WorldWideScience

Sample records for crop plant population

  1. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    Science.gov (United States)

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  2. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  3. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    Science.gov (United States)

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  4. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  5. SALT TOLERANCE OF CROP PLANTS

    OpenAIRE

    Hamdia, M. A; Shaddad, M. A. K.

    2010-01-01

    Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies) and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different pla...

  6. Protein improvement in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Rabson, R

    1974-07-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  7. Protein improvement in crop plants

    International Nuclear Information System (INIS)

    Rabson, R.

    1974-01-01

    There are compelling reasons for attempting to increase the quality and quantity of protein available in crop plants through plant breeding, despite the fact that some critics have argued that no worldwide protein shortage exists. What used to be thought of as a 'protein gap' has now come to be considered in terms of protein-calorie malnutrition. This is only right since protein and calorie nutrition are inextricable. t the moment there are still unanswered questions as to the precise protein requirements of humans as a function of age, health and ambient conditions. There are, in addition, some indications that the incidence of Kwashiorkor (protein deficiency disease) is increasing in different parts of the world. At a recent meeting of the Protein Advisory Group of the United Nations System, Dr. Jean Mayer, an eminent human nutritionist of Harvard University, U.S.A., indicated the reasons for concern for the current food situation generally, and the protein food supply in particular. These factors include: - Immoderate continuing human population increases, most pronounced in some poor developing countries. - The highly accelerated consumption of animal foods associated with increasing affluence in the richer countries of the world. The production of such foods as meat demands great expenditures of grain, which is an inefficient mode of obtaining the required calories and protein for human consumption. - The over-exploitation of many of the world's fishery resources resulting in reduced yields, perhaps irreversibly, of some fishes. - Recent price increases in petroleum and fertilizer products which have imposed a major obstacle to increasing crop production. - The apparent alteration of climates in places like Africa, Asia and other parts of the Northern hemisphere which may put significant restrictions on crop production. hey are cogent reasons to be seriously concerned about these matters. (author)

  8. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  9. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  10. in crop plants

    Directory of Open Access Journals (Sweden)

    Jan Antoni Rafalski

    2017-05-01

    Full Text Available Most important crop productivity traits, such as yield under normal and environmental stress conditions, are determined by a large number of genes, each with a small phenotypic effect. Genetic improvement of these traits through breeding or genetic engineering has been frustrating researchers in academia and industry. The reasons for this include the complexity of the traits, the difficulty of precise phenotyping and the lack of validated candidate genes. Different approaches to the discovery of the genetic architecture of such traits, such as Genetic Association Mapping and Genomic Selection and their engineering, are expected to yield benefits for farmers and consumers.

  11. SALT TOLERANCE OF CROP PLANTS

    Directory of Open Access Journals (Sweden)

    Hamdia, M. A

    2010-09-01

    Full Text Available Several environmental factors adversely affect plant growth and development and final yield performance of a crop. Drought, salinity, nutrient imbalances (including mineral toxicities and deficiencies and extremes of temperature are among the major environmental constraints to crop productivity worldwide. Development of crop plants with stress tolerance, however, requires, among others, knowledge of the physiological mechanisms and genetic controls of the contributing traits at different plant developmental stages. In the past 2 decades, biotechnology research has provided considerable insights into the mechanism of biotic stress tolerance in plants at the molecular level. Furthermore, different abiotic stress factors may provoke osmotic stress, oxidative stress and protein denaturation in plants, which lead to similar cellular adaptive responses such as accumulation of compatible solutes, induction of stress proteins, and acceleration of reactive oxygen species scavenging systems. Recently, the authores try to improve plant tolerance to salinity injury through either chemical treatments (plant hormones, minerals, amino acids, quaternary ammonium compounds, polyamines and vitamins or biofertilizers treatments (Asymbiotic nitrogen-fixing bacteria, symbiotic nitrogen-fixing bacteria and mycorrhiza or enhanced a process used naturally by plants to minimise the movement of Na+ to the shoot, using genetic modification to amplify the process, helping plants to do what they already do - but to do it much better."

  12. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  13. Individual plant care in cropping systems

    OpenAIRE

    Griepentrog, Hans W.; Nørremark, Michael; Nielsen, Henning; Blackmore, Simon

    2003-01-01

    Individual plant care cropping systems, embodied in precision farming, may lead to new opportunities in agricultural crop management. The objective of the project was to provide high accuracy seed position mapping of a field of sugar beet. An RTK GPS was retrofitted on to a precision seeder to map the seeds as they were planted. The average error between the seed map and the actual plant map was about 32 mm to 59 mm. The results showed that the overall accuracy of the estimated plant position...

  14. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations.

    Science.gov (United States)

    Uwimana, Brigitte; Smulders, Marinus J M; Hooftman, Danny A P; Hartman, Yorike; van Tienderen, Peter H; Jansen, Johannes; McHale, Leah K; Michelmore, Richard W; Visser, Richard G F; van de Wiel, Clemens C M

    2012-03-26

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F(1) hybrid was backcrossed to L. serriola to generate BC(1) and BC(2) populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC(1)S(1) and BC(2)S(1)). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC(1)S(1) and BC(2)S(1) hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC(1) and BC(2) hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. As it was shown that the crop contributed QTLs with either a positive

  15. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Directory of Open Access Journals (Sweden)

    Uwimana Brigitte

    2012-03-01

    Full Text Available Abstract Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (transgenes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1. Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency. Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop

  16. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    Science.gov (United States)

    2012-01-01

    Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1 hybrid was backcrossed to L. serriola to generate BC1 and BC2 populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1S1 and BC2S1). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1S1 and BC2S1 hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1 and BC2 hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop contributed QTLs with either a

  17. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  18. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    Science.gov (United States)

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-01-01

    The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835

  19. Effect of winter cover crops on nematode population levels in north Florida.

    Science.gov (United States)

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  20. Folates in plants: research advances and progress in crop biofortification

    Science.gov (United States)

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-03-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today’s knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  1. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants.

    Directory of Open Access Journals (Sweden)

    Jeri D Barak

    Full Text Available BACKGROUND: In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: This work examined the role of contaminated soil, the potential for crop debris to act as inoculum from one crop to the next, and any interaction between the seedbourne plant pathogen Xanthomonas campestris pv. vesicatoria and S. enterica on tomato plants. Our results show S. enterica can survive for up to six weeks in fallow soil with the ability to contaminate tomato plants. We found S. enterica can contaminate a subsequent crop via crop debris; however a fallow period between crop incorporation and subsequent seeding can affect contamination patterns. Throughout these studies, populations of S. enterica declined over time and there was no bacterial growth in either the phyllosphere or rhizoplane. The presence of X. campestris pv. vesicatoria on co-colonized tomato plants had no effect on the incidence of S. enterica tomato phyllosphere contamination. However, growth of S. enterica in the tomato phyllosphere occurred on co-colonized plants in the absence of plant disease. CONCLUSIONS/SIGNIFICANCE: S. enterica contaminated soil can lead to contamination of the tomato phyllosphere. A six week lag period between soil contamination and tomato seeding did not deter subsequent crop contamination. In the absence of plant disease, presence of the bacterial plant pathogen, X. campestris pv. vesicatoria was beneficial to S. enterica allowing multiplication of the human pathogen population. Any event leading to soil contamination with S. enterica could pose a public health risk with subsequent tomato production, especially in areas prone to bacterial spot disease.

  2. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; Tienderen, van P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.; Visser, R.G.F.; Wiel, van de C.C.M.

    2012-01-01

    After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The

  3. Crop Registration: The Pathway to Public Access of Plant Genetic Materials to Build Crops for the Future

    Science.gov (United States)

    Starting as Crop Science Registrations in the American Journal of the Society of Agronomy in 1926, and continuing 80+ years later in the Journal of Plant Registrations, 11,241 plant cultivars, germplasm, parental lines, genetic stocks and mapping populations have been registered as of December 31, 2...

  4. Populations in clonal plants

    Directory of Open Access Journals (Sweden)

    Jussi Tammisola

    1986-12-01

    Full Text Available Population phenomena in higher plants are reviewed critically, particularly in relation to clonality. An array of concepts used in the field are discussed. In contrast to animals, higher plants are modular in structure. Plant populations show hierarchy at two levels: ramets and genets. In addition, their demography is far more complicated, since even the direction of development of a ramet may change by rejuvenation. Therefore, formulae concerning animal populations often require modification for plants. Furthermore, at the zygotic stage, higher plants are generally less mobile than animals. Accordingly, their population processes tend to be more local. Most populations of plants have a genetic structure: alleles and genotypes are spatially aggregated. Due to the short-ranged foraging behaviour of pollinators, genetically non-random pollination prevails. A generalized formula for parent-offspring dispersal variance is derived. It is used to analyze the effect of clonality on genetic patchiness in populations. In self-compatible species, an increase in clonality will tend to increase the degree of patchiness, while in self-incompatible species a decrease may result. Examples of population structure studies in different species are presented. A considerable degree of genetic variation appears to be found also in the populations of species with a strong allocation of resources to clonal growth or apomictic seed production. Some consequences of clonality are considered from the point of view of genetic conservation and plant breeding.

  5. Plant factories; crop transpiration and energy balance

    NARCIS (Netherlands)

    Graamans, Luuk; Dobbelsteen, van den Andy; Meinen, Esther; Stanghellini, Cecilia

    2017-01-01

    Population growth and rapid urbanisation may result in a shortage of food supplies for cities in the foreseeable future. Research on closed plant production systems, such as plant factories, has attempted to offer perspectives for robust (urban) agricultural systems. Insight into the explicit role

  6. Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations

    NARCIS (Netherlands)

    Uwimana, B.; Smulders, M.J.M.; Hooftman, D.A.P.; Hartman, Y.; van Tienderen, P.H.; Jansen, J.; McHale, L.K.; Michelmore, R.W.; Visser, R.G.F.; van de Wiel, C.C.M.

    2012-01-01

    Background: After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural

  7. Control of volunteer soybean plants in sunflower crop

    Directory of Open Access Journals (Sweden)

    Alexandre Magno Brighenti

    2015-09-01

    Full Text Available Sunflower (Helianthus annuus sown offseason, after soybean crop (Glycine max, is affected by the competition imposed by volunteer plants. Two experiments were carried out to evaluate the control of volunteer soybean plants in sunflower crops. The sulfentrazone herbicide (75 g ha-1, 100 g ha-1 and 250 g ha-1 causes phytotoxicity to sunflower immediately after application, however, plants recover, with no yield losses. These doses do not cause the total death of volunteer soybean plants, but temporarily paralyzes their growth, avoiding the competition with the sunflower crop. The glufosinate ammonium and ametryn herbicides are effective in controlling volunteer soybean plants, however, symptoms of phytotoxicity in the sunflower crop are high, reflecting in losses of dry weight biomass and crop yield. The other treatments do not provide satisfactory control of volunteer soybean plants and even reduce the sunflower dry weight biomass and yield.

  8. Relationships between phenological and yield traits of the plant crop ...

    African Journals Online (AJOL)

    Multiple correlation of phenological and yield traits of the plant crop (PC) with those of the first ratoon crop (RC) of 36 Musa genotypes was carried out. The genotypes were landraces (triploid) belonging to AAA, AAB and ABB Musa genomic groups and hybrids (mostly tetraploid) thereof. The plants were grown under four ...

  9. Transfer of radionuclides to crop plants through roots. Radioiodine

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shigeo; Sumiya, Misako; Ohmomo, Yoichiro

    1987-07-01

    In an atmospheric discharge of radioiodines, direct deposition of the nuclides onto leaf surface must be the most significant pathway. However, root uptake is also of importance specifically for /sup 129/I because of its long half life of 1.57 x 10/sup 7/ years. In order to estimate the amount of the nuclide transferred to the crop plants from contaminated field, the experiments were carried out using solution culture. Rice plant, Oryza sativa cv. koshihikari, spinach, Spinacea oleracea L., radish, Raphanus sativus L., and the other four kinds of crop plants were exposed to culture solution in which Na/sup 131/I were contained. The transfer rates, defined as the ratio of activity of plant sample per day to the mean activity of culture solution, were calculated. And the differences by the organs of each crop plant and by plant species were discussed in this paper. Temporal critical crop plants for /sup 129/I were selected.

  10. Efficiency for solar energy conversion in rice population estimated from crop photosynthesis and respiration under field conditions (Part 1). Ratio of respiration to photosynthesis during the ripening stage. [Effect of planting data, heading time, variety, etc

    Energy Technology Data Exchange (ETDEWEB)

    Imaki, Tadashi; Ishizuka, Hitoshi; Hayakawa, Junji

    1987-12-21

    According to the results of measuring crop photosynthesis and respiration of rice population, a comparative experiment on the variations of the ratio of respiration to photosynthesis (R/P ratio) due to the difference of the rice planting time or the heading time was carried out using extremely early-maturing and early or medium-maturing varieties. On the measured data of photosynthesis and respiration which were observed with change of the growth, the R/P ratio were obtained twenty days before to thirty days after the heading time. As the results, it was found that the R/P ratio of the group with the heading time at the end of July was about 10 to 20 % higher than that of another group with the heading time after middle of August. This means that the apparent energy conversion efficiency may be affected by the differences of the planting time, the heading time and the temperature condition. Hitherto, in determination of the rice-planting time, quantity of solar radiation in the growth and ripening stages was apt to be regarded as important. However, in consideration of true suitable planting time, the study from the aspect of the energy conversion efficiency is also required. (7 figs, 9 tabs, 8 refs)

  11. Recruitment and attrition of associated plants under a shading crop canopy: Model selection and calibration

    NARCIS (Netherlands)

    Stilma, E.S.C.; Keesman, K.J.; Werf, van der W.

    2009-01-01

    Associated plant and animal diversity provides ecosystem services within crop production systems. The importance of the maintenance or restoration of diversity is therefore increasingly acknowledged. Here we study the population dynamics of associated annual plants (`weeds¿) during the growth of a

  12. Bacterial endophytes of perennial crops for management of plant disease

    OpenAIRE

    Melnick, Rachel L.; Bailey, B.A.; Backman, Paul A.

    2013-01-01

    Metadata only record Bacterial endophytes, microorganisms which inhabit the internal tissues of plants, can suppress disease and are often used as a biological control in annual crops. Less research, however, has been applied to the use of bacterial endophytes to prevent disease in perennial crops, which presents a more complex challenge. However, exploration of their potential as a biological control in perennial crops has been limited. This chapter assembles current knowledge on the subj...

  13. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    Science.gov (United States)

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  14. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... in human has been paralleled by the simultaneous develop- ment of ... In crop plants, the development of large genotyping arrays started much ..... via deep resequencing of reduced representation libraries with the Illumina ...

  15. Energy crops for biogas plants. Saxony; Energiepflanzen fuer Biogasanlagen. Sachsen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Buttlar, C. von; Conrad, M. [and others

    2012-08-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  16. Energy crops for biogas plants. Thuringia; Energiepflanzen fuer Biogasanlagen. Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Biertuempfel, A.; Bischof, R.; Conrad, M. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Thuringia. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  17. Soil, Plant, and Crop Science. Teacher Edition.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This package contains an instructor's manual, an instructor's resource package, and a student workbook for a course in agricultural production and management as it relates to crop production. The module contains 17 units of instruction, each of which contains some or all of the following components: objective sheet, instructor's guide, information…

  18. Effect of Tropical Rotation Crops on Meloidogyne incognita and Other Plant-Parasitic Nematodes.

    Science.gov (United States)

    McSorley, R; Dickson, D W

    1995-12-01

    In a field experiment conducted on sandy soil in Florida during the 1993 season, rotation crops of castor (Ricinus communis), velvetbean (Mucuna deeringina), 'Mississippi Silver' cowpea (Vigna unguiculata), American jointvetch (Aeschynomene americana), 'Dehapine 51' cotton (Gossypium hirsutum), and 'SX-17' sorghum-sudangrass (Sorghum bicolor x S. sudanense) were effective in maintaining low population densities (450/100 cm(3) soil) resulted after 'Clemson Spineless' okra (Hibiscus esculentus) and 'Kirby' soybean (Glycine max). Following a winter cover crop of rye (Secale cereale), densities of M. incognita following the six most effective rotation crops (1993 season) remained relatively low (crop planted in 1994, but increased by the end of the eggplant crop. The rotation crops planted during 1993 had little effect on yield of eggplant in 1994. Eggplant yield was inversely correlated with preplant densities (Pi) of Belonolaimus longicaudatus (r = -0.282; P crop cultivars were lower (P crops intended for suppression of individual Meloidogyne spp. be evaluated for their response to other nematode pests as well.

  19. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    OpenAIRE

    Carmen Alice Teacă; Ruxanda Bodîrlău

    2008-01-01

    Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests). Experimental data regarding the germination process of wheat (from two cultivars) and rye seed...

  20. Modification of flavonoid biosynthesis in crop plants

    NARCIS (Netherlands)

    Schijlen, E.G.W.M.; Vos, de C.H.; Tunen, van A.J.; Bovy, A.G.

    2004-01-01

    Flavonoids comprise the most common group of polyphenolic plant secondary metabolites. In plants, flavonoids play an important role in biological processes. Beside their function as pigments in flowers and fruits, to attract pollinators and seed dispersers, flavonoids are involved in UV-scavenging,

  1. Accurate measure of transgene copy number in crop plants using droplet digital PCR

    Science.gov (United States)

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy numb...

  2. Handbook of plant cell culture. Volume 2. Crop species

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W.R.; Evans, D.A.; Ammirato, P.V.; Yamada, Y. (eds.)

    1984-01-01

    In this volume the state-of-the-art plant cell culture techniques described in the first volume are applied to several agricultural and horticultural crops. In 21 chapters, they include maize, oats, wheat, beans, red clover and other forage legumes, asparagus, celery, cassava, sweet potato, banana, pawpaw, apple, grapes, conifers, date palm, rubber, sugarcane and tobacco. Each chapter contains (1) detailed protocols to serve as the foundation for current research, (2) a critical review of the literature, and (3) in-depth evaluations of the potential shown by plant cell culture for crop improvement. The history and economic importance of each crop are discussed. This volume also includes an essay, ''Oil from plants'', by M. Calvin.

  3. Plant mutation breeding for crop improvement. V.1

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the proceedings of the first two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding in particular countries and crop-specific mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  4. Non-GMO genetically edited crop plants.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Velasco, Riccardo; Kim, Jin-Soo; Viola, Roberto

    2015-09-01

    Direct delivery of purified Cas9 protein with guide RNA into plant cells, as opposed to plasmid-mediated delivery, displays high efficiency and reduced off-target effects. Following regeneration from edited cells, the ensuing plant is also likely to bypass genetically modified organism (GMO) legislation as the genome editing complex is degraded in the recipient cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  6. Uranium uptake by hydroponically cultivated crop plants

    International Nuclear Information System (INIS)

    Soudek, Petr; Petrova, Sarka; Benesova, Dagmar; Dvorakova, Marcela; Vanek, Tomas

    2011-01-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC 50 value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC 50 = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: → The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. → Uranium is mainly localized in the root system. → Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. → The phosphates deficiency increase the uranium uptake.

  7. The influence of cropping systems on the population and build up of ...

    African Journals Online (AJOL)

    Maize and cassava inter-crops recorded the lowest population counts and highest on pigeonpea + cocoyam, pigeonpea + yam and pigeonpea sole crops. However, the population of grasshoppers were significantly higher in pigeonpea sole crops. Followed by pigeonpea + cassava inter-crops. The population of beetles ...

  8. Using genetically modified tomato crop plants with purple leaves for absolute weed/crop classification.

    Science.gov (United States)

    Lati, Ran N; Filin, Sagi; Aly, Radi; Lande, Tal; Levin, Ilan; Eizenberg, Hanan

    2014-07-01

    Weed/crop classification is considered the main problem in developing precise weed-management methodologies, because both crops and weeds share similar hues. Great effort has been invested in the development of classification models, most based on expensive sensors and complicated algorithms. However, satisfactory results are not consistently obtained due to imaging conditions in the field. We report on an innovative approach that combines advances in genetic engineering and robust image-processing methods to detect weeds and distinguish them from crop plants by manipulating the crop's leaf color. We demonstrate this on genetically modified tomato (germplasm AN-113) which expresses a purple leaf color. An autonomous weed/crop classification is performed using an invariant-hue transformation that is applied to images acquired by a standard consumer camera (visible wavelength) and handles variations in illumination intensities. The integration of these methodologies is simple and effective, and classification results were accurate and stable under a wide range of imaging conditions. Using this approach, we simplify the most complicated stage in image-based weed/crop classification models. © 2013 Society of Chemical Industry.

  9. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  10. Plant breeding: Induced mutation technology for crop improvement

    International Nuclear Information System (INIS)

    Novak, F.J.; Brunner, H.

    1992-01-01

    Plant breeding requires genetic variation of useful traits for crop improvement, but the desired variation is often lacking. Mutagenic agents, such as radiation and certain chemicals, can be used to induce mutations and generate genetic variations from which desirable mutants may be selected. After a brief summary of the methods currently employed in plant breeding, especially those inducing genetic engineering, this article describes the activities of the Plant Breeding Unit of the IAEA Laboratories at Seibersdorf, summarizing the research and development areas currently being pursued. The banana plant is chosen to exemplify the Laboratories' research

  11. Association of non-heterocystous cyanobacteria with crop plants

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2010-01-01

    Cyanobacteria have the ability to form associations with organisms from all domains of life, notably with plants, which they provide with fixed nitrogen, among other substances. This study was aimed at developing artificial associations between non-heterocystous cyanobacteria and selected crop

  12. Detecting crop population growth using chlorophyll fluorescence imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  13. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  14. Envirotyping for deciphering environmental impacts on crop plants.

    Science.gov (United States)

    Xu, Yunbi

    2016-04-01

    Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.

  15. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling

    NARCIS (Netherlands)

    Evers, Jochem B.; Bastiaans, Lammert

    2016-01-01

    Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed

  16. Korean experimental studies on the radionuclide transfer in crop plants

    International Nuclear Information System (INIS)

    Choi, Y.H.; Lim, K.M.; Choi, G.S.; Choi, H.J.; Lee, H.S.; Lee, C.W.

    2003-01-01

    In Korea, data on the radionuclide transfer in crop plants have been produced almost exclusively at the Korea Atomic Energy Research Institute (KAERI), where experimental studies have been carried out for last about 20 years. These works are briefly outlined in this paper which shows results with emphasis on rice data. Soil-to-plant transfer factors of radionuclides including radiocesium and radiostrontium were measured through greenhouse experiments for various crop species. Not only conventional transfer factors but also those based on the activity applied to unit area of the soil surface were investigated. Field studies on the transfer of fallout 137 Cs were carried out for rice and Chinese cabbage. As for parameters in relation to direct plant contamination, interception factors and translocation factors were obtained through greenhouse experiments. Plants were sprayed with radioactive solutions containing 54 Mn, 57 Co, 85 Sr, 103 Ru and 134 Cs at different growth stages. Experiments on the plant exposure to airborne HTO and I 2 vapor were also carried out. The transfer parameters generally showed great variations with soils, crops, radionuclides and isotope application times. Most experiments were designed for acute releases of radioactivity but some results are applicable to steady-state conditions, too. Many of the produced data would be of use also in other countries including Japan. (author)

  17. Progress and challenges for abiotic stress proteomics of crop plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Radiation techniques in crop and plant breeding. Multiplying the benefits

    International Nuclear Information System (INIS)

    Ahloowalia, B.S.

    1998-01-01

    World food production is based on growing a wide variety of fruits, vegetables, and crops developed through advances in science. Plant breeders have produced multiple varieties that grow well in various types of soils and under diverse climates in different regions of the world. Conventionally, this is done by sexual hybridization. This involves transferring pollen from one parent plant to another to obtain hybrids. The subsequent generations of these hybrids are grown to select plants which combine the desired characters of the parents. However, another method exists by which the genetic make-up of a given plant variety can be changed without crossing with another variety. With this method, a variety retains all its original attributes but is upgraded in one or two changed characteristics. This method is based on radiation-induced genetic changes, and its referred to as ''induced mutations''. During the past thirty years, more than 1800 mutant varieties of plants have been released, many, of which were induced with radiation. Plant tissue and cell culture (also called in vitro culture) in combination with radiation is a powerful technique to induce mutations, particularly for the improvement of vegetatively propagated crops. These crops include cassava, garlic, potato, sweet potato, yams, sugarcane, ornamentals such as chrysanthemum, carnation, roses, tulips, daffodil, and many fruits (e.g. apple, banana, plantain, citrus, date palm, grape, papaya, passion fruit, and kiwi fruit). In some of these plants, either there is no seed set (e.g. banana) or the seed progeny produces plants which do not have the right combination of the desired characteristics. These techniques are also useful in the improvement of forest trees having a long lifespan before they produce fruit and seed. This article briefly reviews advances in plant breeding techniques, with a view towards improving the transfer of technologies to more countries

  19. Quantifying the effect of crop spatial arrangement on weed suppression using functional-structural plant modelling.

    Science.gov (United States)

    Evers, Jochem B; Bastiaans, Lammert

    2016-05-01

    Suppression of weed growth in a crop canopy can be enhanced by improving crop competitiveness. One way to achieve this is by modifying the crop planting pattern. In this study, we addressed the question to what extent a uniform planting pattern increases the ability of a crop to compete with weed plants for light compared to a random and a row planting pattern, and how this ability relates to crop and weed plant density as well as the relative time of emergence of the weed. To this end, we adopted the functional-structural plant modelling approach which allowed us to explicitly include the 3D spatial configuration of the crop-weed canopy and to simulate intra- and interspecific competition between individual plants for light. Based on results of simulated leaf area development, canopy photosynthesis and biomass growth of the crop, we conclude that differences between planting pattern were small, particularly if compared to the effects of relative time of emergence of the weed, weed density and crop density. Nevertheless, analysis of simulated weed biomass demonstrated that a uniform planting of the crop improved the weed-suppression ability of the crop canopy. Differences in weed suppressiveness between planting patterns were largest with weed emergence before crop emergence, when the suppressive effect of the crop was only marginal. With simultaneous emergence a uniform planting pattern was 8 and 15 % more competitive than a row and a random planting pattern, respectively. When weed emergence occurred after crop emergence, differences between crop planting patterns further decreased as crop canopy closure was reached early on regardless of planting pattern. We furthermore conclude that our modelling approach provides promising avenues to further explore crop-weed interactions and aid in the design of crop management strategies that aim at improving crop competitiveness with weeds.

  20. Genome-wide analysis of allele frequency change in sunflower crop-wild hybrid populations evolving under natural conditions

    Science.gov (United States)

    Hybridization is known to occur between cultivated and wild populations of numerous plant species. This represents a major mechanism by which a wild population’s genetic structure and evolutionary dynamics could be altered. Studying crop-derived alleles in wild populations is also relevant to assess...

  1. Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population

    Directory of Open Access Journals (Sweden)

    Vagner A. Benedito

    2011-10-01

    Full Text Available World population is projected to reach its maximum (~10 billion people by the year 2050. This 45% increase of the current world population (approaching seven billion people will boost the demand for food and raw materials. However, we live in a historical moment when supply of phosphate, water, and oil are at their peaks. Modern agriculture is fundamentally based on varieties bred for high performance under high input systems (fertilizers, water, oil, pesticides, which generally do not perform well under low-input situations. We propose a shift of research goals and plant breeding objectives from high-performance agriculture at high-energy input to those with an improved rationalization between yield and energy input. Crop breeding programs that are more focused on nutrient economy and local environmental fitness will help reduce energy demands for crop production while still providing adequate amounts of high quality food as global resources decline and population is projected to increase.

  2. Effects of low doses of radiation on crop plants

    International Nuclear Information System (INIS)

    1966-01-01

    Claims for radiation-induced growth stimulations in plants have been made, starting almost from the time of the discovery of X-rays. However, there is general disagreement on this question, since the numerous studies designed to prove or disprove the existence of the phenomenon have produced inconclusively and erratic results. It is obvious that small, but significant, growth increases may be produced at times by ionizing radiations in certain crop plants, but such increases have not always been reproducible from one experiment to another, and marked inconsistencies often occur with regard to the optimal exposures to produce such effects. The purpose of the FAO/IAEA Panel meeting held in Rome on 1 June, 1964, was to review and evaluate the experimental results in this area and applications for increasing crop yields. Refs, figs and tabs

  3. ASSESSMENT OF TOXICITY OF INDUSTRIAL WASTES USING CROP PLANT ASSAYS

    Directory of Open Access Journals (Sweden)

    Carmen Alice Teacă

    2008-11-01

    Full Text Available Environmental pollution has a harmful action on bioresources, including agricultural crops. It is generated through many industrial activities such as mining, coal burning, chemical technology, cement production, pulp and paper industry, etc. The toxicity of different industrial wastes and heavy metals excess was evaluated using crop plant assays (germination and hydroponics seedlings growth tests. Experimental data regarding the germination process of wheat (from two cultivars and rye seeds in the presence of industrial wastes (thermal power station ash, effluents from a pre-bleaching stage performed on a Kraft cellulose – chlorinated lignin products or chlorolignin, along with use of an excess of some heavy metals (Zn and Cu are presented here. Relative seed germination, relative root elongation, and germination index (a factor of relative seed germination and relative root elongation were determined. Relative root elongation and germination index were more sensitive indicators of toxicity than seed germination. The toxic effects were also evaluated in hydroponics experiments, the sensitivity of three crop plant species, namely Triticum aestivum L. (wheat, Secale cereale (rye, and Zea mays (corn being compared. Physiological aspects, evidenced both by visual observation and biometric measurements (mean root, aerial part and plant length, as well as the cellulose and lignin content were examined.

  4. Plant mutation breeding for crop improvement. V.2

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the proceedings of the final two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding with particular objectives and the methodology of mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  5. The effect of species, planting date, and management of cover crops on weed community in hybrid sunflower (Helianthus annuus

    Directory of Open Access Journals (Sweden)

    M. Bolandi Amoughein

    2016-02-01

    Full Text Available Introduction: Studies showed that if mixed populations of annual weeds grow with the sunflower, for every 10% increase in weed biomass, seed yield would decrease by 13% (Van Gessel & Renner, 2000. In addition to control weeds using herbicides multi-stage spraying is required. In organic farming systems mulch is used to control weeds, protection, fertility and improve soil quality (Glab & Kulig, 2008; Kuchaki et al., 2001. Surface mulches from cover crops suppress weed growth by reducing light levels at the soil surface, thereby slowing photosynthesis. In return, these conditions reduce seed germination and act as a physical barrier to seedling emergence and growth (Teasdale et al., 2007. Materials and Methods: The experiment was carried out in Ardabil Agricultural Research Station, as a factorial experiment based on randomized complete block design with three replications during 1390-1391. The first factor was considered four types of cover crops including winter rye (Secale cereal, spring barley (Hordeum vulgare, winter wheat (Triticum aestivum and control (no cover crop, no weeding.The second factor was mulch management at two levels (living mulch and dead mulch and the third factor was two planting dates for cover crops (synchronous with sunflower planting and 45 days after sunflower planting. Sunflower seeding performed manually on 23 May on the ridges with 50 cm row distance and spacing between plants was 25 cm in depth of 5 cm. Cover crops seeds, rye, barley and wheat, were planted between rows of sunflower. Due to the low density of weeds in study field, complete weeding and sampling of weeds in one session was performed (60 days after planting date sunflower. Statistical analysis of data performed using SAS software and mean comparison performed using Duncan's test with probability level of 5% and 1%. Diagrams drawn using Excel (Version 8.2. Results and Discussion\t: Density and dry weight of Field bindweed (Convolvulus arvensis L

  6. Coping mechanisms for crop plants in drought-prone environments.

    Science.gov (United States)

    Neumann, Peter M

    2008-05-01

    Drought is a major limitation to plant productivity. Various options are available for increasing water availability and sustaining growth of crop plants in drought-prone environments. After a general introduction to the problems of water availability, this review focuses on a critical evaluation of recent progress in unravelling mechanisms for modifying plant growth responses to drought. Investigations of key regulatory mechanisms integrating plant growth responses to water deficits at the whole-organism, cellular and genomic levels continue to provide novel and exiting research findings. For example, recent reports contradict the widespread conception that root-derived abscisic acid is necessarily involved in signalling for stomatal and shoot-growth responses to soil water deficits. The findings bring into question the theoretical basis for alternate-side root-irrigation techniques. Similarly, recent reports indicate that increased ABA production or increased aquaporin expression did not lead to improved drought resistance. Other reports have concerned key genes and proteins involved in regulation of flowering (FT), vegetative growth (DELLA), leaf senescence (IPT) and desiccation tolerance (LEA). Introgression of such genes, with suitable promoters, can greatly impact on whole-plant responses to drought. Further developments could facilitate the introduction by breeders of new crop varieties with growth physiologies tailored to improved field performance under drought. Parallel efforts to encourage the introduction of supplementary irrigation with water made available by improved conservation measures and by sea- or brackish-water desalination, will probably provide comprehensive solutions to coping with drought-prone environments.

  7. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    Science.gov (United States)

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  8. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Science.gov (United States)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  9. Weed populations and crop rotations: exploring dynamics of a structured periodic system

    NARCIS (Netherlands)

    Mertens, S.K.; Bosch, F. van den; Heesterbeek, J.A.P.

    2002-01-01

    The periodic growing of a certain set of crops in a prescribed order, called a crop rotation, is considered to be an important tool for managing weed populations. Nevertheless, the effects of crop rotations on weed population dynamics are not well understood. Explanations for rotation effects on

  10. Weed-crop competition effects on growth and yield of sugarcane planted using two methods

    International Nuclear Information System (INIS)

    Zafar, M.; Tanveer, A.; Cheema, Z.A.; Ashraf, M.

