healthy food, thriving rural economies, and an unpolluted physical environment represents a significant agricultural challenge in the 21st century. Trends in human population growth and changing weather patterns will make this challenge exceedingly difficult. Soil ...

  7. PRACT (Prototyping Rotation and Association with Cover crop and no Till) - a tool for designing conservation agriculture systems

    NARCIS (Netherlands)

    Naudin, K.; Husson, M.O.; Scopel, E.; Auzoux, S.; Giller, K.E.

    2015-01-01

    Moving to more agroecological cropping systems implies deep changes in the organization of cropping systems. We propose a method for formalizing the process of innovating cropping system prototype design using a tool called PRACT (Prototyping Rotation and Association with Cover crop and no Till)

  8. Long-term tillage and crop rotation effects on residual nitrate in the crop root zone and nitrate accumulation in the intermediate vadose zone

    Science.gov (United States)

    Katupitiya, A.; Eisenhauer, D.E.; Ferguson, R.B.; Spalding, R.F.; Roeth, F.W.; Bobier, M.W.

    1997-01-01

    Tillage influences the physical and biological environment of soil. Rotation of crops with a legume affects the soil N status. A furrow irrigated site was investigated for long-term tillage and crop rotation effects on leaching of nitrate from the root zone and accumulation in the intermediate vadose zone (IVZ). The investigated tillage systems were disk-plant (DP), ridge-till (RT) and slot-plant (SP). These tillage treatments have been maintained on the Hastings silt loam (Udic Argiustoll) and Crete silt loam (Pachic Argiustoll) soils since 1976. Continuous corn (CC) and corn soybean (CS) rotations were the subtreatments. Since 1984, soybeans have been grown in CS plots in even calendar years. All tillage treatments received the same N rate. The N rate varied annually depending on the root zone residual N. Soybeans were not fertilized with N-fertilizer. Samples for residual nitrate in the root zone were taken in 8 of the 15 year study while the IVZ was only sampled at the end of the study. In seven of eight years, root zone residual soil nitrate-N levels were greater with DP than RT and SP. Residual nitrate-N amounts were similar in RT and SP in all years. Despite high residual nitrate-N with DP and the same N application rate, crop yields were higher in RT and SP except when DP had an extremely high root zone nitrate level. By applying the same N rates on all tillage treatments, DP may have been fertilized in excess of crop need. Higher residual nitrate-N in DP was most likely due to a combination of increased mineralization with tillage and lower yield compared to RT and SP. Because of higher nitrate availability with DP, the potential for nitrate leaching from the root zone was greater with DP as compared to the RT and SP tillage systems. Spring residual nitrate-N contents of DP were larger than RT and SP in both crop rotations. Ridge till and SP systems had greater nitrate-N with CS than CC rotations. Nitrate accumulation in IVZ at the upstream end of the

  9. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  10. Energizing marginal soils: A perennial cropping system for Sida hermaphrodita

    Science.gov (United States)

    Nabel, Moritz; Poorter, Hendrik; Temperton, Vicky; Schrey, Silvia D.; Koller, Robert; Schurr, Ulrich; Jablonowski, Nicolai D.

    2017-04-01

    As a way to avoid land use conflicts, the use of marginal soils for the production of plant biomass can be a sustainable alternative to conventional biomass production (e.g. maize). However, new cropping strategies have to be found that meet the challenge of crop production under marginal soil conditions. We aim for increased soil fertility by the use of the perennial crop Sida hermaphrodita in combination with organic fertilization and legume intercropping to produce substantial biomass yield. We present results of a three-year outdoor mesocosm experiment testing the perennial energy crop Sida hermaphrodita grown on a marginal model substrate (sand) with four kinds of fertilization (Digestate broadcast, Digestate Depot, mineral NPK and unfertilized control) in combination with legume intercropping. After three years, organic fertilization (via biogas digestate) compared to mineral fertilization (NPK), reduced the nitrate concentration in leachate and increased the soil carbon content. Biomass yields of Sida were 25% higher when fertilized organically, compared to mineral fertilizer. In general, digestate broadcast application reduced root growth and the wettability of the sandy substrate. However, when digestate was applied locally as depot to the rhizosphere, root growth increased and the wettability of the sandy substrate was preserved. Depot fertilization increased biomass yield by 10% compared to digestate broadcast fertilization. We intercropped Sida with various legumes (Trifolium repens, Trifolium pratense, Melilotus spp. and Medicago sativa) to enable biological nitrogen fixation and make the cropping system independent from synthetically produced fertilizers. We could show that Medicago sativa grown on marginal substrate fixed large amounts of N, especially when fertilized organically, whereas mineral fertilization suppressed biological nitrogen fixation. We conclude that the perennial energy crop Sida in combination with organic fertilization has great

  11. SOIL FUNGISTASIS AGAINST FUSARIUM GRAMINEARUM UNDER DIFFERENT CROP MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bruno Brito Lisboa

    2015-02-01

    Full Text Available Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L. + vetch (Vicia sativa L./maize (Zea mays L. + cowpea (Vigna sinensis L., black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA. A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.

  12. [Effects of different cropping system and fertilization on functional diversity in soil microbial community of Chrysanthemum morifolium].

    Science.gov (United States)

    Shao, Qingsong; Guo, Qiaosheng; Gu, Guangtong; Cao, Shenli

    2011-12-01

    To study the effects of Chrysanthemum morifolium based on functional diversity in soil microbial community with different cropping system and fertilization and offer scientific basis for the establishment of the reasonable planting patterns. Combined yield and quality of Ch. morifolium, 8 treatments of different cropping system and fertilization on functional diversity in soil microbial community of Ch. morifolium were investigated by the Biolog. The AWCD of Ch. morifolium paddy-dryland rotation was higher than that of the continuous cropping, the AWCD of organic fertilizer and compound NPK > single organic fertilizer > single compound NPK > no fertilizer. The principal component analysis about Ch. morifolium soil microbial carbon source use showed that the contribution rate of principal component 1 was 45.5% and principal component 2 was 12.1%, which could explain most information about the variation. Different cropping system of Ch. morfolium differentiated in principal component 1 axis, different fertilization differentiated in principal component 2 axis. The yield of Ch. morifolium and volatile oil content paddy-dryland rotation was significantly higher than that of continuous cropping. The Ch. morifolium should be cultivated with organic fertilizer and compound NPK by paddy-dryland rotation patters.

  13. Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Soil labile C and N fractions can change rapidly in response to management practices compared to non-labile fractions. High variability in soil properties in the field, however, results in nonresponse to management practices on these parameters. We evaluated the effects of residue placement (surface application [or simulated no-tillage] and incorporation into the soil [or simulated conventional tillage] and crop types (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow on crop yields and soil C and N fractions at the 0-20 cm depth within a crop growing season in the greenhouse and the field. Soil C and N fractions were soil organic C (SOC, total N (STN, particulate organic C and N (POC and PON, microbial biomass C and N (MBC and MBN, potential C and N mineralization (PCM and PNM, NH4-N, and NO3-N concentrations. Yields of both wheat and pea varied with residue placement in the greenhouse as well as in the field. In the greenhouse, SOC, PCM, STN, MBN, and NH4-N concentrations were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow. In the field, MBN and NH4-N concentrations were greater in no-tillage than conventional tillage, but the trend reversed for NO3-N. The PNM was greater under pea or fallow than wheat in the greenhouse and the field. Average SOC, POC, MBC, PON, PNM, MBN, and NO3-N concentrations across treatments were higher, but STN, PCM and NH4-N concentrations were lower in the greenhouse than the field. The coefficient of variation for soil parameters ranged from 2.6 to 15.9% in the greenhouse and 8.0 to 36.7% in the field. Although crop yields varied, most soil C and N fractions were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow in the greenhouse than the field within a crop growing season. Short-term management effect on soil C and N fractions were readily obtained with reduced variability under controlled

  14. Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types.

    Science.gov (United States)

    Wang, Jun; Sainju, Upendra M

    2014-01-01

    Soil labile C and N fractions can change rapidly in response to management practices compared to non-labile fractions. High variability in soil properties in the field, however, results in nonresponse to management practices on these parameters. We evaluated the effects of residue placement (surface application [or simulated no-tillage] and incorporation into the soil [or simulated conventional tillage]) and crop types (spring wheat [Triticum aestivum L.], pea [Pisum sativum L.], and fallow) on crop yields and soil C and N fractions at the 0-20 cm depth within a crop growing season in the greenhouse and the field. Soil C and N fractions were soil organic C (SOC), total N (STN), particulate organic C and N (POC and PON), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), NH4-N, and NO3-N concentrations. Yields of both wheat and pea varied with residue placement in the greenhouse as well as in the field. In the greenhouse, SOC, PCM, STN, MBN, and NH4-N concentrations were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow. In the field, MBN and NH4-N concentrations were greater in no-tillage than conventional tillage, but the trend reversed for NO3-N. The PNM was greater under pea or fallow than wheat in the greenhouse and the field. Average SOC, POC, MBC, PON, PNM, MBN, and NO3-N concentrations across treatments were higher, but STN, PCM and NH4-N concentrations were lower in the greenhouse than the field. The coefficient of variation for soil parameters ranged from 2.6 to 15.9% in the greenhouse and 8.0 to 36.7% in the field. Although crop yields varied, most soil C and N fractions were greater in surface placement than incorporation of residue and greater under wheat than pea or fallow in the greenhouse than the field within a crop growing season. Short-term management effect on soil C and N fractions were readily obtained with reduced variability under controlled soil and

  15. Amazon basin soils: management for continuous crop production.

    Science.gov (United States)

    Sanchez, P A; Bandy, D E; Villachica, J H; Nicholaides, J J

    1982-05-21

    Technology has been developed which permits continuous production of annual crops in some of the acid, infertile soils of the Amazon Basin. Studies in Yurimaguas, Peru, show that three grain crops can be produced annually with appropriate fertilizer inputs. Twenty-one crops have been harvested during the past 8(1/2) years in the same field, with an average annual production of 7.8 tons of grain per hectare. Soil properties are improving with continuous cultivation. The technology has been validated by local farmers, who normally practice shifting cultivation. Economic interpretations indicate large increases in annual family farm income and a high return on the investment of chemical inputs. Other promising land use alternatives include low-input crop production systems, paddy rice production in fertile alluvial soils, and pastures or agroforestry in rolling areas. Stable, continuous food crop production is an attractive alternative to shifting cultivation in humid tropical regions experiencing severe demographic pressures. For each hectare of land managed in a highly productive manner, there may be less need for clearing additional tropical forests to meet food demands.

  16. Precipitation partitioning in short rotation bioenergy crops: implications for downstream water availability.

    Science.gov (United States)

    Peter Caldwell; Chelcy F. Miniat; Doug Aubrey; Rhett Jackson; Jeff McDonnell; Ken W. Krauss; James S. Latimer

    2016-01-01

    The southern United States is a potential leader in producing biofuels from intensively managed, short rotation (8–12 years) woody crops such as southern pines, and native and non-native hardwoods. However, their accelerated development under intensive management has raised concerns that fast-growing bioenergy crops could reduce recharge to stream flows and groundwater...

  17. Ethanol production from crop residues and soil organic carbon

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    In decision making about the use of residues from annual crops for ethanol production, alternative applications of these residues should be considered. Especially important is the use of such residues for stabilizing and increasing levels of soil organic carbon. Such alternative use leads to a

  18. Ipomea asarifolia (Desr), A Potential Cover Crop for Soil Fertility ...

    African Journals Online (AJOL)

    Ipomea asarifolia (Desr), A Potential Cover Crop for Soil Fertility Improvement in The Sudan Savanna Region, Nigeria. ... University main Campus; VC complex area, University stadium area, Behind new library area and opposite IBB centre area and four distances from the plant (control, plant base, 0.5 m and 1 m from the ...

  19. Yield performance of crops and soil chemical changes under ...

    African Journals Online (AJOL)

    Yields of maize, melon, cassava and cowpea as well as changes in soil chemical contents were examined under different fertilizer treatments in a mixed cropping system. The results showed that fertilizer treatments had significant effects on the yields of maize, cassava and cowpea but no significant effect on melon yield.

  20. Matrices to Revise Crop, Soil, and Environmental Sciences Undergraduate Curricula

    Science.gov (United States)

    Savin, Mary C.; Longer, David; Miller, David M.

    2005-01-01

    Undergraduate curricula for natural resource and agronomic programs have been introduced and revised during the past several decades with a desire to stay current with emerging issues and technologies relevant to constituents. For the past decade, the Department of Crop, Soil, and Environmental Sciences (CSES) faculty at the University of Arkansas…

  1. Assessment of the Impacts of Rice Cropping through a Soil Quality Index

    Science.gov (United States)

    Sione, S. M.; Wilson, M. G.; Paz González, A.

    2012-04-01

    In Entre Ríos (Argentina), rice cultivation is carried out mainly in Vertisols. Several factors, such as the use of sodium bicarbonate waters for irrigation, the excessive tillage required, and the lack of proper planning for land use, mainly regarding the crop sequence, cause serious impacts on the soil and have an effect on sustainable agriculture. Thus, the development of methodologies to detect these impacts has become a priority. The aim of this study was to standardize soil quality indicators (SQI) and integrate them into an index to evaluate the impacts of the rice production system on soil, at the farm scale. The study was conducted in farms of the traditional rice cultivation area of Entre Ríos province, Argentina. We evaluated a minimum data set consisting of six indicators: structural stability and percolation, total organic matter content (TOM), exchangeable sodium content (ESC), electrical conductivity of saturation extract (ECe) and reaction of the soil (pH). From a database from 75 production lots, we determined the reference values, i.e. limits to ensure the maintenance of long-term productivity and the allowable thresholds for each indicator. The indicators were standardized and integrated into a soil quality index. Five ranges of soil quality were established: very low, low, moderate, high and very high, depending on the values assigned to each SQI. This index allowed differentiating the impact of different crop sequences and showed that the increased participation of rice crop in the rotation resulted in a deterioration of the soil structure due to the decrease in the TOM and to the cumulative increase in ESC caused by the sodium bicarbonate water used for irrigation. Soil management strategies should aim to increase TOM values and to reduce the input of sodium to the exchange complex. A rotation with 50% to 60% of pasture and 40 to 50% of agriculture with a participation of rice lower than 20 to 25% would allow the sustainability of the

  2. Investigation of Sensitivity of Some Pulses and Agronomic Crops to Soil Residue of Idosulfuron-mesosulfurun Herbicide

    Directory of Open Access Journals (Sweden)

    E. Izadi-Darbandi

    2013-03-01

    Full Text Available To study the sensitivity of chick pea, bean, lentil, rapeseed, sugarbeet and tomato to soil residual concentration of Idosulfuron-mesosulfurun herbicide, an experiment was carried out under controlled conditions at the College of Agriculture, Ferdowsi University of Mashhad, Iran, in 2010. The studied factors were the 6 mentioned crops, and 7 levels of soil residual concentration of Idosulfuron-mesosulfurun herbicide (0, 0.0015, 0.0037, 0.0079, 0.015, 0.031 and 0.047 mg per kg of soil. The factorial experiment was carried out as a completely randomized design with three replications. Crops' emergence percentage was determined one week after their emergence. Plants' survival percentage and shoot and root biomass production were measured 30 days after their emergence. Results showed that all mentioned characteristics decreased significantly (P<0.01 in the presence of soil residue of the herbicide. Increasing Idosulfuron-mesosulfurun residual concentration in soil decreased emergence and shoot and root biomass production. Bean had the lowest shoot (44% and root (66.78% biomass loss and tomato had the highest shoot (96.38% and root (89.64% biomass loss. Based on ED50 index, pea (0.0079 mg/kg soil was the most tolerant and tomato (0.0003 mg/kg soil was the most susceptible crop to soil residues of Idosulfuron-mesosulfurun, and other crops ranked in between as: tomato< sugarbeet< rapeseed< lentil< bean< pea. In general, these results showed that soil residue of Idosulfuron-mesosulfurun can injure rotation crops and it is important to consider their sensitivity in rotation programming.

  3. Assessing the effect of soil management on soil functioning: a meta-regression analysis on European crop yields under conservation agriculture.

    Science.gov (United States)

    van den Putte, An; Govers, Gerard; Diels, Jan; Gillijns, Katleen; Demuzere, Matthias

    2010-05-01

    Many strategies exist to combat soil degradation through erosion and compaction on agricultural fields. One of these strategies is conservation agriculture (CA). Reduced or zero tillage techniques, together with crop residue management and crop rotation are the pillars of CA. The term reduced tillage covers a range of tillage practices but it never involves inverting the soil. In this way, soil disturbance is minimised and crop residues are left on the soil. As CA also requires less wheel traffic that can increase soil bulk density and reduces infiltration rates, CA has the potential to reduce degradation and improve soil functioning. Studies in many European countries have shown that CA can indeed be very effective in combating soil erosion. However, soil and water conservation do not appear as main drivers in farmers' decisions to shift or not to CA. Economic factors tend to be more important, but there are a lot of uncertainties on this domain. Studies show that production costs are mostly reduced, mainly by reduced fuel costs. However, on production outcome, i.e. crop yield, a lot of uncertainties exist. To ensure proper functioning of agricultural soils that are prone to degradation, it is clear that these uncertainties have to be quantified. Many European studies have investigated the effect of reduced soil tillage on crop yields. However, the anecdotic evidence is often contradictory and therefore difficult to interpret. Most of them only cover a small range of field experiments, in one region. We present a meta-regression analysis (47 European studies, 565 observations) that compares crop yields under conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT) techniques. We analysed the possible influence on the relative yield ((RT or ZT)/CT) of crop type, tillage depth, climate, CT yield and length of application of RT/ZT. ZT reduces crop yield on average with 8.5%. However, RT leads to a reduction in crop yields for maize and winter cereals

  4. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Directory of Open Access Journals (Sweden)

    Liqun Zhu

    Full Text Available Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C contents. However, the effects of tillage method or straw return on soil organic C (SOC have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC, dissolved organic C (DOC and microbial biomass C (MBC contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  5. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Science.gov (United States)

    Zhu, Liqun; Hu, Naijuan; Yang, Minfang; Zhan, Xinhua; Zhang, Zhengwen

    2014-01-01

    Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC) and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm) for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC), dissolved organic C (DOC) and microbial biomass C (MBC) contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  6. Soil Management Practices to Improve Nutrient-use Efficiencies and Reduce Risk in Millet-based Cropping Systems in the Sahel

    Directory of Open Access Journals (Sweden)

    Koala, S.

    2003-01-01

    Full Text Available Low soil fertility and moisture deficit are among the main constraints to sustainable crop yields in the Sahel. A study therefore, was conducted at the ICRISAT Sahelian Center, Sadore in Niger to test the hypothesis that integrated soil husbandry practices consisting of manure, fertilizer and crop residues in rotational cropping systems use organic and mineral fertilizes efficiently, thereby resulting in higher yields and reduced risk. Results from an analysis of variance showed that choice of cropping systems explained more than 50% of overall variability in millet and cowpea grain yields. Among the cropping systems, rotation gave higher yields than sole crop and intercropping systems and increased millet yield by 46% without fertilizer. Rainfall-use efficiency and partial factor productivity of fertilizer were similarly higher in rotations than in millet monoculture system. Returns from cowpea grown in cowpea-millet rotation without fertilizer and the medium rates of fertilizers (4 kg P.ha-1 + 15 kg N.ha-1 were found to be most profitable in terms of high returns and low risk, principally because of a higher price of cowpea than millet. The study recommends crop diversification, either in the form of rotations or relay intercropping systems for the Sahel as an insurance against total crop failure.

  7. Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage

    Energy Technology Data Exchange (ETDEWEB)

    Silvestro, L. B.; Stenglein, S. A.; Forjan, H.; Dinolfo, M. I.; Aramburri, A. M.; Manso, L.; Moreno, M. V.

    2013-05-01

    The presence of Fusarium species in cultivated soils is commonly associated with plant debris and plant roots. Fusarium species are also soil saprophytes. The aim of this study was to examine the occurrence and distribution of soil Fusarium spp. at different soil depths in a zero tillage system after the wheat was harvested. Soil samples were obtained at three depths (0-5 cm, 5-10 cm and 10-20 cm) from five crop rotations: I, conservationist agriculture (wheat-sorghum-soybean); II, mixed agriculture/livestock with pastures, without using winter or summer forages (wheat-sorghum-soybean-canola-pastures); III, winter agriculture in depth limited soils (wheat-canola-barley-late soybean); IV, mixed with annual forage (wheat-oat/Vicia-sunflower); V, intensive agriculture (wheat-barley-canola, with alternation of soybean or late soybean). One hundred twenty two isolates of Fusarium were obtained and identified as F. equiseti, F. merismoides, F. oxysporum, F. scirpi and F. solani. The most prevalent species was F. oxysporum, which was observed in all sequences and depths. The Tukey's test showed that the relative frequency of F. oxysporum under intensive agricultural management was higher than in mixed traditional ones. The first 5 cm of soil showed statistically significant differences (p=0.05) with respect to 5-10 cm and 10-20 cm depths. The ANOVA test for the relative frequency of the other species as F. equiseti, F. merismoides, F. scirpi and F. solani, did not show statistically significant differences (p<0.05). We did not find significant differences (p<0.05) in the effect of crop rotations and depth on Shannon, Simpson indexes and species richness. Therefore we conclude that the different sequences and the sampling depth did not affect the alpha diversity of Fusarium community in this system. (Author) 51 refs.

