WorldWideScience

Sample records for crop residue management

  1. Effect of crop residue management and cropping system on pearl ...

    African Journals Online (AJOL)

    Retaining crop residues in the field and using legume-based crop rotations have been suggested as ways to simultaneously increase yields per unit area and replenish soil nutrients. The objective of this study was to investigate the influence of two cropping systems and three crop residue management practices on grain ...

  2. Cover crop residue management for optimizing weed control

    NARCIS (Netherlands)

    Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J.

    2009-01-01

    Although residue management seems a key factor in residue-mediated weed suppression, very few studies have systematically compared the influence of different residue management strategies on the establishment of crop and weed species. We evaluated the effect of several methods of pre-treatment and

  3. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review

    Directory of Open Access Journals (Sweden)

    Hiel, MP.

    2016-01-01

    Full Text Available Introduction. Residues of previous crops provide a valuable amount of organic matter that can be used either to restore soil fertility or for external use. A better understanding of the impact of crop residue management on the soil-water-plant system is needed in order to manage agricultural land sustainably. This review focuses on soil physical aspects related to crop residue management, and specifically on the link between soil structure and hydraulic properties and its impact on crop production. Literature. Conservation practices, including crop residue retention and non-conventional tillage, can enhance soil health by improving aggregate stability. In this case, water infiltration is facilitated, resulting in an increase in plant water availability. Conservation practices, however, do not systematically lead to higher water availability for the plant. The influence of crop residue management on crop production is still unclear; in some cases, crop production is enhanced by residue retention, but in others crop residues can reduce crop yield. Conclusions. In this review we discuss the diverse and contrasting effects of crop residue management on soil physical properties and crop production under a temperate climate. The review highlights the importance of environmental factors such as soil type and local climatic conditions, highlighting the need to perform field studies on crop residue management and relate them to specific pedo-climatic contexts.

  4. Diversity in crop residue management across an intensification gradient in southern Africa

    NARCIS (Netherlands)

    Rusinamhodzi, Leonard; Corbeels, Marc; Giller, Ken E.

    2016-01-01

    Crop residues are important for livestock feed and nutrient cycling among many other functions on smallholder farming systems of sub-Saharan Africa. The objective of this study was to assess differences in resource endowment, crop productivity and crop residue management in selected sites in

  5. Weed management practice and cropping sequence impact on soil residual nitrogen

    Science.gov (United States)

    Inefficient N uptake by crops from N fertilization and/or N mineralized from crop residue and soil organic matter results in the accumulation of soil residual N (NH4-N and NO3-N) which increases the potential for N leaching. The objective of this study was to evaluate the effects of weed management ...

  6. Tillage as a tool to manage crop residue: impact on sugar beet production.

    Science.gov (United States)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  7. Management of crop residues to improve quality traits of tomato (Solanum lycopersicum L. fruits

    Directory of Open Access Journals (Sweden)

    Angelica Galieni

    2017-03-01

    Full Text Available Management of cover crops provides mulching and/or topsoil incorporation of plant residues, which can enhance soil organic matter content as well as supply important nutrients. An experiment was conducted to evaluate the effects on tomato quality and yield performance of different managements of plant residues from three cover crops compared with plastic cover (polyvinyl chloride and bared soil (control. Management treatments consisted of: mulch with faba bean (MuF, rapeseed and barley and incorporated plants of faba bean (InF, rapeseed and barley. PVC and mulching with crop residues obtained higher yields; faba bean, due to its chemical composition, gave the highest fruit growth and yield, regardless of residues management. Residues improved tomato crop physiology as well as minerals concentration in fruits: the highest calcium values were observed for InF, while magnesium was significantly concentrated in fruits of MuF and InF treatments. Faba bean as previous crop seemed more effective in enhancing yield and quality tomato traits. Rapeseed did not confirm the expected results.

  8. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  9. Crop residue management and fertilization effects on soil organic matter and associated biological properties.

    Science.gov (United States)

    Zhao, Bingzi; Zhang, Jiabao; Yu, Yueyue; Karlen, Douglas L; Hao, Xiying

    2016-09-01

    Returning crop residue may result in nutrient reduction in soil in the first few years. A two-year field experiment was conducted to assess whether this negative effect is alleviated by improved crop residue management (CRM). Nine treatments (3 CRM and 3 N fertilizer rates) were used. The CRM treatments were (1) R0: 100 % of the N using mineral fertilizer with no crop residues return; (2) R: crop residue plus mineral fertilizer as for the R0; and (3) Rc: crop residue plus 83 % of the N using mineral and 17 % manure fertilizer. Each CRM received N fertilizer rates at 270, 360, and 450 kg N ha(-1) year(-1). At the end of the experiment, soil NO3-N was reduced by 33 % from the R relative to the R0 treatment, while the Rc treatment resulted in a 21 to 44 % increase in occluded particulate organic C and N, and 80 °C extracted dissolved organic N, 19 to 32 % increase in microbial biomass C and protease activity, and higher monounsaturated phospholipid fatty acid (PLFA):saturated PLFA ratio from stimulating growth of indigenous bacteria when compared with the R treatment. Principal component analysis showed that the Biolog and PLFA profiles in the three CRM treatments were different from each other. Overall, these properties were not influenced by the used N fertilizer rates. Our results indicated that application of 17 % of the total N using manure in a field with crop residues return was effective for improving potential plant N availability and labile soil organic matter, primarily due to a shift in the dominant microorganisms.

  10. EFFECT OF DIFFERENT COVER CROP RESIDUES, MANAGEMENT PRACTICES ON SOIL MOISTURE CONTENT UNDER A TOMATO CROP (LYCOPERSICON ESCULENTUM

    Directory of Open Access Journals (Sweden)

    George Njomo Karuku

    2014-12-01

    Full Text Available SUMMARYThe soil water storage, soil water content, available water content and soil water balance under various cover crop residue management practices in a Nitisol were evaluated in a field experiment at the Kabete Field Station, University of Nairobi. The effects of surface mulching, above and below ground biomass and roots only incorporated of (mucuna pruriens, Tanzanian sunnhemp (Crotalaria ochroleuca and Vetch (Vicia benghalensis cover crops, fertilizer and non fertilized plots on soil water balance were studied. Tomato (Lycopersicon esculentum was used as the test crop. Since water content was close to field capacity, the drainage component at 100 cm soil depth was negligible and evapotranspiration was therefore derived from the change in soil moisture storage and precipitation. Residue management showed that above and below ground biomass incorporated optimized the partitioning of the water balance components, increasing moisture storage, leading to increased tomato yields and water use efficiency. Furthermore, vetch above and below ground biomass incorporated significantly improved the quantity and frequency of deep percolation. Soil fertilization (F and non fertilization (NF caused the most unfavourable partitioning of water balance, leading to the lowest yield and WUE. Tomato yields ranged from 4.1 in NF to 7.4 Mg ha-1 in Vetch treated plots. Vetch above and belowground biomass incorporated had significant (p ≤ 0.1 yields of 11.4 Mg ha-1 compared to all other residue management systems. Vetch residue treatment had the highest WUE (22.7 kg mm-1 ha-1 followed by mucuna treated plots (20.7 kg mm-1 ha-1 and both were significantly different (p ≤ 0.05 compared to the others irrespective of residue management practices.

  11. How do soil quality indicators (SOC and nutrients) change with long-term different crop residue management?

    Science.gov (United States)

    Spiegel, Heide; Lehtinen, Taru; Dersch, Georg; Baumgarten, Andreas

    2016-04-01

    Leaving the crop residues (cereal grain straw, maize stover, sugar beet leaves) on the field may enhance SOC and soil nutrient contents (e.g. P, K, Mg). In contrast, harvesting crop residues for livestock bedding or energy production are often connected with a loss of soil fertility (Lehtinen et al., 2014). We have evaluated the effects of different management of crop residues on selected soil parameters of the upper soil (0-25 cm) in two long-term field experiments in Austria focused on P-dynamics (Marchfeld, since 1982 and Alpenvorland, since 1986). In four P-fertilisation stages (0, 75, 150, 300 kg P2O5 ha-1y-1) all crop residues were incorporated in one treatment and all removed in the other one, respectively. The results show that the effects are different at the two investigated sites. At the site Marchfeld, a medium textured soil, on average SOC was significantly higher with the incorporation of crop residues (21.6 g kg-1) compared to the removal (19.9 g kg-1) after 32 years. In the long run, SOC levels could be maintained, if crop residues remained at the field, whereas the constant removal of crop residues resulted in a SOC decline. At the site Alpenvorland, SOC was only slightly higher with the incorporation of the crop residues after 28 years. In this case, in the long run, even with this management practice and, moreover, with the residue removal, SOC tended to decrease generally. At the Marchfeld, crop residue incorporation resulted in a significant increase of "plant available" phosphorus (P-CAL) only with very high P fertilization. However, "plant available" Mg (according to Schachtschabel) and potassium (K-CAL) were significantly higher in all P fertilisation stages compared to the residue removal treatments. At the site Alpenvorland, the soils are rich in silt and clay and with long-term incorporation of crop residues a significant increase only of „plant available" K of about 50% occurred. This indicates the necessity of taking into account the

  12. Cover crop management influences residue biomass and subsequent weed suppression in a conservation agriculture corn and cotton rotation

    Science.gov (United States)

    Use of winter cover crops is an integral component of conservation systems in corn and cotton. However, data concerning cover management and subsequent residue and weed biomass is needed. Field experiments were conducted from autumn of 2003 through cash crop harvest in 2006 at the Alabama Agricultur...

  13. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; Pulleman, M.M.

    2013-01-01

    Conservation agriculture is widely promoted for soil conservation and crop productivity increase, although rigorous empirical evidence from sub-Saharan Africa is still limited. This study aimed to quantify the medium-term impact of tillage (conventional and reduced) and crop residue management

  14. Tradeoffs in Crop Residue Utilization in Mixed Crop-Livestock Systems and Implications for Conservation Agriculture and Sustainable Land Management

    OpenAIRE

    Jaleta, Moti; Kassie, Menale; Shiferaw, Bekele A.

    2012-01-01

    Crop residue use for soil mulch and animal feed are the two major competing purposes and the basic source of fundamental challenge in conservation agriculture (CA) where residue retention on farm plots is one of the three CA principles. Using survey data from Kenya and applying bivariate ordered Probit and bivariate Tobit models, this paper analyzes the tradeoffs in maize residue use as soil mulch and livestock feed in mixed farming systems. Results show that both the proportion and quantity ...

  15. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Directory of Open Access Journals (Sweden)

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  16. Tillage and residue management effect on soil properties, crop performance and energy relations in greengram (Vigna radiata L. under maize-based cropping systems

    Directory of Open Access Journals (Sweden)

    J.R. Meena

    2015-12-01

    Full Text Available Effect of tillage and crop residue management on soil properties, crop performance, energy relations and economics in greengram (Vigna radiata L. was evaluated under four maize-based cropping systems in an Inceptisol of Delhi, India. Soil bulk density, hydraulic conductivity and aggregation at 0–15 cm layer were significantly affected both by tillage and cropping systems, while zero tillage significantly increased the soil organic carbon content. Yields of greengram were significantly higher in maize–chickpea and maize–mustard systems, more so with residue addition. When no residue was added, conventional tillage required 20% higher energy inputs than the zero tillage, while the residue addition increased the energy output in both tillage practices. Maize–wheat–greengram cropping system involved the maximum energy requirement and the cost of production. However, the largest net return was obtained from the maize–chickpea–greengram system under the conventional tillage with residue incorporation. Although zero tillage resulted in better aggregation, C content and N availability in soil, and reduced the energy inputs, cultivation of summer greengram appeared to be profitable under conventional tillage system with residue incorporation.

  17. How does crop residue removal affect soil organic carbon and yield? A hierarchical analysis of management and environmental factors

    NARCIS (Netherlands)

    Warren Raffa, D.; Bogdanski, A.; Tittonell, P.

    2015-01-01

    The current advancement of the bioenergy sector along with the need for sustainable agricultural systems call for context-specific crop residue management options - implying variable degrees of removal - across climatic regions, soil types and farming systems around the world. A large database

  18. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    Science.gov (United States)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  19. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy

    DEFF Research Database (Denmark)

    Mutegi, James; Munkholm, Lars Juhl; Petersen, Bjørn Molt

    2010-01-01

      Mixed responses of soil nitrous oxide (N2O) fluxes to reduced tillage/no-till are widely reported across soil types and regions. In a field experiment on a Danish sandy loam soil we compared N2O emissions during winter barley growth following five years of direct drilling (DD), reduced tillage...... (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (-Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT......, respectively, relative to N2O emissions from CT plots (P tillage treatments, but in residue retention scenarios N2O emissions were significantly higher in CT than in either DD or RT (P 

  20. Alternatives to crop residues for soil amendment

    OpenAIRE

    Powell, J.M.; Unger, P.W.

    1997-01-01

    Metadata only record In semiarid agroecosystems, crop residues can provide important benefits of soil and water conservation, nutrient cycling, and improved subsequent crop yields. However, there are frequently multiple competing uses for residues, including animal forage, fuel, and construction material. This chapter discusses the various uses of crop residues and examines alternative soil amendments when crop residues cannot be left on the soil.

  1. Simulated effects of crop rotations and residue management on wind erosion in Wuchuan, west-central Inner Mongolia, China.

    Science.gov (United States)

    Wang, Erda; Harman, Wyatte L; Williams, Jimmy R; Xu, Cheng

    2002-01-01

    For decades, wind erosion has triggered dust and sand storms, buffeting Beijing and areas of northwestern China to the point of being hazardous to human health while rapidly eroding crop and livestock productivity. The EPIC (Environmental Policy Integrated Climate) field-scale simulation model was used to assess long-term effects of improved crop rotations and crop residue management practices on wind erosion in Wuchuan County in Inner Mongolia. Simulation results indicate that preserving crop stalks until land is prepared by zone tillage for the next year's crop in lieu of using them as a source of heating fuel or livestock fodder significantly reduces wind erosion by 60%. At the same time, grain and potato (Solanum tuberosum L.) yields were maintained or improved. Significant reductions in erosion, 35 to 46%, also resulted from delaying stalk removal until late January through late April. Yearly wind erosion was concentrated in April and May, the windiest months. Additionally, the use of alternative crop rotations resulted in differences in wind erosion, largely due to a difference in residue stature and quality and differences in biomass produced. As a result, altering current crop rotation systems by expanding corn (Zea mays L.), wheat (Triticum aestivum L.), and millet [Sorghum bicolor (L.) Moench] and reducing potato and pea (Pisum sativum L.) production significantly reduced simulated wind erosion, thus diminishing the severity of dust and sand storms in northwestern China. Saving and protecting topsoil over time will sustain land productivity and have long-term implications for improving conditions of rural poverty in the region.

  2. Herbicide and cover crop residue integration for amaranth control in conservation agriculture cotton and implications for resistance management

    Science.gov (United States)

    Conservation agriculture practices are threatened by glyphosate-resistant Palmer amaranth. Integrated practices including PRE herbicides and high-residue conservation agriculture systems may decrease Amaranth emergence. Field experiments were conducted from autumn 2006 through cash crop harvest in...

  3. Tillage, crop residue, and nutrient management effects on soil organic carbon sequestration in rice-based cropping systems: a review

    Science.gov (United States)

    Sequestration of soil organic carbon (SOC) is one of the major agricultural strategies to mitigate greenhouse gas emissions, enhance food security, and improve agricultural sustainability. This paper synthesizes the much-needed state-of-knowledge on the effects of management practices, such as tilla...

  4. Effects of tropical ecosystem engineers on soil quality and crop performance under different tillage and residue management

    Science.gov (United States)

    Pulleman, Mirjam; Paul, Birthe; Fredrick, Ayuke; Hoogmoed, Marianne; Hurisso, Tunsisa; Ndabamenye, Telesphore; Saidou, Koala; Terano, Yusuke; Six, Johan; Vanlauwe, Bernard

    2014-05-01

    Feeding a future global population of 9 billion will require a 70-100% increase in food production, resulting in unprecedented challenges for agriculture and natural resources, especially in Sub-saharan Africa (SSA). Agricultural practices that contribute to sustainable intensification build on beneficial biological interactions and ecosystem services. Termites are the dominant soil ecosystem engineers in arid to sub-humid tropical agro-ecosystems. Various studies have demonstrated the potential benefits of termites for rehabilitation of degraded and crusted soils and plant growth in semi-arid and arid natural ecosystems. However, the contribution of termites to agricultural productivity has hardly been experimentally investigated, and their role in Conservation Agriculture (CA) systems remains especially unclear. Therefore, this study aimed to quantify the effects of termites and ants on soil physical quality and crop productivity under different tillage and residue management systems in the medium term. A randomized block trial was set up in sub-humid Western Kenya in 2003. Treatments included a factorial combination of residue retention and removal (+R/-R) and conventional and reduced tillage (+T/-T) under a maize (Zea mays L.) and soybean (Glyxine max. L.) rotation. A macrofauna exclusion experiment was superimposed in 2005 as a split-plot factor (exclusion +ins; inclusion -ins) by regular applications of pesticides (Dursban and Endosulfan) in half of the plots. Macrofauna abundance and diversity, soil aggregate fractions, soil carbon contents and crop yields were measured between 2005 and 2012 at 0-15 cm and 15-30 cm soil depths. Termites were the most important macrofauna species, constituting between 48-63% of all soil biota, while ants were 13-34%, whereas earthworms were present in very low numbers. Insecticide application was effective in reducing termites (85-56% exclusion efficacy) and earthworms (87%), and less so ants (49-81%) at 0-15 cm soil depth

  5. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  6. Experimental design to monitor the influence of crop residue management on the dynamics of soil water content

    Science.gov (United States)

    Chélin, Marie; Hiel, Marie-Pierre; Parvin, Nargish; Bodson, Bernard; Degré, Aurore; Nguyen, Frédéric; Garré, Sarah

    2015-04-01

    Choices related to crop residue management affecting soil structure determine spatio-temporal dynamics of water content and eventually crop yields. In this contribution, we will discuss the experimental design we adopted to study the influence of agricultural management strategies (tillage and residue management) on the soil water dynamics under maize in a Cutanic Siltic Luvisol in Gembloux, Belgium. Three different treatments will be studied: a conventional ploughing realized either in December 2014 or just before sowing in April 2015, and a strip tillage in April 2015. A bare soil under conventional ploughing will also be monitored in order to better understand the influence of the plant over the growing season. In order to limit soil disturbance, we opted for the use of electrical resistivity tomography (ERT) and we use the bulk electrical conductivity as a proxy for soil moisture content. ERT will be collected every week on a surface of two square meters corresponding to three rows of seven maize plants through surface stainless steel electrodes. Five additional sticks with stainless steel electrodes will be vertically inserted into the soil up to 1.50 m to get more detailed information near to the central maize row. In each of the monitoring plots, two time-domain reflectometry (TDR) probes will be installed for data validation. In order to calibrate the relationship between electrical resistivity and soil water content under highly variable field conditions (changes in soil structure, variable weather conditions, plant growth, fertilization), a trench will be dug, in which a set of four electrodes, one TDR probe and one temperature sensor will be placed at four different depths. In addition, two suction cups will be installed in each of the plots to quantify changes in ion composition and electrical conductivity of the soil solution at two different depths. Within the framework of the multidisciplinary research platform AgricultureIsLife, regular assessment

  7. Ammonia emission from crop residues : quantification of ammonia volatilization based on crop residue properties

    NARCIS (Netherlands)

    Ruijter, de F.J.; Huijsmans, J.F.M.

    2012-01-01

    This paper gives an overview of available literature data on ammonia volatilization from crop residues. From these data, a relation is derived for the ammonia emission depending on the N-content of crop residue.

  8. Herbicide and cover crop residue integration for amaranthus control in conservation agriculture cotton and implications for resistance management

    Science.gov (United States)

    Conservation agriculture (CA) practices are threatened by glyphosate-resistant Palmer amaranth. Integrated control practices including PRE herbicides and high-residue CA systems can decrease Amaranthus emergence. Field experiments were conducted from autumn 2006 through crop harvest in 2009 at two s...

  9. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  10. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in Campos Gerais

    Directory of Open Access Journals (Sweden)

    Ademir de Oliveira Ferreira

    2012-11-01

    Full Text Available The adoption of no-tillage systems (NT and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0 of two soils (Typic Hapludox with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a two soil types: Typic Hapludox (Oxisol with medium texture (LVTM and Oxisol with clay texture (LVTA, (b two sampling layers (0-5 and 5-20 cm, and (c two sampling periods (P1 - October 2007; P2 - September 2008. Samples were collected from fields under a long-term (20 years NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM and wheat/maize/black oat + vetch/soybean (LVTA. The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0 were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.

  11. Effectiveness of the GAEC cross-compliance standard management of stubble and crop residues in the maintenance of adequate contents of soil organic carbon

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2011-08-01

    Full Text Available Several studies carried out on the effects of stubble and crop residue incorporation have shown positive effects on chemical-physical soil characteristics. However, not all studies agree on the extent of soil organic matter increase which derives from this process, as this effect is strongly affected by other factors: the pedo-climatic features of the area in which the study is carried out, the type of crop residue incorporation and the agronomical management adopted to improve the decomposition of the incorporated fresh organic material. The burning of stubble and straw is common in the areas where cereals are traditionally grown. The adoption of this method is based on different technical and work-related factors, which become less important when taking into account the impact on the local environment and soil. A research is currently carried out at the CRA-SCA experimental farm in Foggia (Southern Italy on the effects of either residues incorporation or burning on the chemical-physical characteristics of the soil and on the wheat yield performance since 1977. This experiment allows for a comparison among the effects of burning, the simple incorporation of stubble and crop residues and incorporation carried out with some agronomical techniques (such as the distribution of increasing amounts of nitrogen on crop residue before incorporation and the simulation of rain (50 mm on the decomposition of organic material. The objective of the study was to understand the effect of the different residues management practices on soil chemical properties after 32 years of experimentation. The simple incorporation of straw and stubble showed a slight increase in organic soil matter of 0.7% with respect to burning. The best results for soil organic carbon and soil quality were obtained when residual incorporation included a treatment with additional mineral nitrogen.

  12. Pesticide residue concentration in soil following conventional and Low-Input Crop Management in a Mediterranean agro-ecosystem, in Central Greece

    Energy Technology Data Exchange (ETDEWEB)

    Karasali, Helen, E-mail: e.karassali@bpi.gr [Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece); Marousopoulou, Anna [Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece); Machera, Kyriaki, E-mail: k.machera@bpi.gr [Laboratory of Pesticides Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Kifissia, 14561 Athens (Greece)

    2016-01-15

    The present study was focused on the comparative evaluation of pesticide residues, determined in soil samples from Kopaida region, Greece before and after the implementation of Low-Input Crop Management (LCM) protocols. LCM has been suggested as an environmental friendly plant protection approach to be applied on crops growing in vulnerable to pollution ecosystems, with special focus on the site specific problems. In the case of the specific pilot area, the vulnerability was mainly related to the pollution of water bodies from agrochemicals attributed to diffuse pollution primarily from herbicides and secondarily from insecticides. A total of sixty-six soil samples, were collected and analyzed during a three-year monitoring study and the results of the determined pesticide residues were considered for the impact evaluation of applied plant protection methodology. The LCM was developed and applied in the main crops growing in the pilot area i.e. cotton, maize and industrial tomato. Herbicides active ingredients such as ethalfluralin, trifluralin, pendimethalin, S-metolachlor and fluometuron were detected in most samples at various concentrations. Ethalfluralin, which was the active ingredient present in the majority of the samples ranged from 0.01 μg g{sup −1} to 0.26 μg g{sup −1} soil dry weight. However, the amount of herbicides measured after the implementation of LCM for two cropping periods, was reduced by more than 75% in all cases. The method of analysis was based on the simultaneous extraction of the target compounds by mechanical shaking, followed by liquid chromatography mass spectrometric and gas chromatography electron capture (LC–MS/MS and GC–ECD) analysis. - Highlights: • Effect of Low Input Crop Management (LCM) in a vulnerable to pollution ecosystem. • LCM resulted in herbicide residues reduction in the range of 75 and 100% in all cases. • Conventional practices resulted in increased herbicide residues up to 18%. • Anthropogenic

  13. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  14. Impact of diverse soil microbial communities on crop residues decomposition

    Science.gov (United States)

    Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard

    2017-04-01

    Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N

  15. Maize crop residue uses and trade-offs on smallholder crop-livestock farms in Zimbabwe: Economic implications of intensification

    NARCIS (Netherlands)

    Rusinamhodzi, L.; Wijk, van M.T.; Corbeels, M.; Rufino, M.C.; Giller, K.E.

    2015-01-01

    Decisions to use crop residues as soil cover for conservation agriculture create trade-offs for farmers who own cattle in crop-livestock systems. Trade-offs among soil C, crop and animal and crop productivity were analysed using the NUANCES-FARMSIM (FArm-scale Resource Management SIMulator) dynamic

  16. Water pressure head and temperature impact on isoxaflutole degradation in crop residues and loamy surface soil under conventional and conservation tillage management.

    Science.gov (United States)

    Alletto, Lionel; Coquet, Yves; Bergheaud, Valérie; Benoit, Pierre

    2012-08-01

    Laboratory incubations were performed in order to evaluate the dissipation of the proherbicide isoxaflutole in seedbed layer soil samples from conventional and conservation tillage systems and in maize and oat residues left at the soil surface under conservation tillage. The effects of temperature and water pressure head on radiolabelled isoxaflutole degradation were studied for each sample for 21d. Mineralisation of isoxaflutole was low for all samples and ranged from 0.0% to 0.9% of applied (14)C in soil samples and from 0.0% to 2.4% of applied (14)C in residue samples. In soil samples, degradation half-life of isoxaflutole ranged from 9 to 26h, with significantly higher values under conservation tillage. In residue samples, degradation half-life ranged from 3 to 31h, with significantly higher values in maize residues, despite a higher mineralisation and bound residue formation than in oat residues. Whatever the sample, most of the applied (14)C remained extractable during the experiment and, after 21d, less than 15% of applied (14)C were unextractable. This extractable fraction was composed of diketonitrile, benzoic acid derivative and several unidentified metabolites, with one of them accounting for more than 17% of applied (14)C. This study showed that tillage system design, including crop residues management, could help reducing the environmental impacts of isoxaflutole. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  18. Biomass Production and Soil Carbon Level Changes in Various Tillage, Residue Management, and Cropping Systems in Moderately High Organic Matter Soils in Eastern South Dakota, U.S.A.

    Science.gov (United States)

    Woodard, H. J.; Bly, A.

    2003-12-01

    A four-year replicated field study was conducted in eastern South Dakota to assess the impact of maize (Zea mays L.), soybean (Glycine max L.), and spring wheat (Triticum aestivum L.) on crop residue accumulation and soil carbon when various tillage, crop residue management, and crop rotation scenarios were applied. Before planting, half the plots were chisel plowed and harrowed (tilled vs. no-till treatments). Corn-soybean, soybean-wheat, or corn-wheat-soybean rotations were established (rotation treatments). After grain harvest, crop residues were removed on half of the plots (residue-removed vs. residue-retained treatments). The range of initial soil carbon levels (loss by ignition method) for the 0-15cm depth was 1.7-3.0%. Post-harvest crop residue accumulation was greatest for the residue-retained treatment compared to the residue-removed treatment and for the no-till treatment compared to the tilled treatment. In addition, surface biomass accumulation was greatest when maize was part of a crop rotation. Maize can produce greater levels of biomass compared to either spring wheat or soybean. The least surface biomass accumulation was measured in the soybean-wheat rotation.

  19. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  20. The fate of nitrogen from crop residues of broccoli, leek and sugar beet

    NARCIS (Netherlands)

    Ruijter, de F.J.; Berge, ten H.F.M.; Smit, A.L.

    2010-01-01

    Environmental concern has lead to legislation on fertilization to reduce nutrient losses to the environment. Reducing N input may be inadequate for crops that have a high N content in their residues. Reducing N input will negatively affect yield, but the residues remain. Management of crop residues

  1. Pesticide residue concentration in soil following conventional and Low-Input Crop Management in a Mediterranean agro-ecosystem, in Central Greece.

    Science.gov (United States)

    Karasali, Helen; Marousopoulou, Anna; Machera, Kyriaki

    2016-01-15

    The present study was focused on the comparative evaluation of pesticide residues, determined in soil samples from Kopaida region, Greece before and after the implementation of Low-Input Crop Management (LCM) protocols. LCM has been suggested as an environmental friendly plant protection approach to be applied on crops growing in vulnerable to pollution ecosystems, with special focus on the site specific problems. In the case of the specific pilot area, the vulnerability was mainly related to the pollution of water bodies from agrochemicals attributed to diffuse pollution primarily from herbicides and secondarily from insecticides. A total of sixty-six soil samples, were collected and analyzed during a three-year monitoring study and the results of the determined pesticide residues were considered for the impact evaluation of applied plant protection methodology. The LCM was developed and applied in the main crops growing in the pilot area i.e. cotton, maize and industrial tomato. Herbicides active ingredients such as ethalfluralin, trifluralin, pendimethalin, S-metolachlor and fluometuron were detected in most samples at various concentrations. Ethalfluralin, which was the active ingredient present in the majority of the samples ranged from 0.01 μg g(-1) to 0.26 μg g(-1) soil dry weight. However, the amount of herbicides measured after the implementation of LCM for two cropping periods, was reduced by more than 75% in all cases. The method of analysis was based on the simultaneous extraction of the target compounds by mechanical shaking, followed by liquid chromatography mass spectrometric and gas chromatography electron capture (LC-MS/MS and GC-ECD) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effect of crop sequence and crop residues on soil C, soil N and yield of maize

    International Nuclear Information System (INIS)

    Shafi, M.; Bakht, J.; Attaullah; Khan, M.A.

    2010-01-01

    Improved management of nitrogen (N) in low N soils is critical for increased soil productivity and crop sustainability. The objective of the present study was to evaluate the effects of residues incorporation, residues retention on soil surface as mulch, fertilizer N and legumes in crop rotation on soil fertility and yield of maize (Zea may L.). Fertilizer N was applied to maize at the rate of 160 kg ha/sup -1/, and to wheat at the rate of 120 kg ha/sup -1/ or no fertilizer N application. Crop rotation with the sequence of maize after wheat (Triticum aestivum L.), maize after lentil (Lens culinaris Medic) or wheat after mash bean (Vigna mungo L.) arranged in a split plot design was followed. Post-harvest incorporation of crop residues and residues retention on soil surface as mulch had significantly (p=0.05) affected grain and stover yield during 2004 and 2005. Two years average data revealed that grain yield was increased by 3.31 and 6.72% due to mulch and residues incorporation. Similarly, stover yield was also enhanced by 5.39 and 10.27% due to the same treatment respectively. Mulch and residues incorporation also improved stover N uptake by 2.23 and 6.58%, respectively. Total soil N and organic matter was non significantly (p=0.05) increased by 5.63 and 2.38% due to mulch and 4.13, 7.75% because of crop residues incorporation in the soil. Maize grain and stover yield responded significantly (p=0.05) to the previous legume (lentil) crop when compared with the previous cereal crop (wheat). The treatment of lentil - maize(+N), on the average, increased grain yield of maize by 15.35%, stover yield by 16.84%, total soil N by 10.31% and organic matter by 10.17%. Similarly, fertilizer N applied to the previous wheat showed carry over effect on grain yield (6.82%) and stover yield (11.37%) of the following maize crop. The present study suggested that retention of residues on soil surface as mulch, incorporation of residues in soil and legume (lentil - maize) rotation

  3. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  4. Microclimate effects of crop residues on biological processes

    Science.gov (United States)

    Hatfield, J. L.; Prueger, J. H.

    1996-03-01

    plant to maintain transpiration rates at optimal levels during the early vegetative growth period. The biological implications of crop residue on the soil surface can be more positive than negative and increasing our understanding of the physical environment and biological system interactions will lead to improved resource management.

  5. Crop Residue Biomass Effects on Agricultural Runoff

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available High residue loads associated with conservation tillage and cover cropping may impede water flow in furrow irrigation and thus decrease the efficiency of water delivery and runoff water quality. In this study, the biomass residue effects on infiltration, runoff, and export of total suspended solids (TSS, dissolved organic carbon (DOC, sediment-associated carbon (TSS-C, and other undesirable constituents such as phosphate (soluble P, nitrate (, and ammonium ( in runoff water from a furrow-irrigated field were studied. Furrow irrigation experiments were conducted in 91 and 274 m long fields, in which the amount of residue in the furrows varied among four treatments. The biomass residue in the furrows increased infiltration, and this affected total load of DOC, TSS, and TSS-C. Net storage of DOC took place in the long but not in the short field because most of the applied water ran off in the short field. Increasing field length decreased TSS and TSS-C losses. Total load of , , and soluble P decreased with increasing distance from the inflow due to infiltration. The concentration and load of P increased with increasing residue biomass in furrows, but no particular trend was observed for and . Overall, the constituents in the runoff decreased with increasing surface cover and field length.

  6. BIOMASS FROM CROP RESIDUES: COST AND SUPPLY ESTIMATES

    OpenAIRE

    Gallagher, Paul W.; Dikeman, Mark; Fritz, John; Wailes, Eric J.; Gauthier, Wayne M.; Shapouri, Hosein

    2003-01-01

    The supply of harvested crop residues as a feed stock for energy products is estimated in this report. The estimates account for economic and environmental factors governing residue supply. The supply results span major agricultural crops in four distinct cropping regions of the United States, taking into account local variation in cost-determining factors such as residue yield, geographic density of residues, and competition for livestock feed use.

  7. Miscanthus establishment and overwintering in the Midwest USA: a regional modeling study of crop residue management on critical minimum soil temperatures.

    Directory of Open Access Journals (Sweden)

    Christopher J Kucharik

    Full Text Available Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below -3.5 °C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978-2007 reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at -3.5 °C and -6.0 °C for different Miscanthus genotypes were reached at rhizome planting depth (10 cm over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between -8 °C to -11 °C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below -3.5 °C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below -6.0 °C in 50-60% of all years. For simulated management options that established varied thicknesses (1-5 cm of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5 °C to 6 °C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching -3.5 °C was greatly reduced with 2-5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than -3.5 °C in 50-80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first few

  8. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport

    Science.gov (United States)

    Luxi Zhou; Kirk R. Baker; Sergey L. Napelenok; George Pouliot; Robert Elleman; Susan M. O' Neill; Shawn P. Urbanski; David C. Wong

    2018-01-01

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment...

  9. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport

    Science.gov (United States)

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also ...

  10. The effect of crop residue layers on evapotranspiration, growth and ...

    African Journals Online (AJOL)

    A layer of harvest residues from the previous crop can reduce wasteful evaporation from the soil surface and thereby increase the efficiency of use of limited water resources for agricultural production. The practice of harvesting sugarcane green and leaving crop residues in the field, as opposed to burning the residue, has ...

  11. Soil carbon storage and stratification under different tillage/residue-management practices in double rice cropping system

    NARCIS (Netherlands)

    Chen, Z.; Zhang, H.; dikgwatlhe, S.B.; Xue, J.; Qiu, K.; Tang, H.; Chen, F.

    2015-01-01

    The importance of soil organic carbon (SOC) sequestration in agricultural soils as climate-change-mitigating strategy has become an area of focus by the scientific community in relation to soil management. This study was conducted to determine the temporal effect of different tillage systems and

  12. Measurement of the fluorescence of crop residues: A tool for controlling soil erosion

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.

    1994-01-01

    Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.

  13. Biological treatment of crop residues for ruminant feeding: A review ...

    African Journals Online (AJOL)

    Crop residues are often referred to as 'lignocellulosics' as they are rich in cellulose which is bound with a biopolymer lignin. Rumen microbiota (bacteria, protozoa and fungi), even with their hydrolytic enzymes, are not very competent enough to break these bonds efficiently. Biological treatment of such crop residues using ...

  14. Nitrous oxide emission from soils amended with crop residues

    NARCIS (Netherlands)

    Velthof, G.L.; Kuikman, P.J.; Oenema, O.

    2002-01-01

    Crop residues incorporated in soil are a potentially important source of nitrous oxide (N2O), though poorly quantified. Here, we report on the N2O emission from 10 crop residues added to a sandy and a clay soil, both with and without additional nitrate (NO3-). In the sandy soil, total nitrous oxide

  15. Crop residues for advanced biofuels workshop: A synposis

    Science.gov (United States)

    Crop residues are being harvested for a variety of purposes including their use as livestock feed and to produce advanced biofuels. Crop residue harvesting, by definition, reduces the potential annual carbon input to the soil from aboveground biomass but does not affect input from plant roots. The m...

  16. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  17. Cycling of fertilizer and cotton crop residue nitrogen

    International Nuclear Information System (INIS)

    Rochester, I.J.; Constable, G.A.; MacLeod, D.A.

    1993-01-01

    Mineral nitrogen (N), nitrate and ammonium contents were monitored in N-fertilized soils supporting cotton crops to provide information on the nitrification, mineralization and immobilization processes operating in the soil. The relative contributions of fertilizer N, previous cotton crop residue N and indigenous soil N to the mineral N pools and to the current crop's N uptake were calculated. After N fertilizer (urea) application, the soil's mineral N content rose rapidly and subsequently declined at a slower rate. The recovery of 15 N-labelled urea as mineral N declined exponentially with time. Biological immobilization (and possibly denitrification to some extent) were believed to be the major processes reducing post-application soil mineral N content. Progressively less N was mineralized upon incubation of soil sampled through the growing season. Little soil N (either from urea or crop residue) was mineralized at crop maturity. Cycling of N was evident between the soil mineral and organic N pools throughout the cotton growing season. Considerable quantities of fertilizer N were immobilized by the soil micro biomass; immobilized N was remineralized and subsequently taken up by the cotton crop. A large proportion of the crop N was taken up in the latter part of the season when the soil mineral N content was low. It is suggested that much of the N taken up by cotton was derived from microbial sources, rather than crop residues. The application of cotton crop residue (stubble) slightly reduced the mineral N content in the soil by encouraging biological immobilization. 15 N was mineralized very slowly from the labelled crop residue and did not contribute significantly to the supply of N to the current crop. Recovery of labelled fertilizer N and labelled crop residue N by the cotton crop was 28% and 1%, respectively. In comparison, the apparent recovery of fertilizer N was 48%. Indigenous soil N contributed 68% of the N taken up by the cotton crop. 33 refs., 1 tab

  18. Nitrous oxide and N-leaching losses from agricultural soil: Influence of crop residue particle size, quality and placement

    DEFF Research Database (Denmark)

    Ambus, P.; Jensen, E.S.; Robertson, G.P.

    2001-01-01

    Incorporation of crop residues provides a source of readily available C and N, and previous works indicate that farming strategies where crop residues are used for soil fertility purposes may lead to increased emissions of N2O. Information on the importance of different residue management on the ...

  19. Influence of crop management practices on bean foliage arthropods.

    Science.gov (United States)

    Pereira, J L; Picanço, M C; Pereira, E J G; Silva, A A; Jakelaitis, A; Pereira, R R; Xavier, V M

    2010-12-01

    Crop management practices can affect the population of phytophagous pest species and beneficial arthropods with consequences for integrated pest management. In this study, we determined the effect of no-tillage and crop residue management on the arthropod community associated with the canopy of common beans (Phaseolus vulgaris L.). Abundance and species composition of herbivorous, detritivorous, predaceous and parasitoid arthropods were recorded during the growing seasons of 2003 and 2004 in Coimbra County, Minas Gerais State, Brazil. Arthropod diversity and guild composition were similar among crop management systems, but their abundance was higher under no-tillage relative to conventional cultivation and where residues from the preceding crop were maintained in the field. Thirty-four arthropod species were recorded, and those most representative of the impact of the crop management practices were Hypogastrura springtails, Empoasca kraemeri and Circulifer leafhoppers, and Solenopsis ants. The infestation levels of major insect-pests, especially leafhoppers (Hemiptera: Cicadellidae), was on average seven-fold lower under no-tillage with retention of crop residues relative to the conventional system with removal of residues, whereas the abundance of predatory ants (Hymenoptera: Formicidae) and springtails (Collembola: Hypogastruridae) were, respectively, about seven- and 15-fold higher in that treatment. Importantly, a significant trophic interaction among crop residues, detritivores, predators and herbivores was observed. Plots managed with no-tillage and retention of crop residues had the highest bean yield, while those with conventional cultivation and removal of the crop residues yielded significantly less beans. This research shows that cropping systems that include zero tillage and crop residue retention can reduce infestation by foliar insect-pests and increase abundance of predators and detritivores, thus having direct consequences for insect pest management.

  20. Environmental Impacts of Diverting Crop Residues to Fuel Use

    OpenAIRE

    Clancy, Joy S.

    1997-01-01

    Shortage of fuel wood has lead many rural people to switch to using agricultural residues as an alternative energy source. However this has not always been met with universal acclaim due to the role of residues as fertilisers. Although crop residues and animal manure as a nutrient source has been superseded by inorganic fertilizers in most intensive farming systems, they continue to be the main source of crop nutrient replacement in most developing countries. There has developed wide spread a...

  1. Crop residues and agro-industrial by-products used in traditional ...

    African Journals Online (AJOL)

    The crop residues were grouped under cereal crop residues (3), root crop residues (5), legume crop residues (3), and fruit crop residues (3). All the sampled respondents kept livestock and depend on the natural pasture as the main source of feed for their animals. The mean stock number per farmer in this study was 14.0 ...

  2. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT: The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental

  3. Ethanol production from crop residues and soil organic carbon

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    In decision making about the use of residues from annual crops for ethanol production, alternative applications of these residues should be considered. Especially important is the use of such residues for stabilizing and increasing levels of soil organic carbon. Such alternative use leads to a

  4. Environmental Impacts of Diverting Crop Residues to Fuel Use

    NARCIS (Netherlands)

    Clancy, Joy S.

    1997-01-01

    Shortage of fuel wood has lead many rural people to switch to using agricultural residues as an alternative energy source. However this has not always been met with universal acclaim due to the role of residues as fertilisers. Although crop residues and animal manure as a nutrient source has been

  5. Assessment of a design to monitor the influence of crop residue management on the dynamics of soil water content with ERT

    Science.gov (United States)

    Chelin, Marie; Hiel, Marie-Pierre; Hermans, Thomas; Binley, Andrew; Garre, Sarah

    2016-04-01

    Choices related to crop residue management affect the soil structure. As a consequence, they may determine the spatio-temporal dynamics of water content and eventually the crop yields. In order to better understand the influence of these strategies on hydraulic processes occurring at the plot scale, we opted for the use electrical resistivity tomography (ERT). This approach presents the advantage to limit soil disturbance but is still faced to important challenges when applied in an agricultural field context. Especially changing soil-electrode contact has to be considered, as it can lead to bad quality data, especially for setups with small electrodes and small inter-electrode distance. The objective of this study was to test the efficiency of a high-resolution 3-D field measurement design to properly assess the dynamics of soil water content. ERT measurements were conducted in a Cutanic Siltic Luvisol in Gembloux, Belgium, on two plots of 2m2 ploughed in Oct 2014 at a depth of 25 cm and sown with maize in April 2015. The plants were removed on one of the plots in order to obtain a bare soil reference. A grid of 98 surface stainless steel electrodes was layed-out on each plot and four sticks supporting each eight stainless steel electrodes were vertically inserted into the soil up to 1.20 m to get more detailed information in depth. The experiments were performed between Jul and Oct 2015, in order to get measurements both in dry and wet periods. For surface and borehole monitoring, a dipole-dipole array configuration including in-line and cross-line measurements was adopted. Normal and reciprocal measurements were performed systematically to assess the data quality: only the datasets with a mean reciprocal error lower than 3% were considered for the data inversion. This contribution will show the first inverted results showing the complexity of experimental design and data analysis for high-resolution, timelapse ERT in field conditions. Based on these results, we

  6. Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach

    International Nuclear Information System (INIS)

    Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.; Izaurralde, César R.; Manowitz, David H.; Zhang, Xuesong

    2011-01-01

    This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary by crop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007–09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007–2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2–3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. -- Highlights: ► A new bioeconomic model predicts biomass supply and its environmental impacts. ► The model captures the opportunity cost of switching to new cellulosic crops. ► Biomass from crop residues is supplied at lower biomass price than cellulosic crops. ► Biomass from cellulosic crops has

  7. Evaluation of crop residue retention, compost and inorganic fertilizer ...

    African Journals Online (AJOL)

    Soil fertility depletion is a serious problem in the highlands of Ethiopia. A field experiment was conducted for two consecutive cropping seasons (2009-2010) on farmers' fields in Degem Wereda, North Shewa, Oromiya Regional State. The objective of this study was to evaluate the effects of crop residue, compost, inorganic ...

  8. Evaluation of Crops Sensitivity to Atrazine Soil Residual

    Directory of Open Access Journals (Sweden)

    E Izadi

    2012-02-01

    Full Text Available Abstract In order to study the sensitivity of 9 crops to atrazine soil residual, two separate experiments were conducted in field and greenhouse conditions. First experiment was conducted in a field with treated soil by atrazine based on split plot and the results evaluated in greenhouse conditions. Treatments in the field experiment included two organic manure application rates (0 and 50 t/ha as main plots and 2 atrazine application rates (2 and 4 kg/ha atrazine a.i. as sob plots. After corn harvesting soil was sampled at 0-15 cm surface layer in each plots in 15 points, after mixing the samples. Wheat, barley, sugar beet, pea, lens and colza planted in pots at greenhouse. Second experiment conducted in greenhouse conditions for evaluation of atrazine soil residual in completely randomized design. Treatments included atrazine soil residual concentrations (0, 0.2, 0.5, 1, 5, 10 and 15 mg/kg soil and crops included wheat, barley, sugar beet, pea, lens, rape, bean and tomato. Results showed that atrazine residue had no effect on crops growth in field experiment treated with atrazine. It seems that atrazine residue in filed soil is lower that its damage threshold for crops or maybe for its fast removal in field than in control conditions. But in bioassay experiment (greenhouse experiment crops response to atrazine residues were different. Results showed that onion and pea were most susceptible ant tolerant crops between studied species and based of ED50 parameter the other crops tolerance to total residue ranked as: pea< bean< lentil< sugar beet< tomato< barley< wheat< rape< onion. Keywords: Atrazine residue, Pea, Bean, Lentil, Sugar beet, Barley, Wheat, Rape, Tomato

  9. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  10. Crop residues quantification to obtain self-consumption compost in an organic garden

    Science.gov (United States)

    Lopez de Fuentes, Pilar; Lopez Merino, María; Remedios Alvir, María; Briz de Felipe, Teresa

    2013-04-01

    This research focuses on quantifying the crop residue left after the campaign fall/winter (2011) for the organic garden crops of Agricultural ETSI, located in practice fields, to get compost for self-generated residues arising from within their own fields. This compost is produced by mixing this material with an organic residues source animal. In this way the plant organic residues provided the nitrogen required for an appropriate C/N and the animal organic residues can provide the carbon amount required to achieve an optimal scenario. The garden has a surface area of 180 m2 which was cultured with different seasonal vegetables, different families and attending practices and species associations' rotations, proper of farming techniques. The organic material of animal origin referred to, is rest from sheep renew bed, sustained management support the precepts of organic farming and cottage belongs to practice fields too. At the end of crop cycle, we proceeded to the harvest and sorting of usable crop residues, which was considered as net crop residues. In each case, these residues were subjected to a cutting treatment by the action of a mincing machine and then weighed to estimate the amounts given by each crop. For the sheep bed residue 1m2 was collected after three months having renewed. It had been made by providing 84 kg of straw bales in July and introducing about 12 Kg each. The herd consisted of three females and one playe. Each one of them was feed 300g and 600 g of straw per day. Two alternating different pens were used to simulate a regime of semi-intensive housing. A balance on how much organic residue material was obtained at the end and how much was obtained in the compost process is discussed in terms of volume and nutrients content is discussed.