    2010-01-01

    Effect of planting techniques and weed-crop competition periods on yield potential of spring planted sugarcane variety HSF-240 was studied at the Ayub Agricultural Research Institute, Faisalabad, Pakistan. The experiment was laid out in RCBD with a split-plot arrangement, with four replications and net plot size of 3.6m x 10m. In the experiment, two planting techniques viz., 60 cm apart rows in flat sowing technique and 120 cm apart rows in trench sowing technique were randomized in main plots. Seven weed-crop competition periods viz., Zero (weed free), weed-crop competition for 45, 60, 75, 90, 105 days after sowing (DAS) and weedy check (full season weed-crop competition) were randomized in sub-plots. Sugarcane sown by trench method exhibited more leaf area index (LAI), average crop growth rate (ACGR) and yield contributing attributes. Trench sowing by yielding 72.22 and 75.08 t ha/sup -1/ stripped cane yields, significantly showed superiority over the flat sowing, which gave 64.13 and 66.04 t ha/sup -1/ stripped cane yields in 2005-06 and 2006- 07, respectively. Generally, there was an increase in weed population and biomass but decrease in leaf area index, crop growth rate and yield components with an increase in weed-crop competition period. A decrease of 10.06, 17.90, 22.42, 28.65, 37.64 and 56.89% in stripped cane yield was observed for weed-crop competition periods of 45, 60, 75, 90, 105 DAS and weedy check as compared with zero competition in 2005-06, respectively. In 2006-07, the respective decrease in stripped cane yield was 9.84, 18.76, 22.92, 27.98, 38.75, and 54.98%. Trench sowing at 1.2 m row spacing proved better sowing technique and 45 DAS was the critical period of weed-crop competition. (author)

  11. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  12. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    Full Text Available Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In

  13. Dehydration survival of crop plants and its measurement.

    Science.gov (United States)

    Blum, Abraham; Tuberosa, Roberto

    2018-01-08

    Dehydration survival under drought stress is defined in this review as the transition from plant activity into a quiescent state of life preservation, which will be terminated by either recovery or death, depending on the stress regime and the plant's resilience. Dehydration survival is a popular phenotype by which functional genomics attempts to test gene function in drought resistance and survival. The available reports on phenotyping and genotyping of dehydration survival in genomic studies indicate that the measurement of this trait is often biased to the extent that misguided interpretations are likely to occur. This review briefly discusses the physiological basis of dehydration survival in resurrection plants and crop plants, and concludes that in phenotyping dehydration survival there is a need to distinguish between dehydration avoidance and dehydration tolerance (also termed desiccation tolerance) in affecting survival and recovery. Without this distinction, functional genomics studies of the trait might be biased. Survival due to dehydration avoidance is expressed by the capacity to maintain a relatively high plant water status as the plant is desiccated. Survival due to dehydration tolerance is expressed by delayed mortality (mortality at a relatively low plant water status) as affected by the resilience of plant metabolism. The common test of dehydration survival, using the relative recovery after a given number of stress days, is therefore insufficient because it is mainly driven by dehydration avoidance and so ignores a possible role for dehydration tolerance. Conceivable methods for more accurate phenotyping of the two components of dehydration survival are proposed and discussed. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density.

    Science.gov (United States)

    Wheeler, T A; Leser, J F; Keeling, J W; Mullinix, B

    2008-06-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log(10) (J2 + 1)/500 cm(3) soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log(10)(J2 + 1)/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18 degrees C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10 degrees C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.

  15. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    Science.gov (United States)

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  17. Assessment of the phytoextraction potential of high biomass crop plants

    International Nuclear Information System (INIS)

    Hernandez-Allica, Javier; Becerril, Jose M.; Garbisu, Carlos

    2008-01-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg -1 ), Zn (10 916 mg kg -1 ), and Cd (242 mg kg -1 ), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot -1 . We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used

  18. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  19. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yusuf Munim [Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1997-12-31

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N{sub 19}, P{sub 19}, K{sub 19} fertilizers on growth characteristics and nutrient elements contents of leaves of banana

  20. Studies on the effects of application of different foliar fertilizer materials, crop residue and inter cropping on Banana plants

    International Nuclear Information System (INIS)

    Hassan, Yusuf Munim

    1996-01-01

    Five separate experiments were conducted at university of Khartoum demonstration farm during 1993 to 1995 under both orchard and nursery conditions to evaluate the effect of foliar application of different fertilizers, use of crop residue and intercropping on banana (dwarf cavendish). In the first experiment, the effects of foliar application of different concentrations of potassium solution (38%) were studied. The results indicated that application of all concentrations resulted in greater increases in overall growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the second experiment, the effects of three different foliar fertilizers, namely, compound cryst, fetrilon comb-2 and x-garden were investigated. The results revealed that all fertilizers gave greater values of all growth parameters, higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents, higher values of yield and yield components , finger length of both plant crop and the first ratoon crop and reduction of time from planting to flowering and from flowering to harvesting of both plant crop and the first crop compared to the control. In the third experiment, the effect of four different fertilizer materials containing different combinations of NPK on growth parameters and nutrient elements contents of leaves of banana suckers grown under nursery conditions was evaluated. The results revealed that all fertilizer materials gave greater increases of growth parameters over the control as well as higher leaf-N, P, K, Ca, Mg, Mn, Fe, Zn and Cu contents. In the fourth experiment, the effect of different concentrations of N 19 , P 19 , K 19 fertilizers on growth characteristics and nutrient elements contents of leaves of banana suckers was

  1. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  2. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    Science.gov (United States)

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  3. Ambit determination method in estimating rice plant population density

    Directory of Open Access Journals (Sweden)

    Abu Bakar, B.,

    2017-11-01

    Full Text Available Rice plant population density is a key indicator in determining the crop setting and fertilizer application rate. It is therefore essential that the population density is monitored to ensure that a correct crop management decision is taken. The conventional method of determining plant population is by manually counting the total number of rice plant tillers in a 25 cm x 25 cm square frame. Sampling is done by randomly choosing several different locations within a plot to perform tiller counting. This sampling method is time consuming, labour intensive and costly. An alternative fast estimating method was developed to overcome this issue. The method relies on measuring the outer circumference or ambit of the contained rice plants in a 25 cm x 25 cm square frame to determine the number of tillers within that square frame. Data samples of rice variety MR219 were collected from rice plots in the Muda granary area, Sungai Limau Dalam, Kedah. The data were taken at 50 days and 70 days after seeding (DAS. A total of 100 data samples were collected for each sampling day. A good correlation was obtained for the variety of 50 DAS and 70 DAS. The model was then verified by taking 100 samples with the latching strap for 50 DAS and 70 DAS. As a result, this technique can be used as a fast, economical and practical alternative to manual tiller counting. The technique can potentially be used in the development of an electronic sensing system to estimate paddy plant population density.

  4. Neonicotinoid Insecticides Alter Induced Defenses and Increase Susceptibility to Spider Mites in Distantly Related Crop Plants

    Science.gov (United States)

    Szczepaniec, Adrianna; Raupp, Michael J.; Parker, Roy D.; Kerns, David; Eubanks, Micky D.

    2013-01-01

    Background Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. Methodology/Principal Findings Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine amonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. Conclusions/Significance Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated. PMID

  5. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    Science.gov (United States)

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Cura Annonae-Chemically Boosting Crop Yields Through Metabolic Feeding of a Plant Signaling Precursor.

    Science.gov (United States)

    Vocadlo, David J

    2017-05-22

    The cream of the crop: With the world facing a projected shortfall of crops by 2050, new approaches are needed to boost crop yields. Metabolic feeding of plants with photocaged trehalose-6-phosphate (Tre6P) can increase levels of the signaling metabolite Tre6P in the plant. Reprogramming of cellular metabolism by Tre6P stimulates a program of plant growth and enhanced crop yields, while boosting starch content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Benefits from cover crops based on plant-microbial interaction

    OpenAIRE

    Manici , L.M.; Kelderer, M.; Caputo, F.; De Luca Picione , F.; Topp, A.

    2014-01-01

    This study was performed on the impact of two different cover crops (cereal and legume) on composition of root fungal endophytes and rhizospheric bacterial communities as a function of crop health in replanted apple orchards.

  8. No-till Organic Soybean Production Following a Fall-planted Rye Cover Crop

    OpenAIRE

    Porter, Paul; Feyereisen, Gary; De Bruin, Jason; Johnson, Gregg

    2005-01-01

    The conventional corn-soybean rotation in the United States (USA) is a leaky system with respect to nitrate-nitrogen (nitrate-N), in part because these crops grow only five months of the year. Ecosystem functioning can be improved with the use of an appropriate fall-planted cover crop, but this practice is not common. Organic soybean production in the USA typically relies on delayed planting, crop rotation, intensive harrowing and interrow cultivation for weed control. Research on timing of ...

  9. Role of plant biotechnology and genetic engineering in crop-improvement, with special emphases on cotton: A review

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Siddiq, S.Z.; Tariq, A.H.; Arshad, M.; Gorham, J.

    2003-01-01

    Plant biotechnology and genetic engineering offer novel approaches to plant-breeding, production, propagation and preservation of germplasm. In this manuscript, the population and food-requirements of Pakistan, role of biotechnology and genetic engineering in crop-improvement, along with potential uses in cotton, have been discussed. The latest position of plant biotechnology and genetic engineering in Pakistan and the advantages of biotechnology and genetic-engineering techniques over conventional plant-breeding techniques, along with critical views of various scientists have been reviewed. (author)

  10. Model of yield response of corn to plant population and absorption of solar energy.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.

  11. Energy crops for biogas plants. Bavaria; Energiepflanzen fuer Biogasanlagen. Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, A.; Biertuempel, A.; Conrad, M. (and others)

    2012-08-15

    For agriculturists in Bavaria (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  12. Caper spurge (Euphorbia lathyris L. ) as a potential crop plant of oleochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hondelmann, W.; Dambroth, M.

    1987-01-01

    Caper Spurge (Euphorbia lathyris L.) on account of the high seed oil content and the dominating position of oleic acid (> 80%) calls for special attention as potential creep plant for oleochemistry. In domesticating this wild species the characters 'biennial life cycle' and 'dehiscent fruits' could be eliminated in favour of their corresponding crop plant characters 'annual life cycle' and 'indehiscent fruits'. The genetic variation hitherto available seems to be relatively limited. Very high is the amount of 'variation between populations'. Estimates of heritability generally are high, but response to selection is predominantly lower. Because of the rather low fracture resistance of the seed coat the adaption for harvesting by means of a combine is not yet existing. Furthermore, caper spurge exhibits a strongly expressed seed dormancy. Therefore, selection in favour of a diminished primary dormancy is needed. (orig.)

  13. Natural Ecosystem Surrounding a Conventional Banana Crop Improves Plant Health and Fruit Quality

    Directory of Open Access Journals (Sweden)

    Florence P. Castelan

    2018-06-01

    Full Text Available Natural ecosystems near agricultural landscapes may provide rich environments for growing crops. However, the effect of a natural ecosystem on crop health and fruit quality is poorly understood. In the present study, it was investigated whether the presence of a natural ecosystem surrounding a crop area influences banana plant health and fruit postharvest behavior. Plants from two conventional banana crop areas with identical planting time and cultural practices were used; the only difference between banana crop areas is that one area was surrounded by a natural forest (Atlantic forest fragment (Near-NF, while the other area was inserted at the center of a conventional banana crop (Distant-NF. Results showed that bananas harvested from Near-NF showed higher greenlife and a more homogeneous profile during ripening compared to fruits harvested from Distant-NF. Differences in quality parameters including greenlife, carbohydrate profile, and pulp firmness between fruits harvested from Near-NF and Distant-NF are explained, at least partly, by differences in the balance of plant growth regulators (indole-3-acetic acid and abscisic acid in bananas during ripening. Furthermore, plants from Near-NF showed a lower severity index of black leaf streak disease (BLSD and higher levels of phenolic compounds in leaves compared to plants from Distant-NF. Together, the results provide additional evidence on how the maintenance of natural ecosystems near conventional crop areas could be a promising tool to improve plant health and fruit quality.

  14. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    Science.gov (United States)

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  15. Energy crops for biogas plants. Brandenburg; Energiepflanzen fuer Biogasanlagen. Brandenburg

    Energy Technology Data Exchange (ETDEWEB)

    Adam, L.; Barthelmes, G.; Biertuempfel, A. (and others)

    2012-06-15

    In the brochure under consideration, the Agency for Renewable Resources (Guelzen-Pruezen, Federal Republic of Germany) reported on recommendations on alternative cropping systems for energy crop rotations in order to achieve high yields in combination with high diversity, risk spreading and sustainability. In particular, the natural site conditions in the Federal State of Brandenburg (Federal Republic of Germany) are determined.

  16. The Effect of Plant Cultivar, Growth Media, Harvest Method and Post Harvest Treatment on the Microbiology of Edible Crops

    Science.gov (United States)

    Hummerick, Mary P.; Gates, Justin R.; Nguyen, Bao-Thang; Massa, Gioia D.; Wheeler, Raymond M.

    2011-01-01

    Systems for the growth of crops in closed environments are being developed and tested for potential use in space applications to provide a source of fresh food. Plant growth conditions, growth media composition and harvest methods can have an effect on the microbial population of the plant, and therefore should be considered along with the optimization of plant growth and harvest yields to ensure a safe and palatable food crop. This work examines the effect of plant cultivar, growth media, and harvest method on plant microbial populations. Twelve varieties of leafy greens and herbs were grown on a mixture of Fafard #2 and Arcillite in the pillow root containment system currently being considered for the VEGGIE plant growth unit developed by Orbitec. In addition, ,Sierra and Outredgeous lettuce varieties were grown in three different mixtures (Fafard #2, Ardllite, and Perlite/Vermiculite). The plants were analyzed for microbial density. Two harvest methods, "cut and come again" (CACA) and terminal harvest were also compared. In one set ofexpe'riments red leaf lettuce and mizuna were grown in pots in a Biomass Production System for education. Plants were harvested every two weeks by either method. Another set of experiments was performed using the rooting pillows to grow 5 varieties of leafy greens and cut harvesting at different intervals. Radishes were harvested and replanted at two-week intervals. Results indicate up to a 3 IOglO difference in microbial counts between some varieties of plants. Rooting medium resulted in an approximately 2 IOglO lower count in the lettuce grown in arscillite then those grown in the other mixtures. Harvest method and frequency had less impact on microbial counts only showing a significant increase in one variety of plant. Post harvest methods to decrease the bacterial counts on edible crops were investigated in these and other experiments. The effectiveness of PRO-SAN and UV-C radiation is compared.

  17. The effect of date of aerial pollution of agricultural plants on 89 Sr content in crops

    International Nuclear Information System (INIS)

    Arkhipov, N.P.; Tevraleva, L.T.

    1979-01-01

    On the basis of the experimental data obtained in different soil-climatic zones of the USSR it is shown that for tentative calculations of the radiostrontium content in farm crop with the aerial source of nuclide delivery the period of time from plant contamination to harvesting can be used. Given are the regression equations relating 89 Sr concentration in corn, wheat and potato crops with the time of crop contamination for six native zones and the characteristics of their accuracy

  18. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.

    Science.gov (United States)

    Barkla, Bronwyn J; Castellanos-Cervantes, Thelma; de León, José L Diaz; Matros, Andrea; Mock, Hans-Peter; Perez-Alfocea, Francisco; Salekdeh, Ghasem H; Witzel, Katja; Zörb, Christian

    2013-06-01

    Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants

    Directory of Open Access Journals (Sweden)

    Anna Milewska-Hendel

    2016-12-01

    Full Text Available The article describes the current knowledge about the impact of nanoparticles on plant development with a particular emphasis on crop plants. Nanotechnology is an intensively developing field of science. This is due to the enormous hopes that have been placed on the achievements of nanotechnology in various areas of life. Increasingly, it has been noted that apart from the future benefits of nanotechnology in our everyday life, nanoparticles (NPs may also have adverse effects that have not been sufficiently explored and understood. Most analyses to date have been focused on the influence of nanomaterials on the physiological processes primarily in animals, humans and bacteria. Although our knowledge about the influence of NPs on the development of plants is considerably smaller, the current views are presented below. Such knowledge is extremely important since NPs can enter the food chain, which may have an influence on human health.

  20. Crop Resources Ethic in Plant Genetic Engineering and Fortune Transfer Between Generations

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; LIANG Xueqing

    2006-01-01

    The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable development, furthermore, to choose and form the production structure that is favorable to saving crop resources and protecting the ecology of crops. Plant genetic engineering is the technology of molecule breeding of rearrangement of inheritance materials at the level of molecule directionally, of improving plant properties and of breeding high quality and yield varieties of crops. The prominent effects of the technology on the crop ecological system are human subjective factors increasing as well as violating the nature and intensifying the conflict between human being and nature.Therefore, in plant genetic engineering, crop resources exploitation should follow certain ethic principles. Under the theory of ethics of natural resources, by the means of biologioal statistics, the author systematically analyzed the possible model of crop resources transfer between generations as well as the transfer mode of magnitude of real materials and magnitude of value.

  1. Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants

    Directory of Open Access Journals (Sweden)

    Sheshshayee M. Sreeman

    2018-04-01

    Full Text Available Burgeoning population growth, industrial demand, and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favor the adoption of a “trait based” crop improvement approach for increasing water productivity. Traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation are regarded as most relevant to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological, and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration are crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarize the available information in literature on classifying various drought adaptive traits. We provide evidences that Water-Use Efficiency when introgressed with moderately higher transpiration, would

  2. NON-TARGET AND ECOSYSTEM IMPACTS FROM GENETICALLY MODIFIED CROPS CONTAINING PLANT INCORPORATED PROTECTANTS (PIPS)

    Science.gov (United States)

    The risk of unintended and unexpected adverse impacts on non-target organisms and ecosystems is a key issue in environmental risk assessment of PIP crop plants. While there has been considerable examination of the effects of insect resistant crops on certain non-target organisms...

  3. Impact of crop residues on seed germination of native desert plants ...

    African Journals Online (AJOL)

    Crop residues produce allelochemicals that may inhibit seed germination of many weeds. In this study, I assessed the effect of aqueous extracts of three crop residues (radish, rocket and rhodes) on final germination percentage and germination rate of four desert plants recorded as weeds in the United Arab Emirates farms ...

  4. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    Science.gov (United States)

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  5. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  6. On weed competition and population dynamics : considerations for crop rotations & organic farming

    NARCIS (Netherlands)

    Mertens, S.K.

    2002-01-01

    Key words: organic farming, weeds, weed management, weed ecology, weed diversity, matrix population model, elasticity analysis, neighbourhood model, survey, crop row spacing, mechanical hoe, harrow, Polygonum convolvulus ,

  7. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  8. Energy crops for biogas plants. Lower Saxony; Energiepflanzen fuer Biogasanlagen. Niedersachsen

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Benke, M.; Formowitz, B. (and others)

    2012-06-15

    In the brochure under consideration the Agency for Renewable Resources (Guelzow-Pruezen, Federal Republic of Germany) reports on the support of the implementation of different plant cultures in structure of plantations and crop rotation systems of companies under consideration of the Federal State Lower Saxony. The main chapters of this brochure are: Crops for the production of biogas; implementation in plantations; ensilage and biogas yields; economy of the cultivation of energy plants.

  9. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    Directory of Open Access Journals (Sweden)

    Hassan Etesami

    2018-02-01

    Full Text Available Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.

  10. Utilization of ionizing radiations and radioisotopes in plant breeding and crop improvement in Arab countries

    International Nuclear Information System (INIS)

    Abo-Hegazi, A.M.T.

    1983-01-01

    A review for research work in the field of utilizing ionizing radiations and radioisotopes in plant breeding and crop improvement conducted in Arab countries has been summerized and discussed in the light of some economic features of the crop or the plant on national or regional (arab) level. Among the 241 articles in the above mentioned fields reviewed, around 230 articles were conducted in Egypt, 6 in Iraq, 2 in Algeria and 2 in Sudan. Some of the articles dealing with more than one crop and/or more than one type of radiation or radioisotope

  11. Estimating the Sensitivity of CLM-Crop to Plant Date and Growing Season Length

    Science.gov (United States)

    Drewniak, B. A.; Kotamarthi, V. R.

    2012-12-01

    The Community Land Model (CLM), the land component of the Community Earth System Model (CESM), is designed to estimate the land surface response to climate through simulated vegetation phenology and soil carbon and nitrogen dynamics. Since human influences play a significant role shaping the land surface, the vegetation has been expanded to include agriculture (CLM-Crop) for three crop types: corn, soybean, and spring wheat. CLM-Crop parameters, which define crop phenology, are optimized against AmeriFlux observations of gross primary productivity, net ecosystem exchange, and stored biomass and carbon, for two sites in the U.S. growing corn and soybean. However, there is uncertainty in the measurements and using a small subset of data to determine model parameters makes validation difficult. In order to account for the differences in plant behavior across climate zones, an input dataset is used to define the planting dates and the length of the growing season. In order to improve model performance, and to understand the impacts of uncertainty from the input data, we evaluate the sensitivity of crop productivity and production against planting date and the length of the growing season. First, CLM-Crop is modified to establish plant date based on temperature trends for the previous 10-day period, constrained against the range of observed planting dates. This new climate-based model is compared with the standard fixed plant dates to determine how sensitive the model is to when seeding occurs, and how comparable the climate calculated plant dates are to the fixed dates. Next, the length of the growing season will be revised to account for an alternative climate. Finally, both the climate-based planting and new growth season will be simulated together. Results of the different model runs will be compared to the standard model and to observations to determine the importance of planting date and growing season length on crop productivity and yield.

  12. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  13. Restoring crop productivity of eroded lands through , integrated plant nutrient management (IPNM) for sustained production

    International Nuclear Information System (INIS)

    Bhatti, A.U.; Ali, S.

    2005-01-01

    Crop productivity of eroded lands is very poor due to removal of top fertile soil losing organic matter and plant nutrients, with consequent exposure of the sub-soil with poor fertility status. Crop productivity of such lands needs to be restored in order to help farmers feed many mouths because of increased population and high land pressure. Three field experiments were laid out at three sites, Thana, Malakand Agency; Kabal and Matta, Swat during 2003-2004 to study the effect of integrated plant nutrient management on the yield of wheat. The fertilizer treatments consisted of farmer's practice (60-45-0 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/), recommended fertilizer rate (120-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -l/ + 5 kg Zn ha/sup -1), and combined application of organic and inorganic sources of plant nutrients (FYM at the rate of 20 t ha/sup -1/ plus 60-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + 5 kg Zn ha/sup -1/). The results obtained from these field trails showed that the combined application of FYM with NPK Zn increased the grain yield significantly over the other two treatments with an increase of 50-80% over the farmer's practice and 11 to 23 % over the recommended dose. As regards straw yields, T/sub 2/ and T/sub 3/ increased the yields significantly over farmer's practice (T) at all the sites; However, T/sub 2/ and T/sub 3/ at Thana and Kabal were at par with each other. As regards effect of various treatments on soil properties, organic matter content was improved at Thana and Kabal sites while at Matta the results were inconsistent. Similarly soil P and Zn contents were increased considerably in T/sub 2/ and T/sub 3/ at Thana and Kabal being at par with each other. It is apparent from these results that the crop productivity of eroded lands at all the three sties was considerably restored and the soil fertility status was improved by integrated plant nutrient management. (author)

  14. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    Science.gov (United States)

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  15. Public Acceptance of Plant Biotechnology and GM Crops.

    Science.gov (United States)

    Lucht, Jan M

    2015-07-30

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  16. Comparison of the adaptability to heavy metals among crop plants. I. Adaptability to manganese-studies on comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Tadano, T; Fujita, H

    1975-01-01

    An attempt is made to compare the tolerance of a variety of crop plants to the uptake of manganese. Three different concentrations of manganese were used for growing test plants, which included the following: rice, sugar beets, azuki beans, radishes, broad beans, peas, rutabaga, turnips, Arctinum tappa, Brassica japonica, green pepper, maize, spinach, cucumbers, tomatoes, mustard, and millet.

  17. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants

    Science.gov (United States)

    Sreeman, Sheshshayee M.; Vijayaraghavareddy, Preethi; Sreevathsa, Rohini; Rajendrareddy, Sowmya; Arakesh, Smitharani; Bharti, Pooja; Dharmappa, Prathibha; Soolanayakanahally, Raju

    2018-04-01

    Burgeoning population growth, industrial demand and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favour the adoption of a “trait based” approach for increasing water productivity especially the traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation as the most relevant traits to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration is crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is equally important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarized the available information in literature on classifying various drought adaptive traits. We provide evidences that water-use efficiency when introgressed with moderately higher transpiration, would significantly enhance

  18. Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints

    Directory of Open Access Journals (Sweden)

    Dieter Treutter

    2010-03-01

    Full Text Available Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO2, growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  19. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints.

    Science.gov (United States)

    Treutter, Dieter

    2010-03-02

    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO(2), growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  20. Tissue culture as a plant production technique for horticultural crops ...

    African Journals Online (AJOL)

    Over 100 years ago, Haberlandt envisioned the concept of plant tissue culture and provided the groundwork for the cultivation of plant cells, tissues and organs in culture. Initially plant tissue cultures arose as a research tool and focused on attempts to culture and study the development of small, isolated cells and segments ...

  1. Vitality structure of the populations of some weed species in crop sowings

    Directory of Open Access Journals (Sweden)

    E. M. Tikhonova

    2010-11-01

    Full Text Available Features of development of populations of weed species (Cirsium arvense (L. Scop., Sonchus arvensis L., Melandium album (Mill. Garke, Setaria glauca (L. Beauv., Fallopia convolvulus (L. А. Lоve in most typical crops in the forest-steppe zone of the Sumy region. It was studied the crop sowings (winter wheat, rye, barley, buckwheat, pea which was not subjected to the herbicide treatment.

  2. Matrix population models from 20 studies of perennial plant populations

    Science.gov (United States)

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  3. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  4. Uncertain and multi-objective programming models for crop planting structure optimization

    Directory of Open Access Journals (Sweden)

    Mo LI,Ping GUO,Liudong ZHANG,Chenglong ZHANG

    2016-03-01

    Full Text Available Crop planting structure optimization is a significant way to increase agricultural economic benefits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic profits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study, three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming (IFCCP model and an inexact fuzzy linear programming (IFLP model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimization-theory-based fuzzy linear multi-objective programming model was developed, which is capable of reflecting both uncertainties and multi-objective. In addition, a multi-objective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic benefits and the denominator representing minimum crop planting area allocation. These models better reflect actual situations, considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in Minqin County, north-west China. The advantages, the applicable conditions and the solution methods

  5. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.

    Science.gov (United States)

    Ricroch, Agnès E; Hénard-Damave, Marie-Cécile

    2016-08-01

    Most of the genetically modified (GM) plants currently commercialized encompass a handful of crop species (soybean, corn, cotton and canola) with agronomic characters (traits) directed against some biotic stresses (pest resistance, herbicide tolerance or both) and created by multinational companies. The same crops with agronomic traits already on the market today will continue to be commercialized, but there will be also a wider range of species with combined traits. The timeframe anticipated for market release of the next biotech plants will not only depend on science progress in research and development (R&D) in laboratories and fields, but also primarily on how demanding regulatory requirements are in countries where marketing approvals are pending. Regulatory constraints, including environmental and health impact assessments, have increased significantly in the past decades, delaying approvals and increasing their costs. This has sometimes discouraged public research entities and small and medium size plant breeding companies from using biotechnology and given preference to other technologies, not as stringently regulated. Nevertheless, R&D programs are flourishing in developing countries, boosted by the necessity to meet the global challenges that are food security of a booming world population while mitigating climate change impacts. Biotechnology is an instrument at the service of these imperatives and a wide variety of plants are currently tested for their high yield despite biotic and abiotic stresses. Many plants with higher water or nitrogen use efficiency, tolerant to cold, salinity or water submergence are being developed. Food security is not only a question of quantity but also of quality of agricultural and food products, to be available and accessible for the ones who need it the most. Many biotech plants (especially staple food) are therefore being developed with nutritional traits, such as biofortification in vitamins and metals. The main

  6. Public Acceptance of Plant Biotechnology and GM Crops

    Directory of Open Access Journals (Sweden)

    Jan M. Lucht

    2015-07-01

    Full Text Available A wide gap exists between the rapid acceptance of genetically modified (GM crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  7. Public Acceptance of Plant Biotechnology and GM Crops

    Science.gov (United States)

    Lucht, Jan M.

    2015-01-01

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values. PMID:26264020

  8. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    OpenAIRE

    Dwivedi,Sangam; Sahrawat,Kanwar; Puppala,Naveen; Ortiz,Rodomiro

    2014-01-01

    Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates 19 that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of 20 Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the pre...

  9. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    Directory of Open Access Journals (Sweden)

    Sangam Dwivedi

    2014-09-01

    Full Text Available Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the prebiotic-rich grain crops include barley, chickpea, lentil, lupin, and wheat. Some prebiotic-rich crop germplasm have been reported in barley, chickpea, lentil, wheat, yacon, and Jerusalem artichoke. A few major quantitative trait loci and gene-based markers associated with high fructan are known in wheat. More targeted search in genebanks using reduced subsets (representing diversity in germplasm is needed to identify accessions with prebiotic carbohydrates. Transgenic maize, potato and sugarcane with high fructan, with no adverse effects on plant development, have been bred, which suggests that it is feasible to introduce fructan biosynthesis pathways in crops to produce health-imparting prebiotics. Developing prebiotic-rich and super nutritious crops will alleviate the widespread malnutrition and promote human health. A paradigm shift in breeding program is needed to achieve this goal and to ensure that newly-bred crop cultivars are nutritious, safe and health promoting.

  10. Contamination of crop vegetation with trace elements from a fertilizer plant. An INAA study

    International Nuclear Information System (INIS)

    Pantelica, A.; Oprea, C.; Frontasyeva, M.; Georgescu, I.I.; Pincovschi, E.; Catana, L.

    2004-01-01

    Instrumental neutron activation analysis (INAA) was used to determine various trace elements in crop vegetation (potato, carrot and maize) grown around a phosphate fertilizer plant in Romania. INAA using long-lived radionuclides was applied at NIPNE in Bucharest, and based on short-lived radionuclides at JINR in Dubna. The results for Na, Mg, Cl, K, Ca, Mn, Fe, Zn, As, and Hg were compared with Romanian norms for the alimentary products, as well as with literature data. Concentration ratios to control samples for both soil and crop as well as concentration factors of crop to host soil were assessed. (author)

  11. Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne

    2008-01-01

    Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. - The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field

  12. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    Science.gov (United States)

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  13. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    The most important issue is the to use of urban space to increase the number and size of green areas. As well as another important issue is to work towards maintaining these spaces. One such important effort is to meet the water needs of plants. Naturally, the amount of water needed by plants depends on the species.

  14. Opinion piece: genomics and crop plant science in Europe.

    Science.gov (United States)

    Hughes, Steve

    2006-01-01

    Recent report reviews and funding initiatives in the field of plant genomic research are considered in the context of their translation into practical and economic value via plant breeding. It is concluded that there is a deficit in investment and that a change in working styles towards knowledge sharing and connectivity is required.

  15. Inter cropping and population density effects on yield component ...

    African Journals Online (AJOL)

    Thus the objective of this study was to determine the influence of intercropping and population density on protein and oil yield components, photosynthesis of sorghum and Soybean at the canopy closure. The study was conducted at the University of Nairobi farm during the long rains. There was a significant increase in the ...

  16. Effect of length of interval between cereal rye cover crop termination and corn planting on seedling root disease and corn growth

    Science.gov (United States)

    Cereal rye cover crops terminated immediately before corn planting can sometimes reduce corn population, early growth, and yield. We hypothesized that cereal rye may act as a green bridge for corn pathogens and may increase corn seedling root disease. A field experiment was conducted over two years ...

  17. Parameters on the radionuclide transfer in crop plants for Korean food chain dose assessment

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lim, K. M.; Cho, Y. H.

    2001-12-01

    For more realistic assessment of Korean food chain radiation doses due to the operation of nuclear facilities, it is required to use domestically produced data for radionuclide transfer parameters in crop plants. In this report, results of last about 15 years' studies on radionuclide transfer parameters in major crop plants by the Korea Atomic Energy Research Institute, were summarized and put together. Soil-to-plant transfer factors, parameters quantifying the root uptake of radionuclides, were measured through greenhouse experiments and field studies. In addition to traditional transfer factors, which are based on the activity in unit weight of soil, those based on the activity applied to unit area of soil surface were also investigated. Interception factors, translocation factors and weathering half lives, parameters in relation to direct plant contamination, were investigated through greenhouse experiments. The levels of initial plant contamination with HTO and I2 vapor were described with absorption factors. Especially for HTO vapor, 3H levels in crop plants at harvest were expressed with TFWT (tissue free water tritium) reduction factors and OBT (organically bound tritium) production factors. The above-mentioned parameters generally showed great variations with soils, crops and radionuclide species and application times. On the basis of summarized results, the points to be amended or improved in food chain dose assessment models were discussed both for normal operation and for accidental release

  18. Earthworm populations are affected from Long-Term Crop Sequences and Bio-Covers under No-Tillage

    Science.gov (United States)

    Earthworms are crucial for improving soil biophysical properties in cropping systems. Consequently, effects of cropping rotation and bio-covers were assessed on earthworm populations under no-tillage sites. Main effects of 6 different cropping sequences [corn (Zea mays), cotton (Gossypium hirsutum),...

  19. Transfer of engineered genes from crop to wild plants

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.

    1996-01-01

    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape...... is a new and rather unexpected phenomenon. However, transfer of engineered genes between plants is not at-all surprising, because it is mediated by exactly the same mechanisms as those responsible for transferring endogenous plant genes: it takes place by sexual crosses, with pollen as the carrier...

  20. Landscape and host plant effects on two important omnivorous arthropod taxa in field crops

    Science.gov (United States)

    The economically important brown stink bug, Euschistus servus (Say), is a native pest of many crops in southeastern USA and insecticide applications are the prevailing method of population suppression. To elucidate biological control of E. servus populations, we investigated two egg predators’ (red ...

  1. Plant-Herbivore and Plant-Pollinator Interactions of the Developing Perennial Oilseed Crop, Silphium integrifolium.

    Science.gov (United States)

    Prasifka, J R; Mallinger, R E; Hulke, B S; Larson, S R; Van Tassel, D

    2017-12-08

    Sampling in Kansas and North Dakota documented the plant-herbivore and plant-pollinator interactions of the developing perennial oilseed crop, Silphium integrifolium Michx. The larva of the tortricid moth, Eucosma giganteana (Riley), was the most damaging floret- and seed-feeding pest in Kansas, with infested heads producing ≈85% (2015) or ≈45% (2016) fewer seeds than apparently undamaged heads. Necrosis of apical meristems caused stunting and delayed bloom in Kansas; though the source of the necrosis is not known, observations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois; Hemiptera: Miridae), in S. integrifolium terminals suggest a possible cause. In North Dakota, E. giganteana larvae were not found, but pupae of Neotephritis finalis (Loew; Diptera: Tephritidae), a minor pest of cultivated sunflower, were common in the heads of S. integrifolium. Bees appeared highly attracted to S. integrifolium, and in all but one observation, bees were seen actively collecting pollen. The most common bees included large apids (Apis mellifera L., Svastra obliqua [Say], Melissodes spp.) and small-bodied halictids (Lasioglossum [Dialictus] spp.). Controlled pollination experiments demonstrated that S. integrifolium is pollinator dependent, due to both mechanical barriers (imperfect florets and protogyny) and genetic self-incompatibility. Subsequent greenhouse tests and AFLP confirmation of putative self-progeny show that a low (<1%) level of self-pollination is possible. If genetic self-incompatibility is eventually reduced through breeding, mechanical barriers would maintain a reliance on bees to move pollen between male and female florets. Collectively, observations on S. integrifolium show that both herbivore and pollinator management are important to maximize seed production. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  3. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    Science.gov (United States)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  4. Efficacy of plant derived oils and extracts against white-fly, bemisia tabaci (gennadius) on sesame crop

    International Nuclear Information System (INIS)

    Iram, A.; Irfan, M.; Aslam, S.