  8. Selenium status in soil, water and essential crops of Iran

    Directory of Open Access Journals (Sweden)

    Nazemi Lyly

    2012-11-01

    Full Text Available Abstracts As a contributing factor to health, the trace element selenium (Se is an essential nutrient of special interest for humans and all animals. It is estimated that 0.5 to 1 billion people worldwide suffer from Se deficiency. In spite of the important role of Se, its concentrations in soil, water and essential crops have not been studied in Iran. Therefore, the main aim of the current study was to determine the Se content of soil, water, and essential crops (rice in North, wheat in Center, date, and pistachio in South of different regions of Iran. Sampling was performed in the North, South, and Central regions of Iran. In each selected area in the three regions, 17 samples of surface soil were collected; samples of water and essential crops were also collected at the same sampling points. Upon preliminary preparation of all samples, the Se concentrations were measured by ICP-OES Model Varian Vista-MPX. The amount of soil-Se was found to be in the range between 0.04 and 0.45 ppm in the studied areas; the Se content of soil in the central region of Iran was the highest compared to other regions (p

  9. Short rotation woody crops: Using agroforestry technology for energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, L L; Ranney, J W

    1991-01-01

    Agroforestry in the United States is being primarily defined as the process of using trees in agricultural systems for conservation purposes and multiple products. The type of agroforestry most commonly practiced in many parts of the world, that is the planting of tree crops in combination with food crops or pasture, is the type least commonly practiced in the United States. One type of agroforestry technique, which is beginning now and anticipated to expand to several million acres in the United States, is the planting of short-rotation woody crops (SRWCs) primarily to provide fiber and fuel. Research on SRWC's and environmental concerns are described.

  10. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    Science.gov (United States)

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  11. Arbuscular mycorrhizal fungal communities and soil aggregation as affected by cultivation of various crops during the sugarcane fallow period

    Directory of Open Access Journals (Sweden)

    Priscila Viviane Truber

    2014-04-01

    Full Text Available Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1 and an acric Red Latosol with clayey texture (440 g kg-1 clay in Jaboticabal (São Paulo State, Brazil. A randomized block design involving five blocks and four crops [soybean (S, soybean/fallow/soybean (SFS, soybean/millet/soybean (SMS and soybean/sunn hemp/soybean (SHS] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.

  12. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  13. Soil heterotrophic respiration responses to meteorology, soil types and cropping systems in a temperate agricultural watershed.

    Science.gov (United States)

    Buysse, Pauline; Viaud, Valérie; Fléchard, Chris

    2015-04-01

    Within the context of Climate Change, a better understanding of soil organic matter dynamics is of considerable importance in agro-ecosystems, due to their large mitigation potential. This study aims at better understanding the process of soil heterotrophic respiration at the annual scale and at the watershed scale, with these temporal and spatial scales allowing an integration of the most important drivers: cropping systems and management, topography, soil types, soil organic carbon content and meteorological conditions. Twenty-four soil CO2 flux measurement sites - comprising three PVC collars each - were spread over the Naizin-Kervidy catchment (ORE AgrHys, 4.9 km², W. France) in March 2014. These sites were selected in order to represent most of the diversity in drainage classes, soil types and cropping systems. Soil CO2 flux measurements were performed about every ten to fifteen days at each site, starting from 20 March 2014, using the dynamic closed chamber system Li-COR 8100. Soil temperature and soil moisture content down to 5 cm depth were measured simultaneously. An empirical model taking the influence of meteorological drivers (soil temperature and soil water content) on soil CO2 fluxes was applied to each site and the different responses were analyzed with regard to site characteristics (topography, soil organic carbon content, soil microbial biomass, crop type, crop management,…) in order to determine the most important driving variables of soil heterotrophic respiration. The modeling objective is then to scale the fluxes measured at all sites up to the full watershed scale.

  14. Rotations

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  15. Modelling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors

    DEFF Research Database (Denmark)

    Doltra, J; Olesen, Jørgen E; Báez, D

    2015-01-01

    -based cropping systems. Forage maize was grown in a conventional dairy system at Mabegondo (NW Spain) and wheat and barley in organic and conventional crop rotations at Foulum (NW Denmark). These two European sites represent agricultural areas with high and low to moderate emission levels, respectively. Field......Mitigation of greenhouse gas emissions from agriculture should be assessed across cropping systems and agroclimatic regions. In this study, we investigate the ability of the FASSET model to analyze differences in the magnitude of N2O emissions due to soil, climate and management factors in cereal...... on the seasonal soil N2O fluxes than the environmental factors. Overall, in its current version FASSET reproduced the effects of the different factors investigated on the cumulative seasonal soil N2O emissions but temporally it overestimated emissions from nitrification and denitrification on particular days when...

  16. Effect of no-tillage crop rotation systems on nutrient status of a rhodic ...

    African Journals Online (AJOL)

    The rotation crops, mucuna (Mucuna aterrima Piper&Tracy), cajanus (Cajanus cajan (L.) Millsp, rye (Secale cereale L)., oat (Avena sativa L.), pisum (Pisum sativum L.), wheat (Triticum aestivum L.), crotolaria (Crotolaria juncea L.), and black oats (Avena strigosa Scheib), were planted in winter whereas maize and soybean ...

  17. Replacing fallow with forage triticale in dryland crop rotations increases profitability

    Science.gov (United States)

    A common dryland rotational cropping system in the semi-arid central Great Plains of the U.S. is wheat (Triticum aestivum L.)-corn (Zea mays L.)-fallow (WCF). However, the 12-month fallow period following corn production has been shown to be relatively inefficient in storing precipitation during the...

  18. Future market scenarios for pulpwood supply from agricultural short-rotation woody crops

    Science.gov (United States)

    Alexander N. Moiseyev; Daniel G. de la Torre Ugarte; Peter J. Ince

    2000-01-01

    The North American Pulp And Paper (NAPAP) model and USDA POLYSYS agricultural policy analysis model were linked to project future market scenarios for pulpwood supply from agricultural short-rotation woody crops in the United States. Results suggest that pulpwood supply from fast- growing hybrid poplars and cottonwoods will become marginally economical but fairly...

  19. Soil type influences crop mineral composition in Malawi.

    Science.gov (United States)

    Joy, Edward J M; Broadley, Martin R; Young, Scott D; Black, Colin R; Chilimba, Allan D C; Ander, E Louise; Barlow, Thomas S; Watts, Michael J

    2015-02-01

    Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited. Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from >150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn). Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets. New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels. Copyright © 2014. Published by Elsevier B.V.

  20. A semi-quantitative approach for modelling crop response to soil fertility: Evaluation of the AquaCrop procedure

    OpenAIRE

    Van Gaelen, Hanne; Tsegay, Alemtsehay; Delbecque, Nele; Shrestha, Nirman; Garcia, Magali; Fajardo, Hector; Miranda, Roberto; Vanuytrecht, Eline; Abrha, Berhanu; Diels, Jan; Raes, Dirk

    2015-01-01

    Most crop models make use of a nutrient balance approach for modelling crop response to soil fertility. To counter the vast input data requirements that are typical of these models, the crop water productivity model AquaCrop adopts a semi-quantitative approach. Instead of providing nutrient levels, users of the model provide the soil fertility level as a model input. This level is expressed in terms of the expected impact on crop biomass production, which can be observed in the field or obtai...

  1. The Effect of Organic and Conventional Cropping Systems on CO2 Emission from Agricultural Soils: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Stefano Grego

    2011-02-01

    Full Text Available The effects of different agricultural systems on soil organic carbon content and CO2 emission are investigated in this work. In a long-term experiment a conventional system, characterized by traditional agricultural practices (as deep tillage and chemical inputs was compared with an organic one, including green manure and organic fertilizers. Both systems have a three-year crop rotation including pea – durum wheat – tomato; the organic system is implemented with the introduction of common vetch (Vicia sativa L. and sorghum (Sorghum vulgare bicolor as cover crops. In the year 2006 (5 years after the experimentation beginning was determined the soil C content and was measured the CO2 emissions from soil. The first results showed a trend of CO2 production higher in organic soils in comparison with conventional one. Among the two compared cropping systems the higher differences of CO2 emission were observed in tomato soil respect to the durum wheat and pea soils, probably due to the vetch green manuring before the tomato transplanting. These results are in agreement with the total organic carbon content and water soluble carbon (WSC, which showed the highest values in organic soil. The first observations suggest a higher biological activity and CO2 emission in organic soil than conventional one, likely due to a higher total carbon soil content.

  2. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    Directory of Open Access Journals (Sweden)

    S. Kuo

    2001-01-01

    Full Text Available Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L., annual ryegrass (Lolium multiflorum, and hairy vetch (Vicia villosa, and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L. yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest. In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake correlated well with average NO3

  3. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    Science.gov (United States)

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  4. Long-term soil organic carbon changes in cereal and ley rotations: model testing

    Science.gov (United States)

    Kynding Borgen, Signe; Dörsch, Peter; Krogstad, Tore; Azzaroli Bleken, Marina

    2015-04-01

    Reliable modeling of soil organic carbon (SOC) dynamics in agroecosystems is crucial to define mitigation strategies related to crop management on the farm scale as well as the regional scale. International climate agreements and national political decisions rely to a large extent on the National Greenhouse gas Inventory Reports that are submitted annually to the UNFCCC. However, lower tier methods are used to estimate SOC changes on cropland in most country reports. The application of mechanistic models in national greenhouse gas inventory estimation requires proper model testing against measurements in order to verify the estimated emissions. Few long-term field experiments measuring SOC stock changes have been conducted in Norway. We evaluate the performance of the Introductory Carbon Balance Model (ICBM) in simulating SOC changes over 60 years in a field experiment conducted in Ås from 1953-2013. The site is located in south-eastern Norway, on the boarder of the boreal and temperate climate zone, where the majority of the country's grain production occurs. The field trial consisted of four rotations: I) continuous cereal, II) cereal + row crops, III) 2 years of ley + 4 years of cereal, IV) 4 years of ley + 2 years of cereal, and four treatments per rotation: a) low NPK, b) high NPK, c) low NPK + FYM, and d) straw (on rotations I and II) or high NPK + FYM (on rotations III and IV). The annual external modifying factor of the decomposition rate was calculated based on daily minimum and maximum temperature, precipitation, relative humidity, wind speed, and net radiation, and adjusted for soil type and crop management according to default ICBM calibration. We present results of simulated C changes for the long term plots and explore options to improve parameter calibration. Finally, we provide suggestions for how problems regarding model verification can be handled with when applying the model on a national scale for inventory reporting.

  5. Soil water regime and crop yields in relation to various technologies of cultivation in the Kulunda Steppe (Altai Krai

    Directory of Open Access Journals (Sweden)

    V. Beliaev

    2016-09-01

    Full Text Available This article presents the results of crop yield in areas with different technologies of cultivation based on the network of automatic stations that provide data on climatic and soil-hydrological monitoring in the dry steppe during the vegetation period of May–September 2013–2016 . These data  on regional ecological and climatic parameters are of great interest to the ecologists, plant physiologists, and farmers working in the Kulunda Plain (Altai Territory. We compared the following options for cropping technologies: the modern system, which is the "no-till", technology without autumn tillage;the intensive technology of deep autumn tillage by plough PG-3-5 at a depth of 22–24 cm. Cultivation of crops was carried out using the following scheme of crop rotation: the modern system: 1–2–3–4 (wheat – peas – wheat – rape; the intensive system: 5/6 – 7/8 – 9/10 (fallow – wheat – wheat. We believe that the use of modern technology in these conditions is better due to exchange between the different layers of soil. When  the ordinary Soviet system , the so-called "plow sole" , was used , at a depth of 24 cm , we observed that this creates a water conductivity barrier that seems to preclude the possibility of lifting water from the lower horizons. Results of the study of infiltration of soil moisture at the depth of 30 and 60 cm  have shown in some years the advantages of the modern technology over the ordinary Soviet system: in the version with the use of modern technology we can trace better exchange between the various horizons and , probably,  moisture replenishment from the lower horizons. Differences in individual observation periods are comparatively large due to the redistribution of soil moisture, depending on the weather conditions, the crops used in the crop rotations, and cultivation techniques. Moreover, the average moisture reserves within the one meter layer did not show any significant differences during the

  6. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  7. The effect of crop rotation on pesticide leaching in a regional pesticide risk assessment.

    Science.gov (United States)

    Balderacchi, Matteo; Di Guardo, Andrea; Vischetti, Costantino; Trevisan, Marco

    2008-11-01

    New modeling approaches that include the use of GIS are under development in order to allow a more realistic assessment of environmental contamination by pesticides. This paper reports a regional GIS-based risk assessment using a software tool able to simulate complex and real crop rotations at the regional scale. A single pesticide leaching assessment has been done. The mean annual pesticide concentration in leachate has been analyzed using both stochastic and deterministic approaches. The outputs of these simulations were mapped over the sampling locations of the regional pesticide monitoring program, demonstrating that GIS-based risk assessment can be used to establish new monitoring programs. A multiple pesticide leaching assessment for analyzing the risk related to pest control strategies in six different maize-based rotations has been carried out. Additive toxic units approach has been used. Crop rotation allows to mediate the risk related to pesticide use because forces the use of different compounds with different fate and toxicology properties.

  8. Soil properties and not inputs control carbon : nitrogen : phosphorus ratios in cropped soils in the long term

    Science.gov (United States)

    Frossard, Emmanuel; Buchmann, Nina; Bünemann, Else K.; Kiba, Delwende I.; Lompo, François; Oberson, Astrid; Tamburini, Federica; Traoré, Ouakoltio Y. A.

    2016-02-01

    Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies have explicitly considered the effects of agricultural management practices on the soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long term. Thus, we analysed the C, N, and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK (bio-Dynamic, bio-Organic, and "Konventionell") cropping system trial (Switzerland). In each of these trials, there was a large range of C, N, and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P, and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure, and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at

  9. Forms of Inorganic Phosphorus in Soil under Different Long Term Soil Tillage Systems and winter Crops

    OpenAIRE

    Tiecher, T.; Santos, D.R.; Kaminski, J.; Calegari, A.

    2012-01-01

    The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops...

  10. Forms of inorganic phosphorus in soil under different long term soil tillage systems and winter crops

    OpenAIRE

    Tiecher, Tales; Santos, Danilo Rheinheimer dos; Kaminski, João; Calegari, Ademir

    2012-01-01

    The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops ...

  11. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  12. Mathematical modeling of oxadixyl transport in onion crop soil

    OpenAIRE

    María José Martínez Cordón; Marta Isabel Aldana Castañeda; Jairo Arturo Guerrero Dallos

    2015-01-01

    Pesticides used in crop production are the most important source of diffuse pollution to groundwater, and their discharge into surface water may be a contributing factor towards the decline of living resources and the deterioration of ecosystems. In this work, we studied the movement of oxadixyl through soil columns (30 cm length and 14 cm diameter) in laboratory conditions using onion soil from Lake Tota (Boyacá, Colombia). A solution of 0.01 M CaCl2, containing a tracer (bromide) and oxadix...

  13. SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.

    Science.gov (United States)

    De Deyn, G B

    2015-01-01

    Sustainable production of food, feed and fiberwarrants sustainable soil management and crop protection. The tools available to achieve this are both in the realm of the plants and of the soil, with a key role for plant-soil interactions. At the plant level we have vast knowledge of variation within plant species with respect to pests and diseases, based on which we can breed for resistance. However, given that systems evolve this resistance is bound to be temporarily, hence also other strategies are needed. Here I plea for an integrative approach for sustainable production using ecological principles. Ecology, the study of how organisms interact with their environment, teaches us that diversity promotes productivity and yield stability. These effects are thought to be governed through resource use complementarity and reduced build-up of pests and diseases both above- and belowground. In recent years especially the role of soil biotic interactions has revealed new insights in how plant diversity and productivity are related to soil biodiversity and the functions soil biota govern. In our grassland biodiversity studies we found that root feeders can promote plant diversity and succession without reducing plant community productivity, this illustrates the role of diversity to maintain productivity. Also diversity within species offers scope for sustainable production, for example through awareness of differences between plant genotypes in chemical defense compounds that can attract natural enemies of pests aboveground- and belowground thereby providing plant protection. Plant breeding can also benefit from using complementarity between plant species in the selection for new varieties, as our work demonstrated that when growing in species mixtures plant species adapt to each other over time such that their resource acquisition traits become more complementing. Finally, in a recent meta-analysis we show that earthworms can stimulate crop yield with on average 25%, but

  14. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review

    OpenAIRE

    Ludwig, B.; Geisseler, D.; Michel, K.; Joergensen, R. G.; Schulz, E; Merbach, I.; Raupp, J.; Rauber, R.; Hu, K.; Niu, L.; Liu, X.

    2011-01-01

    The study of sustainable land use is complex and long-term experiments are required for a better understanding of the processes of carbon stabilization. Objectives were (i) to describe for four long-term experiments the effects of fertilization and soil management on crop yields and the dynamics of soil organic carbon (SOC) and total N, and (ii) to discuss the usefulness of models for a better understanding of the underlying processes. Data of soil organic carbon and total N of four ...

  15. Climate protection and energy crops. Potential for greenhouse gas emission reduction through crop rotation and crop planning; Klimaschutz und Energiepflanzenanbau. Potenziale zur Treibhausgasemissionsminderung durch Fruchtfolge- und Anbauplanung

    Energy Technology Data Exchange (ETDEWEB)

    Eckner, Jens [Thueringer Landesanstalt fuer Landwirtschaft (Germany); Peter, Christiane; Vetter, Armin

    2015-07-01

    The EVA project compares nationwide energy crops and crop rotations on site-specific productivity. In addition to agronomic suitability for cultivation economic and environmental benefits and consequences are analyzed and evaluated. As part of sustainability assessment of the tested cultivation options LCAs are established. The model MiLA developed in the project uses empirical test data and site parameters to prepare the inventory balances. At selected locations different cultivation and fertilization regimes are examined comparatively. In the comparison of individual crops and crop rotation combinations cultivation of W.Triticale-GPS at the cereals favor location Dornburg causes the lowest productrelated GHG-emissions. Due to the efficient implementation of nitrogen and the substrate properties of maize is the cultivation despite high area-related emissions and N-expenses at a low level of emissions. Because of the intensity the two culture systems offer lower emissions savings potentials with high area efficiency. Extensification with perennial alfalfagrass at low nitrogen effort and adequate yield performance show low product-related emissions. Closing the nutrient cycles through a recirculation of digestates instead of using mineral fertilization has a climate-friendly effect. Adapted intensifies of processing or reduced tillage decrease diesel consumption and their related emissions.

  16. Impact of use of treated wastewater for irrigation on soil and quinoa crop in South of Morocco

    Science.gov (United States)

    El Youssfi, Lahcen; Choukr-Allah, Redouane; Zaafrani, Mina; Hirich, Aziz; Fahmi, Hasna; Abdelatif, Rami; Laajaj, Khadija; El Omari, Halima

    2015-04-01

    This work was conducted at the experimental station of the IAV Hassan II-CHA-Agadir in southwest Morocco between 2010 and 2012. It aimed the assessment of the effects of use of treated wastewater on soil properties and agronomic parameters by adopting crop rotation introducing quinoa (Chenopodium quinoa Willd.) as a new crop under semi-arid climate. Biomass production, yield, nutrient accumulation in leaves and the level of electrical conductivity and soil nitrate are the evaluated parameters during three growing seasons. Results show that quinoa has a performing behavior when it is preceded by fabae bean in term of water use efficiency; in addition, the recorded level of salt accumulation in the soil was the lowest in comparison with that of the combinations bean>quinoa and fallow>quinoa. Concerning growth and yield, it was found that growing quinoa after chickpea was more beneficial in terms of biomass productivity and yield. Keywords: Quinoa, soil, treated wastewater semi-arid

  17. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Directory of Open Access Journals (Sweden)

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  18. The impact of genetically modified crops on soil microbial communities.

    Science.gov (United States)

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  19. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  20. Reclamation of Sodic-Saline Soils. Barley Crop Response

    Directory of Open Access Journals (Sweden)

    Giovanna Cucci

    2008-12-01

    Full Text Available The research was aimed at assessing the salinity and sodicity effects of two soil types submitted to correction on barley crop. The two soils, contained in cylindrical pots (0.40 m in size and 0.60 m h supplied with a bottom valve for the collection of drainage water and located under shed to prevent the leaching action of rainfall, were clay-textured and saline and sodic-saline at barley seeding, as they had been cultivated for 4 consecutive years with different herbaceous species irrigated with 9 types of brackish water. In 2002-2003 the 2 salinized and sodium-affected soils (ECe and ESP ranging respectively from 5.84-20.27 dSm-1 to 2.83-11.19%, submitted to correction, were cultivated with barley cv Micuccio, and irrigated with fresh water (ECw = 0.5 dS m-1 and SAR = 0.45 whenever 30% of the maximum soil available moisture was lost by evapotranspiration. Barley was shown to be a salt-tolerant species and did not experience any salt stress when grown in soils with an initial ECe up to 11 dS m-1. When it was grown in more saline soils (initial ECe of about 20 dS m-1, despite the correction, it showed a reduction in shoot biomass and kernel yield by 26% and 36% respectively, as compared to less saline soils.

  1. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    Science.gov (United States)

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Water Erosion in Relation with Soil Management System and Crop Sequence during 20 Years on an Inceptisol in South Brazil

    Science.gov (United States)

    Bertol, I.; Schick, J.; Barbosa, F. T.; Paz-Ferreiro, J.; Flores, M. T.; Paz González, A.