  11. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  12. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling...

  13. Crop residue decomposition, residual soil organic matter and nitrogen mineralization in arable soils with contrasting textures

    NARCIS (Netherlands)

    Matus, F.J.

    1994-01-01

    To evaluate the significance of cropping, soil texture and soil structure for the decomposition of 14C- and 15N-labelled crop residues, a study was conducted in a sand and a

  14. Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1 Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Abderrazak Bannari

    2015-06-01

    Full Text Available Soil management practices that maintain crop residue cover and reduce tillage improve soil structure, increase organic matter content in the soil, positively influence water infiltration, evaporation and soil temperature, and play an important role in fixing CO2 in the soil. Consequently, good residue management practices on agricultural land have many positive impacts on soil quality, crop production quality and decrease the rate of soil erosion. Several studies have been undertaken to develop and test methods to derive information on crop residue cover and soil tillage using empirical and semi-empirical methods in combination with remote sensing data. However, these methods are generally not sufficiently rigorous and accurate for characterizing the spatial variability of crop residue cover in agricultural fields. The goal of this research is to investigate the potential of hyperspectral Hyperion (Earth Observing-1, EO-1 data and constrained linear spectral mixture analysis (CLSMA for percent crop residue cover estimation and mapping. Hyperion data were acquired together with ground-reference measurements for validation purposes at the beginning of the agricultural season (prior to spring crop planting in Saskatchewan (Canada. At this time, only bare soil and crop residue were present with no crop cover development. In order to extract the crop residue fraction, the images were preprocessed, and then unmixed considering the entire spectral range (427 nm–2355 nm and the pure spectra (endmember. The results showed that the correlation between ground-reference measurements and extracted fractions from the Hyperion data using CLMSA showed that the model was overall a very good predictor for crop residue percent cover (index of agreement (D of 0.94, coefficient of determination (R2 of 0.73 and root mean square error (RMSE of 8.7% and soil percent cover (D of 0.91, R2 of 0.68 and RMSE of 10.3%. This performance of Hyperion is mainly due to the

  15. Quantification and characterization of cotton crop biomass residue

    Science.gov (United States)

    Cotton crop residual biomass remaining in the field after mechanical seed cotton harvest is not typically harvested and utilized off-site thereby generating additional revenue for producers. Recently, interest has increased in utilizing biomass materials as feedstock for the production of fuel and ...

  16. Feeding potential of summer grain crop residues for woolled sheep ...

    African Journals Online (AJOL)

    Dohne Merino wethers grazed crop residues of lupins, dry beans, soybeans, sunflower, sorghum and maize at a stocking rate of 10 wethers/ha. Three wethers in every treatment ... Digestible organic matter and protein intake of sheep generally decreased with time as grain availability declined. At commencement of grazing ...

  17. Economcis of cattle fattening with crop residues in Northern Guinea ...

    African Journals Online (AJOL)

    This study was conducted to investigate the economics of Cattle fattening with crop residues in Northern Guinea Savannah Ecological Zone of Nigeria, Data were collected from 100 respondents between January to December, 1999 using simple random sampling technique. Interview method was employed. The data were ...

  18. Utilization of crop residue and animal wastes among agropastoral ...

    African Journals Online (AJOL)

    Utilization of crop residue and animal wastes among agropastoral households in Kwara state, Nigeria. ... These included frequency count, percentages, mean, while the inferential statistics used include of chi-square, Pearson Product Moment Correlation (PPMC) and t- test. The result of analysis showed that (44%) of the ...

  19. Crop residues utilization as livestock feed in Emohua and Obio ...

    African Journals Online (AJOL)

    total of 40 farmers in Emohua and Obio-Akpor Local Government Areas (LGAs) of Rivers State were investigated to determine their extent of crop residues utilization as livestock feed. The Participatory Rural Appraisal method was adopted in the administration of questionnaires to respondents during the study while, ...

  20. Nutritive Value Assessment of Four Crop Residues by Proximate ...

    African Journals Online (AJOL)

    Dr Grace Tona

    The results revealed that citrus pulp and maize stover could be of higher nutritional value in ruminants feed than bean waste, while rice husk was lowest. Keywords: Crop residues, in vitro incubation, West African Dwarf goats. Introduction. The livestock industry in Nigeria has contributed substantially to the national wealth.

  1. Feeding potential of summer grain crop residues for woolled sheep ...

    African Journals Online (AJOL)

    of 80:20 for the first collection on maize residues. Schoonraad (1985) did not pick up the cobs, so much more grain was available. Crude protein content. Changes in percentage crude protein in oesophageal samples are shown in Figure 2. With all crops, CP content of oesophageal samples was initially high but decreased ...

  2. Returning Winter Cover Crop Residue Influences Soil Aggregation and Humic Substances under Double-cropped Rice Fields

    Directory of Open Access Journals (Sweden)

    Haiming Tang

    2017-11-01

    Full Text Available ABSTRACT Residue management in cropping systems may improve soil quality. However, there are few studies on the effects of residue management on soil aggregation and carbon content in the humin (C-HUM, humic acid (C-HAF and fulvic acid (C-FAF fractions in South China. Therefore, the effects on soil aggregation and on the C-HUM, C-HAF, C-FAF from incorporating winter cover crop residues in a double-cropped rice (Oryza sativa L. system in South China fields were studied. The experiment has been conducted since winter 2004. Five winter cropping systems were used: rice-rice-ryegrass (Ry-R-R, rice-rice-Chinese milk vetch (Mv-R-R, rice-rice-potato (Po-R-R, rice-rice-rape (Ra-R-R and rice-rice with winter fallow (Fa-R-R. The results indicated that the organic C content in the paddy soil under the Ry-R-R, Mv-R-R, Po-R-R, and Ra-R-R systems was significantly higher than the content in the Fa-R-R system at the early rice and late rice maturity stages. The different sizes of aggregates under the five treatments showed similar trends. The Po-R-R systems had the highest percentage of soil aggregates in each size class and the Fa-R-R systems had the lowest percentage of soil aggregates in each size class in the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m soil depth at the early rice and late rice maturity stages. The C-HUM, C-HAF, and C-FAF increased through long-term application of winter cover crop residues. Statistical analysis showed that the C-HAF under the Ra-R-R systems was significantly higher than that in the Fa-R-R systems at the early rice and late rice maturity stages. The C-FAF and C-HUM under the Mv-R-R systems was significantly higher than the C-FAF and C-HUM in the Fa-R-R systems at the early rice and late rice maturity stages. As a result, the soil organic C content, the soil aggregates in each size class, and the C-HUM, C-HAF, and C-FAF increased from application of winter cover crop residues in double-cropped rice systems.

  3. An Improved ASTER Index for Remote Sensing of Crop Residue

    Directory of Open Access Journals (Sweden)

    Paul C. Doraiswamy

    2009-11-01

    Full Text Available Unlike traditional ground-based methodology, remote sensing allows for the rapid estimation of crop residue cover (fR. While the Cellulose Absorption Index (CAI is ideal for fR estimation, a new index, the Shortwave Infrared Normalized Difference Residue Index (SINDRI, utilizing ASTER bands 6 and 7, is proposed for future multispectral sensors and would be less costly to implement. SINDRI performed almost as well as CAI and better than other indices at five locations in the USA on multiple dates. A minimal upgrade from one broad band to two narrow bands would provide fR data for carbon cycle modeling and tillage verification.

  4. Cover Crop Residue Amount and Quality Effects on Soil Organic Carbon Mineralization

    Directory of Open Access Journals (Sweden)

    Binod Ghimire

    2017-12-01

    Full Text Available Decline in soil organic carbon (SOC and the associated impacts on crop production under conventional farming raises concerns on how alternative management practices increase SOC sequestration and improve agricultural sustainability. This study aimed to understand SOC mineralization kinetics with different cover crop (CC residue amendments. Soil samples were collected from a fallow and three CC (pea, oat, and canola plots. Soil samples from the CC plots were manipulated with zero, five, and 10 Mg ha−1 of the respective CC residues. All soil samples were incubated for eight weeks, SOC mineralization was monitored, and the first order kinetic and parabolic equation models were fitted to the observed data for estimating labile SOC (C0, and the decomposition rate constant (k. Subsequent comparisons of fitted model parameters were based on the first order kinetic model. The C0 varied with the residue amount while k varied with CC type. C0 was 591–858% greater with 10 Mg ha−1 and 289–456% greater with five Mg ha−1 residue additions while k was 122–297% greater with 10 Mg ha−1 and 94–240% greater with five Mg ha−1 residue additions when compared to the fallow treatment. The CC residue stimulated cumulative carbon mineralization (Cmin irrespective of CC type, suggesting that cover cropping has potential to improve SOC cycling in agroecosystems.

  5. Potential soil quality impact of harvesting crop residues for bio fuels

    International Nuclear Information System (INIS)

    Karlen, D.

    2011-01-01

    We are in one of the greatest technological, environmental and social transitions since the industrial revolution, as we strive to replace fossil energy with renewable biomass resources. My objectives are to (1) briefly review increased public interest in harvesting crop residues as feedstock for bio energy, (2) discuss the work soil scientists must do to address those interests, and (3) examine how soil quality assessment can be used to help quantify soil biological, chemical and physical response to this transition. Rising global energy demand, dependence on unstable imports, volatility in price, and increasing public concern regarding fossil fuel combustion effects on global climate change are among the factors leading to an increased interest in development and use of renewable biomass sources for energy production. Although controlling soil erosion by wind and water is no less important than in the past, it is not the only factor that needs to be considered when evaluating the sustain ability of land management practices including harvest of crop residues as bio energy feedstock. The concept of soil quality assessment is reviewed and the Soil Management Assessment Framework (SMAF) is used to illustrate how such assessments can be used for assessing impacts of harvesting crop residue as feedstock for bio energy production. Preliminary results of the SMAF assessment show that soil organic carbon (SOC) is one of the lower scoring indicators and therefore needs to be monitored closely. Innovative soil and crop management strategies, including a landscape vision are offered as ideas for achieving sustainable food, feed, fiber, and energy production

  6. Decomposition of sugar cane crop residues under different nitrogen rates

    Directory of Open Access Journals (Sweden)

    Douglas Costa Potrich

    2014-09-01

    Full Text Available The deposition of organic residues through mechanical harvesting of cane sugar is a growing practice in sugarcane production system. The maintenance of these residues on the soil surface depends mainly on environmental conditions. Nitrogen fertilization on dry residues tend to retard decomposition of these, providing benefits such as increased SOM. Thus, the object of this research was to evaluate the effect of different doses of nitrogen on sugar cane crop residues, as its decomposition and contribution to carbon sequestration in soil. The experiment was conducted in Dourados-MS and consisted of a randomized complete block design. Dried residues were placed in litter bags and the treatments were arranged in a split plot, being the four nitrogen rates (0, 50, 100 and 150 kg ha-1 N the plots, and the seven sampling times (0, 30, 60, 90, 120, 150 and 180 the spit plots. Decomposition rates of residues, total organic carbon and labile carbon on soil were analysed. The application of increasing N doses resulted in an increase in their decomposition rates. Despite this, note also the mineral N application as a strategy to get higher levels of labile carbon in soil.

  7. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    Energy Technology Data Exchange (ETDEWEB)

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  8. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem.

    Directory of Open Access Journals (Sweden)

    Guoqing Hu

    Full Text Available In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N. However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009. From the 2nd to 4th year (2010-2012, one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9% was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%, but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9% and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile.

  9. Multi-Seasonal Nitrogen Recoveries from Crop Residue in Soil and Crop in a Temperate Agro-Ecosystem.

    Science.gov (United States)

    Hu, Guoqing; Liu, Xiao; He, Hongbo; Zhang, Wei; Xie, Hongtu; Wu, Yeye; Cui, Jiehua; Sun, Ci; Zhang, Xudong

    2015-01-01

    In conservation tillage systems, at least 30% of the soil surface was covered by crop residues which generally contain significant amounts of nitrogen (N). However, little is known about the multi-seasonal recoveries of the N derived from these crop residues in soil-crop systems, notably in northeastern China. In a temperate agro-ecosystem, 15N-labeled maize residue was applied to field surfaces in the 1st year (2009). From the 2nd to 4th year (2010-2012), one treatment halted the application of maize residue, whereas the soil in the second treatment was re-applied with unlabeled maize residue. Crop and soil samples were collected after each harvest, and their 15N enrichments were determined on an isotope ratio mass spectrometer to trace the allocation of N derived from the initially applied maize residue in the soil-crop systems. On average, 8.4% of the maize residue N was recovered in the soil-crop in the 1st year, and the vast majority (61.9%-91.9%) was recovered during subsequent years. Throughout the experiment, the cumulative recovery of the residue N in the crop increased gradually (18.2%-20.9%), but most of the residue N was retained in the soil, notably in the 0-10 cm soil layer. Compared to the single application, the sequential residue application significantly increased the recovery of the residue N in the soil profile (73.8% vs. 40.9%) and remarkably decreased the total and the initially applied residue derived mineral N along the soil profile. Our results suggested that the residue N was actively involved in N cycling, and its release and recovery in crop and soil profile were controlled by the decomposition process. Sequential residue application significantly enhanced the retention and stabilization of the initially applied residue N in the soil and retarded its translocation along the soil profile.

  10. Nutrient management of soil grown crops

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The management of the fertilization of soil grown crops in greenhouses can be distinguished in the addition of fertilizers before cultivation, the base dressing and those added during the cultivations period of the crops, the top dressing. The growing period of the crops in greenhouse production

  11. Nitrogen acquisition by pea and barley and the effect of their crop residues on available nitrogen for subsequent crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated....... The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization....... The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N...

  12. Can agricultural practices that mitigate or improve crop resilience to climate change also manage crop pests?

    Science.gov (United States)

    Murrell, Ebony G

    2017-10-01

    Sustainable agricultural practices that are promoted for mitigating climate change have the potential to also improve pest management. The author highlights recent studies that demonstrate effects of climate-mitigating agricultural practices on arthropod pests and predators in agronomic cropping systems. Promising practices for suppressing pests and/or improving biological control include: plant species diversification, especially via the addition of perennial species; cover cropping; tillage practices that retain crop residue; application of organic fertilizers such as compost and manure; and water management practices such as irrigation and sustainable rice intensification. More research is needed that explicitly tests pest and predator responses to agricultural practices under climate change conditions, if these practices are to be effectively promoted and implemented as agricultural pest management strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Characterization of Proteins in Filtrate from Biodegradation of Crop Residue

    Science.gov (United States)

    Horton, Wileatha; Trotman, A. A.

    1997-01-01

    Biodegradation of plant biomass is a feasible path for transformation of crop residue and recycling of nutrients for crop growth. The need to model the effects of factors associated with recycling of plant biomass resulting from hydroponic sweet potato production has led to investigation of natural soil isolates with the capacity for starch hydrolysis. This study sought to use nondenaturing gel electrophoresis to characterize the proteins present in filtered effluent from bioreactors seeded with starch hydrolyzing bacterial culture used in the biodegradation of senesced sweet potato biomass. The study determined the relative molecular weight of proteins in sampled effluent and the protein banding pattern was characterized. The protein profiles of effluent were similar for samples taken from independent runs under similar conditions of starch hydrolysis. The method can be used as a quality control tool for confirmation of starch hydrolysis of crop biomass. In addition, this method will allow monitoring for presence of contaminants within the system-protein profiles indicative of new enzymes in the bioreactors.

  14. Improved crop residue cover estimates by coupling spectral indices for residue and moisture

    Science.gov (United States)

    Remote sensing assessment of soil residue cover (fR) and tillage intensity will improve our predictions of the impact of agricultural practices and promote sustainable management. Spectral indices for estimating fR are sensitive to soil and residue water content, therefore, the uncertainty of estima...

  15. Weed management strategies for castor bean crops

    Directory of Open Access Journals (Sweden)

    Augusto Guerreiro Fontoura Costa

    2014-04-01

    Full Text Available Castor bean crops are agriculturally relevant due to the quality and versatility of their oil, both for the chemical industry and for biodiesel production. Proper weed management is important for both the cultivation and the yield of castor bean crops; therefore, the intention of the present work is to review pertinent information regarding weed management, including the studies regarding weed interference periods, chemical controls for use in different crop production systems and herbicide selectivity, for castor bean crops. Weed science research for castor bean crops is scarce. One of the main weed management challenges for castor bean crops is the absence of herbicides registered with the Ministry of Agriculture, Livestock and Food Supply (MALFS. Research for viable herbicides for weed control in castor bean crops should be directed by research and/or rural extension institutions, associations and farmers cooperatives, as well as by manufactures, for the registration of these selective herbicides, which would be primarily used to control eudicotyledons in castor bean crops. New studies involving the integration of weed control methods in castor bean also may increase the efficiency of weed management, for both small farmers using traditional crop methods in the Brazilian Northeast region, as well as for areas with the potential for large scale production, using conservation tillage systems, such as the no-tillage crop production system.

  16. Classification of crops grown in or imported into the European Union for pesticide residue assessment

    OpenAIRE

    Velde-Koerts T van der; Muller E; Ossendorp BHC; Plantenziektenkundige dienst; SIR; Plantenziektenkundige Dienst

    2003-01-01

    An important aspect of food safety is the control of pesticide residues on food. Pesticide residue assessments are conducted to establish legal limits, known as maximum residue limits (MRLs), for pesticide residues in plant and animal commodities. In the EC guidelines for pesticide residue assessment, the so-called Lundehn document, agricultural crops are classified into groups in which results are considered to be comparable. Within these groups, the results for one crop may be extrapolated,...

  17. Lignin biochemistry and soil N determine crop residue decomposition and soil priming

    Science.gov (United States)

    Cropping history can affect soil properties, including available N, but little is known about the interactive effects of residue biochemistry, temperature and cropping history on residue decomposition. A laboratory incubation examined the role of residue biochemistry and temperature on the decomposi...

  18. Mineralization of nitrogen from nitrogen-15 labeled crop residues and utilization by rice

    International Nuclear Information System (INIS)

    Norman, R.J.; Gilmour, J.T.; Wells, B.R.

    1990-01-01

    The availability of N from the residues of the previous crop to the subsequent rice (Oryza sativa L.) crop is largely unknown. The objectives of this study were to (1) measure the mineralization of N from 15 N-labeled rice, soybean (Glycine max L.), and wheat (Triticum aestivum L.) residues and the uptake by a subsequent rice crop; and (2) compare the 15 N tracer method with the standard fertilizer-N response method used in field studies to quantify the N contribution from the crop residue to the next crop. Nitrogen mineralization from decomposing crop residues was measured by soil sampling prior to seeding the rice crop and after seeding by plant sampling the rice at maturity. The minimum estimate of the amount of residue N mineralized from the time of residue incorporation until rice harvest was 9, 52, and 38% of the rice, soybean, and wheat residue N, respectively. The amount of residue N recovered in the rice crop was 3, 11, and 37% of the rice, soybean, and wheat residue N, respectively. The lower the C/N ratio and the higher the amount of N in the residue, the lower was the amount of residue N recovered in the soil organic fraction at harvest and the higher was the amount of residue N mineralized. The 15 N tracer method compared favorably with the fertilizer N response method when the uptake efficiency of the fertilizer N was taken into account

  19. Space Data for Crop Management

    Science.gov (United States)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  20. Determination of crop residues and the physical and mechanical properties of soil in different tillage systems

    Directory of Open Access Journals (Sweden)

    P Ahmadi Moghaddam

    2016-04-01

    Full Text Available Introduction: Monitoring and management of soil quality is crucial for sustaining soil function in ecosystem. Tillage is one of the management operations that drastically affect soil physical quality. Conservation tillage methods are one of the efficient solutions in agriculture to reduce the soil erosion, air pollution, energy consumption, and the costs, if there is a proper management on the crop residues. One of the serious problems in agriculture is soil erosion which is rapidly increased in the recent decades as the intensity of tillage increases. This phenomenon occurs more in sloping lands or in the fields which are lacking from crop residues and organic materials. The conservation tillage has an important role in minimizing soil erosion and developing the quality of soil. Hence, it has attracted the attention of more researchers and farmers in the recent years. Materials and Methods: In this study, the effect of different tillage methods has been investigated on the crop residues, mechanical resistance of soil, and the stability of aggregates. This research was performed on the agricultural fields of Urmia University, located in Nazloo zone in 2012. Wheat and barley were planted in these fields, consecutively. The soil texture of these fields was loamy clay and the factorial experiments were done in a completely randomized block design. In this study, effect of three tillage systems including tillage with moldboard (conventional tillage, tillage with disk plow (reduced tillage, chisel plow (minimum tillage and control treatment on some soil physical properties was investigated. Depth is second factor that was investigated in three levels including 0-60, 60-140, and 140-200 mm. Moreover, the effect of different percentages of crop residues on the rolling resistance of non-driving wheels was studied in a soil bin. The contents of crop residues have been measured by using the linear transects and image processing methods. In the linear

  1. Managing woodwaste: Yield from residue

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, E. [LNS Services, Inc., North Vancouver, British Columbia (Canada); Rayner, S. [Pacific Waste Energy Inc., Burnaby, British Columbia (Canada)

    1993-12-31

    Historically, the majority of sawmill waste has been burned or buried for the sole purpose of disposal. In most jurisdictions, environmental legislation will prohibit, or render uneconomic, these practices. Many reports have been prepared to describe the forest industry`s residue and its environmental effect; although these help those looking for industry-wide or regional solutions, such as electricity generation, they have limited value for the mill manager, who has the on-hands responsibility for generation and disposal of the waste. If the mill manager can evaluate waste streams and break them down into their usable components, he can find niche market solutions for portions of the plant residue and redirect waste to poor/no-return, rather than disposal-cost, end uses. In the modern mill, residue is collected at the individual machine centre by waste conveyors that combine and mix sawdust, shavings, bark, etc. and send the result to the hog-fuel pile. The mill waste system should be analyzed to determine the measures that can improve the quality of residues and determine the volumes of any particular category before the mixing, mentioned above, occurs. After this analysis, the mill may find a niche market for a portion of its woodwaste.

  2. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  3. Ecological weed management by cover cropping : effects on weed growth in autumn and weed establishment in spring

    NARCIS (Netherlands)

    Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J.

    2008-01-01

    Cover crops grown in the period between two main crops have potential as an important component of a system-oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in

  4. Crop residues as raw materials for biorefinery systems - A LCA case study

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Ulgiati, Sergio

    2010-01-01

    have higher eutrophication potential than fossil reference systems. Based on these results, a residues-based biorefinery concept is able to solve two problems at the same time, namely find a use for the abundant lignocellulosic residues and ensure a mitigation effect for most of the environmental concerns related to the utilization of non-renewable energy resources. Therefore, when agricultural residues are used as feedstocks, best management practices and harvest rates need to be carefully established. In fact, rotation, tillage, fertilization management, soil properties and climate can play an important role in the determination of the amount of crop residue that can be removed minimizing soil carbon losses.

  5. Crop Management Strategies for Low Water Availability

    Science.gov (United States)

    The High Plains is a temperate semi-arid region with highly variable rainfall. Extended periods of drought are common. In general, crop management strategies attempt to maximize the total water available to the crop and to maximize transpiration by minimizing soil evaporation. Summer fallow, the pra...

  6. An early-killed rye cover crop has potential for weed management in edamame

    Science.gov (United States)

    The potential role of fall-seeded cover crops for weed management in edamame is unknown. Field experiments were conducted over three edamame growing seasons to test the following objectives: 1) determine the extent to which cover crop residue management systems influence edamame emergence while sele...

  7. Spatiotemporal Changes in Crop Residues with Potential for Bioenergy Use in China from 1990 to 2010

    Directory of Open Access Journals (Sweden)

    Xinliang Xu

    2013-11-01

    Full Text Available China has abundant crop residues (CRE that could be used for bioenergy. The spatiotemporal characteristics of bioenergy production are crucial for high-efficiency use and appropriate management of bioenergy enterprises. In this study, statistical and remote-sensing data on crop yield in China were used to estimate CRE and to analyze its spatiotemporal changes between 1990 and 2010. In 2010, China’s CRE was estimated to be approximately 133.24 Mt, and it was abundant in North and Northeast China, the middle and lower reaches of the Yangtze River, and South China; CRE was scarce on the Loess and Qinghai–Tibet Plateaus. The quantity of CRE increased clearly over the 20-year analysis period, mainly from an increase in residues produced on dry land. Changes in cultivated land use clearly influenced the changes in CRE. The expansion of cultivated land, which mainly occurred in Northeast and Northwest China, increased CRE by 5.18 Mt. The loss of cultivated land, which occurred primarily in North China and the middle and lower reaches of the Yangtze River, reduced CRE by 3.55 Mt. Additionally, the interconversion of paddy fields and dry land, which occurred mostly in Northeast China, increased CRE by 0.78 Mt. The findings of this article provide important information for policy makers in formulating plans and policies for crop-residue-based bioenergy development in China, and also for commercial ventures in deciding on locations and production schedules for generation of bioenergy.

  8. Crop residue recycling for economic and environmental sustainability: The case of India

    Directory of Open Access Journals (Sweden)

    Devi Saroj

    2017-09-01

    Full Text Available India is one of the key producers of food grain, oilseed, sugarcane and other agricultural products. Agricultural crops generate considerable amounts of leftover residues, with increases in food production crop residues also increasing. These leftover residues exhibit not only resource loss but also a missed opportunity to improve a farmer’s income. The use of crop residues in various fields are being explored by researchers across the world in areas such as textile composite non-woven making processes, power generation, biogas production, animal feed, compost and manures, etc. The increasing trend in addition of bio-energy cogeneration plants, increasing demand for animal feedstock and increasing trend for organic agriculture indicates a competitive opportunity forcrop residue in Agriculture. It is to be noted that the use of this left over residue isoften not mutually exclusive which makes measurement of its economic value more difficult.For example, straw can be used as animal bedding and thereafter as a crop fertilizer. In view of this, the main aim of this paper envisaged to know about how much crop residue is left unutilized and how best they can be utilized for alternative purposes for environmental stewardship and sustainability. In this context, an attempt has been made to estimate the total crop residue across the states and its economic value though data available from various government sources and a SWOT analysis performed for possible alternative uses of residue in India. This paper also discusses the successful case studies of India and global level of use of crop residues in economic activities. Over all 516 Mtonnes of crop residue was produced in 2014-15 in India among which cereals were the largest producer of crop residue followed by sugarcane. The energy potential from paddy rice straw crop residue was estimated as 486,955 megawatt for 2014-15 and similarly for coarse cereals it was 226,200megawatt.

  9. Effect of pre-treatments on methane production potential of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaki, A.; Ronkainen; Rintala, J.A. [Jyvaskla Univ. (Finland). Dept. of Biological and Environmental Sciences; Viinikainen, T.A. [Jyvaskla Univ. (Finland). Dept. of Chemistry

    2004-07-01

    Energy crops, that is, crops grown specifically for energy purposes are an alternative to food production in areas with sufficient agricultural land. Crop residues are also a potential source of energy. The anaerobic digestion of solid materials is limited by hydrolysis of complex polymeric substances such as lignocellulose. The methane producing potential of ligno cellulosic material is to pretreat the substrate in order to break up the polymer chains to more easily accessible soluble compounds. In this study, three different substrates were used: sugar beet tops, grass hay, and straw of oats. Biological pretreatments were the following: enzyme treatment, composting, white-rot fungi treatment. Also, pretreatment in water was tried. Chemical pretreatments included peracetic acid treatment, and treatment with two different alkalis. Alkaline pretreatments of hay and sugar beet tops have the potential to improve the methane yield. For instance, the yield of grass hay was increased 15 per cent by one particular alkaline treatment. Straw did not respond to any of the treatments tried. 18 refs., 1 tab., 2 figs.

  10. Management swing potential for bioenergy crops

    NARCIS (Netherlands)

    Davis, S.C.; Boddey, R.M.; Alves, B.J.R.; Cowie, A.L.; George, B.H.; Ogle, S.M.; Smith, P.; Noordwijk, van M.; Wijk, van M.T.

    2013-01-01

    Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production

  11. Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern U.S.A.

    Science.gov (United States)

    Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the r...

  12. Using cereal rye (catch crop) and dehydrogenase activity as indicators of the residual fertility effects of anaerobic soil disinfestation and other biological soil management practices following field tomato production

    Science.gov (United States)

    Anaerobic soil disinfestation (ASD) and other biological soil management practices employing carbon-rich and/or biologically-active ingredients help contribute to overall soil suppressiveness in crop disease management. However, their roles in soil fertility tended to be overshadowed by disease cont...

  13. Impact of crop residues on seed germination of native desert plants ...

    African Journals Online (AJOL)

    Crop residues produce allelochemicals that may inhibit seed germination of many weeds. In this study, I assessed the effect of aqueous extracts of three crop residues (radish, rocket and rhodes) on final germination percentage and germination rate of four desert plants recorded as weeds in the United Arab Emirates farms ...

  14. Pest Management Guide: Horticultural and Forest Crops, 2014

    OpenAIRE

    Hong, Chuanxue; Schultz, Peter B.

    2014-01-01

    This 2014 Virginia Pest Management Guide provides the latest recommendations for regulations and basic information, commercial small fruit, grapes, nursery crops, floral crops, turf, and low-management crops and areas.

  15. Nitrogen accumulation and residual effects of nitrogen catch crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    sativum L.), was studied in three field experiments. The effect of catch crop incorporation in the soil on the yield and N accumulation in succeeding crops was also investigated. An aftersown catch crop should be used for pea, since undersown ryegrasses reduced the pea yield. Undersown perennial ryegrass......The nitrogen accumulation in Italian ryegrass (Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), white mustard (Sinapis alba L.) and tansy phacelia (Phacelia tanacetifolia L.), under- or aftersown as nitrogen catch crops to spring barley (Hordeum vulgare L.) and field pea (Pisum...... or an aftersown catch crop can be used for spring barley. The catch crops had accumulated up to 70 kg N ha-1 at the time of ploughdown in early December. The nitrogen accumulation in catch crops following pea was significantly higher than in the catch crop following barley supplied with 100 kg N ha-1. Barley...

  16. Smallholder integrated crop management (ICM) research planning ...

    African Journals Online (AJOL)

    Mo

    farmers about their smallholder farm management practices. The results of the workshop would guide us in our effort to work with farmers to improve and sustain the land and crop management strategies used in Kayunga and Mukono districts. Approaches and Methods. Project core team. Scientists of Mukono ARDC and a ...

  17. Influence of the nature and age of cover crop residues on the sorption of three pesticides

    Science.gov (United States)

    Cassigneul, Ana; Alletto, Lionel; Chuette, Delphine; Le Gac, Anne-Laure; Hatier, Jules; Etievant, Veronique; Bergheaud, Valérie; Baumberger, Stéphanie; Méchin, Valérie; Justes, Eric; Benoit, Pierre

    2013-04-01

    In agricultural fields, soil and water quality preservation is strongly influenced by pesticides use and behavior. To limit the environmental impacts of agricultural activities, best management practices such as the use of cover crops are encouraged. Cover crops during the fallow period were found to be efficient in reducing nitrate leaching, controlling soil erosion, improving soil organic content and enhancing soil biological activity. This technique was also found to modify soil water dynamics in the following crop. According to these effects, modifications on pesticide behavior in soil, such as sorption, degradation and transport, are expected (Alletto et al., 2012 ; 2013). In this study, the impact of the nature and level of decomposition of cover crop was studied on the sorption characteristics of three pesticides. These pesticides differed in their physicochemical characteristics (hydrophobicity, solubility, persistence) and were two herbicides, S-metolachlor and glyphosate, which are largely used in maize production and predominantly found as pollutants in water; and one fungicide, epoxiconazole. Correlations between pesticide sorption and physicochemical characteristics of the cover crop residues were studied. Residues of oat, turnip rape, red clover and phacelia were collected in March 2011 and incubated at 28°C and at the water holding capacity during 0, 6, 28 or 56 days. For each date, adsorption of the three radiolabeled pesticides was measured in batch on the different cover crop residues, and their biochemical composition (Van Soest fractionation), hydrophobicity (contact angle measurement) and C/N ratio were determined. Results showed that the adsorption of the pesticides differed significantly according to (i) the pesticide, (ii) the nature of cover crop, (iii) the decomposition level of the cover crop and the interaction cover crop x decomposition time. Epoxiconazole was the most adsorbed molecule, with Kd values ranging from 161 ± 30 L/Kg (oat

  18. Feeding potential of summer grain crop residues for woolled sheep ...

    African Journals Online (AJOL)

    greater amounts than indicated in Table 2. Percentage utilization of residues. Using the values obtained from quadrat sampling of the residues before and after grazing, the percentage utilization of residue components could be estimated. The results are shown in Table 3. Table 3 Percentage utilization a of residues. Lupins.

  19. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  20. Residuals Management and Water Pollution Control Planning.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  1. Crop residue inventory estimates for Texas High Plains cotton

    Science.gov (United States)

    Interest in the use of cotton crop by-products for the production of bio-fuels and value-added products is increasing. Research documenting the availability of cotton crop by-products after machine harvest is needed. The objectives of this work were to document the total biomass production for moder...

  2. Sustainable harvest: managing plasticity for resilient crops.

    Science.gov (United States)

    Bloomfield, Justin A; Rose, Terry J; King, Graham J

    2014-06-01

    Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. [Mechanism on biodiversity managing crop diseases].

    Science.gov (United States)

    Yang, Jing; Shi, Zhu-Feng; Gao, Dong; Liu, Lin; Zhu, You-Yong; Li, Cheng-Yun

    2012-11-01

    Reasonable utilization of natural resource and protection of ecological environment is the foundation for implementing agricultural sustainable development. Biodiversity research and protection are becoming an important issue concerned commonly in the world. Crop disease is one of the important natural disasters for food production and safety, and is also one of the main reasons that confine sustainable development of agricultural production. Large-scale deployment of single highly resistant variety results in reduction of agro-biodiversity level. In this case, excessive loss of agro-biodiversity has become the main challenge in sustainable agriculture. Biodiversity can not only effectively alleviate disease incidence and loss of crop production, but also reduce pollution of agricultural ecological environment caused by excessive application of pesticides and fertilizers to the agricultural ecological environment. Discovery of the mechanism of biodiversity to control crop diseases can reasonably guide the rational deployment and rotation of different crops and establish optimization combinations of different crops. This review summarizes recent advances of research on molecular, physiological, and ecological mechanisms of biodiversity managing crop diseases, and proposes some research that needs to be strengthened in the future.

  4. Managing cover crops on strawberry furrow bottoms

    Science.gov (United States)

    Bare furrows in strawberry fields with plastic mulch covered beds can lead to lots of soil erosion and runoff during winter rainy periods. This article describes how growers can plant and manage cover crops in these furrows to minimize runoff and soil erosion. This is based on on-going research at...

  5. Crop residues as a potential renewable energy source for Malawi's cement industry

    DEFF Research Database (Denmark)

    Gondwe, Kenneth J.; Chiotha, Sosten S.; Mkandawire, Theresa

    2017-01-01

    by uncertainties in crop residue availability, cost and quality. In this study, future demand for energy and availability of crop residues was assessed, based on data at the sub-national level. Detailed energy potentials from crop residues were computed for eight agricultural divisions. The results showed...... that the projected total energy demands in 2020, 2025 and 2030 were approximately 177 810 TJ, 184 210 TJ and 194 096 TJ respectively. The highest supply potentials were found to be in the central and southern regions of Malawi, coinciding with the locations of the two clinker plants. Crop residues could meet 45......-57% of the national total energy demand. The demand from the cement industry is only 0.8% of the estimated biomass energy potential. At an annual production of 600 000 t of clinker and 20% biomass co-firing with coal, 18 562 t of coal consumption would be avoided and 46 128 t of carbon dioxide emission reduction...

  6. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  7. Global warming impact assessment of a crop residue gasification project—A dynamic LCA perspective

    International Nuclear Information System (INIS)

    Yang, Jin; Chen, Bin

    2014-01-01

    Highlights: • A dynamic LCA is proposed considering time-varying factors. • Dynamic LCA is used to highlight GHG emission hotspots of gasification projects. • Indicators are proposed to reflect GHG emission performance. • Dynamic LCA alters the static LCA results. • Crop residue gasification project has high GHG abatement potential. - Abstract: Bioenergy from crop residues is one of the prevailing sustainable energy sources owing to the abundant reserves worldwide. Amongst a wide variety of energy conversion technologies, crop residue gasification has been regarded as promising owing to its higher energy efficiency than that of direct combustion. However, prior to large-scale application of crop residue gasification, the lifetime environmental performance should be investigated to shed light on sustainable strategies. As traditional static life cycle assessment (LCA) does not include temporal information for dynamic processes, we proposed a dynamic life cycle assessment approach, which improves the static LCA approach by considering time-varying factors, e.g., greenhouse gas characterization factors and energy intensity. As the gasification project can reduce greenhouse gas (GHG) discharge compared with traditional direct fuel combustion, trade-offs between the benefits of global warming mitigation and the impact on global warming of crop residue gasification should be considered. Therefore, indicators of net global warming mitigation benefit and global warming impact mitigation period are put forward to justify the feasibility of the crop residue gasification project. The proposed dynamic LCA and indicators were then applied to estimate the life cycle global warming impact of a crop residue gasification system in China. Results show that the crop residue gasification project has high net global warming mitigation benefit and a short global warming impact mitigation period, indicating its prominent potential in alleviating global warming impact. During

  8. Economic factors influencing potential use of cellulosic crop residues for electricity generation

    International Nuclear Information System (INIS)

    Maung, Thein A.; McCarl, Bruce A.

    2013-01-01

    This study examines cellulosic crop residues for biopower production in the context of (greenhouse gas) GHG emission mitigation. We employ sector modeling to simulate future market potential for biopower production from crop residues. Our findings suggest that in order for crop residues to have any role in electricity generation either the carbon or (carbon dioxide) CO 2 equivalent GHG price must rise to about 15 dollars per ton or the price of coal has to increase to about 43 dollars per ton. We find that crop residues with higher heat content have greater opportunities in biopower production than the residues with lower heat content. In addition, our evidence shows that improvements in crop yields do not have much impact on biopower production. However, the energy recovery efficiency does have significant positive impact but only if the CO 2 equivalent price rises substantially. Moreover, our analysis indicates the desirability of cofiring biomass as opposed to 100% replacement because this reduces transportation cost and increases the efficiency of heat recovery. In terms of policy implications, imposing carbon emission pricing could be an important step in inducing electric power producers to include biomass feedstocks in their fuel-mix power generation portfolios and achieve GHG emission reductions. - Highlights: • Crop residues with higher heat content have greater market opportunities. • Improvement in crop and residue yields does not have much impact on biopower production. • Advancement in biopower production technology does not encourage more use of crop residues. • The main factor that induces biopower production is an increase in future carbon prices

  9. Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions

    Directory of Open Access Journals (Sweden)

    Miguel Quemada

    2016-08-01

    Full Text Available Crop residues on the soil surface protect the soil against erosion, increase water infiltration and reduce agrochemicals in runoff water. Crop residues and soils are spectrally different in the absorption features associated with cellulose and lignin. Our objectives were to: (1 assess the impact of water on the spectral indices for estimating crop residue cover (fR; (2 evaluate spectral water indices for estimating the relative water content (RWC of crop residues and soils; and (3 propose methods that mitigate the uncertainty caused by variable moisture conditions on estimates of fR. Reflectance spectra of diverse crops and soils were acquired in the laboratory over the 400–2400-nm wavelength region. Using the laboratory data, a linear mixture model simulated the reflectance of scenes with various fR and levels of RWC. Additional reflectance spectra were acquired over agricultural fields with a wide range of crop residue covers and scene moisture conditions. Spectral indices for estimating crop residue cover that were evaluated in this study included the Normalized Difference Tillage Index (NDTI, the Shortwave Infrared Normalized Difference Residue Index (SINDRI and the Cellulose Absorption Index (CAI. Multivariate linear models that used pairs of spectral indices—one for RWC and one for fR—significantly improved estimates of fR using CAI and SINDRI. For NDTI to reliably assess fR, scene RWC should be relatively dry (RWC < 0.25. These techniques provide the tools needed to monitor the spatial and temporal changes in crop residue cover and help determine where additional conservation practices may be required.

  10. Crop residue is key for sustaining maximum food production and for conservation of our biosphere

    Science.gov (United States)

    Crop residue is key in our efforts to move towards agricultural sustainability. This paper provides a quick overview of some selected references and looks at some of the newest advances related to cover crops. Several authors have described in detail the benefits derived from improving soil quality ...

  11. PM2.5 emissions and source profiles from open burning of crop residues

    NARCIS (Netherlands)

    Ni, Haiyan; Tian, Jie; Wang, Xiaoliang; Wang, Qiyuan; Han, Yongming; Cao, Junji; Long, Xin; Chen, L-W. Antony; Chow, Judith C.; Watson, John G.; Huang, Ru-Jin; Dusek, Ulrike

    2017-01-01

    Wheat straw, rice straw, and corn stalks, the major agricultural crop residues in China, were collected from six major crop producing regions, and burned in a laboratory combustion chamber to determine PM2.5 source profiles and speciated emission factors (EFs). Organic carbon (OC) and water-soluble

  12. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-03-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  13. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  14. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    International Nuclear Information System (INIS)

    Hassan, Yusuf Munim

    1996-01-01

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N 19 , P 19 , K 19 fertilizers on growth characteristics and nutrient elements contents of leaves of banana suckers was

  15. Soil fertility and soil loss constraints on crop residue removal for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Flaim, S.

    1979-07-01

    A summary of the methodologies used to estimate the soil fertility and soil loss constraints on crop residue removal for energy production is presented. Estimates of excess residue are developed for wheat in north-central Oklahoma and for corn and soybeans in central Iowa. These sample farming situations are analyzed in other research in the Analysis Division of the Solar Energy Research Institute.

  16. Nitrogen Transfer from Cover Crop Residues to Onion Grown under Minimum Tillage in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Leoncio de Paula Koucher

    2017-08-01

    Full Text Available ABSTRACT Nitrogen derived from cover crop residues may contribute to the nutrition of onion grown under minimum tillage (MT and cultivated in rotation. The aim of this study was to evaluate the N transferred from different cover crop residues to the onion crop cultivated under MT in southern Brazil. In June 2014, oilseed radish, black oat, and oilseed radish + black oat residues labeled with 15N were deposited on the soil surface before transplanting onions. During the growth season and at harvest, young expanded onion leaves, complete plants, and samples from different soil layers were collected and analyzed for recovery of 15N-labeled residue. Oilseed radish decomposed faster than other residues and 4 % of residue N was recovered in leaves and bulbs at harvest, but in general, N in plant organs was derived from sources other than the cover crop residues. In addition, leaf N was in the proper range for all treatments and was adequately mobilized to the bases for bulbing. The N derived from decomposing residues contributed little to onion development and the use of these plants should be chosen based on their advantages for physical and biological soil quality.

  17. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  18. Utilization of residual nitrogen (15N) from cover crop and urea by corn

    International Nuclear Information System (INIS)

    Silva, Edson Cabral da; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze; Buzetti, Salatier; Veloso, Marcos Emanuel da Costa

    2006-01-01

    The majority of N from mineral fertilizers and cover crops is usually not used by the very next corn crop, but can be absorbed by follow-up crops. The objective of this study was to evaluate the use of residual nitrogen from urea, sunnhemp (Crotalaria juncea) and millet (Pennisetum americanum) labeled with 15 N, applied to no-tillage corn in the previous growing season, in a Red Latosol of the Cerrado. The study was conducted in an experimental farm of the Sao Paulo State University (UNESP), Ilha Solteira, in Selviria county (MS), Brazil, in different areas. The experiment had a randomized complete block design, with 15 treatments and four replications. Treatments were applied to corn crop in the 2001/02 and 2003/04 growing seasons. They were distributed in a 3 x 5 factorial layout, representing the combination of three cover crops: sunnhemp, millet and spontaneous vegetation (fallow) and five N rates (as urea): 0, 30, 80, 130, and 180 kg ha-1 of N. After corn harvest, the two areas were followed in the dry season and were followed by corn crop in the 2002/03 (experiment 1) and 2003/04 (experiment 2) growing seasons, using the same fertilizer rate on all plots to distinguish the residual effect of N sources. The average use of residual N from the millet and sunnhemp residues (above-ground part) by corn crop was less than 3.5 and 3 %, respectively, of the initial amount. The corn uptake of residual N from urea increased in a quadratic manner in experiment 1 and linearly in experiment Two as a response to the applied N rates, and the recover was below 3 %. The cover crop type did not affect the use of residual N of urea by corn, and vice-versa. (author)

  19. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  20. Farming Systems Research and Livestock Feed Development : the case of a project on feeding of crop residues in India

    NARCIS (Netherlands)

    Schiere, J.B.; Kiran Singh,; Boer, de A.J.

    2000-01-01

    Increased use of prime agricultural land for cropping and non-agricultural uses in many tropical countries implies that crop residues become more important as a source of feed for livestock. Traditionally, much research on crop residue feeding was done by focusing on laboratory measurements of feed

  1. Nitrogen accumulation and residual effects of nitrogen catch crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    The nitrogen accumulation in Italian ryegrass (Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), white mustard (Sinapis alba L.) and tansy phacelia (Phacelia tanacetifolia L.), under- or aftersown as nitrogen catch crops to spring barley (Hordeum vulgare L.) and field pea (Pisum...

  2. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture.