    2014-01-01

    Whitefly, Bemisia tabaci (Genn.) is a polyphagous pest and is reported on more than 600 host plants worldwide. Different methods are being used for its control. The present experiment was conducted to determine the effect of some plant extracts of mint (Mentha spp.) and gera-nium (Pelargonium graveolens) and soybean oil (Glycine max), mustard oil (Brassica spp.) and taramera oil (Eruca sativa) against whitefly, Bemisia tabaci on sesame crop. The data were recorded 24h before and 24h, 48h, 72h and 168h after application of each spray material. The results showed that whitefly population was significantly suppressed by both the botanical oils and extracts as compared to the control treatment but in general botanical oils showed significant results as compared to plant extracts. Soybean oil was quite effective in reducing whitefly population per leaf, while after second spray soybean oil and extract of Mentha spp. was more effective in the reducing whitefly population per leaf. The results indicated that plant derived oils and extracts have the potential to be used in plant protection strategies but still more research has to be incorporated in the pest management programmes. (author)

  5. Planting Date and Seeding Rate Effects on Sunn Hemp Biomass and Nitrogen Production for a Winter Cover Crop

    Directory of Open Access Journals (Sweden)

    Kipling S. Balkcom

    2011-01-01

    Full Text Available Sunn hemp (Crotalaria juncea L. is a tropical legume that produces plant biomass and nitrogen (N quickly. Our objectives were to assess the growth of a new sunn hemp cultivar breed to produce seed in a temperate climate and determine the residual N effect on a rye (Secale cereale L. cover crop in east-central Alabama from 2007 to 2009. Plant populations, plant height, stem diameter, biomass production, and N content were determined for two sunn hemp planting dates, following corn (Zea mays L. and wheat (Triticum aestivum L. harvest, across different seeding rates (17, 34, 50, and 67 kg/ha. Rye biomass was measured the following spring. Sunn hemp biomass production was inconsistent across planting dates, but did relate to growing degree accumulation. Nitrogen concentrations were inversely related to biomass production, and subsequent N contents corresponded to biomass levels. Neither planting date nor seeding rate affected rye biomass production, but rye biomass averaged over both planting dates following wheat/sunn hemp averaged 43% and 33% greater than rye following fallow. Rye biomass following corn/sunn hemp was equivalent to fallow plots. Early planting dates are recommended for sunn hemp with seeding rates between 17 and 34 kg/ha to maximize biomass and N production.

  6. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many ...

  7. Comparative studies of cyanobacterial associations with crop plants

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2009-01-01

    Cyanobacteria are very sociable organisms having ability to form symbiotic relationships with a variety of organisms from all other domains of life. Their association with plants is of prime importance. Very less work is done on development of new artificial symbiotic associations between

  8. Volatile Semiochemical Mediated Plant Defense in Cereals: A Novel Strategy for Crop Protection

    Directory of Open Access Journals (Sweden)

    Amanuel Tamiru

    2017-09-01

    Full Text Available Plants have evolved highly intriguing ways of defending themselves against insect attacks, including through emission of defense volatiles. These volatiles serve the plant’s defense by directly repelling phytophagous insects and/or indirectly through attracting natural enemies antagonistic to the herbivores. Several laboratory studies established the potential of improving plant resistance against insect attacks by manipulating the plant-derived volatile semiochemicals emissions. Yet, more efforts need to be conducted to translate the promising laboratory studies to fight economically-important crop pests under real field conditions. This is needed to address an increasing demand for alternative pest control options driven by ecological and environmental costs associated with the use of broad-spectrum insecticides. The practical examples discussed in this review paper demonstrate the real prospect of exploiting an inducible and constitutive plant volatile semiochemicals for developing novel and ecologically-sustainable pest management strategies to protect cereal crops from damaging insect pests.

  9. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  10. Safeguarding crop plant production with the aid of nuclear techniques

    International Nuclear Information System (INIS)

    1977-01-01

    The international symposium on induced mutations was organized jointly by IAEA, FAO and the Swedish International Development Authority (SIDA). The participants discussed primarily the methodology and problems related to the use of radiation and tracer techniques for breeding crop varieties with improved disease resistance. Scientists from 41 countries and international organizations participated. But not only were problems, methodology and various approaches discussed, some scientists were able to report positive and practically useful results. Rice mutants with better resistance against blast, leaf blight and sclerotic disease were reported (India, Japan, Korea, France). Improved tolerance to septoria in wheat and to crown rust in oats has been found (Switzerland, USA) and convincing evidence was given that non-specific, medium-level resistance to mildew can be induced in barley (FRG). A potato mutant resistant to wart disease was found in the USSR, and a wheat mutant with improved resistance to stem and stripe rust has been released to farmers in Greece. Among the economically important positive results is the selection of spearmint resistant to Verticillium wilt. (USA). This success follows a similar one in peppermint achieved several years ago, which now represents a gain of about one million dollars per year to growers in the USA

  11. Population trends around nuclear power plants

    International Nuclear Information System (INIS)

    Greenberg, M.; Krueckeberg, D.A.; Kaltman, M.

    1984-01-01

    Site selection criteria used by the Nuclear Regulatory Commission emphasize the selection of low population areas in which little growth is anticipated. This research examines population growth after site selection for the period 1960 to 1980 for forty-three operating sites. Substantial increments of population increase were found, only partially explained by national, regional, and host county growth trends impacting local host areas. These local components of change became especially important in the decade of the 1970s, when most of the plants were in full operation. The decade of the 1970s also saw a marked shift from the geographic pattern of growth of the 60s, when few plants were in operation. These larger and different growth components of the 1970s, also unexplained by preliminary analysis of correlation with coastal locations and degree of urbanization, are classified into categories with high potential and interest for further research

  12. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.

    Science.gov (United States)

    Rodriguez, Luis; Rincón, Jesusa; Asencio, Isaac; Rodríguez-Castellanos, Laura

    2007-01-01

    High-biomass crops can be considered as an alternative to hyperaccumulator plants to phytoremediate soils contaminated by heavy metals. In order to assess their practical capability for the absorption and accumulation of Hg in shoots, barley, white lupine, lentil, and chickpea were tested in pot experiments using several growth substrates. In the first experimental series, plants were grown in a mixture of vermiculite and perlite spiked with 8.35 microg g(-1) d.w. of soluble Hg. The mercury concentration of the plants' aerial tissues ranged from 1.51 to 5.13 microg g(-1) d.w. with lentil and lupine showing the highest values. In a second experiment carried out using a Hg-polluted soil (32.16 microg g(-1) d.w.) collected from a historical mining area (Almadén, Spain), the crop plants tested only reached shoot Hg concentration up to 1.13 microg g(-1) d.w. In the third experimental series, the Almadén soil was spiked with 1 microg g(-1) d.w. of soluble Hg; as a result, mercury concentrations in the plant shoots increased approximately 6 times for lupine, 5 times for chickpea, and 3.5 times for barley and lentil, with respect to those obtained with the original soil without Hg added. This marked difference was attributed to the low availability of Hg in the original Almadin soil and its subsequent increase in the Hg-spiked soil. The low mercury accumulation yields obtained for all plants do not make a successful decontamination of the Almadén soils possible byphytoremediation using crop plants. However, since the crops tested can effectively decrease the plant-available Hg level in this soil, their use could, to some extent, reduce the environmental risk of Hg pollution in the area.

  13. Grain and straw for whole plant: implications for crop management and genetic improvement strategies

    OpenAIRE

    Schiere, J.B.; Joshi, A.L.; Seetharam, A.; Oosting, S.J.; Goodchild, A.V.; Deinum, B.; Keulen, van, H.

    2004-01-01

    Straws and stovers are often called `by-products` of grain production even though they are increasingly important, e.g. for animal feed, thatching, soil improvement, mushroom production and industrial use. As a result, plant breeders, agronomists, economists and animal nutritionists have to pay more attention than before to the total value of crops, i.e. whole plant value in which straws and grain both play a part. This paper reviews literature about the technical potential of breeding and/or...

  14. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance

    NARCIS (Netherlands)

    Gaastra, P.

    1959-01-01

    The effect was estimated of light intensity, leaf temperature, and C0 2 concentration on photosynthetic rate in leaves of crop plants. The potential capacities of photochemical and biochemical processes and of C0 2 transport were compared.

    Resistance to C0 2

  15. Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants.

    Science.gov (United States)

    Conner, Joann A; Ozias-Akins, Peggy

    2017-01-01

    Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.

  16. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    Science.gov (United States)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  17. Effects of crop sanitation on banana weevil, Cosmopolites sordidus (Germar) (Coleoptera : Curculionidae), populations and crop damage in Uganda

    NARCIS (Netherlands)

    Masanza, M.; Gold, C.S.; Huis, van A.; Ragama, P.E.

    2006-01-01

    Crop sanitation, i.e. destruction of crop residues, has been hypothesized to lower banana weevil damage by removing adult refuges and breeding sites. Although it has been widely recommended to farmers, limited data are available to demonstrate the efficacy of this method. The effects of crop

  18. Cover plants with potential use for crop-livestock integrated systems in the Cerrado region

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2011-10-01

    Full Text Available The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.

  19. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories

    Directory of Open Access Journals (Sweden)

    Kyoko eHiwasa-Tanase

    2016-04-01

    Full Text Available Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  20. Populations of predators and parasitoids of Bemisia tabaci (Hemiptera: Aleyrodidae) after the application of eight biorational insecticides in vegetable crops.

    Science.gov (United States)

    Simmons, Alvin M; Shaaban, Abd-Rabou

    2011-08-01

    The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is an important pest of vegetables and many other crops worldwide. Eight biorational insecticides (based on oil, plant derivatives, insect growth regulator and fungus) were evaluated in the field for their influence on populations of six natural enemies of B. tabaci. Natural populations of two predators [Chrysoperla carnea Stephen (Neuroptera: Chrysopidae) and Orius spp. (Hemiptera: Anthocoridae)] and two genera of parasitoids [Encarsia spp. and Eretmocerus spp. (Hymenoptera: Aphelinidae)] were evaluated in eggplant (Solanum melongena L.). Also, augmented field populations of three predators [C. carnea, Coccinella undecimpunctata L. (Coleoptera: Coccinellidae) and Macrolophus caliginosus (Wagner) (Hemiptera: Miridae)] were evaluated in cabbage (Brassica oleracea var. capitata L.), cucumber (Cucumis sativus L.) and squash (Cucurbita pepo L.). Regardless of natural enemy or crop, jojoba oil, Biovar and Neemix had the least effect on abundance of the natural enemies in comparison with the other insecticides during a 14 day evaluation period. Conversely, Admiral, KZ oil, Mesrona oil, Mesrona oil + sulfur and natural oil had a high detrimental effect on abundance of the natural enemies. These results demonstrate the differential effects of biorational insecticides for whitefly control on predators and parasitoids in the field. This article is a US Government work and is in the public domain in the USA. Published 2011 by John Wiley & Sons, Ltd.

  1. Population dynamics of Meloidogyne arenaria and Pasteuria penetrans in a long-term crop rotation study.

    Science.gov (United States)

    Timper, Patricia

    2009-12-01

    The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities

  2. Population Dynamics of Meloidogyne arenaria and Pasteuria penetrans in a Long-Term Crop Rotation Study

    Science.gov (United States)

    2009-01-01

    The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). The primary objective of this study was to determine the effect of crop sequence on abundance of P. penetrans. The experiment was conducted from 2000 to 2008 at a field site naturally infested with both the bacterium and its host Meloidogyne arenaria and included the following crop sequences: continuous peanut (Arachis hypogaea) (P-P-P) and peanut rotated with either 2 years of corn (Zea mays) (C-C-P), 1 year each of cotton (Gossypium hirsutum) and corn (Ct-C-P), or 1 year each of corn and a vegetable (V-C-P). The vegetable was a double crop of sweet corn and eggplant (Solanum melongena). A bioassay with second-stage juveniles (J2) of M. arenaria from a greenhouse (GH) population was used to estimate endospore abundance under the different crop sequences. A greater numerical increase in endospore densities was expected in the P-P-P and V-C-P sequences than in the other sequences because both peanut and eggplant are good hosts for M. arenaria. However, endospore densities, as determined by bioassay, did not substantially increase in any of the sequences during the 9-year experiment. To determine whether the nematode population had developed resistance to the resident P. penetrans, five single egg-mass (SEM) lines from the field population of M. arenaria were tested alongside the GH population for acquisition of endospores from the field soil. Four of the five SEM lines acquired 9 to 14 spores/J2 whereas the GH population and one of the SEM lines acquired 3.5 and 1.8 spores/J2, respectively. Endospore densities estimated with the four receptive SEM lines were highest in the P-P-P plots (14-20 spores/J2), intermediate in the V-C-P plots (6-7 spores/J2), and lowest in the Ct-C-P plots (< 1 spore/J2). These results indicate that the field population of M. arenaria is heterogeneous for attachment of P. penetrans endospores. Moreover, spore densities

  3. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition.

    Science.gov (United States)

    Hirsch, Penny R; Mauchline, Tim H

    2015-01-01

    Nitrogen is crucial for living cells, and prior to the introduction of mineral N fertilizer, fixation of atmospheric N2 by diverse prokaryotes was the primary source of N in all ecosystems. Microorganisms drive the N cycle starting with N2 fixation to ammonia, through nitrification in which ammonia is oxidized to nitrate and denitrification where nitrate is reduced to N2 to complete the cycle, or partially reduced to generate the greenhouse gas nitrous oxide. Traditionally, agriculture has relied on rotations that exploited N fixed by symbiotic rhizobia in leguminous plants, and recycled wastes and manures that microbial activity mineralized to release ammonia or nitrate. Mineral N fertilizer provided by the Haber-Bosch process has become essential for modern agriculture to increase crop yields and replace N removed from the system at harvest. However, with the increasing global population and problems caused by unintended N wastage and pollution, more sustainable ways of managing the N cycle in soil and utilizing biological N2 fixation have become imperative. This review describes the biological N cycle and details the steps and organisms involved. The effects of various agricultural practices that exploit fixation, retard nitrification, and reduce denitrification are presented, together with strategies that minimize inorganic fertilizer applications and curtail losses. The development and implementation of new technologies together with rediscovering traditional practices are discussed to speculate how the grand challenge of feeding the world sustainably can be met. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding

    Directory of Open Access Journals (Sweden)

    Guijun Yan

    2017-10-01

    Full Text Available Production of pure lines is an important step in biological studies and breeding of many crop plants. The major types of pure lines for biological studies and breeding include doubled haploid (DH lines, recombinant inbred lines (RILs, and near isogenic lines (NILs. DH lines can be produced through microspore and megaspore culture followed by chromosome doubling while RILs and NILs can be produced through introgressions or repeated selfing of hybrids. DH approach was developed as a quicker method than conventional method to produce pure lines. However, its drawbacks of genotype-dependency and only a single chance of recombination limited its wider application. A recently developed fast generation cycling system (FGCS achieved similar times to those of DH for the production of selfed pure lines but is more versatile as it is much less genotype-dependent than DH technology and does not restrict recombination to a single event. The advantages and disadvantages of the technologies and their produced pure line populations for different purposes of biological research and breeding are discussed. The development of a concept of complete in vitro meiosis and mitosis system is also proposed. This could integrate with the recently developed technologies of single cell genomic sequencing and genome wide selection, leading to a complete laboratory based pre-breeding scheme.

  5. Genetic Diversity and Population Structure of Collard Landraces and their Relationship to Other Brassica oleracea Crops

    Directory of Open Access Journals (Sweden)

    Sandra E. Pelc

    2015-11-01

    Full Text Available Landraces have the potential to provide a reservoir of genetic diversity for crop improvement to combat the genetic erosion of the food supply. A landrace collection of the vitamin-rich specialty crop collard ( L. var. was genetically characterized to assess its potential for improving the diverse crop varieties of . We used the Illumina 60K SNP BeadChip array with 52,157 single nucleotide polymorphisms (SNPs to (i clarify the relationship of collard to the most economically important crop types, (ii evaluate genetic diversity and population structure of 75 collard landraces, and (iii assess the potential of the collection for genome-wide association studies (GWAS through characterization of genomic patterns of linkage disequilibrium. Confirming the collection as a valuable genetic resource, the collard landraces had twice the polymorphic markers (11,322 SNPs and 10 times the variety-specific alleles (521 alleles of the remaining crop types examined in this study. On average, linkage disequilibrium decayed to background levels within 600 kilobase (kb, allowing for sufficient coverage of the genome for GWAS using the physical positions of the 8273 SNPs polymorphic among the landraces. Although other relationships varied, the previous placement of collard with the cabbage family was confirmed through phylogenetic analysis and principal coordinates analysis (PCoA.

  6. Catch the Best: Novel Screening Strategy to Select Stress Protecting Agents for Crop Plants

    Directory of Open Access Journals (Sweden)

    Christin Zachow

    2013-11-01

    Full Text Available Climate change increases stress levels for crops and affects the economic and environmental aspects of agricultural management systems. The application of stress tolerance-mediating microorganisms is an auspicious strategy for improving crop protection, and as such, we developed a direct selection strategy to obtain cultivable microorganisms from promising bioresources using the bait plants, maize, oilseed rape, sorghum and sugar beet. Alpine mosses, lichens and primrose were selected as bioresources, as each is adapted to adverse environmental conditions. A 10% crop-specific selection was found for bait plant rhizosphere communities using cultivation-independent fingerprints, and their potential role as stress protecting agents (SPA was evaluated following the cultivation of captured bacteria. In addition to assays identifying phytopathogen antagonism and plant growth promotion capacities, our evaluation included those that test the ability to allocate nutrients. Moreover, we developed new assays to measure tolerance in diverse stress conditions. A score scheme was applied to select SPAs with desired properties, and three Pseudomonas species with pronounced antagonistic activity that showed elevated tolerance to desiccation and an improved seed germination rate were subsequently chosen. Screening for environmentally-conditioned and host-adapted microorganisms provides a novel tool for target-oriented exploitation of microbial bioresources for the management of ecofriendly crops facing biotic and abiotic stresses.

  7. Crop water productivity for sunflower under different irrigation regimes and plant spacing in Gezira Scheme, Sudan

    Directory of Open Access Journals (Sweden)

    Eman Rahamtalla Ahmed Elsheikh

    2015-12-01

    Full Text Available Two field experiments with Sunflower on deep cracking soil with heavy clay (vertisol were conducted at Gezira Research Station Farm during two executive winter seasons, in WadMedani, Sudan. The crop was sown in the third week of November and in the first week of December for seasons 2012 and 2013 respectively. The experimental design was split plot design with three replicates. The Sunflower hybrid tested in the study was Hysun 33. The objective of this study was to determine the effect of three different irrigation intervals of 10, 15 and 20 days and two intra-row plant spacings of 30 cm and 40 cm on yield and yield components of Sunflower. The seed yields obtained from the different treatments were in the ranges of 1890-3300 kg/ha and 1590-3290 kg/ha for the first and second season respectively. The corresponding computed on average crop water productivity was in the range of 0.31-0.43 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm plant spacing and irrigated every 10 days. The highest crop water productivity was achieved from irrigation every15 days in both planting spacings

  8. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Luis Cisneros-Zevallos

    2012-09-01

    Full Text Available Plants subjected to abiotic stresses synthesize secondary metabolites with potential application in the functional foods, dietary supplements, pharmaceutical, cosmetics and agrochemical markets. This approach can be extended to horticultural crops. This review describes previous reports regarding the effect of different postharvest abiotic stresses on the accumulation of phenolic compounds. Likewise, the physiological basis for the biosynthesis of phenolic compounds as an abiotic stress response is described. The information presented herein would be useful for growers and the fresh produce market which are interested in finding alternative uses for their crops, especially for those not meeting quality standards and thus are considered as waste.

  9. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops.

    Science.gov (United States)

    Guo, Qigao; Liu, Qing; Smith, Neil A; Liang, Guolu; Wang, Ming-Bo

    2016-12-01

    Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.

  10. Soil and plant nitrogen dynamics of a tomato crop under different fertilization strategies

    DEFF Research Database (Denmark)

    Doltra, Jordi; Muñoz, P; Antón, A

    2010-01-01

    (TM) kg N ha-1. The N contents of plants sampled on three occasions during the growing period and those of marketable fruits were also analyzed. Total marketable yield was determined at the end of the harvest period. The EU-Rotate_N model was used to predict the effects of the applied treatments......A field experiment was conducted in 2007 to investigate the effects of the N fertilizer source on the soil and plant N dynamics of a tomato crop grown in a sandy loam soil. The fertilization treatments were: mineral N-fertilization applied by fertigation (TM); organic N-fertilization (TO....... The model was calibrated using data from a previous experiment. No differences between treatments were observed with respect to yield or N content in marketable fruits. The amount of N left in the field at the end of the cropping period was significantly lower in TO than in TC and TM. Simulated plant growth...

  11. Improved methods for irrigation and planting of major crops in waterlogged areas

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Raoof, A.

    2002-01-01

    The improved irrigation methods for wheat and cotton were evaluated in the fordwah Eastern Sadigia (South) Irrigation and Drainage Project area, during 1996-97 and 1997-98 cropping seasons, under three water table depths. Irrigation methods for wheat included 70, 95 and 120 cm Beds, with Flat Basin, as a check for comparative evaluation. Cotton had Ridge-planting on the top and side, Bed and Furrow, and Flat Basin as control. These irrigation methods were compared at water table depths of < 1 m, 1-2 and 2-3 m. The wheat variety inqalab-91, and cotton cultivar, CIM-109, were planted during the 3rd week of November and May every year. All the inputs and management practices, such as seed-rate, fertilizer, seeding method, weed control, plant-protection measures, etc. were kept common. The results on cotton indicated maximum water-use efficiency with the Bed and Furrow Method of irrigation Followed by ridge planting. The traditional Flat-planting had the lowest yield and the highest water-consumption, resulting in the minimum water-use efficiency. In harmony with cotton, the Flat Method of planting had maximum water-consumption. For wheat crop, the water-use efficiency was in descending order, with 120, 95 and 70 cm for Bed and Flat Methods. Bed planting of 95 cm had a fairly high water-use efficiency and yields were more were more comparable than Flat planting. This method had a high level of adaptabilities, especially when the groundwater was close to the root-zone and higher possibilities, especially when the groundwater was close to the root-zone and higher possibility of crop-submergence are existent during rainy spells. The results of the investigation strongly favoured the Bed and furrow methods to irrigate cotton and wheat. However, under well-drained soil conditions, Bed planting of wheat is not recommended. (author)

  12. Transposable elements and genetic instabilities in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  13. Potential of in vitro mutation breeding for the improvement of vegetatively propagated crop plants

    International Nuclear Information System (INIS)

    Constantin, M.J.

    1984-01-01

    Significant progress has been realized in a number of technologies (e.g., protoplast cultures), collectively referred to as plant cell and tissue culture, within the last decade. In vitro culture technologies offer great potentials for the improvement of crop plants, both sexually and asexually propagated; however, to realize these potentials plant regeneration from selected cells must be achieved for the species of interest. Where whole plants have been regenerated from selected cells, the mutant trait was expressed in some but not in all cases, and the inheritance patterns included maternal, recessive, semi-dominant and dominant (epigenetic events have also been reported). Improved cultivars of sugarcane have been developed from in vitro culture selections. In vitro mutation breeding can be done using an array of physical and chemical mutagens that has been found to be effective in the treatment of seeds, pollen, vegetative plant parts and growing plants. Selection at the cell level for a range of mutant traits has been demonstrated; however, innovative selection schemes will have to be developed to select for agriculturally important traits such as date of maturity, resistance to lodging, height etc. An interdisciplinary team approach involving the combined use of in vitro culture technology, mutagenesis, and plant breeding/genetics offers the greatest probability for success in crop improvement. (author)

  14. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil.

    Science.gov (United States)

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Sridhar, B B Maruthi

    2012-11-01

    The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the uptake of carbamazepine, diphenhydramine, and triclocarban by five vegetable crop plants was examined in a field experiment. At the time of harvest, three compounds were detected in all plants grown in biosolids-treated soils. Calculated root concentration factor (RCF) and shoot concentration factor (SCF) are the highest for carbamazepine followed by triclocarban and diphenhydramine. Positive correlation between RCF and root lipid content was observed for carbamazepine but not for diphenhydramine and triclocarban. The results demonstrate the ability of crop plants to accumulate PPCPs from contaminated soils. The plant uptake processes of PPCPs are likely affected by their physico-chemical properties, and their interaction with soil. The difference uptake behavior between plant species could not solely be attributed to the root lipid content. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Agrobiodiversity and genetic erosion of crop varieties and plant resources in the Central Great Caucasus

    Directory of Open Access Journals (Sweden)

    Maia Akhalkatsi

    2017-03-01

    Full Text Available Kazbegi Municipality is located in the Central Great Caucasus at an altitude between 1250 and 5047 m a.s.l. Agriculture of this area is extreme internal variability and complexity, with a multiplicity of highly localized providing the habitats and agricultural lands for much genetic erosion of crop varieties, animals, plants, fungi, and other life forms for wild plant resources. Historically, Kazbegi producers had begun cultivating the land to prepare for planting in of distribution local varieties of wheat, barley, rye, oats, etc. In the only cereals, legumes, herbs and some fruits are cultivated in alpine zone as the upper limit till the location of 2160 m a.s.l. Genetic erosion has been determined historically of aboriginal crops from sheep and cattle grazing problem and reached extreme levels from 1970s in Kazbegi Municipality and causes a problem to maintain agriculture. Plant resources remained in forests and subalpine grasslands and shrub lands. The problems of these materials are habitat degradation by disturbance in many forest types with destroyed and burned. Tree seedlings are grazing by animals and forest is not restoring naturally. Forest planting is good relation for restoration of plant wild species resources. Investigation on exchange on mountain agriculture and plant resources will now be rapidly accelerated in the vital interests of mountain communities.

  16. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure.

    Science.gov (United States)

    Ishaq, Suzanne L; Johnson, Stephen P; Miller, Zach J; Lehnhoff, Erik A; Olivo, Sarah; Yeoman, Carl J; Menalled, Fabian D

    2017-02-01

    Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.

  17. "Founder crops" v. wild plants: Assessing the plant-based diet of the last hunter-gatherers in southwest Asia

    Science.gov (United States)

    Arranz-Otaegui, Amaia; González Carretero, Lara; Roe, Joe; Richter, Tobias

    2018-04-01

    The Natufian culture (c. 14.6-11.5 ka cal. BP) represents the last hunter-gatherer society that inhabited southwest Asia before the development of plant food production. It has long been suggested that Natufians based their economy on the exploitation of the wild ancestors of the Neolithic "founder crops", and that these hunter-gatherers were therefore on the "threshold to agriculture". In this work we review the available data on Natufian plant exploitation and we report new archaeobotanical evidence from Shubayqa 1, a Natufian site located in northeastern Jordan (14.6-11.5 ka cal. BP). Shubayqa 1 has produced an exceptionally large plant assemblage, including direct evidence for the continuous exploitation of club-rush tubers (often regarded as "missing foods") and other wild plants, which were probably used as food, fuel and building materials. Taking together this data we evaluate the composition of archaeobotanical assemblages (plant macroremains) from the Natufian to the Early Pre-Pottery Neolithic B (EPPNB). Natufian assemblages comprise large proportions of non-founder plant species (>90% on average), amongst which sedges, small-seeded grasses and legumes, and fruits and nuts predominate. During the Pre-Pottery Neolithic, in particular the EPPNB, the presence of "founder crops" increases dramatically and constitute up to c. 42% of the archaeobotanical assemblages on average. Our results suggest that plant exploitation strategies during the Natufian were very different from those attested during subsequent Neolithic periods. We argue that historically driven interpretations of the archaeological record have over-emphasized the role of the wild ancestors of domesticated crops previous to the emergence of agriculture.

  18. A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity

    Directory of Open Access Journals (Sweden)

    Iago Lowe Hale

    2014-09-01

    Full Text Available Through active associations with a diverse community of largely non-pathogenic microbes, a plant may be thought of as possessing an extended genotype, an interactive cross-organismal genome with potential, exploitable implications for plant immunity. The successful enrichment of plant microbiomes with beneficial species has led to numerous commercial applications, and the hunt for new biocontrol organisms continues. Increasingly flexible and affordable sequencing technologies, supported by increasingly comprehensive taxonomic databases, make the characterization of non-model crop-associated microbiomes a widely accessible research method toward this end; and such studies are becoming more frequent. A summary of this emerging literature reveals, however, the need for a more systematic research lens in the face of what is already a metagenomics data deluge. Considering the processes and consequences of crop evolution and domestication, we assert that the judicious integration of in situ crop wild relatives into phytobiome research efforts presents a singularly powerful tool for separating signal from noise, thereby facilitating a more efficient means of identifying candidate plant-associated microbes with the potential for enhanci

  19. Efficient genome-wide genotyping strategies and data integration in crop plants.

    Science.gov (United States)

    Torkamaneh, Davoud; Boyle, Brian; Belzile, François

    2018-03-01

    Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

  20. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    Science.gov (United States)

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  1. Maths for plants and plants for maths. Mathematics applied to agronomy and crop protection

    OpenAIRE

    Dumont, Yves

    2015-01-01

    Crop Protection, and more generally Food Security, is considered as one of the greatest World challenges in the forthcoming decades. Currently, they are more that 1 billion undernourished people. It has been estimated that up to 40 percent of the world's potential crop production is already lost annually because of the effects of weeds, pests and diseases. This is particularly true in Southern countries. Moreover, taking into account climate change, these losses may increase. That is why it i...

  2. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  3. Small RNAs in plants: Recent development and application for crop improvement

    Directory of Open Access Journals (Sweden)

    Ayushi eKamthan

    2015-04-01

    Full Text Available The phenomenon of RNA interference (RNAi which involves sequence specific gene regulation by small non-coding RNAs i.e small interfering RNA (siRNA and micro RNA (miRNA has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits & vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects and abiotic stresses (drought, salinity, cold etc.. Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. Micro RNAs are key regulators of important plant processes like growth, development and response to various stresses. In spite of similarity in size (20-24nt, miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. Micro RNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA based transgenics are much safer for consumption than those over expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of small RNAs and its application for crop improvement.

  4. Small RNAs in plants: recent development and application for crop improvement.

    Science.gov (United States)

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.

  5. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Directory of Open Access Journals (Sweden)

    Katherine E. French

    2017-07-01

    Full Text Available Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored

  6. PERFORMANCE OF ‘NANICÃO JANGADA’ BANANA PLANTS INTERCROPPED WITH WINTER COVER CROPS

    Directory of Open Access Journals (Sweden)

    RICARDO SFEIR DE AGUIAR

    Full Text Available ABSTRACT The use of cover crops species may be an important strategy in the pursuit of sustainability of agroecosystems, considering benefits to soil, such as improvements of physical and chemical characteristics, and weed control. The objective of this study was to evaluate the effect of winter cover crops and other soil managements on chemical soil properties, on the cycle, on the production of the first cycle and on the fruit quality of banana cv. Nanicão Jangada in Andirá – PR, Brazil. The experiment was carried out in a commercial. Planting of banana suckers from the grower area occurred in the first half of March 2011, with a spacing of 2.40 m between rows and 1.90 m between plants. The experiment was designed in randomized blocks with four replications and six plants per plot. The six treatments were: black oat (Avenastrigosa Schreb, forage turnip (Raphanus sativus L. var. oleiferus, consortium of black oat and forage turnip, chicken litter, residues of banana plants, and bare ground. The evaluations were vegetative development and life cycle of banana plants, yield and quality of fruits, soil chemical characterstics, and fresh and dry mass of green manures. The results were submitted to ANOVA (F Test, and Tukey test at 5 % probability. Black oat and black oat with forage turnip consortium were superior in biomass production. Systems of soil management had no effect on the variables, except in the periods between planting and flowering and between planting and harvest, which were shorter in the treatment of soil management with crop residues, longer in the treatment with forage turnip, and intermediate in the other treatments.

  7. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  8. Effects of planting date and plant density on crop growth of cut chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Challa, H.

    2002-01-01

    The effects of planting date (season) and plant density (32, 48 or 64 plants m-2) on growth of cut chrysanthemum (Chrysanthemum (Indicum group)) were investigated in six greenhouse experiments, applying the expolinear growth equation. Final plant fresh and dry mass and number of flowers per plant

  9. Response of sunflower to different planting dates in cotton based cropping system

    International Nuclear Information System (INIS)

    Yousaf, M.; Shakoor, A.; Rana, M.A.

    2007-01-01

    A field study on sunflower (Helianthus annuus L) was conducted for three. years (1991-1993) on different planting dates. Two hybrids (Hysun-33 and PI-6480) were sown on five different dates with 15 days interval from January 15 to March 15 at Cotton Research Station, Multan. Significant higher seed yield of 1880 and 2097 kg ha-1 was obtained when the crop was planted on February 1 and 15 than other treatments. The yield significantly decreased when sunflower was planted on January 15 (1264 kg ha-l), March 1 (1382 kg ha-l) and March 15 (927 kg hall. Maturity period was longest (128 days) of early sown (January 15) and shortest of late sown (March 15) sunflower hybrids. Therefore, it can be concluded that sunflower planted on February 1 to 15 gave higher seed yield as well as allowed enough time for land preparation and thereby, planting of cotton crop in the same field during its regular planting time. (author)

  10. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution.

    Science.gov (United States)

    Hyland, Katherine C; Blaine, Andrea C; Higgins, Christopher P

    2015-10-01

    Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion. © 2015 SETAC.

  11. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  12. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  13. Population Modeling Approach to Optimize Crop Harvest Strategy. The Case of Field Tomato.