    2012-04-01

    Soil erosion still remains persistent at the world scale, even if big efforts have been done to control and reduce it, mainly using soil crop residues to protect soil surface. Although in South Brazil the main management system for most crops is no tillage and direct drilling, water erosion prevails as the most important soil erosion type, which is due both, to the high erosivity and the evenly distribution of rainfall over the year. Moreover, some crops are still grown under soil tillage systems consisting of ploughing, harrowing and less frequently chiselling. Starting 1992, a field experiment under natural rainfall has been conducted on an Inceptisol located in Lages, Santa Catarina State, Brazil, which objective was to assess rainfall water erosion. Two soil cover conditions and four soil management systems were studied: I) a crop rotation, which included oats (Avena strigosa), soybean (Glycine max), common vetch (Vicia sativa), maize (Zea mays), fodder radish (Raphanus sativus) and common bean (Phaseolus vulgaris) under the following soil management types: 1) ploughing plus two levelling operations (CT), chiselling plus levelling (RT) and direct drilling with no tillage (NT), and II) bare soil (BS) without crop cover tilled by ploughing plus two levelling. In more than 90% of the study cases, soil losses were collected for single rain events with erosive power, whose erosivity was calculated. Total rain recorded during the 20 year experimental period was approximately 66,400 mm, which is equivalent to roughly 105,700, MJ mm ha-1 h-1 (EI30), whereas soil losses in the BS treatment were higher than 1,700 t.ha-1. On average, soil losses under RT treatment showed a 92% reduction in relation with BS, whereas under CT the reduction in relation to BS was about 66%. Soil management by direct drilling (NT) was the most efficient system to minimize water erosion, as soil losses decreased about 98% when compared with BS. Moreover, soil management systems with a crop

  3. The Effect of Gasification Biochar on Soil Carbon Sequestration, Soil Quality and Crop Growth

    DEFF Research Database (Denmark)

    Hansen, Veronika

    New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...... and the risk of soil compaction or erosion.......New synergies between agriculture and the energy sector making use of agricultural residues for bioenergy production and recycling recalcitrant residuals to soil may offer climate change mitigation potential through the substitution of fossil fuels and soil carbon sequestration. However, concerns...... have been raised about the potential negative impacts of incorporating bioenergy residuals (biochar) in soil and increasing the removal of crop residues such as straw, possibly reducing important soil functions and services for maintaining soil quality. Therefore, a combination of incubation studies...

  4. Effects of nitrogen fertilizer sources and temperature on soil CO2 efflux in Italian ryegrass crop under Mediterranean conditions

    Directory of Open Access Journals (Sweden)

    Roberto Lai

    2012-06-01

    Full Text Available We report the results of a study that aimed to assess the dynamics of total and heterotrophic soil respiration and its relationships with soil temperature or soil moisture of an Italian ryegrass haycrop managed with different nitrogen (N fertilizer sources. The field experiment was carried out in the Nitrate Vulnerable Zone of the dairy district of Arborea, a reclaimed wetland in central-western Sardinia, Italy. This is an area characterized by sandy soils, shallow water table and intensive dairy cattle farming systems. Italian ryegrass is grown for hay production in the context of a double cropping rotation with silage maize. We analyzed the effects of N fertilizer treatments on soil carbon dioxide (CO2 efflux, soil water content and soil temperature: i farmyard manure; ii cattle slurry; iii mineral fertilizer; iv 70 kg ha-1 from slurry and 60 kg ha-1 from mineral fertilizer that corresponds to the prescriptions of the vulnerable zone management plan. During the monitoring period, soil water content never fell below 8.6% vol., corresponding to approximately -33 kPa matric potential. Total and heterotrophic soil respiration dynamics were both influenced by soil temperature over winter and early spring, reaching a maximum in the first ten days of April in manure and slurry treatments. In the last 30 days of the Italian ryegrass crop cycle, total soil respiration decreased and seemed not to be affected by temperature. The analysis of covariance with soil temperature as covariate showed that average respiration rates were significantly higher under the manure treatment and lower with mineral fertilizer than the slurry and slurry+mineral treatments, but with similar rates of respiration per unit increase of soil temperature for all treatments. The average soil respiration rates were significantly and positively related to the soil carbon (C inputs derived from fertilizers and preceding crop residuals. We concluded that: i the fertilizer source

  5. Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria

    OpenAIRE

    Auerswald, Karl; Kainz, Max; Fiener, Peter

    2003-01-01

    Organic agriculture (OA) aims to identify a production regime that causes less environmental problems than conventional agriculture (CA). We examined whether the two systems differ in their susceptibility to soil erosion by water. To account for the large heterogeneity within the rotations practised on different farms, we chose a statistical evaluation which modelled erosion using the USLE method from the cropping statistics for 2056 districts in Bavaria (70 547 km2; 29.8% arable). Physical c...

  6. Evaluating sustainable and profitable cropping sequences with cassave and four legume crops: Effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana

    NARCIS (Netherlands)

    Adjei-Nsiah, S.; Kuyper, T.W.; Leeuwis, C.; Abekoe, M.K.; Giller, K.E.

    2007-01-01

    Rotations are important practices for managing soil fertility on smallholder farms. Six cropping sequences (cassava, pigeonpea, mucuna-maize-mucuna, cowpea-maize-cowpea, maize-maize-maize, and speargrass fallow) were evaluated during 2003-2004 in Wenchi district of Ghana for their effects on the

  7. Effect of organic waste compost on the crop productivity and soil quality

    Science.gov (United States)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase compared to the unfertilized control plot. In the case

  8. Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Kersebaum, Kurt C; Kollas, Chris

    2017-01-01

    simulating different treatments (catch crops, CO2 concentrations, irrigation, N application, residues and tillage) in four multi-year rotation experiments in Europe to assess modelling accuracy. Seven grain and seed crops in four rotation systems in Europe were included in the study, namely winter wheat......, winter barley, spring barley, spring oat, winter rye, pea and winter oilseed rape. Our results indicate that the higher level of calibration significantly increased the quality of the simulation for grain N. In addition, models performed better in predicting grain N of winter wheat, winter barley...... than a random single model. Models correctly simulated the effects of enhanced N input on grain N of winter wheat and winter barley, whereas effects of tillage and irrigation were less well estimated. However, the use of continuous simulation did not improve the simulations as compared to single year...

  9. Catch crops impact on soil water infiltration in vineyards

    Science.gov (United States)

    Cerdà, Artemi; Bagarello, Vincenzo; Iovino, Massimo; Ferro, Vito; Keesstra, Saskia; Rodrigo-Comino, Jesús; García Diaz, Andrés; di Prima, Simone

    2017-04-01

    Infiltration is the key component of the hydrological cycle (Cerdà, 1999; Bagarello et al.,, 2014; Zema et al., 2016). Infiltration determines the partitioning of rainfall into runoff and subsurface flow (Cerdà, 1996; Bagarello et al., 2006; Wang et al., 2016). In the Mediterranean, agriculture resulted in the degradation of the soil structure, reduction of the organic matter and increase in the soil losses (Cerdà et al., 2009; Laudicina et al., 2015; Iovino et al., 2016; Willaarts et al., 2016). There is an urgent need to restore the agriculture soils to avoid floods, reduce the carbon emissions and avoid reservoir siltation (Aksakal et al., 2016; Ben Slimane et al., 2016; Yagüe et al., 2016). Catch Crops are widespread used due to their impact on the soil fertility (Mwango et al., 2016; Nishigaki et al., 2016 ; Nawaz et al., 2016). Catch crops also increase the amount of organic matter but little is known about the effect on soil infiltration. Two paired plots were selected in Les Alcusses (Moixent municipality) in Eastern Iberian Peninsula to compare the infiltration rates between a 8-years catch crop (Vicia sp) with a control (plough) soil. The measurements were carried out by means of ring infiltrometer in August 2014 and December 2014 under dry and wet conditions (Cerdà, 2001; Di Prima et al., 2016). The results show that the steady-state infiltration rates were 1.8 higher during the summer period, and that the catch crops did not increase the infiltration rates. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Aksakal, E. L., Sari, S., & Angin, I. (2016). Effects of vermicompost application on soil aggregation and certain physical properties. Land Degradation and Development, 27(4), 983-995. doi:10.1002/ldr.2350

  10. Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops

    Science.gov (United States)

    Copeland, Nichola; Cape, J. Neil; Heal, Mathew R.

    2012-12-01

    Miscanthus × giganteus and short rotation coppice (SRC) willow (Salix spp.) are increasingly important bioenergy crops. Above-canopy fluxes and mixing ratios of volatile organic compounds (VOCs) were measured in summer for the two crops at a site near Lincoln, UK, by proton transfer reaction mass spectrometry (PTR-MS) and virtual disjunct eddy covariance. The isoprene emission rate above willow peaked around midday at ˜1 mg m-2 h-1, equivalent to 20 μg gdw-1 h-1 normalised to 30 °C and 1000 μmol m-2 s-1 PAR, much greater than for conventional arable crops. Average midday peak isoprene mixing ratio was ˜1.4 ppbv. Acetone and acetic acid also showed small positive daytime fluxes. No measurable fluxes of VOCs were detected above the Miscanthus canopy. Differing isoprene emission rates between different bioenergy crops, and the crops or vegetation cover they may replace, means the impact on regional air quality should be taken into consideration in bioenergy crop selection.

  11. Cotton as a Rotation Crop for the Management of Meloidogyne arenaria and Sclerotium rolfsii in Peanut

    Science.gov (United States)

    Rodríguez-Kábana, R.; Robertson, D. G.; Wells, L.; Weaver, C. F.; King, P. S.

    1991-01-01

    The value of cotton (Gossypium hirsutum cv. Deltapine 90) in rotation with peanut (Arachis hypogaea cv. Florunner) for the management of root-knot nematode (Meloidogyne arenaria) and southern blight (Sclerotium rolfsii) was studied for 6 years in a field at the Wiregrass Substation in southeast Alabama. Peanut yields following either 1 or 2 years of cotton (C-P and C-C-P, respectively) were higher than those of peanut monoculture without nematicide [P(-)]. At-plant application of aldicarb to continuous peanut [P(+)] averaged 22.1% higher yields than those for P(-) over the 6 years of the study. The use of aldicarb in cotton and peanut in the C-C-P rotations increased yields of both crops over the same rotations without the nematicide. When the nematicide was applied to both crops in the C-P rotation, peanut yields were increased in only two of the possible three years when peanut was planted. Application of aldicarb to cotton only in the C-P rotation did not improve peanut yields over those obtained with the rotation without nematicide. Juvenile populations of M. arenaria determined at peanut-harvest time were lowest in plots with cotton. Plots with C-P or C-C-P had lower populations of the nematode than those with either P(-) or P(+). The incidence of southern blight (Sclerotium rolfsii) in peanut was lower in plots with the rotations than in those with peanut monoculture. Aldicarb application had no effect on the occurrence of southern blight. PMID:19283179

  12. Changes in soil quality following poplar short-rotation forestry under different cutting cycles

    Directory of Open Access Journals (Sweden)

    Claudia Di Bene

    2011-02-01

    Full Text Available In the last decade, the change of energy concept induced by global warming and fossil fuel depletion together with the advances in agriculture towards a multifunctional and a more sustainable use of rural areas promoted the development of biomass crops. In this regard, Populus is largely utilised in short-rotation forestry (SRF, as it is known to be a fast-growing tree, producing large yields and having a high energy potential. Most studies focused on economic-productive and energetic aspects of Populus plantations, whereas their impact on soil quality and health have been poorly investigated. In this study, the main soil chemical parameters, microbial biomass and activity were assessed aiming at evaluating the impact of Populus SRF under one, two and three-year cutting cycles (T1, T2 and T3 in comparison with an intensive food cropping system (wheat-soybean rotation, WS. In addition, arbuscular mycorrhizal (AM fungal inoculum potential was measured using root colonisation (RC and number of entry points (EP. In the 0-10 cm soil depth, pH, phosphorus (P, total nitrogen (N and soil organic carbon (SOC were significantly affected by the management. In comparison with WS, Populus SRF treatments produced significant pH decreases together with N and SOC increases, these last ones ranging from 11 to 34% and from 21 to 57%, respectively. Under T3 soil pH decreased of 0.25 units, while P, N and SOC increased of 10, 34 and 57%, respectively, in comparison with WS. Microbial biomass and soil respiration under SRF showed also mean increases of 71 and 17%, respectively. Under SRF treatments, Lolium perenne, commonly observed in all field plots, was more than twofold colonised by AM fungi in comparison with WS, while the number of EP, observed on Lactuca sativa used as a test plant, showed values ranging from 8 to 21 times higher. The present study shows the potential of a Populus SRF to improve soil chemical, biochemical and biological quality parameters in

  13. Short-rotation woody-crops program. Quarterly progress report for period ending August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty-one projects in the Short Rotation Woody Crops Program is summarized for the period June 1 through August 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major program activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  14. Short-rotation woody-crops program. Quarterly progress report for period ending May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Ranney, J.W.

    1982-04-01

    Progress of twenty projects in the Short Rotation Woody Crops Program is summarized for the period March 1 through May 31, 1981. Individual quarterly reports included from each of the projects discuss accomplishments within specific project objectives and identify recent papers and publications resulting from the research. The major project activities are species screening and genetic selection, stand establishment and cultural treatment, and harvest, collection, transportation, and storage.

  15. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    Science.gov (United States)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally

  16. Cover crops to improve soil health and pollinator habitat in nut orchards

    Science.gov (United States)

    Jerry. Van Sambeek

    2017-01-01

    Recently several national programs have been initiated calling for improving soil health and creating pollinator habitat using cover crops. Opportunities exist for nut growers to do both with the use of cover crops in our nut orchards. Because we can include perennial ground covers as cover crops, we have even more choices than landowners managing cover crops during...

  17. Effects of different mechanized soil fertilization methods on corn soil fertility under continuous cropping

    Science.gov (United States)

    Shi, Qingwen; Wang, Huixin; Bai, Chunming; Wu, Di; Song, Qiaobo; Gao, Depeng; Dong, Zengqi; Cheng, Xin; Dong, Qiping; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Experiments for mechanized soil fertilization for corns were conducted in Faku demonstration zone. On this basis, we studied effects on corn soil fertility under continuous cropping due to different mechanized soil fertilization methods. Our study would serve as a theoretical basis further for mechanized soil fertilization improvement and soil quality improvement in brown soil area. Based on the survey of soil physical characteristics during different corn growth periods, we collected soil samples from different corn growth periods to determine and make statistical analysis accordingly. Stalk returning to field with deep tillage proved to be the most effective on available nutrient improvement for arable soil in the demonstration zone. Different mechanized soil fertilization methods were remarkably effective on total phosphorus improvement for arable soil in the demonstration zone, while less effective on total nitrogen or total potassium, and not so effective on C/N ratio in soil. Stalk returning with deep tillage was more favorable to improve content of organic matter in soil, when compared with surface application, and organic granular fertilizer more favorable when compared with decomposed cow dung for such a purpose, too.

  18. Soil organisms in organic and conventional cropping systems

    Directory of Open Access Journals (Sweden)

    Bettiol Wagner

    2002-01-01

    Full Text Available Despite the recent interest in organic agriculture, little research has been carried out in this area. Thus, the objective of this study was to compare, in a dystrophic Ultisol, the effects of organic and conventional agricultures on soil organism populations, for the tomato (Lycopersicum esculentum and corn (Zea mays crops. In general, it was found that fungus, bacterium and actinomycet populations counted by the number of colonies in the media, were similar for the two cropping systems. CO2 evolution during the cropping season was higher, up to the double for the organic agriculture system as compared to the conventional. The number of earthworms was about ten times higher in the organic system. There was no difference in the decomposition rate of organic matter of the two systems. In general, the number of microartropods was always higher in the organic plots in relation to the conventional ones, reflectining on the Shannon index diversity. The higher insect population belonged to the Collembola order, and in the case of mites, to the superfamily Oribatuloidea. Individuals of the groups Aranae, Chilopoda, Dyplopoda, Pauropoda, Protura and Symphyla were occasionally collected in similar number in both cropping systems.

  19. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India.

    Science.gov (United States)

    Masto, Reginald Ebhin; Chhonkar, Pramod K; Singh, Dhyan; Patra, Ashok K

    2008-01-01

    Soil quality assessment provides a tool for evaluating the sustainability of alternative soil management practices. Our objective was to develop the most sensitive soil quality index for evaluating fertilizer, farm yard manure (FYM), and crop management practices on a semiarid Inceptisol in India. Soil indicators and crop yield data from a long-term (31 years) fertilizer, manure, and crop rotation (maize, wheat, cowpea, pearl millet) study at the Indian Agricultural Research Institute (IARI) near New Delhi were used. Plots receiving optimum NPK, super optimum NPK and optimum NPK + FYM had better values for all the parameters analyzed. Biological, chemical, and physical soil quality indicator data were transformed into scores (0 to 1) using both linear and non-linear scoring functions, and combined into soil quality indices using unscreened transformations, regression equation, or principal component analysis (PCA). Long-term application of optimum inorganic fertilizers (NPK) resulted in higher soil quality ratings for all methods, although the highest values were obtained for treatment, which included FYM. Correlations between wheat (Triticum aestivum L.) yield and the various soil quality indices showed the best relationship (highest r) between yield and a PCA-derived SQI. Differences in SQI values suggest that the control (no NPK, no manure) and N only treatments were degrading, while soils receiving animal manure (FYM) or super optimum NPK fertilizer had the best soil quality, respectively. Lower ratings associated with the N only and NP treatments suggest that one of the most common soil management practices in India may not be sustainable. A framework for soil quality assessment is proposed.

  20. Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation

    DEFF Research Database (Denmark)

    Brozyna, Michal Adam; Petersen, Søren O; Chirinda, Ngoni

    2013-01-01

    Nitrogen (N) supply in stockless organic farming may be improved through use of grass-clover for anaerobic digestion, producing biogas and digested manure for use as fertilizer in the crop rotation. We studied the effects of grass-clover management on N cycling, nitrous oxide (N2O) emissions......” where plant material from grass-clover cuts was left in the field to decompose and no fertilizer or manure was applied to any crop in the rotation; and “+M” where plant material from grass-clover cuts was harvested and equivalent amounts of N in digested manure used for fertilization of cash crops...

  1. A Data-driven Approach to Integrate Crop Rotation Agronomic Practices in a Global Gridded Land-use Forcing Dataset

    Science.gov (United States)

    Sahajpal, R.; Hurtt, G. C.; Chini, L. P.; Frolking, S. E.; Izaurralde, R. C.

    2016-12-01

    Agro-ecosystems are the dominant land-use type on Earth, covering more than a third of ice-free land surface. Agricultural practices have influenced the Earth's climate system by significantly altering the biogeophysical and biogeochemical properties from hyper-local to global scales. While past work has focused largely on characterizing the effects of net land cover changes, the magnitude and nature of gross transitions and agricultural management practices on climate remains highly uncertain. To address this issue, a new set of global gridded land-use forcing datasets (LUH2) have been developed in a standard format required by climate models for CMIP6. For the first time, this dataset includes information on key agricultural management practices including crop rotations. Crop rotations describe the practice of growing crops on the same land in sequential seasons and are essential to agronomic management as they influence key ecosystem services such as crop yields, water quality, carbon and nutrient cycling, pest and disease control. Here, we present a data-driven approach to infer crop rotations based on crop specific land cover data, derived from moderate resolution satellite imagery and created at an annual time-step for the continental United States. Our approach compresses the more than 100,000 unique crop rotations prevalent in the United States from 2013 - 2015 to about 200 representative crop rotations that account for nearly 80% of the spatio-temporal variability. Further simplification is achieved by mapping individual crops to crop functional types, which identify crops based on their photosynthetic pathways (C3/C4), life strategy (annual/perennial) and whether they are N-fixing or not. The resulting matrix of annual transitions between crop functional types averages 41,000 km2/yr for rotations between C3 and C4 annual crops, and 140,000 km2/yr between C3 N-fixing and C4 annual crops. The crop rotation matrix is combined with information on other land

  2. Pathogen Decontamination of Food Crop Soil: A Review.

    Science.gov (United States)

    Gurtler, Joshua B

    2017-09-01

    The purpose of this review is to delineate means of decontaminating soil. This information might be used to mitigate soil-associated risks of foodborne pathogens. The majority of the research in the published literature involves inactivation of plant pathogens in soil, i.e., those pathogens harmful to fruit and vegetable production and ornamental plants. Very little has been published regarding the inactivation of foodborne human pathogens in crop soil. Nevertheless, because decontamination techniques for plant pathogens might also be useful methods for eliminating foodborne pathogens, this review also includes inactivation of plant pathogens, with appropriate discussion and comparisons, in the hopes that these methods may one day be validated against foodborne pathogens. Some of the major soil decontamination methods that have been investigated and are covered include chemical decontamination (chemigation), solarization, steaming, biofumigation, bacterial competitive exclusion, torch flaming, microwave treatment, and amendment with biochar. Other innovative means of inactivating foodborne pathogens in soils may be discovered and explored in the future, provided that these techniques are economically feasible in terms of chemicals, equipment, and labor. Food microbiology and food safety researchers should reach out to soil scientists and plant pathologists to create links where they do not currently exist and strengthen relationships where they do exist to take advantage of multidisciplinary skills. In time, agricultural output and the demand for fresh produce will increase. With advances in the sensitivity of pathogen testing and epidemiological tracebacks, the need to mitigate preharvest bacterial contamination of fresh produce will become paramount. Hence, soil decontamination technologies may become more economically feasible and practical in light of increasing the microbial safety of fresh produce.