    Science.gov (United States)

    Gallagher, Morgan E; Hockaday, William C; Masiello, Caroline A; Snapp, Sieglinde; McSwiney, Claire P; Baldock, Jeffrey A

    2011-03-01

    Concerns about energy security and climate change have increased biofuel demand, particularly ethanol produced from cellulosic feedstocks (e.g., food crop residues). A central challenge to cropping for cellulosic ethanol is the potential environmental damage from increased fertilizer use. Previous analyses have assumed that cropping for carbohydrate in residue will require the same amount of fertilizer as cropping for grain. Using (13)C nuclear magnetic resonance, we show that increases in biomass in response to fertilization are not uniform across biochemical classes (carbohydrate, protein, lipid, lignin) or tissues (leaf and stem, grain, reproductive support). Although corn grain responds vigorously and nonlinearly, corn residue shows only modest increases in carbohydrate yields in response to high levels of fertilization (25% increase with 202 kg N ha(-1)). Lignin yields in the residue increased almost twice as much as carbohydrate yields in response to nitrogen, implying that residue feedstock quality declines as more fertilizer is applied. Fertilization also increases the decomposability of corn residue, implying that soil carbon sequestration becomes less efficient with increased fertilizer. Our results suggest that even when corn is grown for grain, benefits of fertilization decline rapidly after the ecosystem's N demands are met. Heavy application of fertilizer yields minimal grain benefits and almost no benefits in residue carbohydrates, while degrading the cellulosic ethanol feedstock quality and soil carbon sequestration capacity.

  3. Influence of cover crops and crop residue treatment on soil organic carbon stocks evaluated in Swedish long-term field experiments

    Science.gov (United States)

    Poeplau, Christopher; Bolinder, Martin A.; Börjesson, Gunnar; Kätterer, Thomas

    2015-04-01

    Soil organic carbon (SOC) stocks in agricultural soils are strongly controlled by management. In this study we quantified the effect of cover crops and crop residue management on SOC stocks in Swedish long-term experiments. Eight pairs of cover crop (undersown ryegrass) vs. no cover crop were investigated in Swedish long-term field experiments (16 to 24 years). Yields of the main crop were not affected by the cover crop. Cover crops significantly increased SOC stocks, with a mean carbon sequestration rate in all experiments (excluding one) of 0.32±0.29 Mg C ha-1 yr-1. Interestingly, this sequestration is similar to that estimated for a U.S.experiment, where ryegrass growth is much less temperature- and light-limited than under Swedish conditions. This sequestration rate is also the same as that recently reported for many other cover crops in a global meta-analysis but less than SOC changes in ley-dominated rotations which under Nordic conditions were shown to accumulate in average 0.5 Mg C ha-1 yr-1 more carbon compared to exclusively annual cropping systems. Thus, originally introduced in agricultural rotations to reduce nitrate leaching, cover crops are also an effective practice to increase SOC stocks, even at relatively high latitudes. The effect of crop residue treatment was studied in 16 pairs of straw incorporated (SI) vs. straw removed (SR) treatments in six Swedish long-term field experiments. Data series on SOC with 5-28 sampling dates during 27-53 years were analysed using ICBM, a dynamic SOC model. At five out of six sites, the humification coefficient for straw (hlitter; the fraction of straw C that is entering the slow C pool) was much smaller (0-0.09) than the ICBM default h-value for plant material estimated in previous studies (0.125). The derived hlitter-values and thus the stabilization of straw-derived carbon increased significantly with clay content. For an Italian site (with five pairs of SI vs. SR) that was used for model validation we found

  4. Calcium and Magnesium Released from Residues in an Integrated Crop-Livestock System under Different Grazing Intensities

    Directory of Open Access Journals (Sweden)

    Joice Mari Assmann

    Full Text Available ABSTRACT Under integrated crop-livestock production systems (ICLS, plant and animal residues are important nutrient stocks for plant growth. Grazing management, by affecting the numbers of both plants and animals and the quality of residues, will influence nutrient release rates. The objective of this study was to evaluate the impact of grazing intensity on Ca and Mg release from pasture, dung, and soybean residues in a long-term no-till integrated soybean-cattle system. The experiment was established in May 2001 in a Latossolo Vermelho Distroférrico (Rhodic Hapludox. Treatments were a gradient of grazing intensity, determined by managing a black oat + Italian ryegrass pasture at 10, 20, 30, and 40 cm grazing height and no-grazing (NG, followed by soybean cropping. Ca and Mg release rates were determined in two entire cycles (2009/11. Moderate grazing (20 and 30 cm sward height led to greater Ca and Mg release rates from pasture and dung residues, with low average half-life values (13 and 3 days for Ca and 16 and 6 days for Mg for pasture and dung, respectively. Grazing compared with NG resulted in greater Ca and Mg release from pasture and dung residues. Grazing intensity did not affect Ca and Mg release rates or amounts from soybean residues, but Ca and Mg release rates were greater from soybean leaves than from stems. Although moderate grazing intensities produce higher quality residues and higher calcium and magnesium release rates, a higher total nutrient amount is released by light grazing intensity and no-grazing, determined by higher residue production. Grazing intensity is, then, important for nutrient dynamics in the soil-plant-animal continuum.

  5. Residues and accumulation of molinate in rice crops and aquatic weeds in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Sabri Junoh; Nuriati Nurdin; Ramli Ishak

    2002-01-01

    Plant and soil residue levels and its accumulation in rice crops and rice aquatic weed plants were studied. Molinate residue levels in rice, weeds and soil were not significantly different between the recycled and the non-recycled area, even though they were higher in the non-recycled area. In the rice plant, the residue level at 10 DAT (days after treatment) was significantly higher than 30 DAT in the recycled area. In rice aquatic weed plants, the residue level was significantly higher at 10 DAT as compared to 30 DAT in the non-recycled area. Molinate residue levels in soil at 10 DAT and 30 DAT were similar. Molinate accumulated (ratio of molinate concentration in plant over soil) more in the rice crop as compared to rice aquatic weeds at 10 DAT, in both the recycled and the non-recycled areas. (Author)

  6. Feasibility study for anaerobic digestion of agricultural crop residues. Dynatech report No. 1935

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Buivid, M. G.; Wilson, E. H.

    1979-07-31

    The objective of this study was to provide cost estimates for the pretreatment/digestion of crop residues to fuel gas. A review of agricultural statistics indicated that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of wheat straw, corn stover, and rice straw for small farm-, cooperative-, and industrial scales. The small farm scale processed the residue from an average size US farm (400 acres), and the other sizes were two and three orders of magnitude greater. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low cost chemicals can be utilized. Additional development is necessary in this area. Use of low cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

  7. Preferency of soil macrofauna to crops residue at different light intensity

    Directory of Open Access Journals (Sweden)

    SUGIYARTO

    2007-10-01

    Full Text Available Every species of soil macrofauna prefer specific food and environment to be establish in it's habitat. Their diversity depend on variation of food and environmental condition. The aim of this research was to study the effect of different crop residue and light intensity on population of several soil macrofauna specieses. Mycrocosmos experiment was arranged in split-plot design with two treatments factor, i.e.: (1 crop residue (albizia, papaya, elephant grass, maize, sweet potato and without crop residue input, and (2 light intensities (0, 5, 15 and 25 Watt/day. The soil macrofauna were earthworms, millipedes, scarabids larvae and cocroachs. Results of the study showed that: (1 crop residues apllication increased soil macrofauna population, especially maize residue ( by 113%, respectively, compare to control tretment, (2 on higher light intensity, population of earthworms, scarabids larvae and cocroach decreased, but population of millipedes increased, (3 the highest macrofauna population was on maize residue and 5 Watt/day light intensity treatment.

  8. Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues

    DEFF Research Database (Denmark)

    Mayer, J.; Buegger, F.; Jensen, E.S.

    2004-01-01

    C). A sandy loam soil for the experiment was either stored at 6 degreesC or planted with the respective grain legume in pots. Legumes were in situ N-15 stem labelled during growth and visible roots were removed at maturity. The remaining plant-derived N in soil was defined as N rhizodeposition....... In the experiment the turnover of C and N was compared in soils with and without previous growth of three legumes and with and without incorporation of crop residues. After 168 days, 21% (lupin), 26% (faba bean) and 27% (pea) of rhizodeposition N was mineralised in the treatments without crop residues. A smaller...

  9. Effect of water content and organic carbon on remote sensing of crop residue cover

    Science.gov (United States)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  10. Feasibility study for anaerobic digestion of agricultural crop residues. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Buivid, M. G.; Wilson, E. H.

    1979-10-01

    This study provides cost estimates for the pretreatment/digestion of crop residues to fuel gas. Agricultural statistics indicate that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of sheat straw, corn stover, and rice straw for small farm, cooperative, and industrial scales. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low-cost chemicals can be utilized. Use of low-cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low-cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

  11. Sustainable System for Residual Hazards Management

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-01-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today's waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous long-term management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by external intrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the long-term success of the prescribed system. In fact

  12. Population dynamics of Fusarium spp. and Microdochium nivale in crops and crop residues of winter wheat

    NARCIS (Netherlands)

    Köhl, J.; Haas, de B.H.; Kastelein, P.; Burgers, S.L.G.E.; Waalwijk, C.

    2007-01-01

    Naturally occurring populations of Fusarium avenaceum, F. culmorum, F. graminearum, F. poae, and Microdochium nivale were studied in two field experiments from anthesis in June 2003 until harvest in crops of winter wheat, and subsequently during 10 months after harvest until June 2004 on their

  13. Chlorpyrifos residual behaviors in field crops and transfers during duck pellet feed processing.

    Science.gov (United States)

    Li, Rui; Wei, Wei; He, Liang; Hao, Lili; Ji, Xiaofeng; Zhou, Yu; Wang, Qiang

    2014-10-22

    Chlorpyrifos is a widely used organophosphorus pesticide in agricultural crops (including food) and animal feeds in China, resulting in heavy contamination. Many studies have focused on the food-processing effects on chlorpyrifos removal, but sufficient information is not observed for feed-processing steps. Here, chlorpyrifos residual behaviors in field crops and its transfers in duck pellet feed-processing steps were evaluated. In field trials, the highest residues for rice grain, shelled corn, and soybean seed were 12.0, 0.605, and 0.220 mg/kg, respectively. Residues of all rice grain and about half of shelled corn exceeded the maximum residue limits (MRLs) of China, and five soybean seeds exceeded the MRL of China. Chlorpyrifos residue was reduced 38.2% in brown rice after the raw rice grain was hulled. The residue in bran increased 71.2% after milling from brown rice. During the squashing step, the residue reduced 73.8% in soybean meal. The residues reduced significantly (23.7-36.8%) during the process of granulating for rice, maize, and soybean products. Comparatively, the grinding process showed only limited influence on chlorpyrifos removal (residues of duck pellet feeds produced from highly contaminated raw materials of this study were 1.01 mg/kg (maize-soybean feed) and 3.20 mg/kg (rice-soybean feed), which were much higher than the generally accepted value (>0.1 mg/kg) for animal feeding. Chlorpyrifos residues were removed significantly by processing steps of pellet feeds, but the residue of raw materials was the determining factor for the safety of duck feeding.

  14. Utilization of tropical crop residues and agroindustrial by-products in animal nutrition. Constraints and perspectives

    International Nuclear Information System (INIS)

    Preston, T.R.; Parra, R.

    1983-01-01

    The importance of by-products and crop residues as animal feeds is increasing steadily. This is a consequence of the increasing demand for cereal grains as both human and animal (chiefly poultry) food, and the increasing demand for energy coupled with decreasing availability of fossil fuels. The effects of these two trends are that primary use of land for livestock production (usually grazing systems) will steadily diminish; at the same time, sources of biomass will increase in importance as renewable energy sources, and greater emphasis will be placed on draught animal power. Most by-products and crop residues are fibrous and therefore of only low to moderate nutritive value, or have special physical and chemical characteristics making them difficult to incorporate in conventional ''balanced'' rations. Such feed raw materials may need special processing and/or special forms of supplementation if they are to be used efficiently. It is hypothesized that industrial by-products and crop residues will be more efficiently utilized if they are incorporated in diversified and integrated production systems, i.e. (a) livestock production is integrated with production of cash crops both for food and fuel; (b) different livestock species are utilized in the same enterprise in a complementary way; (c) livestock feeding is based on crop residues (energy) supplemented with protein-rich forages and aquatic plants; and (d) animal wastes are recycled and used for food, fertilizer and fuel. This strategy is particularly suitable for the conditions in (i) tropical countries, whose climate favours high crop/biomass yields per unit area and ease of fermentation of organic wastes, and (ii) family farms, for which diversification means greater opportunity for self-sufficiency and increased possibilities for use of family resources. (author)

  15. Laboratory measurements of emissions of nonmethane volatile organic compounds from biomass burning in Chinese crop residues

    Science.gov (United States)

    Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.

    2014-12-01

    The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.

  16. 40 CFR 279.47 - Management of residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Management of residues. 279.47 Section... Management of residues. Transporters who generate residues from the storage or transport of used oil must manage the residues as specified in § 279.10(e). ...

  17. 40 CFR 279.67 - Management of residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Management of residues. 279.67 Section... for Energy Recovery § 279.67 Management of residues. Burners who generate residues from the storage or burning of used oil must manage the residues as specified in § 279.10(e). ...

  18. 40 CFR 279.59 - Management of residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Management of residues. 279.59 Section... Management of residues. Owners and operators who generate residues from the storage, processing, or re-refining of used oil must manage the residues as specified in § 279.10(e). ...

  19. Anaerobic degradation of inedible crop residues produced in a Controlled Ecological Life Support System

    Science.gov (United States)

    Schwingel, W. R.; Sager, J. C.

    1996-01-01

    An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.

  20. Availability of nitrogen in 15N-labelled mature pea residues to subsequent crops in the field

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1994-01-01

    The availability of N in N-15-labelled mature pea (Pisum sativum L.) residues to subsequent autumn-sown or spring-sown crops was studied in two experiments in field microplots. The residues were incorporated in the soil in August or September. Winter barley (Hordeum vulgare L.) and winter oilseed...... incorporation of the residues. At maturity, the pea residue N constituted soil did not significantly influence the amount of non-labelled soil (+ fertilizer) N accumulated by crops. The recovery of pea residue N in successive autumn-sown crops of barley......, oilseed rape and wheat (Triticum aestivum L.) was 14, 3 and 2% respectively; spring-sown barley, oilseed rape and wheat recovered only 6, 2 and 2% respectively. Similarly, the amount of non-labelled soil N accumulated was almost twice as high in autumn-sown crops as compared to spring-sown crops...

  1. Dry fermentation technology for utilization of Bio-energy crops/crop residues for biogas production

    Directory of Open Access Journals (Sweden)

    Sooch S. S.

    2015-04-01

    Full Text Available Indian state Punjab produces 160 lakh tones of paddy every year. More than this quantity of paddy, straw is also produced which is not properly utilized. Paddy is burnt in the farmer’s fields itself, which produces lot of smoke and atmospheric pollution. Farmers have their own difficulty for burning this valuable straw as they have to vacate the fields for the next crop. Biogas production is one alternative for the individual farmer, for individual village or on the regional basis. In our opinion, it is possible to digest paddy straw anaerobically for biogas production and the digested humus would be utilized as crop manure. Anaerobic digestion of crop waste cannot be done by conventional anaerobic process for biogas production because of the floating characteristics of paddy straw in water. New process of anaerobic digestion has to be followed with small quantity of water to avoid floating of paddy straw. This process is commonly known as dry fermentation. This technique is well known in United States, Taiwan, German and Sri Lanka. In these countries, steel containers are being used as digester for anaerobic digestion. Digester of steel is ideal but the cost involved is very huge. Attempts have been made at PAU to construct masonry structure as digester but lot of difficulties were being faced to make it gas tight. The PAU has found suitable method to make the digester strong and gas tight. The life of structure will be more than 15 years. The advantage of the masonry structure is that the whole structure will be underground on which cold would have little effect in winter. This process of Dry Fermentation is a batch process, once the digester is loaded and activated, would produce sufficient gas for a period of 3 - 4 months. Therefore, 2 sets of digester are required to meet the whole year demand.

  2. Air Toxics Emissions from Open Burning of Crop Residues in Southeast Asia

    Science.gov (United States)

    KIM Oanh, N. T.; Permadi, D. A.; Hopke, P. K.; Smith, K. R.; Nguyet, D. A.

    2016-12-01

    Agricultural crops production in Southeast Asia (SEA) increases annually to meet domestic consumption of growing population and also for export. Crop residue open burning (CROB) is commonly practiced by farmers to quickly dispose of huge amounts of the agricultural waste, such as rice straw, generated after each crop cycle. This CROB activity emits various toxic air pollutants as well as short-lived climate pollutants such as black carbon particles. Our study focused on quantifying the 2015 annual emissions of semi-volatile organic compounds including polycyclic aromatic hydrocarbons (PAHs), dioxins/furans (PCDD/PCDF), organochlorine pesticides (OCP), along with other conventional trace gases, particulate matter, and greenhouse gases from CROB in 10 major agricultural crop producing SEA countries. Crop production statistics and current field OB practices were gathered from our primary surveys and relevant secondary data sources. Emission factors for rice straw and maize residue burning were taken mainly from our measurements in Thailand while for other crops relevant published data were used. The best emission estimates of air toxics from CROB in SEA were 112 g-TEQ/yr of PCDD/PCDF, 33 t/yr of OCP, and 25 Gg/yr of total PAH of which the well-known carcinogenic benzo[a]pyrene was 0.3 Gg/yr. The CROB of rice production had the highest shares of emissions (33-95%) among considered 8 crop types. Indonesia was the top contributor to the total SEA emissions (30-45%) followed by Vietnam (16-26%), Thailand (6-22%) and Myanmar (5-18%). The spatial distributions of emissions, 0.1º x 0.1º, for each specie were prepared using MODIS land cover data. Temporally, higher emissions were observed in the harvesting months of the main rice crops. This emissions database can be used in regional air quality modeling studies to assess the impacts of CROB activity and to promote non-open burning alternatives.

  3. RESIDUAL ACTIVITY OF HERBICIDES APPLIED TO COTTON ON CROPS CULTIVATED IN SUCCESSION

    Directory of Open Access Journals (Sweden)

    ELIEZER ANTONIO GHENO

    2016-01-01

    Full Text Available Herbicides with high persistence in soil can cause problems for crops sown in succession to their application. Thus, the aim of this study was to estimate, in greenhouse conditions, the safe period of time after application of preemergent herbicides used on cotton crops (isolated or in mixtures for the crops grown in succession (bean, corn, and soybean. The experimental design was completely randomized in a factorial scheme (5 x 11 + 1, with five repetitions. For each experiment, treatments combined different time periods between herbicide application and sowing of crops (280, 210, 140, 70, and 0 days before sowing of crops with eleven herbicide treatments: fomesafen (625 g ha - 1 prometryne (1250 g ha - 1 , diuron (1250 g ha - 1 , S - metolachlor (768 g ha - 1 , clomazone (1000 g ha - 1 , fomesafen + prometryne (625 + 1250 g ha - 1 , fomesafen + diuron (625 + 1250 g ha - 1 , fomesafen + S - metolachlor (625 + 768 g ha - 1 , fomesafen + clomazone (625 + 1000 g ha - 1 , fomesafen + clomazone + diuron (625 + 1000 + 1250 g ha - 1 , and fomesafen + clomazone + prometryne (625 + 1000 + 1250 g ha - 1 , plus an untreated control. Applications of diuron showed the greatest persistence, causing the largest carryover effects for the three crops evaluated. The other treatments showed residual effects or affected crop development when sowings were performed up to 70 days after application. At later periods no significant damage was observed.

  4. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    Science.gov (United States)

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer

  5. Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Meier

    2016-07-01

    Full Text Available The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1 reduce emissions (e.g. those that reduce nitrous oxide (N2O emissions by avoiding excess nitrogen (N fertilizer application, and (2 increase soil organic carbon (SOC stocks (e.g. by retaining instead of burning crop residues. Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’. Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location  soil  fertilizer  trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 yr after trash blanketing commenced. After this period, there was potential to

  6. Nutrient digestion and performance by lambs and steers fed thermochemically treated crop residues.

    Science.gov (United States)

    Sewell, J R; Berger, L L; Nash, T G; Cecava, M J; Doane, P H; Dunn, J L; Dyer, M K; Pyatt, N A

    2009-03-01

    Five studies were conducted to determine nutrient digestibility and performance of lambs and steers fed thermochemically treated crop residues and distillers dried grains with solubles (DDGS) as a corn replacement pellet (CRP; 75% residue:25% DDGS, DM basis). Fifteen Hampshire, Suffolk, or Dorset wethers (BW 33.3 +/- 5.0 kg) were utilized to evaluate nutrient digestibility of the unprocessed native (NAT) and CRP [Exp. 1: wheat straw (WS); Exp. 2: corn stover (CS); Exp. 3: switchgrass (SWG) and corn fiber:wheat chaff (CFWC)] when limit fed (Exp. 1 and 2: 1.8% of BW daily; Exp. 3: 2.5% of BW daily) compared with a 60% corn diet. In Exp. 4, 56 individually fed Dorset-cross wether lambs (BW 32.0 +/- 1.4 kg) were utilized to compare performance and digestibility of WS, wheat chaff (WC), corn fiber (CF), a 3:1 blend of corn fiber:wheat straw (CFWS), a 3:1 blend of CFWC, and SWG-CRP fed for ad libitum intake compared with a 45% corn diet. In Exp. 5, 32 individually fed Holstein steers (BW 185.2 +/- 0.9 kg) were used to evaluate performance and digestibility of diets containing corn, WS-CRP, CFWC-CRP, or NAT-WS fed for ad libitum intake. Crop residues were processed with 5% calcium oxide (DM basis) and 35% water in a double-shaft enclosed mixer (Readco Kurimoto Continuous Processor, York, PA) and subsequently pelleted with DDGS to form CRP. Feeding lambs WS-CRP (Exp. 1) or CS-CRP (Exp. 2) increased digestion of DM, NDF, and ADF compared with NAT (P crop residues are thermochemically processed. Processed crop residues may be fed in combination with DDGS to partially replace corn in ruminant diets.

  7. Effects of Bioreactor Retention Time on Aerobic Microbial Decomposition of CELSS Crop Residues

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable, bioreactor retention time, on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  8. Cover crop-based ecological weed management: exploration and optimization

    NARCIS (Netherlands)

    Kruidhof, H.M.

    2008-01-01

    Keywords: organic farming, ecologically-based weed management, cover crops, green manure, allelopathy, Secale cereale, Brassica napus, Medicago sativa Cover crop-based ecological weed management: exploration and optimization. In organic farming systems, weed control is recognized as one of the

  9. Management of industrial solid residues; Gerenciamento de residuos solidos industriais

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This chapter gives an overview on the management of industrial solid wastes, approaching the following subjects: classification of industrial solid residues; directives and methodologies for the management of industrial solid residues; instruments for the management of industrial solid residues; handling, packing, storage and transportation; treatment of industrial solid residues; final disposal - landfill for industrial residues; the problem of treatment and final disposer of domestic garbage in Brazil; recycling of the lubricant oils used in brazil; legislation.

  10. Erratum to: Estimating the crop response to fertilizer nitrogen residues in long-continued field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattson, L

    2012-01-01

    to previous N input rates, the experimental design for testing needs to be examined. Experimental designs that suspend the customary N inputs, leaving the test crop unfertilized, ignore any interaction between the rate of N applied in the past and the rate applied in the test year. We estimated...... and N offtake when the residual effect originated from organic applications, but the interaction was not significant when mineral N fertilizer had been used in the past, making the residual effect of N applied in the past additive to the effect of N applied in the test year. The dry matter (DM) grain...

  11. Photo-fermentative hydrogen production from crop residue: A mini review.

    Science.gov (United States)

    Zhang, Quanguo; Wang, Yi; Zhang, Zhiping; Lee, Duu-Jong; Zhou, Xuehua; Jing, Yanyan; Ge, Xumeng; Jiang, Danping; Hu, Jianjun; He, Chao

    2017-04-01

    Photofermentative hydrogen production from crop residues, if feasible, can lead to complete conversion of organic substances to hydrogen (and carbon dioxide). This mini review lists the studies on photofermentative hydrogen production using crop residues as feedstock. Pretreatment methods, substrate structure, mechanism of photosynthetic bacteria growth and metabolism were discussed. Photofermentative hydrogen production from pure culture, consortia and mutants, and the geometry, light sources, mass transfer resistances and the operational strategies of the photo-bioreactor were herein reviewed. Future studies of regulation mechanism of photosynthetic bacteria, such as highly-efficient strain breeding and gene reconstruction, and development of new-generation photo-bioreactor were suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion.

    Science.gov (United States)

    Escalante, Humberto; Castro, Liliana; Gauthier-Maradei, Paola; Rodríguez De La Vega, Reynel

    2016-11-01

    Implementing anaerobic digestion (AD) in energy production from crop residues requires development of decision tools to assess its feasibility and sustainability. A spatial decision support system (SDSS) was constructed to assist decision makers to select appropriate feedstock according to biomethanation potential, identify the most suitable location for biogas facilities, determine optimum plant capacity and supply chain, and evaluate associated risks and costs. SDSS involves a spatially explicit analysis, fuzzy multi-criteria analysis, and statistical and optimization models. The tool was validated on seven crop residues located in Santander, Colombia. For example, fique bagasse generates about 0.21millionm(3)CH4year(-1) (0.329m(3)CH4kg(-1) volatile solids) with a minimum profitable plant of about 2000tonyear(-1) and an internal rate of return of 10.5%. SDSS can be applied to evaluate other biomass resources, availability periods, and co-digestion potential. Copyright © 2016. Published by Elsevier Ltd.

  13. Model validation through long-term promising sustainable maize/pigeon pea residue management in Malawi

    NARCIS (Netherlands)

    Mwale, C.D.; Kabambe, V.H.; Sakale, W.D.; Giller, K.E.; Kauwa, A.A.; Ligowe, I.; Kamalongo, D.

    2013-01-01

    In the 2005/2006 season, the Model Validation Through Long-Term Promising Sustainable Maize/Pigeon Pea Residue Management experiment was in the 11th year at Chitedze and Chitala, and in the 8th year at Makoka and Zombwe. The experiment was a split-plot design with cropping system as the main plot

  14. Nitrogen-to-Protein Conversion Factors for Crop Residues and Animal Manure Common in China.

    Science.gov (United States)

    Chen, Xueli; Zhao, Guanglu; Zhang, Yang; Han, Lujia; Xiao, Weihua

    2017-10-25

    Accurately determining protein content is essential in exploiting biomass as feed and fuel. A survey of biomass samples in China indicated protein contents from 2.65 to 3.98% for crop residues and from 6.07 to 10.24% for animal manure of dry basis. Conversion factors based on amino acid nitrogen (k A ) ranged from 5.42 to 6.00 for the former and from 4.78 to 5.36 for the latter, indicating that the traditional factor of 6.25 is not suitable for biomass samples. On the other hand, conversion factors from Kjeldahl nitrogen (k P ) ranged from 3.97 to 4.57 and from 2.76 to 4.31 for crop residues and animal manure, respectively. Of note, conversion factors were strongly affected by amino acid composition and levels of nonprotein nitrogen. Thus, k P values of 4.23 for crop residues, 4.11 for livestock manure, and 3.11 for poultry manure are recommended to better estimate protein content from total nitrogen.

  15. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Cassigneul, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Benoit, P.; Bergheaud, V.; Dumeny, V.; Etiévant, V. [INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Goubard, Y. [AgroParisTech, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Maylin, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); Justes, E. [INRA, UMR 1248 AGIR Auzeville — BP 52 627, 31 326, Castanet-Tolosan cedex (France); Alletto, L. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France)

    2016-03-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of {sup 14}C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. {sup 14}C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH{sub 4}OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends {sup 14}C-glyphosate degradation half-life from 7 to 28 days depending on the CC. {sup 14}C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. - Highlights: • Glyphosate sorption on cover crop residues increases with their decomposition degree. • Glyphosate degradation and mineralization are lower in mulch than in soil. • Nonextractable residue formation is one of the main dissipation pathways of glyphosate in cover crop mulch.

  16. Methods to enhance hydrolysis during one and two-stage anaerobic digestion of energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Jagadabhi, P. S.

    2011-07-01

    The objective of this thesis was to evaluate methods to enhance hydrolysis (measured as specific SCOD production, g SCOD g-1 VS) during one and two-stage anaerobic digestion (AD) of energy crops and crop residues. Addition of macro (NH{sub 4}Cl), micro nutrients (Fe, Ni, Co and Mo) and leachate replacement during mono-digestion of grass silage in one-stage leach bed reactors (LBRs) enhanced hydrolysis by 18 % (0.56 g SCOD g-1 VS), 7 % (0.45 g SCOD g-1 VS) and 34 % (0.51 g SCOD g-1 VS) respectively compared to respective controls. On the other hand, creating micro-aerobic conditions (at 1 l min-1, 2.5 l of air) did not improve hydrolysis but enhanced VFA production by 4 fold (from 2.2 g l-1 to 9 g l-1). Application of rumen cultures improved hydrolysis by 10 % (0.33 g SCOD g-1 VS) more than control (0.30 g SCOD g-1 VS). Similarly, during two-stage AD in LBR-UASB reactor configuration leachate replacement enhanced hydrolysis in cucumber and grass silage (0.5 g SCOD g-1 VS) than in tomato and common reed (0.35 and 0.15 g SCOD g-1 VS respectively). During co-digestion of grass silage and cow manure at a ratio of 30:70 (VS) in CSTR, re-circulation of alkali treated solid fraction of digestate did not improve the anaerobic biodegradation rates or methane yields. Results from batch experiments showed that methane potential of grass silage varied from 0.28-0.39 m3 CH{sub 4} kg-1 VS{sub added} in all the experiments. On the other hand, methane potentials of the studied crop residues were 0.32 m3 CH{sub 4} kg-1 VS{sub added} for tomato and 0.26 m3 CH{sub 4} kg-1 VS{sub added} for cucumber and common reed. Alkali pretreatment of solids, obtained from digestate (during co-digestion of grass silage and cow manure in one-stage CSTRs), at a low concentration of 20 g NaOH kg-1 VS resulted in higher methane yield (0.34 m3 CH{sub 4} kg-1 VS{sub added}) than the other tested dosages (40 and 60 g NaOH kg-1 VS). Addition of macro nutrient (NH{sub 4}Cl) enhanced methane potential of

  17. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Jianmin Gao

    Full Text Available The application of crop residues combined with Nitrogen (N fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat, individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV under 80% WFPS (the water filled pore space in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0, 200 kg N ha-1 (N200, 250 kg N ha-1 (N250, maize residue plus N200 (MN200, maize residue plus N250 (MN250, wheat residue plus N200 (WN200 and wheat residue plus N250 (WN250. Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O

  18. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    Science.gov (United States)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established to evaluate how conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.

  19. Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue

    International Nuclear Information System (INIS)

    Gangil, Sandip

    2015-01-01

    Thermogravimetric signals of hemicellulose and lignin were found to subside due to the binderless briquetting of soybean crop residue. Minor but distinct thermogravimetric signals of secondary charring reactions were observed in raw crop residue and its briquetted biofuel. The bio-component related kinetics was evaluated using the Kissinger method. Activation energy level of intrinsic cellulosic biopolymer was found higher in briquette than that level in crop residue. The activation energy profile with respect to conversion fraction for raw residue and its briquette was analyzed by the Kissinger–Akahira–Sunose method. The activation energy profile of briquette was superior to raw residue of soybean crop showing the better thermal stability in briquetted biofuel, highlighting the benefits of briquetting process. In addition to the physico-chemical transformations occurred in lignin, the hemicellulose and cellulose related transitions were also expected to play positive role for briquetting. - Highlights: • Briquette of soybean-crop-residue showed weak TG-signals of hemicellulose & lignin. • Activation energy profile of briquette was superior to raw crop residues. • Thermal stability of different constituents due to briquetting was explained. • Hemicellulose and cellulose played positive role for briquetting along with lignin

  20. An Image Segmentation Based on a Genetic Algorithm for Determining Soil Coverage by Crop Residues

    Science.gov (United States)

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P.; Pajares, Gonzalo; Sanchez del Arco, Maria J.; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain). PMID:22163966

  1. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    Science.gov (United States)

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  2. Weed control through crop rotation and alternative management practices

    Directory of Open Access Journals (Sweden)

    Böhm, Herwart

    2014-02-01

    Full Text Available Economic as well as agricultural and socio-political changes have an impact on crop management and thus also on crop rotation design and the related effects on the weed flora. Likewise other changes in cultivation such as reduced tillage practices, earlier sowing date, etc. cause an increase in weed infestation resp. an increased use of herbicides and if so contribute to herbicide resistance. The positive effects of crop rotation, but also of alternative management practices such as choice of varieties, catch crops, mixed cropping, green chop, and the share of predators, as well as methods of direct non-chemical weed control are presented and discussed for both, conventional and organic farming. If alternative management methods should be more practiced, especially trade-offs need to be broken, or incentives be offered.

  3. Team-up Crop Diversification and Weed Management: PRODIVA

    DEFF Research Database (Denmark)

    Gerowitt, B.; Melander, B.; Krawczyk, R.

    2015-01-01

    The research-network PRODIVA focuses on a better utilization of crop diversification for weed management in North European arable cropping systems. The goal is to maintain diverse arable weed vegetation that is manageable in the long-term and could fulfil other necessary systemfunctions including...... in organic agriculture. Regional fields will be surveyed for weeds to safeguard the relevance of the experimental research. Current cropping practices and their influence on weed pressure and weed diversity will be identified. The project will involve relevant stakeholders from the participating countries...... the results. Neither are crop diversification methods restricted to Organic Farming, nor can IWM (Integrated Weed Management) be successfully implemented without respecting the role of weeds in agro-ecosystems. The project “PRODIVA - Crop diversification and weeds“ is supported within the ERA-net CORE Organic...

  4. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products.

    Science.gov (United States)

    Li, Jing; Bo, Yu; Xie, Shaodong

    2016-06-01

    With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°×0.25° and a temporal resolution of 1month was established based on the moderate resolution imaging spectroradiometer (MODIS) Thermal Anomalies/Fire Daily Level3 Global Product (MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4, nonmethane volatile organic compounds (NMVOCs), N2O, NOx, NH3, SO2, fine particles (PM2.5), organic carbon (OC), and black carbon (BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43, 1.09, 0.34, and 0.06Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June (37%). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ±169% for NH3. Copyright © 2016. Published by Elsevier B.V.

  5. Life cycle assessment of shredder residue management

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Damgaard, Anders; Brogaard, Line Kai-Sørensen

    This report provides a life-cycle assessment (LCA) of the treatment of shredder residue (SR) in Denmark. The LCA was conducted for the Environmental Protection Agency by DTU Environment in the period March-July 2014, as part of a service agreement between the Danish Environmental Protection Agency...... wood waste, wood waste for recycling and district heating pipes. The LCA was conducted using the EASETECH LCA model developed by DTU Environment for the environmental assessment of waste management systems and environmental technologies. The LCA was conducted in accordance with the LCA principles...

  6. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains all the activity data, emission factor data, and ancillary data used to compute crop residue burning and rangeland emissions for the 2014 NEI...

  7. Growth of legume and nonlegume catch crops and residual-N effects in spring barley on coarse sand

    DEFF Research Database (Denmark)

    Askegaard, Margrethe; Eriksen, Jørgen

    2007-01-01

    Askegaard, M. and Eriksen, E. 2007. Growth of legume and nonlegume catch crops and residual-N effects in spring barley on coarse sand. J. Plant Nutrition and Soil Science, 170, 733-780.......Askegaard, M. and Eriksen, E. 2007. Growth of legume and nonlegume catch crops and residual-N effects in spring barley on coarse sand. J. Plant Nutrition and Soil Science, 170, 733-780....

  8. [Cumulative risk assessment for consumers of agricultural crops polluted with one chemical class pesticide residues (case of triazole fungicides)].

    Science.gov (United States)

    Koval'chuk, N M; Omel'chuk, S T

    2011-01-01

    Different indices of cumulative risk assessment of combination of residues of pesticides which may simultaneously be present in raw agricultural crops, based on toxic evaluation of such combination have been presented. Risk for population health due to consumption of raw agricultural crops with triazole residues is acceptable on hazard index, point of departure index and cumulative risk index, exceeds allowable level on criterion "total margin of exposure".

  9. Evaluation of residue management practices effects on corn productivity, soil quality, and greenhouse gas emissions

    Science.gov (United States)

    Guzman, Jose German

    The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.

  10. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  11. Evaluation of residual effect of partially acidulated phosphate rock on crop production

    International Nuclear Information System (INIS)

    Munyinda, K; Lungu, O.I.

    2005-01-01

    Many countries in Sub -Saharan Africa are rich in phosphate rock (PR) -the primary raw material for the production of phosphate fertilizers. Because of the low local demand and the global surplus of P fertilisers, these deposits have not been developed. Technical, economic and conducive policy regimes are needed in order to initiate tapping of these resources and providing them at low cost.Direct application of of ground PR would be one way of providing the PR at low cost, but this mode of application has proved not to be effective with Zambian PR. In current field trials, simply processed partially acidulated PR (PAPR) was utilised. The main objective of this study was to evaluate the agronomic effectiveness of PAPR produced from simply processed phospate rock products in soils of varying soil chemical properties for direct and residual application on field crops. The results of the three year study have demonstrated that PAPR was a good source of P in providing P to plants and improving crop yields.Where soils were acidic and acutely P deficient, PAPR was a better source of P compared to highly soluble fertilizers.The results have also shown that in the third year as in the second year , there was a greater residual effect of PAPR to increase crop yields. A one time application of P was effective for up to three years. (author)

  12. Sustainable irrigation and nitrogen management of fertigated vegetable crops

    NARCIS (Netherlands)

    Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J.

    2017-01-01

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other

  13. Tillage and crop residue effects on rainfed wheat and maize production in Northern China

    NARCIS (Netherlands)

    Wang Xiaobin,; Wu Huijin,; Dai Kuai,; Zhang Dingchen,; Feng Donghui,; Zhao Quansheng,; Wu Xueping,; Jin Ke,; Cai Diangxiong,; Oenema, O.; Hoogmoed, W.B.

    2012-01-01

    Dryland farming in the dry semi-humid regions of northern China is dominated by mono-cropping systems with mainly maize (Zea mays L.) or wheat (Triticum aestivum), constrained by low and variable rainfall, and by improper management practices. Addressing these problems, field studies on tillage and

  14. Soil Temperature Moderation by Crop Residue Mulch, Grevilla Robusta Tillage Mode

    International Nuclear Information System (INIS)

    Oteng'i, S.B.B.

    2006-01-01

    The effects of mulching with crop residues and shading by Grevillea robust trees on the soil temperatures of Mt. Kenya Volcanic soils at Matanya area, Laikipia district, were studied. Soil thermistors connected to data-loggers(type Grant squirrel)were used to record soil temperaturs. The soils were mulched and minimum tilled (depths of 0.04 till 0.05m), and unmulched and deep tilled (depths 0.20till 0.25m) in plots of pruned and unpruned trees and also to cotrol (non-agroforestry) plots. The results showed that closer tp the trees, canopy differences ionfluenced changes in soil temperatures of about ≠2.0 degrees centrigrade. The dumping depth and Stigters ratio values showed soil temperatures were modified by treatment and tree canopy differences. The modified soil temperatures resulted in better crop performance when the soil water was adequate.(author)

  15. Effect of torrefaction conditions on greenhouse crop residue: Optimization of conditions to upgrade solid characteristics.

    Science.gov (United States)

    Iáñez-Rodríguez, Irene; Martín-Lara, María Ángeles; Blázquez, Gabriel; Pérez, Antonio; Calero, Mónica

    2017-11-01

    This work investigated the possibility of using a greenhouse crop waste as a fuel, since it is an abundant residue in the Mediterranean area of Spain. The residue is mainly composed by biomass with a little quantity of plastic. The physical and chemical characteristics of the biomass were determined by elemental analysis, proximate analysis, FT-IR, FE-SEM and thermogravimetry. Additionally, a torrefaction process was carried out as a pre-treatment to improve the energy properties of the biomass material. The optimal conditions (time and temperature) of torrefaction were found to be 263°C and 15min using the gain and loss method. Further studies were carried out with the sample prepared with the nearest conditions to the optimal in order to determine the effect of the plastic fraction in the characteristics and torrefaction process of the waste studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Managing the pepper maggot (Diptera: Tephritidae) using perimeter trap cropping.

    Science.gov (United States)

    Boucher, T Jude; Ashley, Richard; Durgy, Robert; Sciabarrasi, Michael; Calderwood, William

    2003-04-01

    A perimeter trap crop barrier of hot cherry peppers, border-row insecticide applications, and a combination of the two management strategies were evaluated to see if they could protect a centrally located main crop of bell peppers from oviposition and infestation by the pepper maggot, Zonosemata electa (Say). In large plots, the main cash crop of bell peppers was protected from the majority of the oviposition and infestation by all three barriers. The combination sprayed/trap crop barrier provided the best protection against both oviposition and infestation and resulted in over 98% pest-free fruit at harvest. Maggots infested only 1.7% of the main crop fruit when protected by a sprayed or unsprayed trap crop barrier, compared with 15.4% in control plots. The perimeter sprayed/trap crop strategy was employed in three commercial fields in 2000 and 2001. The combination barrier resulted in superior insect control and reduced insecticide use at all commercial locations, compared with the same farms' past history or to farms using conventional and integrated pest management (IPM) methods. Economic analysis showed that the technique is more cost effective and profitable than relying on whole-field insecticide applications to control the pepper maggot. Farmer users were surveyed and found the perimeter trap crop technique simple to use, with many hard-to-measure benefits associated with worker protection issues, marketing, personnel/management relations, pest control and the environment. Use of the perimeter trap crop technique as part of an IPM or organic program can help improve crop quality and overall farm profitability, while reducing pesticide use and the possibility of secondary pest outbreaks.

  17. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues.

    Science.gov (United States)

    Meneses, Carlos; Silva, Bruna; Medeiros, Betsy; Serrato, Rodrigo; Johnston-Monje, David

    2016-06-25

    Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).

  18. Composting of cow dung and crop residues using termite mounds as bulking agent.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Das, Sampa; Boruah, R K; Dutta, Amrit K; Das, Dilip K

    2014-10-01

    The present study reports the suitability of termite mounds as a bulking agent for composting with crop residues and cow dung in pit method. Use of 50 kg termite mound with the crop residues (stover of ground nut: 361.65 kg; soybean: 354.59 kg; potato: 357.67 kg and mustard: 373.19 kg) and cow dung (84.90 kg) formed a good quality compost within 70 days of composting having nitrogen, phosphorus and potassium as 20.19, 3.78 and 32.77 g kg(-1) respectively with a bulk density of 0.85 g cm(-3). Other physico-chemical and germination parameters of the compost were within Indian standard, which had been confirmed by the application of multivariate analysis of variance and multivariate contrast analysis. Principal component analysis was applied in order to gain insight into the characteristic variables. Four composting treatments formed two different groups when hierarchical cluster analysis was applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues

    Directory of Open Access Journals (Sweden)

    Carlos Meneses

    2016-06-01

    Full Text Available Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol.

  20. Anaerobic biodegradability and methane potential of crop residue co-digested with buffalo dung

    International Nuclear Information System (INIS)

    Sahito, A.R.; Mahar, R.B.; Brohi, K.M.

    2013-01-01

    ABD (Anaerobic Biodegradability) and BMP (Biochemical Methane Potential) of banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw co-digested with buffalo dung was evaluated through AMPTS (Automatic Methane Potential Test System). The substrates were analyzed for moisture, TS (Total Solids) and VS (Volatile Solids), ultimate analysis (CHONS), pH and TA (Total Alkalinity). The BMP/sub observed/ during incubation of 30 days at the temperature of 37+-0.2+-degree C was 322 Nml CH4/g VSadd for wheat straw followed by 260, 170, 149, 142 and 138 Nml CH4/gVS/sub add/ for canola straw, rice straw, cotton stalks, banana plant waste and sugarcane trash respectively, whereas the maximum theoretical BMP was 481 Nml CH/sub 4//gVS/sub add/ for cotton stalks, followed by 473, 473, 446, 432 and 385 Nml CH/sub 4//gVS/sub add/ for wheat straw, banana plant waste, canola straw, rice straw and sugarcane trash respectively. The percentage ABD values were in the range of 68-30%. In addition to this, the effect of lignin content in the crop residue was evaluated on the ABD. The results of this study indicate that, the co-digestion of the crop residues with buffalo dung is feasible for production of renewable methane. (author)

  1. Eviromental Economic and Technological Residues Management Demands: An Optimization Tool.

    Directory of Open Access Journals (Sweden)

    Marisa Soares Borges

    2012-12-01

    Full Text Available Industrial residues management is a very demanding task since many different goals must be achieved. The combination of different approaches used by people from different stuff is very challenging activity that can misuse the residues potential value and applicability. An interactive WEB base tool, to integrate different sectors and overcome residues management difficulties will be presented. The system must be loaded with all data concerning the residue life cycle, and through data integration and modeling routine will give the best alternative as output. As wider and complete the system data becomes, by information loading from differen t segment, more efficient the residues management becomes. The user friendly tool will encourage the participation of industries, labs and research institutions to obtain qualified information about industrial residues inventory, raw materials recovery, characteristics, treatment and alternative uses, to achieve residues management sustainability.

  2. Responses of Pea (Pisum sativum Growth and Yield to Residual Effects of Organic and Urea Fertilizers from Previous Crop

    Directory of Open Access Journals (Sweden)

    S. Fallah

    2016-07-01

    Full Text Available Application of organic manure in organic farming and long-term mineralization may lead to residual effects on the succeeding crop. So, residual effects of combined cattle manure and urea fertilizer of previous crop (black cumin on growth and yield of pea were examined in a randomized complete block design. Treatments included of  cattle manure (CM, urea (U, three ratios of CM+U full dose application (2:1; 1:1; 1:2 and three ratios of CM+U split application (2:1; 1:1; 1:2, and unfertilized control to previous crop (black cumin in 2012. Pea planted without any fertilizer in 2013. There was no significant difference between control and residual of urea treatment for some parameters including dry matter in flowering stage, plant nitrogen and phosphorus concentration, plant height, yield components, grain yield and biological yield of pea. Biological and grain yields were greater under both residual of cattle manure treatment and integrated treatments compared to residual of urea treatment. The highest grain yield (4000 kg ha-1 was observed in residual of CM:U full dosed application treatment, to the extent that grain yield in this treatment indicated a 1.5-fold increase in comparison with residual of urea treatment. The highest biological yield (8325 kg ha-1 was obtained in residual of CM treatment, though it was not significant different from that of residual of CM:U (1:2 treatments. In general, although residual of urea fertilizer did not leave a notable effect on pea production, but production of this crop relying on residual of cattle manure deems effective to lowering of fertilization cost and ameliorating environmental contaminations.

  3. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A 15N tracer study

    International Nuclear Information System (INIS)

    Ju, X.T.; Gao, Q.; Christie, P.; Zhang, F.S.