    Science.gov (United States)

    Tran, Dinh T; Hertog, Maarten L A T M; Tran, Thi L H; Quyen, Nguyen T; Van de Poel, Bram; Mata, Clara I; Nicolaï, Bart M

    2017-01-01

    In this study, the aim is to develop a population model based approach to optimize fruit harvesting strategies with regard to fruit quality and its derived economic value. This approach was applied to the case of tomato fruit harvesting under Vietnamese conditions. Fruit growth and development of tomato (cv. "Savior") was monitored in terms of fruit size and color during both the Vietnamese winter and summer growing seasons. A kinetic tomato fruit growth model was applied to quantify biological fruit-to-fruit variation in terms of their physiological maturation. This model was successfully calibrated. Finally, the model was extended to translate the fruit-to-fruit variation at harvest into the economic value of the harvested crop. It can be concluded that a model based approach to the optimization of harvest date and harvest frequency with regard to economic value of the crop as such is feasible. This approach allows growers to optimize their harvesting strategy by harvesting the crop at more uniform maturity stages meeting the stringent retail demands for homogeneous high quality product. The total farm profit would still depend on the impact a change in harvesting strategy might have on related expenditures. This model based harvest optimisation approach can be easily transferred to other fruit and vegetable crops improving homogeneity of the postharvest product streams.

  14. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops.

    Science.gov (United States)

    Silva, Marilia Santos; Arraes, Fabrício Barbosa Monteiro; Campos, Magnólia de Araújo; Grossi-de-Sa, Maira; Fernandez, Diana; Cândido, Elizabete de Souza; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Grossi-de-Sa, Maria Fátima

    2018-05-01

    This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection

    Directory of Open Access Journals (Sweden)

    Marie-Laure Pilet-Nayel

    2017-10-01

    Full Text Available Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  16. Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils.

    Science.gov (United States)

    Sánchez, Virtudes; López-Bellido, Francisco Javier; Cañizares, Pablo; Rodríguez, Luis

    2017-10-01

    Pollution of soil and groundwater by atrazine has become an increasing environmental concern in the last decade. A phytoremediation test using plastic pots was conducted in order to assess the ability of several crops and grasses to remove atrazine from a soil of low permeability spiked with this herbicide. Four plant species were assessed for their ability to degrade or accumulate atrazine from soils: two grasses, i.e., ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea), and two crops, i.e., barley (Hordeum vulgare) and maize (Zea mays). Three different doses of atrazine were used for the contamination of the pots: 2, 5 and 10 mg kg -1 . 16 days after spiking, the initial amount of atrazine was reduced by 88.6-99.6% in planted pots, while a decrease of only 63.1-78.2% was found for the unplanted pots, thus showing the contribution of plants to soil decontamination. All the plant species were capable of accumulating atrazine and its N-dealkylated metabolites, i.e., deethylatrazine and deisopropylatrazine, in their tissues. Some toxic responses, such as biomass decreases and/or chlorosis, were observed in plants to a greater or lesser extent for initial soil doses of atrazine above 2 mg kg -1 . Maize was the plant species with the highest ability to accumulate atrazine derivatives, reaching up to 38.4% of the initial atrazine added to the soil. Rhizosphere degradation/mineralization by microorganisms or plant enzymes, together with degradation inside the plants, have been proposed as the mechanisms that contributed to a higher extent than plant accumulation to explain the removal of atrazine from soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Improvement of pulse crops through induced mutations: Reconstruction of plant type

    International Nuclear Information System (INIS)

    Rao, C.H.; Tickoo, J.L.; Ram, H.; Jain, H.K.

    1975-01-01

    Many species of grain legumes, because of their cultivation under marginal conditions for centuries, have retained a number of semi-wild characteristics, such as a bushy and spreading growth, which contribute to their adaptability but reduce their yields. The observations presented here indicate that induced mutations may prove effective in generating new plant-types in these crops, which are marked by an improvement in the harvest index and which will show a response to increased plant densities. The present report describes observations on the M 2 progenies of pigeon pea and mung bean on which work has been initiated. (author)

  18. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    Science.gov (United States)

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  19. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    Directory of Open Access Journals (Sweden)

    M. Govindaraj

    2015-01-01

    Full Text Available The importance of plant genetic diversity (PGD is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i the significance of plant genetic diversity (PGD and PGR especially on agriculturally important crops (mostly field crops; (ii risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more

  20. Plant productivity and characterization of zeoponic substrates after three successive crops of radish

    Science.gov (United States)

    Gruener, J. E.; Ming, Doug; Galindo, C., Jr.; Henderson, K. E.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed advanced life support (ALS) systems for long duration space missions that incorporate plants to regenerate the atmosphere (CO2 to O2), recycle water (via evapotranspiration), and produce food. NASA has also developed a zeolite-based synthetic substrate consisting of clinoptilolite and synthetic apatite to support plant growth for ALS systems (Ming et al., 1995). The substrate is called zeoponics and has been designed to slowly release all plant essential elements into "soil" solution. The substrate consists of K- and NH4-exchanged clinoptilolite and a synthetic hydroxyapatite that has Mg, S, and the plant-essential micronutrients incorporated into its structure in addition to Ca and P. Plant performance in zeoponic substrates has been improved by the addition of dolomite pH buffers, nitrifying bacteria, and other calcium-bearing minerals (Henderson et al., 2000; Gruener et al., 2003). Wheat was used as the test crop for all of these studies. The objectives of this study were to expand upon the previous studies to determine the growth and nutrient uptake of radish in zeoponic substrates and to determine the nutrient availability of the zeoponic substrate after three successive radish crops.

  1. Using modern plant breeding to improve the nutritional and technological qualities of oil crops

    Directory of Open Access Journals (Sweden)

    Murphy Denis J.

    2014-11-01

    Full Text Available The last few decades have seen huge advances in our understanding of plant biology and in the development of new technologies for the manipulation of crop plants. The application of relatively straightforward breeding and selection methods made possible the “Green Revolution” of the 1960s and 1970s that effectively doubled or trebled cereal production in much of the world and averted mass famine in Asia. During the 2000s, much attention has been focused on genomic approaches to plant breeding with the deployment of a new generation of technologies, such as marker-assisted selection, next-generation sequencing, transgenesis (genetic engineering or GM and automatic mutagenesis/selection (TILLING, TargetIng Local Lesions IN Genomes. These methods are now being applied to a wide range of crops and have particularly good potential for oil crop improvement in terms of both overall food and non-food yield and nutritional and technical quality of the oils. Key targets include increasing overall oil yield and stability on a per seed or per fruit basis and very high oleic acid content in seed and fruit oils for both premium edible and oleochemical applications. Other more specialised targets include oils enriched in nutritionally desirable “fish oil”-like fatty acids, especially very long chain !-3 acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, or increased levels of lipidic vitamins such as carotenoids, tocopherols and tocotrienes. Progress in producing such oils in commercial crops has been good in recent years with several varieties being released or at advanced stages of development.

  2. Plant production, production energy, energy crops - approaches toward intelligent use of energy crops in bioenergy systems; Pflanzenproduktion, Produktionsenergie, Energiepflanzen - Ansaetze intelligenter Energiepflanzennutzung in Bioenergie-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Scheibler, M. [ENTEC Environment Technology Umwelttechnik GmbH, Fussach (Austria); Priedl, J.

    2002-12-01

    Food surplus production in the European Union should be replaced by biomass plantation for biogas production. The choice of energy plants like sunflowers or triticale and the harvesting time depends on soils, microclimates and crop rotation. The authors present a consultance package for planning, construction and operation of a Complete Stirred Reactor for biomass fermentation. Investment and operating cost depend on plant size and degree of automation. (uke)

  3. Induced plant resistance as a pest management tactic on piercing sucking insects of sesame crop

    Directory of Open Access Journals (Sweden)

    M. F. Mahmoud

    2013-09-01

    Full Text Available Sesame, Sesamum indicum L. is the most oil seed crop of the world and also a major oil seed crop of Egypt. One of the major constraints in its production the damage caused by insect pests, particularly sucking insects which suck the cell sap from leaves, flowers and capsules. Impact of three levels of potassin-F, salicylic acid and combination between them on reduction infestation of Stink bug Nezara viridula L., Mirid bug Creontiades sp., Green peach aphid Myzus persicae (Sulzer, Leafhopper Empoasca lybica de Berg and Whitefly Bemisia tabaci (Gennadius of sesame crop cultivar Shandawil 3 was carried out during 2010-2011 crop season at Experimental farm, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt. Also, the impacts of potassin-F and salicylic acid on yield production of sesame were studied. Results indicated that percent of reduction of infestation by N. viridula, M. persicae, Creontiades sp., E. lybicae, B. tabaci and phyllody disease were significantly higher at Level 2 (Potassin-F= 2.5 cm/l, Salicylic acid= 0.001 M and Potassin + Salicylic= 2.5 cm/l + 0.001 M and consequently higher seed yield per plant were obtained.

  4. Effect of crop sanitation on banana weevil Cosmopolites sordidus (Germar) (Coleoptera : Curculionidae) populations and crop damage in farmers' fields in Uganda

    NARCIS (Netherlands)

    Masanza, M.; Gold, C.S.; Huis, van A.; Ragama, P.E.; Okech, S.H.O.

    2005-01-01

    An on-farm study of the effect of crop sanitation on the banana weevil Cosmopolites sordidus (Germar) populations and corm damage was conducted through farmer participatory trials in Ntungamo district, Uganda. Farmers practiced sanitation levels that were broadly defined as low, moderate and high,

  5. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review

    Directory of Open Access Journals (Sweden)

    Maurício Roberto Cherubin

    Full Text Available ABSTRACT: The use of crop residues as a bioenergy feedstock is considered a potential strategy to mitigate greenhouse gas (GHG emissions. However, indiscriminate harvesting of crop residues can induce deleterious effects on soil functioning, plant growth and other ecosystem services. Here, we have summarized the information available in the literature to identify and discuss the main trade-offs and synergisms involved in crop residue management for bioenergy production. The data consistently showed that crop residue harvest and the consequent lower input of organic matter into the soil led to C storage depletions over time, reducing cycling, supply and availability of soil nutrients, directly affecting the soil biota. Although the biota regulates key functions in the soil, crop residue can also cause proliferation of some important agricultural pests. In addition, crop residues act as physical barriers that protect the soil against raindrop impact and temperature variations. Therefore, intensive crop residue harvest can cause soil structure degradation, leading to soil compaction and increased risks of erosion. With regard to GHG emissions, there is no consensus about the potential impact of management of crop residue harvest. In general, residue harvest decreases CO2 and N2O emissions from the decomposition process, but it has no significant effect on CH4 emissions. Plant growth responses to soil and microclimate changes due to crop residue harvest are site and crop specific. Adoption of the best management practices can mitigate the adverse impacts of crop residue harvest. Longterm experiments within strategic production regions are essential to understand and monitor the impact of integrated agricultural systems and propose customized solutions for sustainable crop residue management in each region or landscape. Furthermore, private and public investments/cooperations are necessary for a better understanding of the potential environmental

  6. Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Gleice A. de Assis

    2014-11-01

    Full Text Available Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values close to 20 and 60 kPa; and a control that was not irrigated. The treatments were distributed randomly in five planting densities: 2,500, 3,333, 5,000, 10,000 and 20,000 plants ha-1. A split-plot in randomized block design was used with four replications. Irrigation promoted better growth of coffee plants and increased yield that varied in function of the plant density per area. For densities from 10,000 to 20,000 plants ha-1, regardless of the used irrigation management, mean yield increases were over 49.6% compared to the non-irrigated crop.

  7. Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop.

    Science.gov (United States)

    Nehra, Vibha; Saharan, Baljeet Singh; Choudhary, Madhu

    2016-01-01

    The present investigation was undertaken to isolate, screen and evaluate a selected promising PGPR Brevibacillus brevis on cotton crop. Out of 156 bacterial isolates one of the most promising isolate was analyzed for the various PGP traits. A seed germination analysis was conducted with cotton seeds to evaluate the potential of the isolate to promote plant growth. The bacterial isolate was checked for its growth and survival at high temperatures. The isolate was also analyzed for the PGP traits exhibited after the heat treatment. To identify the isolate morphological, biochemical and molecular characterization was performed. The isolate was found positive for many of the PGP attributes like IAA, ARA, anti-fungal activity and ammonia production. Effect of seed bacterization on various plant growth parameters was used as an indicator. The isolate showed significant growth and exhibited various PGP traits at high temperature making it suitable as an inoculant for cotton crop. Isolate was identified as Brevibacillus brevis [SVC(II)14] based on phenotypic as well as genotypic attributes and after conducting this research we propose that the B. brevis which is reported for the first time for its PGP potential in cotton, exerts its beneficial effects on cotton crop through combined modes of actions.

  8. Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants.

    Science.gov (United States)

    Azad, Abul Kalam; Ahmed, Jahed; Alum, Md Asraful; Hasan, Md Mahbub; Ishikawa, Takahiro; Sawa, Yoshihiro

    2018-02-01

    Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mapping Crop Planting Quality in Sugarcane from UAV Imagery: A Pilot Study in Nicaragua

    Directory of Open Access Journals (Sweden)

    Inti Luna

    2016-06-01

    Full Text Available Sugarcane is an important economic resource for many tropical countries and optimizing plantations is a serious concern with economic and environmental benefits. One of the best ways to optimize the use of resources in those plantations is to minimize the occurrence of gaps. Typically, gaps open in the crop canopy because of damaged rhizomes, unsuccessful sprouting or death young stalks. In order to avoid severe yield decrease, farmers need to fill the gaps with new plants. Mapping gap density is therefore critical to evaluate crop planting quality and guide replanting. Current field practices of linear gap evaluation are very labor intensive and cannot be performed with sufficient intensity as to provide detailed spatial information for mapping, which makes replanting difficult to perform. Others have used sensors carried by land vehicles to detect gaps, but these are complex and require circulating over the entire area. We present a method based on processing digital mosaics of conventional images acquired from a small Unmanned Aerial Vehicle  (UAV that produced a map of gaps at 23.5 cm resolution in a study area of 8.7 ha with 92.9% overall accuracy. Linear Gap percentage estimated from this map for a grid with cells of 10 m × 10 m linearly correlates with photo-interpreted linear gap percentage with a coefficient of determination (R2= 0.9; a root mean square error (RMSE = 5.04; and probability (p << 0.01. Crop Planting Quality levels calculated from image-derived gaps agree with those calculated from a photo-interpreted version of currently used field methods (Spearman coefficient = 0.92. These results clearly demonstrate the effectiveness of processing mosaics of Unmanned Aerial System (UAS images for mapping gap density and, together with previous studies using satellite and hand-held spectroradiometry, suggests the extension towards multi-spectral imagery to add insight on plant condition.

  10. Principle and application of plant mutagenesis in crop improvement: a review

    Directory of Open Access Journals (Sweden)

    Yusuff Oladosu

    2016-01-01

    Full Text Available The first step in plant breeding is to identify suitable genotypes containing the desired genes among existing varieties, or to create one if it is not found in nature. In nature, variation occurs mainly as a result of mutations and without it, plant breeding would be impossible. In this context, the major aim in mutation-based breeding is to develop and improve well-adapted plant varieties by modifying one or two major traits to increase their productivity or quality. Both physical and chemical mutagenesis is used in inducing mutations in seeds and other planting materials. Then, selection for agronomic traits is done in the first generation, whereby most mutant lines may be discarded. The agronomic traits are confirmed in the second and third generations through evident phenotypic stability, while other evaluations are carried out in the subsequent generations. Finally, only the mutant lines with desirable traits are selected as a new variety or as a parent line for cross breeding. New varieties derived by induced mutatgenesis are used worldwide: rice in Vietnam, Thailand, China and the United States; durum wheat in Italy and Bulgaria; barley in Peru and European nations; soybean in Vietnam and China; wheat in China; as well as leguminous food crops in Pakistan and India. This paper integrates available data about the impact of mutation breeding-derived crop varieties around the world and highlights the potential of mutation breeding as a flexible and practicable approach applicable to any crop provided that appropriate objectives and selection methods are used.

  11. Influence of air pollution on crop plants in some industrial areas in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Spierings, F

    1960-01-01

    Experimental investigations were conducted to determine the effect of air pollution on agricultural and horticultural crops in the Netherlands. The pollutants of major concern were hydrogen fluoride and sulfur dioxide. Control plants were used for the identification of these pollutants. From the damage caused to the controls, it was then often possible to decide which type of gas had been responsible for the damage. The distribution of the intensity of damage over the various experimental plots also indicated the direction of the injurious gases, how they had spread over the area, and the extent of the damage. The observations, which supplied information on the nature and intensity of the damage, were then checked by chemical analysis of the damaged leaf. By means of fumigation in chambers, a knowledge was gained of the sensitivity of various crops to HF and SO/sub 2/ and the symptoms of damage caused by these gases.

  12. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in Four Crop Plants.

    Science.gov (United States)

    Gordy, John W; Leonard, B Rogers; Blouin, David; Davis, Jeffrey A; Stout, Michael J

    2015-01-01

    Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA), benzothiadiazole (BTH), gibberellic acid (GA), harpin, and jasmonic acid (JA) are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith) (FAW) (Lepidoptera: Noctuidae) larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker)], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.

  13. Comparative Effectiveness of Potential Elicitors of Plant Resistance against Spodoptera frugiperda (J. E. Smith (Lepidoptera: Noctuidae in Four Crop Plants.

    Directory of Open Access Journals (Sweden)

    John W Gordy

    Full Text Available Feeding by insect herbivores activates plant signaling pathways, resulting in the enhanced production of secondary metabolites and other resistance-related traits by injured plants. These traits can reduce insect fitness, deter feeding, and attract beneficial insects. Organic and inorganic chemicals applied as a foliar spray, seed treatment, or soil drench can activate these plant responses. Azelaic acid (AA, benzothiadiazole (BTH, gibberellic acid (GA, harpin, and jasmonic acid (JA are thought to directly mediate plant responses to pathogens and herbivores or to mimic compounds that do. The effects of these potential elicitors on the induction of plant defenses were determined by measuring the weight gains of fall armyworm, Spodoptera frugiperda (J. E. Smith (FAW (Lepidoptera: Noctuidae larvae on four crop plants, cotton, corn, rice, and soybean, treated with the compounds under greenhouse conditions. Treatment with JA consistently reduced growth of FAW reared on treated cotton and soybean. In contrast, FAW fed BTH- and harpin-treated cotton and soybean tissue gained more weight than those fed control leaf tissue, consistent with negative crosstalk between the salicylic acid and JA signaling pathways. No induction or inconsistent induction of resistance was observed in corn and rice. Follow-up experiments showed that the co-application of adjuvants with JA failed to increase the effectiveness of induction by JA and that soybean looper [Chrysodeixis includens (Walker], a relative specialist on legumes, was less affected by JA-induced responses in soybean than was the polyphagous FAW. Overall, the results of these experiments demonstrate that the effectiveness of elicitors as a management tactic will depend strongly on the identities of the crop, the pest, and the elicitor involved.

  14. Diversity and abundance of lepidopteran populations from selected crops of district faisalabad, pakistan

    International Nuclear Information System (INIS)

    Maalik, S.; Rana, S.A.; Khan, H.A.; Ashfaq, M.

    2012-01-01

    Lepidopterans are represented by one of the most diverse group of insects. They are phytophagous as well as pollinators at the same time. During present study four crops i.e Wheat, Fodder, Brassica and Vegetables were sampled to assess the diversity and abundance of Lepidopteran populations. A total of 2811 specimens belonging to 14 species and 6 families were recorded. Pieris brassicae (29.46%) was the dominant species followed by Trichoplusia ni (19.28%), Helicoverpa Zea (11.78%), Helicoverpa armigera (11.60%), Spodoptera exigua (6.65%), Psedoplusia includes (5.09%), Spodoptera litura (3.81%), Agrotis ipsilon (4.87%), Plutella xylostella (2.92%), Lymatria dispar (2.24%), Pieris rapae (0.92%), Galleria mellonella (0.71%), Evergestris rimosalis (0.53%) and Menduca sexta (0.14%). Significant differences were observed among different crops by applying Shannon Diversity Index and T- test. CA (Cluster analysis) represented the species association with different crops. Majority of the species showed association with Vegetables and Fodder and least association was observed with Wheat. Such types of studies are necessary to design integrated pest management programs to control these pests. (author)

  15. Effects of plant urease inhibitor on crop nutrition and soil characters

    International Nuclear Information System (INIS)

    Wang Zhengyin; Xu Weihong; Huang Yun; Yuan Lujiang; Jia Zhongyuan; Zhou Jun; Ding Shuying

    2002-01-01

    A pot experiment was conducted to investigate the effects of 15 N-urea and 4 kinds of plant materials (P 1 , P 2 , P 3 and P 4 ) as urease inhibitor on sorghum and rice nutrition and soil characters. The results indicated that the growth, above-ground parts and roots weight of rice and sorghum were respectively promoted by 4 plant urease inhibitors and P 1 with little change of chl.a/chl.b ratios in these treatments. The content of amino acid in rice leaf and utilization rate of nitrogen by rice were enhanced by 12.9%-25.1% and 5.2%-7.7% respectively, and the utilization rate of nitrogen by sorghum was improved by urease inhibitor treatments (except P 1 ). Plant urease inhibitor could obviously increase the apparent utilization rate of nitrogen by 4.3%-19.2% for two crops and improve phosphorus and potassium uptake by rice plant but decrease phosphorus and potassium uptake by sorghum plant. The contents of soil alkali-hydrolyzable nitrogen were increased by plant urease inhibitor under two cultivated condition. The inhibition time of plant urease inhibitor to soil urease was short and it disappeared as 36 days of rice growth under flooded condition, while the activities of soil urease were decreased by 10.6%-18.3% at 48 days of sorghum growth in upland soil

  16. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.

    Science.gov (United States)

    Zalabák, David; Pospíšilová, Hana; Šmehilová, Mária; Mrízová, Katarína; Frébort, Ivo; Galuszka, Petr

    2013-01-01

    Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Effect of plant populations on the productivity of plantain and ...

    African Journals Online (AJOL)

    Two plantain-cassava intercropping experiments were conducted at the Teaching and Research Farm of Obafemi Awolowo University, Ile–Ife. Each experiment was planted in a 2 x 2 factorial involving four mixture proportions arranged in Randomized Complete Block design with four replications. Growth, crop yields and ...

  18. Ecological and population genetics of locally rare plants: A review

    Science.gov (United States)

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  19. Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland

    Directory of Open Access Journals (Sweden)

    A. NUKARI

    2008-12-01

    Full Text Available Cryopreservation protocols have been introduced as techniques for germplasm preservation of vegetatively propagated horticultural and staple food crops. In Finland, cryopreservation has been studied since 1990’s, beginning with cryopreservation of forest tree breeding material and since 2004 on cryopreservation of genetic resources of horticultural plants and potato. Priority was given to cryopreservation of raspberry (Rubus ideaus L., strawberry (Fragaria x ananassa Duch. and potato (Solanum tuberosum L. and the possibility to use cryotherapy in eradication of raspberry bushy dwarf virus (RBDV from in vitro cultures were studied on raspberry. Modified droplet vitrification cryopreservation protocols were designed for raspberry and strawberry and cryotherapy combined with thermotherapy was proven to be a successful application to eliminate RBDV from infected raspberries. Cryotherapy method can be applied for a large scale elimination of viruses from plant germplasm and from candidate nuclear stock in a certified plant production scheme. Routine use of cryotechniques in germplasm preservation of vegetatively propagated horticultural plants was started. Besides for long term germplasm preservation, cryopreservation techniques can be applied also for maintenance of mother stocks in certified plant production schemes and in commercial plant production. Cryopreservation of potato shoot tips needs additional detailed research to obtain sufficient recovery and regrowth rates.;

  20. Small RNAs in plants: Recent development and application for crop improvement

    OpenAIRE

    Ayushi eKamthan; Abira eChaudhuri; Mohan eKamthan; Asis eDatta

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RN...

  1. Population structure of Cynara cardunculus complex and the origin of the conspecific crops artichoke and cardoon

    Science.gov (United States)

    Gatto, Angela; De Paola, Domenico; Bagnoli, Francesca; Vendramin, Giovanni Giuseppe; Sonnante, Gabriella

    2013-01-01

    Background and Aims Globe artichoke and leafy cardoon, two crops within the same species Cynara cardunculus, are traditionally cultivated in the Mediterranean region and play a significant role in the agricultural economy of this area. The two cultigens have different reproductive systems: artichoke is generally vegetatively propagated, while leafy cardoon is seed propagated. The domestication events underlying the origin of both artichoke and cultivated cardoon from their wild relative and the area of occurrence are not yet fully understood. The aim of this study was to investigate population structure in wild cardoon, globe artichoke and leafy cardoon material and infer domestication events. Methods Thirty-five microsatellite (simple sequence repeat) markers, distributed in the C. cardunculus genome, and a large geographical and numerical sampling in southern Europe and North Africa were used to assess population structure and diversity. Key Results The results suggest the presence of two distinct domestication events for artichoke and leafy cardoon, and also suggest a new possible scenario, with western wild cardoon having originated from cultivated cardoon escaped from cultivation. Evidence was found for a demographic bottleneck in the past history of globe artichoke. Conclusions The results shed new light on the relationships between the three taxa of C. cardunculus and highlight relevant aspects on the evolution of domestication of two crops with a different reproductive system within the same species. It is proposed that the probable centre of origin of artichoke is located in southern Italy, probably Sicily. PMID:23877076

  2. Population structure of Cynara cardunculus complex and the origin of the conspecific crops artichoke and cardoon.

    Science.gov (United States)

    Gatto, Angela; De Paola, Domenico; Bagnoli, Francesca; Vendramin, Giovanni Giuseppe; Sonnante, Gabriella

    2013-09-01

    Globe artichoke and leafy cardoon, two crops within the same species Cynara cardunculus, are traditionally cultivated in the Mediterranean region and play a significant role in the agricultural economy of this area. The two cultigens have different reproductive systems: artichoke is generally vegetatively propagated, while leafy cardoon is seed propagated. The domestication events underlying the origin of both artichoke and cultivated cardoon from their wild relative and the area of occurrence are not yet fully understood. The aim of this study was to investigate population structure in wild cardoon, globe artichoke and leafy cardoon material and infer domestication events. Thirty-five microsatellite (simple sequence repeat) markers, distributed in the C. cardunculus genome, and a large geographical and numerical sampling in southern Europe and North Africa were used to assess population structure and diversity. The results suggest the presence of two distinct domestication events for artichoke and leafy cardoon, and also suggest a new possible scenario, with western wild cardoon having originated from cultivated cardoon escaped from cultivation. Evidence was found for a demographic bottleneck in the past history of globe artichoke. The results shed new light on the relationships between the three taxa of C. cardunculus and highlight relevant aspects on the evolution of domestication of two crops with a different reproductive system within the same species. It is proposed that the probable centre of origin of artichoke is located in southern Italy, probably Sicily.

  3. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management

    OpenAIRE

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the ma...

  4. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2012-12-01

    Full Text Available In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L. is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lack of precise cultivation solutions in agricultural technologies used. A major reason is the difficulty in obtaining optimal crop density. A sparse crop results in low above-ground biomass yield, which is translated into insufficient crop yields. The selection of highly productive domestic and foreign varieties can partially increase linseed yield; apart from some domestic varieties, the Canadian cultivar 'Flanders' and the Hungarian cultivar 'Barbara' are positive examples in this respect. There is a possibility of effective selection at early stages of linseed breeding, which bodes well for the prospect of obtaining highly productive varieties with normal or very low -linolenic acid content.

  5. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.

    Science.gov (United States)

    Halty, Virginia; Valdés, Matías; Tejera, Mauricio; Picasso, Valentín; Fort, Hugo

    2017-12-01

    The contribution of plant species richness to productivity and ecosystem functioning is a longstanding issue in ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modeling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modeled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e., a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficients- from, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modeling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. © 2017 by the Ecological Society of America.

  6. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... density and nitrogen rate increased plant height, lowest pod height, harvest index and seed yield. ... since some combine harvester heads are unable to pick ..... as effected by population density and plant distribution.

  7. Cucumber plants (cucumis sativus l.) growth and crop yield of chicken manure fertilized with plant spacing

    Science.gov (United States)

    Pratiwi Aritonang, Sri; Panjaitan, Ernitha; Parsaulian Tondang, Fetrus

    2018-03-01

    The research was conducted in Tanjung Sari, Kecamatan Medan Selayang Kotamadya Medan ± 32 meters above sea level. It started since July 2016 to September 2016. It was designed with randomization block design with two factorial experiments which are chicken manure and plant spacing. First factor was 4 doses of chicken manure, symbolized by K; K0 = 1.5 kg/plot, K1 = 2 kg/plot, K2 = 2.5 kg/plot and K3 = 3 kg/plot. Second was 4 different plant spacing, symbolized by J; J0 = 30 cm x 60 cm, J1 =: 35 cm x 60 cm, J2 = 40 cm x 60 cm and J3 = 45 cm x 60 cm. The result shows that giving 3kg/plot of chicken manure increases plant height to 162.15 cm with 22.44 number of leaves. Fresh fruits per sample was weight 1121.88 g and per plot is 4.52 kg with 9.17 and 36.67 units of fruits per sample and plot respectively. With 45 cm x 60 cm (J3) for plant spacing gives a plant with the height of 160.51 cm and 22.85 number of leaves. Fresh fruits obtained is 1216.67 g and 9.33 units per sample while per plot gives 4.90 kg and 7.33 units of fresh fruits. This plant spacing leads to a better output for the yield compared to narrower spacing. There are no interaction between chicken manure dosage and plant spacing towards plant height, number of leaves, fresh fruits weight and units per sample and plot.

  8. Quantitative inheritance of crop timing traits in interspecific hybrid Petunia populations and interactions with crop quality parameters.

    Science.gov (United States)

    Warner, Ryan M; Walworth, Aaron E

    2010-01-01

    The leaf unfolding rate (i.e., development rate) and the number of nodes forming prior to floral initiation are 2 factors determining production times for floriculture crops. Wild relative species of the cultivated petunia (Petunia x hybrida Vilm.) that exhibited faster development rates than modern cultivars and may therefore be useful genetic sources to develop cultivars with decreased production time were identified. Three interspecific F(2) families, Petunia exserta Stehmann x P. axillaris (Lam.) Britton et al., P. x hybrida 'Mitchell' x P. axillaris, and P. axillaris x P. integrifolia (Hook.) Schinz & Thell. all exhibited transgressive segregation for development rate and node number below the first flower. Development rate and time to flower segregated independently in all families. Leaf number below the first flower was positively correlated with leaf unfolding rate in all families except P. axillaris x P. integrifolia. Time to flower was positively correlated with flower bud number in the P. x hybrida 'Mitchell' x P. axillaris and P. axillaris x P. integrifolia families only. Based on these results, wild Petunia germplasm should be useful for developing petunia cultivars with reduced crop production times, but some negative effects on crop quality parameters may need to be overcome.

  9. Use of crop water stress index for monitoring water stress in some sinanthropic plant species

    Directory of Open Access Journals (Sweden)

    Marinela Roxana ROŞESCU

    2010-11-01

    Full Text Available The water stress indicator (crop water stress index, CWSI is a measure of the transpiration rate of a plant, influenced by the leaf and air temperature difference from the plant’s vicinity and the air pressure deficit of the water vapors from the atmosphere. The experiments were realized in July-August 2008 and 2009 for six species in the cities Pitesti, Mioveni and Maracineni: Cichorium intybus L., Conyza canadensis (L. Cronq., Erigeron annuus L. (Pers., Lactuca serriola Torn., Polygonum aviculare L. and Echinochloa crus-galli (L. Beauv. For those species we calculated the CWSI to estimate the water stress on the selected plants in the urban environment conditions. The analyzed species were exposed to a less accentuated water stress while vegetating in the soil and to a more intense one they were grown in the asphalt cracks. Cichorium intybus had the smallest CWSI value (0.26 while Lactuca serriola the highest one (0.44.

  10. Long term growth of crop plants on experimental plots created among slag heaps.

    Science.gov (United States)

    Halecki, Wiktor; Klatka, Sławomir

    2018-01-01

    Suppression of plant growth is a common problem in post-mining reclaimed areas, as coarse texture of soils may increase nitrate leaching. Assessing feasibility of using solid waste (precipitated solid matter) produced by water and sewage treatment processes in field conditions is very important in mine soil reclamation. Our work investigated the possibility of plant growth in a degraded site covered with sewage-derived sludge material. A test area (21m × 18m) was established on a mine soil heap. Experimental plant species included Camelina sativa, Helianthus annuus, Festuca rubra, Miscanthus giganteus, Amaranthus cruentus, Brassica napus, Melilotus albus, Beta vulgaris, and Zea mays. ANOVA showed sufficient water content and acceptable physical properties of the soil in each year and layer in a multi-year period, indicating that these species were suitable for phytoremediation purposes. Results of trace elements assays indicated low degree of contamination caused by Carbocrash waste material and low potential ecological risk for all plant species. Detrended correspondence analysis revealed that total porosity and capillary porosity were the most important variables for the biosolids among all water content related properties. Overall, crop plants were found useful on heavily degraded land and the soil benefited from their presence. An addition of Carbocrash substrate to mine soil improved the initial stage of soil reclamation and accelerated plant growth. The use of this substrate in phytoremediation helped to balance the content of nutrients, promoted plant growth, and increased plant tolerance to salinity. Sewage sludge-amended biosolids may be applied directly to agricultural soil, not only in experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.

    Science.gov (United States)

    Jacob, Donna L; Borchardt, Joshua D; Navaratnam, Leelaruban; Otte, Marinus L; Bezbaruah, Achintya N

    2013-01-01

    Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L(-1) for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.

  12. Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level

    Directory of Open Access Journals (Sweden)

    Valérie Page

    2015-09-01

    Full Text Available Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins. Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds. Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.

  13. A targeted management of the nutrient solution in a soilless tomato crop according to plant needs

    Directory of Open Access Journals (Sweden)

    Angelo eSignore

    2016-03-01

    Full Text Available The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution, in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: 1 studied the effect of several values of the electrical conductivity (EC of nutrient solution in a NFT (Nutrient Film Technique system on a cherry type tomato crop, and 2 define a NS (called recovery solution, based on the concept of uptake concentration and transpiration-biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP, above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5 and 10 dS m-1, respectively, were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively.The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration-biomass ratio, indicates that, in some stages of the plant cycle, the nutrient solution used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries.

  14. Crop adapted spray application (CASA) - precise and safe plant protection in fruit growing

    NARCIS (Netherlands)

    Doruchowski, G.; Balsari, P.; Marucco, P.; Zande, van de J.C.; Wenneker, M.