  3. Regional estimation of soil C stocks and CO2 emissions as influenced by cropping systems and soil type

    Science.gov (United States)

    Farina, Roberta; Marchetti, Alessandro; Di Bene, Claudia

    2015-04-01

    Soil organic matter (SOM) is of crucial importance for agricultural soil quality and fertility. At global level soil contains about three times the carbon stored in the vegetation and about twice that present in the atmosphere. Soil could act as source and sink of carbon, influencing the balance of CO2 concentration and consequently the global climate. The sink/source ratio depends on many factors that encompass climate, soil characteristics and different land management practices. Thus, the relatively large gross exchange of GHGs between atmosphere and soils and the significant stocks of carbon in soils, may have significant impact on climate and on soil quality. To quantify the dynamics of C induced by land cover change and the spatial and temporal dynamics of C sources and sinks at regional and, potentially, at national and global scales, we propose a methodology, based on a bio-physical model combined with a spatial explicit database to estimate C stock changes and emissions/removals. The study has been conducted in a pilot region in Italy (Apulia, Foggia province), considering the typical cropping systems of the area, namely rainfed cereals, tomato, vineyard and olives. For this purpose, the model RothC10N (Farina et al., 2013), that simulates soil C dynamics, has been modified to work directly in batch using data of climate, soil (over 290 georeferenced soil profiles), annual agriculture land use (1200 observations) The C inputs from crops have been estimated using statistics and data from literature. The model was run to equilibrium for each point of soil, in order to make all the data homogeneous in terms of time. The obtained data were interpolate with geostatisical procedures, obtaining a set of 30x30 km grid with the initial soil C. The new layer produced, together with soil and land use layers, were used for a long-term run (12 years). Results showed that olive groves and vineyards were able to stock a considerable amount of C (from 0.4 to 1.5 t ha-1 y

  4. Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.).

    Science.gov (United States)

    Maiti, Dipankar; Toppo, Neha Nancy; Variar, Mukund

    2011-11-01

    Upland rice (Oryza sativa L.) is a major crop of Eastern India grown during the wet season (June/July to September/October). Aerobic soils of the upland rice system, which are acidic and inherently phosphorus (P) limiting, support native arbuscular mycorrhizal (AM) activity. Attempts were made to improve P nutrition of upland rice by exploiting this natural situation through different crop rotations and application of AM fungal (AMF) inoculum. The effect of a 2-year crop rotation of maize (Zea mays L.) followed by horse gram (Dolichos biflorus L.) in the first year and upland rice in the second year on native AM activity was compared to three existing systems, with and without application of a soil-root-based inoculum. Integration of AM fungal inoculation with the maize-horse gram rotation had synergistic/additive effects in terms of AMF colonization (+22.7 to +42.7%), plant P acquisition (+11.2 to +23.7%), and grain yield of rice variety Vandana (+25.7 to +34.3%).

  5. Effects of cover crops on soil quality: Selected chemical and biological parameters

    Science.gov (United States)

    Cover crops may improve soil physical, chemical, and biological properties and thus help improve land productivity. The objective of this study was to evaluate short-term changes (6, 9, and 12 weeks) in soil chemical and biological properties as influenced by cover crops for two different soils and...

  6. Forms of phosphorus in an oxisol under different soil tillage systems and cover plants in rotation with maize

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2014-06-01

    Full Text Available Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L., and Raphanus sativus L. were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.

  7. Mathematical modeling of oxadixyl transport in onion crop soil

    Directory of Open Access Journals (Sweden)

    María José Martínez Cordón

    2015-04-01

    Full Text Available Pesticides used in crop production are the most important source of diffuse pollution to groundwater, and their discharge into surface water may be a contributing factor towards the decline of living resources and the deterioration of ecosystems. In this work, we studied the movement of oxadixyl through soil columns (30 cm length and 14 cm diameter in laboratory conditions using onion soil from Lake Tota (Boyacá, Colombia. A solution of 0.01 M CaCl2, containing a tracer (bromide and oxadixyl was sprayed onto the surface of the soil column, and then simulated rainfall was applied at an intensity of 0.034 cm h-1. After 30 days, and 2.13 relative pore volumes, oxadixyl percentages recovered at the bottom of the column were 92.1%. The oxadixyl experimental elution curve was analyzed using the Stanmod program (inverse problem to obtain transport parameters. The non-equilibrium chemical model described the experimental elution curve well. The tail of the elution curve was particularly well captured. The retardation factor calculated for the fungicide was 3.94 and the partition coefficient, kd, was close to 1 kg L-1, indicating low adsorption in this soil. Under the experimental conditions, it could be concluded that oxadixyl is mobile in this soil, and therefore presents a risk of potential groundwater contamination.

  8. Effects of irrigation on crops and soils with Raft River geothermal water

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, N.E.; Schmitt, R.C.

    1980-01-01

    The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

  9. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.R.; Li, Y.C.; Klassen, W. [University of Florida, Homestead, FL (United States). Center for Tropical Research & Education

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  10. Soil and Foliar Arthropod Abundance and Diversity in Five Cropping Systems in the Coastal Plains of North Carolina.

    Science.gov (United States)

    Adams, Paul R; Orr, David B; Arellano, Consuelo; Cardoza, Yasmin J

    2017-08-01

    Soil and foliar arthropod populations in agricultural settings respond to environmental disturbance and degradation, impacting functional biodiversity in agroecosystems. The objective of this study was to evaluate system level management effects on soil and foliar arthropod abundance and diversity in corn and soybean. Our field experiment was a completely randomized block design with three replicates for five farming systems which included: Conventional clean till, conventional long rotation, conventional no-till, organic clean till, and organic reduced till. Soil arthropod sampling was accomplished by pitfall trapping. Foliar arthropod sampling was accomplished by scouting corn and sweep netting soybean. Overall soil arthropod abundance was significantly impacted by cropping in corn and for foliar arthropods in soybeans. Conventional long rotation and organic clean till systems were highest in overall soil arthropod abundance for corn while organic reduced till systems exceeded all other systems for overall foliar arthropod abundance in soybeans. Foliar arthropod abundance over sampling weeks was significantly impacted by cropping system and is suspected to be the result of in-field weed and cover crop cultivation practices. This suggests that the sum of management practices within production systems impact soil and foliar arthropod abundance and diversity and that the effects of these systems are dynamic over the cropping season. Changes in diversity may be explained by weed management practices as sources of disturbance and reduced arthropod refuges via weed reduction. Furthermore, our results suggest agricultural systems lower in management intensity, whether due to organic practices or reduced levels of disturbance, foster greater arthropod diversity. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Effect of different crops on soil organic matter and biological activity in Oxisols under three different crops

    Science.gov (United States)

    Toledo, Diana Marcela; Arzuaga, Silvia; Dalurzo, Humberto; Zornoza, Raúl; Vazquez, Sara

    2015-04-01

    The objective of this work was to evaluate changes in soil organic matter in Oxisols under different crops compared to native rainforest, and to assess if acid phosphatase activity (APA) could be a good indicator for SOC changes and soil quality. The experimental design consisted of four completely randomized blocks with four treatments: subtropical rainforest (F); yerba mate crop (I) (Ilex paraguariensis SH.); citrus crop (C) (Citrus unshiu Marc); and tobacco crop (T) (Nicotiana tabacum L.). Soil samples were taken at 0-10; 10-20 and 20-30 cm depths. The variables measured were soil organic carbon (SOC), APA, clay content, pH, total nitrogen (Nt), available phosphorus (P) and CO2 emissions. All data were analyzed by ANOVA to assess the effects of land-use changes. The treatment means were compared through Duncan's multiple range tests (pagricultural lands reduced SOC content and acid phosphatase activity, thereby lowering soil quality. In this study, acid phosphatase activity proved to be a sensitive indicator to detect changes from pristine to cropped soils, but it failed to distinguish differences among crop systems.

  12. Soil Fertility and Crop Management Research on Cool-season Food ...

    African Journals Online (AJOL)

    arietinum L.) and lentil (Lens culinaris Medik.) are important cool-season food legumes (CSFL) of low-input 'break' crops in the highlands of. Ethiopia. These crops are very useful in a crop rotation system that is dominated by cereals. Faba bean, chickpea, field pea and lentil cover 27,. 13, 16 and 6% of the total pulse area ...

  13. Abandoned lands and tree crops on short rotations : a favourable combination for energy; Les terres abandonnees et les cultures d`arbres sur courtes rotations : une conjoncture favorable pour l`energie

    Energy Technology Data Exchange (ETDEWEB)

    Labrecque, M.; Teodorescu, T.I. [Jardin botanique de Montreal, Montreal, PQ (Canada)

    1998-05-01

    Short-rotation intensive culture on abandoned farmlands has successfully been used in Sweden to produce woody biomass as an energy source. Because of changing economic conditions, it is estimated that 33,000 hectares of farmland are abandoned every year in Quebec. Although it is impractical to use these lands for conventional farming crops, they are nevertheless well-suited for tree plantations. Results of a study to demonstrate the feasibility of this method in Quebec were discussed. Three plantations of one hectare each were established on abandoned farmlands 90 km southwest of Montreal for this pilot study. Salix discolor and Salix viminalis were planted in fertilized and non-fertilized plots. A detailed analysis of costs for planting, maintaining, and harvesting the crop was conducted over a period of three years. Results demonstrate that the economic and soil conditions in southern Quebec make wood biomass a profitable crop on abandoned farmlands. 6 refs., 2 tabs., 1 fig.

  14. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils.

    Science.gov (United States)

    Van Slycken, Stijn; Witters, Nele; Meiresonne, Linda; Meers, Erik; Ruttens, Ann; Van Peteghem, Pierre; Weyens, Nele; Tack, Filip M G; Vangronsveld, Jaco

    2013-01-01

    Short rotation coppice (SRC) of willow and poplar might be a promising phytoremediation option since it uses fast growing, high biomass producing tree species with often a sufficient metal uptake. This study evaluates growth, metal uptake and extraction potentials of eight willow clones (Belders, Belgisch Rood, Christina, Inger, Jorr, Loden, Tora and Zwarte Driebast) on a metal-contaminated agricultural soil, with total cadmium (Cd) and zinc (Zn) concentrations of 6.5 +/- 0.8 and 377 +/- 69 mg kg(-1) soil, respectively. Although, during the first cycle, on average generally low productivity levels (3.7 ton DM (dry matter) ha(-1) y(-1)) were obtained on this sandy soil, certain clones exhibited quite acceptable productivity levels (e.g. Zwarte Driebast 12.5 ton DM ha(-1) y(-1)). Even at low biomass productivity levels, SRC of willow showed promising removal potentials of 72 g Cd and 2.0 kg Zn ha(-1) y(-1), which is much higher than e.g. energy maize or rapeseed grown on the same soil Cd and Zn removal can be increased by 40% if leaves are harvested as well. Nevertheless, nowadays the wood price remains the most critical factor in order to implement SRC as an acceptable, economically feasible alternative crop on metal-contaminated agricultural soils.

  15. Diverse rotations and poultry litter improves soybean yield

    Science.gov (United States)

    Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...

  16. Winter pasture and cover crops and their effects on soil and summer grain crops

    Directory of Open Access Journals (Sweden)

    Alvadi Antonio Balbinot Junior

    2011-10-01

    Full Text Available The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N fertilization (intercropping cover; the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N; the same intercropping, with grazing and without nitrogen fertilization (pasture without N; oilseed radish, without grazing and nitrogen fertilization (oilseed radish; and natural vegetation, without grazing and nitrogen fertilization (fallow. Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.

  17. The Amazonian Formative: Crop Domestication and Anthropogenic Soils

    Directory of Open Access Journals (Sweden)

    Manuel Arroyo-Kalin

    2010-03-01

    Full Text Available The emergence of sedentism and agriculture in Amazonia continues to sit uncomfortably within accounts of South American pre-Columbian history. This is partially because deep-seated models were formulated when only ceramic evidence was known, partly because newer data continue to defy simple explanations, and partially because many discussions continue to ignore evidence of pre-Columbian anthropogenic landscape transformations. This paper presents the results of recent geoarchaeological research on Amazonian anthropogenic soils. It advances the argument that properties of two different types of soils, terras pretas and terras mulatas, support their interpretation as correlates of, respectively, past settlement areas and fields where spatially-intensive, organic amendment-reliant cultivation took place. This assessment identifies anthropogenic soil formation as a hallmark of the Amazonian Formative and prompts questions about when similar forms of enrichment first appear in the Amazon basin. The paper reviews evidence for embryonic anthrosol formation to highlight its significance for understanding the domestication of a key Amazonian crop: manioc (Manihot esculenta ssp. esculenta. A model for manioc domestication that incorporates anthropogenic soils outlines some scenarios which link the distribution of its two broader varieties—sweet and bitter manioc—with the widespread appearance of Amazonian anthropogenic dark earths during the first millennium AD.

  18. Soil and water quality implications of production of herbaceous and woody energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, V.R. [Oak Ridge National Lab., TN (United States); Lindberg, J.E. [Oak Ridge Inst. of Science and Education, TN (United States); Green, T.H. [Alabama A and M Univ., Normal, AL (United States). Dept. of Plant and Soil Science] [and others

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  19. Transfer of {sup 99}Tc from soil to crops and its behavior in soil

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Kei [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Nakaminato Lab. Branch

    1996-12-01

    The purpose of this paper is to summarize the transfer factors of technetium from soil to edible part of crops obtained by the author. Andosol (a typical Japanese soil) was mainly used in the experiments. Soil to plant transfer factors of Tc for leaf vegetables such as spinach and komatsuna (Brassica rapa L.) were considerably higher than those for edible parts of non-leaf vegetables (carrot, onion, sweet potato, tomato) and cereals (wheat, upland rice, paddy rice). In case of paddy rice, two types of soil (Andosol and Gray lowland soil) were used for the experiments. These transfer factors for hulled grains (brown rice) were much smaller than those for other crops obtained in our experiments. The transfer factors for brown rice obtaoned for Gray lowland soil were higher than those for Andosol. Since the values of transfer factors of Tc are highly dependent on the plant species, different transfer factor values should be established for plant groups categorized by the type of their edible parts, e.g. leaf vegetables, root vegetables, cereals etc. The low transfer factors observed in rice grain would be explained by the immobilization of Tc under reducing conditions in the flooded soil. The higher transfer factors observed in rice grain cultivated in Gray lowland soil than in Andosol can be explained by the higher Tc concentration in the soil solution of Gray lowland soil than that in Andosol. A preliminarily incubation experiment on the soluble technetium suggested that the soluble technetium observed in the soil solution of rice plant was associated with organic matter dessolved in the water. (author)

  20. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    Science.gov (United States)

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P Microbiology and John Wiley & Sons Ltd.

  1. Soil chemical properties and legume-cereal rotation benefits in an ...

    African Journals Online (AJOL)

    The experimental design was a factorial fitted into randomized complete block design comprising of four crop rotation systems, two nitrogen levels and two residue management options as factors replicated thrice making a total of 48 plots. Each year entailed two cropping sessions, first, the four crops (cowpea, soybean, ...

  2. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation

    Science.gov (United States)

    Ying Ouyang; Jiaen Zhang; Theodor D. Leininger; Brent R. Frey

    2015-01-01

    Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH4...

  3. Yield trends in the long-term crop rotation with organic and inorganic fertilisers on Alisols in Mata (Rwanda)

    NARCIS (Netherlands)

    Rutunga, V.; Neel, H.

    2006-01-01

    A crop rotation system with various species was established on Alisols at Mata grassland site, oriental side of Zaire-Nile Watershed Divide (CZN), Rwanda. Inorganic and organic fertilizers were applied in various plots under randomized complete blocs with three replicates. Crop yield data for each

  4. The effect of different tillage and cover crops on soil quality

    DEFF Research Database (Denmark)

    Abdollahi, Lotfollah; Munkholm, Lars Juhl

    This paper examines the effect of different tillage treatments and cover crop on soil physical, chemical and biological properties of a sandy loam soil in a long-term field trial set up in 2007 at Foulum, Denmark. The experimental design is a split plot design with different tillage practices...... (direct drilling (D), harrowing (H) to a depth of 8 cm and ploughing to a depth of 20 cm (P)) as main plot. The soil was cropped with cover crop (+CC) or left without cover crop (-CC) as split plot treatments in the main plots with different tillage treatments. We assessed topsoil structural quality......, indicating better friability. The interaction between cover crop and tillage treatments was significant. That is cover crop had a positive effect on direct drilling (D) (lower MWD) but not on P and H. In general there was no significant different between tillage and cover crop treatments on visual soil...

  5. Nonlinear Allometric Equation for Crop Response to Soil Salinity

    Directory of Open Access Journals (Sweden)

    E. Misle

    2015-06-01

    Full Text Available Crop response to soil salinity has been extensively studied, from empirical works to modelling approach, being described by different equations, first as a piecewise linear model. The equation employed can differ with actual response, causing miscalculation in practical situations, particularly at the higher extremes of the curve. The aim of this work is to propose a new equation, which allows determining the full response to salinity of plant species and to provide a verification using different experimental data sets. A new nonlinear equation is exposed supported by the allometric approach, in which the allometric exponent is salinity-dependent and decreases with the increase in relative salinity. A conversion procedure of parameters of the threshold-slope model is presented; also, a simple procedure for estimating the maximum salinity (zero-yield point when data sets are incomplete is exposed. The equation was tested in a wide range of experimental situations, using data sets from published works, as well as new measurements on seed germination. The statistical indicators of quality (R2, absolute sum of squares and standard deviation of residuals showed that the equation accurately fits the tested empirical results. The new equation for determining crop response to soil salinity is able to follow the response curve of any crop with remarkable accuracy and flexibility. Remarkable characteristics are: a maximum at minimum salinity, a maximum salinity point can be found (zero-yield depending on the data sets, and a meaningful inflection point, as well as the two points at which the slope of the curve equals unity, can be found.

  6. Modelling soil tillage and mulching effects on soil water dynamics in raised-bed vegetable rotations

    NARCIS (Netherlands)

    Alliaume, F.; Rossing, W.A.H.; Tittonell, P.; Dogliotti, S.

    2017-01-01

    Reduced tillage and mulching may bring about new production systems that combine better soil structure with greater water use efficiency for vegetable crops grown in raised bed systems. These are especially relevant under conditions of high rainfall variability, limited access to irrigation and

  7. Cover-crops - improvement of soil fertility and provision of biomass

    Science.gov (United States)

    Kirchmeyr, Franz; Szerencsits, Manfred

    2017-04-01

    Besides climate change, erosion, inadequate crop rotation and intensive tillage may turn arable land into marginal land. On the other hand, reclamation approaches which include arable farming methods may result only in short-term success if they do not consider their effects on humus content and erosion. Additionally, effective reclamation will also have to address the growing need for food production besides biomass provision. Therefore, we investigated if cover or catch crops (CC) may accomplish both goals: Improve soil quality and humus content even if CC-biomass is used for biogas production. Humus content and soil fertility: In comparison to complete fallow in a crop rotation with silage maize and cereals the humus balance can be improved from -50 to +280 kg humus carbon (C) ha-1 year-1 through additional CC (4.5 t DM ha-1) used for biogas production and an equivalent amount of digestate returned to the field. With a CC-yield of 2.5 t DM ha-1 the humus balance results in 220 kg C ha-1 year-1. It is still slightly higher if the same CC remains on the field as green manure (170 kg C ha-1 year-1). Additionally it is important to consider that 20 - 50 % of the assimilated carbon can be found in the plant roots and that roots and root exudates as well as CC harvest residues provide fresh organic matter for soil life. Furthermore, biomass production of cover crops was considerably higher, if they were used for biogas production because of earlier cultivation and later harvest than mulching. Erosion control: The risk of erosion can be reduced by approx. 50 % in comparison to complete fallow if CC with 2.5 t DM ha-1 remain on the field as green manure. A comparable reduction can be achieved, if CC with 4.5 t DM ha-1 are harvested for biogas production. Because of better weed suppression, tilth and soil structure of CC with higher biomass, it is more likely to apply conservation tillage and avoid ploughing. Without ploughing a CC with 4.5 t DM ha-1 used for biogas the

  8. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations.

    Science.gov (United States)

    Motavalli, P P; Kremer, R J; Fang, M; Means, N E

    2004-01-01

    One of the potential environmental effects of the recent rapid increase in the global agricultural area cultivated with transgenic crops is a change in soil microbially mediated processes and functions. Among the many essential functions of soil biota are soil organic matter decomposition, nutrient mineralization and immobilization, oxidation-reduction reactions, biological N fixation, and solubilization. However, relatively little research has examined the direct and indirect effects of transgenic crops and their management on microbially mediated nutrient transformations in soils. The objectives of this paper are to review the available literature related to the environmental effects of transgenic crops and their management on soil microbially mediated nutrient transformations, and to consider soil properties and climatic factors that may affect the impact of transgenic crops on these processes. Targeted genetic traits for improved plant nutrition include greater plant tolerance to low Fe availability in alkaline soils, enhanced acquisition of soil inorganic and organic P, and increased assimilation of soil N. Among the potential direct effects of transgenic crops and their management are changes in soil microbial activity due to differences in the amount and composition of root exudates, changes in microbial functions resulting from gene transfer from the transgenic crop, and alteration in microbial populations because of the effects of management practices for transgenic crops, such as pesticide applications, tillage, and application of inorganic and organic fertilizer sources. Possible indirect effects of transgenic crops, including changes in the fate of transgenic crop residues and alterations in land use and rates of soil erosion, deserve further study. Despite widespread public concern, no conclusive evidence has yet been presented that currently released transgenic crops, including both herbicide and pest resistant crops, are causing significant direct

  9. Performance and sustainability of short-rotation energy crops treated with municipal and industrial residues

    OpenAIRE

    Dimitriou, Ioannis

    2005-01-01

    The sustainability of short-rotation willow coppice (SRWC) as a multifunctional system for phytoremediation—the use of plants for treatment of contaminated air, soil or water—and for producing energy biomass, was studied. SRWC is grown commercially in Sweden to produce energy biomass, nutrient-rich residues being applied as cost-efficient fertiliser to increase production. The principal residues used are municipal wastewater, landfill leachate, industrial wastewater (e.g. log-yard runoff), se...