    2007-01-01

    15 N-labeled nitrate was injected into different depths of an alluvial calcareous soil profile on the North China Plain. Subsequent movement of NO 3 - N and its recovery by deep-rooted maize (Zea mays L.) and shallow-rooted eggplant (Solanum melongena L.) were studied. Under conventional water and nutrient management the mean recoveries of 15 N-labeled nitrate from K 15 NO 3 injected at depths 15, 45, and 75 cm were 22.4, 13.8, and 7.8% by maize and 7.9, 4.9, and 2.7% by eggplant. The recovery rate by maize at each soil depth was significantly higher than by eggplant. The deeper the injection of nitrate the smaller the distance of its downward movement and this corresponded with the movement of soil water during crop growth. Deeper rooting crops with high root length density and high water consumption may therefore be grown to utilize high concentrations of residual nitrate in the subsoil from previous intensive cropping and to protect the environment. - Deep-rooted crops have a greater capacity than shallow-rooted crops to intercept residual nitrate from the subsoil and restrict its movement down to the shallow groundwater

  4. Winter cover crop seeding rate and variety effects during eight years of organic vegetables: III. Cover crop residue quality and nitrogen mineralization

    Science.gov (United States)

    Winter cover crops (CC) can improve nutrient-use efficiency in tillage-intensive systems. Shoot residue quality and soil mineral N following incorporation of rye (Secale cereale L.), legume-rye, and mustard CC was determined in December to February or March during the first 8 yr of the Salinas Orga...

  5. Innovation and diffusion of site-specific crop management

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Pedersen, Jørgen Lindgaard

    2004-01-01

    Site-specific crop management or precision farming (PF) is a highly complex management system for site-specific input application of lime, fertilizers and pesticides in arable farming. The Global Positioning System (GPS) is the backbone of the system. To conduct PF several technical systems...

  6. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen

    International Nuclear Information System (INIS)

    Yan, Xiaoyuan; Ti, Chaopu; Zhu, Zhaoliang; Vitousek, Peter; Chen, Deli; Leip, Adrian; Cai, Zucong

    2014-01-01

    China is the world’s largest consumer of synthetic nitrogen (N), where very low rates of fertilizer N recovery in crops have been reported, raising discussion around whether fertilizer N use can be significantly reduced without yield penalties. However, using recovery rates as indicator ignores a possible residual effect of fertilizer N—a factor often unknown at large scales. Such residual effect might store N in the soil increasing N availability for subsequent crops. The objectives of the present study were therefore to quantify the residual effect of fertilizer N in China and to obtain more realistic rates of the accumulative fertilizer N recovery efficiency (RE) in crop production systems of China. Long-term spatially-extensive data on crop production, fertilizer N and other N inputs to croplands in China were used to analyze the relationship between crop N uptake and fertilizer N input (or total N input), and to estimate the amount of residual fertilizer N. Measurement results of cropland soil N content in two time periods were obtained to compare the change in the soil N pool. At the provincial scale, it was found that there is a linear relationship between crop N uptake and fertilizer N input or total N input. With the increase in fertilizer N input, annual direct fertilizer N RE decreased and was indeed low (below 30% in recent years), while its residual effect increased continuously, to the point that 40–68% of applied fertilizer was used for crop production sooner or later. The residual effect was evidenced by a buildup of soil N and a large difference between nitrogen use efficiencies of long-term and short-term experiments. (paper)

  7. Evaluation of an Anaerobic Digestion System for Processing CELSS Crop Residues for Resource Recovery

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw/day) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4(+) volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  8. Irrigation management of crops rotations in a changing climate

    Science.gov (United States)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  9. Derived crop management data for the LandCarbon Project

    Science.gov (United States)

    Schmidt, Gail; Liu, Shu-Guang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop

  10. The crop-residue of fiber hemp cv. Futura 75: from a waste product to a source of botanical insecticides.

    Science.gov (United States)

    Benelli, Giovanni; Pavela, Roman; Lupidi, Giulio; Nabissi, Massimo; Petrelli, Riccardo; Ngahang Kamte, Stephane L; Cappellacci, Loredana; Fiorini, Dennis; Sut, Stefania; Dall'Acqua, Stefano; Maggi, Filippo

    2017-11-06

    In the attempt to exploit the potential of the monoecious fiber hemp cv. Futura 75 in new fields besides textile, cosmetics and food industry, its crop-residue given by leaves and inflorescences was subjected to hydrodistillation to obtain the essential oils. These are niche products representing an ideal candidate for the development of natural insecticides for the control and management of mosquito vectors, houseflies and moth pests. After GC-MS analysis highlighting a safe and legal chemical profile (THC in the range 0.004-0.012% dw), the leaf and inflorescence essential oils were investigated for the insecticidal potential against three insect targets: the larvae of Culex quinquefasciatus and Spodoptera littoralis and the adults of Musca domestica. The essential oil from inflorescences, showing (E)-caryophyllene (21.4%), myrcene (11.3%), cannabidiol (CBD, 11.1%), α-pinene (7.8%), terpinolene (7.6%), and α-humulene (7.1%) as the main components, was more effective than leaf oil against these insects, with LD 50 values of 65.8 μg/larva on S. littoralis, 122.1 μg/adult on M. domestica, and LC 50 of 124.5 μl/l on C. quinquefasciatus larvae. The hemp essential oil moderately inhibited the acetylcholinesterase (AChE), which is a target enzyme in pesticide science. Overall, these results shed light on the future application of fiber hemp crop-residue for the development of effective, eco-friendly and sustainable insecticides.

  11. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Crop pest, weed, and disease management practice... Requirements § 205.206 Crop pest, weed, and disease management practice standard. (a) The producer must use management practices to prevent crop pests, weeds, and diseases including but not limited to: (1) Crop...

  12. Beneficiary role of grapes residue, an organic waste of agro-based industry causing environmental pollution - a new concept of crop production in hydroponics

    International Nuclear Information System (INIS)

    Butt, S.J.; Varis, S.

    2005-01-01

    The world is facing a serious threat of environmental pollution as a result of which our soils, air and water are becoming highly contaminated with the passage of time. Many epidemics have engulfed a number of countries in various diseases causing the loss of hundreds of thousands of human lives. The wastes of agro-based industries are mostly organic in nature, and if not properly handled, usually become nuisance and also the source of food for pathogens and other harmful microorganisms thus the surrounding becomes polluted. It has been reported that grapes residue (also called grapes marc or pressed grapes) was a serious environmental problem Tekirdag city of Turkey. This waste material was thrown out of the factory (Tekil Fabrikasi) after the extraction of grape juices used for different products. With dual objective, a plan was made to remove the waste material from polluted area subsequently managed to use it a source of soilless growing medium for the production horticultural crops through hydroponics system in the unheated greenhouse. The use of grapes residue for crop production is rare and hardly documented in the literature thus the idea is innovative in its nature that may lead to open the vista of new avenues. A trial of bag culture was conducted to evaluate the possibilities of use of grapes marc as a pure growing substrate for the production of lettuce and tomato crops. Quite encouraging results of a number of parameters of both the crops appeared against the soil-mixture (control). The studied characteristics were relating to vegetative, reproductive, yield physical and chemical performances and sensory traits. It is predicted that grapes marc possesses a great potential of organic rooting medium for growth and development of commercial crops, provided the climatic, nutritional and management activities scheduled in view of the kind and nature of crop cultivar to be grown under unheated glass house conditions. (author)

  13. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P temperature. Higher residue coverage caused lower soil temperature; the effect was greater for maize than soybean residue. Residue type had significant effect on soil temperature in 9 of 15 weekly periods with 0-1.9 °C lower soil temperature under maize than soybean residue. Both tillage and residue had small but inconsistent effect on soil temperature following planting in Northeast China representative of a cool to temperate zone.

  14. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments

    OpenAIRE

    Meier, Elizabeth A.; Thorburn, Peter J.

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial...

  15. Residue Management: A Computer Program About Conservation Tillage Decisions.

    Science.gov (United States)

    Thien, Steve J.

    1986-01-01

    Describes a computer program, Residue Management, which is designed to supplement discussions on the Universal Soil Loss Equation and the impact of tillage on soil properties for introductory soil courses. The program advances the user through three stages of residue management. Information on obtaining the program is also included. (ML)

  16. Magnetopriming - an alternate strategy for crop stress management of field crops

    International Nuclear Information System (INIS)

    Anand, Anjali

    2014-01-01

    Abiotic stresses are major deterrent to sustainable crop production worldwide. Seed germination and early seedling growth are considered as the most critical stages of plant growth under stress conditions. Maximising stress tolerance of crop species by breeding is an integral part of development of strategies for improving sustainable food production under stressed environment but the unprecedented rate at which stress is increasing vis-a-vis the time taken for development of a tolerant variety, necessitates exploring alternate strategies of crop stress management. Seed priming has emerged as a promising crop stress management technique that increases the speed of germination thus ensuring synchronized field emergence of the crop. Magnetopriming (exposure of seeds to magnetic field) is a non invasive physical stimulant used for improving seedling vigour that helps in establishment of crop stand under stress. In our experiments on maize; chickpea and wheat under water deficit and salinity, respectively, improved seed water absorption characteristics resulted in faster hydration of enzymes (amylases, protease and dehydrogenase) leading to early germination and enhanced vigour of seedlings under stress. Increased levels of hydrogen peroxide in faster germinating - magnetoprimed seeds, under both the growing conditions, suggested its role in oxidative signaling during seed germination process. An 'oxidative window' for reactive oxygen species ensured that faster germination rate in magnetoprimed seeds led to vigourous seedlings. Improved root system integrated with higher photosynthetic efficiency and efficient partitioning of Na + increased yield from magnetoprimed seeds under salinity in controlled experiments. Magnetopriming can be effectively used as a pre-sowing treatment for mitigating adverse effects of water deficit and salinity at seed germination and early seedling growth. Unlike other conventional priming techniques it avoids seed hydration and

  17. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

    Directory of Open Access Journals (Sweden)

    Ileana Frasier

    2016-04-01

    Full Text Available The objective of the study was to evaluate the effect of a change in management on the soil microbial community and C sequestration. We conducted a 3-year field study in La Pampa (Argentina with rotation of sorghum (Sorghum bicolor in zero tillage alternating with rye (Secale cereale and vetch (Vicia villosa ssp. dasycarpa. Soil was sampled once a year at two depths. Soil organic matter fractions, dissolved organic matter, microbial biomass (MBC and community composition (DNA extraction, qPCR, and phospholipid FAME profiles were determined. Litter, aerial- and root biomass were collected and all material was analyzed for C and N. Results showed a rapid response of microbial biomass to a bacterial dominance independent of residue quality. Vetch had the highest diversity index, while the fertilized treatment had the lowest one. Vetch–sorghum rotation with high N mineralization rates and diverse microbial community sequestered more C and N in stable soil organic matter fractions than no-till sorghum alone or with rye, which had lower N turnover rates. These results reaffirm the importance of enhanced soil biodiversity for maintaining soil ecosystem functioning and services. The supply of high amounts of N-rich residues as provided by grass–legume cover crops could fulfill this objective.

  18. Environmental performance of crop residues as an energy source for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik; Mogensen, Lisbeth

    2013-01-01

    This paper aims to address the question, “What is the environmental performance of crop residues as an alternative energy source to fossil fuels, and whether and how can it be improved?”. In order to address the issue, we compare electricity production from wheat straw to that from coal and natural...... that of coal but worse than natural gas. In order to investigate the question of whether and how a reduction in the single score per kW h of electricity produced from straw is feasible, we perform a scenario analysis where we consider two approaches. The first one is a potential significant reduction...... gas. The results on the environmental performance of straw for energy utilization and the two fossil fuel references are displayed first for different midpoint categories and then aggregated into a single score. The midpoint impact assessment shows that substitution of straw either for coal...

  19. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    Science.gov (United States)

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  20. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Directory of Open Access Journals (Sweden)

    Rasmus Einarsson

    Full Text Available This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops, or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent.

  1. Impact of management strategies on the global warming potential at the cropping system level.

    Science.gov (United States)

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. Long-term stabilization of crop residues and soil organic carbon affected by residue quality and initial soil pH.

    Science.gov (United States)

    Wang, Xiaojuan; Butterly, Clayton R; Baldock, Jeff A; Tang, Caixian

    2017-06-01

    Residues differing in quality and carbon (C) chemistry are presumed to contribute differently to soil pH change and long-term soil organic carbon (SOC) pools. This study examined the liming effect of different crop residues (canola, chickpea and wheat) down the soil profile (0-30cm) in two sandy soils differing in initial pH as well as the long-term stability of SOC at the amended layer (0-10cm) using mid-infrared (MIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. A field column experiment was conducted for 48months. Chickpea- and canola-residue amendments increased soil pH at 0-10cm in the Podzol by up to 0.47 and 0.36units, and in the Cambisol by 0.31 and 0.18units, respectively, at 48months when compared with the non-residue-amended control. The decomposition of crop residues was greatly retarded in the Podzol with lower initial soil pH during the first 9months. The MIR-predicted particulate organic C (POC) acted as the major C sink for residue-derived C in the Podzol. In contrast, depletion of POC and recovery of residue C in MIR-predicted humic organic C (HOC) were detected in the Cambisol within 3months. Residue types showed little impact on total SOC and its chemical composition in the Cambisol at 48months, in contrast to the Podzol. The final HOC and resistant organic C (ROC) pools in the Podzol amended with canola and chickpea residues were about 25% lower than the control. This apparent priming effect might be related to the greater liming effect of these two residues in the Podzol. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. RESIDUAL LIMB VOLUME CHANGE: SYSTEMATIC REVIEW OF MEASUREMENT AND MANAGEMENT

    Science.gov (United States)

    Sanders, JE; Fatone, S

    2014-01-01

    Management of residual limb volume affects decisions regarding timing of fit of the first prosthesis, when a new prosthetic socket is needed, design of a prosthetic socket, and prescription of accommodation strategies for daily volume fluctuations. The purpose of this systematic review was to assess what is known about measurement and management of residual limb volume change in persons with lower-limb amputation. Publications that met inclusion criteria were grouped into three categories: (I) descriptions of residual limb volume measurement techniques; (II) studies on people with lower-limb amputation investigating the effect of residual limb volume change on clinical care; and (III) studies of residual limb volume management techniques or descriptions of techniques for accommodating or controlling residual limb volume. The review showed that many techniques for the measurement of residual limb volume have been described but clinical use is limited largely because current techniques lack adequate resolution and in-socket measurement capability. Overall, there is limited evidence regarding the management of residual limb volume, and the evidence available focuses primarily on adults with trans-tibial amputation in the early post-operative phase. While we can draw some insights from the available research about residual limb volume measurement and management, further research is required. PMID:22068373

  4. Nitrous oxide and N-leaching losses from agricultural soil: Influence of crop residue particle size, quality and placement

    DEFF Research Database (Denmark)

    Ambus, P.; Jensen, E.S.; Robertson, G.P.

    2001-01-01

    protection of the crop residue material against microbial attack. Leaching of N tended to be reduced about 40 % with barley and 20 % with pea, but the numbers were not significantly different from residue-free soil, which leached 4.7-4.9 g N m(-2). When wheat and alfalfa residues were mixed into the soil N2O...... emissions increased 6.5 and 1.6 times, respectively, compared with residue placed in a layer. Wheat residue in a layer evolved 3.4-times less N2O than alfalfa in a layer, whereas when mixed the two residue types evolved similar amounts of N2O. This difference was probably due to N-limitations in localised...

  5. Cover Crop Species and Management Influence Predatory Arthropods and Predation in an Organically Managed, Reduced-Tillage Cropping System.

    Science.gov (United States)

    Rivers, Ariel N; Mullen, Christina A; Barbercheck, Mary E

    2018-01-29

    Agricultural practices affect arthropod communities and, therefore, have the potential to influence the activities of arthropods. We evaluated the effect of cover crop species and termination timing on the activity of ground-dwelling predatory arthropods in a corn-soybean-wheat rotation in transition to organic production in Pennsylvania, United States. We compared two cover crop treatments: 1) hairy vetch (Vicia villosa Roth) planted together with triticale (×Triticosecale Wittmack) after wheat harvest, and 2) cereal rye (Secale cereale Linnaeus) planted after corn harvest. We terminated the cover crops in the spring with a roller-crimper on three dates (early, middle, and late) based on cover crop phenology and standard practices for cash crop planting in our area. We characterized the ground-dwelling arthropod community using pitfall traps and assessed relative predation using sentinel assays with live greater waxworm larvae (Galleria mellonella Fabricius). The activity density of predatory arthropods was significantly higher in the hairy vetch and triticale treatments than in cereal rye treatments. Hairy vetch and triticale favored the predator groups Araneae, Opiliones, Staphylinidae, and Carabidae. Specific taxa were associated with cover crop condition (e.g., live or dead) and termination dates. Certain variables were positively or negatively associated with the relative predation on sentinel prey, depending on cover crop treatment and stage, including the presence of predatory arthropods and various habitat measurements. Our results suggest that management of a cover crop by roller-crimper at specific times in the growing season affects predator activity density and community composition. Terminating cover crops with a roller-crimper can conserve generalist predators.

  6. Integrating biological treatment of crop residue into a hydroponic sweetpotato culture

    Science.gov (United States)

    Trotman, A. A.; David, P. P.; Bonsi, C. K.; Hill, W. A.; Mortley, D. G.; Loretan, P. A.

    1997-01-01

    Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with `Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of `Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of `TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.

  7. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review.

    Science.gov (United States)

    Reijnders, L

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be maintained, there is scope for the removal of lignocellulosic harvest residues in several systems with much reduced tillage or no tillage. The scope for such removal might be increased when suitably treated residues from the conversion of harvest residues into biofuel are returned to cropland soils. For mineral cropland soils under conventional tillage, the scope for the production of liquid biofuels from harvest residues is likely to be less than in the case of no-till systems. When fertility of cropland soils is to be sustainable, nutrients present in suitably treated biofuel production residues have to be returned to these soils. Apparently, the actual return of carbon and nutrients present in residues of biofuel production from crop harvest residues to arable soils currently predominantly concerns the application of digestates of anaerobic digestion. The effects thereof on soil fertility and quality need further clarification. Further clarification about the effects on soil fertility and quality of chars and of co-products of lignocellulosic ethanol production is also needed.

  8. Thrips management program for horticultural crops

    Science.gov (United States)

    This article presents a systems approach for managing key thrips pests including western flower thrips (Frankliniella occidentalis) and chilli thrips (Scirtothrips dorsalis) known to cause millions of dollars loss annually. Thrips small size (1-2 mm), thigmotactic behavior, high reproductive rate an...

  9. Assessing cover crop management under actual and climate change conditions.

    Science.gov (United States)

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2018-04-15

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Innovation and Diffusion of Site-specific Crop Management

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Pedersen, Jørgen Lindgaard

    2006-01-01

    Site-specific crop management or precision farming is a highly complex managementsystem for site-specific input application of lime, fertilizers and pesticides in arable farming. The Global Positioning System (GPS)is the backbone of the system. To conduct precision farming several technical systems...

  11. Crop production management practices as a cause for low water ...

    African Journals Online (AJOL)

    2009-05-15

    May 15, 2009 ... that investigates the relationship between farmer practices and productivity is lacking. A monitoring study was therefore conducted at the Zanyokwe Irrigation Scheme (ZIS) in the Eastern Cape to identify cropping systems and management practices used by farmers and to determine how these were related ...

  12. Marker assisted selection and crop management for salt tolerance: A ...

    African Journals Online (AJOL)

    Marker assisted selection and crop management for salt tolerance: A review. D Singh, A Kumar, A Kumar, P Chauhan, V Kumar, N Kumar, A Singh, N Mahajan, P Sirohi, S Chand, B Ramesh, J Singh, P Kumar, R Kumar, RB Yadav, RK Naresh ...

  13. Sources of risk and management strategies among food crop ...

    African Journals Online (AJOL)

    area. Risk management strategies available to the farmers were extension services, 67.3%; access to fertilizer, 41.2%; mixed cropping/farming, 79.3%; cooperative society 54.5%, borrowing of money, 73.0% and off farm-work, 69.7%. Attention should be shifted towards protection of farmers against market failure and price ...

  14. Effective management of pigeon pea ( Cajanus cajan ) in a crop ...

    African Journals Online (AJOL)

    Effective management of pigeon pea ( Cajanus cajan ) in a crop/livestock integrated farming system in northern Ghana. ... Ghana Journal of Agricultural Science ... Pigeon pea plots with row lengths averaging 11 m and a planting geometry of 80 cm W 50 cm, were either pruned at 60 or 100 cm above ground level or not ...

  15. Investigation of Sensitivity of Some Pulses and Agronomic Crops to Soil Residue of Idosulfuron-mesosulfurun Herbicide

    Directory of Open Access Journals (Sweden)

    E. Izadi-Darbandi

    2013-03-01

    Full Text Available To study the sensitivity of chick pea, bean, lentil, rapeseed, sugarbeet and tomato to soil residual concentration of Idosulfuron-mesosulfurun herbicide, an experiment was carried out under controlled conditions at the College of Agriculture, Ferdowsi University of Mashhad, Iran, in 2010. The studied factors were the 6 mentioned crops, and 7 levels of soil residual concentration of Idosulfuron-mesosulfurun herbicide (0, 0.0015, 0.0037, 0.0079, 0.015, 0.031 and 0.047 mg per kg of soil. The factorial experiment was carried out as a completely randomized design with three replications. Crops' emergence percentage was determined one week after their emergence. Plants' survival percentage and shoot and root biomass production were measured 30 days after their emergence. Results showed that all mentioned characteristics decreased significantly (P<0.01 in the presence of soil residue of the herbicide. Increasing Idosulfuron-mesosulfurun residual concentration in soil decreased emergence and shoot and root biomass production. Bean had the lowest shoot (44% and root (66.78% biomass loss and tomato had the highest shoot (96.38% and root (89.64% biomass loss. Based on ED50 index, pea (0.0079 mg/kg soil was the most tolerant and tomato (0.0003 mg/kg soil was the most susceptible crop to soil residues of Idosulfuron-mesosulfurun, and other crops ranked in between as: tomato< sugarbeet< rapeseed< lentil< bean< pea. In general, these results showed that soil residue of Idosulfuron-mesosulfurun can injure rotation crops and it is important to consider their sensitivity in rotation programming.

  16. Fermentation quality and nutritive value of rice crop residue based silage ensiled with addition of epiphytic lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    B Santoso

    2011-03-01

    Full Text Available Silage is the feedstuff resulted from the preservation of forages through lactic acid fermentation. The aim of this study was to evaluate nutritive value, fermentation characteristics and nutrients digestibility of rice crop residue based silage ensiled with epiphytic lactic acid bacteria (LAB. The mixture of rice crop residue (RC, soybean curd residue (SC and cassava waste (CW in a 90: 5: 5 (on dry matter basis ratio was used as silage material. Three treatments silage were (A RC + SC + CW as a control; (B RC + SC + CW + LAB inoculums from rice crop residue; (C RC + SC + CW + LAB inoculums from king grass. Silage materials were packed into plastic silo (1.5 kg capacity and stored for 30 days. The results showed that crude protein content in B and C silage was higher than that of silage A, but NDF content in silages B and C was lower than that of silage A. Lactic acid concentration was higher (P < 0.01 in silage C compared to silage B and A, thus pH value of silage C was lower (P < 0.01 than silage B and A. Silage C had the highest Fleigh point than that of other silages. Dry matter and organic matter digestibilities were higher in silages B and C (P < 0.01 than that of control silage. It was concluded that the addition of LAB inoculums from king grass to rice crop residue based silage resulted a better fermentation quality compared to LAB inoculums from rice crop residue.

  17. Evaluation of Crop-Livestock Integration Systems among Farm ...

    African Journals Online (AJOL)

    USER

    involve nutrient cycling, consumption and processing of crop residues, and pest management (for both crops and .... Crop residues obtainable from crop production activities in the entire studied populations were majorly from ... road construction, marketing, and water lifting for irrigation. Livestock also provide manure and ...

  18. Integrating high residue cover crops and weed control options for resistant weeds threatening conservation agriculture and water resources

    Science.gov (United States)

    Conservation tillage reduces the physical movement of soil to the minimum required for crop establishment and production. When consistently practiced as a soil and crop management system, it greatly reduces soil erosion and is recognized for the potential to improve soil quality and plant water avai...

  19. The impact of altered herbicide residues in transgenic herbicide-resistant crops on standard setting for herbicide residues

    NARCIS (Netherlands)

    Kleter, G.A.; Unsworth, J.B.; Harris, C.A.

    2011-01-01

    The global area covered with transgenic (genetically modified) crops has rapidly increased since their introduction in the mid-1990s. Most of these crops have been rendered herbicide resistant, for which it can be envisaged that the modification has an impact on the profile and level of herbicide

  20. Evaluation of certain crop residues for carbohydrate and protein fractions by cornell net carbohydrate and protein system

    Directory of Open Access Journals (Sweden)

    Venkateswarulu Swarna

    2015-06-01

    Full Text Available Four locally available crop residues viz., jowar stover (JS, maize stover (MS, red gram straw (RGS and black gram straw (BGS were evaluated for carbohydrate and protein fractions using Cornell Net Carbohydrate and Protein (CNCP system. Lignin (% NDF was higher in legume straws as compared to cereal stovers while Non-structural carbohydrates (NSC (% DM followed the reverse trend. The carbohydrate fractions A and B1 were higher in BGS while B2 was higher in MS as compared to other crop residues. The unavailable cell wall fraction (C was higher in legume straws when compared to cereal stovers. Among protein fractions, B1 was higher in legume straws when compared to cereal stovers while B2 was higher in cereal stovers as compared to legume straws. Fraction B3 largely, bypass protein was highest in MS as compared to other crop residues. Acid detergent insoluble crude protein (ADICP (% CP or unavailable protein fraction C was lowest in MS and highest in BGS. It is concluded that MS is superior in nutritional value for feeding ruminants as compared to other crop residues.

  1. Distribution, timing of attack, and oviposition of the banana weevil, Cosmopolites sordidus, on banana crop residues in Uganda

    NARCIS (Netherlands)

    Masanza, M.; Gold, C.S.; Huis, van A.

    2005-01-01

    Crop sanitation (removal and chopping of residue corms and pseudostems following plant harvest) has been recommended as a 'best bet' means of reducing banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), populations. However, it has been unclear when such practices should be

  2. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review

    NARCIS (Netherlands)

    Reijnders, L.

    2013-01-01

    Use of lignocellulosic crop harvest residues for liquid or gaseous biofuel production may impact soil quality, long-term soil fertility and the major determinants of the latter, stocks of soil organic carbon and nutrients. When soil organic carbon stocks of mineral cropland soils are to be

  3. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  4. AN APPROACH FOR TECHNOLOGICAL MANAGEMENT OF MINERAL FERTILIZATION OF CROPS

    Directory of Open Access Journals (Sweden)

    ATANAS Atanasov

    2008-07-01

    Full Text Available An approach for technological management of mineral fertilization in crops based on simulation was presented. The simulation of the interaction between technical means, agricultural workers, crops, soils and fi elds was based on step of the algorithm. It included the following main steps: calculation of the adequate rate of fertilizers depending on soil reserves and the crop requirements, computing the number of aggregates depending of the duration of work, calculation of the productivity of machines, determination of the optimal duration of work and the number of aggregates depending on the shift duration. The new approach presented enabled the following: optimization of time for actual use of the resources, within the boundaries of the agrothechnical terms; precisely simulation of the initial data; specifying the decision for the concrete conditions; easy accessibility and applicability for a broad range of users.

  5. Crop residues as driver for N2O emissions from a sandy loam soil

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Petersen, Søren O.; Chirinda, Ngonidzashe

    2017-01-01

    -term experiment on a loamy sand soil at Foulum in Denmark. All cropping systems included winter wheat, a leguminous crop (faba bean or grass-clover), potato and spring barley grown in different 4-crop rotations varying in strategies for N supply (fertilizer/manure type and rate, use of catch crops and green...

  6. Comparative performance of annual and perennial energy cropping systems under different management regimes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmel, Ute Constanze

    2007-07-18

    at the study site, may better perform on marginal sites. Switchgrass is an example of the need to grow site-adapted energy crops. The annual energy crop maize required the highest input, but at the same time yielded the most. The two crop rotation systems did not differ in yield and energy input, but the system with no-till may be more environmentally benign as it has the potential to sequester carbon. The objective of Paper II was the optimization of crop cultivation through the differentiation of input parameters to enhance the quality of the energy crop triticale, without influencing the biomass yield. The intention was to minimize the content of combustion-disturbing elements (potassium and chlorine) and the ash residue of both aboveground plant parts (grain and straw). It was done through different straw and potassium fertilizer treatments. It could be shown that the removal of straw from the previously cultivated crop and no additional potassium fertilizer could reduce the amount of combustion-disturbing elements. A high influence must also be expected from site and weather conditions. Papers III to V address the supply of different high quality biomasses, with the focus on maize for anaerobic digestion. The objective of Paper III was the assessment of the requirements of biogas plants and biomass for anaerobic digestion. It introduces potential energy crops, along with their advantages and disadvantages. Alongside maize, many other biomass types, which are preserved as silage and are high in carbohydrates and low in lignocelluloses, can be anaerobically digested. The development of potential site-specific crop rotation systems for biomass production are discussed. The objective of Papers IV and V was the identification of suitable biomass and production systems for the anaerobic digestion. The focus lay on the determination of (i) suitable energy maize varieties for Central Europe, (ii) optimal growth periods of energy crops, (iii) the influence of crop

  7. Impact of management strategies on the global warming potential at the cropping system level

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, Pietro; Grant, Brian B.; Smith, Ward N. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Desjardins, Raymond L., E-mail: ray.desjardins@agr.gc.ca [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Worth, Devon E. [Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Ontario K1A 0C6 (Canada); Zentner, Robert [Swift Current Research Station, Swift Current, Saskatchewan S0E 1A0 (Canada); Malhi, Sukhdev S. [Melfort Research Farm, PO Box 1240, Melfort, Saskatchewan S0E 1A0 (Canada)

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha{sup −1} decreased on average the emissions of N{sub 2}O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO{sub 2} emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. - Highlights: • LCA was combined with DNDC model to estimate the GWP of a cropping system. • N{sub 2}O, NO and NH{sub 3} flux increased by 39% under the higher fertilizer rate. • A change from 75 to 50 kg N ha{sup −1} reduced the GWP per ha and GJ basis by 18%. • N{sub 2}O emissions contributed 67% to the overall GWP of the cropping system. • Small changes in N fertilizer can have a substantial environmental impact.

  8. RESIDU management in spruiten 2009 : eindrapportage

    NARCIS (Netherlands)

    Mooijaart, A.; Oers, van C.; Vlaswinkel, M.E.T.

    2009-01-01

    Een aantal afzetkanalen, supermarkten stelt sinds een aantal jaren bovenwettelijke eisen mbt residu in spruiten. Om te onderzoeken of door een betere keuze van middelen het mogelijk was om aan deze eis te voldoend is er in 2008 een blokkenproef aangelegd op PPO locatie Westmaas. De resultaten van

  9. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops

    DEFF Research Database (Denmark)

    De Notaris, Chiara; Rasmussen, Jim; Sørensen, Peter

    2018-01-01

    Components of the field nitrogen (N) balance (input and surplus) are often used to predict nitrate leaching from agricultural lands. However, management factors, such as use of catch crops, greatly affect the actual loss and are a key to reduce N leaching. The present study is based on the 4th...... cycle of a long-term crop rotation experiment in Denmark, and it aims to quantify, from a crop rotation perspective, the influence on N leaching from N input and surplus or management factors. The experiment included three cropping systems (two organic and one conventional) with or without use of animal......, with legume-based catch crops being as effective as non-legumes. Animal manure increased N leaching in one of the organic systems. The organic system with two years of green manure per rotation cycle was the one at highest risk of N leaching, especially from crops following green manure incorporation. Spring...

  10. The San Francisco Bay - Delta Wastewater and Residual Solids Management Study. Volume III. Technical Appendix. Wastewater Residual Solids Management Study

    Science.gov (United States)

    1972-08-01

    field in industrial wastes for the recovery of proteins, starches , fertilizers and chemicals (Ref. 202). However, it can be utilized as a drying technique...composition is extracted from the literature and is based on chemical analysis of actual process residue. 3. Odor Production. The temperature...results with citrus, tobacco, cotton, corn, potatoes and cabbage crops and. with various grasses. Increases in yields up to 3.8 percent over

  11. Impact of climate variability on N and C flux within the life cycle of biofuels produced from crop residues

    Science.gov (United States)

    Pourhashem, G.; Block, P. J.; Adler, P. R.; Spatari, S.

    2013-12-01

    Biofuels from agricultural feedstocks (lignocellulose) are under development to meet national policy objectives for producing domestic renewable fuels. Using crop residues such as corn stover as feedstock for biofuel production can minimize the risks associated with food market disruption; however, it demands managing residue removal to minimize soil carbon loss, erosion, and to ensure nutrient replacement. Emissions of nitrous oxide and changes to soil organic carbon (SOC) are subject to variability in time due to local climate conditions and cultivation practices. Our objective is to investigate the effect of climate inputs (precipitation and temperature) on biogeochemical greenhouse gas (GHG) emissions (N2O and SOC expressed as CO2) within the life cycle of biofuels produced from agricultural residues. Specifically, we investigate the impact of local climate variability on soil carbon and nitrogen fluxes over a 20-year biorefinery lifetime where biomass residue is used for lignocellulosic ethanol production. We investigate two cases studied previously (Pourhashem et al, 2013) where the fermentable sugars in the agricultural residue are converted to ethanol (biofuel) and the lignin byproduct is used in one of two ways: 1) power co-generation; or 2) application to land as a carbon/nutrient-rich amendment to soil. In the second case SOC losses are mitigated through returning the lignin component to land while the need for fertilizer addition is also eliminated, however in both cases N2O and SOC are subject to variability due to variable climate conditions. We used the biogeochemical model DayCent to predict soil carbon and nitrogen fluxes considering soil characteristics, tillage practices and local climate (e.g. temperature and rainfall). We address the impact of climate variability on the soil carbon and nitrogen fluxes by implementing a statistical bootstrap resampling method based on a historic data set (1980 to 2000). The ensuing probabilistic outputs from the

  12. Soil and Crop management: Lessons from the laboratory biosphere 2002-2004

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation with "Hoyt" Soy Beans, USU Apogee Wheat and TU-82-155 sweet potato using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching and returning crop residues to the soil after each experiment. Between experiment #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. Soil analyses for all three experiments are presented to show how the soils have changed with time and how the changes relate to crop selection and rotation, soil selection and management, water management and pest control. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth facility.

  13. 7 CFR 2.44 - Administrator, Risk Management Agency and Manager, Federal Crop Insurance Corporation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Administrator, Risk Management Agency and Manager... Secretary for Farm and Foreign Agricultural Services to the Administrator, Risk Management Agency, and... for the transaction of the business of the Federal Crop Insurance Corporation and the Risk Management...

  14. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    Science.gov (United States)

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Transformations of ammonium nitrogen in upland and floored soils amended with crop residues

    International Nuclear Information System (INIS)

    Aulakh, M.S.

    1989-01-01

    The effect of crop residues on the nitrification, denitrification, nitrogen immobilization and NH 4 + -fixation of 15 NH 4 + -N at varying soil moisture levels was investigated under laboratory conditions. In a period of 96h, about 34 per cent of 15 NH 4 + -N nitrified in the upland soil (60 per cent saturation), whereas it was only 11 per cent in flooded soil (120 per cent saturation). Addition of straw progressively increased nitrification in the flooded soil (but not in upland soil) and with 1.0 per cent straw, the amount of 15 NH 4 + -N nitrified was almost equal at all the three moisture levels studied. Incorporation of straw increased the immobilization of added N from 12 to 29 per cent in upland soil but its effect was negligible in the submerged soil. Fixed NH 4 + -N which ranged from 1 to 9 per cent of added N was not influenced either by straw or by soil moisture. The contribution of fertilizer N towards total denitrification losses decreased from 69 per cent in aerobic soil (without straw) to 30 per cent in anaerobic soil due to reduced nitrification of applied NH 4 + -N. These results confirm that losses of applied N through denitrification could be reduced if the source of N is ammoniacal fertilizers. (author). 3 tabs., 2 figs., 16 refs

  17. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  18. Determination of chlorantraniliprole residues in crops by liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry/mass spectrometry.

    Science.gov (United States)

    Grant, Joann; Rodgers, Carol A; Chickering, Clark D; Hill, Sidney J; Stry, James J

    2010-01-01

    An analytical method is presented for the determination of chlorantraniliprole residues in crops. Chlorantraniliprole residues were extracted from crop matrixes with acetonitrile after a water soak. The extracts were passed through a strong anion-exchange (SAX) SPE cartridge stacked on top of a reversed-phase (RP) polymer cartridge. After both cartridges were rinsed and vacuum-dried, the SAX cartridge was removed, and chlorantraniliprole was eluted from the RP polymer cartridge with acetonitrile. The acetonitrile eluate was evaporated to dryness, reconstituted, and analyzed using an LC/MS/MS instrument equipped with an atmospheric pressure chemical ionization source. The method was successfully validated at 0.010, 0.10, and 10 mg/kg for the following crop matrixes: potatoes, sugar beets (tops), lettuce, broccoli, soybeans, soybean forage, tomatoes, cucumbers, oranges, apples, pears, peaches, almonds (nutmeat), rice grain, wheat grain, wheat hay, corn stover, alfalfa forage, cottonseed, grapes, and corn grain. The average recoveries from all crop samples fortified at the method LOQ ranged from 91 to 108%, with an overall average recovery of 97%. The average recoveries from all crop samples fortified at 10 times the method LOQ ranged from 89 to 115%, with an overall average recovery of 101%. For all of the fortified control samples analyzed in this study, the overall average recovery was 99%.

  19. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  20. Assessment tools for fuzzy clustered regions of interest for site-specific crop management

    Science.gov (United States)

    Meyer, George E.; Camargo Neto, Joao; Jones, David D.

    2004-03-01

    Fuzzy excess green (ExG) crisp indices and clustering algorithms such as the Gustafson-Kessel (GK) have been successfully used for unsupervised classification of hidden and prominent regions of interest (ROI"s), namely green plants in crop color images against bare clay soil, corn residue and wheat residue, typical of the Great Plains. Each process can be enhanced with Zadeh (Z) and Gath-Geva (GG) fuzzy enhancement techniques. Enhanced indices and clusters can be then sorted by final degree of fuzziness, and recombined into labeled, false-color class images, which can be used as templates for further shape and textural analyses. ROI"s with the lowest degree of fuzziness were consistently found to be plant clusters according to foveated or prominence of the region size within the image. Clustering performance according to partition densities and hyper volume was also evaluated. These latter measures can be used to select the number of clusters and evaluate the computational time needed to find plant ROI"s with complex backgrounds under different lighting conditions. Enhanced GK clustering methods have performed very well and have identified plants in bare soil, corn residue plants , and wheat straw plants, well into the high 90 percentages, depending on plant age category and the relative proportion of plant size within the image. Improved clustering algorithms with textural finger printing could be potentially useful for unsupervised remote sensing, mapping, crop management, weed, and pest control for precision agriculture.

  1. Nitrosospira sp. Govern Nitrous Oxide Emissions in a Tropical Soil Amended With Residues of Bioenergy Crop

    Directory of Open Access Journals (Sweden)

    Késia S. Lourenço

    2018-04-01

    Full Text Available Organic vinasse, a residue produced during bioethanol production, increases nitrous oxide (N2O emissions when applied with inorganic nitrogen (N fertilizer in soil. The present study investigated the role of the ammonia-oxidizing bacteria (AOB community on the N2O emissions in soils amended with organic vinasse (CV: concentrated and V: non-concentrated plus inorganic N fertilizer. Soil samples and N2O emissions were evaluated at 11, 19, and 45 days after fertilizer application, and the bacterial and archaea gene (amoA encoding the ammonia monooxygenase enzyme, bacterial denitrifier (nirK, nirS, and nosZ genes and total bacteria were quantified by real time PCR. We also employed a deep amoA amplicon sequencing approach to evaluate the effect of treatment on the community structure and diversity of the soil AOB community. Both vinasse types applied with inorganic N application increased the total N2O emissions and the abundance of AOB. Nitrosospira sp. was the dominant AOB in the soil and was correlated with N2O emissions. However, the diversity and the community structure of AOB did not change with vinasse and inorganic N fertilizer amendment. The results highlight the importance of residues and fertilizer management in sustainable agriculture and can be used as a reference and an input tool to determine good management practices for organic fertilization.

  2. Evaluation of the performance of a castor-oil based formulation in limiting pesticide residues in strawberry crops

    Directory of Open Access Journals (Sweden)

    Mário Sérgio Galhiane

    2012-01-01

    Full Text Available A study was made to evaluate the effect of a castor oil-based detergent on strawberry crops treated with different classes of pesticides, namely deltamethrin, folpet, tebuconazole, abamectin and mancozeb, in a controlled environment. Experimental crops of greenhouse strawberries were cultivated in five different ways with control groups using pesticides and castor oil-based detergent. The results showed that the group 2, which was treated with castor oil-based detergent, presented the lowest amount of pesticide residues and the highest quality of fruit produced.

  3. Remote Sensing of Residue Management in Farms using Landsat 8 Sensor Imagery

    Directory of Open Access Journals (Sweden)

    M. A Rostami

    2017-10-01

    Full Text Available Introduction Preserving of crop residues in the field surface after harvesting crops, making difficult farm operations. The farmers for getting rid of crop residues always choose the easiest way, i.e. burning. Burning is one of the common disposal methods for wheat and corn straw in some region of the world. Present study was aimed to investigate the accurate methods for monitoring of residue management after wheat harvesting. With this vision, the potential of Landsat 8 sensor was evaluated for monitoring of residue burning, using satellite spectral indices and Linear Spectral Unmixing Analysis. For this purpose, correlation of ground data with satellite spectral indices and LSUA data were tested by linear regression. Materials and Methods In this study we considered 12 farms where remained plants were burned, 12 green farm, 12 bare farms and 12 farms with full crop residue cover were considered. Spatial coordinates of experimental fields recorded with a GPS and fields map were drawn using ArcGissoftware, version of 10.1. In this study,t wo methods were used to separate burned fields from other farms including Satellite Spectral Indices and Linear Spectral unmixing analysis. In this study, multispectral landsat 8 image was acquired over 2015 year. Landsat 8 products are delivered to the customer as radiometric, sensor, and geometric corrections. Image pixels are unique to Landsat 8 data, and should not be directly compared to imagery from other sensors. Therefore, DN value must be converted to radiance value in order to change the radiance to the reflectance, which is useful when performing spectral analysis techniques, such as transformations, band ratios and the Normalized Difference Vegetation Index (NDVI, etc. In this study, a number of spectral indices and Linear Spectral Unmixing Analysis data were imported/extracted from Landsat 8 image. All satellite image data were analyzed by ENVI software package. The spectral indices used in this

  4. Classification of crops grown in or imported into the European Union for pesticide residue assessment

    NARCIS (Netherlands)

    Velde-Koerts T van der; Muller E; Ossendorp BHC; Plantenziektenkundige dienst; SIR; Plantenziektenkundige Dienst

    2003-01-01

    An important aspect of food safety is the control of pesticide residues on food. Pesticide residue assessments are conducted to establish legal limits, known as maximum residue limits (MRLs), for pesticide residues in plant and animal commodities. In the EC guidelines for pesticide

  5. Crops nutrition management as measures for climate change adaptation

    Science.gov (United States)

    Hladkikh, Yevheniia

    2017-04-01

    The main feature of climate change in most countries worldwide is the increasing frequency of extreme weather events such as unpredictable floods, droughts and another abiotic stress for crops. It is not surprising that most countries are interested in technologies for adapting agriculture to climate change, and Ukraine is no exception. But traditional measures which exist in the world practice do not sufficiently take into account the importance of interactions between soil and plants. For example, from 138 projects of the European Climate Adaption Platform only 16 are correlated with the soil, but only one of them investigates the interaction in "soil-plant" system. In this connection, the main aim of our research was to determine the effectiveness of agrochemical techniques in plant nutrition management for crops adaptation to extreme weather fluctuations. The influence of different agrochemical measures in "soil-plant" system on the resilience of crops to different climate conditions of the growing season were investigated in a long-term field experiment that was started in 1969. The experiment was on a Chernozem at the Grakivske Experimental Station in Kharkiv region, Ukraine. Soil samples were taken during the growing season from field under different crops. Soil and plant samples analyses included macro- and micronutrients content, soil moisture. Research in the field experiment has demonstrated a close correlation between the average annual rainfall and content of available forms of macronutrients in the soil (especially for nitrate nitrogen the correlation coefficient was 0.98). Studies have shown that increasing the annual rainfall by 100 mm increases the content of nitrate nitrogen in the soil at 7 mg per kg. Another correlation has shown that the decrease amount of precipitation reduces the range of the N:P and consequently the availability of these elements to crops. Thus, in drought conditions, efficiency of the use of available nutrients by crops

  6. SOIL FUNGISTASIS AGAINST FUSARIUM GRAMINEARUM UNDER DIFFERENT CROP MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bruno Brito Lisboa

    2015-02-01

    Full Text Available Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L. + vetch (Vicia sativa L./maize (Zea mays L. + cowpea (Vigna sinensis L., black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA. A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.

  7. Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues

    Science.gov (United States)

    Zhang, Tong; Liu, Linlin; Song, Zilin; Ren, Guangxin; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2013-01-01

    Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation. PMID:23825574

  8. Survival of Diaporthe phaseolorum var. caulivora (causal agent of soybean stem canker) artificially inoculated in different crop residues

    OpenAIRE

    Grijalba, Pablo; Ridao, Azucena del C.

    2012-01-01

    Stem canker caused by Diaporthe phaseolorum var. caulivora is an important disease of soybean in Argentina. The objective of this study was to determine its survival ability in artificially infested straw under laboratory and field conditions. In laboratory, stem pieces of soybean, maize, sorghum, sunflower, potato and wheat were autoclaved, placed in petri dishes on Potato Dextrose Agar and Water Agar, and inoculated with a 7-day-old pathogen culture. All crop residues were colonized and pro...

  9. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must... nutrients and soil fertility through rotations, cover crops, and the application of plant and animal...

  10. Algal derivatives may protect crops from residual soil salinity: a case study on a tomato-wheat rotation

    Science.gov (United States)

    Di Stasio, Emilio; Raimondi, Giampaolo; Van Oosten, Michael; Maggio, Albino

    2017-04-01

    In coastal areas, summer crops are frequently irrigated with saline water. As a consequence, salts may accumulate in the root zone with detrimental effects on the following winter crops if the rainfall is insufficient to leach them. Two field experiments were performed in 2015-2016 on a field used for tomato (summer) wheat (winter) rotation cropping. The spring-summer experiment was carried in order to evaluate the effect of two algal derivatives (Ascophyllum nodosum), Rygex and Super Fifty, on a tomato crop exposed to increasing salinity and reduced nutrient availability. In the autumn-winter experiment we investigated the effect of residual salts from the previous summer irrigations on plant growth and yield of wheat treated with the same two algal extracts. The salt treatment for the irrigated summer crop was 80 mM NaCl plus a non-salinized control. The nutrient regimes were 100% and 50% of the tomato nutritional requirements. With both the seaweeds applications the salt stressed plants were demonstrated improved Relative Water Content and water potential. Nevertheless the total fresh biomass and the fruit fresh weight were enhanced only in the non salinized controls. Application of algal derivatives increased the total fresh weight over controls in the non salinized plants. The seaweed treatments enhanced the fruit fresh weight with an increase of 30% and 46% for Rygex and Super Fifty, respectively. Preliminary analysis of the ion profile in roots, shoots and leaves, indicates that the seaweed extracts may enhance the assimilation of ions in fruits affecting their nutritional value. The residual salinity of the summer experiment reduced the wheat biomass production. However, the seaweed extracts treatments improved growth under salinity. In the salt stressed plants the Super Fifty application increased shoots and ears by 34% and 23% respectively, compared to the non treated plants. Plant height was increased by application of seaweeds extracts for both the

  11. Grain yield and crop N offtake in response to residual fertilizer N in long-term field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattsson, L.