    2012-01-01

    The Crop Adapted Spray Application (CASA) system for orchards integrates disease detection based on reflectance imaging, crop identification with ultrasonic sensors, wind measurement and DGPS navigation. Through the automatic adjustment of spray application parameters according to the crop

  15. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Science.gov (United States)

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  16. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    Full Text Available Modelling crop evapotranspiration (ET response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1 and summer maize (scenario 2 by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  17. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    Science.gov (United States)

    2011-01-01

    Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA) for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA) were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV), Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya) contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV) and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a) primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b) primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully. PMID:21812981

  18. Biotechnological approaches to determine the impact of viruses in the energy crop plant Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Maghuly Fatemeh

    2011-08-01

    Full Text Available Abstract Background Geminiviruses infect a wide range of plant species including Jatropha and cassava both belonging to family Euphorbiaceae. Cassava is traditionally an important food crop in Sub - Saharan countries, while Jatropha is considered as valuable biofuel plant with great perspectives in the future. Results A total of 127 Jatropha samples from Ethiopia and Kenya and 124 cassava samples from Kenya were tested by Enzyme-Linked Immunosorbent Assay (ELISA for RNA viruses and polymerase chain reaction for geminiviruses. Jatropha samples from 4 different districts in Kenya and Ethiopia (analyzed by ELISA were negative for all three RNA viruses tested: Cassava brown streak virus (CBSV, Cassava common mosaic virus, Cucumber mosaic virus, Three cassava samples from Busia district (Kenya contained CBSV. Efforts to develop diagnostic approaches allowing reliable pathogen detection in Jatropha, involved the amplification and sequencing of the entire DNA A molecules of 40 Kenyan isolates belonging to African cassava mosaic virus (ACMV and East African cassava mosaic virus - Uganda. This information enabled the design of novel primers to address different questions: a primers amplifying longer sequences led to a phylogenetic tree of isolates, allowing some predictions on the evolutionary aspects of Begomoviruses in Jatrophia; b primers amplifying shorter sequences represent a reliable diagnostic tool. This is the first report of the two Begomoviruses in J. curcas. Two cassava samples were co - infected with cassava mosaic geminivirus and CBSV. A Defective DNA A of ACMV was found for the first time in Jatropha. Conclusion Cassava geminiviruses occurring in Jatropha might be spread wider than anticipated. If not taken care of, this virus infection might negatively impact large scale plantations for biofuel production. Being hosts for similar pathogens, the planting vicinity of the two crop plants needs to be handled carefully.

  19. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    Michael Benjamin Kantar

    2015-10-01

    Full Text Available Crop wild relatives (CWR are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.. Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap and asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L. were identified as targets for traits of interest, particularly for abiotic stress tolerance and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups, geographic isolation may not be necessary for speciation.

  20. Diversity, Biocontrol, and Plant Growth Promoting Abilities of Xylem Residing Bacteria from Solanaceous Crops

    Directory of Open Access Journals (Sweden)

    Gauri A. Achari

    2014-01-01

    Full Text Available Eggplant (Solanum melongena L. is one of the solanaceous crops of economic and cultural importance and is widely cultivated in the state of Goa, India. Eggplant cultivation is severely affected by bacterial wilt caused by Ralstonia solanacearum that colonizes the xylem tissue. In this study, 167 bacteria were isolated from the xylem of healthy eggplant, chilli, and Solanum torvum Sw. by vacuum infiltration and maceration. Amplified rDNA restriction analysis (ARDRA grouped these xylem residing bacteria (XRB into 38 haplotypes. Twenty-eight strains inhibited growth of R. solanacearum and produced volatile and diffusible antagonistic compounds and plant growth promoting substances in vitro. Antagonistic strains XB86, XB169, XB177, and XB200 recorded a biocontrol efficacy greater than 85% against BW and exhibited 12%–22 % increase in shoot length in eggplant in the greenhouse screening. 16S rRNA based identification revealed the presence of 23 different bacterial genera. XRB with high biocontrol and plant growth promoting activities were identified as strains of Staphylococcus sp., Bacillus sp., Streptomyces sp., Enterobacter sp., and Agrobacterium sp. This study is the first report on identity of bacteria from the xylem of solanaceous crops having traits useful in cultivation of eggplant.

  1. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection.

    Science.gov (United States)

    Kumar, Abhay; Elad, Yigal; Tsechansky, Ludmila; Abrol, Vikas; Lew, Beni; Offenbach, Rivka; Graber, Ellen R

    2018-01-01

    The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Recovery in the soil-plant system of nitrogen from green manure applied on cabbage crop

    International Nuclear Information System (INIS)

    Araujo, Ednaldo da Silva; Guerra, Jose Guilherme Marinho; Espindola, Jose Antonio Azevedo; Urquiaga, Segundo; Boddey, Robert Michael; Alves, Bruno Jose Rodrigues; Martelleto, Luiz Aurelio Peres

    2011-01-01

    The objective of this work was to determine, in the soil-plant system, the recovery efficiency of N derived from green manure applied on cabbage (Brassica oleracea) crop. The experiment was divided into two stages: the first one consisted of the straw production of jack bean (Canavalia ensiformis), velvet bean (Mucuna cinereum), and sorghum (Sorghum bicolor), in substrate enriched with 15 N. The second stage consisted of the application of 15 N-labeled green manure on the cabbage beds. Treatments consisted of: fresh residues of jack bean; fresh residues of velvet bean; fresh residues of sorghum; mixture of residues of jack bean, velvet bean, and sorghum at 1:1:1; and control without green manure addition. The N recovery in the soil plant system was influenced by the green manure species used, and the recovery efficiency of the N derived from the green manure legumes varied from 9 to 16%. The jack bean treatment shows a greater recovery efficiency of nitrogen and, therefore, the best synchrony of N supply, by straw decomposition, with the cabbage crop demand. (author)

  3. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    Science.gov (United States)

    Kantar, Michael B.; Sosa, Chrystian C.; Khoury, Colin K.; Castañeda-Álvarez, Nora P.; Achicanoy, Harold A.; Bernau, Vivian; Kane, Nolan C.; Marek, Laura; Seiler, Gerald; Rieseberg, Loren H.

    2015-01-01

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were identified as targets for traits of interest, particularly for abiotic stress tolerance, and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus) occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups), geographic isolation may not be necessary for speciation. PMID:26500675

  4. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): non-crop food vascular plants and crop food plants with medicinal properties.

    Science.gov (United States)

    Rigat, Montse; Bonet, Maria Àngels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2009-01-01

    The present study reports a part of the findings of an ethnobotanical research project conducted in the Catalan region of the high river Ter valley (Iberian Peninsula), concerning the use of wild vascular plants as food and the medicinal uses of both wild and cultivated food plants. We have detected 100 species which are or have been consumed in this region, 83 of which are treated here (the remaining are the cultivated food plants without additional medicinal uses). Some of them, such as Achillea ptarmica subsp. pyrenaica, Convolvulus arvensis, Leontodon hispidus, Molopospermum peloponnesiacum and Taraxacum dissectum, have not been previously reported, or have only very rarely been cited or indicated as plant foods in very restricted geographical areas. Several of these edible wild plants have a therapeutic use attributed to them by local people, making them a kind of functional food. They are usually eaten raw, dressed in salads or cooked; the elaboration of products from these species such as liquors or marmalades is a common practice in the region. The consumption of these resources is still fairly alive in popular practice, as is the existence of homegardens, where many of these plants are cultivated for private consumption.

  5. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil.

    Science.gov (United States)

    Reed-Jones, Neiunna L; Marine, Sasha Cahn; Everts, Kathryne L; Micallef, Shirley A

    2016-01-04

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  8. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.

    Science.gov (United States)

    Kreszies, Tino; Schreiber, Lukas; Ranathunge, Kosala

    2018-02-07

    Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lp r ) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Soil-to-Plant Transfer Factors of {sup 99}Tc for Korean Major Upland Crops

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Lim, Kwang Muk; Jun, In; Keum, Dong Kwon [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2011-12-15

    In order to investigate the soil-to-plant transfer factor (TF) of {sup 99}Tc for Korean major upland crops (soybean, radish and Chinese cabbage), pot experiments were performed in a greenhouse. Soils were collected from four upland fields (two for soybean and two for radish and Chinese cabbage) around Gyeongju radioactive-waste disposal site. Three to four weeks before sowing, dried soils were mixed with a {sup 99}Tc solution and the mixtures were put into pots and irrigated. TF values were expressed as the ratios of the {sup 99}Tc concentrations in plants (Bq kg{sup -1}-dry or fresh) to those in soils (Bq kg{sup -1}-dry). There was no great difference in the TF value between soils. The TF values for soybean seeds were extremely lower than those for the straws, indicating a very low mobility of {sup 99}Tc to seeds. As representative TF values of{sup 99}Tc,1.8 X 10{sup -1}, 1.2 X 10{sup 1}, 3.2 X 10{sup 2} and 1.3 X 10{sup 2} (for dry plants), arithmetic means for two soils, were proposed for soybean seeds, radish roots, radish leaves and Chinese cabbage leaves, respectively. In the case of the vegetables, proposals for fresh plants were also made. The proposed values are not sufficiently representative so successive updates are needed.

  10. Rye cover crop increases earthworm populations and reduces losses of broadcast, fall-applied, fertilizers in surface runoff

    Science.gov (United States)

    Corn (Zea mays L.) silage and soybean [Glycine max (L.) Merr.] rotations in the US Upper Midwest leave minimal amounts of surface residues, which can contribute to soil degradation and a reduction in water quality. Planting cover crops after harvest can reduce these concerns, but their effectiveness...

  11. Plant probiotic bacteria enhance the quality of fruit and horticultural crops

    Directory of Open Access Journals (Sweden)

    Alejandro Jiménez-Gómez

    2017-06-01

    Full Text Available The negative effects on the environment and human health caused by the current farming systems based on the overuse of chemical fertilizers have been reported in many studies. By contrast, bacterial inoculations produce positive effects on yields without causing this type of harm. Hence, during recent years, the commercialization of biofertilizers has been on the increase, and the number of companies and products available are expanding worldwide every year. In addition to the notable enhancement of crop production, many studies have shown how the application of bacteria has positive effects on food quality such as improved vitamin, flavonoid and antioxidant content, among other benefits. This advantage is interesting with respect to food that is consumed raw, such as fruits and many vegetables, as these bioactive molecules are maintained up until the moment the food is consumed. As regards this review focuses on the collection of studies that demonstrate that microorganisms can act as plant probiotics of fruit and horticultural crops, essential types of food that form part of a healthy diet.

  12. Location of Bioelectricity Plants in the Madrid Community Based on Triticale Crop: A Multicriteria Methodology

    Directory of Open Access Journals (Sweden)

    L. Romero

    2015-01-01

    Full Text Available This paper presents a work whose objective is, first, to quantify the potential of the triticale biomass existing in each of the agricultural regions in the Madrid Community through a crop simulation model based on regression techniques and multiple correlation. Second, a methodology for defining which area has the best conditions for the installation of electricity plants from biomass has been described and applied. The study used a methodology based on compromise programming in a discrete multicriteria decision method (MDM context. To make a ranking, the following criteria were taken into account: biomass potential, electric power infrastructure, road networks, protected spaces, and urban nuclei surfaces. The results indicate that, in the case of the Madrid Community, the Campiña region is the most suitable for setting up plants powered by biomass. A minimum of 17,339.9 tons of triticale will be needed to satisfy the requirements of a 2.2 MW power plant. The minimum range of action for obtaining the biomass necessary in Campiña region would be 6.6 km around the municipality of Algete, based on Geographic Information Systems. The total biomass which could be made available in considering this range in this region would be 18,430.68 t.

  13. Mite Pests in Plant Crops – Current Issues, Inovative Approaches and Possibilities for Controlling Them (1

    Directory of Open Access Journals (Sweden)

    Radmila Petanović

    2010-01-01

    Full Text Available In the middle of the last century, mites moved into the focus of attention as pests relevantto agriculture, forestry and landscape horticulture, presumably in direct reactionto the “green revolution” that involved plant cultivation in large-plot monocropping systems,improved methods of cultivation, selection of high-yielding cultivars and intensifieduse of pesticides and mineral fertilizers. Agroecosystems in which phytophagous miteshave become harmful organisms are primarily orchards, vineyards, greenhouses, urbangreeneries, plant nurseries and stored plant products, as well as annual field crops to asomewhat lesser degree. Phytophagous mite species belong to a variety of spider mites(Tetranychidae, false spider mites (Tenuipalpidae, gall and rust mites (Eriophyoidae, tarsonemidmites (Tarsonemidae and acarid mites (Acaridae. Most of these harmful speciesare widespread, some of them having more economic impact than others and being moredetrimental as depending on various specificities of each outdoor agroecosystem in anyparticular climatic region.The first segment of this overview focuses on the most significant mite pests ofagroecosystemsand urban horticultural areas in European countries, our own region andin Serbia today, primarily on species that have caused problems in recent years regardingplant production, and it also discusses various molecular methods available for investigatingdifferent aspects of the biology of phytophagous mites. Also, acaricides are discussedas a method of controlling mite pests in the light of the current situation and trends on pesticidemarkets in Serbia and the European Union member-countries

  14. Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops

    International Nuclear Information System (INIS)

    Thomas, P.

    1984-01-01

    In Part 1 of a planned series of articles on preservation of foods of plant origin by gamma irradiation, the current state of research on the technological, nutritional, and biochemical aspects of sprout inhibition of potatoes and other tuber crops are reviewed. These include varietal responses, dose effects, time of irradiation, pre- and postirradiation storage, and handling requirements; postirradiation changes in carbohydrates, ascorbic acid, amino acids, and other nutrients; respiration; biochemical mechanisms involved in sprout inhibition; wound healing and microbial infection during storage; formation of wound and light-induced glycoalkaloids and identification of irradiated potatoes. The culinary and processing qualities with particular reference to darkening of boiled and processed potatoes are discussed. The prospects of irradiation on an industrial scale as an alternative to chemical sprout inhibitors or mechanical refrigeration are considered

  15. Using The Corngrass1 Gene To Enhance The Biofuel Properties Of Crop Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA Agricultural Research Service, Washington DC (United States); Chuck, George [USDA Agricultural Research Service, Washington DC (United States)

    2015-10-29

    The development of novel plant germplasm is vital to addressing our increasing bioenergy demands. The major hurdle to digesting plant biomass is the complex structure of the cell walls, the substrate of fermentation. Plant cell walls are inaccessible matrices of macromolecules that are polymerized with lignin, making fermentation difficult. Overcoming this hurdle is a major goal toward developing usable bioenergy crop plants. Our project seeks to enhance the biofuel properties of perennial grass species using the Corngrass1 (Cg1) gene and its targets. Dominant maize Cg1 mutants produce increased biomass by continuously initiating extra axillary meristems and leaves. We cloned Cg1 and showed that its phenotype is caused by over expression of a unique miR156 microRNA gene that negatively regulates SPL transcription factors. We transferred the Cg1 phenotype to other plants by expressing the gene behind constitutive promoters in four different species, including the monocots, Brachypodium and switchgrass, and dicots, Arabidopsis and poplar. All transformants displayed a similar range of phenotypes, including increased biomass from extended leaf production, and increased vegetative branching. Field grown switchgrass transformants showed that overall lignin content was reduced, the ratio of glucans to xylans was increased, and surprisingly, that starch levels were greatly increased. The goals of this project are to control the tissue and temporal expression of Cg1 by using different promoters to drive its expression, elucidate the function of the SPL targets of Cg1 by generating gain and loss of function alleles, and isolate downstream targets of select SPL genes using deep sequencing and chromatin immunoprecipitation. We believe it is possible to control biomass accumulation, cell wall properties, and sugar levels through manipulation of either the Cg1 gene and/or its SPL targets.

  16. Estimating biophysical properties of coffee (Coffea canephora) plants with above-canopy field measurements, using CropSpec®

    Science.gov (United States)

    Putra, Bayu T. Widjaja; Soni, Peeyush; Morimoto, Eiji; Pujiyanto, Pujiyanto

    2018-04-01

    Remote sensing technologies have been applied to many crops, but tree crops like Robusta coffee (Coffea canephora) under shade conditions require additional attention while making above-canopy measurements. The objective of this study was to determine how well chlorophyll and nitrogen status of Robusta coffee plants can be estimated with the laser-based (CropSpec®) active sensor. This study also identified appropriate vegetation indices for estimating Nitrogen content by above-canopy measurement, using near-infra red and red-edge bands. Varying light intensity and different background of the plants were considered in developing the indices. Field experiments were conducted involving different non-destructive tools (CropSpec® and SPAD-502 chlorophyll meter). Subsequently, Kjeldahl laboratory analyses were performed to determine the actual Nitrogen content of the plants with different ages and field conditions used in the non-destructive previous stage. Measurements were undertaken for assessing the biophysical properties of tree plant. The usefulness of near-infrared and red-edge bands from these sensors in measuring critical nitrogen levels of coffee plants by above-canopy measurement are investigated in this study.

  17. In vitro plant propagation and crop improvement in Lisianthus (Lisianthus Russelianus Hook.

    Directory of Open Access Journals (Sweden)

    Rodica Pop

    2016-11-01

    Full Text Available Romania assists at the present time to an increase of production crops for ornamental plants and as a consequence an increased demand of planting material. Thus, improvements of the current multiplication methods are sought after. Lisianthus russelianus Hook. (Eustoma grandiflorum Grise. is a relatively new floral crop to the international market, known for beautiful flowers of various colors and for having a long vase life. This study focused on the development of an efficient protocol for rapid regeneration of this species following known basic and applied aspects of lisianthus biotechnology but exploring new potentials. In the course of experiments conducted, for in vitro multiplication there were used nodal segments (1.5 cm with axillary buds from three F1 hybrids ‘Echo Lavender’, ‘Flamenco White’, ‘Mirage Pastel Pink’ that were inoculated on MS basal medium supplemented with 0.50 mg 1-1 TDZ, 1.0 mg 1-1 BAP and 0.50 mg 1-1 AIA. The results show that the medium with BAP was most effective for obtaining the highest shoots number compared to medium containing TDZ. For rooting induction, two different concentrations of auxin IBA 0.5 mg 1-1 and 1.5 mg 1-1 were used simultaneously on MS basal medium. The highest roots number occurred when using 1.5 mg 1-1 IBA. Both the number of shoots and rooting regeneration were dependent on the cultivar. The highest shoots number was achieved for ’Mirage Pastel Pink’ hybrid (6.91 on the medium containing 1.0 mg 1-1 BAP and 0.50 mg 1-1 IAA.

  18. Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing

    Directory of Open Access Journals (Sweden)

    Florian Walder

    2017-11-01

    Full Text Available Fusarium head blight, caused by fungi from the genus Fusarium, is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium. By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1–D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch (Vicia villosa acts as a potent alternative host for Fusarium (OTU F.ave/tri showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici

  19. Projecting the success of plant restoration with population viability analysis

    Science.gov (United States)

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  20. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Banik, S.; Pérez-de-Luque, A.

    2017-07-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  1. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    International Nuclear Information System (INIS)

    Banik, S.; Pérez-de-Luque, A.

    2017-01-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  2. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P Northeast China representative of a cool to temperate zone.

  3. Adaptive mechanisms of insect pests against plant protease inhibitors and future prospects related to crop protection: a review.

    Science.gov (United States)

    Macedo, Maria L R; de Oliveira, Caio F R; Costa, Poliene M; Castelhano, Elaine C; Silva-Filho, Marcio C

    2015-01-01

    The overwhelming demand for food requires the application of technology on field. An important issue that limits the productivity of crops is related to insect attacks. Hence, several studies have evaluated the application of different compounds to reduce the field losses, especially insecticide compounds from plant sources. Among them, plant protease inhibitors (PIs) have been studied in both basic and applied researches, displaying positive results in control of some insects. However, certain species are able to bypass the insecticide effects exerted by PIs. In this review, we disclosed the adaptive mechanisms showed by lepidopteran and coleopteran insects, the most expressive insect orders related to crop predation. The structural aspects involved in adaptation mechanisms are presented as well as the newest alternatives for pest control. The application of biotechnological tools in crop protection will be mandatory in agriculture, and it will be up to researchers to find the best candidates for effective control in long-term.

  4. EVALUATION OF PHOSPHATE SOLUBILIZING MICROORGANISMS (PSMs FROM RHIZOSPHERE SOIL OF DIFFERENT CROP PLANTS AND ITS ANTAGONISTIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Samikan Krishnakumar

    2014-04-01

    Full Text Available Indigenous rhizosphere soil samples were collected during study period (October 2011 – March 2012 of different crop plant from Thiruvannamalai District, Tamilnadu, India for the enumeration of Phosphate solubilizing microorganisms (PSMs. Efficient phosphate solubilizing bacteria, fungi and heterotrophic bacteria were enumerated. Maximum heterotrophic bacterial populations (19.4 X105, phosphate solubilizing bacteria (4.7 X 105 were recorded in the month of February and phosphate solubilizing fungi (3.9 X 102 were documented in the month of December in rhizosphere soil of ground nut. Minimum bacterial populations (14.3 X 105 were observed in rhizosphere soil of chilli in the month of March. Lowest phosphate solubilizing bacteria (1.2 X105 and phosphate solubilzing fungi (1.2 X 102 were observed in rhizosphere soil of paddy during the month of October. Phosphate solubilizing bacteria Pseudomonassp. - BS1, Bacillus sp. – BS2, Micrococcus sp. – BS3 and fungi Aspergillus sp. – FS1, Penicillium sp. – FS2.and Trichoderma sp. – FS3 were identified. Pseudomonas sp. - BS1. exhibited maximum solubilizing efficiency (SE and solubilizing index (SI of 300.0 and 4.0 respectively. In fungi Aspergillus sp. – FS1 showed a maximum solubilizing efficiency (SE and solubilizing index(SI of 283.3 and 3.8 respectively. Antagonistic activity of P-solubilizing Pseudomonassp. - BS1 was deliberated against selected fungal plant pathogens. Among pathogens studied Aspergillus sp. showed a maximum inhibition activity (16 mm and minimum activity (12 mm was observed against Fusarium sp. Moreover inhibition efficiency (IE and inhibition index (II of Pseudomonas sp. - BS1. also calculated base on the antagonistic activity. Aspergillus sp. exhibited highest inhibition efficiency and inhibition index of 166.6 and 3.6 respectively.

  5. Effect of farmyard manure and green manure crops on populations of mycophagous soil fauna and Rhizoctonia stem canker of potato

    NARCIS (Netherlands)

    Lootsma, M.; Scholte, K.

    1998-01-01

    Effects of organic soil amendments on populations of mycophagous springtails and nematodes and on Rhizoctonia solani stem canker of potato were investigated in two field experiments each lasting two years. The organic amendments consisted of three green manure crops (white mustard, forage rape and

  6. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    Science.gov (United States)

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  7. Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops

    Energy Technology Data Exchange (ETDEWEB)

    Teresani, G.; Hernández, E.; Bertolini, E.; Siverio, F.; Marroquín, C.; Molina, J.; Hermoso de Mendoza, A.; Cambra, M.

    2015-07-01

    ‘Candidatus Liberibacter solanacearum’ has recently been reported to be associated with vegetative disorders and economic losses in carrot and celery crops in Spain. The bacterium is a carrot seedborne pathogen and it is transmitted by psyllid vector species. From 2011 to 2014 seasonal and occasional surveys in carrot, celery and potato plots were performed. The sticky plant method was used to monitor the arthropods that visited the plants. The collected arthropods were classified into Aphididae and Cicadellidae, and the superfamily Psylloidea was identified to the species level. The superfamily Psylloidea represented 35.45% of the total arthropods captured on celery in Villena and 99.1% on carrot in Tenerife (Canary Islands). The maximum flight of psyllid species was in summer, both in mainland Spain and the Canary Islands, reaching a peak of 570 specimens in August in Villena and 6,063 in July in Tenerife. The main identified psyllid species were as follows: Bactericera trigonica Hodkinson, B. tremblayi Wagner and B. nigricornis Förster. B. trigonica represented more than 99% of the psyllids captured in the Canary Islands and 75% and 38% in 2011 and 2012 in Villena, respectively. In addition, Trioza urticae Linnaeus, Bactericera sp., Ctenarytaina sp., Cacopsylla sp., Trioza sp. and Psylla sp. were captured. ‘Ca. L. solanacearum’ targets were detected by squash real-time PCR in 19.5% of the psyllids belonging to the different Bactericera species. This paper reports at least three new psyllid species that carry the bacterium and can be considered as potential vectors. (Author)

  8. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    Science.gov (United States)

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  9. Effect of some detergents, humate, and composition of seedbed on crop of tomato plants in a hydroponic culture

    Science.gov (United States)

    Guminka, A. Z.; Gracz-Nalepka, M.; Lukasiewicz, B.; Sobolewicz, E.; Turkiewicz, I. T.

    1978-01-01

    It is established that single detergent doses distinctly stimulate vegetative development of plants in the initial stage when humates are available. When detergents are applied every four weeks in a hydroponic culture, in which the seedbed does not contain active humates, the crop is reduced by 50%. This adverse effect does not occur when the seedbed is a mixture of brown coal and peat.

  10. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    NARCIS (Netherlands)

    Kantar, M.B.; Sosa, C.C.; Khoury, C.K.; Castaneda-Alvarez, N.P.; Achicanoy, H.A.; Bernau, V.; Kane, N.C.; Marek, L.; Seiler, G.; Rieseberg, L.H.

    2015-01-01

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and

  11. Sublethal effects of the herbicide glufosinate ammonium on crops and wild plants: short-term effects compared to vegetative recovery and plant reproduction.

    Science.gov (United States)

    Carpenter, David; Boutin, Céline

    2010-10-01

    Current guidelines for phytotoxicity testing rely heavily on short-term testing of primarily crop species to predict the sensitivity of non-target, wild plants to herbicides. However, little is known on how plants recover following initial growth inhibitions in standard 14-28 day greenhouse tests conducted for pesticide assessment and registration. The objectives of this study were to assess the ability of plant species to recover (biomass and reproduction) when tested at the juvenile stage (routine regulatory testing), comparing crop and wild species and using the herbicide glufosinate ammonium. Ten crops and 10 wild species were tested with a one-time exposure to glufosinate ammonium in a greenhouse. Half the plants of each species (9 doses × 6 replicates) were harvested 3 weeks after being sprayed (short-term). The remaining plants were harvested several weeks later, coinciding with seed set or natural senescence (long-term). Total aboveground biomass and several endpoints related to crop production and plant reproduction were measured. Calculated IC50 values (dosage that results in a 50% decrease in the biomass of a plant as compared to the untreated controls) based solely on aboveground biomass, for species harvested in the long-term were generally higher than those obtained in the short-term (with two exceptions), indicating recovery over time. Crop species did not differ from wild species in terms of sensitivity. However, in seven out of 12 cases where reproduction was measurable, reproductive endpoints were more sensitive than either short or long-term biomass endpoints, indicating the importance of examining these parameters in phytotoxicity testing. Glufosinate ammonium was found to be phytotoxic at low doses (2.64-7.74% g ai/ha of the label rate).

  12. Use of Carbon -14 and Phosphorus -32 to study phosphorus acquisition efficiency in crop plants

    International Nuclear Information System (INIS)

    Pandey, Renu; Vengavasi, Krishnapriya

    2017-01-01

    Low bioavailability of phosphorus (P) in soils is one of the major limiting factors to crop production throughout the world. P nutrition improves yield, with significant influences on the above- (leaf area, photosynthesis, dry matter accumulation, leaf P content) and below-ground (root morphology, exudation, symbiosis) processes (Pandey et al., 2015). Plants, however, are known to possess potential adaptive mechanisms at morphological, physiological, biochemical, and molecular levels to overcome P deficiency. Such adaptive mechanisms mainly include an increase in total root length and root hair growth (Pandey et al., unpublished), enhancement of organic acids (Vengavasi and Pandey, 2016a, b), acid phosphatase (Pandey, 2006) and ribonuclease (RNase) secretion into the rhizosphere (Hocking, 2001), increase in expression of proteins such as phosphatase, inorganic phosphate (Pi) transporter, RNase and phosphoenolpyruvate carboxylase (PEPcase) in plant tissues (Ragothama, 1999). Of all the above, rhizosphere acidification provides maximum exploration of soil volume around the rooting zone leading to conversion of non-available nutrients into available forms thus, resulting in enhanced uptake efficiency

  13. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    International Nuclear Information System (INIS)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la; Hamdi, Helmi; White, Jason C.; Bindraban, Prem; Dimkpa, Christian

    2015-01-01

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications

  14. Genome editing in plants: Advancing crop transformation and overview of tools.

    Science.gov (United States)

    Shah, Tariq; Andleeb, Tayyaba; Lateef, Sadia; Noor, Mehmood Ali

    2018-05-07

    Genome manipulation technology is one of emerging field which brings real revolution in genetic engineering and biotechnology. Targeted editing of genomes pave path to address a wide range of goals not only to improve quality and productivity of crops but also permit to investigate the fundamental roots of biological systems. These goals includes creation of plants with valued compositional properties and with characters that confer resistance to numerous biotic and abiotic stresses. Numerous novel genome editing systems have been introduced during the past few years; these comprise zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing technique is consistent for improving average yield to achieve the growing demands of the world's existing food famine and to launch a feasible and environmentally safe agriculture scheme, to more specific, productive, cost-effective and eco-friendly. These exciting novel methods, concisely reviewed herein, have verified themselves as efficient and reliable tools for the genetic improvement of plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    Science.gov (United States)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  16. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    Energy Technology Data Exchange (ETDEWEB)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la [The Connecticut Agricultural Experiment Station (United States); Hamdi, Helmi [University of Carthage, Water Research and Technology Center (Tunisia); White, Jason C., E-mail: jason.white@ct.gov [The Connecticut Agricultural Experiment Station (United States); Bindraban, Prem; Dimkpa, Christian [Virtual Fertilizer Research Center (United States)

    2015-02-15

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications.

  17. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    Science.gov (United States)

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Perepelyatnikova, L.; Ivanova, T.; Vynograds'ka, V.

    2006-01-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time

  19. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    Science.gov (United States)

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  20. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    Science.gov (United States)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  1. Estimation of water consumption of tomato crops planted in rock wool bed in greenhouse

    International Nuclear Information System (INIS)

    Ito, K.; Senge, M.; Iwama, K.; Hashimoto, I.

    2002-01-01

    For estimating the crop water consumption, it is necessary to determine meteorological data in greenhouse from open field data and calculate potential evaporation. In this study, temperature, humidity, wind velocity and solar radiation were measured in greenhouse as well as in open field. Then, we compared the meteorological data of greenhouse with that of open field. Results of the comparison differed from the reference values of the Official Manual (1997). Humidity during heating period and wind velocity in the greenhouse cannot be evaluated from the steps of the Official Manual. We applied the original equation that was derived in this observation to calculate the potential evaporation in the greenhouse. It became apparent that the potential evaporation could be estimated using open field data. A portion of irrigated water was consumed by vegetation and remainder was discharged from rock wool bed. Mean daily water consumption during the measurement period was 2.50(mm/d), with a monthly maximum occurring in July with 3.54(mm/d). Discharged water amounted to 9% of irrigated water. Tomato's crop coeffieiency with rock wool cultivation was calculated by potential evaporation and water consumption. In this field, this value was smaller than those recorded in the Official Manual. The amount of irrigation was same in all segments of the greenhouse. However, water consumption was affected by incident energy. A portion of discharged water (5% of irrigation water in this greenhouse) could not be saved because there existed a differential volume need for some plants which consumed more water in relation to others

  2. Distribution of nitrogen ammonium sulfate (15N) soil-plant system in a no-tillage crop succession

    International Nuclear Information System (INIS)

    Fernandes, Flavia Carvalho da Silva; Libardi, Paulo Leonel

    2012-01-01

    the n use by maize (Zea mays, l.) is affected by n-fertilizer levels. this study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of n use by maize in a crop succession, based on 15 N labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signal grass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of n rates of 60, 120 and 180 kg ha -1 in the form of labeled 15 N ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated n; fertilizer-derived n in corn plants and pasture; fertilizer-derived n in the soil; and recovery of fertilizer-n by plants and soil were evaluated.The highest uptake of fertilizer n by corn was observed after application of 120 kg ha -1 N and the residual effect of n fertilizer on subsequent corn and brachiaria was highest after application of 180 kg ha -1 N. After the crop succession, soil n recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha -1 N. (author)

  3. Mulching as a countermeasure for crop contamination within the 30 km zone of Chernobyl Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yera, T.S.; Vallejo, R.; Tent, J.; Rauret, G.; Omelyanenko, N.; Ivanov, Y.

    1999-01-01

    The effect of mulch soil cover on crop contamination by 137 Cs was studied within the 30 km zone of Chernobyl Nuclear Power Plant. Experiments were performed with oats (Avena sativa) over a three year period. In 1992 soil surface was covered by a plastic net. In 1993 two straw mulch treatments were applied at a dose rate of 200 g m -2 using 137 Cs contaminated and clean straw, respectively. A similar mulch treatment was applied in 1994, and two mulch doses of clean straw were tested. Protection of the soil with a plastic net significantly increased crop yield and reduced crop contamination. When clean straw was used as a mulch layer, a significant decrease of about 30--40% in 137 Cs activity concentration was observed. Mulching with 137 Cs contaminated straw did not reduce crop contamination, probably due to an increase in soil available 137 Cs released from the contaminated mulch. Mulching has been shown to be an effective treatment both for reducing 137 Cs plant contamination and improving crop yield. Therefore, it can be considered as a potential countermeasure in a post-accident situation

  4. Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — The Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations data set combines information from a global data set developed by Declan Butler of...

  5. Energy crops for biogas plants. Saxony-Anhalt; Energiepflanzen fuer Biogasanlagen. Sachsen-Anhalt

    Energy Technology Data Exchange (ETDEWEB)

    Boese, L.; Buttlar, C. von; Boettcher, K. (and others)

    2012-07-15

    For agriculturists in Saxony-Anhalt (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  6. Energy crops for biogas plants. Baden-Wuerttemberg; Energiepflanzen fuer Biogasanlagen. Baden-Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Butz, A.; Heiermann, M.; Herrmann, C. [and others

    2013-05-01

    For agriculturists in Baden-Wuerttemberg (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  7. Energy crops for biogas plants. Mecklenburg-Western Pomerania; Energiepflanzen fuer Biogasanlagen. Mecklenburg-Vorpommern

    Energy Technology Data Exchange (ETDEWEB)

    Aurbacher, J.; Bull, I.; Formowitz, B. (and others)

    2012-06-15

    For agriculturists in Mecklenburg-Western Pomerania (Federal Republic of Germany), the brochure under consideration provides recommendations on alternative crop rotation systems. With the help of these alternative cultivation systems, crop rotation with high yields in combination with high diversity, diversification and sustainability can be realized. Subsequently to the presentation of energy crops for the production of biogas, recommendations for the design of crop rotation are given. Other chapters of this booklet deal with ensilage and gas yields as well as the economics of energy crop cultivation.