  10. Differences in soil quality between organic and conventional farming over a maize crop season

    Science.gov (United States)

    Ferreira, Carla; Veiga, Adelcia; Puga, João; Kikuchi, Ryunosuke; Ferreira, António

    2017-04-01

    Land degradation in agricultural areas is a major concern. The large number of mechanical interventions and the amount of inputs used to assure high crop productivity, such as fertilizers and pesticides, have negative impacts on soil quality and threaten crop productivity and environmental sustainability. Organic farming is an alternative agriculture system, based on organic fertilizers, biological pest control and crop rotation, in order to mitigate soil degradation. Maize is the third most important cereal worldwide, with 2008 million tons produced in 2013 (IGN, 2016). In Portugal, 120000 ha of arable land is devoted to maize production, leading to annual yields of about 930000 ton (INE, 2015). This study investigates soil quality differences in maize farms under organic and conventional systems. The study was carried out in Coimbra Agrarian Technical School (ESAC), in central region of Portugal. ESAC campus comprises maize fields managed under conventional farming - Vagem Grande (32 ha), and organic fields - Caldeirão (12 ha), distancing 2.8 km. Vagem Grande has been intensively used for grain maize production for more than 20 years, whereas Caldeirão was converted to organic farming in 2008, and is being used to select regional maize varieties. The region has a Mediterranean climate. The maize fields have Eutric Fluvisols, with gentle slopes (farm were installed in May 2006, immediately after sowing, and monitored until October 2016, before harvesting, in order to cover all the crop season. Each plot comprises 5 plant lines (˜4 m width) with 20 m length. In order to assure the comparison between both farms, the same maize variety was used (Pigarro) in both fields, with the same compass. Soil samples were collected immediately after sowing. In Vagem Grande distinct soil samples were taken: (i) within plant lines, and (ii) between plant lines, since mineral fertilizers were spread over the field before sowing, and addition fertilizer was applied together with

  11. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai

    2012-01-01

    on soil nutrient levels or on crop biomass. We conclude from the results of this study, that—depending on the feedstock used—ashes from LT-CFB gasification of plant biomass can be used to replace mineral fertilizers if they are applied according to their nutrient content, the crop demand, and soil...... to investigate the effects of the ashes on soil microbiological and chemical properties and on the response of the three crops. The ash treatments were compared with a control treatment that received only nitrogen, magnesium, and sulphur (CO) and a fully fertilized control (COPK). Soil microbial parameters were...

  12. Uptake of cesium-137 by crops from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, H.; Oezer, I.; Celenk, I.; Halitligil, M.B.; Oezmen, A. [Ankara Nuclear Research and Training Center (Turkey)

    1994-11-01

    The Turkish tea crop was contaminated following the Chernobyl nuclear accident. Finding ways to dispose of the contaminated tea (Camellia sinensis L.) without damaging the environment was the goal of this research conducted at the Turkish Atomic Energy Authority (TAEA). In this study, an investigation was made of {sup 137}Cs activities of the plants and the ratios of transfer of {sup 137}Cs activity to plants when the contaminated tea was applied to the soil. Experiments were conducted in the field and in pots under greenhouse conditions. The activities of the tea applied in the field ranged from 12 500 to 72 800 Bq/m{sup 2}, whereas this activity was constant at 8000 Bq/pot in the greenhouse experiment. The transfer of {sup 137}Cs from soil to the plants was between 0.037 and 1.057% for wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), corn (Zea mays indentata Sturt), bean (Phaseolus vulgaris L.), lettuce (Lactuca sativa L.), and grass (Lolium perenne L.). The ratio of the transfer of {sup 137}Cs activity to plants increased as the activity {sup 137}Cs in tea applied to soil was increased. The activity in the plants increased due to increased uptake of {sup 137}Cs by plants. 12 refs., 2 figs., 2 tabs.

  13. Variabilidade temporal da resistência à penetração de um latossolo argiloso sob semeadura direta com rotação de culturas Temporal variation of soil penetration resistance in a clayey oxisol under no-tillage and crop rotation

    Directory of Open Access Journals (Sweden)

    S. A. Genro Junior

    2004-06-01

    Full Text Available O desenvolvimento radicular é afetado pela resistência mecânica do solo e altera o potencial de produção das culturas. Este trabalho teve como objetivo avaliar a resistência à penetração de um solo argiloso com distintos sistemas de cultura em semeadura direta. O experimento foi realizado no campo tecnológico da Cotrijuí, no município de Ijuí (RS, em um Latossolo Vermelho distroférrico típico com 0,68 kg kg-1 de argila, manejado sob semeadura direta, com quatro seqüências de culturas: sucessão soja/trigo, milho/aveia/milho + guandu/trigo/soja/trigo, guandu/trigo/soja/trigo/soja/aveia e crotalária/trigo/soja/aveia/milho/trigo. A resistência à penetração (RP, a umidade e a densidade do solo foram avaliadas em distintas épocas e profundidades. Em todos os sistemas de culturas no Latossolo argiloso com semeadura direta, o maior estado de compactação foi verificado na camada em torno de 0,1 m de profundidade e o menor na camada até 0,07 m. A RP teve grande variação temporal e foi associada à variação do teor de água para cada condição de densidade do solo ou estado de compactação. Durante o ciclo das culturas, valores de RP restritivos ao crescimento das plantas foram atingidos na camada de cerca de 0,03 a 0,23 m de profundidade, quando o teor de água do solo variou de 0,14 a 0,28 kg kg-1. O efeito de plantas de cobertura de estação quente, com sistema radicular abundante e formador de poros biológicos, na redução da resistência mecânica do solo à penetração não foi observado no tempo estudado.Root growth is affected by mechanical soil resistance and affects the crop yield potential. This study evaluated the soil penetration resistance on a clayey Oxisol under distinct no-tillage cropping systems. The experiment was carried out at the technological field of Cotrijui in southern Brazil. The soil was a Haplorthox with a clay content of 0.68 kg kg-1 and it has been under four no-tillage cropping systems

  14. Weed infestation of a cereal-legume mixture depending on its concentration and position in a crop rotation

    Directory of Open Access Journals (Sweden)

    Marta K. Kostrzewska

    2012-10-01

    Full Text Available A field study was carried out in the period 2000-2006 at the Experimental Station in Tomaszkowo belonging to the University of Warmia and Mazury in Olsztyn. Its aim was to compare weed infestation of a mixture of spring barley and field pea grown in a four crop rotation with different crop selection and sequence. Each year during tillering of spring barley and before the harvest of the mixture, weed species composition and density were evaluated, while additionally weed biomass was also estimated before the harvest. These results were used to determine species constancy, Simpson’s dominance index, the Shannon-Wiener diversity and evenness indices as well as the community similarity index based on floristic richness, numbers and biomass of particular weed species. The cropping frequency and the position of the mixture in the crop rotation did not differentiate the species composition and total biomass of weed communities in the cereal-legume mixture crops. The crop rotation in which the mixture constituted 50% and was grown after itself had a reducing effect on weed numbers. Growing field pea in the 4-year crop rotation promoted weed infestation of the mixture and the dominance of weed communities. Capsella bursa-pastoris, Chenopodium album, Echinochloa crus-galli, Elymus repens, Polygonum convolvulus, and Sonchus arvensis were constant components of the agrophytocenoses. The weed communities were more similar in terms of their floristic composition than in terms of weed density and air-dry weight of weeds.

  15. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    Science.gov (United States)

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2017-07-31

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Biological Soil Properties in Integrated Crop-Livestock-Forest Systems

    Directory of Open Access Journals (Sweden)

    Paula Camylla Ramos Assis

    Full Text Available ABSTRACT Currently, agricultural productivity and sustainable development are the desired bases for the creation of production systems. Farming for greater production and the efficient use of soil resources are at the core of modern systems. However, the way in which agricultural management and practices can change soil quality has become increasingly important. The aim of this study was to detect changes in soil biological properties caused by implementation of the integrated crop-livestock-forest system (iCLF and to identify the properties suitable for detecting changes in soil biological quality. Soil samples were collected from the 0.00-0.10 m layer in Nova Canaã do Norte, MT, Brazil, and Cachoeira Dourada, GO, Brazil, in areas of the iCLF with 1 (iCLF1 or 3 (iCLF3 eucalyptus rows and in areas of recovered and degraded pasture. In Cachoeira Dourada, in the iCLF1, samples were taken in the tree row and at 2.5, 5.0, and 10.0 m from this row. In Nova Canaã in the iCLF3, samples were taken in the center row and at 3.0, 6.0, 9.0, and 12.0 m from this row. In Cachoeira Dourada, samples were taken in the center row and at 1.5, 3.0, 4.5, 6.0, and 9.0 m from this row. All samples had five replicates. In Nova Canaã, the iCLF1 caused less disturbance in the microbial population than the degraded pasture, which was evidenced by the lower metabolic quotient and basal respiration. The sampling position in relation to the tree row had little effect on comparison of the iCLF with the degraded pasture in regard to soil biological properties. Carbon and N of the microbial biomass and the microbial quotient were the best properties for differentiating the iCLF from the degraded pasture. ICLFs have not yet led to improvements in soil biological quality in relation to the degraded pasture.

  17. Agro-ecological zonation, characterization and optimization of rice-based cropping systems : proceedings of the SARP applications workshop on the application programs 'Agro-ecological zonation and characterzation' and 'Crop rotation optimization', held at the International Rice Research Institute (IRRI), Los Banos, Philippines, 18 April - 6 May, 1994

    NARCIS (Netherlands)

    Lansigan, F.P.; Bouman, B.A.M.; Laar, van H.H.

    1994-01-01

    In this volume of the SARP research proceedings two 'Application Programs' are introduced. Five papers are presented on agro-ecological zonation and characterization, dealing with rainfall mapping, GIS and soil data base investigation. Nine papers are presented on crop rotation optimization, having

  18. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.

    Science.gov (United States)

    Gommers, A; Gäfvert, T; Smolders, E; Merckx, R; Vandenhove, H

    2005-01-01

    The feasibility of willow short rotation coppice (SRC) for energy production as a revaluation tool for severely radiocaesium-contaminated land was studied. The effects of crop age, clone and soil type on the radiocaesium levels in the wood were assessed following sampling in 14 existing willow SRC fields, planted on radiocaesium-contaminated land in Sweden following Chernobyl deposition. There was only one plot where willow stands of different maturity (R6S2 and R5S4: R, root age and S, shoot age) and clone (Rapp and L78183 both of age category R5S4) were sampled and no significant differences were found. The soils differed among others in clay fraction (3-34%), radiocaesium interception potential (515-6884 meq kg(-1)), soil solution K (0.09-0.95 mM), exchangeable K (0.58-5.77 meq kg(-1)) and cation exchange capacity (31-250 meq kg(-1)). The soil-to-wood transfer factor (TF) of radiocaesium differed significantly between soil types. The TF recorded was generally small (0.00086-0.016 kg kg(-1)), except for willows established on sandy soil (0.19-0.46 kg kg(-1)). Apart from the weak yet significant exponential correlation between the Cs-TF and the solid/liquid distribution coefficient (R2 = 0.54) or the radiocaesium interception potential, RIP (R2 = 0.66), no single significant correlations between soil characteristics and TF were found. The wood-soil solution 137Cs concentration factor (CF) was significantly related to the potassium concentration in the soil solution. A different relation was, however, found between the sandy Trödje soils (CF = 1078.8 x m(K)(-1.83), R2 = 0.99) and the other soils (CF = 35.75 x m(K)(-0.61), R2 =0.61). Differences in the ageing rate of radiocaesium in the soil (hypothesised fraction of bioavailable caesium subjected to fast ageing for Trödje soils only 1% compared to other soils), exchangeable soil K (0.8-1.8 meq kg(-1) for Trödje soils and 1.5-5.8 meq kg(-1) for the other soils) and the ammonium concentration in the soil solution

  19. Cover crop and nitrogen fertilization influence soil carbon and nitrogen under bioenergy sweet sorghum

    Science.gov (United States)

    Cover crop and N fertilization may maintain soil C and N levels under sweet sorghum (Sorghum bicolor [L.] Moench) biomass harvested for bioenergy production. The effect of cover crops (hairy vetch [Vicia villosa Roth], rye [Secaele cereale L.], hairy vetch/rye mixture, and the control [no cover crop...

  20. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity

    Science.gov (United States)

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. I...

  1. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    Science.gov (United States)

    As crop and non-crop lands are increasingly becoming converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples obtained from 6 regional sets of switchgrass (Panicum virgatum L.) and 3 regiona...

  2. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    Science.gov (United States)

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  3. Effects of surface soil loss in South Eastern Nigeria: I. crop ...

    African Journals Online (AJOL)

    An understanding of the influence of surface soil loss on crop yield is necessary in order to find out their effects on performance of crops. Effects of surface soil loss on maize (Zea mays L) seed yield, plant height and leaf area index (LAI) were investigated in poultry and meteorological locations in South Eastern Nigeria.

  4. Soil fertility and crop management research on cool-season food ...

    African Journals Online (AJOL)

    Land degradation and depletion of soil fertility is the critical challenge for sustainable crop production in the highlands of Ethiopia. This paper reviews advances in the major activities and achievements of soil fertility, crop and land management research on the highland pulses, which have been done for the last two ...

  5. Developing a Foundation for Constructing New Curricula in Soil, Crop, and Turfgrass Sciences

    Science.gov (United States)

    Jarvis, Holly D.; Collett, Ryan; Wingenbach, Gary; Heilman, James L.; Fowler, Debra

    2012-01-01

    Some soil and crop science university programs undergo curricula revision to maintain relevancy with their profession and/or to attract the best students to such programs. The Department of Soil and Crop Sciences at Texas A&M University completed a thorough data gathering process as part of its revision of the undergraduate curriculum and…

  6. Ranking the magnitude of crop and farming system effects on soil microbial biomass and genetic structure of bacterial communities.

    Science.gov (United States)

    Hartmann, Martin; Fliessbach, Andreas; Oberholzer, Hans-Rudolf; Widmer, Franco

    2006-09-01

    Biological soil characteristics such as microbial biomass, community structures, activities, and functions may provide important information on environmental and anthropogenic influences on agricultural soils. Diagnostic tools and detailed statistical approaches need to be developed for a reliable evaluation of these parameters, in order to allow classification and quantification of the magnitude of such effects. The DOK long-term agricultural field experiment was initiated in 1978 in Switzerland for the evaluation of organic and conventional farming practices. It includes three representative Swiss farming systems with biodynamic, bio-organic and conventional fertilization and plant protection schemes along with minerally fertilized and unfertilized controls. Effects on microbial soil characteristics induced by the long-term management at two different stages in the crop rotation, i.e. winter wheat after potato or corn, were investigated by analyzing soil bacterial community structures using analysis of PCR-amplified rRNA genes by terminal restriction fragment length polymorphism and ribosomal intergenic spacer analysis. Application of farmyard manure consistently revealed the strongest influence on bacterial community structures and biomass contents. Effects of management and plant protection regimes occurred on an intermediate level, while the two stages in the crop rotation had a marginal influence that was not significant.

  7. An integrated soil-crop system model for water and nitrogen management in North China

    Science.gov (United States)

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo

    2016-05-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China.

  8. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity

    OpenAIRE

    Chang, Hao-Xun; Haudenshield, James S.; Bowen, Charles R.; Hartman, Glen L.

    2017-01-01

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA ...

  9. Forms of inorganic phosphorus in soil under different long term soil tillage systems and winter crops

    Directory of Open Access Journals (Sweden)

    Tales Tiecher

    2012-02-01

    Full Text Available The cultivation of crops with different capacity of P uptake and use under long-term soil tillage systems can affect the distribution of P cycling and inorganic forms in the soil, as a result of higher or lower use efficiency of P applied in fertilizers. The purpose of this study was to evaluate the effect of long-term cultivation of different winter species under tillage systems on the distribution of inorganic P forms in the soil. In 1986, the experiment was initiated with six winter crops (blue lupin, hairy vetch, oat, oilseed radish, wheat and fallow on a Rhodic Hapludox in southwestern Paraná, under no-tillage (NT and conventional tillage (CT. The application of phosphate fertilizer in NT rows increased inorganic P in the labile and moderately labile forms, and soil disturbance in CT redistributed the applied P in the deeper layers, increasing the moderately labile P concentration in the subsurface layers. Black oat and blue lupin were the most efficient P-recyclers and under NT, they increased the labile P content in the soil surface layers.

  10. Spatial Variability of Near-surface Soil Moisture for Bioenergy Crops at the Great Lakes Bioenergy Research Center

    Science.gov (United States)

    van Dam, R. L.; Diker, K.; Bhardwaj, A. K.; Hamilton, S. K.

    2009-12-01

    We used time-lapse electrical resistivity imaging (ERI) to monitor spatial and temporal soil moisture variability below ten different potential bioenergy cropping systems at the Great Lakes Bioenergy Research Center’s sustainability research site in Michigan, U.S.A. These crops range from high-diversity, low-input grasses and poplars to low-diversity, high-input corn-soybean-canola rotations. We equipped the 28x40m vegetation plots with permanent 2D resistivity arrays, each consisting of 40 graphite electrodes at 30cm spacing. Other permanent equipment in each plot includes multi-depth temperature and time domain reflectometry (TDR) based moisture sensors, and two tension soil water samplers. The material at the site consists of coarse sandy glacial tills in which a soil with an approximately 50cm thick A-Bt horizon has developed. ERI data were collected using a dipole-dipole configuration every four weeks since early May 2009. After removal of bad points, the data were inverted and translated into 2D images of water content using lab-derived petrophysical relationships, including corrections for soil temperature and salinity. The results show significant seasonal variation within and between vegetation plots. We compare our results to high-temporal resolution point-based measurements of soil moisture from TDR probes and present statistical analysis of the variability of soil moisture within and between plots.

  11. Weed infestation of field crops in different soils in the protective zone of Roztocze National Park. Part II. Root crops

    Directory of Open Access Journals (Sweden)

    Marta Ziemińska-Smyk

    2013-12-01

    Full Text Available The study on weed infestation of root crops in different soils in the protective zone of Roztocze National Park was conducted in the years 1991-1995. As many as 240 phytosociological records, made with the use of Braun-Blanquet method, were taken in potato and sugar beet fields. The number of weed species in sugar beet and potato in the area depended on the soil and type of root crop. In the same environment conditions. the iiuinber of weed species was higher in potato than in sugar beet. The most difficult weed species iii all types of soil were: Chenopodium album, Stellaria media and Convolvulus arvensis. Podsolic soils were highly infested by two acidophylic species: Spergula arvensis and Raphanus raphanistum. Potato in loess soil and brown soil made of loamy sands were highly infested by Echinochloa crus-galli, Equisetum arvense and Galinsoga parviflora. Root crop plantations in brown soils formed from gaizes of granulometric loam texture and limestone soils were infested by: Galium aparine, Sonchus arvensis, Sinapis arvensis and Veronica persica.

  12. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems.

    Science.gov (United States)

    Orr, C H; Stewart, C J; Leifert, C; Cooper, J M; Cummings, S P

    2015-07-01

    To identify changes in the bacterial community, at the phylum level brought about by varied crop management. Next-generation sequencing methods were used to compare the taxonomic structure of the bacterial community within 24 agricultural soils managed with either organic or conventional methods, over a 3-year period. Relative abundance of the proportionately larger phyla (e.g. Acidobacteria and Actinobacteria) was primarily affected by sample year rather than crop management. Changes of abundance in these phyla were correlated with changes in pH, organic nitrogen and soil basal respiration. Crop management affected some of the less dominant phyla (Chloroflexi, Nitrospirae, Gemmatimonadetes) which also correlated with pH and organic N. Soil diversity can vary with changing environmental variables and soil chemistry. If these factors remain constant, soil diversity can also remain constant even under changing land use. The impact of crop management on environmental variables must be considered when interpreting bacterial diversity studies in agricultural soils. Impact of land use change should always be monitored across different sampling time points. Further studies at the functional group level are necessary to assess whether management-induced changes in bacterial community structure are of biological and agronomic relevance. © 2015 The Society for Applied Microbiology.

  13. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  14. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization

    Directory of Open Access Journals (Sweden)

    Rui Manuel Almeida Machado

    2017-05-01

    Full Text Available Salinity is a major problem affecting crop production all over the world: 20% of cultivated land in the world, and 33% of irrigated land, are salt-affected and degraded. This process can be accentuated by climate change, excessive use of groundwater (mainly if close to the sea, increasing use of low-quality water in irrigation, and massive introduction of irrigation associated with intensive farming. Excessive soil salinity reduces the productivity of many agricultural crops, including most vegetables, which are particularly sensitive throughout the ontogeny of the plant. The salinity threshold (ECt of the majority of vegetable crops is low (ranging from 1 to 2.5 dS m−1 in saturated soil extracts and vegetable salt tolerance decreases when saline water is used for irrigation. The objective of this review is to discuss the effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization can prevent soil and water salinization and mitigate the adverse effects of salinity.