    2010-01-01

    Organic inputs [e.g. animal manure (AM) and plant residues] contribute directly to the soil organic N pool, whereas mineral N fertilizer contributes indirectly by increasing the return of the crop residues and by microbial immobilization. To evaluate the residual effect of N treatments established...... in four long-term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long-term plot treatments of fertilizer inputs (Nprev......). Rates of Nprev above 50-100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long-term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials...

  12. Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB)

    Science.gov (United States)

    Mishra, Amit Kumar; Shibata, Takashi

    2012-09-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). The present study deals with the spatial variability including the vertical structure of optical and microphysical properties of aerosols, during the crop residue burning season (October and November) of 2009 over the IGB. Increased number of fire counts observed by MODIS (MODerate resolution Imaging Spectroradiometer) that is associated with high aerosol optical depth (MODIS-AOD > 0.7) and enhanced tropospheric columnar NO2 concentrations observed by OMI (Ozone Monitoring Instrument), suggests agriculture crop residue burning as a main source of aerosol loading over the IGB during October and November. PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) observations show an increase in fine mode AOD (at 865 nm) from October (0.1-0.2) to November (0.2-0.3) over the IGB, which is well corroborated with MODIS observations. CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) data shows the elevated aerosol plume (4.0-4.5 km) over the north-west IGB (associated with burning activities) that could have been caused by positive buoyancy through pyro-convection. However, large concentrations of aerosol were found below 1.0 km altitude. The averaged vertical structure of crop residue burning aerosols shows an exponential decrease with altitude (mean scale height ˜1.44 ± 0.20 km). Aerosol optical and microphysical properties coupled with backward air trajectories analyses at Kanpur indicated regional transport of biomass burning aerosols in a downwind direction from north-west IGB to south-east IGB. Aerosol classification, using AERONET (AErosol RObotic NETwork)-derived absorption properties coupled with size parameter (2006-2010) showed clear seasonal dependency of aerosol types which revealed the presence of biomass burning aerosols only during the crop

  13. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China.

    Science.gov (United States)

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Shaaban, Muhammad; Cai, Jianbo; Chen, Xi

    2013-08-01

    To investigate the influence of crop residues decomposition on nitrous oxide (N2O) emission, a field study was performed with application of crop residues with different C:N ratios in a bare yellow brown soil at the experimental station of Zhangjiachong at Zigui, China. We set up six experimental treatments: no crop residue (CK), rapeseed cake (RC), potato stalk (PS), rice straw (RS), wheat straw (WS), and corn straw (CS). The carbon (C) to nitrogen (N) ratios of these crop residues were 7.5, 32.9, 40.4, 65.7, and 90.9, respectively. Nitrous oxide fluxes were measured using a static closed chamber method. N2O emissions were significantly enhanced by incorporation of crop residues. Cumulative N2O emissions negatively correlated with C:N ratio (R (2) = 0.9821) of the crop residue, but they were positively correlated with average concentrations of dissolved organic carbon and microbial biomass carbon. Nitrogen emission fraction, calculated as N2O-N emissions originated from the crop residues N, positively correlated with C:N ratio of the residues (P emissions because a significant correlation (P emissions in all treatments except the control. In contrast, a significant relationship between soil moisture and N2O emissions was found in the control only. Furthermore, N2O emission significantly correlated (P nitrogen contents can significantly alter soil N2O flux rates; and (2) soil biotic as well as abiotic variables are critical in determining soil-atmospheric N2O emissions after crop residue incorporation into soil.

  14. The kill date as a management tool for cover cropping success.

    Directory of Open Access Journals (Sweden)

    María Alonso-Ayuso

    Full Text Available Integrating cover crops (CC in rotations provides multiple ecological services, but it must be ensured that management does not increase pre-emptive competition with the subsequent crop. This experiment was conducted to study the effect of kill date on: (i CC growth and N content; (ii the chemical composition of residues; (iii soil inorganic N and potentially mineralizable N; and (iv soil water content. Treatments were fallow and a CC mixture of barley (Hordeum vulgare L. and vetch (Vicia sativa L. sown in October and killed on two different dates in spring. Above-ground biomass and chemical composition of CC were determined at harvest, and ground cover was monitored based on digital image analysis. Soil mineral N was determined before sowing and after killing the CC, and potentially mineralizable N was measured by aerobic incubation at the end of the experiment. Soil water content was monitored daily to a depth of 1.1 m using capacitance sensors. Under the present conditions of high N availability, delaying kill date increased barley above-ground biomass and N uptake from deep soil layers; little differences were observed in vetch. Postponing kill date increased the C/N ratio and the fiber content of plant residues. Ground cover reached >80% by the first kill date (∼1250°C days. Kill date was a means to control soil inorganic N by balancing the N retained in the residue and soil, and showed promise for mitigating N losses. The early kill date decreased the risk of water and N pre-emptive competition by reducing soil depletion, preserving rain harvested between kill dates and allowing more time for N release in spring. The soil potentially mineralizable N was enhanced by the CC and kill date delay. Therefore kill date is a crucial management variable for maximizing the CC benefits in agricultural systems.

  15. Can Novel Management Practice Improve Soil and Environmental Quality and Sustain Crop Yield Simultaneously?

    Science.gov (United States)

    Sainju, Upendra M

    2016-01-01

    Little is known about management practices that can simultaneously improve soil and environmental quality and sustain crop yields. The effects of novel and traditional management practices that included a combination of tillage, crop rotation, and N fertilization on soil C and N, global warming potential (GWP), greenhouse gas intensity (GHGI), and malt barley (Hordeum vulgarie L.) yield and quality were examined under non-irrigated and irrigated cropping systems from 2008 to 2011 in eastern Montana and western North Dakota, USA. In loamy soil under non-irrigated condition in eastern Montana, novel and traditional management practices were no-till malt barley-pea (Pisum sativum L.) with 80 kg N ha(-1) and conventional till malt barley-fallow with 80 kg N ha(-1), respectively. In sandy loam soil under irrigated and non-irrigated conditions in western North Dakota, novel and traditional management practices included no-till malt barley-pea with 67 (non-irrigated) to 134 kg N ha(-1) (irrigated) and conventional till malt barley with 67 (non-irrigated) to 134 kg N ha(-1) (irrigated), respectively. Compared with the traditional management practice, soil organic C (SOC) and total N (STN) at 0-120 cm were 5% greater with the novel management practice under non-irrigated condition in eastern Montana and under irrigated condition in western North Dakota, but were not different under non-irrigated condition in western North Dakota. In both places under irrigated and non-irrigated conditions, total applied N rate, residual soil NO3-N content at 0-120 cm, global warming potential (GWP), and greenhouse gas intensity (GHGI) were 15 to 70% lower with the novel than the traditional management practice. Malt barley yield and quality were not different between the two practices in both places. Novel management practices, such as no-till malt barley-pea with reduced N rate, can simultaneously enhance soil and environmental quality, reduce N input, and sustain crop yield compared with

  16. On the Ground or in the Air? A Methodological Experiment on Crop Residue Cover Measurement in Ethiopia

    Science.gov (United States)

    Kosmowski, Frédéric; Stevenson, James; Campbell, Jeff; Ambel, Alemayehu; Haile Tsegay, Asmelash

    2017-10-01

    Maintaining permanent coverage of the soil using crop residues is an important and commonly recommended practice in conservation agriculture. Measuring this practice is an essential step in improving knowledge about the adoption and impact of conservation agriculture. Different data collection methods can be implemented to capture the field level crop residue coverage for a given plot, each with its own implication on survey budget, implementation speed and respondent and interviewer burden. In this paper, six alternative methods of crop residue coverage measurement are tested among the same sample of rural households in Ethiopia. The relative accuracy of these methods are compared against a benchmark, the line-transect method. The alternative methods compared against the benchmark include: (i) interviewee (respondent) estimation; (ii) enumerator estimation visiting the field; (iii) interviewee with visual-aid without visiting the field; (iv) enumerator with visual-aid visiting the field; (v) field picture collected with a drone and analyzed with image-processing methods and (vi) satellite picture of the field analyzed with remote sensing methods. Results of the methodological experiment show that survey-based methods tend to underestimate field residue cover. When quantitative data on cover are needed, the best estimates are provided by visual-aid protocols. For categorical analysis (i.e., >30% cover or not), visual-aid protocols and remote sensing methods perform equally well. Among survey-based methods, the strongest correlates of measurement errors are total farm size, field size, distance, and slope. Results deliver a ranking of measurement options that can inform survey practitioners and researchers.

  17. Managed Multi-strata Tree + Crop Systems: An Agroecological Marvel

    Directory of Open Access Journals (Sweden)

    P. K. Ramachandran Nair

    2017-12-01

    Full Text Available Today, when the emphasis on single-species production systems that is cardinal to agricultural and forestry programs the world over has resulted in serious ecosystem imbalances, the virtues of the time-tested practice of growing different species together as in managed Multi-strata Tree + Crop (MTC systems deserve serious attention. The coconut-palm-based multispecies systems in tropical homegardens and shaded perennial systems are just two such systems. A fundamental ecological principle of these systems is niche complementarity, which implies that systems that are structurally and functionally more complex than crop- or tree monocultures result in greater efficiency of resource (nutrients, light, and water capture and utilization. Others include spatial and temporal heterogeneity, perennialism, and structural and functional diversity. Unexplored or under-exploited areas of benefits of MTC systems include their ecosystem services such as carbon storage, climate regulation, and biodiversity conservation. These multispecies integrated systems indeed represent an agroecological marvel, the principles of which could be utilized in the design of sustainable as well as productive agroecosystems. Environmental and ecological specificity of MTC systems, however, is a unique feature that restricts their comparison with other land-use systems and extrapolation of the management features used in one location to another.

  18. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    Science.gov (United States)

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  19. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    Directory of Open Access Journals (Sweden)

    Belén Martínez-Alcántara

    Full Text Available Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L. grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95% ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  20. Effects of plantation residue management on the community ...

    African Journals Online (AJOL)

    Effects of plantation residue management on the community structure of wattle regeneration invertebrate pests in South Africa. ... Members of the soil invertebrate pest complex included whitegrubs and cutworms that generally had a higher pest status than millipedes, nematodes, grasshoppers, ants, false wireworms, ...

  1. Management of parthenium weed by extracts and residue of wheat ...

    African Journals Online (AJOL)

    This study was carried out to investigate the prospects of using methanolic extracts and residue of wheat (Triticum aestivum L.) for the management of parthenium (Parthenium hysterophorus L.), one of the world's worst weeds. In a laboratory bioassay, the effect of methanol extracts of 1, 2, 3, 4 and 5% (w/v) concentrations of ...

  2. Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia

    NARCIS (Netherlands)

    Valbuena Vargas, Diego; Tui, Sabine Homann Kee; Erenstein, Olaf; Teufel, Nils; Duncan, Alan; Abdoulaye, Tahirou; Swain, Braja; Mekonnen, Kindu; Germaine, Ibro; Gérard, Bruno

    2015-01-01

    Crop residues (CR) have become a limited resource in mixed crop-livestock farms. As a result of the increasing demand and low availability of alternative resources, CR became an essential resource for household activities, especially for livestock keeping; a major livelihood element of

  3. Conservation Agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia

    NARCIS (Netherlands)

    Valbuena, D.F.; Erenstein, O.; Homann-Kee Tui, S.; Abdoulaye, T.; Claessens, L.F.G.; Duncan, A.J.; Gerard, B.; Rufino, M.; Teufel, N.; Wijk, van M.T.

    2012-01-01

    Conservation Agriculture (CA) is being advocated to enhance soil health and sustain long term crop productivity in the developing world. One of CA's key principles is the maintenance of soil cover often by retaining a proportion of crop residues on the field as mulch. Yet smallholder crop–livestock

  4. Effects of Neonicotinoids and Crop Rotation for Managing Wireworms in Wheat Crops.

    Science.gov (United States)

    Esser, Aaron D; Milosavljević, Ivan; Crowder, David W

    2015-08-01

    Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Postharvest nitrous oxide emissions from a subtropical oxisol as influenced by summer crop residues and their management Emissão de óxido nitroso do solo no periodo pós-colheita alterada pelos resíduos das culturas de verão e seu manejo em latossolo do sul do Brasil

    Directory of Open Access Journals (Sweden)

    Luisa Fernanda Escobar

    2010-04-01

    Full Text Available Nitrous oxide (N2O is the most important non-CO2 greenhouse gas and soil management systems should be evaluated for their N2O mitigation potential. This research evaluated a long-term (22 years experiment testing the effect of soil management systems on N2O emissions in the postharvest period (autumn from a subtropical Rhodic Hapludox at the research center FUNDACEP, in Cruz Alta, state of Rio Grande do Sul. Three treatments were evaluated, one under conventional tillage with soybean residues (CTsoybean and two under no-tillage with soybean (NTsoybean and maize residues (NTmaize. N2O emissions were measured eight times within 24 days (May 2007 using closed static chambers. Gas flows were obtained based on the relations between gas concentrations in the chamber at regular intervals (0, 15, 30, 45 min analyzed by gas chromatography. After soybean harvest, accumulated N2O emissions in the period were approximately three times higher in the untilled soil (164 mg m-2 N than under CT (51 mg m-2 N, with a short-lived N2O peak of 670 mg m-2 h-1 N. In contrast, soil N2O emissions in NT were lower after maize than after soybean, with a N2O peak of 127 g m-2 h-1 N. The multivariate analysis of N2O fluxes and soil variables, which were determined simultaneously with air sampling, demonstrated that the main driving variables of soil N2O emissions were soil microbial activity, temperature, water-filled pore space, and NO3- content. To replace soybean monoculture, crop rotation including maize must be considered as a strategy to decrease soil N2O emissions from NT soils in Southern Brazil in a Autumn.O óxido nitroso (N2O é o mais importante gás de efeito estufa excetuando o CO2, e os sistemas de manejo devem ser avaliados quanto ao potencial de mitigação da emissão desse gás. O presente estudo foi realizado em experimento de longa duração (22 anos e teve como objetivo avaliar o efeito de sistemas de manejo nas emissões de N2O no período p

  6. Exchangeable basic cations and nitrogen distribution in soil as affected by crop residues and nitrogen

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2011-06-01

    Full Text Available In this work, a greenhouse experiment was conducted to study the effects of N fertilization and residues of pearl millet, black oats and oilseed radish on pH and Ca, Mg, K, NO3-, and NH4+ distribution within the profile of a Distroferric Red Latosol. The equivalent of 8 t ha-1 of plant residues were placed on soil surface. Lime was applied on the soil surface and nitrogen was applied over the straw at 0, 50, 100, and 150 mg kg-1, as ammonium nitrate. Corn was grown for 57 days. Calcium contents and pH in the soil profile were decreased by Pearl millet residue, while black oat and oilseed radish increased Ca contents and these effects are not related with Ca contents in residue tissue. However, the presence of plant residues increased nitrate, ammonium, and potassium contents in the deeper layers of the pots.

  7. Managing Residual Contaminants Reuse and Isolation Case Studies

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke, Ph. D.

    2008-01-01

    Contaminants remaining on sites after regulatory-approved environmental remediation operations are complete represent continued risk to human health and the environment. Many sites require continued management efforts to: (1) protect the integrity of the engineered remedy/control, (2) limit the exposure of individuals to residual contamination by limiting reuse activities, (3) maintain ready access to accurate records/information, and (4) protect against vulnerabilities from intentional threats/actions. This paper presents performance information from selected case studies to provide insight into various management approaches employed for addressing the risks associated with residual contaminants. The case studies involve sites remediated within the U.S. CERCLA framework, and illustrate two prevailing management approaches for addressing the risks. Sacrifice Zones are sites that are purposefully isolated to prevent human access onto the property. Reuse Sites provide limited access for specific use

  8. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China.

    Science.gov (United States)

    Zhang, Fusuo; Cui, Zhenling; Fan, Mingsheng; Zhang, Weifeng; Chen, Xinping; Jiang, Rongfeng

    2011-01-01

    During the past 47 yr (1961-2007), Chinese cereal production has increased by 3.2-fold, successfully feeding 22% of the global human population with only 9% of the world's arable land, but at high environmental cost and resource consumption. Worse, crop production has been stagnant since 1996 while the population and demand for food continue to rise. New advances for sustainability of agriculture and ecosystem services will be needed during the coming 50 yr to reduce environmental risk while increasing crop productivity and improving nutrient use efficiency. Here, we advocate and develop integrated soil-crop system management (ISSM). In this approach, the key points are (i) to take all possible soil quality improvement measures into consideration, (ii) to integrate the utilization of various nutrient resources and match nutrient supply to crop requirements, and (iii) to integrate soil and nutrient management with high-yielding cultivation systems. Recent field experiments have shed light on how ISSM can lead to significant increases in crop yields while increasing nutrient use efficiency and reducing environmental risk. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Bioenergy from crops and biomass residues: a consequential life-cycle assessment including land-use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Astrup, Thomas Fruergaard

    demonstrated that algae represent an interesting alternative to terrestrial energy crops. This study provides GHG emission factors for a wide number of bioenergy scenarios. The aim is to inform decision/policy makers on the environmental consequences of producing biofuels from different sources...... generation biofuels produced from residual biomass promise important environmental savings. However, since these residues are today in-use for specific purposes (e.g., feeding), a detailed modelling of the consequences (e.g., on the feed-market) induced by their diversion to energy should be performed...... at identifying all the consequences associated with the establishment of bioenergy systems compared with the reference (current use of fossil and biomass resource). The modelling was facilitated with the LCA-model EASETECH. The functional unit was 1 unit-energy produced (i.e., 1 kWh electricity, 1 MJ heat or 1...

  10. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems.

    Science.gov (United States)

    Orr, C H; Stewart, C J; Leifert, C; Cooper, J M; Cummings, S P

    2015-07-01

    To identify changes in the bacterial community, at the phylum level brought about by varied crop management. Next-generation sequencing methods were used to compare the taxonomic structure of the bacterial community within 24 agricultural soils managed with either organic or conventional methods, over a 3-year period. Relative abundance of the proportionately larger phyla (e.g. Acidobacteria and Actinobacteria) was primarily affected by sample year rather than crop management. Changes of abundance in these phyla were correlated with changes in pH, organic nitrogen and soil basal respiration. Crop management affected some of the less dominant phyla (Chloroflexi, Nitrospirae, Gemmatimonadetes) which also correlated with pH and organic N. Soil diversity can vary with changing environmental variables and soil chemistry. If these factors remain constant, soil diversity can also remain constant even under changing land use. The impact of crop management on environmental variables must be considered when interpreting bacterial diversity studies in agricultural soils. Impact of land use change should always be monitored across different sampling time points. Further studies at the functional group level are necessary to assess whether management-induced changes in bacterial community structure are of biological and agronomic relevance. © 2015 The Society for Applied Microbiology.

  11. Comparative management of offshore posidonia residues: composting vs. energy recovery.

    Science.gov (United States)

    Cocozza, Claudio; Parente, Angelo; Zaccone, Claudio; Mininni, Carlo; Santamaria, Pietro; Miano, Teodoro

    2011-01-01

    Residues of the marine plant posidonia (Posidonia oceanica, PO) beached in tourist zones represent a great environmental, economical, social and hygienic problem in the Mediterranean Basin, in general, and in the Apulia Region in particular, because of the great disturb to the bathers and population, and the high costs that the administrations have to bear for their removal and disposal. In the present paper, Authors determined the heating values of leaves and fibres of PO, the main offshore residues found on beaches, and, meantime, composted those residues with mowing and olive pruning wood. The final composts were characterized for pH, electrical conductivity, elemental composition, dynamic respiration index, phytotoxicity, fluorescence and infrared spectroscopic fingerprints. The aim of the paper was to investigate the composting and energy recovery of PO leaves and fibres in order to suggest alternative solutions to the landfill when offshore residues have to be removed from recreational beaches. The fibrous portion of PO residues showed heating values close to those of other biofuels, thus suggesting a possible utilization as source of energy. At the same time, compost obtained from both PO wastes showed high quality features on condition that the electrical conductivity and Na content are lowered by a correct management of wetting during the composting. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Residual N effect of long-term applications of cattle slurry using winter wheat as test crop

    DEFF Research Database (Denmark)

    Suarez, Alfonso; Thomsen, Ingrid Kaag; Rasmussen, Jim

    2018-01-01

    climatic conditions, substantiating that more test years are needed when estimating residual N effects. The residual value of N added previously with NPK was negligible. In the first year, grain yields at N optimum were similar for NPK and SLU, but the amount of fertilizer N needed to reach optimum yield......Prediction of optimum fertilizer N requirements depends on reliable estimates of the residual value of N accumulated in soil from historical inputs of mineral fertilizers and animal manures. Using plots embedded in the Askov long-term experiments and treated since 1973 with different rates of N...... in cattle slurry (50, 100 and 150 kg total-N ha−1 termed ½, 1 and 1½ SLU), we estimated the residual N value over two consecutive growth periods (2014/2015 and 2015/2016). We used winter wheat as test crop and soils with a history of mineral fertilizers only (1 PK (no N)) and 1 NPK (100 kg N ha−1...

  13. Identification and discrimination of herbicide residues using a conducting polymer electronic nose

    Science.gov (United States)

    Alphus Dan Wilson

    2016-01-01

    The identification of herbicide residues on crop foliage is necessary to make crop-management decisions for weed pest control and to monitor pesticide residue levels on food crops. Electronic-nose (e-nose) methods were tested as a cheaper, alternative means of discriminating between herbicide residue types (compared with conventional chromatography methods), by...

  14. Classification of crops grown in or imported into the European Union for pesticide residue assessment

    NARCIS (Netherlands)

    Velde-Koerts T van der; Muller E; Ossendorp BHC; SIR; Plantenziektenkundige Dienst

    2003-01-01

    Een belangrijk aspect van voedselveiligheid is de controle van bestrijdingsmiddelenresiduen op voeding. Residubeoordelingen van bestrijdingsmiddelen worden uitgevoerd om wettelijke residulimieten (MRLs = maximum residue limits) vast te stellen voor plantaardige en dierlijke producten. In de

  15. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  16. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  17. Evaluation of crop residues on potassium kinetics in an acid soil and potassium use efficiency in potato-garlic sequence using tracer 86Rb

    International Nuclear Information System (INIS)

    Sud, K.C.

    2005-01-01

    Greenhouse and laboratory studies were conducted on an acid soil in order to evaluate the role of two crop residues i.e. paddy and wheat along with farmyard manure on potassium kinetics and its availability in the potato-garlic sequence using tracer 86 Rb. Under rapid equilibrium, application of crop residues of paddy, wheat straw and FYM were able to enhance soil pH and organic carbon content. In addition, their application helped in enhancing soil K availability indices like water soluble, available and non-exchangeable -K. This was further augmented by the Q/I studies using 86 Rb where application of organic residues helped in lowering the potassium buffering capacity of the soil. Greenhouse study supplemented the results obtained from laboratory study where application of crop residues/FYM were able to improve the potato yield significantly and maintained higher concentration of K in potato leaf at early growth stages. A significant correlation was obtained between leaf K and haulms-K with that of 86 Rb activities in potato leaf at 35 days and 86 Rb absorbed in the haulms, respectively. Residues/ FYM and PK application to potato left sufficient residual effect on succeeding garlic crop. In potato-garlic sequence, K recovery was highest with FYM while N and P recoveries were higher with wheat residues. The nutrient recoveries with PK application followed law of diminishing returns. (author)

  18. Morphology, composition, and mixing state of primary particles from combustion sources - crop residue, wood, and solid waste.

    Science.gov (United States)

    Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun

    2017-07-11

    Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.

  19. Effects of crop management, soil type, and climate on N2O emissions from Austrian Soils

    Science.gov (United States)

    Zechmeister-Boltenstern, Sophie; Sigmund, Elisabeth; Kasper, Martina; Kitzler, Barbara; Haas, Edwin; Wandl, Michael; Strauss, Peter; Poetzelsberger, Elisabeth; Dersch, Georg; Winiwarter, Wilfried; Amon, Barbara

    2015-04-01

    Within the project FarmClim ("Farming for a better climate") we assessed recent N2O emissions from two selected regions in Austria. Our aim was to deepen the understanding of Austrian N2O fluxes regarding region specific properties. Currently, N2O emissions are estimated with the IPCC default emission factor which only considers the amount of N-input as an influencing factor for N2O emissions. We evaluated the IPCC default emission factor for its validity under spatially distinct environmental conditions. For this two regions for modeling with LandscapeDNDC have been identified in this project. The benefit of using LandscapeDNDC is the detailed illustration of microbial processes in the soil. Required input data to run the model included daily climate data, vegetation properties, soil characteristics and land management. The analysis of present agricultural practices was basis for assessing the hot spots and hot moments of nitrogen emissions on a regional scale. During our work with LandscapeDNDC we were able to adapt specific model algorithms to Austrian agricultural conditions. The model revealed a strong dependency of N2O emissions on soil type. We could estimate how strongly soil texture affects N2O emissions. Based on detailed soil maps with high spatial resolution we calculated region specific contribution to N2O emissions. Accordingly we differentiated regions with deviating gas fluxes compared to the predictions by the IPCC inventory methodology. Taking region specific management practices into account (tillage, irrigation, residuals) calculation of crop rotation (fallow, catch crop, winter wheat, barley, winter barley, sugar beet, corn, potato, onion and rapeseed) resulted in N2O emissions differing by a factor of 30 depending on preceding crop and climate. A maximum of 2% of N fertilizer input was emitted as N2O. Residual N in the soil was a major factor stimulating N2O emissions. Interannual variability was affected by varying N-deposition even in case

  20. Nitrogen fertiliser management of sugarcane crops for meeting global environmental challenges

    OpenAIRE

    Thorburn, Peter J; Webster, Tony J; Biggs, Jody S; Biggs, Ian M

    2009-01-01

    N fertiliser management is increasingly important in sugarcane crop as imperatives to reduce environmental impacts of N escalate. In this paper we report testing of a new concept for N management in sugarcane, the N Replacement system. This system aligns N applications with actual cane production, rather than potential production, by relying on soil N reserves to buffer differences in crop N needs and N fertiliser supply in individual crops. In 11 experiments that were conducted over an avera...

  1. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management

    OpenAIRE

    Green, Jerry M.; Owen, Micheal D. K.

    2010-01-01

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effec...

  2. Physical Properties and Crop Management for Corn in an Albaqualf

    Directory of Open Access Journals (Sweden)

    Robson Giacomeli

    Full Text Available ABSTRACT Rice monoculture in lowlands can cause problems for management practices in crop fields, for example, in weed control. For this reason, corn in rotation with irrigated rice in lowlands may be advantageous, despite problems with soil compaction and water excess. The objective of this study was to evaluate soil physical properties and corn performance in soil management systems in an Albaqualf soil (lowlands. Two experiments were conducted in the field, in the 2013/14 and 2014/15 crop seasons. The experimental design was randomized blocks with two factors. There were three levels for the first factor, consisting of soil management practices: soil chiseling 45 days before sowing to a depth of 0.3 m; conventional tillage with two diskings to a depth of 0.1 m and subsequent leveling of the soil; and no-till. The second factor was composed of two levels: sowing on raised seedbeds, and without raised seedbeds. The soil parameters of bulk density, total porosity, macroporosity, microporosity, volumetric moisture, and soil resistance to mechanical penetration (RP were evaluated. The corn parameters were plant height, shoot dry matter, leaf area, height of the first ear of corn, grains per ear, and grain yield. Soil chiseling resulted in lower RP and higher macroporosity in the 0.1-0.2 and 0.2-0.3 m layers. In raised seedbeds, the 0.00-0.05, 0.05-0.10, and 0.10-0.20 m layers were lower in RP and bulk density. Moreover, higher soil macroporosity was observed in relation to the treatment without raised seedbeds. In general, the highest grain yields were found in the treatments with lower RP and higher macroporosity in the root system region. Increased porosity accelerated water drainage in the soil, reducing the time that soil airspace was filled with water, which is a limiting factor for root development. In Albaqualf soils, planting corn in chiseled soil provides higher corn yields compared to conventional tillage, and planting corn on raised

  3. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  4. Pesticide residues in passifloras crops in regions of high production in Colombia

    OpenAIRE

    Dario A. Bastidas; Jairo A. Guerrero; Kris Wyckhuys

    2013-01-01

    As one of the most bio-diverse countries in the world, Colombia boasts a wide diversity of highly palatable tropical fruits. Even though Colombian fruit production has primarily targeted the domestic market, several fruit species, such as passion fruit (PassifloraSpp), are steadily gaining ground in the broader international arena.  Production of these crops and respond to raising domestic and international demand, many Colombian small-scale farmers use pesticides for pest and disease control...

  5. Crimped Cover Crop Legume Residue Effects on Sweet Corn (Zea mays L.) Yield in Puerto Rico

    Science.gov (United States)

    Crimped legume residue can control weeds and supply N for sweet corn production if biomass is sufficient. Three sweet corn (Zea mays L.) open pollinated variety “Suresweet 2011” plantings (April, 2013; July 2013; February 2014) were conducted on an Oxisol (very fine, kaolinitic, isohyperthermic and...

  6. Management of Overwintering Cover Crops Influences Floral Resources and Visitation by Native Bees.

    Science.gov (United States)

    Ellis, Katherine E; Barbercheck, Mary E

    2015-08-01

    The incorporation of cover crops into annual crop rotations is one practice that is used in the Mid-Atlantic United States to manage soil fertility, suppress weeds, and control erosion. Additionally, flowering cover crops have the potential to support beneficial insect communities, such as native bees. Because of the current declines in managed honey bee colonies, the conservation of native bee communities is critical to maintaining "free" pollination services. However, native bees are negatively affected by agricultural intensification and are also in decline across North America. We conducted two experiments to assess the potential of flowering cover crops to act as a conservation resource for native bees. We evaluated the effects of cover crop diversity and fall planting date on floral resource availability and visitation by native bees for overwintering flowering cover crop species commonly used in the Mid-Atlantic region. Cover crop species, crop rotation schedule, and plant diversity significantly influenced floral resource availability. Different cover crop species not only had different blooming phenologies and winter survival responses to planting date, but attracted unique bee communities. Flower density was the primary factor influencing frequency of bee visitation across cover crop diversity and fall planting date treatments. The results from these experiments will be useful for informing recommendations on the applied use of flowering cover crops for pollinator conservation purposes. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Fertilization management in bean crop under organic production system

    Directory of Open Access Journals (Sweden)

    Leandro Barradas Pereira

    2015-03-01

    Full Text Available Nowadays the food production systems tend to include the sustainable management of soil and water. One of the main obstacles to the organic cultivation of common bean is the fertilization management. This study aimed to evaluate doses of organic fertilizer containing slaughterhouse residues (1.0 t ha-1, 1.5 t ha-1, 2.0 t ha-1 and 2.5 t ha-1. The experimental design was randomized blocks in a 4x2x2 factorial scheme, with 16 treatments and 4 replications. Plant dry weight; foliar diagnose; initial and final plant population; number of pods per plant, grains per plant and grains per pod; 1000-grain weight; and grain yield were evaluated. It was concluded that the methods and time of organic fertilizer application do not affect the production components and yield in common bean. The dose of 2.5 t ha-1 of organic fertilizer provided the highest common bean yield in 2012, but it did not express its maximum production capacity.

  8. Development of an Intermediate-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Finger, Barry W.; Strayer, Richard F.

    1994-01-01

    Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, k(sub L)a, was 0.01 s(exp -1). Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125/day, and a solids loading rate of 20 gdw/day yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.

  9. Particulate soil organic carbon and stratification ratio increases in response to crop residue decomposition under no-till

    Directory of Open Access Journals (Sweden)

    Clever Briedis

    2012-11-01

    Full Text Available In soils under no-tillage (NT, the continuous crop residue input to the surface layer leads to carbon (C accumulation. This study evaluated a soil under NT in Ponta Grossa (State of Paraná, Brazil for: 1 the decomposition of black oat (Avena strigosa Schreb. residues, 2 relation of the biomass decomposition effect with the soil organic carbon (SOC content, the particulate organic carbon (POC content, and the soil carbon stratification ratio (SR of an Inceptisol. The assessments were based on seven samplings (t0 to t6 in a period of 160 days of three transects with six sampling points each. The oat dry biomass was 5.02 Mg ha-1 at t0, however, after 160 days, only 17.8 % of the initial dry biomass was left on the soil surface. The SOC in the 0-5 cm layer varied from 27.56 (t0 to 30.07 g dm-3 (t6. The SR increased from 1.33 to 1.43 in 160 days. There was also an increase in the POC pool in this period, from 8.1 to 10.7 Mg ha-1. The increase in SOC in the 0-5 cm layer in the 160 days was mainly due to the increase of POC derived from oat residue decomposition. The linear relationship between SOC and POC showed that 21 % of SOC was due to the more labile fraction. The results indicated that the continuous input of residues could be intensified to increase the C pool and sequestration in soils under NT.

  10. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    Science.gov (United States)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  11. Crop production management practices as a cause for low water ...

    African Journals Online (AJOL)

    Limited knowledge of irrigated crop production among farmers has been identified as one of the constraints to improved crop productivity, but research that investigates the relationship between farmer practices and productivity is lacking. A monitoring study was therefore conducted at the Zanyokwe Irrigation Scheme (ZIS) ...

  12. A hybrid approach on the management of crop pests | Onuodu ...

    African Journals Online (AJOL)

    In this work, a new hybrid clustering approach is presented that could be applied in mitigating against the spread of pests by first identifying the region in the field in which crops are affected and then performing a clustering algorithm to cluster and separate affected crops. Also discussed is a new dissimilarity model that ...

  13. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar): A Mesocosm Experiment

    International Nuclear Information System (INIS)

    Villenave, C.; Kichenin, E.; Djigal, D.; Blanchart, E.; Rabary, B.; Djigal, D.

    2010-01-01

    Free-living nematodes present several characteristics that have led to their use as bio indicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean) were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders) was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  14. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Cécile Villenave

    2010-01-01

    Full Text Available Free-living nematodes present several characteristics that have led to their use as bioindicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  15. Utilization of residual biochar produced from the pyrolysis of energy crops for soil enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Pilon, G.; Lavoie, J.M. [Sherbrooke Univ., Sherbrooke, PQ (Canada). Dept. of Chemical Engineering and Biotechnology

    2010-07-01

    Although national and international interest in the use of energy crops for the production of biofuels is increasing, it is understood that measures must be taken to ensure that the production and transportation of these energy crops does not require more energy than they provide and that the soil should not be left uncovered so as not to reduce its organic content and nutrients. In response, concerns regarding soil fertilization have increased. A technique for biomass preconversion known as pyrolysis-torrefaction involves the production of char and bio-oil from biomass. This processing method is gaining interest because the char may be useful for many applications such as a fuel, soil conditioner or carbon sequestration. An appropriate distribution of biochar applications could be potentially beneficial for the sustainability of biomass use in the imminent biomarket. In this study, biochar produced from switchgrass was prepared and characterized to verify its potential as a soil enhancer and its potential as a solid fuel. The biochar was prepared under varying reacting conditions using custom-made bench scale, batch-type fixed bed pyrolysis-torrefaction reactor. Volatiles were released by varying the residence times.

  16. N - Fixation of Soybean and Residual Effect from N - Fixation of Soybean to Rice Yield in Rice - Soybean Cropping System Using N - 15 Technique

    International Nuclear Information System (INIS)

    Yathaputanon, C.; Chaiwannakupt, P.; Prasartsrisuparb, J; Arayangul, T.

    1998-01-01

    A field experiment was conducted for long term rice-soybean cropping system at Chiang Mai Field Crop Research Center, to estimate nitrogen fixation of soybean and residual benefit of the soybean stover to a following rice crop. Nitrogen fixation was estimated in the soybean using 15 N dilution technique and non nodulated groundnut as a standard crop. To estimate the residual nitrogen benefit to the rice crop was calculated by nitrogen-15 yield of rice where the soybean stover was either removed or returned. In the first year soybean fixed 48.42% of their nitrogen which producing 50.31 KgN/ha. Residual effect of soybean stover returned was 36.72% of nitrogen in rice which equal 50.62 KgN/ha. come from the soybean returned (stover plus root and nodule under the ground where the soybean stover was returned). The residual nitrogen-15 in the second year was too low to detect. No nitrogen fertilizer applied to the following rice plot where the soybean stover was returned, grain dry matter yield were up to 12% (1 st year) and 27% (2 nd year) grater than in the plots where the soybean stover was removed produce the highest grain dry matter yield which were higher 14 - 29% than the plots where the soybean stover was removed

  17. Integrated Soil, Water and Nutrient Management for Sustainable Rice–Wheat Cropping Systems in Asia

    International Nuclear Information System (INIS)

    2016-08-01

    The rice-wheat system is a predominant cropping system in Asia providing food, employment and income, ensuring the livelihoods of about 1 billion of resource poor rural and urban people. However, the productivity of the current rice-wheat systems is seriously threatened by increasing land degradation and scarcity of water and labour, inefficient cropping practices and other emerging socio economic and environmental drivers. Responding to the need to develop alternate crop establishment methods and improved cropping practices, this publication summarizes the results from a joint FAO/IAEA coordinated research project on optimizing productivity and sustainability of rice-wheat cropping systems. It provides relevant information on how to modify existing water and nutrient management systems and improve soil management in both traditional and emerging crop establishment methods for sustainable intensification of cereal production in Asia

  18. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    Science.gov (United States)

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P crop residue (corn cobs, wheat straw, and corn stover) and chemical treatment (NT or AT) fed at 25% of diet DM. Greater DM (73.7% vs. 66.1%; P 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P replacement of corn and 10% untreated residue with treated forage result in a nutrient supply of OM similar to that of the control. The improvements in total tract fiber digestibility that occurred when treated forages were fed may have been related to increased digestibility of recoverable NDF and not to increased ruminal pH. Feeding chemically treated crop residues and WDGS is an effective strategy for replacing a portion of corn grain and roughage in feedlot diets.

  19. Integrated crop management of SRC plantations to maximise crop value, wildlife benefits and other added value opportunities

    International Nuclear Information System (INIS)

    Sage, R.; Tucker, K.

    1998-01-01

    This report summaries the results of a study aiming to develop an integrated approach to pest management (IPM) for the short rotation cultivation (SRC) of willows and poplars. Details are given of crop and site characteristics, non-destructive assessment of SRC biomass, the quantification of crop shadiness, and the effects of wind exposure on crop growth. The section on invertebrates covers invertebrates colonising UK SRC plantations, invertebrates which are or can become pests, natural control agents of SRC pests, the abundance and distribution of chrysomelids between sites, preferences exhibited by chrysomelids for different varieties, overwintering and dispersal of chrysomelids into SRC, and IPM of insects. The section on vertebrate fauna addresses birds in winter, the breeding birds of SRC, gamebird use of SRC, and mammals and other vertebrates of SRC. A section on ground flora deals with changes in ground flora with time, ground flora introductions, the effects of weeds on the growth of SRC, and an overview of integrated crop management in SRC plantations

  20. Tradeoffs between vigor and yield for crops grown under different management systems

    Science.gov (United States)

    Simic Milas, Anita; Keller Vincent, Robert; Romanko, Matthew; Feitl, Melina; Rupasinghe, Prabha

    2016-04-01

    Remote sensing can provide an effective means for rapid and non-destructive monitoring of crop status and biochemistry. Monitoring pattern of traditional vigor algorithms generated from Landsat 8 OLI satellite data represents a robust method that can be widely used to differentiate the status of crops, as well as to monitor nutrient uptake functionality of differently treated seeds grown under different managements. This study considers 24 factorial parcels of winter wheat in 2013, corn in 2014, and soybeans in 2015, grown under four different types of agricultural management. The parcels are located at the Kellogg Biological Station, Long-Term Ecological Research site in the State of Michigan USA. At maturity, the organic crops exhibit significantly higher vigor and significantly lower yield than conventionally managed crops under different treatments. While organic crops invest in their metabolism at the expense of their yield, the conventional crops manage to increase their yield at the expense of their vigor. Landsat 8 OLI is capable of 1) differentiating the biochemical status of crops under different treatments at maturity, and 2) monitoring the tradeoff between crop yield and vigor that can be controlled by the seed treatments and proper conventional applications, with the ultimate goal of increasing food yield and food availability, and 3) distinguishing between organic and conventionally treated crops. Timing, quantity and types of herbicide applications have a great impact on early and pre-harvest vigor, maturity and yield of conventionally treated crops. Satellite monitoring using Landsat 8 is an optimal tool for coordinating agricultural applications, soil practices and genetic coding of the crop to produce higher yield as well as have early crop maturity, desirable in northern climates.

  1. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    Science.gov (United States)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  2. Biosafety Management of Genetically Modified Crops (China) | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    GM) crops commercialized, continues to increase at rates higher than those in most ... IDRC is supporting research that studies the most effective ways to empower women, prevent gender-based violence, and make digital platforms work for ...

  3. Soil fertility and crop management research on cool-season food ...

    African Journals Online (AJOL)

    Land degradation and depletion of soil fertility is the critical challenge for sustainable crop production in the highlands of Ethiopia. This paper reviews advances in the major activities and achievements of soil fertility, crop and land management research on the highland pulses, which have been done for the last two ...

  4. The impact of climate and price risks on agricultural land use and crop management decisions

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.

    2013-01-01

    This article aims to investigate the impacts of climate change and of lower and more volatile crop price levels as currently observed in the European Union (EU) on optimal management decisions, average income and income risks in crop production in Western Switzerland. To this end, a bioeconomic

  5. western honey bee management for crop pollination abstract résumé

    African Journals Online (AJOL)

    ACSS

    2018-02-09

    Feb 9, 2018 ... This literature review seeks to provide an outlook of the use of Western honeybee for crop pollination around the world. It was prepared by collecting information on the use of managed honey bees, Apis mellifera in crop pollination from different sources. To address pollination deficits, farmers around the ...

  6. Self-reseeding annual legumes for cover cropping in rainfed managed olive orchards

    Energy Technology Data Exchange (ETDEWEB)

    Ângelo Rodrigues, M.; Ferreira, I. Q.; Freitas, S.L.; Pires, J.M.; Arrobas, M.P.

    2015-07-01

    Given the environmental impact of nitrogen (N)-fertilizer manufacture and use, the sustainable management of agro-systems should be sought by growing N-fixing legumes. In this work, eleven self-reseeding annual legumes were grown in pure stands as mulching cover crops in a rainfed olive orchard managed without grazing animals. Dry matter yield, N content in above-ground biomass, groundcover percentage and persistence of the sown species were assessed during four growing seasons. All covers provided enough soil protection over the year, with living plants during the autumn/winter period and a mulch of dead residues during the summer. The legumes overcame a false break observed in the third year recovering the dominance of the covers in the fourth growing season. This means that the seed bank established in previous seasons ensured the persistence of the sown legume even when a gap in seed production occurred. The early-maturing cultivars produced less biomass and fixed less N (approx. 50 kg N/ha/yr present in the above-ground biomass) than the late-maturing ones, but would compete less for water since the growing cycle finished earlier in the spring. They seem best suited to being grown in dry farmed olive orchards with low N demand in drought prone regions. (Author)

  7. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment.

    Science.gov (United States)

    Windeatt, Jayne H; Ross, Andrew B; Williams, Paul T; Forster, Piers M; Nahil, Mohamad A; Singh, Surjit

    2014-12-15

    Biochar has potential to sequester carbon in soils and simultaneously improve soil quality and plant growth. More understanding of biochar variation is needed to optimise these potential benefits. Slow pyrolysis at 600 °C was undertaken to determine how yields and characteristics of biochars differ when produced from eight different agricultural residues. Biochar properties such as carbon content, surface area, pH, ultimate and proximate analysis, nutrient and metal content and the R50 recalcitrance index were determined. Significant variations seen in biochar characteristics were attributed to feedstock variation since pyrolysis conditions were constant. Biochar yields varied from 28% to 39%. Average carbon content was 51%. Ash content of both feedstocks and biochars were correlated with biochar carbon content. Macronutrients were concentrated during pyrolysis, but biochar macronutrient content was low in comparison to biochars produced from more nutrient rich feedstocks. Most biochars were slightly alkaline, ranging from pH 6.1 to pH 11.6. pH was correlated with biochar K content. Aromaticity was increased with pyrolysis, shown by a reduction in biochar H/C and O/C ratios relative to feedstock values. The R50 recalcitrance index showed biochars to be either class 2 or class 3. Biochar carbon sequestration potential was 21.3%-32.5%. The R50 recalcitrance index is influenced by the presence of alkali metals in the biochar which may lead to an under-estimation of biochar stability. The residues assessed here, at current global availability, could produce 373 Mt of biochar. This quantity of biochar has the potential to sequester 0.55 Pg CO2 yr(-1) in soils over long time periods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Impact of Volunteer Corn on Crop Yields and Insect Resistance Management Strategies

    Directory of Open Access Journals (Sweden)

    Paul T. Marquardt

    2013-06-01

    Full Text Available Volunteer corn (VC has reemerged as a problematic weed in corn/soybean rotational cropping systems. This reemergence and increasing prevalence of volunteer corn has been correlated to an increased adoption of herbicide-resistant (HR corn hybrids and the adoption of conservation tillage. Since the introduction of HR crops, control options, weed/crop competition, and other concerns (i.e., insect resistance management of Bt traits have increased the amount of attention that volunteer corn is receiving. The objective of this review is to discuss what is known about VC prior to and after the introduction of HR crops, and to discuss new information about this important weed.

  9. Characterization of the water soluble component of inedible residue from candidate CELSS crops

    Science.gov (United States)

    Garland, Jay

    1992-01-01

    Recycling of inorganic nutrients required for plant growth will be a necessary component of a fully closed, bioregenerative life support system. This research characterized the recovery of plant nutrients from the inedible fraction of three crop types (wheat, potato, and soybean) by soaking, or leaching, in water. A considerable portion of the dry weight of the inedible biomass was readily soluble (29 percent for soybean, 43 percent for wheat, and 52 percent for potato). Greater weight loss from potato was a result of higher tissue concentrations of potassium, nitrate, and phosphate. Approximately 25 percent of the organic content of the biomass was water soluble, while the majority of most inorganic nutrients, except for calcium and iron, were recovered in the leachate. Direct use of the leachates in hydroponic media could provide between 40-90 percent of plant nutrient demands for wheat, and 20-50 percent of demand for soybean and potato. Further evaluation of leaching as a component of resource recovery scheme in a bioregenerative system requires study of (1) utilization of plant leachates in hydroponic plant culture; and (2) conversion of organic material (both soluble and insoluble) into edible, or other useful, products.