  8. Elytrigia repens population dynamics under different management schemes in organic cropping systems on coarse sand

    DEFF Research Database (Denmark)

    Rasmussen, Ilse A.; Melander, Bo; Askegaard, Margrethe

    2014-01-01

    -year crop rotations including various cash crops and grass-clover leys; two rotations running during the first two courses with the one replaced with another rotation during the last course. The rotations were combined with four combinations of the treatments; with and without animal manure (‘without...

  9. The effect of plant population and nitrogen fertilizer on

    Directory of Open Access Journals (Sweden)

    mohamad reza asgaripor

    2009-06-01

    Full Text Available Interest has increased towards hemp (Cannabis sativa L. fibre production due to renewed demand for natural fibre in the world. A Study was conducted in 2005 at Shirvan in Northern Khorasan province, Iran, to determine the effects of three plant populations (30, 90 and 150 plant per m2 and three rates of nitrogen application (50, 150 and 250 kg N per ha on final stand, stalk height, basal stalk diameter, total stalk yield as well as fibre content from stalk and fibre yield in male and female plants. A split plot experimental with three replications was used. The result indicated that due to enhanced competition for light at higher population on density and N2 level plant mortality was higher than other treatment Morphological characteristics were highly correlated with plant sexual, plant population and nitrogen fertilizer. Highest stem, leaf and inflorescence yield were obtained at 250 plant m-2 when 150 kg N ha-1 was used. Lowest plant density did not show self-thinning but reduced above ground dry matter. Shoot dry matter increased with increasing plant density and nitrogen supply. Apparently, fibre content was greater at medium density and lowest nitrogen fertilizer, however, fibre yield was greatest at highest plant population and nitrogen fertilizer. In terms of fibre yield, approximate 31.7% of the fibre was located in the bottom parts, 22.4% in the middle and only 9.9% in the top part of the stem. The results suggest that hemp can yield large quantities of useful fibre at Shirvan when planted in proper plant densities and suitable nitrogen fertilizer.

  10. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    Science.gov (United States)

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-05-08

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers.

  11. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    Science.gov (United States)

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  12. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Lok R. [Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN 37614–1700 (United States); Dubey, Brajesh, E-mail: bdubey@uoguelph.ca [Environmental Engineering, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario (Canada)

    2013-05-01

    The increasing applications of different nanomaterials in the myriad of nano-enabled products and their potential for leaching have raised considerable environmental, health and safety (EHS) concerns. As systematic studies investigating potential anomalies in the morphology and anatomy of crop plants are scarce, herein we report on the developmental responses of two agriculturally significant crop plants, maize (Zea mays L.) and cabbage (Brassica oleracea var. capitata L.), upon in vitro exposure to nanoparticles of citrate-coated silver (Citrate–nAg) and zinc oxide (nZnO). Analyses involve histology of the primary root morphology and anatomy using light microscopy, metal biouptake, moisture content, rate of germination, and root elongation. Comparative toxicity profiles of the ionic salts (AgNO{sub 3} and ZnSO{sub 4}) are developed. Notably, we uncover structural changes in maize primary root cells upon exposure to Citrate–nAg, nZnO, AgNO{sub 3}, and ZnSO{sub 4}, possibly due to metal biouptake, suggesting potential for functional impairments in the plant growth and development. Citrate–nAg exposure results in lower Ag biouptake compared to AgNO{sub 3} treatment in maize. Microscopic evidence reveals ‘tunneling-like effect’ with nZnO treatment, while exposure to AgNO{sub 3} leads to cell erosion in maize root apical meristem. In maize, a significant change in metaxylem count is evident with Citrate–nAg, AgNO{sub 3}, and ZnSO{sub 4} treatment, but not with nZnO treatment (p > 0.1). In both maize and cabbage, measures of germination and root elongation reveal lower nanoparticle toxicity compared to free ions. As moisture data do not support osmotically-induced water stress hypothesis for explaining toxicity, we discuss other proximate mechanisms including the potential role of growth hormones and transcription factors. These findings highlight previously overlooked, anatomically significant effects of metal nanoparticles, and recommend considering

  13. Prioritizing stream types according to their potential risk to receive crop plant material--A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues.

    Science.gov (United States)

    Bundschuh, Rebecca; Kuhn, Ulrike; Bundschuh, Mirco; Naegele, Caroline; Elsaesser, David; Schlechtriemen, Ulrich; Oehen, Bernadette; Hilbeck, Angelika; Otto, Mathias; Schulz, Ralf; Hofmann, Frieder

    2016-03-15

    Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed

  14. Metallic Trace Elements (MTE in soils and plant organs of some crop in periurban of Abidjan (Ivory Coast

    Directory of Open Access Journals (Sweden)

    Thierry Philippe Guety

    2017-12-01

    Full Text Available The quality of the plant production in periurban agriculture is subjected to question given the potential contamination of soils that can affect the crops. The levels of contamination of soils and vegetables by Metallic trace elements (MTE as copper (Cu, zinc (Zn, cadmium (Cd and lead (Pb in the district of Abidjan, have been evaluated. Multi-sites survey of cropping areas of sweet potato and Hibiscus was conducted in three municipalities in Abidjan (Port-Bouët, Yopougon and Bingerville in relation to the intensity of industrial and commercial activities. The site of Bingerville has been used as the reference site referring to the low activities. Soil samples (in 0-20 cm and 20 - 40 cm, combined with that of plants (leaf, stem, and root, and water were collected, transported in laboratory for analysis. The total amounts of MTE in soil, as well as the different fractions extracted were determined in addition to the respective concentration in plants (Hibiscus and Sweet potato. Toxic level of Pb (< 8 mgkg-1 was observed in the plant organs collected at Port-Bouët site indifferently to crops while lowest content of Pb (35.5 mgkg-1 was accounting for the soil of Yopougon (39.8 mgkg-1. A neutral pH of the soil has been considered more favorable to the contamination of plants in Pb on the polluted sites somewhat differing for extractable fractions. The acidity and small width of leaf as observed for Hibiscus, were identified as the control factors of crop contamination in periurban agroecosystems prone to Pb pollution. To strengthen the consistency of the knowledge, studies of the interaction between Pb and Zn as well as the translocation of Pb in the plants to tubers are suggested in the tropical ecosystems.

  15. New ways enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N. V; Zebrakova, I. V.; Matsko, V. P.; Kislushko, P. M.

    1994-01-01

    After Chernobyl nuclear accident it has become very important to seek new ways of enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. A great number of biologically active compounds have been tested, which increased the disease resistance of plants and simultaneously activated the physiological and biochemical processes that control the transport of micro- and macroelements (radionuclide included) and their 'soil-root-stem-leaf' redistribution. (author)

  16. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Changes in bird community composition in response to growth changes in short-rotation woody crop planting

    International Nuclear Information System (INIS)

    Tolbert, V.R.; Hanowski, J.; Schiller, A.; Hoffman, W.; Christian, D.; Lindberg, J.

    1997-01-01

    Hybrid poplar established as intensively managed short-rotation woody crops (SRWC) on former agricultural lands can provide habitat for wildlife. Studies of bird use of SRWC for nesting and during fall migration have shown that the numbers and kinds of breeding birds using mature plantings of hybrid poplar are similar to natural forested lands. In Minnesota, the number of species of breeding birds using habitat provided by clonal-trial plantings and young larger-scale plantings (12-64 ha) of hybrid poplar were initially most similar to those using grasslands and row-crops. As the plantings approached canopy closure, successional species became predominant. In the Pacific Northwest, breeding bird composition and density were very similar for mature plantings and forested areas; however, fall migrants were found primarily in forested areas. In the Southeast, preliminary comparisons of breeding bird use of plantings of sweetgum and sycamore with naturally regenerating forests of different ages and sizes and vegetation structure are showing no size effect on use. As with hybrid poplar, species use of the more mature plantings of sweetgum and sycamore was most similar to that of natural forests. (author)

  18. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    Science.gov (United States)

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.

  19. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  20. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.

    Science.gov (United States)

    Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan

    2018-06-01

    Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.

  1. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  2. Effect of rooting depth, plant density and planting date on maize (Zea Mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2014-01-01

    Under low and poorly distributed rainfall higher food production can be achieved by increasing crop water use efficiency (WUE) through optimum soil fertility management and selection of deep-rooting cultivars, appropriate plant density and planting dates. We explored AquaCrop's applicability in

  3. Decreasing Fertilizer use by Optimizing Plant-microbe Interactions for Sustainable Supply of Nitrogen for Bioenergy Crops

    Science.gov (United States)

    Schicklberger, M. F.; Huang, J.; Felix, P.; Pettenato, A.; Chakraborty, R.

    2013-12-01

    Nitrogen (N) is an essential component of DNA and proteins and consequently a key element of life. N often is limited in plants, affecting plant growth and productivity. To alleviate this problem, tremendous amounts of N-fertilizer is used, which comes at a high economic price and heavy energy demand. In addition, N-fertilizer also significantly contributes to rising atmospheric greenhouse gas concentrations. Therefore, the addition of fertilizer to overcome N limitation is highly undesirable. To explore reduction in fertilizer use our research focuses on optimizing the interaction between plants and diazotrophic bacteria, which could provide adequate amounts of N to the host-plant. Therefore we investigated the diversity of microbes associated with Tobacco (Nicotiana tabacum) and Switchgrass (Panicum virgatum), considered as potential energy crop for bioenergy production. Several bacterial isolates with representatives from Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes and Bacilli were obtained from the roots, leaves, rhizoplane and rhizosphere of these plants. Majority of these isolates grew best with simple sugars and small organic acids. As shown by PCR amplification of nifH, several of these isolates are potential N2-fixing bacteria. We investigated diazotrophs for their response to elevated temperature and salinity (two common climate change induced stresses found on marginal lands), their N2-fixing ability, and their response to root exudates (which drive microbial colonization of the plant). Together this understanding is necessary for the development of eco-friendly, economically sustainable energy crops by decreasing their dependency on fertilizer.

  4. Plant/soil concentration ratios for paired field and garden crops, with emphasis on iodine and the role of soil adhesion

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Long, J.M.; Sanipelli, B.

    2010-01-01

    In the effort to predict the risks associated with contaminated soils, considerable reliance is placed on plant/soil concentration ratio (CR) values measured at sites other than the contaminated site. This inevitably results in the need to extrapolate among the many soil and plant types. There are few studies that compare CR among plant types that encompass both field and garden crops. Here, CRs for 40 elements were measured for 25 crops from farm and garden sites chosen so the grain crops were in close proximity to the gardens. Special emphasis was placed on iodine (I) because data for this element are sparse. For many elements, there were consistent trends among CRs for the various crop types, with leafy crops > root crops ≥ fruit crops ∼ seed crops. Exceptions included CR values for As, K, Se and Zn which were highest in the seed crops. The correlation of CRs from one plant type to another was evident only when there was a wide range in soil concentrations. In comparing CRs between crop types, it became apparent that the relationships differed for the rare earth elements (REE), which also had very low CR values. The CRs for root and leafy crops of REE converged to a minimum value. This was attributed to soil adhesion, despite the samples being washed, and the average soil adhesion for root crops was 500 mg soil kg -1 dry plant and for leafy crops was 5 g kg -1 . Across elements, the log CR was negatively correlated with log Kd (the soil solid/liquid partition coefficient), as expected. Although, this correlation is expected, measures of correlation coefficients suitable for stochastic risk assessment are not frequently reported. The results suggest that r ∼ -0.7 would be appropriate for risk assessment. -- Research highlights: →There are few studies that compare CRs among plant types that encompass both field and garden crops. Here, CRs for 40 elements were measured for 25 crops from farm and garden sites chosen so the grain crops were in close proximity

  5. A rapid and efficient method to study the function of crop plant transporters in Arabidopsis

    Science.gov (United States)

    Iron (Fe) is an essential micronutrient for humans. Fe deficiency disease is wide-spread and has lead to extensive studies on the mechanisms of Fe uptake and storage, especially in staple food crops such as rice. However, studies of functionally related genes in rice and other crops are often time a...

  6. Simulating the partitioning of biomass and nitrogen between roots and shoot in crop and grass plants

    NARCIS (Netherlands)

    Yin, X.; Schapendonk, A.H.C.M.

    2004-01-01

    Quantification of the assimilate partitioning between roots and shoot has been one of the components that need improvement in crop growth models. In this study we derived two equations for root-shoot partitioning of biomass and nitrogen (N) that hold for crops grown under steady-state conditions.

  7. Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2013-10-01

    Full Text Available Variable-rate nitrogen fertilization (VRF based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N content, N uptake, relative chlorophyll content (SPAD reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001, total N uptake (R² = 0.87; p<0.0001 and SPAD reading (R² = 0.63; p<0.0001 and inversely related to plant N content (R² = 0.53; p<0.0001. The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.

  8. Effects of Planting Dates, Irrigation Management and Cover Crops on Growth and Yield of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-08-01

    Full Text Available Introduction Saffron as a winter active plant with low water requirement is the most strategic medicinal plant in arid and semi-arid parts of Iran. This slow-growing plant has narrow leaves and no aerial stem, hence weeds can be overcome it. Moreover, because of its root and canopy structure an important part of different resources is not used by this low input crop. Therefore, the use of associated crops could be an effective way for increasing resources use efficiencies (Koocheki et al., 2016. Appropriate corm planting date is another important factor that affects saffron growth and yield. Results of some studies show that late spring is the best time for corm planting (Ghasemi-Rooshnavand, 2009; Koocheki et al., 2016. In addition, irrigation management has been evaluated in some studies, but irrigation immediately after corm planting has not been investigated previously. Therefore, the aim of this study was to investigate the effect of irrigation management, planting date and the use of some companion crops on flowering of saffron during two growth cycles. Materials and methods This experiment was carried out as a split-split plot experiment based on a Randomized Complete Block Design with three replications at Research Station, Ferdowsi University of Mashhad, Iran in 2009-2011. Experimental factors included: planting date of saffron as main factor (first of June, first of August and first of October, 2009, the irrigation management as sub factor (irrigation and no irrigation after each planting date and the companion crops as sub-sub factor [Persian clover (Trifolium resupinatum, Bitter vetch (Lathyrus sativus and control. Corm planting was done in 10×25 cm distances with 12 cm depth. In the second year irrigation was done again in the plots which were irrigated after planting in the first year at the same previous dates. Companion crops were sown after first flower picking (November, 2009, then their residue were returned to the soil in

  9. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany

    International Nuclear Information System (INIS)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-01-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. - Highlights: ► Traffic-related pollutant deposition as important pathway for crop contamination. ► Heavy metal content often over EU standards for lead concentration in food crops. ► ‘Grow your own’ food in inner cities not always ‘healthier’ than supermarket products. ► No support for generalisations of crops as ‘risky high’ or ‘safe low’ accumulators. - Higher overall traffic burden increased, while the presence of buildings and large masses of vegetation as barriers between crops and roads reduced heavy metal content in crop biomass.

  10. Crop quality control system: a tool to control the visual quality of pot plants

    NARCIS (Netherlands)

    Dijkshoorn-Dekker, M.W.C.

    2002-01-01

    Key words: quality, growth, model, leaf unfolding rate, internode, plant height, plant width, leaf area, temperature, plant spacing, season, light, development, image processing, grading, neural network, pot plant, Ficus benjamina

  11. Date of planting and seeding rate effects on quantitative and qualitative characteristics of turnip in agro forestry compared to mono cropping systems

    Directory of Open Access Journals (Sweden)

    M.R. Chaichi

    2016-05-01

    Full Text Available Agroforestry is one the aspects of sustainable agriculture in which multiple cropping of perennial trees in mixture with crops guarantees the environmental, economical and social sustainability in rural communities. High demands for forage in Northern provinces of Iran lead to agroforestry in citrus orchards as a potential mean for forage production through agroforestry systems. This research was conducted to determine the best planting date and seeding rate of turnip in agroforestry and mono cropping systems. The treatments were arranged as split factorial based on a completely randomized block design with three replications. The cropping systems (agroforestry and mono cropping were assigned to the main plots and the factorial combinations of planting dates (March 10th, March 25th, and April 9th and seeding rates (1, 2, and 4 kg seed ha-1 were randomly assigned to the subplots. The results of the experiment showed that as the seeding rate increased to 4 kg.ha-1, a significant increase (by 5% in total forage production was observed in both cropping systems. A decreasing trend in forage production was observed in latter planting dates for both cropping systems; however, this decrement in mono cropping was more severe than agroforestry system. In later planting dates the water soluble carbohydrates and forage dry matter digestibility increased but ADF decreased. The results of this experiment indicated a great potential for forage production in citrus orchards of the northern provinces of the country through agroforestry systems.

  12. Intervention analysis of power plant impact on fish populations

    International Nuclear Information System (INIS)

    Madenjian, C.P.

    1984-01-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation. Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s

  13. Investigations on the radioactive contamination of crop plants as a result of hydrogen-bomb detonation. I. Radioactive contamination of crop plants and soil

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, S; Aso, S; Tensho, K; Kumazawa, K; Miyawaki, K

    1956-01-01

    Samples (74) of leaves, fruits, and other plant parts were collected in May 1955 after being subjected to radioactive fallout between March and May. Counts/min ranged from 1 to 259 on fresh samples. Radiation was strongest on rough-surfaced plants. Lower leaves of trees and grasses under trees showed only week radiation. Washing with H/sub 2/O was very effective but occassionally imperfect, indicating possible intake of fission products through roots and leaves. In August and September plant tissues were ashed extracted with HCl, and /sup 40/K precipitated with NH/sub 4/OH and (NH/sub 4/)/sub 2/CO/sub 3/. Radioactivity ranged from 0 to 22 counts/min/10g dried plant material. No radioactivity was found in roots. Soil samples tested ranged from 2 to 47 counts/min for 5 g dry sample. Poorly drained soils were highest.

  14. Nitrogen and plant population change radiation capture and utilization capacity of sunflower in semi-arid environment.

    Science.gov (United States)

    Awais, Muhammad; Wajid, Aftab; Bashir, Muhammad Usman; Habib-Ur-Rahman, Muhammad; Raza, Muhammad Aown Sammar; Ahmad, Ashfaq; Saleem, Muhammad Farrukh; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Saeed, Umer; Arshad, Muhammad Naveed; Fahad, Shah; Nasim, Wajid

    2017-07-01

    The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha -1 ) and N rates (90, 120, and 150 kg ha -1 ) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha -1 ), and 97% with higher N application (150 kg ha -1 ) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha -1 with 150 kg N ha -1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2  = 0.99 in both years), PAR (R 2  = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2  = 0.97 in 2012 and 0.91 in 2013), AY (R 2  = 0.95 in both years), RUE for TDM (RUE TDM ) (R 2  = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUE AY ) (R 2  = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2  = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2  = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of

  15. [Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China].

    Science.gov (United States)

    Xiang, Da-Bing; Yong, Tai-Wen; Yang, Wen-Yu; Yu, Xiao-Bo; Guo, Kai

    2010-06-01

    A three-year experiment was conducted to study the effects of wheat/maize/soybean with total no-tillage and mulching (NTM), wheat/maize/soybean with part no-tillage and part mulching (PTM), wheat/maize/soybean with total tillage without mulching (TWM), and wheat/maize/ sweet potato with total tillage without mulching (TWMS) on the soil and water conservation, soil fertility, and crop output value in a sloping land of Southwest China. The average soil erosion amount and surface runoff of NTM were significantly lower than those of the other three planting systems, being 1189 kg x hm(-2) and 215 m3 x hm(-2), and 10.6% and 84.7% lower than those of TWMS, respectively. The soil organic matter, total N, available K and available N contents of NTM were increased by 15.7%, 18.2%, 55.2%, and 25.9%, respectively, being the highest among the test planting systems. PTM and TWM took the second place, and TWMS pattern had the least. NTM had the highest annual crop output value (18809 yuan x hm(-2)) and net income (12619 yuan x hm(-2)) in three years, being 2.2% -20.6% and 3.8% -32.9% higher than other three planting systems, respectively. In a word, the planting system wheat/maize/soybean was more beneficial to the water and soil conservation and the improvement of soil fertility and crop output value, compared with the traditional planting system wheat/maize/sweet potato.

  16. Intensity of Ground Cover Crop Arachis pintoi, Rhizobium Inoculation and Phosphorus Application and Their Effects on Field Growth and Nutrient Status of Cocoa Plants

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2006-08-01

    Full Text Available Arachis pintoiis potentially as a cover crop for cocoa (Theobroma cacaoL. farm, however information regarding its effect on the growth of cocoa plants in the field is very limited. The objective of this experiment is to investigate the combined influence of ground cover crop A. pintoi, rhizobial bacterial inoculation and phosphorus (P fertilizer on the growth of cocoa in the field and nutrient status. This experiment laid out in split-split plot design consisted of three levels of cover crop (without, A. pintoiand Calopogonium caeruleum, two levels of rhizobium inoculation (not inoculated and inoculated and two levels of phosphorus application (no P added and P added. The results showed that in field condition the presence of A. pintoias cover crop did not affect the growth of cocoa. On the other hand, C. caeruleumas cover crop tended to restrict cocoa growth compared to A. pintoi. Application of P increased leaf number of cocoa plant. Biomass production of A. pintoiwas 40% higher than C. caeruleum. Soil organic carbon and nitrogen contents were not affected by ground cover crops, though higher value (0.235% N and 1.63% organic C was obtained from combined treatments of inoculation and P addition or neither inoculation nor P addition. In the case of no rhizobium inoculation, soil N content in cocoa farm with A. pintoicover crop was lower than that of without cover crop or with C. caeruleum. Cover crop increased plant N content when there was no inoculation, on the other hand rhizobium inoculation decreased N content of cocoa tissue. Tissue P content of cocoa plant was not influenced by A. Pintoicover crop or by rhizobium inoculation, except that the P tissue content of cocoa was 28% higher when the cover crop was C. caeruleumand inoculated. Key words : Arachis pintoi, Theobroma cacao, Calopogonium caeruleum, rhizobium, nitrogen, phosphorus.

  17. The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020

    National Research Council Canada - National Science Library

    2005-01-01

    .... Renewable materials from home-grown crops trees and agricultural wastes can provide many of the same chemical building blocks-plus others that petrochemicals cannot Despite the expertise and ingenuity of U.S...

  18. Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects

    NARCIS (Netherlands)

    Messelink, G.J.; Bennison, J.; Alomar, O.; Ingegno, B.L.; Tavella, L.; Shipp, L.; Palevsky, E.; Wäckers, F.L.

    2014-01-01

    Biological pest control in greenhouse crops is usually based on periodical releases of mass-produced natural enemies, and this method has been successfully applied for decades. However, in some cases there are shortcomings in pest control efficacy, which often can be attributed to the poor

  19. Effect of crop sanitation on banana weevil Cosmopolites sordidus (Germar) populations and associated damage

    NARCIS (Netherlands)

    Masanza, M.

    2003-01-01

    The banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious pest of bananas. However, its ecology is not well elucidated especially in East Africa where plantations are up to 50 years old and are under various management and cropping systems. No single

  20. Plant Mating Systems Often Vary Widely Among Populations

    Directory of Open Access Journals (Sweden)

    Michael R. Whitehead

    2018-04-01

    Full Text Available Most flowering plants are hermaphroditic, yet the proportion of seeds fertilized by self and outcross pollen varies widely among species, ranging from predominant self-fertilization to exclusive outcrossing. A population's rate of outcrossing has important evolutionary outcomes as it influences genetic structure, effective population size, and offspring fitness. Because most mating system studies have quantified outcrossing rates for just one or two populations, past reviews of mating system diversity have not been able to characterize the extent of variation among populations. Here we present a new database of more than 30 years of mating system studies that report outcrossing rates for three or more populations per species. This survey, which includes 741 populations from 105 species, illustrates substantial and prevalent among-population variation in the mating system. Intermediate outcrossing rates (mixed mating are common; 63% of species had at least one mixed mating population. The variance among populations and within species was not significantly correlated with pollination mode or phylogeny. Our review underscores the need for studies exploring variation in the relative influence of ecological and genetic factors on the mating system, and how this varies among populations. We conclude that estimates of outcrossing rates from single populations are often highly unreliable indicators of the mating system of an entire species.

  1. Population fluctuation of Empoasca sp. (Hemiptera: Cicadellidae in a physic nut crop in Mato Grosso do Sul

    Directory of Open Access Journals (Sweden)

    Denisar Paggioli de Carvalho

    2016-01-01

    Full Text Available Physic nut (Jatropha curcas L. is an oilseed, semi-evergreen shrub or small tree of the Euphorbiaceae family, whose seeds contain oil that can be processed into a high quality biofuel. However, there have been reports of arthropods feeding from its leaves, including the green leafhopper Empoasca sp. (Hemiptera: Cicadellidae. The large numbers of this insect, observed in certain periods of the year in many regions of Brazil, are causing damage to the oilseed crops. This study aims at evaluating the fluctuation in green leafhopper population in a physic nut crop in Dourados, Mato Grosso do Sul, to assess possible correlations with rainfall, maximum, average and minimum temperatures. This evaluation was conducted between March 2011 and July 2012. The largest Empoasca sp. populations were recorded in May and June, 2011, and between February and May, 2012. No significant correlation was observed between the weather parameters analyzed and the fluctuation in the Hemiptera population, but there was a trend toward higher population density during the warmer and rainier months.

  2. Population dynamics of the diamondback moth, Plutella xylostella (L.), in northern China: the effects of migration, cropping patterns and climate.

    Science.gov (United States)

    Zhu, Liuhong; Li, Zhenyu; Zhang, Shufa; Xu, Baoyun; Zhang, Youjun; Zalucki, Myron P; Wu, Qingjun; Yin, Xianhui

    2018-02-08

    The diamondback moth, Plutella xylostella (L.), is the most widely distributed pest of Brassica vegetables. Control of P. xylostella has relied on insecticides and it has developed resistance to most insecticides. Although research has clarified the resistance status of P. xylostella and the mechanisms of its resistance in northern China, little work has been conducted on long-term population dynamics in the key vegetable-growing areas of the region. We reviewed and summarized the history of P. xylostella field management practices in northern China (Haidian, Changping, Xuanhua and Zhangbei). Moths were caught in pheromone traps throughout the cropping season and P. xylostella phenology and the general trends in abundance were analysed using DYMEX modelling software. The initial input in the spring determined population size in all years. The seasonal phenology and variation in abundance in most years and sites were simulated, suggesting that the suitable climate creates the conditions for population outbreaks, and growers' actual management level (spraying and crop hygiene) influenced population abundance. Based on climate and using the timing of the initial peak in pheromone trap captures as a biofix, the timing of emergence of the next generation can be forecast, and more effective scouting and regional management strategies against this pest can be developed. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  4. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize

    Directory of Open Access Journals (Sweden)

    M. I. Tajul

    2013-01-01

    Full Text Available Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.. Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm and 4 doses of N (100, 140, 180, and 220 kg ha−1 were the treatment variables. Results revealed that plant growth, light interception (LI, yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1. Response of soil-plant-analysis development (SPAD value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1 and the maximum harvest index (HI compared to the plants in other treatments.

  5. Mite Pests in Plant Crops – Current Issues, Inovative Approaches and Possibilities for Controlling Them (2

    Directory of Open Access Journals (Sweden)

    Radmila Petanović

    2010-01-01

    Full Text Available Part one discusses some principal mite pests in agroecosystems and urban horticulturein European countries, Serbia and its neighbouring countries focusing primarily on issueswith regard to plant production, novel methods and approaches in applied acaralogy. Parttwo displays some major properties of acaricides inhibiting respiration, growth and developmentand other synthetic substances with acaricide action on the market in the last decadeof the 20th century and the first decade of the 21st century. Also some products of naturalorigin (azadirachtin, oils, micoacaricides are said to be gaining in importance. Issues withregard to the fact that mites can readily develop resistance to acardicides are discussed anda survey on the results of biochemical, physiological and genetical causes of resistance areanalyzed. Some basic principles of biological control of phytophagous mites and modernadvances and approaches are discussed as well as current knowledge on host plant resistanceto mites. Eventually, the possibility of using a combination of selective acaricides andbiological control agents is discussed but also the inclusion of other modes of control (agriculturalpractices and physical measures expected to contribute to an integrated managementof pest populations.

  6. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany.

    Science.gov (United States)

    Säumel, Ina; Kotsyuk, Iryna; Hölscher, Marie; Lenkereit, Claudia; Weber, Frauke; Kowarik, Ingo

    2012-06-01

    Food production by urban dwellers is of growing importance in developing and developed countries. Urban horticulture is associated with health risks as crops in urban settings are generally exposed to higher levels of pollutants than those in rural areas. We determined the concentration of trace metals in the biomass of different horticultural crops grown in the inner city of Berlin, Germany, and analysed how the local setting shaped the concentration patterns. We revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and building structures, but not on vegetable type. Higher overall traffic burden increased trace metal content in the biomass. The presence of buildings and large masses of vegetation as barriers between crops and roads reduced trace metal content in the biomass. Based on this we discuss consequences for urban horticulture, risk assessment, and planting and monitoring guidelines for cultivation and consumption of crops. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effects of host-plant population size and plant sex on a specialist leaf-miner

    DEFF Research Database (Denmark)

    Bañuelos, María-José; Kollmann, Johannes Christian

    2011-01-01

    of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different...... punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively...... stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size...

  8. Population diversity of aeluropus lagopoides: a potential cash crop for saline land

    International Nuclear Information System (INIS)

    Ahmed, M.Z.; Gulzar, S.; Ahmed, M.Z.; Kikuchi, A.

    2011-01-01

    Aeluropus lagopoides is a salt tolerant grass which propagates both through genets and ramets. Six disjunct populations of A. lagopoides from Pakistan were selected to test the hypothesis that genetic diversity would be low within but higher among populations. Genetic diversity was investigated using RAPD markers. AMOVA showed higher genetic diversity within population (74%) and lower among population (26%). Furthermore, there were no genetic differences between coastal and inland populations. However, substantial (11%) genetic variation existed among populations of Sindh and Balochistan. Higher genetic diversity within populations are possibly due to physical disturbances that may provide more opportunity for establishment of seeds and increase the possibility of out crossing. Low diversity among populations or between coastal and inland populations indicates fragmentation of a single meta-population due to anthropogenic activity. Geographical barrier between Sindh and Balochistan, appears to mediate gene flow among populations of A. lagopoides. (author)

  9. Modeling of the radiative energy balance within a crop canopy for estimating evapotranspiration: Studies on a row planted soybean canopy

    International Nuclear Information System (INIS)

    Nakano, Y.; Hirota, O.

    1990-01-01

    The spatial distribution and density of the leaf area within a crop canopy were used to estimate the radiational environment and evapotranspiration. Morphological measurements were pursued on the soybean stands in the early stage of growth when the two-dimensional foliage distribution pattern existed. The rectangular tube model was used to calculate the light absorption by parallel row of crops both short-wave radiation (direct and diffuse solar radiation, and scattered radiation by plant elements) and long-wave radiation (emanated radiation from the sky, ground and leaves). The simulated profiles are in close agreement with the experimentally measured short-wave and net radiation data. The evapotranspiration of a row was calcuated using a simulated net radiation. The model calculation also agreed well with the evapotranspiration estimated by the Bowen ratio method

  10. Changing techniques in crop plant classification: molecularization at the National Institute of Agricultural Botany during the 1980s.

    Science.gov (United States)

    Holmes, Matthew

    2017-04-01

    Modern methods of analysing biological materials, including protein and DNA sequencing, are increasingly the objects of historical study. Yet twentieth-century taxonomic techniques have been overlooked in one of their most important contexts: agricultural botany. This paper addresses this omission by harnessing unexamined archival material from the National Institute of Agricultural Botany (NIAB), a British plant science organization. During the 1980s the NIAB carried out three overlapping research programmes in crop identification and analysis: electrophoresis, near infrared spectroscopy (NIRS) and machine vision systems. For each of these three programmes, contemporary economic, statutory and scientific factors behind their uptake by the NIAB are discussed. This approach reveals significant links between taxonomic practice at the NIAB and historical questions around agricultural research, intellectual property and scientific values. Such links are of further importance given that the techniques developed by researchers at the NIAB during the 1980s remain part of crop classification guidelines issued by international bodies today.

  11. Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection.

    Science.gov (United States)

    Higashi, C H V; Bressan, A

    2013-10-01

    We examined the population dynamics of the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) throughout a cycle of corn (Zea mays L.) production on plants with or without symptoms of maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) infection. Our results indicate that the timing of MMV plant infection greatly influenced the planthopper's host plant colonization patterns. Corn plants that expressed symptoms of MMV infection early in the crop cycle (28 d after planting) harbored, on average, 40 and 48% fewer planthoppers than plants that expressed symptoms of MMV infection later in the crop cycle (49 d after planting) and asymptomatic plants, respectively. We also observed a change in the number of brachypterous (short-wing type) and macropterous (long-wing type) winged forms produced; plants expressing early symptoms of MMV infection harbored, on average, 41 and 47% more of the brachypterous form than plants with late infections of MMV and plants with no symptoms of MMV, respectively. Furthermore, we determined the rates of MMV-infected planthoppers relative to their wing morphology (macropterous or brachypterous) and gender. MMV infection was 5 and 12% higher in females than in males in field and greenhouse experiments, respectively; however, these differences were not significantly different. This research provides evidence that MMV similarly infects P. maidis planthoppers regardless of the gender and wing morphotype. These results also suggest that the timing of symptom development greatly affects the population dynamics of the planthopper vector, and likely has important consequences for the dynamics of the disease in the field.

  12. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; Werf, van der W.; Zhang, S.; Spiertz, J.H.J.; Li, Z.