  15. Changes in soil carbon cycling accompanying conversion of row-crop fields to grazing dairy pastures

    Science.gov (United States)

    Thompson, A.; Kramer, M. G.; Hill, N.; Machmuller, M. B.; Cyle, K.

    2011-12-01

    Increasingly, the dairy industry in the eastern US is transitioning from total confinement dairy systems (TCD) toward pasture-based, management intensive grazing dairy (MiGD) systems. This transition is driven by the fact that MiGDs require substantially less operating capital and are more economically efficient than TCD systems. Consequently, the impact of this transition and shift in land-use practice on carbon dynamics may be considerable. Land-use in a Management intensive Grazing Dairy (MiGD) system is fundamentally different than conventional confinement dairies and conventional no-till pastures. The forage system involves rotational grazing at optimal digestibility, when the plants are immature (~20-days) and consequently protein-rich. MiGD cows spend >90% of their time in the field and deposit > 90% of their waste directly to the soil surface. Thus, little above ground plant residues are directly returned to the soil, but rather substantial C inputs derive from bovine manure. We sampled a MiGD-chronosequence of row-crop to MiGD conversion established in 2007 in eastern Georgia. All soils across the MiGD-chronosequence, all occur in relative (40 km) close proximity to one another, are deep, well-drained, fine and fine sandy loam Ultisols formed on Coastal Plain sediments. Prior to MiGD established, the soils were farmed for > 50 yrs using conventional tillage techniques. Our current sampling to 1m depths captures fields at 0, 2, 3, and 5 yrs since conversion. Total soil carbon (C) and the carbon concentration of the clay fraction increased following conversion, with the greatest increases occurring between 3 and 5 yrs since conversion. These C increases were limited to the upper 40cm of the soil, with minimal change occurring at depth. Characterization of the protein and ligand content of these soils via 13C NMR and chemolytic techniques as a function of soil particle density and size is in progress and will be presented along with estimates of carbon

  16. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    Science.gov (United States)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  17. Population dynamics of plant nematodes in cultivated soil: effect of summer cover crops in newly cleared land.

    Science.gov (United States)

    Brodie, B B; Good, J M; Jaworski, C A

    1970-07-01

    Five nematode species were studied for ability to develop on seven summer cover crops in rotation with tomato transplants grown every third year. Increase of Tylenchorhynchus claytoni, Trichodorus christiei, Pratylenchus brachyurus, Helicotylenchus dihystera, and Xiphinema americanum in newly cleared soil varied with different cover crops. No substantial nematode population increases occurred until the third summer of crop growth. All species except X. americanum and H. dihystera developed best on sudangrass and millet. Crotalaria caused substantial increase of H. dihystera and P. brachyurus but suppressed the other species. Marigold suppressed all species except X. americanum which increased substantially on marigold during the 5th year. Cotton favored rapid increase of T. christiei, and moderate increases of all species except T. claytoni which was suppressed. Beggarweed favored moderate increases of T. christiei and H. dihystera but suppressed the other species. Hairy indigo favored rapid increase of H. dihystera, moderate increases of T. christiei and X. americanum, and suppressed the other species. Number of marketable transplants was reduced after 2 years of sudangrass and cotton; these crops favored increases of T. christiei and T. claytoni. The better cover crops prevented increases of most plant parasitic nematodes in land cropped to tomato, a suitable host.

  18. Soil erosion, soil fertility and crop yield on slow-forming terraces in the highlands of Buberuka, Rwanda

    NARCIS (Netherlands)

    Kagabo, M.D.; Stroosnijder, L.; Visser, S.M.; Moore, D.

    2013-01-01

    Crop productivity in Rwanda is declining as a result of intensive farming on steep slopes, which leads to soil loss and declining soil fertility particularly in the northern highlands. Slow-forming terraces have been widely adopted in the northern highlands of Rwanda to control soil erosion however

  19. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    Science.gov (United States)

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  20. Modelling soil properties in a crop field located in Croatia

    Science.gov (United States)

    Bogunovic, Igor; Pereira, Paulo; Millan, Mesic; Percin, Aleksandra; Zgorelec, Zeljka

    2016-04-01

    Development of tillage activities had negative effects on soil quality as destruction of soil horizons, compacting and aggregates destruction, increasing soil erosion and loss of organic matter. For a better management in order to mitigate the effects of intensive soil management in land degradation it is fundamental to map the spatial distribution of soil properties (Brevik et al., 2016). The understanding the distribution of the variables in space is very important for a sustainable management, in order to identify areas that need a potential intervention and decrease the economic losses (Galiati et al., 2016). The objective of this work is study the spatial distribution of some topsoil properties as clay, fine silt, coarse silt, fine sand, coarse sand, penetration resistance, moisture and organic matter in a crop field located in Croatia. A grid with 275x25 (625 m2) was designed and a total of 48 samples were collected. Previous to data modelling, data normality was checked using the Shapiro wilk-test. As in previous cases (Pereira et al., 2015), data did not followed the normal distribution, even after a logarithmic (Log), square-root, and box cox transformation. Thus, for modeling proposes, we used the log transformed data, since was the closest to the normality. In order to identify groups among the variables we applied a principal component analysis (PCA), based on the correlation matrix. On average clay content was 15.47% (±3.23), fine silt 24.24% (±4.08), coarse silt 35.34% (±3.12), fine sand 20.93% (±4.68), coarse sand 4.02% (±1.69), penetration resistance 0.66 MPa (±0.28), organic matter 1.51% (±0.25) and soil moisture 32.04% (±3.27). The results showed that the PCA identified three factors explained at least one of the variables. The first factor had high positive loadings in soil clay, fine silt and organic matter and a high negative loading in fine sand. The second factor had high positive loadings in coarse sand and moisture and a high

  1. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    Science.gov (United States)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  2. Crop and soil specific N and P efficiency and productivity in Finland

    OpenAIRE

    Bäckman, S.; A. LANSINK

    2005-01-01

    This paper estimates a stochastic production frontier based on experimental data of cereals production in Finland over the period 1977-1994. The estimates of the production frontier are used to analyze nitrogen and phosphorous productivity and efficiency differences between soils and crops. For this input specific efficiencies are calculated. The results can be used to recognize relations between fertilizer management and soil types as well as to learn where certain soil types and crop combin...

  3. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Energy Technology Data Exchange (ETDEWEB)

    Recatala, L., E-mail: luis.recatala@uv.es [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Sanchez, J. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Arbelo, C. [Departamento de Edafologia y Geologia, Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna (Tenerife), Islas Canarias (Spain); Sacristan, D. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain)

    2010-12-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC{sub 50}) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  4. Spatial pattern of soil and soybean crop: an assessment using digital mapping techniques

    Science.gov (United States)

    Castro Franco, Mauricio; Cordoba, Mariano; Costa, Jose Luis; Aparicio, Virginia; Domenech, Marisa

    2017-04-01

    The aim of this study was to analyze the relationships among spatial patterns of soil properties and soybean crop. The study was carried out in three provinces of Argentina: (i) Buenos Aires (BA), (ii) Entre Rios (ER) and (iii) Cordoba (COR). In each province, 2 agricultural fields were selected. Ancillary information related to soil forming factors in each field was gathered, for example apparent electrical conductivity (ECa), NDVI and yield maps. We used principal component spatial analysis (MULTISPATI-PCA) to delimit zones for soil type by field. To zonal validation, 4 sampling sites were located in which we collected soil samples, grain yield and soybean crop quality. Random Forest (RF) was used to determine the importance of soil properties over soybean crop properties. For comparing soil properties in each zone between fields, a mix lineal model and ANOVA were adjusted. Our results suggest that MULTISPATI-PCA was efficient to delimit zones for soil type. Relationships between soil properties and crop yield were examined and understood. However, it did not occur with crop quality patterns. Topography did not prove to be an accurate indicator of spatial pattern relations of soil properties and crop, whereas ECa, yield maps and NDVI proved to be effective indicators. Grains m-2 and NDVI were affected homogeneously and were showed spatial correspondence according to soil limitations. Percentage of protein did not show spatial correspondence with delimitated zones in saline soils, particularly in ER. In such fields, Om and pH were important for percentage of protein. It was evidenced that a direct relation exists between complex relationship of soil and crop properties and soil degradation.

  5. Soil testing for P and K has value in nutrient management for annual crops

    Directory of Open Access Journals (Sweden)

    Daniel Geisseler

    2016-08-01

    Full Text Available Adequate nutrients in forms available to plant roots are essential for sustainable crop production. Soil testing for phosphorus and potassium availability allows growers and crop advisers to determine whether a soil is likely to respond to fertilization. As yields have risen with improved management and production systems, crop nutrient demand and the removal of nutrients with harvested crops have increased. An in-depth discussion of soil tests for phosphorus and potassium and their use in California cropping systems is clearly needed. We review how these nutrients become available to plant roots, how samples are taken and test results interpreted, complementary ways to assess the adequacy of supplies and what research is needed to improve soil testing for phosphorus and potassium.

  6. Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models

    DEFF Research Database (Denmark)

    Doltra, Jordi; Nuñoz, P

    2010-01-01

    to a higher nitrate concentration in percolated water. Comparison of the observed and predicted yield response to N applications with EU-Rotate_N demonstrated that the best fertigation strategy could be identified and the risk of nitrate leaching quantified with this model. The results showed......Two different modeling approaches were used to simulate the N leached during an intensively fertigated crop rotation: a recently developed crop-based simulation model (EU-Rotate_N) and a widely recognized solute transport model (Hydrus-2D). Model performance was evaluated using data from...... demand algorithms are involved. In the simulations with Hydrus-2D the evapotranspiration demand was a limiting factor for N uptake, resulting in an increasing underestimation of uptake with decreasing N fertilizer rates. Simulated N leaching below a depth of 60 cm was higher with Hydrus-2D due...

  7. Changes in soil organic matter over 70 years in continuous arable and ley-arable rotations on a sandy loam soil in England.

    Science.gov (United States)

    Johnston, A E; Poulton, P R; Coleman, K; Macdonald, A J; White, R P

    2017-05-01

    The sequestration in soil of organic carbon (SOC) derived from atmospheric carbon dioxide (CO2) by replacing arable crops with leys, has been measured over 70 years on a sandy loam soil. The experiment was designed initially to test the effect of leys on the yields of arable crops. A 3-year grazed grass with clover (grass + clover) ley in a 5-year rotation with arable crops increased percentage organic carbon (%OC) in the top 25 cm of the soil from 0.98 to 1.23 in 28 years, but with little further increase during the next 40 years with all-grass leys given fertilizer nitrogen (N). In this second period, OC inputs were balanced by losses, suggesting that about 1.3% OC might be near the equilibrium content for this rotation. Including 3-year lucerne (Medicago sativa) leys had little effect on %OC over 28 years, but after changing to grass + clover leys, %OC increased to 1.24 during the next 40 years. Eight-year leys (all grass with N or grass + clover) in 10-year rotations with arable crops were started in the 1970s, and after three rotations %OC had increased to ca. 1.40 in 2000-2009. Over 70 years, %OC declined from 0.98 to 0.94 in an all-arable rotation with mainly cereals and to 0.82 with more root crops. Applications of 38 t ha-1 farmyard manure (FYM) every fifth year increased %OC by 0.13% by the mid-1960s when applications ceased. Soil treated with FYM still contained 0.10% more OC in 2000-2009. Changes in the amount of OC have been modelled with RothC-26.3 and estimated inputs of C for selected rotations. Little of the OC input during the 70 years has been retained; most was retained in the grazed ley rotation, but 9 t ha-1 only of a total input of 189 t ha-1. In other rotations more than 98% of the total OC input was lost. Despite large losses of C, annual increases in OC of 4‰ are possible on this soil type with the inclusion of grass or grass + clover leys or the application of FYM, but only for a limited

  8. SOIL CHEMICAL ATTRIBUTES AND LEAF NUTRIENTS OF ‘PACOVAN’ BANANA UNDER TWO COVER CROPS

    Directory of Open Access Journals (Sweden)

    JOSÉ EGÍDIO FLORI

    2016-01-01

    Full Text Available Banana is one of the most consumed fruits in the world, which is grown in most tropical countries. The objective of this work was to evaluate the main attributes of soil fertility in a banana crop under two cover crops and two root development locations. The work was conducted in Curaçá, BA, Brazil, between October 2011 and May 2013, using a randomized block design in split plot with five repetitions. Two cover crops were assessed in the plots, the cover 1 consisting of Pueraria phaseoloides, and the cover 2 consisting of a crop mix with Sorghum bicolor, Ricinus communis L., Canavalia ensiformis, Mucuna aterrima and Zea mays, and two soil sampling locations in the subplots, between plants in the banana rows (location 1 and between the banana rows (location 2. There were significant and independent effects for the cover crop and sampling location factors for the variables organic matter, Ca and P, and significant effects for the interaction between cover crops and sampling locations for the variables potassium, magnesium and total exchangeable bases. The cover crop mix and the between-row location presented the highest organic matter content. Potassium was the nutrient with the highest negative variation from the initial content and its leaf content was below the reference value, however not reducing the crop yield. The banana crop associated with crop cover using the crop mix provided greater availability of nutrients in the soil compared to the coverage with tropical kudzu.

  9. Effect of Ground Cover by Different Crops on soil Loss and ...

    African Journals Online (AJOL)

    Of all hazard factors, soil cover and cover management for conservations have the most important influences on the rain erosion hazard. The effects of ground cover by various crops on the soil physico-chemical properties and soil loss of an Ultisol in southeastern Nigeria were studied. Five experimental plots containing ...

  10. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Cajthaml, Tomáš; Slejška, A.; Šimáčková, H.; Honzík, R.; Kovářová, M.; Frouz, Jan

    2014-01-01

    Roč. 60, January (2014), s. 137-146 ISSN 0961-9534 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : soil fauna * energy crops * composition of soil fungi * microbial biomass * basal soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.394, year: 2014

  11. Continuous Cropping Systems Reduce Near-Surface Maximum Compaction in No-Till Soils

    Science.gov (United States)

    Because of increased concerns over compaction in NT soils, it is important to assess how continuous cropping systems influence risks of soil compaction across a range of soils and NT management systems. We quantified differences in maximum bulk density (BDmax) and critical water content (CWC) by the...

  12. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Science.gov (United States)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  13. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation

    Directory of Open Access Journals (Sweden)

    Babbu Singh Brar

    2015-06-01

    Full Text Available Balanced and integrated use of organic and inorganic fertilizers may enhance the accumulation of soil organic matter and improves soil physical properties. A field experiment having randomized complete block design with four replications was conducted for 36 years at Punjab Agricultural University (PAU, Ludhiana, India to assess the effects of inorganic fertilizers and farmyard manure (FYM on soil organic carbon (SOC, soil physical properties and crop yields in a maize (Zea mays–wheat (Triticum aestivum rotation. Soil fertility management treatments included were non-treated control, 100% N, 50% NPK, 100% NP, 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + W, 100% NPK (-S and 100% NPK + FYM. Soil pH, bulk density (BD, electrical conductivity (EC, cation exchange capacity, aggregate mean weight diameter (MWD and infiltration were measured 36 years after the initiation of experiment. Cumulative infiltration, infiltration rate and aggregate MWD were greater with integrated use of FYM along with 100% NPK compared to non-treated control. No significant differences were obtained among fertilizer treatments for BD and EC. The SOC pool was the lowest in control at 7.3 Mg ha−1 and increased to 11.6 Mg ha−1 with 100%NPK+FYM. Improved soil physical conditions and increase in SOC resulted in higher maize and wheat yields. Infiltration rate, aggregate MWD and crop yields were positively correlated with SOC. Continuous cropping and integrated use of organic and inorganic fertilizers increased soil C sequestration and crop yields. Balanced application of NPK fertilizers with FYM was best option for higher crop yields in maize–wheat rotation.

  14. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    Science.gov (United States)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that

  15. The impacts of land-use change from grassland to bioenergy Short Rotation Coppice (SRC) willow on the crop and ecosystem greenhouse gas balance

    Science.gov (United States)

    Harris, Z. M.; Taylor, G.; Alberti, G.; Dondini, M.; Smith, P.

    2014-12-01

    The aim of this research is to better understand the greenhouse gas balance of land-use transition to bioenergy cropping systems in a UK context. Given limited land availability, addressing the food-energy-water nexus remains a challenge, and it is imperative that bioenergy crops are sited appropriately and that competition with food crops is minimised. Initial analyses included an extensive literature review and meta-analysis with a focus on the effects of land-use change to bioenergy on soil carbon and GHGs. This data mining exercise allowed us to understand the current state of the literature and identify key areas of research which needed to be addressed. Significant knowledge gaps were identified, with particular uncertainty around transitions from grasslands and transitions to short rotation forestry. A paired site experiment was established on a commercial SRC willow plantation and grassland to measure soil and ecosystem respiration. Initial results indicate that willow was a net sink for CO2 in comparison to grassland which was a net source of CO2. This provides evidence that the GHG balance of transition to SRC bioenergy willow will potentially result in increased soil carbon, in the long-term. The empirical findings from this study have been combined with modelled estimates for the site to both test and validate the ECOSSE model. Initial comparisons show that the model is able to accurately predict the respiration occurring at the field site, suggesting that it is a valuable approach for up-scaling from point sites such as this to wider geographical areas, and for considering future climate scenarios. The spatial modelling outputs will be used to build a modelling tool for non-specialist users which will determine the GHG and soil carbon effects of changing land to bioenergy for UK. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI).

  16. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; Pulleman, M.M.

    2013-01-01

    Conservation agriculture is widely promoted for soil conservation and crop productivity increase, although rigorous empirical evidence from sub-Saharan Africa is still limited. This study aimed to quantify the medium-term impact of tillage (conventional and reduced) and crop residue management

  17. Effects of first-and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop

    NARCIS (Netherlands)

    Schrama, M.; Vandecasteele, B.; Almeida De Carvalho, S.; Muylle, H.; Putten, van der W.H.

    2016-01-01

    To develop a more sustainable bio-based economy, an increasing amount of carbon for industrial applications and biofuel will be obtained from bioenergy crops. This may result in intensified land use and potential conflicts with other ecosystem services provided by soil, such as control of greenhouse

  18. Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop

    NARCIS (Netherlands)

    Schrama, Maarten; Vandecasteele, Bart; Carvalho, Sabrina; Muylle, Hilde; van der Putten, Wim H.

    2016-01-01

    To develop a more sustainable bio-based economy, an increasing amount of carbon for industrial applications and biofuel will be obtained from bioenergy crops. This may result in intensified land use and potential conflicts with other ecosystem services provided by soil, such as control of greenhouse

  19. Measurement of the fluorescence of crop residues: A tool for controlling soil erosion

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.

    1994-01-01

    Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.

  20. Water Quality Changes in a Short-Rotation Woody Crop Riparian Buffer

    Science.gov (United States)

    Rosa, D.; Clausen, J.; Kuzovkina, J.

    2016-12-01

    Converting riparian buffers in agricultural areas from annual row crops to short rotation woody crops (SRWCs) grown for biofuel can provide both water quality benefits and a financial incentive for buffer adoption among agricultural producers. A randomized complete block design was used to determine water quality changes resulting from converting plots previously cultivated in corn to SRWC willow (Salix. spp) adjacent to a stream in Storrs, CT. Both overland flow and ground water samples were analyzed for total nitrogen (TN), nitrate + nitrite (NO2+NO3-N), and total phosphorus (TP). Overland flow was also analyzed for suspended solids concentration (SSC). Lower (p = 0.05) concentrations of TN (56%) and TP (61%) were observed in post-coppice surface runoff from willow plots than from corn plots. Shallow ground water concentrations at the edge of willow plots were lower in TN (56%) and NO3+NO2-N (64%), but 35% higher in TP, than at the edge of corn plots. SSC was also lower (72%) in overland flow associated with willow compared to corn. The treatment had no effect on discharge or mass export. These results suggest conversion from corn to a SRWC in a riparian area can provide water quality benefits similar to those observed in restored and established buffers.

  1. Long-Term Changes in Soil Carbon under Different Fertilizer, Manure, and Rotation: Testing the Mathematical Model ecosys with Data from the Breton Plots

    Energy Technology Data Exchange (ETDEWEB)

    Grant, R F.(University of Alberta); Juma, N G.(University of Alberta); Robertson, J A.(University of Alberta); Izaurralde, R Cesar C.(BATTELLE (PACIFIC NW LAB)); Mcgill, William B.(unknown)

    2001-01-01

    Soil C contents can be raised by land use practices in which rates of C input exceed those of C oxidation. Rates of C inputs of soil can be raised by continuous cropping, especially with perennial legumes, and by soil amendments, especially manure. We have summarized our understanding of the processes by which changes in soil C content are determined by rates of soil C input in the mathematical model ecosys. We compared model output for changes in soil C with those measured in a Gray Luvisol (Typic Cryboralf) at Breton, Alberta, during 70 yr of a 2-yr wheat (Triticum aestivum L.)-fallow rotation vs. a 5-yr wheat-oat (Avena sativa L.)-barley (Hordeum vulgare L.)-forage-forage rotation with unamended, fertilized, and manured treatments. Model results indicated that rates of C input in the 2-yr rotation were inadequate to maintain soil C in the upper 0.15 m of the soil profile unless manure was added, but that those in the 5-yr rotation were more than adequate. Consequent changes of soil C in the model were corroborated by declines of 14 and 7 g C m-2 yr-1 measured in the control and fertilized treatments of the 2-yr rotation; by gains of 7 g C m-2 yr-1 measured in the manured treatment of the 2-yr rotation; and by gains of 4, 14, an d28 g C m-2 yr-1 measured in the control, fertilized, and manured treatments of the 5-yr rotation. Model results indicated that soil C below 0.15 m declined in all treatments of both rotations, but more so in the 2-yr than in the 5-yr rotation. These declines were corroborated by lower soil C contents measured between 0.15 and 0.40 m after 70 yr in the 2- vs. 5-yr rotation. Land use practices that favor C storage appear to interact positively with each other, so that gains in soil C under one such practice are greater when it is combined with other such practices.