  10. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced -Tillage Systems for Arable Crops

    DEFF Research Database (Denmark)

    Melander, Bo; Munier-Jolain, Nicolas; Charles, Raphaël

    2013-01-01

    Non-inversion tillage with tine or disc based cultivations prior to crop establishment is the most common way of reducing tillage for arable cropping systems with small grain cereals, oilseed rape and maize in Europe. However, new regulations on pesticide use may hinder further expansion of reduced...... tillage systems. European agriculture is asked to become less dependent on pesticides and promote crop protection programmes based on integrated pest management (IPM) principles. Conventional non-inversion tillage systems rely entirely on the availability of glyphosate products, and herbicide consumption...... is mostly higher as compared to plough-based cropping systems. Annual grass weeds and catchweed bedstraw often constitute the principal weed problems in non-inversion tillage systems and crop rotations concurrently have very high proportions of winter cereals. There is a need to redesign cropping systems...

  11. Burning crop residues under no-till in semi-arid land, Northern Spain - effects on soil organic matter, aggregation, and earthwor populations.

    NARCIS (Netherlands)

    Virto, I.; Imaz, M.J.; Enrique, A.; Hoogmoed, W.B.; Bescansa, P.

    2007-01-01

    Stubble burning has traditionally been used in semi-arid land for pest and weed control, and to remove the excess of crop residues before seeding in no-tillage systems. We compared differences in soil properties in a long-term (10 years) tillage trial on a carbonated soil in semi-arid north-east

  12. Assessment of ex-vitro anaerobic digestion kinetics of crop residues through first order exponential models: effect of lag phase period and curve factor

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2013-01-01

    Kinetic studies of AD (Anaerobic Digestion) process are useful to predict the performance of digesters and design appropriate digesters and also helpful in understanding inhibitory mechanisms of biodegradation. The aim of this study was to assess the anaerobic kinetics of crop residues digestion with buffalo dung. Seven crop residues namely, bagasse, banana plant waste, canola straw, cotton stalks, rice straw, sugarcane trash and wheat straw were selected from the field and were analyzed on MC (Moisture Contents), TS (Total Solids) and VS (Volatile Solids) with standard methods. In present study, three first order exponential models namely exponential model, exponential lag phase model and exponential curve factor model were used to assess the kinetics of the AD process of crop residues and the effect of lag phase and curve factor was analyzed based on statistical hypothesis testing and on information theory. Assessment of kinetics of the AD of crop residues and buffalo dung follows the first order kinetics. Out of the three models, the simple exponential model was the poorest model, while the first order exponential curve factor model is the best fit model. In addition to statistical hypothesis testing, the exponential curve factor model has least value of AIC (Akaike's Information Criterion) and can generate methane production data more accurately. Furthermore, there is an inverse linear relationship between the lag phase period and the curve factor. (author)

  13. Notification: Evaluation of EPA's Management of Resistance Issues Related to Herbicide Tolerant Genetically Engineered Crops

    Science.gov (United States)

    Project #OPE-FY16-0023, March 25, 2016. The EPA OIG plans to begin preliminary research to assess the EPA's management and oversight of resistance issues related to herbicide tolerant genetically engineered crops.

  14. Effects of cover crops and weed management on corn yield

    Directory of Open Access Journals (Sweden)

    Farhood Yeganehpoor

    2015-06-01

    Full Text Available One of the most important replacement methods used instead of chemical herbicide and conventional tillage is cover and companion crops’ application which is a major factor in sustainable agriculture. In order to determine the best cover crop in controlling weeds of corn field and its further effects on corn yield, an experiment was carried out in a factorial arrangement based on RCB design with three replicates. The treatments of this experiment included companion crops (clover, hairy vetch, basil and dill as first factor and time of sowing cover and medicinal plant (synchronic sowing with corn and sowing 15 days after corn sowing as second factor. The results showed that ear weight, ear length, leaf weight, grain length and yield were significantly influenced by companion crops and sowing date. Whereas, weed biomass was influenced by cover crop type × sowing date interaction. Also, the results indicated that increasing biomass weed resulted in linear reduction of grain yield. The highest ear weight, ear length, leaf weight, grain length and yield were obtained for cultivation of clover with corn. Synchronic cultivation of companion crops with corn had higher grain length and yield compared with cultivation 15 days after corn. The lowest weed biomass was recorded for concurrent cultivation of corn with clover due to rapid growth and high competitive power of clover in the early stage of growth.

  15. Integrating herbicides in a high-residue cover crop conservation agriculture setting

    Science.gov (United States)

    Conservation agriculture systems provide a means to ensure long-term agricultural productivity, protect environmental quality, and reduce inputs into farming systems. Weed control in these systems rely on multiple tactics to achieve effective weed management while limiting chemical inputs. Practic...

  16. Municipal household waste used as complement material for composting chicken manure and crop residues

    Directory of Open Access Journals (Sweden)

    Guillaume L. Amadji

    2013-06-01

    Full Text Available There are few organic materials available as agricultural soil amendment because their low chemical content means that large quantities are required. In order to improve the availability of raw materials for composting, as well as the quality of the compost produced, municipal solid waste (MW was added to cotton-seed residue (CSR and to the association of CSR with chicken manure (M in different weight/weight (MW/added materials ratios of 5:1 and 2:1. Aerobic composting was processed and compost yield was determined, as well as compost particle size and pH. Also, the compost bulk density and its water holding capacity were determined as well as contents of total nitrogen, carbon, phosphorus, calcium (Ca, magnesium and heavy metals. According to its pH and carbon/nitrogen ratio values, the municipal waste of Cotonou was judged to be a good raw material for composting in order to improve availability of the organic source of nutrients. The composts produced with MW+M+CSR had the highest potential for amending Ferralsols, especially with a mixture of 2:1 (200 kg MW+100 kg M+100 kg CSR that could be applied at 10 t ha–1. However, further improvement in composting methods was suggested to increase Ca++ and reduce mercury contents, respectively. Moreover, potassium balance should be improved in the produced compost.

  17. Factors Affecting the Adoption of Environmental Management Systems by Crop and Livestock Farms in Canada

    OpenAIRE

    Jayasinghe-Mudalige, Udith K.; Weersink, Alfons

    2004-01-01

    This study examines, both qualitative and quantitatively, the motivation for crop, livestock, and mixed (both crop and livestock) farms in Canada to behave environmentally responsibly by adopting Environmental Management Systems (EMS) in the farm and the impact of a number of human capital, financial, farm structure, and social characteristics of the farmer and/or the farm on this behavior. It uses the data from 16,053 farms that responded to the Farm Environmental Management Survey conducted...

  18. SOIL MOISTURE SPACE-TIME ANALYSIS TO SUPPORT IMPROVED CROP MANAGEMENT

    OpenAIRE

    Bruno Montoani Silva; Walbert Junior Reis dos Santos; Geraldo César de Oliveira; José Maria de Lima; Nilton Curi; João José Marques

    2015-01-01

    The knowledge of the water content in the soil profile is essential for an efficient management of crop growth and development. This work aimed to use geostatistical techniques in a spatio-temporal study of soil moisture in an Oxisol in order to provide that information for improved crop management. Data were collected in a coffee crop area at São Roque de Minas, in the upper São Francisco River basin, MG state, Brazil. The soil moisture was measured with a multi-sensor capacitance ...

  19. Carcass characteristics and tissue composition of commercial cuts of lambs fed with banana crop residues

    Directory of Open Access Journals (Sweden)

    Tânia Dayana do Carmo

    2016-02-01

    Full Text Available The aim of this study was to evaluate the effect of substitution of Cynodon hay with banana plantation residue hay on the carcass characteristics and tissue composition of commercial cuts of feedlot Santa Inês lambs. Twenty-five whole lambs were used, with an average age of five months and an initial live weight of 26.95 kg (± 1.5, distributed in a completely randomized design with five treatments (1 = 40% Cynodon spp. hay + 60% concentrate; 2 = 20% banana leaf hay + 20% Cynodon spp. hay + 60% concentrate; 3 = 40% banana leaf hay + 60% concentrate; 4 = 20% banana pseudostem hay + 20% Cynodon spp. hay + 60% concentrate; 5 = 40% banana pseudostem hay + 60% concentrate and five repetitions. The lambs were slaughtered on day 69 of the experiment. The variables evaluated were: live weight without fasting (LWWF, live weight post-fasting (LWPF, morphometric measurements in vivo and postmortem, hot and cold carcass weights (HCW, CCW, hot and cold carcass yield (HCY, CCY, biological performance and weight loss by chilling. The carcasses were divided into eight commercial cuts: neck, shoulder, foreshank and hindshank, breast and flank, loin, leg and rack. The leg, shoulder and loin were dissected into muscle, fat and bone. The animals fed on pseudostem hay showed higher LWWF, LWPF, body length, HCW and CCW; however, the HCY, CCY, morphometric measurements and commercial cut weights and yields were not altered by the treatments. The use of pseudostem hay allows for heavier carcasses; however, the use of coproducts changed the characteristics and carcass yield of the assessed commercial cuts.

  20. Utilization of maize crop residues by growing dairy heifers and use of rare earth elements as digesta markers in the gut

    International Nuclear Information System (INIS)

    Satter, L.D.; Lopez-Guisa, J.M.; Combs, D.K.

    1987-01-01

    Maize crop residues may constitute 50-60% of the diet of growing dairy heifers and still support acceptable growth rates. Ammonia addition to ensiled maize residue did not improve digestibility or the heifer growth rate. The in situ digestion rate of maize crop residues was increased with the addition of extra copper and cobalt, but a heifer growth study failed to demonstrate benefit from higher than normal amounts of supplemental copper and cobalt. Research with digestibility markers is summarized. The rare earth elements, such as ytterbium, samarium, lanthanum and europium, were evaluated and comparisons made with lignin, cobalt-ethylenediaminetetra acetic acid (EDTA), chromium-EDTA and ruthenium-phenanthroline. The use of markers to determine digestibility at different locations in the gut, as well as to determine total digestibility, is discussed. Marker behaviour and the implications for their use in measuring rate of passage is reported. (author)

  1. Management of Biogas spent slurry for hastening the composting of agro residues

    Directory of Open Access Journals (Sweden)

    G. S. Geeta

    2015-04-01

    Full Text Available The demand for energy and the fertilizers are ever increasing. Organic farming has many advantages looking to the environment pollution, unproductive soil, less yields etc. By installation of a biogas plant serves both the purposes of meeting the fuel as well as obtaining manures. The organic manures need to be added in bulk to meet the nutrient demands of the crop as it is not in concentrated form like chemical fertilizers. Hence, biogas spent slurry is the best alternate for hastening the compost preparation of abundantly available crop residues as well as obtaining enriched compost as conventional method takes long time. Moreover, slurry is composed of major nutrients besides enzymes and a rich microflora. Based on the preliminary results, the present study was conducted at farmer’s field to know whether slurry could be used for degradation of agro residues. One ton of crop residues that included banana waste, sunflower and maize waste, leaf litter of horticultural crops were inoculated individually with 60 L of spent slurry along with consortia of degrading fungi and P-solubilising bacteria. After a retention period of 60 days, nutrients were analysed. The cultures along with slurry indicated 1.5 - 1.96% N with reduction in C:N ratio between 1.6 - 1.82. The micronutrients also increased. Thus, it was concluded that efficient use of spent slurry can be made besides utilising the crop residues and the product for organic cultivation.

  2. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    Science.gov (United States)

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  3. Integrated crop management: an approach to sustainable agricultural development.

    NARCIS (Netherlands)

    Meerman, F.; Ven, van de G.W.J.; Keulen, van H.; Breman, H.

    1996-01-01

    In developing countries, agriculture is being intensified to produce more food and agricultural products. In most agricultural development strategies, the order of priorities is on: (i) increasing yields, (ii) crop protection, and (iii) human health, environmental and social aspects. This sequential

  4. Biological and microbiological attributes in Oxisol managed with cover crops

    Directory of Open Access Journals (Sweden)

    Rodrigo Ferreira da Silva

    2017-05-01

    Full Text Available The inclusion of winter cover crops and fertilization with nitrogen to the soil can have an effect on their biological and microbiological attributes. The aim of this study was to evaluate biological and microbiological attributes in soil under different winter cover crops and nitrogen doses. The experiment was conducted at the Frederico Westphalen-RS campus of the Federal University of Santa Maria (UFSM in a Rhodic Hapludox soil. The experimental design was a randomized block in factorial arrangement (2 x 10: 10 winter cover crops systems (Fallow [control], black oats, white oats, ryegrass, forage turnip, vetch, white lupine; black oat + forage turnip; black oat + vetch and black oat + vetch + fodder turnip, and two nitrogen rates in the form of urea applied in successive crops of beans common and maize, with four replications. We assessed the biological attributes (Margalef’s richness, Simpson’s dominance, Shannon’s diversity and abundance of organisms and microbiological (carbon and nitrogen microbial biomass, basal respiration, metabolic quotient and microbial quotient of the soil. The fallow with wild species and white lupine showed greater Simpson’s dominance and abundance of organisms due to the increase in the number of individuals of the order Collembola. Vetch improved the biological attributes of the soil with increase in Collembola abundance and diversity of organisms of soil fauna. The application of nitrogen favored the microbial biomass carbon and reduced the metabolic quotient.

  5. Biosafety Management of Genetically Modified Crops (China) | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Since 1990, China's agricultural biotechnology sector has experienced tremendous growth. A recent survey shows that the country is developing the largest plant biotechnology capacity outside North America. Public investment in the sector, as well as the number of genetically modified (GM) crops commercialized, ...

  6. Optimal weed management in crop rotations: incorporating economics is crucial

    NARCIS (Netherlands)

    Berg, van den F.; Gilligan, C.A.; Lemmen-Gerdessen, van J.C.; Gregoire, L.A.H.; Bosch, van den F.

    2010-01-01

    Although the effects of crop rotation sequence and length on weed population dynamics have been studied, it is not clear whether or not the best strategy, from a weed population dynamics point of view, is also the economic optimal strategy. It is also not clear which biological and economic

  7. Relative transpiration as a decision tool in crop management: A ...

    African Journals Online (AJOL)

    The time series of Trel showed the time variation of quality of the season with periods of high Trel identifying the high quality parts of the rainfall season suitable for crop production. Soil depth influenced quality of the season, with deeper soils improving quality. A simple tool that can be used to indicate whether or not to grow ...

  8. Role of herbicide-resistant crops in integrated weed management

    Science.gov (United States)

    Chemical weed control began with the use of 2,4-D in the mid-1940s. Since then, a wide array of herbicides has been commercialized and that has greatly contributed to increased crop yields. With the introduction of several new, more specific and more effective herbicides, the cost of weed control wi...

  9. Crop-livestock systems: old wine in new bottles

    NARCIS (Netherlands)

    Keulen, van H.; Schiere, J.B.

    2004-01-01

    Many farmers in tropical and temperate countries manage a mix of crops and animals. In these systems crop residues can be used to feed the animals and the excreta from the animals as nutrients for the crops. Other forms of mixing take place where grazing under fruit-trees keeps the grass short,

  10. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Science.gov (United States)

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  11. Peanut residue carbon and nitrogen mineralization under simulated conventional and conservation tillage

    Science.gov (United States)

    Residue management is an important aspect of crop production systems. Availability of plant residue nitrogen (N) to succeeding crops is dependent on N mineralization rates during decomposition. Cooperative Extension currently recommends 22-67 kg N ha-1 credit to subsequent crops following peanut (Ar...

  12. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity.

    Science.gov (United States)

    Gregoire, K P; Becker, J G

    2012-09-01

    Agricultural crop residues contain high amounts of biochemical energy as cellulose and lignin. A portion of this biomass could be sustainably harvested for conversion to bioenergy to help offset fossil fuel consumption. In this study, the potential for converting lignocellulosic biomass directly to electricity in a microbial fuel cell (MFC) was explored. Design elements of tubular air cathode MFCs and leach-bed bioreactors were integrated to develop a new solid-substrate MFC in which cellulose hydrolysis, fermentation, and anode respiration occurred in a single chamber. Electricity was produced continuously from untreated corncob pellets for >60 d. Addition of rumen fluid increased power production, presumably by providing growth factors to anode-respiring bacteria. Periodic exposure to oxygen also increased power production, presumably by limiting the diversion of electrons to methanogenesis. In the absence of methanogenesis, bioaugmentation with Geobacter metallireducens further improved MFC performance. Under these conditions, the maximum power density was 230 mW/m(3). Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Evaluation of straw as a biofilm carrier in the methanogenic stage of two-stage anaerobic digestion of crop residues.

    Science.gov (United States)

    Andersson, Jonatan; Björnsson, Lovisa

    2002-10-01

    Straw was evaluated as a biofilm carrier in the methanogenic stage of the two-stage anaerobic digestion of crop residues. Three reactor configurations were studied, a straw-packed-bed reactor, a glass packed-bed reactor and a reactor containing suspended plastic carriers. The reactor with the packed straw bed showed the best results. It had the highest methane production, 5.4 11(-1) d(-1), and the chemical oxygen demand (COD) removal ranged from 73-50% at organic loading rates from 2.4-25 g COD l(-1) d(-1). The degradation pattern of volatile fatty acids showed that the degradation of propionate and longer-chain fatty acids was limiting at higher organic loading rates. A stable effluent pH showed that the packed-bed reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that can occur in the two-stage process. The conclusion is that straw would work very well in the intended application. A further benefit is that straw is a common agricultural waste product and requires only limited resources concerning handling and cost.

  14. Agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate via photofermentation.

    Science.gov (United States)

    Corneli, Elisa; Adessi, Alessandra; Dragoni, Federico; Ragaglini, Giorgio; Bonari, Enrico; De Philippis, Roberto

    2016-09-01

    The present study was aimed at assessing the biotransformation of dark fermented agroindustrial residues and energy crops for the production of hydrogen and poly-β-hydroxybutyrate (PHB), in lab-scale photofermentation. The investigation on novel substrates for photofermentation is needed in order to enlarge the range of sustainable feedstocks. Dark fermentation effluents of ensiled maize, ensiled giant reed, ensiled olive pomace, and wheat bran were inoculated with Rhodopseudomonas palustris CGA676, a mutant strain suitable for hydrogen production in ammonium-rich media. The highest hydrogen producing performances were observed in wheat bran and maize effluents (648.6 and 320.3mLL(-1), respectively), both characterized by high initial volatile fatty acids (VFAs) concentrations. Giant reed and olive pomace effluents led to poor hydrogen production due to low initial VFAs concentrations, as the original substrates are rich in fiber. The highest PHB content was accumulated in olive pomace effluent (11.53%TS), ascribable to magnesium deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Technical note: Relationship between in situ NDF degradability and enzymatic NDF hydrolysis in forages, nonforage fibrous feeds, and crop residues.

    Science.gov (United States)

    Gallo, A; Giuberti, G; Bruschi, S; Fortunati, P; Masoero, F

    2017-09-01

    The study was performed on forages ( = 8), nonforage fibrous feeds ( = 10), and crop residues ( = 2). Samples were characterized for in situ NDF degradability (NDFD) at 6, 12, 18, 24, 30, 36, 48, 72, 96, 120, and 240 h of ruminal incubation. Then, samples were characterized for enzymatic NDFD by adopting a multistep enzymatic method consisting of a preincubation (PreInc) phase followed by enzymatic incubation (EnzInc) steps. In the PreInc phase, samples were incubated in a NaOH solution for 0, 30, 60, or 90 min. Then, in the EnzInc phase, samples were first incubated in a buffered enzymatic solution containing hemicellulase, cellulase, and Viscozyme L enzymes. Then, samples were incubated in a xylanase-buffered enzymatic solution. These 2-step EnzInc lasted for a total of 16 (8 h for the first enzymatic step + 8 h for the second enzymatic step), 32 (16 + 16 h), or 48 h (24 + 24 h). The enzymatic NDFD coefficients were increased by increasing both PreInc and EnzInc incubation times, and no PreInc × EnzInc interaction was observed, except for ryegrass hay. On average, enzymatic NDFD increased ( 0.80, forage types or nonforage fibrous feeds.

  16. Soil testing for P and K has value in nutrient management for annual crops

    Directory of Open Access Journals (Sweden)

    Daniel Geisseler

    2016-08-01

    Full Text Available Adequate nutrients in forms available to plant roots are essential for sustainable crop production. Soil testing for phosphorus and potassium availability allows growers and crop advisers to determine whether a soil is likely to respond to fertilization. As yields have risen with improved management and production systems, crop nutrient demand and the removal of nutrients with harvested crops have increased. An in-depth discussion of soil tests for phosphorus and potassium and their use in California cropping systems is clearly needed. We review how these nutrients become available to plant roots, how samples are taken and test results interpreted, complementary ways to assess the adequacy of supplies and what research is needed to improve soil testing for phosphorus and potassium.

  17. Effect of post-harvest forestry residue management practices on the diversity of epigeal coleopterans

    Directory of Open Access Journals (Sweden)

    Priscila Ramírez Aliaga

    2017-01-01

    and summer, the treatment with residues left registered significantly greater abundance and species richness. In the residue management, the practices of intact leaving residue should be considered as the least impacting on diversity and abundance of epigeal coleopterans and is recommended for creating refugee areas to promote diversity of beetles in this area of study.

  18. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  19. Phosphate fertilisers and management for sustainable crop production in tropical acid soils

    International Nuclear Information System (INIS)

    Chien, S.H.; Friesen, D.K.

    2000-01-01

    Extensive research has been conducted over the past 25 years on the management of plant nutrients, especially N and P, for crop production on acidic infertile tropical soils. Under certain conditions, the use of indigenous phosphate rock (PR) and modified PR products, such as partially acidulated PR or compacted mixtures of PR with superphosphates, are attractive alternatives, both agronomically and economically, to the use of conventional water-soluble P fertilisers for increasing crop productivity on Oxisols and Ultisols. A combination of the effects of proper P and N management including biological N 2 fixation, judicious use of lime, and the use of acid-soil tolerant and/or P-efficient cultivars in cropping systems that enhance nutrient cycling and use efficiency, can provide an effective technology to sustainably increase crop productivity and production in tropical agro-ecosystems dominated by these acid soils. (author)

  20. Yield and water quality for different residue managements of sugarcane in Louisiana

    Science.gov (United States)

    The focus of the study was to provide information on implementation of a modified post-harvest crop residue sweeper on sugarcane yield and water quality. Field experiments were established at three different locations in south Louisiana: Paincourtville, Duson and Baton Rouge. In each location, lar...

  1. Irrigation management strategies for winter wheat using AquaCrop model

    OpenAIRE

    M. H. Ali; I. Abustan

    2013-01-01

    Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigati...

  2. Homeopathic and high dilution preparations for pest management to tomato crop under organic production system

    OpenAIRE

    Modolon,Tatiani A; Boff,Pedro; Boff,Mari Inês C; Miquelluti,David José

    2012-01-01

    Tomato crops (Solanum lycopersicum) under conventional production system are constantly treated against pest and diseases, with organic synthetic pesticides that are used may cause serious disturbance to environment and human health. This research was carried out in order to study the effect of homeopathic and high dilution preparations on pests and diseases management of tomato crop under organic production system. Two experiments were conducted under field conditions and one in greenhouse. ...

  3. A multi-sensor burned area algorithm for crop residue burning in northwestern India: validation and sources of error

    Science.gov (United States)

    Liu, T.; Marlier, M. E.; Karambelas, A. N.; Jain, M.; DeFries, R. S.

    2017-12-01

    A leading source of outdoor emissions in northwestern India comes from crop residue burning after the annual monsoon (kharif) and winter (rabi) crop harvests. Agricultural burned area, from which agricultural fire emissions are often derived, can be poorly quantified due to the mismatch between moderate-resolution satellite sensors and the relatively small size and short burn period of the fires. Many previous studies use the Global Fire Emissions Database (GFED), which is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product MCD64A1, as an outdoor fires emissions dataset. Correction factors with MODIS active fire detections have previously attempted to account for small fires. We present a new burned area classification algorithm that leverages more frequent MODIS observations (500 m x 500 m) with higher spatial resolution Landsat (30 m x 30 m) observations. Our approach is based on two-tailed Normalized Burn Ratio (NBR) thresholds, abbreviated as ModL2T NBR, and results in an estimated 104 ± 55% higher burned area than GFEDv4.1s (version 4, MCD64A1 + small fires correction) in northwestern India during the 2003-2014 winter (October to November) burning seasons. Regional transport of winter fire emissions affect approximately 63 million people downwind. The general increase in burned area (+37% from 2003-2007 to 2008-2014) over the study period also correlates with increased mechanization (+58% in combine harvester usage from 2001-2002 to 2011-2012). Further, we find strong correlation between ModL2T NBR-derived burned area and results of an independent survey (r = 0.68) and previous studies (r = 0.92). Sources of error arise from small median landholding sizes (1-3 ha), heterogeneous spatial distribution of two dominant burning practices (partial and whole field), coarse spatio-temporal satellite resolution, cloud and haze cover, and limited Landsat scene availability. The burned area estimates of this study can be used to build

  4. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.; Walter, A.

    2013-01-01

    Climate change will alter the environmental conditions for crop growth and require adjustments in management practices at the field scale. In this paper, we analyzed the impacts of two different climate change scenarios on optimal field management practices in winterwheat and grain maize production

  5. Quantifying biological nitrogen fixation of different catch crops, and residual effects of roots and tops on nitrogen uptake in barley using in-situ 15N labelling

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Sørensen, Peter; Li, F C

    2015-01-01

    Contributions of legume-based catch crops (LBCCs) to succeeding cereals may be significant. We quantified biological N fixation (BNF) and residual N effects of contrasting CC tops and roots. Methods BNF of three LBCCs (red clover, winter vetch, perennial ryegrass-red clover mixture) was quantified...... in microplots by 15N labelling. Their residual effects on spring barley were tested against two non-LBCCs (perennial ryegrass, fodder radish) after spring incorporation of CC tops or roots in monoliths. Total N accumulated in LBCCs was 153–226 kg N ha−1, of which 62–66 % was derived from BNF in tops and 31...

  6. N2O Emission from Managed Soil Under Different Crops in Rainfed Area, Central Java

    Directory of Open Access Journals (Sweden)

    Miranti Ariani

    2016-05-01

    Full Text Available N2O emission from agriculture has been assumed to increase by 30-35% until 2030. This gas has a major contribute to the emission from agriculture. N2O emission from managed soils is the 2nd contributor to green house gas (GHG emission from agriculture in Indonesia. Rainfed area requested high management input. This research aimed to examine N2O emission from different crops in the rainfed area and its affecting factors, also to identify things that need to be considered in conducting N2O measurement from managed soil. Research conducted in Pati and Blora District, Central Java Province. Four (4 different experimental sites with 4 different crops were chosen. Those were mung bean, rubber plantation and sugarcane which located within Pati District, and maize crop which located in Blora District. No treatment was applied. Gas samples were taken following the day after fertilizing. Daily N2O fluxes from managed soil in tropical land of Indonesia determine by several factors, which are: days after fertilizing, fertilizer type and dosage, previous land use, growth phase of crops, sampling point and soil characteristic. The peak time was mostly influenced by crop type. Maize has the highest N2O daily fluxes with the range of 311.9 - 9651.6 μg N2O m-2day-1 and rubber plantation has the lowest with the range of 16.1 - 2270.7 μg N2O m-2day-1. Measurement of N2O from managed soil to determine annual emissions should be done at all crop types, soil types, considering crops growth phase and also high sampling frequency to prevent an over or under estimation.

  7. Simulating the effects of climate and agricultural management practices on global crop yield

    Science.gov (United States)

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  8. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    Science.gov (United States)

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Beyond yields: Climate change effects on specialty crop quality and agroecological management

    Directory of Open Access Journals (Sweden)

    Selena Ahmed

    2016-03-01

    Full Text Available Abstract Climate change is impacting the sustainability of food systems through shifts in natural and human dimensions of agroecosystems that influence farmer livelihoods, consumer choices, and food security. This paper highlights the need for climate studies on specialty crops to focus not only on yields, but also on quality, as well as the ability of agroecological management to buffer climate effects on quality parameters. Crop quality refers to phytonutrient and secondary metabolite profiles and associated health and sensory properties that influence consumer buying decisions. Through two literature reviews, we provide examples of specialty crops that are vulnerable to climate effects on quality and examples of climate-resilient agroecological strategies. A range of specialty crops including fruits, vegetables, tree nuts, stimulants, and herbs were identified to respond to climate variables with changes in quality. The review on climate-resilient strategies to mitigate effects on crop quality highlighted a major gap in the literature. However, agricultural diversification emerged as a promising strategy for climate resilience more broadly and highlights the need for future research to assess the potential of diversified agroecosystems to buffer climate effects on crop quality. We integrate the concepts from our literature review within a socio-ecological systems framework that takes into account feedbacks between crop quality, consumer responses, and agroecosystem management. The presented framework is especially useful for two themes in agricultural development and marketing, nutrition-sensitive agriculture and terroir, for informing the design of climate-change resilient specialty crop systems focused on management of quality and other ecosystem services towards promoting environmental and human wellbeing.

  10. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Safai, P. D.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-09-01

    Agriculture crop residue burning in the tropics is a major source of the global atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. In this paper, we study the effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India during a smoke event that occurred between 09 and 17 November 2013, with the help of satellite measurements and model simulation data. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains (IGP) over large regions. Additionally, ECMWF winds at 850 hPa have been used to trace the source, path and spatial extent of smoke events. Most of the smoke aerosols, during the study period, travel from a west-to-east pathway from the source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO show a layer of thick smoke extending from surface to an altitude of about 3 km. Smoke aerosols emitted from biomass burning activity from Punjab have been found to be a major contributor to the deterioration of local air quality over the NE Indian region due to their long range transport.

  11. Residue management in the Bolivia-Brazil gas pipeline construction

    International Nuclear Information System (INIS)

    Freitas, Eduardo Lopes; Henrique, Paulo Roberto Pereira; Cantarino, Anderson Americo Alves

    2000-01-01

    The construction of the gas pipeline is a process sequential of assembly phases, where each one of those phases generates residues of the most varied types and amounts, being necessary the forecast of your generation in agreement with the activity that is being executed. During the accomplishment of the works they are generated a lot of times situations where are observed the inadequate disposition of the residues. Those practices, besides the environmental impact that they cause, it can cart in the future, the need of additional investments be proceeded in the recovery of the areas and removal of the residues. This work presents the Program of administration of Residues instituted during the construction of the pipeline Bolivia - Brazil, seeking, on a side to reduce to the minimum the generation of residues and of the other, moths handling guidelines and disposition, in way to minimize the environmental impacts caused by the same ones. (author)

  12. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    Science.gov (United States)

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of γ-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  13. Estimating effectiveness of crop management for reduction of soil erosion and runoff

    Science.gov (United States)

    Hlavcova, K.; Studvova, Z.; Kohnova, S.; Szolgay, J.

    2017-10-01

    The paper focuses on erosion processes in the Svacenický Creek catchment which is a small sub-catchment of the Myjava River basin. To simulate soil loss and sediment transport the USLE/SDR and WaTEM/SEDEM models were applied. The models were validated by comparing the simulated results with the actual bathymetry of a polder at the catchment outlet. Methods of crop management based on rotation and strip cropping were applied for the reduction of soil loss and sediment transport. The comparison shows that the greatest intensities of soil loss were achieved by the bare soil without vegetation and from the planting of maize for corn. The lowest values were achieved from the planting of winter wheat. At the end the effectiveness of row crops and strip cropping for decreasing design floods from the catchment was estimated.

  14. Sustainable soil management practices of crop farmers in Mkpat ...

    African Journals Online (AJOL)

    Sustainability which is the successful management of resources for agriculture to satisfy the changing human needs and the capacity to remain productive and at the same time conserving the resource base, is the focus of this study. Therefore, the various conventional methods of managing soil, which are commonly being ...

  15. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  16. Using Imaging Spectrometry to Approach Crop Classification from a Water Management Perspective

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.

    2017-12-01

    We use hyperspectral remote sensing imagery to classify crops in the Central Valley of California at a level that would be of use to water managers. In California irrigated agriculture uses 80 percent of the state's water supply with differences in water application rate varying by as large as a factor of three, dependent on crop type. Therefore, accurate water resource accounting is dependent upon accurate crop mapping. While on-the-ground crop accounting at the county level requires significant labor and time inputs, remote sensing has the potential to map crops over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometry with its wide spectral range has the ability to detect small spectral differences at the field-level scale that may be indiscernible to multispectral sensors such as Landsat. In this study, crops in the Central Valley were classified into nine categories defined and used by the California Department of Water Resources as having similar water usages. We used the random forest classifier on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery from June 2013, 2014 and 2015 to analyze accuracy of multi-temporal images and to investigate the extent to which cropping patterns have changed over the course of the 2013-2015 drought. Initial results show accuracies of over 90% for all three years, indicating that hyperspectral imagery has the potential to identify crops by water use group at a single time step with a single sensor, allowing cropping patterns to be monitored in anticipation of water needs.

  17. Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation

    DEFF Research Database (Denmark)

    Brozyna, Michal Adam; Petersen, Søren O; Chirinda, Ngoni

    2013-01-01

    Nitrogen (N) supply in stockless organic farming may be improved through use of grass-clover for anaerobic digestion, producing biogas and digested manure for use as fertilizer in the crop rotation. We studied the effects of grass-clover management on N cycling, nitrous oxide (N2O) emissions...... and cash-crop yields in an organic arable crop rotation on a sandy loam soil in a cool temperate climate. The four-course crop rotation included spring barley (with undersown grass-clover), grass-clover, potato and winter wheat (with undersown cover crop). Two fertilization treatments were compared: “−M...... in the rotation (spring barley, potato and winter wheat); actual digestion of grass-clover cuttings was not possible, instead digested pig manure was used as substitute for digested grass-clover. Nitrous oxide fluxes were monitored between April 2008 and May 2009. In general, application of digested manure had...

  18. Water erosion during a 17-year period under two crop rotations in four soil management systems on a Southbrazilian Inceptisol

    Science.gov (United States)

    Bertol, Ildegardis; Vidal Vázquez, Eva; Paz Ferreiro, Jorge

    2010-05-01

    vegetated treatments, CT, MT and NT showed a lower efficiency in reducing water losses than soil losses. Water losses by runoff during a number of events were of the same order of magnitude for all the management systems studied here; which was mainly true when the volume of rainfall was high and the lag between successive events was small. In general, soil losses in the autumn-winter seasons were lower than under the spring-summer seasons. Soil losses showed a positive correlation with rainfall erosivity. However, the degree of dependence between these two variables decreased as the efficiency of soil management in controlling soil erosion increased. The large soil and water losses in the BS and CT treatments suggest that there is a need to implement soil conservation measures in the study region. In this context soil conservation would take advantage from soil cover by previous crop residue as well as from terrace building. Acknowledgement: This work was partly supported by Spanish Ministry of Education (Project CGL2005-08219-C02).

  19. Microbial metabolic profiles in Australian soils with varying crop management strategies

    Science.gov (United States)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2015-04-01

    Cotton production belt in Australia is covering vast areas from subtropical to temperate and grassland. Soil types are mostly different variations of clay with mainly black, grey and red clay soil containing variable proportions of sand in it. Growers often grow cotton in rotation with other crops, such as wheat, beans and corn, and soil fertilization vary with a number of growers using organic amendments as a main or supplementary source of nutrients. We have collected soil samples from farms in different regions and with different crop management strategies and studied the metabolic signature of microbial communities using the Biolog Ecoplate system. The metabolic patterns, supplemented with molecular analysis of the community will further the understanding of the influence of crop and soil management on soil functions carried out by microbes.

  20. Irrigation management strategies for winter wheat using AquaCrop model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-09-01

    Full Text Available Many regions of the world face the challenge to ensure high yield with limited water supply. This calls for utilization of available water in an efficient and sustainable manner. Quantitative models can assist in management decision and planning purposes. The FAO’s newly developed crop-water model, AquaCrop, which simulates yield in response to water, has been calibrated for winter wheat and subsequently used to simulate yield under different sowing dates, irrigation frequencies, and irrigation sequences using 10 years daily weather data. The simulation results suggest that “2 irrigation frequency” is the most water-efficient schedule for wheat under the prevailing climatic and soil conditions. The results also indicate decreasing yield trend under late sowing. The normal/recommended sequence of irrigation performed better than the seven-days shifting from the normal. The results will help to formulate irrigation management plan based on the resource availability (water, and land availability from previous crop.

  1. Management effects on net ecosystem carbon and GHG budgets at European crop sites

    DEFF Research Database (Denmark)

    Ceschia, Eric; Bêziat, P; Dejoux, J.F.

    2010-01-01

    were estimated from the literature for the rice crop site only. At the other sites, CH4 emissions/oxidation were assumed to be negligible compared to other contributions to the net GHGB. Finally, we evaluated crop efficiencies (CE) in relation to global warming potential as the ratio of C exported from....... The variability of the different terms and their relative contributions to the net ecosystem carbon budget (NECB) were analysed for all site-years, and the effect of management on NECB was assessed. To account for greenhouse gas (GHG) fluxes that were not directly measured on site, we estimated the emissions...... caused by field operations (EFO) for each site using emission factors from the literature. The EFO were added to the NECB to calculate the total GHG budget (GHGB) for a range of cropping systems and management regimes. N2O emissions were calculated following the IPCC (2007) guidelines, and CH4 emissions...

  2. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad.

    Science.gov (United States)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J; Owen, Micheal D K; Tillie, Pascal; Messéan, Antoine; Kudsk, Per

    2017-06-01

    Conventionally bred (CHT) and genetically modified herbicide-tolerant (GMHT) crops have changed weed management practices and made an important contribution to the global production of some commodity crops. However, a concern is that farm management practices associated with the cultivation of herbicide-tolerant (HT) crops further deplete farmland biodiversity and accelerate the evolution of herbicide-resistant (HR) weeds. Diversification in crop systems and weed management practices can enhance farmland biodiversity, and reduce the risk of weeds evolving herbicide resistance. Therefore, HT crops are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM with HT crops are seldom realized because a wide range of technical and socio-economic factors hamper the transition to IWM. Here, we discuss the major factors that limit the integration of HT crops and their associated farm management practices in IWM systems. Based on the experience gained in countries where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union.

  3. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  4. Sensitivity analysis of six soil organic matter models applied to the decomposition of animal manures and crop residues

    Directory of Open Access Journals (Sweden)

    Daniele Cavalli

    2016-09-01

    Full Text Available Two features distinguishing soil organic matter simulation models are the type of kinetics used to calculate pool decomposition rates, and the algorithm used to handle the effects of nitrogen (N shortage on carbon (C decomposition. Compared to widely used first-order kinetics, Monod kinetics more realistically represent organic matter decomposition, because they relate decomposition to both substrate and decomposer size. Most models impose a fixed C to N ratio for microbial biomass. When N required by microbial biomass to decompose a given amount of substrate-C is larger than soil available N, carbon decomposition rates are limited proportionally to N deficit (N inhibition hypothesis. Alternatively, C-overflow was proposed as a way of getting rid of excess C, by allocating it to a storage pool of polysaccharides. We built six models to compare the combinations of three decomposition kinetics (first-order, Monod, and reverse Monod, and two ways to simulate the effect of N shortage on C decomposition (N inhibition and C-overflow. We conducted sensitivity analysis to identify model parameters that mostly affected CO2 emissions and soil mineral N during a simulated 189-day laboratory incubation assuming constant water content and temperature. We evaluated model outputs sensitivity at different stages of organic matter decomposition in a soil amended with three inputs of increasing C to N ratio: liquid manure, solid manure, and low-N crop residue. Only few model parameters and their interactions were responsible for consistent variations of CO2 and soil mineral N. These parameters were mostly related to microbial biomass and to the partitioning of applied C among input pools, as well as their decomposition constants. In addition, in models with Monod kinetics, CO2 was also sensitive to a variation of the half-saturation constants. C-overflow enhanced pool decomposition compared to N inhibition hypothesis when N shortage occurred. Accumulated C in the

  5. Evaluation of Tillage, Residue Management and Nitrogen Fertilizer Effects on CO2 Emission in Maize (Zea Mays L. Cultivation

    Directory of Open Access Journals (Sweden)

    Rooholla Moradi

    2016-02-01

    Full Text Available Introduction: The latest report of the Intergovernmental Panel on Climate Change (IPCC states that future emissions of greenhouse gases (GHGs will continue to increase and cause climatic change (16. These conditions are also true for Iran. The three greenhouse gases associated with agriculture are carbon dioxide (CO2, methane (CH4, and nitrous oxide (N2O. The three GHGs associated with agriculture CO2, CH4, and N2O differ in their effectiveness in trapping heat and in their turnover rates in the atmosphere. This environmental change will have serious impacts on different growth and development processes of crops. Increasing temperature could affect physiological processes such as photosynthesis, respiration and partitioning of photoassimilates. Farmers are not able to change or manage the climatic conditions, but some factors such as soil, water, seed and agricultural practices can be managed to reduce the adverse impacts of climate change (32. Mitigation and adaptation are two known ways for reducing the negative impacts of climate change. Mitigation strategies are associated with decreasing greenhouse gas (GHG emissions through management practices such as reducing chemical fertilizer application, mechanization, increasing carbon storage in agroecosystems, planting biofuel crops and moving towards organic farming (42, etc. Material and Methods: This study was carried out at the experimental field of the Ferdowsi University of Mashhad in 2011 and was repeated in 2012. The Research Station (36°16´N, 59°36´E is located at about 985 m a.s.l. Average temperature and precipitation rate of the research station in two years are shown in Figure. 1. The three-factor experiment was set up in a strip-split-plot arranged in a randomized complete block design with three replications. The experimental treatments were tillage systems (conventional and reduced tillage and residual management (remaining and leaving of maize residual assigned to main plots

  6. Strategic Management of Geo-Referenced Soil and Crop Information

    Science.gov (United States)

    For over a decade, farmers have been collecting site-specific yield data. Many have formed doubts about this investment because of their inability to directly apply this information as feedback for improving management. It seems evident that precision agriculture adoption has been hindered, in part,...

  7. Western honey bee management for crop pollination | Toni | African ...

    African Journals Online (AJOL)

    Apis mellifera is widely used for pollination purposes for several reasons, including its polylectic nature, its wide distribution, its relatively ease and low cost management, and hive products from which the beekeeper get additional incomes. The Western honey bee is used to pollinate 66 commodities on all continents, except ...

  8. Biosafety management and commercial use of genetically modified crops in China.

    Science.gov (United States)

    Li, Yunhe; Peng, Yufa; Hallerman, Eric M; Wu, Kongming

    2014-04-01

    As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.

  9. Development of Unmanned Aerial Vehicles for Site-Specific Crop Production Management

    Science.gov (United States)

    Unmanned Aerial Vehicles (UAV) have been developed and applied to support the practice of precision agriculture. Compared to piloted aircrafts, an Unmanned Aerial Vehicle can focus on much smaller crop fields with much lower flight altitude than regular airplanes to perform site-specific management ...

  10. Residues of Avermectin B1a in rotational crops and soils following soil treatment with [14C]Avermectin B1a

    International Nuclear Information System (INIS)

    Moye, H.A.; Malagodi, M.H.; Yoh, H.; Leibee, G.L.; Ku, C.C.; Wislocki, P.G.

    1987-01-01

    [ 14 C]Avermectin B 1 a was applied twelve times to muck and sandy loam soils and three times to sandy soil at 0.025-0.030 lb/acre per application. These applications simulated the intended use of avermectin B 1 a on celery, vegetables, and cotton, respectively. Following three aging periods in each soil type, sorghum, lettuce, and carrot or turnip seeds were planted and harvested at one-fourth, half, and full size. Analysis of these crops by oxidative combustion demonstrated that crops grown in muck, sandy loam, and sandy soils contained radiolabeled residues ranging from below the limit of quantitation (BLQ) to 7.4 μg/kg of avermectin B 1 a equivalents, BLQ to 11.6 μg/kg, and BLQ to 3.54 μg/kg, respectively. There was a general trend of decreasing residue concentrations with increasing preharvest intervals in crops grown in all soils. The radioactivity present in muck and sandy loam soils disappeared with half-lives ranging from 103 to 267 days and from 102 to 132 days, respectively

  11. Effects of microclimate, cropping systems, and irrigation management on early and late blight potential on Russet Burbank potato

    Science.gov (United States)

    Soil and irrigation management have been used to optimize crop production. However,their effects on microclimate, development, and controls of potato diseases have not been adequately quantified. The effects of soil, crop, and water management on development of potato early blight and late blight we...

  12. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    Science.gov (United States)

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  13. Assessing the levels of food shortage using the traffic light metaphor by analyzing the gathering and consumption of wild food plants, crop parts and crop residues in Konso, Ethiopia

    Directory of Open Access Journals (Sweden)

    Ocho Dechassa

    2012-08-01

    Full Text Available Abstract Background Humanitarian relief agencies use scales to assess levels of critical food shortage to efficiently target and allocate food to the neediest. These scales are often labor-intensive. A lesser used approach is assessing gathering and consumption of wild food plants. This gathering per se is not a reliable signal of emerging food stress. However, the gathering and consumption of some specific plant species could be considered markers of food shortage, as it indicates that people are compelled to eat very poor or even health-threatening food. Methods We used the traffic light metaphor to indicate normal (green, alarmingly low (amber and fully depleted (red food supplies and identified these conditions for Konso (Ethiopia on the basis of wild food plants (WFPs, crop parts (crop parts not used for human consumption under normal conditions; CPs and crop residues (CRs being gathered and consumed. Plant specimens were collected for expert identification and deposition in the National Herbarium. Two hundred twenty individual households free-listed WFPs, CPs, and CRs gathered and consumed during times of food stress. Through focus group discussions, the species list from the free-listing that was further enriched through key informants interviews and own field observations was categorized into species used for green, amber and red conditions. Results The study identified 113 WFPs (120 products/food items whose gathering and consumption reflect the three traffic light metaphors: red, amber and green. We identified 25 food items for the red, 30 food items for the amber and 65 food items for the green metaphor. We also obtained reliable information on 21 different products/food items (from 17 crops normally not consumed as food, reflecting the red or amber metaphor and 10 crop residues (from various crops, plus one recycled stuff which are used as emergency foods in the study area clearly indicating the severity of food stress (red metaphor

  14. Influence of Crop Management and Environmental Factors on Wolf Spider Assemblages (Araneae: Lycosidae) in an Australian Cotton Cropping System.