    2014-01-01

    Modern cotton cultivation requires high plant densities and compact plants. Here we study planting density and growth regulator effects on plant structure and production of cotton when the cotton is grown in a relay intercrop with wheat, a cultivation system that is widespread in China. Field

  13. Bioaugmentation with Petroleum-Degrading Consortia Has a Selective Growth-Promoting Impact on Crop Plants Germinated in Diesel Oil-Contaminated Soil

    DEFF Research Database (Denmark)

    Graj, Weronika; Lisiecki, Piotr; Szulc, Alicja

    2013-01-01

    or seeds with indigenous rhizospheric populations is a common approach in the rhizoremediation. However, we introduced hydrocarbon-degrading consortia (M10, R3, and K52) that were previously isolated from crude oil-contaminated soil instead of indigenous microbes. Bioaugmentation with these petroleum...... with the rhizospheric microbes. The microorganisms may be stimulated by the secreted root exudates, which results in an increased breakdown of contaminants in the rhizosphere. The main goal of this study was to establish a potential rhizoremediation combination for a diesel-polluted site. Inoculation of plant roots...... degraders was applied to screen four high biomass crop species (Indian mustard, alfalfa, high erucic acid rapeseed, HEAR, and low erucic acid rapeseed, LEAR) for their tolerance towards diesel oil. At no pollution, a promoting effect of M10 bacteria could be observed on germination and root elongation...

  14. GENETICALLY MODIFIED FOOD CROPS AND PUBLIC HEALTH

    Directory of Open Access Journals (Sweden)

    Alejandro Chaparro Giraldo

    2008-09-01

    Full Text Available The progress made in plant biotechnology has provided an opportunity to new food crops being developed having desirable traits for improving crop yield, reducing the use of agrochemicals and adding nutritional properties to staple crops. However, genetically modified (GM crops have become a subject of intense debate in which opponents argue that GM crops represent a threat to individual freedom, the environment, public health and traditional economies. Despite the advances in food crop agriculture, the current world situation is still characterised by massive hunger and chronic malnutrition, representing a major public health problem. Biofortified GM crops have been considered an important and complementary strategy for delivering naturally-fortified staple foods to malnourished populations. Expert advice and public concern have led to designing strategies for assessing the potential risks involved in cultivating and consuming GM crops. The present critical review was aimed at expressing some conflicting points of view about the potential risks of GM crops for public health. It was concluded that GM food crops are no more risky than those genetically modified by conventional methods and that these GM crops might contribute towards reducing the amount of malnourished people around the world. However, all this needs to be complemented by effective political action aimed at increasing the income of people living below the poverty-line.

  15. Radiation preservation of foods of plant origin. Part 2. Onions and other bulb crops

    International Nuclear Information System (INIS)

    Thomas, P.

    1984-01-01

    The various factors contributing to post harvest losses in onions and other bulb crops are briefly outlined in terms of the current storage methods. The present status of research on sprout inhibition by irradiation is reviewed in detail with respect to dose requirements, effect of time interval between harvest and irradiation, and the influence of environment on sprouting during storage. Biochemical mechanisms of sprout inhibition, metabolic and compositional changes (particularly sugars, anthocyanins, flavor and lachrymatory principles), and the culinary and processing qualities of irradiated onions are discussed. The future prospects for the commercial irradiation for sprout inhibition of bulb crops are considered

  16. New ways in enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N.; Kislushko, P.; Znebrakova, I.; Matsko, V.

    1994-01-01

    Soil contamination with long-lived isotopes as a result of Chernobyl nuclear accident necessitates substantially of crop raising procedures. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. In particular application of Fisher's mineral mix in concentration of 100, 200, 300, g/m 2 to soil decreased the 137 Cs accumulation in green material of lupine (Lupinus luteus L.) 1.1:1.3 and 2.2 times respectively and 1.2:1.1 and 1.1 times, respectively in green material of barley (Hordeum Vulgaris L.). The decrease of 90 Sr accumulation in green material of barley and lupine was similar. On the other hand chloroplasts isolated from showed higher activities of photochemical reactions and the light-dependent ATP enzyme. During the whole growing period of such plants the chlorophyll and protein concentration per wet unit mass were higher than those in control, therefore the high vital activity period in the former case was substantially extended. It has been also found that application of biologically active compounds and trace elements enhances photosynthetic and production activities of plants, reducing level radionuclide accumulation in the harvest. It is found that application of protectants and growth regulators to rye crops also reduces 137 Cs accumulation in green material in booting and earing phases. This finding suggests that this compounds activate the photosynthetic apparatus, reducing level radionuclide accumulation. (author)

  17. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    Science.gov (United States)

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  18. Effects of host-plant population size and plant sex on a specialist leaf-miner

    Science.gov (United States)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  19. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils

    Science.gov (United States)

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.d...

  20. Coupling process-based models and plant architectural models: A key issue for simulating crop production

    NARCIS (Netherlands)

    Reffye, de P.; Heuvelink, E.; Guo, Y.; Hu, B.G.; Zhang, B.G.

    2009-01-01

    Process-Based Models (PBMs) can successfully predict the impact of environmental factors (temperature, light, CO2, water and nutrients) on crop growth and yield. These models are used widely for yield prediction and optimization of water and nutrient supplies. Nevertheless, PBMs do not consider

  1. Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes

    Science.gov (United States)

    The semi-arid regions of western U.S., India, China, and other parts of the world produce a major portion of the world’s food and fiber needs—from staple food grains of wheat, rice, and corn, to vegetables, fruits, nuts, wine, cotton, and forage crops for cattle and poultry. Most of this production ...

  2. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Science.gov (United States)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  3. A management guide for planting and production of switchgrass as a biomass crop in Europe

    NARCIS (Netherlands)

    Elbersen, H.W.; Christian, D.G.; Bassam, N.E.; Sauerbeck, G.; Alexopoulou, E.; Sharma, N.; Piscioneri, I.

    2004-01-01

    Switchgrass is a perennial C4 grass native to North America, where it occurs naturally from 55º N latitude to deep into Mexico. It is used for soil conservation, forage production, as an ornamental grass and more recently as a biomass crop for ethanol, fibre, electricity and heat production. As

  4. Why do smallholders plant biofuel crops? The ‘politics of consent’ in Mexico

    NARCIS (Netherlands)

    Castellanos-Navarrete, Antonio; Jansen, Kees

    2017-01-01

    Recent studies have addressed the social and environmental impacts of biofuel crops but seldom the question as to why rural producers engage in their production. It is particularly unclear how governments worldwide, especially in middle-income countries such as Brazil, Thailand, and Mexico, could

  5. The Effects of Cropping Regimes on Fungal and Bacterial Communities of Wheat and Faba Bean in a Greenhouse Pot Experiment Differ between Plant Species and Compartment

    Directory of Open Access Journals (Sweden)

    Sandra Granzow

    2017-05-01

    Full Text Available Many bacteria and fungi in the plant rhizosphere and endosphere are beneficial to plant nutrient acquisition, health, and growth. Although playing essential roles in ecosystem functioning, our knowledge about the effects of multiple cropping regimes on the plant microbiome and their interactions is still limited. Here, we designed a pot experiment simulating different cropping regimes. For this purpose, wheat and faba bean plants were grown under controlled greenhouse conditions in monocultures and in two intercropping regimes: row and mixed intercropping. Bacterial and fungal communities in bulk and rhizosphere soils as well as in the roots and aerial plant parts were analyzed using large-scale metabarcoding. We detected differences in microbial richness and diversity between the cropping regimes. Generally, observed effects were attributed to differences between mixed and row intercropping or mixed intercropping and monoculture. Bacterial and fungal diversity were significantly higher in bulk soil samples of wheat and faba bean grown in mixed compared to row intercropping. Moreover, microbial communities varied between crop species and plant compartments resulting in different responses of these communities toward cropping regimes. Leaf endophytes were not affected by cropping regime but bacterial and fungal community structures in bulk and rhizosphere soil as well as fungal community structures in roots. We further recorded highly complex changes in microbial interactions. The number of negative inter-domain correlations between fungi and bacteria decreased in bulk and rhizosphere soil in intercropping regimes compared to monocultures due to beneficial effects. In addition, we observed plant species-dependent differences indicating that intra- and interspecific competition between plants had different effects on the plant species and thus on their associated microbial communities. To our knowledge, this is the first study investigating

  6. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  7. Grand challenges for crop science

    Science.gov (United States)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  8. Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L..

    Directory of Open Access Journals (Sweden)

    Andrés J Cortés

    Full Text Available Reliable estimations of drought tolerance in wild plant populations have proved to be challenging and more accessible alternatives are desirable. With that in mind, an ecological diversity study was conducted based on the geographical origin of 104 wild common bean accessions to estimate drought tolerance in their natural habitats. Our wild population sample covered a range of mesic to very dry habitats from Mexico to Argentina. Two potential evapotranspiration models that considered the effects of temperature and radiation were coupled with the precipitation regimes of the last fifty years for each collection site based on geographical information system analysis. We found that wild accessions were distributed among different precipitation regimes following a latitudinal gradient and that habitat ecological diversity of the collection sites was associated with natural sub-populations. We also detected a broader geographic distribution of wild beans across ecologies compared to cultivated common beans in a reference collection of 297 cultivars. Habitat drought stress index based on the Thornthwaite potential evapotranspiration model was equivalent to the Hamon estimator. Both ecological drought stress indexes would be useful together with population structure for the genealogical analysis of gene families in common bean, for genome-wide genetic-environmental associations, and for postulating the evolutionary history and diversification processes that have occurred for the species. Finally, we propose that wild common bean should be taken into account to exploit variation for drought tolerance in cultivated common bean which is generally considered susceptible as a crop to drought stress.

  9. Morpho-physiological and productive biometry in semi-erect cultivars of the cowpea under different plant populations

    Directory of Open Access Journals (Sweden)

    Antônio Aécio de Carvalho Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate morpho-physiological and productive characteristics in four semi-erect cultivars of the cowpea under five plant populations. The experiment was conducted in the experimental area of Embrapa Meio-Norte in Teresina in the State of Piauí, Brazil (PI. The experimental design was of randomised complete blocks with four replications, in a 4 x 5 factorial scheme, for evaluating four cultivars (BRS Guariba, BRS Novaera, BRS Potengi and BRS Tumucumaque and five plant populations (105, 2x105, 3x105, 4x105 and 5x105 plants ha-1. There were significant differences between cultivars for primary branch length (PBL, number of lateral branches (NLB, 100-grain weight (HGW, and dry-grain yield (GY. The maximum PBL of 58.5 cm was obtained with 300 thousand plants ha-1, corresponding to an increase of 11.5% when compared to 100 thousand plants ha-1. However, there was a reduction of 91.2% in NLB when compared to the populations of 100 and 500 thousand plants ha-1. The increases of 188% obtained in the leaf area index (LAI in the range of 100 to 500 thousand plants ha-1 explain the linear increase in the crop growth rate (CGR as being due to the greater production of leaf area; also, the decreases seen in the net assimilation rate (NAR, especially in the range of 100 to 300 thousand plants ha-1, are explained as due to the consequent self-shading, which was intensified in the larger populations. LAI, light interception, and CGR in the cultivars increase in response to higher densities. HGW and GY are not significantly affected by the different populations.

  10. 蔬菜连作改为蓝莓种植后土壤细菌群落多样性变化的分析%Changes in Soil Bacterial Community Diversity Caused by Cropping System Alteration from Vegetable Continuous Cropping to Blueberry Planting

    Institute of Scientific and Technical Information of China (English)

    祁石刚; 田畅; 却枫; 徐志胜; 王枫; 熊爱生

    2016-01-01

    基于第二代Illumina Miseq高通量测序平台,利用16S rDNA技术分析了江苏省宿迁市蔬菜连作改为蓝莓种植后土壤细菌多样性的分布和细菌群落多样性的变化。结果表明:Kaistobacter、假交替单胞菌属( Pseud oaltre omno as)、硫杆状菌属( Thiobacillus)、Rubritalea、浮霉菌属( Planctomyces)、Lysobacter、纤维弧菌属( Cellvibrio)、噬氢菌属( Hdy roeg nohp a-ga )、鞘脂单胞菌属( Sphingomona s)和热单胞菌属( Thermomonas)为蔬菜连作改为蓝莓种植后土壤细菌的主要类群; Spo-rosarcina、Alicyclobacillus、氨氧化古细菌( Candidatus nitrososphaera)和P ontibatc er是蔬菜连作土壤细菌的主要类群;蔬菜连作改为种植蓝莓后,土壤细菌多样性和丰度降低,优势菌群也出现了显著的变化。%Based on the second-generation high-throughput sequencing platform Illumina Miseq , using the 16S rDNA gene sequencing technology, the author analyzed the changes in soil bacterial community diversity caused by the cropping system altera-tion from vegetable continuous cropping to blueberry planting in Suqian city of Jiangsu province .The results showed that:Kaisto-bacter, Pseudoalteromonas, Thiobacillus, Rubrti alea, Planctomyces, Lysobacter, Cellvibrio, Hydrogenophaga, Sphingomonas and Thermomonas were the dominant bacterial populations in the soil after cropping system alteration from vegetable continuous crop-ping to blueberry planting;Sporosarcina, Alicyclobacillus, Cand idatus nitrososphaera and Pontbi acter were the dominant bacterial populations in the soil of continuous-cropping vegetable field;after the alteration from vegetable continuous cropping to blueberry planting, the diversity and abundance of soil bacteria were reduced , and the dominant bacterial community also changed obvious-ly.

  11. Discovering ways to improve crop production and plant quality [Chapter 17

    Science.gov (United States)

    Kim M. Wilkinson

    2009-01-01

    Working with plants is a process of discovery. Being curious and aware, paying close attention, and staying open and adaptive are important practices. Books and people can help us learn about plants in the nursery, but the very best teachers are the plants themselves. "Research" is simply paying close attention, tracking what is happening and what is causing...

  12. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    Science.gov (United States)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  13. Effect of Plant and Row Spacing on the Yield and Oil Contents of ...

    African Journals Online (AJOL)

    Key words: Castor, Plant spacing, row spacing, seed yield. Introduction ... optimum plant population, fertilizer, quality seed, weeding practices, optimum plant ... 30 000 plants/ha for crops grown in the 750 to 900 mm rain fall is optimum. He.

  14. Sustaining soil productivity by integrated plant nutrient management in wheat based cropping system under rainfed conditions

    International Nuclear Information System (INIS)

    Dilshad, M.; Lone, M.I.

    2011-01-01

    The study of the use of organic (FYM) and inorganic (NPK) nutrient sources with bio fertiliser on wheat-fallow and wheat-maize cropping system under rainfed environment revealed significant increase in bio metric parameters of wheat during winter and summer seasons of two years. During both the seasons, application of half NPK + half FYM + Bio power (brand) produced the highest grain yield (3684 kg/ha) and (3781 kg/ha) of wheat with the maximum N uptake of 357 kg/ha, P uptake of 51 kg/ha and K uptake of 215 kg/ha. Wheat-maize cropping system was found to be profitable economically with integrated use of mineral and organic and/or Bio power under rainfed conditions of Pakistan. (author)

  15. The role of synthetic growth hormones in crop multiplication and ...

    African Journals Online (AJOL)

    Crop improvement through conventional methods to provide food security for the ever growing population has several limitations. Modern plant biotechnology has held promise over the years to improve outputs from plants. The use of growth hormones as a way of improving plant yield through micro propagation and ...

  16. Distinguishing plant population and variety with UAV-derived vegetation indices

    Science.gov (United States)

    Oakes, Joseph; Balota, Maria

    2017-05-01

    Variety selection and seeding rate are two important choice that a peanut grower must make. High yielding varieties can increase profit with no additional input costs, while seeding rate often determines input cost a grower will incur from seed costs. The overall purpose of this study was to examine the effect that seeding rate has on different peanut varieties. With the advent of new UAV technology, we now have the possibility to use indices collected with the UAV to measure emergence, seeding rate, growth rate, and perhaps make yield predictions. This information could enable growers to make management decisions early in the season based on low plant populations due to poor emergence, and could be a useful tool for growers to use to estimate plant population and growth rate in order to help achieve desired crop stands. Red-Green-Blue (RGB) and near-infrared (NIR) images were collected from a UAV platform starting two weeks after planting and continued weekly for the next six weeks. Ground NDVI was also collected each time aerial images were collected. Vegetation indices were derived from both the RGB and NIR images. Greener area (GGA- the proportion of green pixels with a hue angle from 80° to 120°) and a* (the average red/green color of the image) were derived from the RGB images while Normalized Differential Vegetative Index (NDVI) was derived from NIR images. Aerial indices were successful in distinguishing seeding rates and determining emergence during the first few weeks after planting, but not later in the season. Meanwhile, these aerial indices are not an adequate predictor of yield in peanut at this point.

  17. Population genomic insights into the emergence, crop-adaptation and dissemination of Pseudomonas syringae pathogens

    Science.gov (United States)

    Although pathogen strains that cause disease outbreaks are often well characterized, relatively little is known about the reservoir populations from which they emerge. Genomic comparison of outbreak strains with isolates of reservoir populations can give new insight into mechanisms of disease emerge...

  18. Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies.

    Science.gov (United States)

    Squire, Geoffrey R; Hawes, Cathy; Begg, Graham S; Young, Mark W

    2009-01-01

    In a gradualist approach to the introduction of crop biotechnology, the findings of experimentation at one scale are used to predict the outcome of moving to a higher scale of deployment. Movement through scales had occurred for certain genetically modified herbicide-tolerant (GMHT) crops in the UK as far as large-scale field trials. However, the land area occupied by these trials was still field experiments. Data were used from experiments on the effect of (GMHT) crops and non-GM, or conventional, comparators in fields sown with four crop types (beet, maize, spring and winter oilseed rape) at a total of 250 sites in the UK between 2000 and 2003. Indices of biodiversity were measured in a split-field design comparing GMHT with the farmers' usual weed management. In the original analyses based on the means at site level, effects were detected on the mass of weeds in the three spring crops and the proportion of broadleaf and grass weeds in winter oilseed rape, but not on indices of plant species diversity. To explore the links between site means and total taxa, accumulation curves were constructed based on the number of plant species (a pool of around 250 species in total) and the number of plant functional types (24), inferred from the general life-history characteristics of a species. Species accumulation differed between GMHT and conventional treatments in direction and size, depending on the type of crop and its conventional management. Differences were mostly in the asymptote of the curve, indicative of the maximum number of species found in a treatment, rather than the steepness of the curve. In winter oilseed rape, 8% more species were accumulated in the GMHT treatment, mainly as a result of the encouragement of grass species by the herbicide when applied in the autumn. (Overall, GMHT winter oilseed rape had strong negative effects on both the food web and the potential weed burden by increasing the biomass of grasses and decreasing that of broadleaf weeds

  19. Effects of plant density on forage production in five populations of ...

    African Journals Online (AJOL)

    Kleingrass (Panicum coloratum L.) forage yield evaluation plots are often established at a density of 6.0 plants m-2 to accommodate mechanical transplanting and harvesting equipment. However, forage crops are usually established from seed at higher plant densities. Experiments were conducted to determine if ...

  20. A review of plant-pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands

    DEFF Research Database (Denmark)

    Carvalho, Pedro N; Basto, M Clara P; Almeida, C Marisa R

    2014-01-01

    the potential impact of veterinary and human pharmaceuticals on arable land. However, plant uptake as well as phytotoxicity data are scarcely studied. Simultaneously, phytoremediation as a tool for pharmaceutical removal from soils, sediments and water is starting to be researched, with promising results....... This review gives an in-depth overview of the phytotoxicity of pharmaceuticals, their uptake and their removal by plants. The aim of the current work was to map the present knowledge concerning pharmaceutical interactions with plants in terms of uptake and the use of plant-based systems for phytoremediation...

  1. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    Science.gov (United States)

    Lawson, Andrew; Cogger, Craig; Bary, Andy; Fortuna, Ann-Marie

    2015-01-01

    Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight), two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(-)-N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1) biomass, whereas mixtures averaged 4.1 Mg ha(-1) and hairy vetch 2.3 Mg ha(-1). Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1) N and had mean C:N ratio rye, 97 kg ha(-1) for the mixtures, and 119 kg ha(-1) for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination) compared with the monocultures (29%). Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  2. How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae on Greenhouse Poinsettia Propagative Cuttings

    Directory of Open Access Journals (Sweden)

    Rosemarije Buitenhuis

    2016-09-01

    Full Text Available (1 Global movement of propagative plant material is a major pathway for introduction of Bemisia tabaci (Hemiptera: Aleyrodidae into poinsettia greenhouses. Starting a poinsettia crop with high pest numbers disrupts otherwise successful biological control programs and widespread resistance of B. tabaci against pesticides is limiting growers’ options to control this pest; (2 This study investigated the use of several biopesticides (mineral oil, insecticidal soap, Beauveria bassiana, Isaria fumosorosea, Steinernema feltiae and combinations of these products as immersion treatments (cutting dips to control B. tabaci on poinsettia cuttings. In addition, phytotoxicity risks of these treatments on poinsettia cuttings, and effects of treatment residues on mortality of commercial whitefly parasitoids (Eretmocerus eremicus and Encarsia formosa were determined; (3 Mineral oil (0.1% v/v and insecticidal soap (0.5% + B. bassiana (1.25 g/L were the most effective treatments; only 31% and 29%, respectively, of the treated B. tabaci survived on infested poinsettia cuttings and B. tabaci populations were lowest in these treatments after eight weeks. Phytotoxicity risks of these treatments were acceptable, and dip residues had little effect on survival of either parasitoid, and are considered highly compatible; (4 Use of poinsettia cutting dips will allow growers to knock-down B. tabaci populations to a point where they can be managed successfully thereafter with existing biocontrol strategies.

  3. Growth response of maize plants (Zea mays L.) to wheat and lentil pre-cropping and to indigenous mycorrhizal in field soil

    Energy Technology Data Exchange (ETDEWEB)

    Almaca, A.; Ortas, I.

    2010-07-01

    The presence of indigenous mycorrhizal fungi may have significant effects on the growth and on the root morphology of plants, under arid and semi arid soil conditions. Lentil and wheat are the traditional crops grown in Southeastern Turkey. In this study soil samples from the Harran plain were collected from the 0-15 cm surface layer under wheat or lentil crop residues and used in a pot experiment carried out under greenhouse conditions with four levels of P fertilization: 0, 20, 40 and 80 mg kg{sup -}1 soil as Ca(H{sub 2}PO{sub 4}){sub 2}. Half of the soil batches were submitted to a heating treatment (80 degree centigrade, 2 h). The maize variety PX-9540 was grown in the pots for 57 days. At harvest, plant dry weight, root length, P and Zn concentrations in plant tissues were measured and the extent of root colonization by arbuscular mycorrhizal fungi (AMF) was determined. Results showed that maize plants grown in soils where lentil had been previously cultivated grew better than those grown after wheat cultivation. In both cases, P concentration in plant tissues increased with increased P fertilization. There were no significant differences in root AMF colonization between soils with different crop sequences, nor with soils submitted to high temperature. Previous crops had a significant influence on the growth of plants that could be related to differences in the indigenous mycorrhizas inoculum potential and efficacy that can promote P uptake and benefit plant growth. (Author) 29 refs.

  4. Effects in Plant Populations Resulting from Chronic Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, Stanislav A.; Volkova, Polina Yu.; Vasiliyev, Denis V.; Dikareva, Nina S.; Oudalova, Alla A. [Russian Institute of Agricultural Radiology and Agroecology, 249032, Obninsk (Russian Federation)

    2014-07-01

    Human industrial activities have left behind a legacy of ecosystems strongly impacted by a wide range of contaminants, including radionuclides. Phyto-toxic effects of acute impact are well known, but the consequences of long-term chronic exposure to low pollutant concentrations is neither well understood nor adequately included in risk assessments. To understand effects of real-world contaminant exposure properly we must pay attention to what is actually going on in the field. However, for many wildlife groups and endpoints, there are no, or very few, studies that link accumulation, chronic exposure and biological effects in natural settings. To fill the gaps, results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hair-grass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate effects of long-term chronic exposure to radionuclides are discussed. Because each impacted site developed in its own way due to a unique history of events, the experience from one case study is rarely directly applicable to another situation. In spite of high heterogeneity in response, we have detected several general patterns. Plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic alterations and genetic diversity. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage were accompanied by decrease in reproductive ability. In less contaminated sites, because of the scarcity of data available, it is impossible to establish exactly the relationship between cytogenetic effects and reproductive ability. Radioactive contamination of the plants

  5. Do we need demographic data to forecast plant population dynamics?

    Science.gov (United States)

    Tredennick, Andrew T.; Hooten, Mevin B.; Adler, Peter B.

    2017-01-01

    Rapid environmental change has generated growing interest in forecasts of future population trajectories. Traditional population models built with detailed demographic observations from one study site can address the impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regional scales relevant to management decisions. An alternative is to build models using population-level data that are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether models built using population-level data adequately capture the effects of density-dependence and environmental forcing that are necessary to generate skillful forecasts.Here, we test the consequences of aggregating individual responses when forecasting the population states (percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We parameterized two population models for each species, one based on individual-level data (survival, growth and recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge regression to weight the influence of climate covariates for optimal prediction.In the absence of climate effects, we found no significant difference between the forecast accuracy of models based on individual-level data and models based on population-level data. Climate effects were weak, but increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between model types.In our case study, percent cover models generated forecasts as accurate as those from a demographic model. For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to data-intensive demographic models. Long time series of percent cover data already exist

  6. Using functional-structural plant modeling to explore the response of cotton to mepiquat chloride application and plant population density

    NARCIS (Netherlands)

    Gu, S.; Evers, J.B.; Zhang, L.; Mao, L.; Vos, J.; Li, Z.

    2013-01-01

    The crop growth regulator Mepiquat Chloride (MC) is widely used in cotton production to optimize the canopy structure in order to maximize the yield and fiber quality. Cotton plasticity in relation to MC and other agronomical practice was quantified using a functional-structural plant model of

  7. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions.

    Science.gov (United States)

    Singh, Devesh; Buhmann, Anne K; Flowers, Tim J; Seal, Charlotte E; Papenbrock, Jutta

    2014-11-10

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  8. Genome-wide identification and analysis of the B3 superfamily of transcription factors in Brassicaceae and major crop plants.

    Science.gov (United States)

    Peng, Fred Y; Weselake, Randall J

    2013-05-01

    The plant-specific B3 superfamily of transcription factors has diverse functions in plant growth and development. Using a genome-wide domain analysis, we identified 92, 187, 58, 90, 81, 55, and 77 B3 transcription factor genes in the sequenced genome of Arabidopsis, Brassica rapa, castor bean (Ricinus communis), cocoa (Theobroma cacao), soybean (Glycine max), maize (Zea mays), and rice (Oryza sativa), respectively. The B3 superfamily has substantially expanded during the evolution in eudicots particularly in Brassicaceae, as compared to monocots in the analysis. We observed domain duplication in some of these B3 proteins, forming more complex domain architectures than currently understood. We found that the length of B3 domains exhibits a large variation, which may affect their exact number of α-helices and β-sheets in the core structure of B3 domains, and possibly have functional implications. Analysis of the public microarray data indicated that most of the B3 gene pairs encoding Arabidopsis-rice orthologs are preferentially expressed in different tissues, suggesting their different roles in these two species. Using ESTs in crops, we identified many B3 genes preferentially expressed in reproductive tissues. In a sequence-based quantitative trait loci analysis in rice and maize, we have found many B3 genes associated with traits such as grain yield, seed weight and number, and protein content. Our results provide a framework for future studies into the function of B3 genes in different phases of plant development, especially the ones related to traits in major crops.

  9. An overview of FAO's food crop development programme for Africa - A plant breeder's perspective

    International Nuclear Information System (INIS)

    Kueneman, E.A.

    1997-01-01

    While FAO employs some scientists for posts at headquarters, in its laboratory at Seibersdorf in Austria and in its field projects, FAO is not, in the conventional sense, a research organization. FAO assists its member nations providing information on matters ranging from: remote sensing, to projections on food availability to land-use-planning to extension to crop and animal production methodologies (including variety development and germplasm preservation) to marketing and processing to nutrition needs and policies. FAO is also a forum where member nations can present different opinions on regional and global needs as they relate to food, agriculture and sustainable development

  10. Fructan biosynthesis in crop plants : the molecular regulation of fructan biosynthesis in chicory (Cichorium intybus L.)

    NARCIS (Netherlands)

    Arkel, van J.

    2013-01-01

    Fructan is a polymer of fructose produced by plants and microorganisms. Within the plant kingdom about 45.000 species accumulate fructan as storage carbohydrate in addition to, or instead of, starch. Fructan accumulating species are mainly found in temperate and sub-tropical regions with

  11. In vitro culture of higher plants as a tool in the propagation of horticultural crops.

    NARCIS (Netherlands)

    Pierik, R.L.M.

    1988-01-01

    In vitro culture of higher plants is the culture, under sterile conditions, of plants, seeds, embryos, organs, explants, tissues, cells and protoplasts on nutrient media. This type of culture has shown spectacular development since 1975, resulting in the production and regeneration of viable

  12. Secondary School Students' and Their Parents' Knowledge and Interest in Crop Plants: Why Should We Care?

    Science.gov (United States)

    Fritsch, Eva-Maria; Dreesmann, Daniel C.

    2015-01-01

    While there is increasing world-wide discussion of the importance of renewable biological resources and a bio-based economy, science educators around the world have become aware of a declining general interest in plants and agriculture and of little knowledge of plants among the public. Recently, there have been few systematic investigations on…

  13. The Exogenous Amelioration Roles of Growth Regulators on Crop Plants Grow under Different Osmotic Potential

    Directory of Open Access Journals (Sweden)

    Hamdia M. Abd El-Samad

    2014-03-01

    Full Text Available The production of fresh and dry matter of maize, wheat, cotton, broad and parsley plants show a variable response to the elevation of salinity stress. The production of fresh and dry matter of shoots and roots in wheat and broad bean plants tended to decrease with increasing NaCl concentration, salt stress progressively decrease in fresh and dry matter yield of maize plants. The increase in salinization levels induced a general insignificant change in production of fresh and dry matter of both organs of parsley plants. However, salinity induced a marked increase in the values of fresh and dry matter yields of cotton plants grown at the lowest level (-0.3 MPa NaCl and a reduction at higher salinization levels. Leaf area of unsprayed plants was excesivly decreased with the rise of osmotic stress levels especially at higher salinity levels of maize, wheat, cotton, and broad bean and parsley plants. the total pigments concentration decreased with rise of salinization levels in maize and cotton, these contents remained more or less un affected up to the level of 0.6 MPa NaCl in wheat and up to 0.9 MPa in parsley plants, there above, they were significantly reduced with increasing salinity levels. In broad bean plants the total pigments contents showed a non-significant alterations at all salinity stress. Spraying the vegetative parts of the five tested plants with 200 ppm of either GA3 or kinetin completely ameliorated the deleterious effect of salinity in fresh, dry matter, leaf area and pigment contents.

  14. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  15. Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement

    Directory of Open Access Journals (Sweden)

    Arun Prabhu Dhanapal

    2015-01-01

    Full Text Available The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away.

  16. Population and community ecology of the rare plant amsinckia grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  17. Salt-Stress effects on crop plants: Role of proline, glycinebetaine and calcium at whole-plant and cellular levels

    International Nuclear Information System (INIS)

    Akhtar, L.H.; Gorham, J.; Siddiqui, S.Z.; Jamil, M.; Arshad, M.

    2002-01-01

    Salinity affects the physiological and biochemical processes of the plants in a variety of ways. In this manuscript, variability in plant, with respect to salinity-tolerance and morphological adaptations in plants for salinity-tolerance, have been discussed. Salinity effects on growth of plants, cell membranes, proteins, sugars, nucleic acids, starch, cell sap, transpiration, stomatal conductance, pollen viability, Co/sub 2/ assimilation, chlorophyll, photosynthesis and enzymes have been reviewed. Proline and glycinebetaine accumulation, localisation in the cell and their physiological role under salt-stress has been presented. Cellular mechanism of salt-tolerance and role of calcium in salt-stress have been reviewed. The possible approaches to deal with all types of stresses have been suggested. (author)

  18. Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations

    NARCIS (Netherlands)

    Zhang, D.; Zhang, L.; Liu, Jianguo; Han, S.; Wang, Q.; Evers, J.B.; Liu, Jun; Werf, van der W.; Li, L.

    2014-01-01

    Tree-crop mixturesmayincreaseyieldandrevenueespeciallyduringtheearlyyearsoftreeplantations. Jujube isgrownwidelyinChinafortheirfruits,andcottonisgainingpopularityasanunderstorycropin young jujubeplantations.Thereisaneedforinformationonproductivityandoptimalplantingdensities of

  19. Incidence and molecular diversity of poleroviruses infecting cucurbit crops and weed plants in Thailand.

    Science.gov (United States)

    Cheewachaiwit, S; Warin, N; Phuangrat, B; Rukpratanporn, S; Gajanandana, O; Balatero, C H; Chatchawankanphanich, O

    2017-07-01

    Overall, 244 samples of cucurbit crops with yellowing symptoms and selected weed species, from 15 provinces in Thailand, were screened by RT-PCR using primers Polero-CP-F and Polero-CP-R. A total of 160 samples (~66%) were infected by poleroviruses. Analysis of a 1.4 kb region covering the 3' RNA-dependent RNA polymerase (RdRp) gene, the intergenic non-coding region (iNCR), and the coat protein (CP), showed that four poleroviruses, namely, cucurbit aphid-borne yellows virus (CABYV), luffa aphid-borne yellows virus (LABYV), melon aphid-borne yellows virus (MABYV) and suakwa aphid-borne yellows virus (SABYV) were associated with the yellowing symptoms in cucurbit crops. Further analyses indicated presence of putative recombinant viruses referred to as CABYV-R and SABYV-R. CABYV-R was derived from the recombination between MABYV and the common strain of CABYV (CABYV-C). SABYV-R was derived from the recombination of MABYV and SABYV.

  20. Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides. (1) Upland field crops collected in Japan

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Tagami, Keiko; Hirai, Ikuko

    2007-01-01

    In long-term dose assessment models for radioactive waste disposal, an important exposure pathway to humans is via ingestion of contaminated foods. In order to obtain soil-to-plant transfer factors (TFs) of radionuclides under equilibrium conditions, naturally existing elements were measured as analogues of radionuclides. Crops grown in upland fields and associated soil samples were collected from 62 sampling sites throughout Japan. The total concentrations of 52 elements in the crops and 54 elements in the soil samples were measured. The TFs of 40 elements (Li, Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Mo, Cd, Sn, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Pb, Th and U) were calculated on a dry weight basis. Among all the TF data, K showed the highest TF with a geometric mean (GM) of 2.1, followed by P. The GMs of TFs for rare earth elements, Th and U were on the order of 10 -4 . Most of the TF-GMs for green vegetables were higher than GMs of all crops for the elements. The obtained TFs of some elements for green vegetables and potatoes were compared with those in the technical report series-364 (TRS-364) compiled by IAEA in 1994. The TF-GMs were usually lower than the best estimates (expected values) listed in TRS-364; however, the GMs of TF for La and TF for Th observed for potatoes were slightly higher than the expected values. (author)

  1. Annual and perennial alleyway cover crops vary in their effects on Pratylenchus penetrans in Pacific Northwest red raspberry (Rubus idaeus)

    Science.gov (United States)

    Cover crop use is not common in established red raspberry (Rubus idaeus) fields in the Pacific Northwest. Raspberry growers are concerned about resource competition between the cover crop and raspberry crop, as well as increasing population densities of the plant-parasitic nematode Pratylenchus pene...