  2. Effects of traffic-induced soil compaction on crop growth and soil properties

    Science.gov (United States)

    Baibay, Amélia; Ren, Lidong; D'Hose, Tommy; De Pue, Jan; Ruysschaert, Greet; Cornelis, Wim

    2017-04-01

    Traffic-induced soil compaction on arable soils constitutes a major threat for agricultural productivity and the environmental quality of the soil, water and atmosphere. The objective of this work is to evaluate a set of prevention strategies for agricultural traffic under real farming conditions. To that end, a one-pass traffic experiment was conducted near Ghent, Belgium in winter 2015 on a sandy loam (haplic Luvisol; 43% sand, 47% silt, 10% clay). Winter rye (Secale cereale L.), which promotes the removal of residual soil nitrogen and thus reduces the potential for nitrogen leaching, was sown as cover crop using different tractor and weather settings on different field lanes: dry (D, 0.16 m3 m-3) or wet (W, 0.20-0.23 m3 m-3) conditions, normal (N, 65 cm width, axle load 8520 kg) or wide (W, 90 cm width, axle load 8520 kg) tires and high (HP, 1.4 bars for N, 1.0 bar for W) or low (LP, 1.0 bar for N, 0.5 bar for W) inflation pressure. Subsequently, crop biomass, root density and a set of hydrophysical properties (penetration resistance, saturated hydraulic conductivity and water retention at 15, 35 and 55 cm depth) were measured. Bulk density, soil quality indicators (such as air capacity) and the pore size distribution were also calculated. Results showed significant biomass reduction (p compaction on crop growth, worse under wet conditions, but the choice of tires did not prove to have an effect. Observations on the hydrophysical properties were more mitigated, as expected: distinct differences are primarily found under controlled lab conditions or after several passes. Moreover, high moisture conditions could not be obtained for the wet experiment, which never exceeded field capacity, conceived as threshold. Nevertheless, penetration resistance profiles indicated a plough pan about 40 cm depth, witness of previous agricultural operations on the field, and high values (3.5 to 4 MPa) were found in the subsoil too. Moreover, bulk densities were higher for all

  3. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    Directory of Open Access Journals (Sweden)

    Raphiou Maliki

    2016-01-01

    Full Text Available Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM production (tubers, shoots, nutrients removed and recycled, and the soil fertility changes. We compared smallholders’ traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation. The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA using the general linear model (GLM procedure was applied to the dry matter (DM production (tubers, shoots, nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  4. LBA-ECO ND-11 Soil Water Pressure and Flow Measurements under Tree Crops

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains information that can be used to examine water fluxes in soils beneath tree crops in an Amazonian agroforest. The data consists of repeated...

  5. LBA-ECO ND-11 Soil Water Pressure and Flow Measurements under Tree Crops

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains information that can be used to examine water fluxes in soils beneath tree crops in an Amazonian agroforest. The data consists of...

  6. Field controlled experiments of mercury accumulation in crops from air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhenchuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Xiaoshan, E-mail: zhangxsh@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wang Zhangwei, E-mail: wangzhw@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Ci Zhijia [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-10-15

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation. - Highlights: > Hg accumulation in crop organs was studied by OTCs and soil Hg enriched experiments. > Hg accumulation in foliages and roots was mainly from air and soil, respectively. > Air Hg had stronger influence than soil Hg on stem Hg accumulation. > Foliar Hg concentrations showed the trend of increase over growth stages. - Capsule Mercury accumulated in the aboveground organs of crop was mainly from the air.

  7. Study of Nitrogen Use Efficiency Indices in the Double Cropping Rotations of Wheat (Triticum aestivum L. in Ilam

    Directory of Open Access Journals (Sweden)

    R. Nasri

    2016-02-01

    Full Text Available This study was carried out under temperate climate condition of Ilam province, Iran, during 2012-2013 growing season to determine the suitable crop rotation for enhancing nitrogen uptake, utilization, and use efficiency of wheat. A two factor experiment was laid out as split plot arrangement (RCBD with four replications. The main plots consisted of 6 pre-sowing plant treatments (control, Perko, Buko, Clover, Oilseed radish and combination of three plants Ramtil, Phaselia, Clover, and sub-plots were allocated to four levels of nitrogen fertilizer (Zero, conventionally recommended fertilizer, 50% lower and 50% higher than the recommended fertilizer. Results showed that nitrogen use efficiency (NUE, nitrogen uptake efficiency (NUpE, nitrogen utilization efficiency (NUtE and nitrogen efficiency ratio (NER in wheat were significantly affected by crop rotation and nitrogen fertilizer and their interaction. The lowest and highest nitrogen use efficiencies were achieved in oilseed radish-wheat and fallow-wheat rotations. The greatest nitrogen use efficiency in oilseed radish-wheat was due to high utilization efficiency of nitrogen in the rotation. The greatest and smallest nitrogen utilization efficiencies (NUtE were observed in oilseed radish-wheat and fallow-wheat rotations, respectively. Perko-wheat rotation with application of nitrogen at the conventional level for wheat brings about an acceptable economic yield and high nitrogen uptake and use efficiency and seems to be advantageous to other rotations.

  8. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].

    Science.gov (United States)

    Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin

    2013-09-01

    Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.

  9. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia.

    Science.gov (United States)

    Zhou, Xiaoqi; Wu, Hanwen; Li, Guangdi; Chen, Chengrong

    2016-11-01

    Cover crop species are usually grown to control weeds. After cover crop harvest, crop residue is applied on the ground to improve soil fertility and crop productivity. Little information is available about quantifying the contributions of cover crop application to soil total carbon (C) and nitrogen (N) contents in temperate Australia. Here, we selected eight cover crop treatments, including two legume crops (vetch and field pea), four non-legume crops (rye, wheat, Saia oat, and Indian mustard), a mixture of rye and vetch, and a nil-crop control in temperate Australia to calculate the contributions of cover crops (crop growth + residue decomposition) to soil C and N contents. Cover crops were sown in May 2009 (autumn). After harvest, the crop residue was placed on the soil surface in October 2009. Soil and crop samples were collected in October 2009 after harvest and in May 2010 after 8 months of residue decomposition. We examined cover crop residue biomass, soil and crop total C and N contents, and soil microbial biomass C and N contents. The results showed that cover crop application increased the mean soil total C by 187-253 kg ha-1 and the mean soil total N by 16.3-19.1 kg ha-1 relative to the nil-crop treatment, except for the mixture treatment, which had similar total C and N contents to the nil-crop control. Cover crop application increased the mean soil microbial biomass C by 15.5-20.9 kg ha-1 and the mean soil microbial biomass N by 4.5-10.2 kg ha-1. We calculated the apparent percentage of soil total C derived from cover crop residue C losses and found that legume crops accounted for 10.6-13.9 %, whereas non-legume crops accounted for 16.4-18.4 % except for the mixture treatment (0.2 %). Overall, short-term cover crop application increased soil total C and N contents and microbial biomass C and N contents, which might help reduce N fertilizer use and improve sustainable agricultural development.

  10. Organic Matter and Soil Moisture Content and Double Cropping with Organic Matter Sourceplants

    OpenAIRE

    Bako Baon, John; Wibawa, Aris

    2005-01-01

    Double cropping of coffee with organic matter source plants is thought to increase organic matter content of soil. This study examined the effect of double cropping of coffee and organic matter source plants on soil organic matter content and yield of coffee plants. Arabica coffee trees in Andungsari Experimental Station (Bondowoso district), 1400 m asl. and climate type C; and Robusta coffee trees in Sumberasin Experimental Station (Malang district), 550 m asl. and climate type C, were used ...

  11. Organic matter and soil moisture content and double cropping with organic matter sourceplants

    OpenAIRE

    John Bako Baon; Aris Wibawa

    2005-01-01

    Double cropping of coffee with organic matter source plants is thought to increase organic matter content of soil. This study examined the effect of double cropping of coffee and organic matter source plants on soil organic matter content and yield of coffee plants. Arabica coffee trees in Andungsari Experimental Station (Bondowoso district), 1400 m asl. and climate type C; and Robusta coffee trees in Sumberasin Experimental Station (Malang district), 550 m asl. and climate type C, were used ...

  12. Changes in Soil Organic Carbon Fractions in Response to Cover Crops in an Orange Orchard

    OpenAIRE

    Francisco Éder Rodrigues de Oliveira; Judyson de Matos Oliveira; Francisco Alisson da Silva Xavier

    2016-01-01

    ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacin...

  13. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Science.gov (United States)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  14. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue

    Science.gov (United States)

    The activity of allelopathic compounds is often reduced in the soil environment where processes involving release from donor plant material, soil adsorption and degradation, and uptake by receptor plants naturally result in complex interactions. Rye (Secale cereale L.) cover crops are known to supp...

  15. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    NARCIS (Netherlands)

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  16. Evapotranspiration simulated by CRITERIA and AquaCrop models in stony soils

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2015-06-01

    Full Text Available The performance of a water balance model is also based on the ability to correctly perform simulations in heterogeneous soils. The objective of this paper is to test CRITERIA and AquaCrop models in order to evaluate their suitability in estimating evapotranspiration at the field scale in two types of soil in the Mediterranean region: non-stony and stony soil. The first step of the work was to calibrate both models under the non-stony conditions. The models were calibrated by using observations on wheat crop (leaf area index or canopy cover, and phenological stages as a function of degree days and pedo-climatic measurements. The second step consisted in the analysing the impact of the soil type on the models performances by comparing simulated and measured values. The outputs retained in the analysis were soil water content (at the daily scale and crop evapotranspiration (at two time scales: daily and crop season. The model performances were evaluated through four statistical tests: normalised difference (D% at the seasonal time scale; and relative root mean square error (RRMSE, efficiency index (EF, coefficient of determination (r2 at the daily scale. At the seasonal scale, values of D% were less than 15% in stony and on-stony soils, indicating a good performance attained by both models. At the daily scale, the RRMSE values (<30% indicate that the evapotranspiration simulated by CRITERIA is acceptable in both soil types. In the stony soil conditions, 3 out 4 statistical tests (RRMSE, EF, r2 indicate the inadequacy of AquaCrop to simulate correctly daily evapotranspiration. The higher performance of CRITERIA model to simulate daily evapotranspiration in stony soils, is due to the soil submodel, which requires the percentage skeleton as an input, while AquaCrop model takes into account the presence of skeleton by reducing the soil volume.

  17. Changes in Soil Organic Carbon Fractions in Response to Cover Crops in an Orange Orchard

    Directory of Open Access Journals (Sweden)

    Francisco Éder Rodrigues de Oliveira

    2016-01-01

    Full Text Available ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes – BRAQ, pearl millet (Pennisetum glaucum – MIL, jack bean (Canavalia ensiformis – JB, blend (50 % each of jack bean + millet (JB/MIL, and spontaneous vegetation (SPV. The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC content, light fraction (LF, and the particulate organic C (POC, and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1 in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.

  18. Root Parameters Show How Management Alters Resource Distribution and Soil Quality in Conventional and Low-Input Cropping Systems in Central Iowa.

    Directory of Open Access Journals (Sweden)

    Patricia A Lazicki

    Full Text Available Plant-soil relations may explain why low-external input (LEI diversified cropping systems are more efficient than their conventional counterparts. This work sought to identify links between management practices, soil quality changes, and root responses in a long-term cropping systems experiment in Iowa where grain yields of 3-year and 4-year LEI rotations have matched or exceeded yield achieved by a 2-year maize (Zea mays L. and soybean (Glycine max L. rotation. The 2-year system was conventionally managed and chisel-ploughed, whereas the 3-year and 4-year systems received plant residues and animal manures and were periodically moldboard ploughed. We expected changes in soil quality to be driven by organic matter inputs, and root growth to reflect spatial and temporal fluctuations in soil quality resulting from those additions. We constructed a carbon budget and measured soil quality indicators (SQIs and rooting characteristics using samples taken from two depths of all crop-phases of each rotation system on multiple dates. Stocks of particulate organic matter carbon (POM-C and potentially mineralizable nitrogen (PMN were greater and more evenly distributed in the LEI than conventional systems. Organic C inputs, which were 58% and 36% greater in the 3-year rotation than in the 4-year and 2-year rotations, respectively, did not account for differences in SQI abundance or distribution. Surprisingly, SQIs did not vary with crop-phase or date. All biochemical SQIs were more stratified (p<0.001 in the conventionally-managed soils. While POM-C and PMN in the top 10 cm were similar in all three systems, stocks in the 10-20 cm depth of the conventional system were less than half the size of those found in the LEI systems. This distribution was mirrored by maize root length density, which was also concentrated in the top 10 cm of the conventionally managed plots and evenly distributed between depths in the LEI systems. The plow-down of organic amendments

  19. Root Parameters Show How Management Alters Resource Distribution and Soil Quality in Conventional and Low-Input Cropping Systems in Central Iowa

    Science.gov (United States)

    Liebman, Matt; Wander, Michelle M.

    2016-01-01

    Plant-soil relations may explain why low-external input (LEI) diversified cropping systems are more efficient than their conventional counterparts. This work sought to identify links between management practices, soil quality changes, and root responses in a long-term cropping systems experiment in Iowa where grain yields of 3-year and 4-year LEI rotations have matched or exceeded yield achieved by a 2-year maize (Zea mays L.) and soybean (Glycine max L.) rotation. The 2-year system was conventionally managed and chisel-ploughed, whereas the 3-year and 4-year systems received plant residues and animal manures and were periodically moldboard ploughed. We expected changes in soil quality to be driven by organic matter inputs, and root growth to reflect spatial and temporal fluctuations in soil quality resulting from those additions. We constructed a carbon budget and measured soil quality indicators (SQIs) and rooting characteristics using samples taken from two depths of all crop-phases of each rotation system on multiple dates. Stocks of particulate organic matter carbon (POM-C) and potentially mineralizable nitrogen (PMN) were greater and more evenly distributed in the LEI than conventional systems. Organic C inputs, which were 58% and 36% greater in the 3-year rotation than in the 4-year and 2-year rotations, respectively, did not account for differences in SQI abundance or distribution. Surprisingly, SQIs did not vary with crop-phase or date. All biochemical SQIs were more stratified (pmanaged soils. While POM-C and PMN in the top 10 cm were similar in all three systems, stocks in the 10–20 cm depth of the conventional system were less than half the size of those found in the LEI systems. This distribution was mirrored by maize root length density, which was also concentrated in the top 10 cm of the conventionally managed plots and evenly distributed between depths in the LEI systems. The plow-down of organic amendments and manures established meaningful

  20. Soil chemical properties and legume-cereal rotation benefits in an ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... maize X maize residue interaction. The lower pH in the legume/cereal rotation in soils in. 2008 agrees with the findings of Helyar and Porter. (1989), which states that the presence of legumes in agricultural system influences soil acidity through the N and C cycles. Legumes increase soil organic N through.

  1. Machine-assisted analysis of Landsat data in the study of crop-soils relationships

    Science.gov (United States)

    Draeger, William C.

    1976-01-01

    To date, relatively few studies have dealt with crop-soil interactions as they affect the appearance of agricultural areas on Landsat imagery, and hence crop and soil classification or the analysis of agricultural land use.The Image 100, a computer-based data analysis system which allows an interpreter to interact directly and rapidly with Landsat computer compatible tape data, provided a tool to assist in the evaluation of the extent and significance of these interactions. Used with timely and accurate ground data, the system made possible a determination of the variability in crop spectral appearance, from soil type to soil type, as recorded on Landsat data. Information was provided in the form of spectral distribution histrograms for each crop-soil class on each Landsat band. Several crop categories in a test area in  rookings County, South Dakota, were classified using training fields that were selected to be representative of each major crop-soil class. Accuracies in each case, on a total acreage basis, were greater than 90 percent.

  2. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity.

    Science.gov (United States)

    Chang, Hao-Xun; Haudenshield, James S; Bowen, Charles R; Hartman, Glen L

    2017-01-01

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study.

  3. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity

    Science.gov (United States)

    Chang, Hao-Xun; Haudenshield, James S.; Bowen, Charles R.; Hartman, Glen L.

    2017-01-01

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study. PMID:28421041

  4. Effect of potato used as a trap crop on potato cyst nematodes and other soil pathogens and on the growth of a subsequent main potato crop

    NARCIS (Netherlands)

    Scholte, K.

    2000-01-01

    A field experiment in which main-crop potatoes were grown every other year was conducted on a sandy soil from 1994 to 1999. The aim of the experiment was to control soil-borne pathogens of potato with ecologically sound methods. Potato grown as a trap crop from the end of April to the end of June (8

  5. FUZZY LOGIC BASED HYBRID RECOMMENDER OF MAXIMUM YIELD CROP USING SOIL, WEATHER AND COST

    Directory of Open Access Journals (Sweden)

    U Aadithya

    2016-07-01

    Full Text Available Our system is designed to predict best suitable crops for the region of farmer. It also suggests farming strategies for the crops such as mixed cropping, spacing, irrigation, seed treatment, etc. along with fertilizer and pesticide suggestions. This is done based on the historic soil parameters of the region and by predicting cost of crops and weather. The system is based on fuzzy logic which gets input from an Artificial Neural Network (ANN based weather prediction module. An Agricultural Named Entity Recognition (NER module is developed using Conditional Random Field (CRF to extract crop conditions data. Further, cost prediction is done based on Linear Regression equation to aid in ranking the crops recommended. Using this approach we achieved an F-Score of 54% with a precision of 77% thus accounting for the correctness of crop production.

  6. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  7. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations

    Science.gov (United States)

    Folberth, Christian; Skalský, Rastislav; Moltchanova, Elena; Balkovič, Juraj; Azevedo, Ligia B.; Obersteiner, Michael; van der Velde, Marijn

    2016-06-01

    Global gridded crop models (GGCMs) are increasingly used for agro-environmental assessments and estimates of climate change impacts on food production. Recently, the influence of climate data and weather variability on GGCM outcomes has come under detailed scrutiny, unlike the influence of soil data. Here we compare yield variability caused by the soil type selected for GGCM simulations to weather-induced yield variability. Without fertilizer application, soil-type-related yield variability generally outweighs the simulated inter-annual variability in yield due to weather. Increasing applications of fertilizer and irrigation reduce this variability until it is practically negligible. Importantly, estimated climate change effects on yield can be either negative or positive depending on the chosen soil type. Soils thus have the capacity to either buffer or amplify these impacts. Our findings call for improvements in soil data available for crop modelling and more explicit accounting for soil variability in GGCM simulations.

  8. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems

    Science.gov (United States)

    Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services

  9. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    Science.gov (United States)

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  10. Detecting crop yield reduction due to irrigation-induced soil salinization in South-West Russia

    Science.gov (United States)

    Argaman, E.; Beets, W.; Croes, J.; Keesstra, S.; Verzandvoort, S.; Zeiliguer, A.

    2012-04-01

    The South-European part of the Russian Federation has experienced serious land degradation in the form of soil salinization since the 1960s. This land degradation was caused by intensive, large-scale irrigation on reclaimed land in combination with the salt-rich nature of the substrate. Alkaline soil salinity is believed to be an important factor decreasing crop yield in this area. A large research effort has been directed to the effects of soil salinity on crops, there is a need for simple, easily determinable indicators of crop health and soil salinity in irrigated systems, that can help to detect crop water stress in an early stage. The objectives of this research were to study the effects of soil salinity and vegetation water stress on the performance of alfalfa crop yield and physiological crop properties, and to study the possibility to measure soil salinity and alkalinity and the crop water stress index at plot level using a thermal gun and a regular digital camera. The study area was located in Saratov District, in the South-West part of Russia. Variables on the surface energy balance, crop properties, soil properties and visible reflectance were measured on plots with alfalfa cultures in two fields with and without signs of alkaline soil salinity, and with and without irrigation in July 2009. The research showed no clear adverse effects of soil salinity and soil alkalinity on crop yield and physiological crop properties. Soil salinity, as reflected by the electric conductivity, positively affected the root biomass of alfalfa in the range of 0.15 to 1.52 dS/m . This was a result of EC levels being below the documented threshold to negatively affect Alfalfa, as would be the case in truly saline soils. The soil pH also showed a positive correlation with root biomass within the range of pH 6.2 and 8.5 . From the literature these pH values are generally believed to be too high to exhibit a positive relationship with root biomass. No relationship was found

  11. A Preliminary Study on Termite Mound Soil as Agricultural Soil for Crop Production in South West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-08-01

    Full Text Available It is a popular belief of the people in the Southern region of Nigeria that a land infested with termite usually brings prosperity to the land owner regardless of the type of its usage. Therefore, the present study assessed termite mounds soil properties which are important to crop production. Two soil samples were collected and their physical and chemical properties determined in accordance with American Public Health Association (APHA, 2005. Data were analyzed using descriptive statistics. The textural classes showed that the termite mound soil was sand clay loam while the surrounding soil was clay loam. This results revealed that: Termites’ activity induced significant chemical changes in the soil possible due to the materials used in building their nests. There was increase the concentrations of nitrogen, phosphorus, Potassium, calcium and magnesium higher in the termite’s mounds, while the micro-nutrients (zinc, iron and copper except sulphur and manganese lower in the soil infested by termites. There were significant differences (p ≥ 0.05 between termite mound soil and surrounding soil. It showed highly positive correlation between termite mound and surrounding soil (r= 0.92. The concentration of the soil properties around the termite mound are within the range of soil nutrients suitable for arable crop production. Termite mound soil is recommended to be used as an alternative to local farmers who cannot afford to buy expensive inorganic fertilizers.