    Science.gov (United States)

    Rendon, Dalila; Whitehouse, Mary E A; Hulugalle, Nilantha R; Taylor, Phillip W

    2015-02-01

    Wolf spiders (Lycosidae) are the most abundant ground-hunting spiders in the Australian cotton (Gossypium hirsutum L.) agroecosystems. These spiders have potential in controlling pest bollworms, Helicoverpa spp. (Lepidoptera: Noctuidae) in minimum-tilled fields. A study was carried out during a wet growing season (2011-2012) in Narrabri, New South Wales, Australia, to determine how different crop rotations and tillage affect wolf spider assemblages in cotton fields. Spider abundance and species richness did not differ significantly between simple plots (no winter crop) and complex plots (cotton-wheat Triticum aestivum L.-vetch Vicia benghalensis L. rotation). However, the wolf spider biodiversity, as expressed by the Shannon-Weaver and Simpson's indices, was significantly higher in complex plots. Higher biodiversity reflected a more even distribution of the most dominant species (Venatrix konei Berland, Hogna crispipes Koch, and Tasmanicosa leuckartii Thorell) and the presence of more rare species in complex plots. T. leuckartii was more abundant in complex plots and appears to be sensitive to farming disturbances, whereas V. konei and H. crispipes were similarly abundant in the two plot types, suggesting higher resilience or recolonizing abilities. The demographic structure of these three species varied through the season, but not between plot types. Environmental variables had a significant effect on spider assemblage, but effects of environment and plot treatment were overshadowed by the seasonal progression of cotton stages. Maintaining a high density and even distribution of wolf spiders that prey on Helicoverpa spp. should be considered as a conservation biological control element when implementing agronomic and pest management strategies. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  16. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Beasley, G.A. [eds.

    1994-10-01

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  17. Emerging threats of begomoviruses to the cultivation of medicinal and aromatic crops and their management strategies.

    Science.gov (United States)

    Saeed, Sana Tabanda; Samad, Abdul

    2017-03-01

    Begomoviruses (family Geminiviridae ) are responsible for extreme yield reduction in a number of economically important crops including medicinal and aromatic plants (MAPs). Emergence of new variants of viruses due to recombination and mutations in the genomes, modern cropping systems, introduction of susceptible plant varieties, global trade in agricultural products, and changes in climatic conditions are responsible for aggravating the begomovirus problems during the last two decades. This review summaries the current research work on begomoviruses affecting MAPs and provides various traditional and advanced strategies for the management of begomoviruses and vector in MAPs.

  18. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  19. Crop-residue supplementation of pregnant does influences birth weight and weight gain of kids, daily milk yield but not the progesterone profile of Red Sokoto goats.

    Science.gov (United States)

    Malau-Aduli, Bunmi Sherifat; Eduvie, Lawrence; Lakpini, Clarence; Malau-Aduli, Aduli Enoch Othniel

    2004-01-01

    The parameters investigated in this study with the objective of evaluating growth, lactation and reproductive performances, included birth weight, litter size, 0-90 days gain and average daily gain of kids as well as the milk yield and progesterone profile of Red Sokoto does supplemented with crop-residue based rations during the long-dry period of the subhumid zone in Nigeria. A total of 7 treatments of 4 goats each was utilised. All treatment groups had a basal diet of Digitaria smutsii hay and natural pasture ad libitum. Ration A supplemented with the conventional concentrate was used as the positive control; rations B and C were supplemented with crop residues; and ration D without supplement was used as the negative control. Supplementation with concentrate and crop residues significantly increased (P kids, but littersize was unaffected. The heaviest kids at birth (1.3-1.4 kg) were from does in treatments 1A, 2A and 2C, while does in treatments 1B, 2B, 1C and D had the lightest kids (1.07-1.18 kg). The highest gains of 53.9 g x day(-1) were recorded in treatment 2A and the least (32.4 g x day(-1)) in treatment 1B. Supplementation also significantly influenced (P milk yield of dams over the 90-day period of the dry season. All the does had similar progesterone profiles from late gestation through parturition to early lactation irrespective of their treatment group. It was concluded that ration C fed at the 2% level is a good and affordable supplementary feed package for increased birth weight and preweaning gains in kids for meat production.

  20. Effect of straw mulch residues of previous crop oats on the weed population in direct seeded faba bean in Organic Farming

    Directory of Open Access Journals (Sweden)

    Massucati, Luiz Felipe Perrone

    2014-02-01

    Full Text Available Under conditions of Organic Farming, we investigated whether direct seeding of faba bean (Vicia faba L. into straw mulch from residues of precrop oats used for weed control enables at least occasional/opportunistic direct seeding in Organic Agriculture. Eight field trials were carried out at different study sites in North Rhine-Westphalia, Germany, in 2008-2009 and 2009-2010. Direct seeding (DS was performed into mulch layers of 0,4 and 6 t ha-1 of straw residues applied to the remaining stubble, simulating different yield levels of the precrop oats. LBS was used as a reference treatment, where straw was harvested, stubble tillage performed and seedbed prepared in fall and oil radish (Raphanus sativus grown as winter cover crop. Mouldboard ploughing combined with conventional seedbed preparation was performed in early spring to V. faba. Compared with LBS, straw mulch with subsequent direct seeding suppressed especially dicotyledonous annuals significantly. DS treatments with straw reduced the abundance of this group by 81 and 85% compared with LBS. Straw mulch resulted in effective suppression of photosensitive weeds such as Matricaria spp. and late germinating Chenopodium album. Grasses and perennial species occurred independent of the amount of straw. Compared with DS, the abundance of these weeds was reduced by 64 and 82% in LBS treatment. The shoot dry matter production of faba bean was retarded by DS compared with LBS, but significant yield losses could be avoided with straw residues of at least 4 t ha-1. Sufficient amount of straw of from the previous crop is a key criterion to facilitate organic no-till farming of faba bean in a suitable crop sequence when pressure of perennials and grasses is low.

  1. Potential of Trap Crops for Integrated Management of the Tropical Armyworm, Spodoptera litura in Tobacco

    Science.gov (United States)

    Zhou, Zhongshi; Chen, Zepeng; Xu, Zaifu

    2010-01-01

    The tropical armyworm, Spodoptera litura (F.) (Lepidoptera: Noctuidae), is an important pest of tobacco, Nicotiana tabacum L. (Solanales: Solanaceae), in South China that is becoming increasingly resistant to pesticides. Six potential trap crops were evaluated to control S. litura on tobacco. Castor bean, Ricinus communis L. (Malpighiales: Euphorbiaceae), and taro, Colocasia esculenta (L.) Schott (Alismatales: Araceae), hosted significantly more S. litura than peanut, Arachis hypogaea L. (Fabales: Fabaceae), sweet potato, Ipomoea batata Lam. (Solanales: Convolvulaceae) or tobacoo in a greenhouse trial, and tobacco field plots with taro rows hosted significantly fewer S. litura than those with rows of other trap crops or without trap crops, provided the taro was in a fast-growing stage. When these crops were grown along with eggplant, Solanum melongena L. (Solanales: Solanaceae), and soybean, Glycines max L. (Fabales: Fabaceae), in separate plots in a randomized matrix, tobacco plots hosted more S. litura than the other crop plots early in the season, but late in the season, taro plots hosted significantly more S. litura than tobacco, soybean, sweet potato, peanut or eggplant plots. In addition, higher rates of S. litura parasitism by Microplitis prodeniae Rao and Chandry (Hymenoptera: Bracondidae) and Campoletis chlorideae Uchida (Ichnumonidae) were observed in taro plots compared to other crop plots. Although taro was an effective trap crop for managing S. litura on tobacco, it did not attract S. litura in the seedling stage, indicating that taro should either be planted 20–30 days before tobacco, or alternative control methods should be employed during the seedling stage. PMID:20874598

  2. Effect of different integrated weed management methods on weed density and yield of sugar beet crop

    Directory of Open Access Journals (Sweden)

    alireza koochaki

    2009-06-01

    Full Text Available In order to compare different weed management methods in sugar beet, two experiments were conducted at mashhad for two years in 2005-2006 and 2006-2007. Each experiment designed as a Complete Randomized Block with three replication. The treatments include: Metamitron(Goltix plus Phenmedipham (Betanal (Gol+Bet, Goltix plus Cultivation (Gol+Cu, Disk plus Betanal (Di+Bet, Disk plus Cultivation(Di+Cu, Cover Crop plus Betanal (Co+Bet, Cover Crop plus Cultivation (Co+Cu, Weeding (W and Betanal plus Weeding (Bet+W. Samplings were taken at three stages early season, after imposing the treatments and late season. Results showed that at early season in two experiments, density of weeds was lower in cover crop and disk treatment compared with other treats and the second sampling in first experiment, weeding and disk plus cultivation of treatments with 21.5 and 26.6 respectively plants per m2 and in second experiment year, weeding and application betanal plus weeding treatments, with 14 and 17.8 respectively plant in m2 showed the lowest. In the second experiment year, minimum and maximum sugar beet yield were obtained with cover crop plus betanal and weeding with 43 and 104 ton per hectare respectively. The lowest yield was obtained in check plots with 3.5ton per hectare. Maximum sugar contain (19.35% was obtained in betanal herbicide plus cultivation treatment and minimum (14.88% was obtained with hand weeding treatment. However maximum sugar beet yield was obtained with betanal plus weeding (17.85 ton per hectare and the minimum with cover crop plus betanal (7.5 ton per hectare. Key words: integrated weed management, cover crop, herbicide, cultivation, sugar beet.

  3. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  4. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management

    Science.gov (United States)

    Guardia, Guillermo; Abalos, Diego; García-Marco, Sonia; Quemada, Miguel; Alonso-Ayuso, María; Cárdenas, Laura M.; Dixon, Elizabeth R.; Vallejo, Antonio

    2016-09-01

    Agronomical and environmental benefits are associated with replacing winter fallow by cover crops (CCs). Yet, the effect of this practice on nitrous oxide (N2O) emissions remains poorly understood. In this context, a field experiment was carried out under Mediterranean conditions to evaluate the effect of replacing the traditional winter fallow (F) by vetch (Vicia sativa L.; V) or barley (Hordeum vulgare L.; B) on greenhouse gas (GHG) emissions during the intercrop and the maize (Zea mays L.) cropping period. The maize was fertilized following integrated soil fertility management (ISFM) criteria. Maize nitrogen (N) uptake, soil mineral N concentrations, soil temperature and moisture, dissolved organic carbon (DOC) and GHG fluxes were measured during the experiment. Our management (adjusted N synthetic rates due to ISFM) and pedo-climatic conditions resulted in low cumulative N2O emissions (0.57 to 0.75 kg N2O-N ha-1 yr-1), yield-scaled N2O emissions (3-6 g N2O-N kg aboveground N uptake-1) and N surplus (31 to 56 kg N ha-1) for all treatments. Although CCs increased N2O emissions during the intercrop period compared to F (1.6 and 2.6 times in B and V, respectively), the ISFM resulted in similar cumulative emissions for the CCs and F at the end of the maize cropping period. The higher C : N ratio of the B residue led to a greater proportion of N2O losses from the synthetic fertilizer in these plots when compared to V. No significant differences were observed in CH4 and CO2 fluxes at the end of the experiment. This study shows that the use of both legume and nonlegume CCs combined with ISFM could provide, in addition to the advantages reported in previous studies, an opportunity to maximize agronomic efficiency (lowering synthetic N requirements for the subsequent cash crop) without increasing cumulative or yield-scaled N2O losses.

  5. In-field rates of decomposition and microbial communities colonizing residues vary by depth of residue placement and plant part, but not by crop genotype for residues from two Cry1AB Bt corn hybrids and their non-transgenic i

    Science.gov (United States)

    The adoption of Bt corn has been largely overshadowed by concerns about their unintended effects on human health and the environment. Residues of transgenic Bt crops decomposed more slowly than their non-transgenic isolines in one laboratory study, although no mechanism to explain these observations...

  6. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems

    Science.gov (United States)

    Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury

    2013-01-01

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  7. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  8. Nitrogen fertility and abiotic stresses management in cotton crop: a review.

    Science.gov (United States)

    Khan, Aziz; Tan, Daniel Kean Yuen; Afridi, Muhammad Zahir; Luo, Honghai; Tung, Shahbaz Atta; Ajab, Mir; Fahad, Shah

    2017-06-01

    This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.

  9. Soil amendments with Brassica cover crops for management of Phytophthora blight on squash.

    Science.gov (United States)

    Ji, Pingsheng; Koné, Daouda; Yin, Jingfang; Jackson, Kimberly L; Csinos, Alexander S

    2012-04-01

    Phytophthora blight induced by Phytophthora capsici is responsible for serious yield loss in vegetable production in the United States and other countries. This study was conducted to evaluate the efficacy of Brassica cover crops used as soil amendments for managing Phytophthora blight of squash. In greenhouse studies, disease incidence on squash plants was significantly reduced by soil amendment with mustard shoots or roots used at 1 and 2.5% (plant tissue/soil, w/w). The shoots of canola used at 1 or 2.5% also suppressed disease, while the roots of canola or other crops did not reduce disease significantly. In field studies, soil amendments with mustard and canola provided the greatest disease reduction and increased squash yield significantly compared with the non-treated control. Mustard and canola did not appear to be susceptible to P. capsici. The results indicated that some Brassica crops, particularly mustard and canola, had the potential to significantly reduce Phytophthora blight on squash when used as soil amendments. As P. capsici has a remarkable ability to develop resistance to chemical fungicides, use of effective Brassica cover crops could be a biorational alternative to fungicides and a valuable component in developing integrated disease management programs. Copyright © 2011 Society of Chemical Industry.

  10. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario.

    Science.gov (United States)

    Limay-Rios, Victor; Forero, Luis Gabriel; Xue, Yingen; Smith, Jocelyn; Baute, Tracey; Schaafsma, Arthur

    2016-02-01

    Using neonicotinoid insecticides as seed treatments is a common practice in field crop production. Exposure of nontarget organisms to neonicotinoids present in various environmental matrices is debated. In the present study, concentrations of neonicotinoid residues were measured in the top 5 cm of soil and overlying soil surface dust before planting in 25 commercial fields with a history of neonicotinoid seed treatment use in southwestern Ontario in 2013 and 2014 using liquid chromatography-electrospray ionization tandem mass spectrometry. The mean total concentrations were 3.05 ng/g and 47.84 ng/g in 2013 and 5.59 ng/g and 71.17 ng/g in 2014 for parent soil and soil surface dust, respectively. When surface and parent soil residues were compared the mean concentration in surface dust was 15.6-fold and 12.7-fold higher than that in parent soil in 2013 and 2014, respectively. Pooled over years, the surface dust to parent soil ratio was 13.7, with mean concentrations of 4.36 ng/g and 59.86 ng/g for parent soil and surface dust, respectively. The present study's results will contribute important knowledge about the role these residues may play in the overall risk assessment currently under way for the source, transport, and impact of neonicotinoid insecticide residues in a maize ecosystem. © 2015 SETAC.

  11. Swine slurry application and soil management on double-cropped oat/maize

    Directory of Open Access Journals (Sweden)

    Marlo Adriano Bison Pinto

    2014-06-01

    Full Text Available The swine production in southern Brazil is concentrated in small farms that use residues as a nutrient source for crops of economic interest. This study aimed to evaluate the use of swine slurry associated with tillage systems on double-cropped oat/maize. The experiment was carried out in the 2009/2010 and 2010/2011 cropping seasons, in Taquaruçu do Sul, Rio Grande do Sul State, Brazil. The experimental design was randomized blocks in a factorial scheme, with four replications. Treatments consisted of the interaction of four swine slurry doses (no swine slurry, 20 m3 ha-1, 40 m3 ha-1 and 80 m3 ha-1 and mineral fertilization, in three tillage systems (no-tillage, chiseling and chiseling + disking. The swine slurry application on doublecropped oat/maize increased the dry matter and grain yield. The 80 m3 ha-1 dose provided a response statistically similar to the mineral fertilization recommended for maize. The interaction between the 80 m3 ha-1 dose and the immediate incorporation of slurry into the soil reduced N losses by ammonia volatilization, promoting a significant increase in maize grain yield, when grown on a clayish soil.

  12. Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Devos, Yann; Beckie, Hugh J.

    2017-01-01

    are most effective and sustainable as a component of an integrated weed management (IWM) system. IWM advocates the use of multiple effective strategies or tactics to manage weed populations in a manner that is economically and environmentally sound. In practice, however, the potential benefits of IWM...... where CHT or GMHT crops are widely grown and the increased familiarity with their management, we propose five actions to facilitate the integration of HT crops in IWM systems within the European Union....

  13. Methodological Aspects of On-Farm Monitoring of Cropping Systems Management

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    Full Text Available To conduct agro-environmental assessments at field and farm scale, detailed management data of crop and animal production systems are needed. However, this type of data is only rarely collected by public administrations. In the period 2005-2006, we made an experience of on-farm monitoring of cropping systems management, within a larger project aimed at assessing sustainability of agricultural systems in Italian Parks. In this paper, we describe and discuss the steps taken to carry out periodic face-to-face interviews in farms in the Sud Milano Agricultural Park (northern Italy. The first step was the selection of seven farms, which we identified by applying cluster analysis at a large database describing 733 farms of the Park. After having identified the most relevant agro-environmental issues in the studied area, we established a list of simple but sound indicators to evaluate the effects of agricultural management on the environment. The criteria used to select the indicators were that they should: be calculated on easily available data, not be based on direct measurements, make a synthesis of different aspects of reality, and be easily calculated and understood. The indicators selected evaluate nutrient management, fossil energy use, pesticide toxicity, soil management, and economic performance. Subsequently, we designed a data model to store input data used to calculate the indicators (farm configuration, flows of materials and money through the farm gate, animals and their rations, history of crop cultivation, crop management. The data model that we obtained is relatively complex, but adequate to store and analyse the large amount of data acquired during the two-year project. A questionnaire was developed to fully comply with the indicators selected and the data model. The questionnaire was used to carry out approximately six interviews per farm each year, with an investment of time of 1-2 hours per interview. Appropriate double checks of

  14. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    Directory of Open Access Journals (Sweden)

    Dieter Treutter

    2010-03-01

    Full Text Available Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  15. Integrating Characterization of Smallholders’ Feeding Practices with On-Farm Feeding Trials to Improve Utilization of Crop Residues on Smallholder Farms

    Directory of Open Access Journals (Sweden)

    B. O. Kashongwe

    2017-01-01

    Full Text Available This study characterized wheat straw feeding practices in smallholder farms using cross sectional survey and the results informed the design of an experiment to improve the nutritive value of wheat straw with urea and yeast culture treatment. Three diets tested in 49 days’ feeding trial were farmers’ rainy season feeding practice (FP, addition of urea to wheat straw at the time of feeding (USWS, and 14 days’ incubation of straw with urea (UTWS. Yeast culture (15 g/day was mixed with commercial dairy meal at the point of feeding. Survey data identified farmers’ strategies in utilizing crop residues of which most important were improving storage facility (77.6%, adding molasses (54.5%, and buying a shredding machine (45.1%. On-farm feeding trial showed that intake was higher for UTWS than (p<0.05 for USWS while milk yield was higher with FP than (p<0.005 with UTWS or USWS but not different (p≥0.05 between UTWS and USWS. Results imply that farmers feeding practices of crop residues may be improved for dairy cows’ feeding and therefore UTWS could be used to support maintenance and milk production during dry season. Improving farmers feed storage facilities and training on incubation of wheat straw for dairy cattle feeding were recommended.

  16. Quantification of Climate Warming and Crop Management Impacts on Cotton Phenology

    OpenAIRE

    Shakeel Ahmad; Qaiser Abbas; Ghulam Abbas; Zartash Fatima; Atique-ur-Rehman; Sahrish Naz; Haseeb Younis; Rana Jahanzeb Khan; Wajid Nasim; Muhammad Habib ur Rehman; Ashfaq Ahmad; Ghulam Rasul; Muhammad Azam Khan; Mirza Hasanuzzaman

    2017-01-01

    Understanding the impact of the warming trend on phenological stages and phases of cotton (Gossypium hirsutum L.) in central and lower Punjab, Pakistan, may assist in optimizing crop management practices to enhance production. This study determined the influence of the thermal trend on cotton phenology from 1980?2015 in 15 selected locations. The results demonstrated that observed phenological stages including sowing (S), emergence (E), anthesis (A) and physiological maturity (M) occurred ear...

  17. Participatory tools working with crops, varieties and seeds. A guide for professionals applying participatory approaches in agrobiodiversity management, crop improvement and seed sector development

    NARCIS (Netherlands)

    Boef, de W.S.; Thijssen, M.H.

    2007-01-01

    Outline to the guide Within our training programmes on local management of agrobiodiversity, participatory crop improvement and the support of local seed supply participatory tools get ample attention. Tools are dealt with theoretically, are practised in class situations, but are also applied in

  18. Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management.

    Science.gov (United States)

    De Gryze, Steven; Wolf, Adam; Kaffka, Stephen R; Mitchell, Jeff; Rolston, Dennis E; Temple, Steven R; Lee, Juhwan; Six, Johan

    2010-10-01

    Despite the importance of agriculture in California's Central Valley, the potential of alternative management practices to reduce soil greenhouse gas (GHG) emissions has been poorly studied in California. This study aims at (1) calibrating and validating DAYCENT, an ecosystem model, for conventional and alternative cropping systems in California's Central Valley, (2) estimating CO2, N2O, and CH4 soil fluxes from these systems, and (3) quantifying the uncertainty around model predictions induced by variability in the input data. The alternative practices considered were cover cropping, organic practices, and conservation tillage. These practices were compared with conventional agricultural management. The crops considered were beans, corn, cotton, safflower, sunflower, tomato, and wheat. Four field sites, for which at least five years of measured data were available, were used to calibrate and validate the DAYCENT model. The model was able to predict 86-94% of the measured variation in crop yields and 69-87% of the measured variation in soil organic carbon (SOC) contents. A Monte Carlo analysis showed that the predicted variability of SOC contents, crop yields, and N2O fluxes was generally smaller than the measured variability of these parameters, in particular for N2O fluxes. Conservation tillage had the smallest potential to reduce GHG emissions among the alternative practices evaluated, with a significant reduction of the net soil GHG fluxes in two of the three sites of 336 +/- 47 and 550 +/- 123 kg CO2-eq x ha(-1) x yr(-1) (mean +/- SE). Cover cropping had a larger potential, with net soil GHG flux reductions of 752 +/- 10, 1072 +/- 272, and 2201 +/- 82 kg CO2-eq x ha(-1) x yr(-1). Organic practices had the greatest potential for soil GHG flux reduction, with 4577 +/- 272 kg CO2-eq x ha(-1) x yr(-1). Annual differences in weather or management conditions contributed more to the variance in annual GHG emissions than soil variability did. We concluded that the

  19. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    Science.gov (United States)

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  20. Climatic and management drivers of CO2 exchanges by a production crop: analysis over three successive 4-year cycles.

    Science.gov (United States)

    Buysse, Pauline; Moureaux, Christine; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (candidate ICOS site) in the Hesbaye region in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Eddy covariance, automatic and manual soil chambers, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), total Ecosystem Respiration (TER), Net Primary Productivity (NPP), autotrophic respiration, heterotrophic respiration and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. Climatic and seasonal evolutions of the carbon balance components were studied and crop carbon budgets were computed both at the yearly and crop rotation cycle scales. On average over the 12 years, NEE was negative but NBP was positive, i.e. as far as carbon exportation by harvest are included in the budget, the site behaved as a carbon source. Impacts of both meteorological drivers and crop management operations on CO2 exchanges were analyzed and compared between crop types, years, and rotation cycles. The uncertainties associated to the carbon fluxes were also evaluated and discussed.

  1. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    Science.gov (United States)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  2. Residue Management of Biodiesel Industry: A Study of Value Creation in the Supply Chain

    Directory of Open Access Journals (Sweden)

    Stella Maris Lima Altoé

    2014-06-01

    Full Text Available Residues, whether solid or liquid, are inherent to many industrial processes, and require specialized treatments. The purpose of this research is to evaluate the process of creating value in the supply chain, from the sustainable management of residues in the biodiesel industry. The methodological approach was a multiple case study, with the use of bibliographic data, documents and discourse analysis. Data were collected through interviews with managers of the companies analyzed. The findings suggest that residue management enables the creation of value in the supply chain of biodiesel. It is also noted that from this management, environmental preservation occurs, the incidence of fines is reduced or even eliminated, and there are still economic cooperation between the companies that have different activities but are a part of the supply chain of biodiesel

  3. RISK MANAGEMENT AND EXPERTISE: UK: Strategies for Precautionary Commercialization of GM Crops

    Directory of Open Access Journals (Sweden)

    Levidow Les

    2000-07-01

    Full Text Available As genetically modified (GM products approach the market stage, the UK government and agro-food industry have faced a suspicious or hostile public. Since 1998 many retail chains have undertaken to exclude any GM-derived ingredients from their own-brand lines. This commercial blockage has intensified pressures for greater precaution, even for a moratorium on cultivating GM crops. Political protest has led to strategies for precautionary commercialization. Government and industry have cooperated to plan a “managed development” of GM crops. Across the agricultural supply chain, industry has devised voluntary guidelines to ensure segregation of GM crops and to limit the spread of GM herbicide-tolerance. In particular UK regulators seek to test the risk that broad-spectrum herbicide sprays could damage wildlife habitats; they have broadened the advisory expertise accordingly. These measures open up the precautionary content to further debate, at both national and EU levels. Market-stage precautions establish a means to test claims that GM crops are environmentally-friendly products. By translating public concerns into broader risk-assessment criteria, the UK procedure involves critics in potentially influencing standards of scientific evidence and environmental harm. This social process has become a prerequisite for legitimizing commercial use.

  4. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  5. Growth rate, apparent nutrient digestibility and some blood metabolites of Gwembe valley goats on rations based on crop residues in the hot dry season in Zambia.

    Science.gov (United States)

    Aregheore, E M

    2001-07-01

    Twelve Gwembe goats (9 females and 3 males; 12-18-months old; average body weight 18.50 +/- 0.05 kg) were divided into three groups and fed complete rations based on crop residues. Three residues of oilseeds--bambara groundnut shell (BGS), groundnut shell (GNS) and sunflower head (SFH)--were used. The rations were isonitrogenous and isocaloric. The average daily dry matter intake was BGS 0.85 +/- 0.02, GNS 0.88 +/- 0.02 and SFH 0.89 +/- 0.03 kg/head per day, which did not differ from each other significantly (p > 0.05). However, the daily live weight gains were significantly different (p Goats that consumed SFH gained more (84 g; p conversion followed the pattern of live weight gain. The plasma non-protein N values were 25.1 +/- 0.36, 24.6 +/- 0.38 and 24.9 +/- 0.35 mg/100 ml, while the plasma glucose concentrations were 67.2 +/- 1.44, 65.1 +/- 1.32 and 67.8 +/- 1.49 mg/100 ml, respectively, for goats on BGS, GNS and SFH rations, with no significant difference (p > 0.05) between the three rations. The cost/kilogram for each of the rations were all within the same range, but the cost/kilogram of live weight gain was lower for the SFH ration than for the GNS and BGS rations. The nutrient digestibilities of the crop residues were similar among the treatments. Overall, SFH tended to perform better than GNS or BGS in these complete rations for goats in the hot dry season.

  6. Soil total carbon and nitrogen and crop yields after eight years of tillage, crop rotation, and cultural practice

    Science.gov (United States)

    Information on the long-term effect of management practices on soil C and N stocks is lacking. An experiment was conducted from 2004 to 2011 in the northern Great Plains, USA to examine the effects of tillage, crop rotation, and cultural practice on annualized crop biomass (stems + leaves) residue r...

  7. Residues, spatial distribution and risk assessment of DDTs and HCHs in agricultural soil and crops from the Tibetan Plateau.

    Science.gov (United States)

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2016-04-01

    Due to its high elevation and cold temperature, the Tibetan Plateau (TP) is regarded as the "Third Pole". Different from other polar regions, which are truly remote, the TP has a small population and a few agricultural activities. In this study, agricultural soil and crop samples (including highland barley and rape) were collected in the main farmland of the TP to obtain the contamination levels of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) in the Tibetan agricultural system as well as the relevant human exposure risks. The average concentrations of DDTs and HCHs in the agricultural soil, highland barley and rape were 1.36, 0.661, 1.03 ng/g dw and 0.349, 0.0364, 0.0225 ng/g dw, respectively. In the agricultural soil, DDTs and HCHs metabolism (DDE, DDD and β-HCH) were abundant, which indicated a "historical" source, whereas crops contained a similar composition ((DDE + DDD)/DDT, α/β-HCH and α/γ-HCH) to that of wild plants, suggesting that the DDTs and HCHs in crops are likely from long range atmospheric transport. The human health risks via non-dietary and dietary to DDTs and HCHs in the farmland were assessed. All of the hazard index (HI) values of DDTs and HCHs for non-carcinogenic risks were Tibetan residents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Carbon fractions and soil fertility affected by tillage and sugarcane residue management an Xanthic Udult

    Directory of Open Access Journals (Sweden)

    Iara Maria Lopes

    2017-10-01

    Full Text Available The gradual change in management practices in sugarcane (Saccharum spp. production from burning straw to a green harvesting system, as well as the use of minimum soil tillage during field renovation, may affect soil fertility and soil organic matter (SOM contents. The objectives of this work were to investigate the influence of sugar cane production systems on: (1 soil fertility parameters; (2 on physical carbon fractions; (3 and on humic substance fractions, in a long-term experiment, comparing two soil tillage and two residue management systems an Xanthic Udult, in the coastal tableland region of Espírito Santo State, Brazil. The treatments consisted of plots (conventional tillage (CT or minimum tillage (MT and subplots (residue burned or unburned at harvesting, with five replicates The highest values of Ca2+ + Mg2+ and total organic carbon (TOC were observed in the MT system in all soil layers, while high values of K+ were observed in the 0.1-0.2 m layer. The CT associated with the burned residue management negatively influenced the TOC values, especially in the 0.1-0.2 and 0.2-0.4 m layers. The carbon in the humin fraction and organic matter associated with minerals were significantly different among the tillage systems; the MT showed higher values than the CT. However, there were no significant differences between the sugarcane residue management treatments. Overall, fractioning the SOM allowed for a better understanding of tillage and residue management systems effects on the soil properties.

  9. Low-residue and low-fiber diets in gastrointestinal disease management.

    Science.gov (United States)

    Vanhauwaert, Erika; Matthys, Christophe; Verdonck, Lies; De Preter, Vicky

    2015-11-01

    Recently, low-residue diets were removed from the American Academy of Nutrition and Dietetics' Nutrition Care Manual due to the lack of a scientifically accepted quantitative definition and the unavailability of a method to estimate the amount of food residue produced. This narrative review focuses on defining the similarities and/or discrepancies between low-residue and low-fiber diets and on the diagnostic and therapeutic values of these diets in gastrointestinal disease management. Diagnostically, a low-fiber/low-residue diet is used in bowel preparation. A bowel preparation is a cleansing of the intestines of fecal matter and secretions conducted before a diagnostic procedure. Therapeutically, a low-fiber/low-residue diet is part of the treatment of acute relapses in different bowel diseases. The available evidence on low-residue and low-fiber diets is summarized. The main findings showed that within human disease research, the terms "low residue" and "low fiber" are used interchangeably, and information related to the quantity of residue in the diet usually refers to the amount of fiber. Low-fiber/low-residue diets are further explored in both diagnostic and therapeutic situations. On the basis of this literature review, the authors suggest redefining a low-residue diet as a low-fiber diet and to quantitatively define a low-fiber diet as a diet with a maximum of 10 g fiber/d. A low-fiber diet instead of a low-residue diet is recommended as a diagnostic value or as specific therapy for gastrointestinal conditions. © 2015 American Society for Nutrition.

  10. Resobio. Management of forest residues: preserving soils and biodiversity

    International Nuclear Information System (INIS)

    Rantien, Caroline; Charasse, Laurent; Wlerick, Lise; Landmann, Guy; Nivet, Cecile; Jallais, Anais; Augusto, Laurent; Bigot, Maryse; Thivolle Cazat, Alain; Bouget, Christophe; Brethes, Alain; Boulanger, Vincent; Richter, Claudine; Cornu, Sophie; Rakotoarison, Hanitra; Ulrich, Erwin; Deleuze, Christine; Michaud, Daniel; Cacot, Emmanuel; Pousse, Noemie; Ranger, Jacques; Saint-Andre, Laurent; Zeller, Bernd; Achat, David; Cabral, Anne-Sophie; Akroume, Emila; Aubert, Michael; Bailly, Alain; Fraysse, Jean-Yves; Fraud, Benoit; Gardette, Yves-Marie; Gibaud, Gwenaelle; Helou, Tammouz-Enaut; Pitocchi, Sophie; Vivancos, Caroline

    2014-03-01

    The Resobio project (management of forest slash: preservation of soils and biodiversity) aimed at updating knowledge available at the international level (with a focus on temperate areas) on the potential consequences of forest slash sampling on fertility and on biodiversity, and at identifying orientations for recommendations for a revision of the ADEME guide of 2006 on wise collecting of forest slash. The first part of this report is a synthesis report which gives an overview of results about twenty issues dealing with the nature of wood used for energy production and the role of slash, about the consequences of this type of collecting for soil fertility and species productivity, and about impacts on biodiversity. Based on these elements, recommendations are made for slash management and for additional follow-up and research. The second part contains five scientific and technical reports which more deeply analyse the issue of fertility, and technical documents on slash management (guides) published in various countries

  11. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories

    Science.gov (United States)

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using soil sampled from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ul...

  12. Nutrient and water management practices for increasing crop production in rainfed arid/semi-arid areas. Proceedings of a coordinated research project

    International Nuclear Information System (INIS)

    2005-10-01

    live in these less-favoured areas, there is an increasing demand for exploring such management practices for improving soil fertility and increasing crop production. In this regard, isotopes and nuclear techniques play a crucial role in providing valuable quantitative information on nutrient release from crop residues and fertilizers and uptake of nutrients and water by crops for identification of promising management practices for optimising crop production under rainfed conditions. Based on the recommendations of a consultants meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 26-29 May 1997, a Coordinated Research Project on Management of Nutrients and Water in Rainfed Arid and Semi-Arid Areas for Increasing Crop Production was implemented between 1997 and 2002 with the overall objective of increasing crop production through improved management of nutrients and water in rainfed arid and semi-arid areas. Eleven contract holders from Argentina, China, India (two), Jordan, Kenya, Morocco, Niger, Pakistan, Senegal and Zimbabwe, and five agreement holders from Australia, France, TSBF-Kenya, ICARDASyria and ICRISAT-Zimbabwe participated. The first research coordination meeting (RCM) was held 6-10 July 1998 in Vienna, the second RCM was held in Tunis, 6-10 March 2000 and the final RCM convened in Vienna, 24-28 September 2001

  13. Crop rotations with annual and perennial forages under no-till soil management: soil attributes, soybean mineral nutrition, and yield

    Science.gov (United States)

    Extensive use of sustainable and intensive agricultural systems would result in profitable farms producing greater yields while maintaining or enhancing natural resources. Development of sustainable crop and soil management systems depends on understanding complex relationships between soil managem...

  14. SOIL MOISTURE SPACE-TIME ANALYSIS TO SUPPORT IMPROVED CROP MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Bruno Montoani Silva

    2015-02-01

    Full Text Available The knowledge of the water content in the soil profile is essential for an efficient management of crop growth and development. This work aimed to use geostatistical techniques in a spatio-temporal study of soil moisture in an Oxisol in order to provide that information for improved crop management. Data were collected in a coffee crop area at São Roque de Minas, in the upper São Francisco River basin, MG state, Brazil. The soil moisture was measured with a multi-sensor capacitance (MCP probe at 10-, 20-, 30-, 40-, 60- and 100-cm depths between March and December, 2010. After adjusting the spherical semivariogram model using ordinary least squares, best model, the values were interpolated by kriging in order to have a continuous surface relating depth x time (CSDT and the soil water availability to plant (SWAP. The results allowed additional insight on the dynamics of soil water and its availability to plant, and pointed to the effects of climate on the soil water content. These results also allowed identifying when and where there was greater water consumption by the plants, and the soil layers where water was available and potentially explored by the plant root system.

  15. Roguing with replacement in perennial crops: conditions for successful disease management.

    Science.gov (United States)

    Sisterson, Mark S; Stenger, Drake C

    2013-02-01

    Replacement of diseased plants with healthy plants is commonly used to manage spread of plant pathogens in perennial cropping systems. This strategy has two potential benefits. First, removing infected plants may slow pathogen spread by eliminating inoculum sources. Second, replacing infected plants with uninfected plants may offset yield losses due to disease. The extent to which these benefits are realized depends on multiple factors. In this study, sensitivity analyses of two spatially explicit simulation models were used to evaluate how assumptions concerning implementation of a plant replacement program and pathogen spread interact to affect disease suppression. In conjunction, effects of assumptions concerning yield loss associated with disease and rates of plant maturity on yields were simultaneously evaluated. The first model was used to evaluate effects of plant replacement on pathogen spread and yield on a single farm, consisting of a perennial crop monoculture. The second model evaluated effects of plant replacement on pathogen spread and yield in a 100 farm crop growing region, with all farms maintaining a monoculture of the same perennial crop. Results indicated that efficient replacement of infected plants combined with a high degree of compliance among farms effectively slowed pathogen spread, resulting in replacement of few plants and high yields. In contrast, inefficient replacement of infected plants or limited compliance among farms failed to slow pathogen spread, resulting in replacement of large numbers of plants (on farms practicing replacement) with little yield benefit. Replacement of infected plants always increased yields relative to simulations without plant replacement provided that infected plants produced no useable yield. However, if infected plants produced useable yields, inefficient removal of infected plants resulted in lower yields relative to simulations without plant replacement for perennial crops with long maturation periods

  16. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    Science.gov (United States)

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  18. Old Dog New Tricks: Use of Point-based Crop Models in Grid-based Regional Assessment of Crop Management Technologies Impact on Future Food Security

    Science.gov (United States)

    Koo, J.; Wood, S.; Cenacchi, N.; Fisher, M.; Cox, C.

    2012-12-01

    HarvestChoice (harvestchoice.org) generates knowledge products to guide strategic investments to improve the productivity and profitability of smallholder farming systems in sub-Saharan Africa (SSA). A keynote component of the HarvestChoice analytical framework is a grid-based overlay of SSA - a cropping simulation platform powered by process-based, crop models. Calibrated around the best available representation of cropping production systems in SSA, the simulation platform engages the DSSAT Crop Systems Model with the CENTURY Soil Organic Matter model (DSSAT-CENTURY) and provides a virtual experimentation module with which to explore the impact of a range of technological, managerial and environmental metrics on future crop productivity and profitability, as well as input use. For each of 5 (or 30) arc-minute grid cells in SSA, a stack of model input underlies it: datasets that cover soil properties and fertility, historic and future climate scenarios and farmers' management practices; all compiled from analyses of existing global and regional databases and consultations with other CGIAR centers. Running a simulation model is not always straightforward, especially when certain cropping systems or management practices are not even practiced by resource-poor farmers yet (e.g., precision agriculture) or they were never included in the existing simulation framework (e.g., water harvesting). In such cases, we used DSSAT-CENTURY as a function to iteratively estimate relative responses of cropping systems to technology-driven changes in water and nutrient balances compared to zero-adoption by farmers, while adjusting model input parameters to best mimic farmers' implementation of technologies in the field. We then fed the results of the simulation into to the economic and food trade model framework, IMPACT, to assess the potential implications on future food security. The outputs of the overall simulation analyses are packaged as a web-accessible database and published

  19. Spatial variability of surface temperature as related to cropping practice with implications for irrigation management

    Science.gov (United States)

    Hatfield, J. L.; Millard, J. P.; Reginato, R. J.; Jackson, R. D.; Idso, S. B.; Pinter, P. J., Jr.; Goettelman, R. C.

    1980-01-01

    Crop stress measured using thermal infrared emission is evaluated with the stress-degree-day (SDD) concept. Throughout the season, the accumulation of SDD during the reproductive stage of growth is inversely related to yield. This relationship is shown for durum wheat, hard red winter wheat, barley, grain sorghum and soybeans. It is noted that SDD can be used to schedule irrigations for maximizing yields and for applying remotely sensed data to management of water resources. An airborne flight with a thermal-IR scanner was used to examine the variability in temperature that may exist from one field to another and to determine realistic within-field temperature variations. It was found that the airborne and the ground-based data agreed very well and that there was less variability in the fields that were completely covered with crops than those of bare soil.

  20. Simulation of rice yield under different irrigation and nitrogen application managements by CropSyst model

    Directory of Open Access Journals (Sweden)

    Narjes ZARE

    2015-12-01

    Full Text Available The aim of this study was the calibration and validation of CropSyst model for rice in the city of Rasht. The necessary data were extracted from a field experiment which was carried out during 2005-2007 in a split-plot design. The main plots were irrigation regimes including continuous flooding irrigation and 5-day irrigation intervals. The subplots consisted of four nitrogen levels: zero N application, 45, 60 and 75 kg N ha-1. Normalized Root Mean Squared Error (nRMSE and Residual Mass Coefficient (Crm in calibration years were 9.3 % and 0.06, respectively. In validation year, nRMSE and Crm were 9.7 % and 0.11, respectively. According to other indices to assess irrigation regimes and fertilizer levels, the most suitable treatments regarding environmental aspect were 5-day irrigation regime and 45 kg N ha-1.

  1. Carbon dynamics and aggregation in a Vicia faba crop: influence of management practice and cultivar

    Science.gov (United States)

    Sánchez-Navarro, Virginia; Zornoza, Raúl; Faz, Ángel; Fernández, Juan

    2016-04-01

    In this study, we assessed the influence of a legume crop (Vicia faba) on the soil properties related to the carbon (C) cycle and soil aggregation, taking into account two cultivars (Muchamiel and Palenca) and two different management practices (conventional and organic). The study was randomly designed in blocks with four replications, in plots of 10 m2. Faba bean crop spanned from 24 November 2014 to 2 March 2015. We took a soil sampling (0-30 cm) from each plot at the end of the cycle to measure soil organic C, recalcitrant C, labile C fractions, microbial biomass C (MBC), aggregate stability and the enzyme activities β-glucosidase, β-glucosaminidase, dehydrogenase, cellulose and arylesterase. Results showed that the cultivar and the management practice had no significant effect on any of the analyzed properties. Significant positive correlations were only observed between soil organic C and arylesterase activity, recalcitrant C and labile C fractions, and recalcitrant C with arylesterase and cellulase activities. So, it seems that the selected cultivars and management practices had similar effects on C dynamics and aggregation. Both management practices maintain the same levels of soil organic C, the different organic C pools, and aggregate stability. In addition, soil microorganisms are responding to the recalcitrant fraction of the organic carbon by release of cellulases and arylesterases. Acknowledgements: This research was financed by the FP7 European Project Eurolegume (FP7-KBBE- 613781).

  2. Low-Residue and Low-Fiber Diets in Gastrointestinal Disease Management12

    Science.gov (United States)

    Vanhauwaert, Erika; Matthys, Christophe; Verdonck, Lies; De Preter, Vicky

    2015-01-01

    Recently, low-residue diets were removed from the American Academy of Nutrition and Dietetics’ Nutrition Care Manual due to the lack of a scientifically accepted quantitative definition and the unavailability of a method to estimate the amount of food residue produced. This narrative review focuses on defining the similarities and/or discrepancies between low-residue and low-fiber diets and on the diagnostic and therapeutic values of these diets in gastrointestinal disease management. Diagnostically, a low-fiber/low-residue diet is used in bowel preparation. A bowel preparation is a cleansing of the intestines of fecal matter and secretions conducted before a diagnostic procedure. Therapeutically, a low-fiber/low-residue diet is part of the treatment of acute relapses in different bowel diseases. The available evidence on low-residue and low-fiber diets is summarized. The main findings showed that within human disease research, the terms “low residue” and “low fiber” are used interchangeably, and information related to the quantity of residue in the diet usually refers to the amount of fiber. Low-fiber/low-residue diets are further explored in both diagnostic and therapeutic situations. On the basis of this literature review, the authors suggest redefining a low-residue diet as a low-fiber diet and to quantitatively define a low-fiber diet as a diet with a maximum of 10 g fiber/d. A low-fiber diet instead of a low-residue diet is recommended as a diagnostic value or as specific therapy for gastrointestinal conditions. PMID:26567203

  3. Planetary opportunities in crop water management: Potential to outweigh cropland expansion

    Science.gov (United States)

    Jägermeyr, Jonas; Gerten, Dieter; Lucht, Wolfgang; Heinke, Jens

    2014-05-01

    Global available land and water resources probably cannot feed projected future human populations under current productivity levels. Moreover, the planetary boundaries of both land use change and water consumption are being approached rapidly, and at the same time competition between food production, bioenergy plantations and biodiversity conservation is increasing. Global cropland is expected to expand to meet future demands, while considerable yield gaps remain in many world regions. Yield increases in Sub-Saharan Africa, for example, are currently mainly based on expansion of arable land into currently non-agricultural areas - while small-scale irrigation and water conservancy methods are considered very promising to boost yields there. In the here presented modeling study we investigate, at global scale, to what degree different on-farm options to better manage green and blue water might contribute to a global crop yield increase under conditions of current climate and projected future climate change. We consider methods aiming for a maximization of crops' water use efficiency and an optimal use of available on-farm water (precipitation): reducing unproductive soil evaporation (vapor shift, VS), collecting surface runoff after rain events to mitigate subsequent dry-spells (rain-water harvesting, RWH), increasing irrigation efficiency, and expanding irrigated area into rain-fed cropland (based on water savings from higher efficiencies). Global yield simulations based on hypothetical scenarios of these management opportunities are performed with the LPJmL ecohydrological modeling framework driven by reanalysis data and GCM ensemble simulations. We consider a range of about 20 climate change projections to cover respective uncertainties, and we analyze the effects of increasing CO2 concentration on the crops and their water demand. Crops are represented in a process-based and dynamic way by 12 crop functional types, each for rain-fed and irrigated areas, with

  4. Evaluation of sodium hydrosulfite residue in sugar crop in Zanjan province and investigation the new alternative method for determination

    Directory of Open Access Journals (Sweden)

    M Mohseni

    2015-02-01

    Full Text Available Sodium hydrosulfite/blanket is used as a decolorizing agent for the bleaching of produced sugar in the sugar industry. Due to sensitivity of using this chemical substance with defined allowed range in sugar product, the sensitive and exact method of voltammetry/polarography was used to measure the residual blanket in this product and moreover, its results were compared with titration method as a common method for measurement of this substance in reference laboratories. Among the active sugar plants in Zanjan province, three different samples of loaf sugar batch were selected from each production unit based on sampling method of Standard and Industrial Research of Iran and all samples were evaluated using polarography 797 VA Computrace. Then, some of the samples evaluated by the polarography method were also checked with titration method and the results of the two methods were compared with each other. Statistical analysis of obtained data from polarography method shows that various sugar factories have different average sugar content values in blanket residual. Comparative system shows that titration method gives a more than usual response to the amount of blanket residual. Polarography method shows that the dithionite content in the samples ranged from

  5. Crop residue management in relation to sustainable land use : a case study in Burkina Faso

    NARCIS (Netherlands)

    Savadogo, M.