  12. Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany

    Science.gov (United States)

    Waldhoff, Guido; Lussem, Ulrike; Bareth, Georg

    2017-09-01

    Spatial land use information is one of the key input parameters for regional agro-ecosystem modeling. Furthermore, to assess the crop-specific management in a spatio-temporal context accurately, parcel-related crop rotation information is additionally needed. Such data is scarcely available for a regional scale, so that only modeled crop rotations can be incorporated instead. However, the spectrum of the occurring multiannual land use patterns on arable land remains unknown. Thus, this contribution focuses on the mapping of the actually practiced crop rotations in the Rur catchment, located in the western part of Germany. We addressed this by combining multitemporal multispectral remote sensing data, ancillary information and expert-knowledge on crop phenology in a GIS-based Multi-Data Approach (MDA). At first, a methodology for the enhanced differentiation of the major crop types on an annual basis was developed. Key aspects are (i) the usage of physical block data to separate arable land from other land use types, (ii) the classification of remote sensing scenes of specific time periods, which are most favorable for the differentiation of certain crop types, and (iii) the combination of the multitemporal classification results in a sequential analysis strategy. Annual crop maps of eight consecutive years (2008-2015) were combined to a crop sequence dataset to have a profound data basis for the mapping of crop rotations. In most years, the remote sensing data basis was highly fragmented. Nevertheless, our method enabled satisfying crop mapping results. As an example for the annual crop mapping workflow, the procedure and the result of 2015 are illustrated. For the generation of the crop sequence dataset, the eight annual crop maps were geometrically smoothened and integrated into a single vector data layer. The resulting dataset informs about the occurring crop sequence for individual areas on arable land, so that crop rotation schemes can be derived. The

  13. Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China.

    Science.gov (United States)

    Zhang, Tao; Chen, Anqiang; Liu, Jian; Liu, Hongbin; Lei, Baokun; Zhai, Limei; Zhang, Dan; Wang, Hongyuan

    2017-12-31

    The accumulation of soil organic carbon (SOC) in agricultural soils is critical to food security and climate change. However, there is still limited information on the dynamic trend of SOC sequestration following changes in cropping systems. Paddy soils, typical of temperate region of southern China, have a large potential for carbon (C) sequestration and nitrogen (N) fixation. It is of great importance to study the impacts of changes in cropping systems on stocks of SOC and total nitrogen (TN) in paddy soils. A six-year field experiment was conducted to clarify the dynamics of SOC and TN stocks in the paddy topsoil (0-20cm) when crop rotation of rice (Oryza sativa L.) -garlic (Allium sativum) (RG) was changed to rice-fava (Vicia faba L.) (RF), and to examine how the dynamics were affected by two N management strategies. The results showed that SOC stocks increased by 24.9% in the no N (control) treatment and by 18.9% in the treatment applied with conventional rate of N (CON), when RG was changed to RF. Correspondingly, TN stocks increased by 8.5% in the control but decreased by 2.6% in the CON. Compared with RG, RF was more conducive to increase the contents of soil microbial biomass C and N. Moreover, changing the cropping system from RG to RF increased the year-round N use efficiency from 21.6% to 34.4% and reduced soil N surplus in the CON treatment from 547kg/ha to 93kg/ha. In conclusion, changes in the cropping system from RG to RF could markedly increase SOC stocks, improve N utilization, reduce soil N surplus, and thus reduce the risk of N loss in the paddy soil. Overall, this study showed the potential of paddy agro-ecological systems to store C and maintain N stocks in the temperate regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Soil quality, crop productivity and soil organic matter (SOM) priming in biochar and wood ash amended soils

    Science.gov (United States)

    Reed, Eleanor Swain; Chadwick, David; Hill, Paul; Jones, Davey

    2016-04-01

    The application of energy production by-products as soil amendments to agricultural land is rapidly growing in popularity, however the increasing body of literature on primarily biochar but also wood ash have yielded contrary evidence of the range of these soil amendments function sensitivity in soil. This study aims to assess the efficacy of two by-products; biochar and wood ash to provide nutrients to grassland as well as the potential to improve overall soil quality. The study of soil amendments at field scale are scarce, and the agronomic benefits of biochar and wood ash in temperate soils remain unclear. We used replicated field plots with three soil treatments (biochar, wood ash and control) to measure the soil and crop properties over twelve months, including PLFA analysis to quantify the total soil microbial biomass and community structure. After a soil residency of one year, there were no significant differences in soil EC, total N, dissolved organic N (DON), dissolved organic C (DOC), NO3-N and NH4-N concentrations, between biochar amended, wood ash amended and un-amended soil. In contrast, the application of biochar had a significant effect on soil moisture, pH, PO4-P concentrations, soil organic carbon (SOC) and total organic carbon (TOC), whilst the wood ash amendment resulted in an increase in soil pH only. There were no significant treatment effects on the growth performance or nutrient uptake of the grass. In a parallel laboratory incubation study, the effects of biochar and wood ash on soil C priming was explored, in which soil with 14C-labelled native SOC was amended with either biochar or wood ash at the same rate as the field trial. The rates of 14CO2 (primed C) production was measured with a liquid scintillation counter over a 50 day period. The 14CO2 that evolved during decomposition likely originated from conversions in the (microbial) biomass. The results indicated that biochar application did not prime for the loss of native SOC (i.e. there

  15. Regional simulation of soil nitrogen dynamics and balance in Swiss cropping systems

    Science.gov (United States)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2017-04-01

    We evaluated the regional-scale potential of various crop and soil management practices to reduce the dependency of crop N demand on external N inputs and N losses to the environment. The estimates of soil N balance were simulated and compared under alternative and conventional crop production across all Swiss cropland. Alternative practices were all combinations of organic fertilization, reduced tillage and winter cover cropping. Using the DayCent model, we simulated changes in crop N yields as well as the contribution of inputs and outputs to soil N balance by alternative practices, which was complemented with corresponding measurements from available long-term field experiments and site-level simulations. In addition, the effects of reducing (between 0% and 80% of recommended application rates) or increasing chemical fertilizer input rates (between 120% and 300% of recommended application rates) on system-level N dynamics were also simulated. Modeled yields at recommended N rates were only 37-87% of the maximum yield potential across common Swiss crops, and crop productivity were sensitive to the level of external N inputs, except for grass-clover mixture, soybean and peas. Overall, differences in soil N input and output decreased or increased proportionally with changing the amount of N input only from the recommended rate. As a result, there was no additional difference in soil N balance in response to N application rates. Nitrate leaching accounted for 40-81% of total N output differences, while up to 47% of total N output occurred through harvest and straw removal. Regardless of crops, yield potential became insensitive to high N rates. Differences in N2O and N2 emissions slightly increased with increasing N inputs, in which each gas was only responsible for about 1% of changes in total N output. Overall, there was a positive soil N balance under alternative practices. Particularly, considerable improvement in soil N balance was expected when slowly

  16. Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation.

    Science.gov (United States)

    Fernandez, Adria L; Sheaffer, Craig C; Wyse, Donald L; Staley, Christopher; Gould, Trevor J; Sadowsky, Michael J

    2016-11-01

    Incorporation of organic material into soils is an important element of organic farming practices that can affect the composition of the soil bacterial communities that carry out nutrient cycling and other functions crucial to crop health and growth. We conducted a field experiment to determine the effects of cover crops and fertilizers on bacterial community structure in agricultural soils under long-term organic management. Illumina sequencing of 16S rDNA revealed diverse communities comprising 45 bacterial phyla in corn rhizosphere and bulk field soil. Community structure was most affected by location and by the rhizosphere effect, followed by sampling time and amendment treatment. These effects were associated with soil physicochemical properties, including pH, moisture, organic matter, and nutrient levels. Treatment differences were apparent in bulk and rhizosphere soils at the time of peak corn growth in the season following cover crop and fertilizer application. Cover crop and fertilizer treatments tended to lower alpha diversity in early season samples. However, winter rye, oilseed radish, and buckwheat cover crop treatments increased alpha diversity in some later season samples compared to a no-amendment control. Fertilizer treatments and some cover crops decreased relative abundance of members of the ammonia-oxidizing family Nitrosomonadaceae. Pelleted poultry manure and Sustane® (a commercial fertilizer) decreased the relative abundance of Rhizobiales. Our data point to a need for future research exploring how (1) cover crops influence bacterial community structure and functions, (2) these effects differ with biomass composition and quantity, and (3) existing soil conditions and microbial community composition influence how soil microbial populations respond to agricultural management practices.

  17. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    Science.gov (United States)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  18. Performance of seven crop combinations in two soils of different ...

    African Journals Online (AJOL)

    This suggests that it is even disadvantageous to grow cassava as a sole crop in the area. Cassava root yield reduction in 1999 relative to 1998 was higher (70%) in the UNN farm than in the forestland (40%). There was no significant difference due to crop combination on yam tuber yield in both locations in 1998. However ...

  19. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality

    Directory of Open Access Journals (Sweden)

    Patrick M. Carr

    2013-07-01

    Full Text Available Organic farming has been identified as promoting soil quality even though tillage is used for weed suppression. Adopting zero tillage and other conservation tillage practices can enhance soil quality in cropping systems where synthetic agri-chemicals are relied on for crop nutrition and weed control. Attempts have been made to eliminate tillage completely when growing several field crops organically. Vegetative mulch produced by killed cover crops in organic zero tillage systems can suppress annual weeds, but large amounts are needed for adequate early season weed control. Established perennial weeds are not controlled by cover crop mulch. Integrated weed management strategies that include other cultural as well as biological and mechanical controls have potential and need to be incorporated into organic zero tillage research efforts. Market crop performance in organic zero tillage systems has been mixed because of weed, nutrient cycling, and other problems that still must be solved. Soil quality benefits have been demonstrated in comparisons between organic conservation tillage and inversion tillage systems, but studies that include zero tillage treatments are lacking. Research is needed which identifies agronomic strategies for optimum market crop performance, acceptable levels of weed suppression, and soil quality benefits following adoption of organic zero tillage.

  20. Does grazing of cover crops impact biologically active soil C and N fractions under inversion and no tillage management

    Science.gov (United States)

    Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...

  1. Crop Rotation Studies with Velvetbean (Mucuna deeringiana) for the Management of Meloidogyne spp.

    Science.gov (United States)

    Rodríguez-Kábana, R; Pinochet, J; Robertson, D G; Wells, L

    1992-12-01

    Results from a greenhouse experiment at Cabrils, Spain, with two velvetbean (Mucuna deeringiana) accessions (Florida and Mozambique) growing in sterilized sandy loam and inoculated with Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica revealed that the legume was not a host for these nematodes. In contrast, roots of 'Clemson Spineless' okra (Hibiscus esculentum), 'Summer Crookneck' squash (Cucurbita pepo), and 'Davis' soybean (Glycine max) were galled by all three root-knot nematodes. Greenhouse experiments at Auburn, Alabama, using soils infested with Heterodera glycines (race 14) + M. incognita or with H. glycines + M. arenaria (race 2) showed that, in contrast to Davis soybean, a Mexican and the Florida velvetbean accessions were not hosts for the nematodes. An experiment with 'Florunner' peanut (Arachis hypogaea) and the Florida velvetbean in a field infested with M. arenaria (race 1), near Headland, Alabama, showed that significant juvenile populations of the nematode at peanut harvest time were present only in plots with peanut. A microplot rotation experiment demonstrated that 'Black Beauty' eggplant (Solanum melongena) following the Florida velvetbean had heavier shoots and lower numbers of M. arenaria juveniles in the roots and in the soil than eggplant after Summer Crookneck squash or Davis soybean.

  2. How can we improve Mediterranean cropping systems?

    DEFF Research Database (Denmark)

    Benlhabib, O.; Yazar, A.; Qadir, M.

    2014-01-01

    dryland Mediterranean cropping systems, and to discuss and recommend sustainable cropping technologies that could be used at the small-scale farm level. Four crop management practices were evaluated: crop rotations, reduced tillage, use of organic manure, and supplemental and deficit irrigation. Among......In the Mediterranean region, crop productivity and food security are closely linked to the adaptation of cropping systems to multiple abiotic stresses. Limited and unpredictable rainfall and low soil fertility have reduced agricultural productivity and environmental sustainability. For this reason...... the tested interventions, incorporation of crop residues coupled with supplementary irrigation showed a significantly positive effect on crop productivity, yield stability and environmental sustainability....

  3. Salt and N leaching and soil accumulation due to cover cropping practices

    Science.gov (United States)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  4. Erosion control in orchards and vineyards by a new soil and cover crop management method

    Science.gov (United States)

    Hartl, Wilfried; Guettler, Hans; Auer, Karl; Erhart, Eva

    2016-04-01

    Cover crops are the basis for an erosion-free soil management in orchards and vineyards. The soil cover provided by the foliage and the intensive root formation counteract erosion. Cover crops provide the soil microfauna with fresh organic matter which improves soil structure and porosity. The water demand of cover crops, however, may pose problems for the water supply of the trees and vines in dry seasons. Therefore it is necessary to adjust the growth of the cover crops to the actual water conditions. In years with ample precipitation cover crops may be allowed lush vegetative growth till flowering and formation of seeds. In dry years, the growth of the cover crop must be restricted to stop the competition for water, sometimes even by cutting off the cover crop roots. The course of the weather is incalculable and rainfall may be very variable during the year, so it is sometimes necessary to adust the cover crop management several times a year. A new special equipment, which can perform all the tasks necessary for the flexible cover crop management has been developed together with the agricultural machinery manufacturers Bodenwerkstatt Ertl-Auer GmbH and Güttler GmbH. The GreenManager® device consists of three modules, namely a specific type of cultivator, a harrow and a prismatic roller with seeding equipment, which can be used separately or in combination. The GreenManager® can reduce cover crops by flattening the plants in the whole row middle, by bringing down the cover crops with the harrow, or by horizontally cutting the cover crop roots a few centimetres beneath the soil surface in the central part of the row middle or in the whole row middle. These measures reduce the water competition by cover crops without generating further losses of soil moisture through intensive soil cultivation. At the same time the risk of soil erosion is kept to a minimum, because the soil remains covered by dead plant biomass. In one passage the GreenManager® can direct

  5. Integrated soil and plant phosphorus management for crop and environment in China

    NARCIS (Netherlands)

    Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X.; Jiang, R.; Zhang, F.

    2011-01-01

    Crop production in China has been greatly improved by increasing phosphorus (P) fertilizer input, but overuse of P by farmers has caused low use efficiency, increasing environmental risk and accumulation of P in soil. From 1980 to 2007, average 242 kg P ha-1 accumulated in soil, resulting in average

  6. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient

    Science.gov (United States)

    Todd A. Ontl; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2015-01-01

    Bioenergy crops have the potential to enhance soil carbon (C) pools from increased aggregation and the physical protection of organic matter; however, our understanding of the variation in these processes over heterogeneous landscapes is limited. In particular, little is known about the relative importance of soil properties and root characteristics for the physical...

  7. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...

  8. Multiple microbial activity-based measures reflect effects of cover cropping and tillage on soils

    Science.gov (United States)

    Agricultural producers, conservation professionals, and policy makers are eager to learn of soil analytical techniques and data that document improvement in soil health by agricultural practices such as no-till and incorporation of cover crops. However, there is considerable uncertainty within the r...

  9. Increasing farmer's income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India

    NARCIS (Netherlands)

    Sharma, N.K.; Singh, Raman Jeet; Mandal, D.; Kumar, Ambrish; Alam, N.M.; Keesstra, Saskia

    2017-01-01

    Humankind faces the need to achieve sustainable agriculture production, meanwhile increasing crop yields and reducing soil and water losses. Soil conservation through intercropping or crop canopy management is widely accepted as one of the ways of diversifying crop yields in rainfed agriculture

  10. Effect of soil acidity factors on yields and foliar composition of tropical root crops

    Energy Technology Data Exchange (ETDEWEB)

    Abruna-Rodriguez, F.; Vicente-Chandler, J.I. Rivera, E.; Rodriguez, J.

    1982-09-01

    Tropical root crops, a major source of food for subsistence farmers, varied in their sensitivity to soil acidity factors. Tolerance to soil acidity is an important characteristic of crops for the humid tropics where soils are often very acid and lime-scarce and expensive. Experiments on two Ultisols and an Oxisol showed that three tropical root crops differed markedly in sensitivity to soil acicity factors. Yams (Dioscorea alata L.) were very sensitive to soil acidity with yields on a Ultisol decreasing from 70% of maximum when Al saturation of the effective cation exchange capacity of the soil was 10 to 25% of maximum when Al saturation was 40%. On the other hand, cassava (Manihot esculenta Crantz) was very tolerant to high levels of soil acidity, yielding about 85% of maximum with 60% Al saturation. Taniers (Xanthosoma sp.) were intermediate between yams and cassava in their tolerance to soil acidity yielding about 60% of maximum with 50% Al saturation of the soil. Foliar composition of cassava was not affected by soil acidity levels and that of yams and taniers was also unaffected except for Ca content which decreased with decreasing soil pH and increasing Al saturation.Response of these tropical root crops to soil acidity components was far more striking on Ultisols than on the Oxisol. For yams, soils should be limed to about pH 5.5 with essentially no exhangeable Al/sup 3 +/ present whereas high yields of taniers can be obtained at about pH 4.8 with 20% exchangeable Al/sup 3 +/ and of cassava at pH as low as 4.5 with 60% exchangeable Al/sup 3 +/.

  11. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    Science.gov (United States)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were

  12. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping.

    Science.gov (United States)

    Zhao, Mengxin; Xue, Kai; Wang, Feng; Liu, Shanshan; Bai, Shijie; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2014-10-01

    Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling.

  13. Effect of cropping and tillage on the dissipation of PAH contamination in soil

    Energy Technology Data Exchange (ETDEWEB)

    Saison, Carine; Perrin-Ganier, Corinne; Schiavon, Michel; Morel, Jean-Louis

    2004-07-01

    This study examined the effect of regular tillage and cropping on the dissipation rate of PAHs in contaminated soil. Lysimeters were placed under natural climatic conditions for 2 years and designed to measure the concentration of PAHs in soil and leachates and their toxicity. The soil initially contained 2077 {mu}g PAHs g{sup -1}. The largest decrease in PAHs concentration occurred during the first 6 months. No further significant decrease was observed after this time. The surface soil layer always contained significantly less PAHs than the deeper layer, regardless of the treatments. Less than 8.4x10{sup -8}% of the PAH initially present in the soil (e.g. less or equal to 33 {mu}g PAHs per lysimeter) were leached from the soils during the experiment and the leachates presented no toxicity (as measured by the Microtox[reg] test). The toxicity of the soils decreased with time and was significantly lower on the cropped soil compared to the other treatments, despite the residual concentration of PAHs being the highest in this soil. This study demonstrated that the dissipation rates of PAHs were slow after using natural attenuation even when tillage and cropping were performed at the soil surface. - Dissipation rates of PAHs were slow using natural attentuation.

  14. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China.

    Science.gov (United States)

    Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin

    2015-06-23

    Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0-20, 20-40, 40-60, 60-80 and 80-100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable (13)C composition were determined. Our data showed that the δ(13)C value of SOC varied, on average, from -22.1‰ in the 0-20 cm to -21.5‰ in the 80-100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0-40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0-13.6% for maize residues and 16.5-28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands.

  15. Changes in potassium pools in Paraná soils under successive cropping and potassium fertilization

    Directory of Open Access Journals (Sweden)

    Fabio Steiner

    2015-12-01

    Full Text Available The changes in soil potassium pools under intense cropping and fertilized with potash fertilizer are still little known to the soils of Paraná State. The effects of potassium fertilization and successive cropping on changes in K pools in different soils of Paraná, Brazil, were investigated in this study. Twelve soil samples, collected from the upper layer 0–0.20 m, were fertilized or not with K and subjected to six successive cropping (i.e., soybean, pearl millet, wheat, common beans, soybean and maize. All the crops were grown for 45 days, and at the end of the second, fourth and sixth cropping, the soil from each pot was sampled to determination of the total K, non-exchangeable K, exchangeable K and solution K. The result showed that the soil potassium pools varied widely. Total K concentration ranged from 547 to 15,563 mg kg–1 (4,714 mg kg–1, on average. On the average, structural K, non-exchangeable K, exchangeable K and solution K of the soils constituted 84.0, 11.3, 4.6 and 0.1% of the total K, respectively. Soils differ in the ability to supply potassium to the plants in the short to medium term, due to the wide range of parent material and the degree of soil weathering. When the soils were not fertilized with K, the successive cropping of plants resulted in a continuous process of depletion of non-exchangeable K and exchangeable K pools; however, this depletion was less pronounced in soils with higher potential buffer capacity of K. The concentrations of K non-exchangeable and exchangeable K were increased with the addition of potassium fertilizers, indicating the occurrence of K fixation in soil. After the second cropping, the soil exchangeable K levels remained constant with values of 141 and 36 mg kg–1, respectively, with and without the addition of K fertilizer, reflecting in establishing of a new dynamic equilibrium of K in the soil.

  16. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L..

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Plant health and soil fertility are affected by plant-microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including

  17. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.).

    Science.gov (United States)

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant-microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales

  18. Eucalyptus and Populus short rotation woody crops for ph