    2000-01-01

    Introduction

    Traditional agricultural production systems in Sub-Saharan Africa were based on transfer of nutrients by grazing animals from rangeland to cropland, combined with fallowing. These systems are under increasing pressure as a result of rapid population

  6. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  7. Residual and late complications of conservative management of condylar fracture

    International Nuclear Information System (INIS)

    ElAbdin, Hassan

    1989-01-01

    Due to the increased incidence of road traffic accidents, fractures of the facial skeleton are on the rise with condylar fracture being almost 50% in some societies. The latter is usually treated either surgically or conservatively. Advocates of the conservative approach believe that the only indication for surgical intervention is displacement of the fractured condyle with a magnitude and direction such that occlusion is impossible and function is deranged. This paper presents findings in eight patients with history of fractured condyle, who were managed conservatively but presented later with serious and late complications. (author)

  8. Effects of Planting Dates, Irrigation Management and Cover Crops on Growth and Yield of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-01-01

    Full Text Available Introduction Saffron as a winter active plant with low water requirement is the most strategic medicinal plant in arid and semi-arid parts of Iran. This slow-growing plant has narrow leaves and no aerial stem, hence weeds can be overcome it. Moreover, because of its root and canopy structure an important part of different resources is not used by this low input crop. Therefore, the use of associated crops could be an effective way for increasing resources use efficiencies (Koocheki et al., 2016. Appropriate corm planting date is another important factor that affects saffron growth and yield. Results of some studies show that late spring is the best time for corm planting (Ghasemi-Rooshnavand, 2009; Koocheki et al., 2016. In addition, irrigation management has been evaluated in some studies, but irrigation immediately after corm planting has not been investigated previously. Therefore, the aim of this study was to investigate the effect of irrigation management, planting date and the use of some companion crops on flowering of saffron during two growth cycles. Materials and methods This experiment was carried out as a split-split plot experiment based on a Randomized Complete Block Design with three replications at Research Station, Ferdowsi University of Mashhad, Iran in 2009-2011. Experimental factors included: planting date of saffron as main factor (first of June, first of August and first of October, 2009, the irrigation management as sub factor (irrigation and no irrigation after each planting date and the companion crops as sub-sub factor [Persian clover (Trifolium resupinatum, Bitter vetch (Lathyrus sativus and control. Corm planting was done in 10×25 cm distances with 12 cm depth. In the second year irrigation was done again in the plots which were irrigated after planting in the first year at the same previous dates. Companion crops were sown after first flower picking (November, 2009, then their residue were returned to the soil in

  9. Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium.

    Science.gov (United States)

    Lu, Qian; Li, Jun; Wang, Jinghan; Li, Kun; Li, Jingjing; Han, Pei; Chen, Paul; Zhou, Wenguang

    2017-11-01

    The ability of algae to produce lipids comprising of unsaturated fatty acids varies with strains and culture conditions. This study investigates the effect of temperature on the production of unsaturated fatty acids in Scenedesmus sp. grown on oil crop residue based medium. At low temperature (10°C), synthesis of lipids compromising of high contents of unsaturated fatty acids took place primarily in the early stage while protein accumulation mainly occurred in the late stage. This stepwise lipid-protein synthesis process was found to be associated with the contents of acetyl-CoA and α-KG in the algal cells. A mechanism was proposed and tested through simulation experiments which quantified the carbon flux allocation in algal cells at different cultivation stages. It is concluded that low culture temperature such as 10°C is suitable for the production of lipids comprising of unsaturated fatty acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integrated pest management of the southern green stinkbug, Nezara viridula on tomato crop using trap and refuge crops

    Science.gov (United States)

    The Southern Green Stinkbug, Nezara viridula (L.) Hemiptera: Pentatomidae is a serious insect pest of tomato crop in tropical and sub-tropical countries. The green stinkbug is difficult to control with currently available insecticides on the market. In this study we investigated the potential use of...

  11. Three years monitoring survey of pesticide residues in Sardinia wines following integrated pest management strategies.

    Science.gov (United States)

    Angioni, Alberto; Dedola, Fabrizio

    2013-05-01

    This paper reports the results of a pesticide monitoring survey on wine grapes from the 2008-2010 vintage from vineyards grown according to integrated pest management strategies. A multi-residue gas chromatography-mass spectrometry method in electron ionization and chemical ionization mode has been used for the determination of 30 pesticides in wine samples. The analytical method showed good recoveries and allowed a good separation of the selected pesticides. Repeatability and intermediate precision showed good results with CV < 20 %. The instrumental method limits of determination (LOD) and of quantification (LOQ) were below the maximum residue levels set in wine. The analysis of the wines showed that pesticide residues were below the instrumental LOQ, and most of them were undetectable (residues.

  12. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  13. Matching soil salinization and cropping systems in communally managed irrigation schemes

    Science.gov (United States)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  14. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization

    Directory of Open Access Journals (Sweden)

    Rui Manuel Almeida Machado

    2017-05-01

    Full Text Available Salinity is a major problem affecting crop production all over the world: 20% of cultivated land in the world, and 33% of irrigated land, are salt-affected and degraded. This process can be accentuated by climate change, excessive use of groundwater (mainly if close to the sea, increasing use of low-quality water in irrigation, and massive introduction of irrigation associated with intensive farming. Excessive soil salinity reduces the productivity of many agricultural crops, including most vegetables, which are particularly sensitive throughout the ontogeny of the plant. The salinity threshold (ECt of the majority of vegetable crops is low (ranging from 1 to 2.5 dS m−1 in saturated soil extracts and vegetable salt tolerance decreases when saline water is used for irrigation. The objective of this review is to discuss the effects of salinity on vegetable growth and how management practices (irrigation, drainage, and fertilization can prevent soil and water salinization and mitigate the adverse effects of salinity.

  15. Nitrogen fertilization management and nitrogen (15N) utilization by corn crop in red latosol

    International Nuclear Information System (INIS)

    Duete, Robson Rui Cotrim; Ambrosano, Edmilson Jose

    2008-01-01

    Nitrogen is the nutrient that is most absorbed by corn crop, influences grain yield most, and requires the most complex management. The objective of this work was to evaluate the effect of nitrogen (urea 15 N) rate and split-applications, on grain yield, N fertilizer utilization and amount of soil native N absorbed by corn crop in a Red Latosol. The experiment was arranged in a randomized complete block design, with nine treatments and four replications, represented by five N rates: 0, 55, 95, 135 and 175 kg ha -1 N, 15 kg of N applied at sowing, and the remaining amount in different split-applications: 40 and 80 kg ha -1 applied in single rates in the 8-leaf stage or half in the 4-leaf stage + half in the 8-leaf stage; 120 kg ha -1 split in 1/2 + 1/2 or 1/3 + 1/3 + 1/3 in the 4, 8 or 12-leaf stage; 160 kg ha-1 split in 1/4 + 3/8 + 3/8 or 1/4 + 1/4 + 1/4 + 1/4 in the 4, 8, 12-leaf stages or at flowering and pollination. The N fertilizer use by corn was, on average, 39 %, and the soil was the main source of the nutrient for the crop. With three split applications of 135 kg ha-1 N, until 8 leaves, the N fertilizer use is most efficient (52 %) and the grain yield highest (author)

  16. Soil Fungal Resources in Annual Cropping Systems and Their Potential for Management

    Science.gov (United States)

    Esmaeili Taheri, Ahmad; Bainard, Luke D.; Yang, Chao; Navarro-Borrell, Adriana; Hamel, Chantal

    2014-01-01

    Soil fungi are a critical component of agroecosystems and provide ecological services that impact the production of food and bioproducts. Effective management of fungal resources is essential to optimize the productivity and sustainability of agricultural ecosystems. In this review, we (i) highlight the functional groups of fungi that play key roles in agricultural ecosystems, (ii) examine the influence of agronomic practices on these fungi, and (iii) propose ways to improve the management and contribution of soil fungi to annual cropping systems. Many of these key soil fungal organisms (i.e., arbuscular mycorrhizal fungi and fungal root endophytes) interact directly with plants and are determinants of the efficiency of agroecosystems. In turn, plants largely control rhizosphere fungi through the production of carbon and energy rich compounds and of bioactive phytochemicals, making them a powerful tool for the management of soil fungal diversity in agriculture. The use of crop rotations and selection of optimal plant genotypes can be used to improve soil biodiversity and promote beneficial soil fungi. In addition, other agronomic practices (e.g., no-till, microbial inoculants, and biochemical amendments) can be used to enhance the effect of beneficial fungi and increase the health and productivity of cultivated soils. PMID:25247177

  17. Modeling the potential benefits of catch-crop introduction in fodder crop rotations in a Western Europe landscape.

    Science.gov (United States)

    Moreau, P; Ruiz, L; Raimbault, T; Vertès, F; Cordier, M O; Gascuel-Odoux, C; Masson, V; Salmon-Monviola, J; Durand, P

    2012-10-15

    Among possible mitigation options to reduce agricultural-borne nitrate fluxes to water bodies, introduction of catch crop before spring crops is acknowledged as a cost-efficient solution at the plot scale, but it was rarely assessed at the catchment level. This study aims to evaluate a set of catch crop implantation scenarios and their consequences in a coastal catchment prone to eutrophication. The objectives are (i) to discuss the potential benefits of catch crop introduction taking into account the limitations due to the physiographic and agricultural context of the area (ii) to propose a multicriteria classification of these scenarios as a basis for discussion with stakeholders. We used the distributed agro-hydrological model TNT2 to simulate 25 scenarios of catch crop management, differing in length of catch crop growing period, place in the crop rotation and residue management. The scenarios were classified considering the variations in main crop yields and either nitrogen fluxes in stream or the global nitrogen mass balance at the catchment level. The simulations showed that in the catchment studied, little improvement can be expected from increasing the catch crop surface. Catch crop cultivation was always beneficial to reduce nitrogen losses, but led to adverse effects on main crop yields in some cases. Among the scenarios involving additional catch crop surface, introducing catch crop between two winter cereals appeared as the most promising. The classification of scenarios depended on the chosen criteria: when considering only the reduction of nitrogen fluxes in streams, exporting catch crop residues was the most efficient while when considering the global nitrogen mass balance, soil incorporation of catch crop residues was the most beneficial. This work highlights the interest, while using integrated models, of assessing simulated scenarios with multicriteria approach to provide stakeholder with a picture as complete as possible of the consequences of

  18. Nuclear techniques in the development of management practices for multiple cropping systems

    International Nuclear Information System (INIS)

    1980-11-01

    The need for a new coordinated research programme was considered, aimed at the development of adequate fertilizer and water management practices for multiple cropping systems while taking into account soil properties and prevailing weather conditions. Ten papers were presented, followed by a summary of recommendations and a list of participants. Eight of the papers have been entered individually into the INIS data base. The remaining two papers, one on the role of legumes in intercropping systems (presented by Rajat De from New Delhi) and the other on the need for agroforestry and special considerations regarding field research (by P.A. Huxley from Nairobi) assess prevailing conditions but do not discuss isotope application

  19. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review

    International Nuclear Information System (INIS)

    Wu, Wei; Ma, Baoluo

    2015-01-01

    The increasing food demands of a growing human population and the need for an environmentally friendly strategy for sustainable agricultural development require significant attention when addressing the issue of enhancing crop productivity. Here we discuss the role of integrated nutrient management (INM) in resolving these concerns, which has been proposed as a promising strategy for addressing such challenges. INM has multifaceted potential for the improvement of plant performance and resource efficiency while also enabling the protection of the environment and resource quality. This review examines the concepts, objectives, procedures and principles of INM. A comprehensive literature search revealed that INM enhances crop yields by 8–150% compared with conventional practices, increases water-use efficiency, and the economic returns to farmers, while improving grain quality and soil health and sustainability. Model simulation and fate assessment further reveal that reactive nitrogen (N) losses and GHG (greenhouse gas) emissions are reduced substantially under advanced INM practices. Lower inputs of chemical fertilizer and therefore lower human and environmental costs (such as intensity of land use, N use, reactive N losses and GHG emissions) were achieved under advanced INM practices without compromising crop yields. Various approaches and perspectives for further development of INM in the near future are also proposed and discussed. Strong and convincing evidence indicates that INM practice could be an innovative and environmentally friendly strategy for sustainable agriculture worldwide. - Highlights: • The increasing pressure to meet global cereal demand poses great challenge. • A changing environment further threatens cereal production. • Literature summary shows 8–150% yield advantage from use of INM method. • INM contributions to mitigation of environmental costs are remarkable. • High crop productivity and less environmental impact can be

  20. Evaluation of mulching materials as integrated weed management component in maize crop

    International Nuclear Information System (INIS)

    Shah, F.U.

    2014-01-01

    Yield losses by weeds in maize crop and demonstrated efficacy of various mulches in weed management led to check the efficacy of various available mulches for suppressing weeds in maize crop at National Agricultural Research Centre (NARC), Islamabad during kharif (autumn) season 2011. The experiment was laid in Randomized Complete Block Design, (RBCD) having eight treatments and four replications. The treatments were black plastic, white plastic, sugarcane straw, wheat straw, live mulch, weeds as mulch, hand weeding and weedy check. Weed data included weed density m, fresh and dry weight g m, while crop data included crop density m, fresh and dry weight g m, number of plant plot, stover yield (g), plant height (cm), number of cobs plant, number of leaves plant, average grain number of five cobs and grain yield (t ha). With the exception of hand weeding, minimum number of weeds 128 m and 164 m were recorded in black plastic and weeds as mulch, respectively, compared to 595 min weedy check. Similarly, maximum grain yields (1.91 and 1.85 tha) were recorded in black plastic and weeds as mulch, while minimum grain yield (0.64 t ha) was recorded in weedy check plots. The economic net returns of black plastic mulch and weeds as mulch were Rs. 39,824 and Rs. 38,291, respectively as compared to Rs. 21431 for weedy check. Yield increased by 21.1 and 16.5% over hand weeding by plastic mulch and weeds as mulch, respectively. Black plastic followed by weeds as mulch, are recommended to control weeds and get maximum yield as well as net economic return. (author)

  1. Effect of nitrogen fertilization and residue management practices on ammonia emissions from subtropical sugarcane production

    Science.gov (United States)

    mudi, Sanku Datta; Wang, Jim J.; Dodla, Syam Kumar; Arceneaux, Allen; Viator, H. P.

    2016-08-01

    Ammonia (NH3) emission from soil is a loss of nitrogen (N) nutrient for plant production as well as an issue of air quality, due to the fact that it is an active precursor of airborne particulate matters. Ammonia also acts as a secondary source of nitrous oxide (N2O) emission when present in the soil. In this study, the impacts of different sources of N fertilizers and harvest residue management schemes on NH3 emissions from sugarcane production were evaluated based on an active chamber method. The field experiment plots consisting of two sources of N fertilizer (urea and urea ammonium nitrate (UAN)) and two common residue management practices, namely residue retained (RR) and residue burned (RB), were established on a Commerce silt loam. The NH3 volatilized following N fertilizer application was collected in an impinger containing diluted citric acid and was subsequently analyzed using ion chromatography. The NH3 loss was primarily found within 3-4 weeks after N application. Average seasonal soil NH3 flux was significantly greater in urea plots with NH3-N emission factor (EF) twice or more than in UAN plots (2.4-5.6% vs. 1.2-1.7%). The RR residue management scheme had much higher NH3 volatilization than the RB treatment regardless of N fertilizer sources, corresponding to generally higher soil moisture levels in the former. Ammonia-N emissions in N fertilizer-treated sugarcane fields increased with increasing soil water-filled pore space (WFPS) up to 45-55% observed in the field. Both N fertilizer sources and residue management approaches significantly affected NH3 emissions.

  2. Automated multi-plug filtration cleanup for liquid chromatographic-tandem mass spectrometric pesticide multi-residue analysis in representative crop commodities.

    Science.gov (United States)

    Qin, Yuhong; Zhang, Jingru; Zhang, Yuan; Li, Fangbing; Han, Yongtao; Zou, Nan; Xu, Haowei; Qian, Meiyuan; Pan, Canping

    2016-09-02

    An automated multi-plug filtration cleanup (m-PFC) method on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. The automatic device was aimed to reduce labor-consuming manual operation workload in the cleanup steps. It could control the volume and the speed of pulling and pushing cycles accurately. In this work, m-PFC was based on multi-walled carbon nanotubes (MWCNTs) mixed with other sorbents and anhydrous magnesium sulfate (MgSO4) in a packed tip for analysis of pesticide multi-residues in crop commodities followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. It was validated by analyzing 25 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Salts, sorbents, m-PFC procedure, automated pulling and pushing volume, automated pulling speed, and pushing speed for each matrix were optimized. After optimization, two general automated m-PFC methods were introduced to relatively simple (apple, citrus fruit, peanut) and relatively complex (spinach, leek, green tea) matrices. Spike recoveries were within 83 and 108% and 1-14% RSD for most analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination >0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Assessing biogeochemical effects and best management practice for a wheat-maize cropping system using the DNDC model

    Science.gov (United States)

    Cui, F.; Zheng, X.; Liu, C.; Wang, K.; Zhou, Z.; Deng, J.

    2014-01-01

    Contemporary agriculture is shifting from a single-goal to a multi-goal strategy, which in turn requires choosing best management practice (BMP) based on an assessment of the biogeochemical effects of management alternatives. The bottleneck is the capacity of predicting the simultaneous effects of different management practice scenarios on multiple goals and choosing BMP among scenarios. The denitrification-decomposition (DNDC) model may provide an opportunity to solve this problem. We validated the DNDC model (version 95) using the observations of soil moisture and temperature, crop yields, aboveground biomass and fluxes of net ecosystem exchange of carbon dioxide, methane, nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from a wheat-maize cropping site in northern China. The model performed well for these variables. Then we used this model to simulate the effects of management practices on the goal variables of crop yields, NO emission, nitrate leaching, NH3 volatilization and net emission of greenhouse gases in the ecosystem (NEGE). Results showed that no-till and straw-incorporated practices had beneficial effects on crop yields and NEGE. Use of nitrification inhibitors decreased nitrate leaching and N2O and NO emissions, but they significantly increased NH3 volatilization. Irrigation based on crop demand significantly increased crop yield and decreased nitrate leaching and NH3 volatilization. Crop yields were hardly decreased if nitrogen dose was reduced by 15% or irrigation water amount was reduced by 25%. Two methods were used to identify BMP and resulted in the same BMP, which adopted the current crop cultivar, field operation schedules and full straw incorporation and applied nitrogen and irrigation water at 15 and 25% lower rates, respectively, than the current use. Our study indicates that the DNDC model can be used as a tool to assess biogeochemical effects of management alternatives and identify BMP.

  4. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2000-06-01

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  5. Statistical modeling to management and treatment of scrap with low and very low residual activity

    International Nuclear Information System (INIS)

    Garcia-Bermejo Fernandez, R.; Anaya Lazaro, M.

    2011-01-01

    The experience of recent years on the management of scrap metal containing residual activity have allowed the development of a simple statistical model for the management of these materials. This statistical model includes a breakdown of the various processing operations to which these materials undergo and the effects in the process of radiological controls associated to the control of declassification that defines disposal (recycled by smelting, reclamation, temporary storage the plant or sent to final storage of radioactive waste.

  6. Use of isotope and radiation methods in soil and water management and crop nutrition. Manual

    International Nuclear Information System (INIS)

    2001-01-01

    This publication is a replacement for the IAEA Training Course Series No. 2 'Use of Nuclear Techniques in Studies of Soil-Plant Relationships' published in 1990. This edition, prepared by staff of the Soil Science Unit, Seibersdorf, and the Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, differs in many respects from its predecessor both in terms of content and objectives. The earlier publication provided basic information for use in interregional training courses held at regular intervals at the Seibersdorf Laboratories. Since the discontinuation of these training courses in 1996, the need for dissemination of up to date information to Member States has become more acute, particularly in view of the evolution of new methodologies during the past decade and new applications of existing methodologies to monitor the dynamics of soil, water and nutrients in cropping systems, and to pilot test interventions to conserve the natural resource base and optimize the availability of water and nutrients to crops. The present publication attempts to fulfill a part of this need. The manual provides an overview of the use of nuclear techniques in soil science and plant nutrition, balancing the need for a comprehensive coverage of a multitude of techniques involving isotopic tracers and sealed or unsealed sources, while giving sufficient depth to be of practical value to the end-users - students, technicians, scientists in national agricultural research systems and fellowship trainees. In this respect it is important to emphasize that nuclear techniques do not in themselves provide solutions to real world problems - they provide tools which when used in conjunction with other techniques, provide precise and specific information necessary to understand system dynamics and hence the value of alternative management practices to improve system productivity and resource conservation. This publication

  7. Solid waste management with the help of vermicomposting and its applications in crop improvement

    Directory of Open Access Journals (Sweden)

    Nandita Mehta

    2013-01-01

    Full Text Available Management of solid waste has become one of the biggest problems that we are facing today. Vermicomposting is the better option to tackle with this problem. Vermicomposting is the process of conversion of organic wastes by earthworms to valuable humus like material which is used as a natural soil conditioner. Vermicomposting is environment friendly and cost effective technique for solid waste management. Vermicomposting serves two main purposes for the welfare of humans as it helps in the degradation of solid waste and the cast produced during this process is used as a natural fertilizer. Vermicompost is much better than chemical fertilizer because it is not associated with any kind of risk. Earthworms are potentially important creatures that are capable of transforming garbage into gold. Eisenia fetida is the most commonly used species of earthworms for vermicomposting. Vermicomposting is a mesophilic process and should be maintained up to 32°C with the moisture content of 60-80%. Earthworms break down organic matter and leave behind castings that are an exceptionally valuable fertilizer. Vermicomposting has many applications in crop improvement such as pathogen destruction, water holding capacity of soil, improved crop growth and yield, improved soil physical, chemical and biological properties and production of plant growth regulators.

  8. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    Science.gov (United States)

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  9. Integrated crop water management might sustainably halve the global food gap

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.

    2016-02-01

    As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.

  10. Root Parameters Show How Management Alters Resource Distribution and Soil Quality in Conventional and Low-Input Cropping Systems in Central Iowa.

    Directory of Open Access Journals (Sweden)

    Patricia A Lazicki

    Full Text Available Plant-soil relations may explain why low-external input (LEI diversified cropping systems are more efficient than their conventional counterparts. This work sought to identify links between management practices, soil quality changes, and root responses in a long-term cropping systems experiment in Iowa where grain yields of 3-year and 4-year LEI rotations have matched or exceeded yield achieved by a 2-year maize (Zea mays L. and soybean (Glycine max L. rotation. The 2-year system was conventionally managed and chisel-ploughed, whereas the 3-year and 4-year systems received plant residues and animal manures and were periodically moldboard ploughed. We expected changes in soil quality to be driven by organic matter inputs, and root growth to reflect spatial and temporal fluctuations in soil quality resulting from those additions. We constructed a carbon budget and measured soil quality indicators (SQIs and rooting characteristics using samples taken from two depths of all crop-phases of each rotation system on multiple dates. Stocks of particulate organic matter carbon (POM-C and potentially mineralizable nitrogen (PMN were greater and more evenly distributed in the LEI than conventional systems. Organic C inputs, which were 58% and 36% greater in the 3-year rotation than in the 4-year and 2-year rotations, respectively, did not account for differences in SQI abundance or distribution. Surprisingly, SQIs did not vary with crop-phase or date. All biochemical SQIs were more stratified (p<0.001 in the conventionally-managed soils. While POM-C and PMN in the top 10 cm were similar in all three systems, stocks in the 10-20 cm depth of the conventional system were less than half the size of those found in the LEI systems. This distribution was mirrored by maize root length density, which was also concentrated in the top 10 cm of the conventionally managed plots and evenly distributed between depths in the LEI systems. The plow-down of organic amendments

  11. Utilization of crops residues as compost and biochar for improving soil physical properties and upland rice productivity

    Directory of Open Access Journals (Sweden)

    J. Barus

    2016-07-01

    Full Text Available The abundance of crops waste in the agricultural field can be converted to organic fertilizer throughout the process of composting or pyrolysis to return back into the soil. The study aimed to elucidate the effect of compost and biochar application on the physical properties and productivity of upland rice at Village of Sukaraja Nuban, Batanghari Nuban Sub district, East Lampung Regency in 2015. The amendment treatments were A. control; B. 10 t rice husk biochar/ ha; C. 10 t maize cob biochar/ha; D. 10 t straw compost/ha; E. 10 t stover compost/ha, F. 10 t rice husk biochar/ha + 10 t straw compost/ha; F. 10 t maize cob biochar/ha + 10 t maize stover compost/ha. The treatments were arranged in randomized block design with four replicates. The plot size for each treatment was 10 x 20 m. After incubation for about one month, undisturbed soil samples were taken using copper ring at 10–20 cm depth for laboratory analyzes. Analyses of soil physical properties included bulk density, particle density, total porosity, drainage porosity, and soil water condition. Plant observations conducted at harvest were plant height, number of panicle, number of grain/panicle, and grain weight/plot. Results of the study showed that biochar and compost improved soil physical properties such as bulk density, total porosity, fast drainage pores, water content, and permeability of soil. The combination of rice husk biochar and straw compost gave better effect than single applications on rice production components (numbers of panicle and grains of rice, and gave the highest yield of 4.875 t/ha.

  12. Phosphorus management in cropping systems of the Paris Basin: From farm to regional scale.

    Science.gov (United States)

    Le Noë, Julia; Garnier, Josette; Billen, Gilles

    2018-01-01

    The sustainability of phosphorus (P) fertilization in cropping systems is an important issue because P resources on earth are limited and excess P in soils can lead to ecological damage such as eutrophication. Worldwide, there is an increasing interest in organic farming (OF) due to its good environmental performance. However, organic cropping systems are suspected of generating negative P budgets, which questions their ability to provide sustainable P management. The design of agricultural systems at a broader scale also largely influences the shape of the P cycle and the possibility of its recycling to cropland. In this context, the aim of this study was to assess the relative influence of (i) OF versus conventional farming (CF) practices and (ii) the structure of agro-food systems at the regional scale, on P cycling and availability on cropland. For this purpose, we examined P budgets and soil P status of 14 organic and conventional cropping systems in commercial farms located in the Paris Basin. Available P was analyzed using two different methods: resin P and Olsen P. The results revealed no significant differences between CF and OF in available P stocks. Phosphorus budgets were always negative and significantly lower in CF systems, indicating that P was mined from soil reserves. In parallel, we estimated P budgets over cropland in all French regions for two distinct periods, 2004-2014 and 1970-1981, and showed that specialized intensive cropping systems in the Paris Basin led to a high, positive P budget in the latter period. However, this trend was reversed in the 2004-2014 period due to a sharp reduction of the mineral fertilizer application rate. The shift from very high P budgets to much lower and sometimes negative P budgets would not be a threat for agriculture due to the current high level of Olsen P in these regions, which was consistent with our measurements at the plot scale. Overall, these results suggest that OF would not lead to more P deficiency

  13. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    Science.gov (United States)

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  14. Review of anthraquinone applications for pest management and agricultural crop protection.

    Science.gov (United States)

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  15. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion.

    Science.gov (United States)

    Corneli, Elisa; Dragoni, Federico; Adessi, Alessandra; De Philippis, Roberto; Bonari, Enrico; Ragaglini, Giorgio

    2016-07-01

    Aim of this study was to evaluate the suitability of ensiled giant reed, ensiled maize, ensiled olive pomace, wheat bran for combined systems (CS: dark fermentation+anaerobic digestion (AD)) producing hydrogen-rich biogas (biohythane), tested in batch under basic operational conditions (mesophilic temperatures, no pH control). Substrates were also analyzed under a single stage AD batch test, in order to investigate the effects of DF on estimated energy recovery (ER) in combined systems. In CS, maize and wheat bran exhibited the highest hydrogen potential (13.8 and 18.9NLkgVS(-1)) and wheat bran the highest methane potential (243.5NLkgVS(-1)). In one-stage AD, giant reed, maize and wheat bran showed the highest methane production (239.5, 267.3 and 260.0NLkgVS(-1)). Butyrate/acetate ratio properly described the dark fermentation, correlating with hydrogen production (r=0.92). Wheat bran proved to be a promising residue for CS in terms of hydrogen/methane potential and ER. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rethinking the Risk Management Process for Genetically Engineered Crop Varieties in Small-scale, Traditionally Based Agriculture

    Directory of Open Access Journals (Sweden)

    David A. Cleveland

    2005-06-01

    Full Text Available Proponents of genetically engineered (GE crops often assume that the risk management used in the industrial world is appropriate for small-scale, traditionally based agriculture in the Third World. Opponents of GE crops often assume that risk management is inappropriate for the Third World, because it is inherently biased in favor of the industrial world. We examine both of these assumptions, by rethinking risk management for GE crops and transgenes, using the example of maize transgene flow from the U.S. to Mexico. Risk management for the Third World is a necessary first step of a broader benefit-cost analysis of GE crops, which would include comparisons with existing varieties and with alternative varieties such as transgenic farmer varieties and organic varieties. Our goal is to use existing information on GE crops and on the social and biological characteristics of Third World agriculture to identify key processes that need to be considered in risk management, and the additional research required to adequately understand them. The four main steps in risk management are hazard identification, risk analysis (exposure x harm, risk evaluation, and risk treatment. We use informal event trees to identify possible exposure to GE crops and transgenes, and resulting biological and social harm; give examples of farmers' ability to evaluate social harm; and discuss the possibilities for risk treatment. We conclude that risk management is relevant for Third World agriculture, but needs to be based on the unique biological and social characteristics of small-scale, traditionally based agriculture, including the knowledge and values of Third World farmers and consumers.

  17. Managing soil microbial communities in grain production systems through cropping practices

    Science.gov (United States)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  18. Potential of Three Trap Crops in Managing Nezara viridula (Hemiptera: Pentatomidae) on Tomatoes in Florida.

    Science.gov (United States)

    Gordon, T L; Haseeb, M; Kanga, L H B; Legaspi, J C

    2017-12-05

    The southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), is a serious insect pest of tomatoes in Florida. In this study, we examined the use of three species of trap crops to manage N. viridula in North Florida tomato crops in 2014 and 2015. We used striped sunflower (Helianthus annuus) (Asterales: Asteraceae) and wild game feed sorghum (Sorghum bicolor) (Poales: Poaceae) in both years, but different species of millet each year: browntop millet (Panicum ramosum) (Poales: Poaceae) in 2014 and pearl millet (Pennisetum glaucum) (Poales: Poaceae) in 2015. The number of stink bug adults collected from wild game feed sorghum exceeded the number from sunflower, and none were collected from either species of millet. Sorghum attracted a significantly higher number of adults than did striped sunflower; however, both sunflower and sorghum attracted the adults of N. viridula. Adults of the pest feed on the sorghum panicle and sunflower head (inflorescence). Although fewer stink bugs were found feeding on sunflower, the sunflower was found to be a good source of other natural enemies and pollinators and also attracted significantly greater numbers of the brown stink bug Euschistus servus (Say) (Hemiptera: Pentatomidae) (another pest of tomatoes). While this study demonstrated the effectiveness of sorghum, we recommend that sorghum be planted with another trap crop, preferably sunflower, for better preventive control of the southern green stink bug. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Pest and disease management of soilless culture [vegetable and ornamental crops

    International Nuclear Information System (INIS)

    Wilfried Schnitzler, H.

    2005-01-01

    Any soilless cropping system requires a continuous supply of water and nutrient solution in open or closed circulation. Technical set-up of open systems is simple and spread of root infesting pathogens is limited, but excessive nutrient solution run-off causes environmental hazards. Recirculating nutrient solution has ecological benefits but asks for exact crop management. Under certain conditions, pathogens can spread to endanger the crop. Nevertheless, today only closed systems should be considered. There are quite a number of different technologies available with more or less risks of plant root system damage due to pathogens. The choice of substrates for soilless cultivation is extensive, but they have always to be free of pathogens when applied first. When reused, they must be disinfected. Most destructive are phytopathogenic fungi, such as Pythium, Phytophthora and Olpidium, followed by viruses, bacteria and nematodes. Early on, the grower should take care to transplant healthy seedlings to avoid problems from the start. Also greenhouse structures can serve as infection sources as well as surface water for irrigation. Soilless cultivation has the huge advantage to optimize growing factors like temperature, water, pH and nutrients according to the plant need to reduce stress. Large operations with monocrops may choose sterilization of irrigation water. A number of practical options is available, chemicals (ozone, hydrogen peroxide, chlorine, iodine), UV irradiation, heating, membrane and slow- or bio-filtration. Biological control of root infesting pathogens offers very interesting new approaches, e.g. Bacillus subtilis strains, Streptomyces, Trichoderma, non-pathogenic Fusarium and V-micorrhiza strains besides fluorescent pseudomonads [it

  20. Rhizosphere organic anions play a minor role in improving crop species’ ability to take up residual phosphorus (P in agricultural soils low in P availability

    Directory of Open Access Journals (Sweden)

    Yanliang Wang

    2016-11-01

    Full Text Available Many arable lands have accumulated large reserves of residual phosphorus (P and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. Brassica napus showed 74-103% increase of malate in low P loam, compared with clay loam. Avena sativa had the greatest rhizosphere citrate concentration in all soils (5.3-15.2 mol g-1 root DW. Avena sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (36% and 40%, the greatest root mass ratio (0.51 and 0.66 in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron in the low-P loam. Brassica napus had 15-44% more rhizosphere APase activity, ~0.1-0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  1. Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability.

    Science.gov (United States)

    Wang, Yanliang; Krogstad, Tore; Clarke, Jihong L; Hallama, Moritz; Øgaard, Anne F; Eich-Greatorex, Susanne; Kandeler, Ellen; Clarke, Nicholas

    2016-01-01

    Many arable lands have accumulated large reserves of residual phosphorus (P) and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al, and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum , and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. B. napus showed 74-103% increase of malate in low P loam, compared with clay loam. A. sativa had the greatest rhizosphere citrate concentration in all soils (5.3-15.2 μmol g -1 root DW). A. sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (AMF; 36 and 40%), the greatest root mass ratio (0.51 and 0.66) in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron) in the low-P loam. B. napus had 15-44% more rhizosphere acid phosphatase (APase) activity, ~0.1-0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase, and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  2. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  3. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  4. Root Parameters Show How Management Alters Resource Distribution and Soil Quality in Conventional and Low-Input Cropping Systems in Central Iowa.

    Science.gov (United States)

    Lazicki, Patricia A; Liebman, Matt; Wander, Michelle M

    2016-01-01

    Plant-soil relations may explain why low-external input (LEI) diversified cropping systems are more efficient than their conventional counterparts. This work sought to identify links between management practices, soil quality changes, and root responses in a long-term cropping systems experiment in Iowa where grain yields of 3-year and 4-year LEI rotations have matched or exceeded yield achieved by a 2-year maize (Zea mays L.) and soybean (Glycine max L.) rotation. The 2-year system was conventionally managed and chisel-ploughed, whereas the 3-year and 4-year systems received plant residues and animal manures and were periodically moldboard ploughed. We expected changes in soil quality to be driven by organic matter inputs, and root growth to reflect spatial and temporal fluctuations in soil quality resulting from those additions. We constructed a carbon budget and measured soil quality indicators (SQIs) and rooting characteristics using samples taken from two depths of all crop-phases of each rotation system on multiple dates. Stocks of particulate organic matter carbon (POM-C) and potentially mineralizable nitrogen (PMN) were greater and more evenly distributed in the LEI than conventional systems. Organic C inputs, which were 58% and 36% greater in the 3-year rotation than in the 4-year and 2-year rotations, respectively, did not account for differences in SQI abundance or distribution. Surprisingly, SQIs did not vary with crop-phase or date. All biochemical SQIs were more stratified (pmanaged soils. While POM-C and PMN in the top 10 cm were similar in all three systems, stocks in the 10-20 cm depth of the conventional system were less than half the size of those found in the LEI systems. This distribution was mirrored by maize root length density, which was also concentrated in the top 10 cm of the conventionally managed plots and evenly distributed between depths in the LEI systems. The plow-down of organic amendments and manures established meaningful

  5. Water Use Efficiency of Cotton and Wheat Crops at Various Management Allowed Depletion in Lower Indus Basin

    Directory of Open Access Journals (Sweden)

    KHALIFA QASIML AGHARI

    2010-10-01

    Full Text Available This paper deals with contemporary irrigation water management of major crops in Lower Indus Basin of Pakistan. Field experiments were conducted to estimate the optimum WUE (Water Use Efficiency for various MAD (Management Allowed Depletion levels including 55, 65 and 75% for cotton crop, and 45, 55 and 65% for wheat crop. The daily actual crop Etca (Evapotranspiration was observed through gypsum blocks and a drainage Lysimeter. The observed seasonal cotton crops ETca in the experiments were 486, 413, and 397 mm for 55, 65, and 75% MAD levels, respectively. Similarly, wheat crops ETca observed were 363, 359, and 332mm for 45, 55, and 65% MAD levels, respectively. The WUE determined in terms of seed-cotton yield per unit of seasonal water use were 6.0, 6.5, and 5.8kg (ha mm-1 The corresponding values of WUE for wheat were 14.1, 15.0 and 13.4kg (ha mm-1. Hence; the highest WUE was achieved with MAD at 65% for cotton and at 55% for wheat.

  6. Automated multi-filtration cleanup with nitrogen-enriched activated carbon material as pesticide multi-residue analysis method in representative crop commodities.

    Science.gov (United States)

    Qin, Yuhong; Zhang, Jingru; Li, Yifan; Wang, Qiuxiao; Wu, Yangliu; Xu, Lanshu; Jin, Xiaojuan; Pan, Canping

    2017-09-15

    An automated multi-filtration cleanup (Auto m-FC) method with nitrogen-enriched activated carbon material based on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. It was applied to pesticide multi-residue analysis in six representative crop commodities. The automatic device was aimed to improve the cleanup efficiency and reduce manual operation workload in cleanup step. By controlling extracts volume, flow rate and Auto m-FC cycles, the device could finish cleanup process accurately. In this work, nitrogen-enriched activated carbon mixed with alternative sorbents and anhydrous magnesium sulfate (MgSO 4 ) was packed in a column for Auto m-FC and followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. This newly developed carbon material showed excellent cleanup performance. It was validated by analyzing 23 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Water addition volume, salts, sorbents, Auto m-FC procedure including the flow rate and the Auto m-FC cycles for each matrix were optimized. Then, three general Auto m-FC methods were introduced to high water content, high oil and starch content, difficult commodities. Spike recoveries were within 82 and 106% and 1-14% RSD for all analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination over 0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples. Copyright © 2017. Published by Elsevier B.V.

  7. Decomposição do resíduo de milho e variáveis relacionadas Corn crop residue decomposition and related parameters

    Directory of Open Access Journals (Sweden)

    I. Bertol

    2004-04-01

    Full Text Available A eficácia da semeadura direta na redução da erosão hídrica depende, em grande parte, da cobertura do solo ocasionada pelos resíduos das culturas. Objetivou-se determinar, entre agosto de 2001 e junho de 2002, em um Cambissolo Húmico alumínico léptico, situado entre 27 º 49 ' latitude Sul e 50 º 20 ' longitude Oeste de Greenwich, a decomposição do resíduo de milho. Os tratamentos, em três repetições, consistiram de: solo sem resíduo ou descoberto (SSR, solo com 8,77 Mg ha-1 de resíduo de milho (SR e solo com 8,77 Mg ha-1 de resíduo de milho mais 100 kg ha-1 de N (SR + N, avaliados em intervalos regulares de 30 dias. Determinou-se a quantidade do resíduo de milho, C orgânico e N total do referido resíduo. No solo, na camada de 0-0,03 m, foram avaliados C orgânico, N mineral, K trocável, pH em água, umidade e temperatura e, no ar, a temperatura a um metro acima da superfície do solo. O SR + N apresentou maior decomposição do resíduo de milho do que o SR, principalmente nos primeiros 120 dias, de tal modo que o tempo necessário para a quase que completa decomposição do resíduo (restando ainda cerca de 10 % da massa inicial seria de aproximadamente 1.300 dias, para o SR, e de aproximadamente 900 dias, para o SR + N.The efficacy of no-tillage systems in reducing water erosion depends largely on the soil cover by crop residues. The study was carried out in Santa Catarina State, Southern Brazil, from August 2001 to July 2002, aiming to evaluate the decay of corn residue on the surface of an Inseptisol and its influence on soil properties. The treatments, with three replicates, were: bare soil (BS, 8.77 Mg ha-1 of air dried corn residue (CR and 8.77 Mg ha-1 of air dried corn residue plus 100 kg ha-1 of nitrogen (CR + N. The remaining residue biomass on soil and its organic carbon and total nitrogen contents were evaluated every 30 days. It was also determined organic carbon, total nitrogen, potassium, pH, soil

  8. Laboratory Information Management Software for genotyping workflows: applications in high throughput crop genotyping

    Directory of Open Access Journals (Sweden)

    Prasanth VP

    2006-08-01

    Full Text Available Abstract Background With the advances in DNA sequencer-based technologies, it has become possible to automate several steps of the genotyping process leading to increased throughput. To efficiently handle the large amounts of genotypic data generated and help with quality control, there is a strong need for a software system that can help with the tracking of samples and capture and management of data at different steps of the process. Such systems, while serving to manage the workflow precisely, also encourage good laboratory practice by standardizing protocols, recording and annotating data from every step of the workflow. Results A laboratory information management system (LIMS has been designed and implemented at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT that meets the requirements of a moderately high throughput molecular genotyping facility. The application is designed as modules and is simple to learn and use. The application leads the user through each step of the process from starting an experiment to the storing of output data from the genotype detection step with auto-binning of alleles; thus ensuring that every DNA sample is handled in an identical manner and all the necessary data are captured. The application keeps track of DNA samples and generated data. Data entry into the system is through the use of forms for file uploads. The LIMS provides functions to trace back to the electrophoresis gel files or sample source for any genotypic data and for repeating experiments. The LIMS is being presently used for the capture of high throughput SSR (simple-sequence repeat genotyping data from the legume (chickpea, groundnut and pigeonpea and cereal (sorghum and millets crops of importance in the semi-arid tropics. Conclusion A laboratory information management system is available that has been found useful in the management of microsatellite genotype data in a moderately high throughput genotyping

  9. Combining pest control and resistance management: synergy of engineered insects with Bt crops.

    Science.gov (United States)

    Alphey, Nina; Bonsall, Michael B; Alphey, Luke

    2009-04-01

    Transgenic crops producing insecticidal toxins are widely used to control insect pests. Their benefits would be lost if resistance to the toxins became widespread in pest populations. The most widely used resistance management method is the high-dose/refuge strategy. This requires toxin-free host plants as refuges near insecticidal crops, and toxin doses intended to be sufficiently high to kill insects heterozygous for a resistant allele, thereby rendering resistance functionally recessive. We have previously shown by mathematical modeling that mass-release of harmless susceptible (toxin-sensitive) insects engineered with repressible female-specific lethality using release of insects carrying a dominant lethal ([RIDL] Oxitec Limited, United Kingdom) technology could substantially delay or reverse the spread of resistance and reduce refuge sizes. Here, we explore this proposal in depth, studying a wide range of scenarios, considering impacts on population dynamics as well as evolution of allele frequencies, comparing with releases of natural fertile susceptible insects, and examining the effect of seasonality. We investigate the outcome for pest control for which the plant-incorporated toxins are not necessarily at a high dose (i.e., they might not kill all homozygous susceptible and all heterozygous insects). We demonstrate that a RIDL-based approach could form an effective component of a resistance management strategy in a wide range of genetic and ecological circumstances. Because there are significant threshold effects for several variables, we expect that a margin of error would be advisable in setting release ratios and refuge sizes, especially as the frequency and properties of resistant alleles may be difficult to measure accurately in the field.

  10. Field Measurements of Trace Gases and Aerosols Emitted by Undersampled Combustion Sources Including Wood and Dung Cooking Fires, Garbage and Crop Residue Burning, and Indonesian Peat Fires

    Science.gov (United States)

    Stockwell, C.; Jayarathne, T. S.; Goetz, D.; Simpson, I. J.; Selimovic, V.; Bhave, P.; Blake, D. R.; Cochrane, M. A.; Ryan, K. C.; Putra, E. I.; Saharjo, B.; Stone, E. A.; DeCarlo, P. F.; Yokelson, R. J.

    2017-12-01

    Field measurements were conducted in Nepal and in the Indonesian province of Central Kalimantan to improve characterization of trace gases and aerosols emitted by undersampled combustion sources. The sources targeted included cooking with a variety of stoves, garbage burning, crop residue burning, and authentic peat fires. Trace gas and aerosol emissions were studied using a land-based Fourier transform infrared spectrometer, whole air sampling, photoacoustic extinctiometers (405 and 870nm), and filter samples that were analyzed off-line. These measurements were used to calculate fuel-based emission factors (EFs) for up to 90 gases, PM2.5, and PM2.5 constituents. The aerosol optical data measured included EFs for the scattering and absorption coefficients, the single scattering albedo (at 870 and 405 nm), as well as the absorption Ångström exponent. The emissions varied significantly by source, although light absorption by both brown and black carbon (BrC and BC, respectively) was important for all non-peat sources. For authentic peat combustion, the emissions of BC were negligible and absorption was dominated by organic aerosol. The field results from peat burning were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat and compare well to the limited data available from other field studies. The EFs can be used with estimates of fuel consumption to improve regional emissions inventories and assessments of the climate and health impacts of these undersampled sources.

  11. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  12. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    Science.gov (United States)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  13. First Characterization of Biomass Burning Smoke from Cooking Fires, Peat, Crop Residue and Other Fuels By High Resolution PTR-TOF Mass Spectrometry and FTIR

    Science.gov (United States)

    Stockwell, C.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2014-12-01

    Biomass burning (BB) is a major influence on Earth's atmosphere, but for many fire-types the emissions have only been measured for a few species. For all types of BB, progress has been limited by a lack of information on the emissions of semi-volatile organic gases that are precursors for secondary aerosol and ozone. During the Fourth Fire Lab at Missoula Experiment (FLAME-4), the BB emissions from 158 laboratory fires were quantified by ~40 scientists for an assortment of globally relevant fuels including rarely sampled sources such as US and Asian crop residue; Indonesian and extratropical peat; and cooking fires in traditional and advanced stoves. In this work, we present the primary emissions of gas-phase non-methane organic compounds (NMOCs) measured using an advanced Proton-Transfer-Reaction time-of-flight mass spectrometer (PTR-TOF-MS) in tandem with measurements of other major emissions by Fourier transform infrared (FTIR) spectroscopy. We developed a