  2. A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields

    Directory of Open Access Journals (Sweden)

    Russell G. Sharp

    2013-11-01

    Full Text Available In recent decades, a greater knowledge of chitin chemistry, and the increased availability of chitin-containing waste materials from the seafood industry, have led to the testing and development of chitin-containing products for a wide variety of applications in the agriculture industry. A number of modes of action have been proposed for how chitin and its derivatives can improve crop yield. In addition to direct effects on plant nutrition and plant growth stimulation, chitin-derived products have also been shown to be toxic to plant pests and pathogens, induce plant defenses and stimulate the growth and activity of beneficial microbes. A repeating theme of the published studies is that chitin-based treatments augment and amplify the action of beneficial chitinolytic microbes. This article reviews the evidence for claims that chitin-based products can improve crop yields and the current understanding of the modes of action with a focus on plant-microbe interactions.

  3. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    DEFF Research Database (Denmark)

    Jammer, Alexandra; Gasperl, Anna; Luschin-Ebengreuth, Nora

    2015-01-01

    The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been...... shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic...

  4. Mites fluctuation population on peach tree (Prunus persica (L. Batsch and in associated plants

    Directory of Open Access Journals (Sweden)

    Carla Rosana Eichelberger

    2011-09-01

    Full Text Available Despite the importance of peach (Prunus persica (L. Batsch in Rio Grande do Sul, little is known about mites fluctuation population considered important to this crop. The objective of this study was to know the population diversity and fluctuation of mite species associated with Premier and Eldorado varieties in Roca Sales and Venâncio Aires counties, Rio Grande do Sul. The study was conducted from July 2008 to June 2009 when 15 plants were randomly chosen in each area. The plants were divided in quadrants and from each one a branch was chosen from which three leaves were removed: one collected in the apical region, another in the medium and the other in the basal region, totalizing 180 leaves/area. Five of the most abundant associated plants were collected monthly in enough amounts for the screening under the stereoscopic microscope during an hour. A total of 1,124 mites were found belonging to 14 families and 28 species. Tetranychus ludeni Zacher, 1913, Panonychus ulmi (Koch, 1836 and Mononychellus planki (McGregor, 1950 were the most abundant phytophagous mites, whereas Typhlodromalus aripo Deleon, 1967 and Phytoseiulus macropilis (Banks, 1904 the most common predatory mites. The period of one hour under stereoscopic microscope was enough to get a representative sample. In both places evaluated the ecologic indices were low, but little higherin Premier (H' 0.56; EqJ: 0.43 when compared to Eldorado (H' 0.53; EqJ 0.40. In Premier constant species were not observed and accessory only Brevipalpus phoenicis (Geijskes, 1939, T. ludeni and T. aripo. Higher abundance was observed in December and January and bigger amount in April. Already in Eldorado, T. ludeni and P. ulmi were constants. Greater abundance was observed in November and December, whereas grater richness in December and January. In both orchards were not found mites in buds. Tetranychus ludeni is the most abundant phytophagous mites with outbreak population in November, December and

  5. New Trend in Crop Production – Application of Plant Natural Multicomponent Growth Regulators with Bioprotective Effect

    Directory of Open Access Journals (Sweden)

    S.P. Ponomarenko

    2013-09-01

    Full Text Available With the help of the Dot-blot hybridization the difference in steps of homology between mRNA of control plants and small regulatory si/mi RNA isolated from second-generation plantlets of wheat, corn, soybeans, sugar beets, chickpea, etc. cultivated from the seeds of plants infected and processed by new polycomponent plant growth regulators Regoplant® and Stimpo® in the first generation was found. It is proved that this difference is related to a partial reprogramming of the cell genome under the influence of biostimulators on growing plants with infected backgrounds that turns out in induction of low-molecular si/miRNA with antipathogenic and antiparasitic properties, which are the components of the immune system of a living organism.

  6. BioChar Amendments for Improved Plant Microbiome and Crop Health

    Data.gov (United States)

    National Aeronautics and Space Administration — Plant-based Environmental Control and Life Support Systems (ECLSS) enable human existence beyond Low Earth Orbit (LEO) by providing oxygen, water and food. The root...

  7. A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops.

    Science.gov (United States)

    Vasil, Indra K

    2008-09-01

    Plant biotechnology is founded on the principles of cellular totipotency and genetic transformation, which can be traced back to the Cell Theory of Matthias Jakob Schleiden and Theodor Schwann, and the discovery of genetic transformation in bacteria by Frederick Griffith, respectively. On the 25th anniversary of the genetic transformation of plants, this review provides a historical account of the evolution of the theoretical concepts and experimental strategies that led to the production and commercialization of biotech (transformed or transgenic) plants expressing many useful genes, and emphasizes the beneficial effects of plant biotechnology on food security, human health, the environment, and conservation of biodiversity. In so doing, it celebrates and pays tribute to the contributions of scores of scientists who laid the foundation of modern plant biotechnology by their bold and unconventional thinking and experimentation. It highlights also the many important lessons to be learnt from the fascinating history of plant biotechnology, the significance of history in science teaching and research, and warns against the danger of the growing trends of ignoring history and historical illiteracy.

  8. Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield.

    Science.gov (United States)

    Uzen, Nese; Cetin, Oner; Unlu, Mustafa

    2016-12-01

    This study has aimed to determine the effects of treated wastewater on cotton yield and soil pollution in Southeastern Anatolia Region of Turkey during 2011 and 2012. The treated wastewater was provided from the reservoir operated as anaerobic stabilization. After treatment, suspended solids (28-60 mg/l), biological oxygen demand (29-30 mg/l), and chemical oxygen demand (71-112 mg/l) decreased significantly compared to those in the wastewater. There was no heavy metal pollution in the water used. There were no significant amounts of coliform bacteria, fecal coliform, and Escherichia coli compared to untreated wastewater. The cottonseed yield (31.8 g/plant) in the tanks where no commercial fertilizers were applied was considerably higher compared to the yield (17.2 g/plant) in the fertilized tanks where a common nitrogenous fertilizer was utilized. There were no significant differences between the values of soil pH. Soil electrical conductivity (EC) after the experiment increased from 0.8-1.0 to 0.9-1.8 dS/m. Heavy metal pollution did not occur in the soil and plants, because there were no heavy metals in the treated wastewater. It can be concluded that treated domestic wastewater could be used to grow in a controlled manner crops, such as cotton, that would not be used directly as human nutrients.

  9. Crop yield response to deficit irrigation imposed at different plant growth stages

    International Nuclear Information System (INIS)

    Kovaks, T.; Kovaks, G.; Szito, J.

    1995-01-01

    A series of field experiments were conducted between 1991 - 1994 using 7 irrigation treatments at two fertilizer levels. Nitrogen fertilizers used were labelled with 15 N stable isotope to examine the effect of irrigation on the fertilizer N use efficiency by isotope technique. The irrigation were maintained at four different growth stages of maize, soybean and potato( vegetative, flowering, yield formation and ripening ) in 4 replicates. The aim of study was to compare deficit irrigation( i.e. the water stress imposed, during one growth stage ) with normal irrigation practice included the traditional one. Two watering regimes were established : (1) normal watering when available water was within the range of 60 - 90 %, and (2) deficit irrigation, when the AW was at 30 to 60 %. Neutron probe was used for measuring the soil water status and evaporation data were recorded to determine the amount of irrigation water demand. Reference evapotranspiration ( ETo) was calculated according to Penman - Monteith. Crop water requirement ( ETm) were determined in every year. Actual evapotranspiration ( ETa) was computed using CROPWAT: FAO computer program for irrigation planning and management (1992). Every irrigation treatment was equipped with neutron access tubes in two replicates at a depth from 10 to 130 cm. tensiometers were installed at depths of 30, 50, 60 and 80 cm in one replicate of treatments and were measured on a daily basis while neutron probe measurements were used to monitor the soil water table fluctuations. The irrigation method used was a special type of low pressure drop irrigation. There were measured the amount of rainfall with irrigation water supplied and the moisture distribution profiles were drown for the different treatments. Relationships between relative yield decrease and evapotranspiration and also between the crop yield and water use were determined. 9 tabs, 9 refs, ( Author )

  10. Effect of Varieties and Plant Population Densities on Dry Matter Production, Radiation Interception and Radiation Energy Conversion in Peanut

    Directory of Open Access Journals (Sweden)

    agus suprapto

    2012-05-01

    Full Text Available The solar radiation is one of the major criteria to obtaining advantages on peanuts (Arachishypogaea L.. Although various combinations of crops have been reported, but variety association and plant population densities (PPD during the periodically stage of growth on peanuts have yet to be analyzed. Dry matter production (DM, radiation energy interception, and radiation energy conversions were monitored over the growth period of two varieties of peanut. An experiment was conducted in Jambegede Research Farm, Indonesian Legume and Tuber Crops Research Institute, Malang, East Java, Indonesia, from July until October 2011. The experiment was arranged in a Split Plot Design with three replications. Peanut varieties, as the main plot consisted of two treatments: Kelinci andKancil variety. In addition, five PPD variations as sub plot consisted of 8.1, 11.1, 16.0, 25.0 and 44.4 plant m-2 were arranged in a square spacing. The results showed that DM production from high PPD increased gradually to lower PPD in all varieties. Interception efficiency (IE increased in all varieties from early sowing. A plant population density of 25.0 m-2 and 44.4 plants m-2 intercepted more radiation over 11.1 or 16.0 plants m-2. Conversion efficiency of radiation energy (CE to total dry matter production on Kelinci variety (1.52% indicated a slight higher percentage than on Kancil variety (1.41%. Moreover, the CE and IE values indicated a decrease as the PPD increased on maximum DM.

  11. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

    Science.gov (United States)

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483

  12. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Directory of Open Access Journals (Sweden)

    Pierre Casadebaig

    Full Text Available A crop can be viewed as a complex system with outputs (e.g. yield that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background. The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90 was evaluated in a wide target population of environments (4 sites × 125 years, management practices (3 sowing dates × 3 nitrogen fertilization levels and CO2 (2 levels. The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total. The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear and interaction (i.e. non-linear and interaction sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model improvement.

  13. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    Science.gov (United States)

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  14. Size asymmetry in intraspecific competition and the density-dependence of inbreeding depression in a natural plant population: a case study in cassava (Manihot esculenta Crantz, Euphorbiaceae).

    Science.gov (United States)

    Pujol, B; McKey, D

    2006-01-01

    The effects of competition on the genetic composition of natural populations are not well understood. We combined demography and molecular genetics to study how intraspecific competition affects microevolution in cohorts of volunteer plants of cassava (Manihot esculenta) originating from seeds in slash-and-burn fields of Palikur Amerindians in French Guiana. In this clonally propagated crop, genotypic diversity is enhanced by the incorporation of volunteer plants into farmers' stocks of clonal propagules. Mortality of volunteer plants was density-dependent. Furthermore, the size asymmetry of intraspecific competition increased with local clustering of plants. Size of plants was correlated with their multilocus heterozygosity, and stronger size-dependence of survival in clusters of plants, compared with solitary plants, increased the magnitude of inbreeding depression when competition was severe. The density-dependence of inbreeding depression of volunteer plants helps explain the high heterozygosity of volunteers that survive to harvest time and thus become candidates for clonal propagation. This effect could help favour the maintenance of sex in this 'vegetatively' propagated crop plant.

  15. Studies on the mechanism of injurious effects of toxic gases on crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Taniyama, T; Arikado, H; Iwata, Y; Sawanaka, K

    1972-01-01

    The experiment was undertaken to elucidate after-effects of SO/sub 2/-treatment for long period on photosynthesis and dark respiration in the rice plant after it was released from the treatment. Treatment with SO/sub 2/ was for 90 hours at the tillering stage and 66 hours at the maximum number of tillers stage. The concentrations of SO/sub 2/ to which the plant was exposed were 0, 1.2, 4.0 and 10 ppM at the latter stage, and 0, 0.271, 0.719 and 1.415 at the former stage. Apparent photosynthesis of the rice plant exposed to SO/sub 2/ for long period, showed a considerable decrease 24 hours after the plant had been released from fumigation with the gas at both the tillering and maximum number of tillers stages, this being true to any concentrations of the gas. Gross photosynthesis of the rice plant was gradually decreased with an increase in the concentration of the gas and the difference between the control and treated plants in apparent and gross photosynthesis was enlarged with an increase in the light intensity. Light compensation point of the rice plant moved towards a higher light intensity in accordance with the concentration of the gas. Under the condition in a single leaf, the light-curve of carbon assimilation in the rice plant treated with SO/sub 2/ for 80 hours showed always lower values than that of the control (SO/sub 2/-oppM) at 1st, 3rd and 6th days after SO/sub 2/ was removed, respectively. As increasing in the SO/sub 2/ concentrations, apparent photosynthesis decreased proportionally. From the above-mentioned facts it was demonstrated that the decrease of dry matter production in the rice plant exposed to the gas for long period might be resulted not only from a decrease of photosynthesis and an increase of dark respiration during SO/sub 2/-treatment, but also from a decrease of photosynthesis after the gas had been removed.

  16. Absorption of UV-B to blue light radiation by leaf cuticles of selected crop plants

    International Nuclear Information System (INIS)

    Baur, P.; Stulle, K.; Schönherr, J.; Uhlig, B.

    1998-01-01

    Plants have protective pigments absorbing destructive shortwave radiation. These pigments have been found in the epidermis and mesophyll of leaves. We studied the absorption characteristics of the leaf cuticle, the outermost part of the epidermis that is directly exposed to radiation. Adaxial leaf cuticles of apple, pear, sour cherry, strawberry, cauliflower, sugarbeet, and 13 other plant species were tested. The UV-B absorption was highest in Citrus aurantium and Citrus maxima (<3 % transmittance) and lowest in sugarbeet and peach (>64 % transmittance). The absorption maxima are at wavelenghts below 320 nm. Significant absorption was also determined at 500 nm, which correlated with cuticle thickness of the plant species (r(2)=0.72). The absorption in the range of 250 to 350 nm is caused by pigments with a high extinction coefficient. This absorption is species dependent and the patterns were designated to three different types. The highest absorption was found in evergreen species. The extraction of cuticular waxes had little effect on absorption. The specific absorption of shortwave radiation by plant cuticles is probably caused by pigments covalently bound to cut in. It is known for some plant species that cuticles can contain the phenolics p-coumaric acid, ferulic acid, and vanillic acid. Mixtures of these phenolics had spectra similar to cuticles. For most species absorption of shortwave radiation by the cuticle alone does not give complete protection

  17. Food and fitness: associations between crop yields and life-history traits in a longitudinally monitored pre-industrial human population.

    Science.gov (United States)

    Hayward, Adam D; Holopainen, Jari; Pettay, Jenni E; Lummaa, Virpi

    2012-10-22

    Severe food shortage is associated with increased mortality and reduced reproductive success in contemporary and historical human populations. Studies of wild animal populations have shown that subtle variation in environmental conditions can influence patterns of mortality, fecundity and natural selection, but the fitness implications of such subtle variation on human populations are unclear. Here, we use longitudinal data on local grain production, births, marriages and mortality so as to assess the impact of crop yield variation on individual age-specific mortality and fecundity in two pre-industrial Finnish populations. Although crop yields and fitness traits showed profound year-to-year variation across the 70-year study period, associations between crop yields and mortality or fecundity were generally weak. However, post-reproductive individuals of both sexes, and individuals of lower socio-economic status experienced higher mortality when crop yields were low. This is the first longitudinal, individual-based study of the associations between environmental variation and fitness traits in pre-industrial humans, which emphasizes the importance of a portfolio of mechanisms for coping with low food availability in such populations. The results are consistent with evolutionary ecological predictions that natural selection for resilience to food shortage is likely to weaken with age and be most severe on those with the fewest resources.

  18. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants.

    Science.gov (United States)

    Islam, Md Rashedul; Madhaiyan, M; Deka Boruah, Hari P; Yim, Woojong; Lee, Gillseung; Saravanan, V S; Fu, Qingling; Hu, Hongqing; Sa, Tongmin

    2009-10-01

    The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1- aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia (NH3). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

  19. Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems

    Directory of Open Access Journals (Sweden)

    Trifone D'Addabbo

    2014-11-01

    Full Text Available Synthetic pesticides have played a major role in crop protection related to the intensification of agricultural systems. In the recent years, environmental side effects and health concerns raised by an indiscriminate use have led the EU to the ban of many synthetic pesticides. As a result of this drastic revision, currently there is a strong need for new and alternative pest control methods. An interesting source of biorational pesticides may be represented by the biocidal compounds naturally occurring in plants as products of the secondary metabolism. Groups of plant secondary metabolites most promising for the development of pesticidal formulations are glucosinolates, saponins, and more generally terpenoid phytoconstituents, such as essential oil and their constituents. Glucosinolates are thioglucosidic secondary metabolites occurring mainly in the Brassicaceae and, at a less extent, in Capparidaceae families. The incorporation of glucosinolate- containing plant material into the soil results in degradation products highly toxic to soilborne pest, pathogens and weeds. This practice, known as biofumigation, may be considered as an ecological alternative to soil toxic fumigants. Plant-derived saponins are triterpene glycosides present in top and root tissues of plant species of the families Leguminosae, Alliaceae, Asteraceae, Polygalaceae and Agavaceae. Saponins and saponin-rich plant materials have been also reported for a biocidal activity on phytoparasites and soilborne plant pathogens. Essential oils are volatile, natural, heterogeneous mixtures of single substances, mainly terpenes and phenolics, formed as secondary metabolites by aromatic plants belonging to several botanical families. Among terpenes, limonoid triterpenes have been demonstrated to possess interesting insecticidal, nematicidal and antifungal properties. Occurrence of these compounds is mainly limited to Meliaceae and Rutaceae. Alkaloids, phenolics, cyanogenic glucosides

  20. Cropping Effects on Microbial Population and Nitrogenase Activity in Saline Arid Soil

    OpenAIRE

    EGAMBERDIEVA, Dilfuza; KUCHAROVA, Zulfiya

    2008-01-01

    Soil salinization is a major problem in irrigated agriculture. A field study was conducted in the Sariosiyo district in the Surkhandarya region of southeast Uzbekistan to evaluate soil nitrogenase activity and nitrogen-fixing bacteria populations in saline serozem soils under wheat, maize, and alfalfa, as well as from adjacent fallow land. Composite soil samples were randomly collected from depths of 0-10, 10-20, and 20-30 cm in autumn, winter, spring, and summer, which were then 2-mm sieved ...

  1. Population dynamics of plant nematodes in cultivated soil: length of rotation in newly cleared and old agricultural land.

    Science.gov (United States)

    Good, J M; Murphy, W S; Brodie, B B

    1973-04-01

    During a 6-year study of 1-, 2-, and 3-year crop rotations, population densities of Pratylenchus brachyurus, Trichodorus christiei, and Meloidogyne incognita were significantly affected by the choice of crops but not by length of crop rotation. The density of P. brachyurus and T. christiei increased rapidly on milo (Sorghum vulgate). In addition, populations of P. brachyurus increased significantly in cropping systems that involved crotalaria (C. rnucronata), millet (Setaria italica), and sudangrass (Sorghum sudanense). Lowest numbers of P. brachyurus occurred where okra (Hibiscus esculentus) was grown or where land was fallow. The largest increase in populations of T. christiei occurred in cropping systems that involved millet, sudangrass, and okra whereas the smallest increase occurred in cropping systems that involved crotalaria or fallow. A winter cover of rye (Secale cereale) had no distinguishable effect on population densities of P. brachyurus or T. christiei. Meloidogyne incognita was detected during the fourth year in both newly cleared and old agricultural land when okra was included in the cropping system. Detectable populations of M. incognita did not develop in any of the other cropping systems. Yields of tomato transplants were higher on the newly cleared land than on the old land. Highest yields were obtained when crotalaria was included in the cropping system. Lowest yields were obtained when milo, or fallow were included in the cropping system. Length of rotation had no distinguishable effect on yields of tomato transplants.

  2. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  3. Combinatorial effects of distillery and sugar factory effluents in crop plants.

    Science.gov (United States)

    Nath, Kamlesh; Singh, Dharam; Sharma, Yogesh Kumar

    2007-07-01

    Under the reutilization and recycling strategy of industrial effluents, treated distillery and sugar factory mixed effluent was used in petridish culture experiments to investigate its effect on seed germination and seedling growth in wheat, garden pea, black gram and mustard. The seed germination and seedling growth were significantly reduced with increase in concentration of the effluent. The fresh matter was found significantly increased in barley (1.16 g per seedling in 25% dilution level of effluents in comparison to 0.93 in control), while other higher dilution levels reduce it. Wheat, garden pea, black gram, mustard invariably showed inhibition in fresh weight. Dry weight was found consistently reduced or unchanged in different treatments. Total chlorophyll contents in barley were significantly increased in different treatments (2.351 and 2.721 mg/g fresh weight of tissue at 25, 50% dilution levels in comparison to 1.781 of control) while in other crop it was reduced alloverthe treatments. Amylase activity in wheat, garden pea, black gram and mustard was reduced in all the treatments. Only in barley its level was enhanced from 0.76 to 0.85, 0.96, 0.81 in 25, 50, 75% dilution levels of the effluent mixture respectively Based on the data of different crops barley was found to be highly tolerant as the 25 and 50% dilution levels of combined effluents. It showed no change in germination %, while seedling growth was increased in lower dilution levels of combined effluent as compared to control Barley>garden pea>wheat>black gram>mustard gradually showed increased level of sensitivity respectively Most detrimental effects were seen in mustard. This toxicity might be due to excess of nutrients, beyond the limits of tolerance. Therefore, the higher concentration of mixed effluent was not advisable for irrigation purpose, however it could be used for irrigation purpose after proper treatment and dilution (one part treated effluent and five parts of available

  4. Selenium (Se) improves drought tolerance in crop plants--a myth or fact?

    Science.gov (United States)

    Ahmad, Rashid; Waraich, Ejaz Ahmad; Nawaz, Fahim; Ashraf, Muhammad Y; Khalid, Muhammad

    2016-01-30

    Climate change has emerged as one of the most complex challenges of the 21st century and has become an area of interest in the past few decades. Many countries of the world have become extremely vulnerable to the impacts of climate change. The scarcity of water is a serious concern for food security of these countries and climate change has aggravated the risks of extreme events like drought. Oxidative stress, caused by a variety of active oxygen species formed under drought stress, damages many cellular constituents, such as carbohydrates, lipids, nucleic acids and proteins, which ultimately reduces plant growth, respiration and photosynthesis. Se has become an element of interest to many biologists owing to its physiological and toxicological importance. It plays a beneficial role in plants by enhancing growth, reducing damage caused by oxidative stress, enhancing chlorophyll content under light stress, stimulating senesce to produce antioxidants and improving plant tolerance to drought stress by regulating water status. Researchers have adopted different strategies to evaluate the role of selenium in plants under drought stress. Some of the relevant work available regarding the role of Se in alleviating adverse effect of drought stress is discussed in this paper. © 2015 Society of Chemical Industry.

  5. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure

    Directory of Open Access Journals (Sweden)

    Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

    2016-09-01

    Full Text Available Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%—45.45% and the exploitation utilization of groundwater is in 54.82%—66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%—48.04% and the groundwater exploitation threshold is in 67.07%—72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

  6. Twenty Years of Brassinosteroids : Steroidal Plant Hormones Warrant Better Crops for the XXI Century

    NARCIS (Netherlands)

    Khripach, V.; Zhabinskii, V.; Groot, de C.P.G.M.

    2000-01-01

    The discovery of brassinosteroids (BS) just over 20 years ago opened a new era in studies of bio-regulation in living organisms. Previously, the only known role of steroids as hormones was in animals and fungi; now a steroidal hormone in plants had been added. Progress in brassinosteroid research

  7. Glutaredoxins in plant development, abiotic stress response, and iron homeostasis: From model organisms to crops

    Science.gov (United States)

    Plant growth, development, and response to environmental stress require the judicious balance of reactive oxygen species (ROS). Glutaredoxins (GRXs) are a group of oxidoreductases that participate in the control of ROS and are traditionally defined as redox regulators. New studies suggest the member...

  8. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Ni; Yuan, Jinzhan; Li, Ming; Li, Jun; Zhang, Liyan; Liu, Lixin; Naeem, Muhammad Shahbaz; Zhang, Chunlei

    2014-01-01

    Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

  9. Migration and Enrichment of Arsenic in the Rock-Soil-Crop Plant System in Areas Covered with Black Shale, Korea

    Directory of Open Access Journals (Sweden)

    Ji-Min Yi

    2003-01-01

    Full Text Available The Okchon black shale, which is part of the Guryongsan Formation or the Changri Formation of Cambro-Ordovician age in Korea provides a typical example of natural geological materials enriched with potentially toxic elements such as U, V, Mo, As, Se, Cd, and Zn. In this study, the Dukpyung and the Chubu areas were selected to investigate the migration and enrichment of As and other toxic elements in soils and crop plants in areas covered with black shale. Rock and soil samples digested in 4-acid solution (HCl+HNO3+HF+HClO4 were analyzed for As and other heavy metals by ICP-AES and ICP-MS, and plant samples by INAA. Mean concentration of As in Okchon black shale is higher than those of both world average values of shale and black shale. Especially high concentration of 23.2 mg As kg-1 is found in black shale from the Dukpyung area. Mean concentration of As is highly elevated in agricultural soils from the Dukpyung (28.2 mg kg-1 and the Chubu areas (32.6 mg kg-1. As is highly elevated in rice leaves from the Dukpyung (1.14 mg kg-1 and the Chubu areas (1.35 mg kg-1. The biological absorption coefficient (BAC of As in plant species decreases in the order of rice leaves > corn leaves > red pepper = soybean leaves = sesame leaves > corn stalks > corn grains. This indicates that leafy plants tend to accumulate As from soil to a greater degree than cereal products such as grains.

  10. RELATIVE COMPETITIVENESS OF GOOSEGRASS BIOTYPES AND SOYBEAN CROPS

    Directory of Open Access Journals (Sweden)

    JADER JOB FRANCO

    2017-01-01

    Full Text Available he goosegrass ( Eleusine indica (L. Gaertn is an annual plant that has a low - level resistance to glyphosate (LLRG, resulting in control failure in genetically modified soybean crops for resistance to this herbicide. Alleles related to resistance may cause changes in the plant biotype, such as inferior competitive ability. Thus, the objective of this work was to evaluated the competitive ability of soybean crops and susceptible and resistant (LLRG goosegrass biotypes. Replacement series experiments were conducted with soybean crops and goosegrass biotypes. The ratios of soybean to susceptible or resistant (LLRG goosegrass plants were 100:0, 75:25, 50:50, 25:75 and 0:100, with a total population of 481 plants m - 2 . The leaf area, plant height and shoot dry weight were evaluated at 40 days after emergence of the soybean crops and weeds. The soybean crop had superior competitive ability to the susceptible and resistant (LLRG goosegrass biotypes. The soybean crop showed similar competitive ability in both competitions, either with the susceptible or resistant (LLRG goosegrass biotypes. The intraspecific competition was more harmful to the soybean crop, while the interspecific competition caused greater damage to the goosegrass biotypes competing with the soybean crop

  11. Crop resistance traits modify the effects of an aboveground herbivore, brown planthopper, on soil microbial biomass and nematode community via changes to plant performance.

    NARCIS (Netherlands)

    Huang, J.; Liu, M.; Chen, F.; Griffiths, B.S.; Chen, X.; Johnson, S.N.; Hu, F.

    2012-01-01

    Plant-mediated effects of aboveground herbivory on the belowground ecosystem are well documented, but less attention has been paid to agro-ecosystems and in particular how crop cultivars with different traits (i.e. resistance to pests) shape such interactions. A fully factorial experiment was

  12. Induced mutations and in vitro culture techniques for improving crop plant resistance to diseases

    International Nuclear Information System (INIS)

    1993-12-01

    This co-ordinated research program was undertaken in search of in vitro techniques to increase the resistance of plants to disease. The studies performed under the program ranged from the preparation of materials for mass screening to screening of mutagen-treated cells, tissues, organs or plantlets for resistance to viruses, fungi and other pathogens. The characteristics of the resulting mutants were evaluated to determine the relevance of these techniques for plant breeding. The present document contains the papers presented at the final Research Co-ordination Meeting of the program, as well as a summary of the conclusions and recommendations drawn from the work. The nine individual papers have been input separately to the database. Refs, figs and tabs

  13. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops

    OpenAIRE

    Guo, Qigao; Liu, Qing; Smith, Neil A.; Liang, Guolu; Wang, Ming-Bo

    2016-01-01

    Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing ...

  14. Effects of Moringa oleifera LAM, Leguminous Plants and NPK Fertilizer Comparatively on Orange Fleshed Sweet Potato in Alley Cropping System

    Directory of Open Access Journals (Sweden)

    IN Abdullahi

    2014-09-01

    Full Text Available The research work conducted at the Teaching and Research Farm of University of Abuja was aimed at assessing the effect of Moringa oleifera, selected leguminous plants and inorganic fertilizer on the performance of orange fleshed sweet potato in Alley Cropping System. Randomized Complete Block Design (RCBD using five treatments with three replications was applied. Data collected include: percentage survival of sweet potato, length per vine (cm, number of leaves per vine, leaf area of sweet potato, weed dry matter (g/m2, yield of sweet potato roots. Highest number of leaves (28 per plant was recorded in the control plot while the plots with NPK fertilizer had the highest length per vine (94.55cm though not significantly (p>0.05 different from others. Higher percent survival (88% of sweet potato was recorded from control plots. Stands grown in Arachis hypogeae plots produced the highest leaf area (0.202m2 while plots in which NPK fertilizer was applied experienced highest weed dry matter (4.083g/m2 although highest root yield (1.2t/ha was recorded from the plots with NPK fertilizer. DOI: http://dx.doi.org/10.3126/ije.v3i3.11061 International Journal of Environment Vol.3(3 2014: 24-35

  15. Cascade Cropping System with Horticultural and Ornamental Plants under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Pedro García-Caparrós

    2018-01-01

    Full Text Available The blending of drainage with water of low electrical conductivity and the sequential reuse of the drainage water are innovative technologies to manage salts in agricultural drainage. Plants of Cucumis melo were grown in coir grow bags, and Rosmarinus officinalis and Cacti spp. were grown in pots with a mixture of sphagnum peat-moss and perlite. In order to assess the effect and evolution over time of these water treatments on plant growth and water management and removal of nutrients, three water treatments were applied over a period of eight weeks. These were: (1 standard nutrient solution; (2 blended water treatment (drainage water blended with water of low electrical conductivity (EC and (3 sequential reuse of drainage water treatment. During the experimental growing period, samples of water supplies and drainages generated in each water treatment were collected weekly and from these data water volume and nutrient loads were calculated. At the end of the experiment, leaf fresh weight of rosemary plants decreased under the fertigation with the blended and sequential reuse water treatments. Nevertheless, the application of blended and sequentially reused water allowed for the saving of significant amounts of water and nutrients in comparison to the standard nutrient solution treatment. Considering these advantages, we strongly recommend the setting-up of these water treatments in areas with water scarcity such as in the Mediterranean Basin.

  16. Effects of allelopathic chemicals extracted from various plant leaves on weed control and wheat crop productivity

    International Nuclear Information System (INIS)

    Khan, E.A.; Khakwani, A.A.; Ghazanfarullah, A.

    2015-01-01

    A study on allelopathic effect of leaf water extracts of Eucalyptus, Acacia, Sorghum, Shishum, Sunflower, Poplar, Tobacco and Congress grass on weeds control and growth of wheat cv. Hashim-8 was conducted at Faculty of Agriculture, Gomal University, Dera Ismail Khan during 2012-2013. The findings of this study revealed that allelopathic chemicals in leaf water extracts of these plants significantly suppressed weeds growth by reducing weed density, fresh and dry weed biomass, and encouraged wheat yield and yield components such as days to 50% heading, plant height, tillers m-2, grain spike-1, 1000-gain weight, biological and grain yield. Even though minimum fresh and dry weed biomass and highest wheat grain yield and yield related components were observed in twice hand weeding treatment which is economically less feasible on large scale. However, our findings showed an alternative allelopathic technique to minimize weed infestation and boost wheat growth and yield using natural plant material. On the basis of present results, it is recommended that leaf water extracts of Sorghum, Sunflower and Congress grass can be applied twice (30 and 60 DAS) during the growing season to control weeds and to enhance wheat grain yield. (author)

  17. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management.

    Directory of Open Access Journals (Sweden)

    Andrew Lawson

    Full Text Available Cover crop benefits include nitrogen accumulation and retention, weed suppression, organic matter maintenance, and reduced erosion. Organic farmers need region-specific information on winter cover crop performance to effectively integrate cover crops into their crop rotations. Our research objective was to compare cover crop seeding mixtures, planting dates, and termination dates on performance of rye (Secale cereale L. and hairy vetch (Vicia villosa Roth monocultures and mixtures in the maritime Pacific Northwest USA. The study included four seed mixtures (100% hairy vetch, 25% rye-75% hairy vetch, 50% rye-50% hairy vetch, and 100% rye by seed weight, two planting dates, and two termination dates, using a split-split plot design with four replications over six years. Measurements included winter ground cover; stand composition; cover crop biomass, N concentration, and N uptake; and June soil NO3(--N. Rye planted in mid-September and terminated in late April averaged 5.1 Mg ha(-1 biomass, whereas mixtures averaged 4.1 Mg ha(-1 and hairy vetch 2.3 Mg ha(-1. Delaying planting by 2.5 weeks reduced average winter ground cover by 65%, biomass by 50%, and cover crop N accumulation by 40%. Similar reductions in biomass and N accumulation occurred for late March termination, compared with late April termination. Mixtures had less annual biomass variability than rye. Mixtures accumulated 103 kg ha(-1 N and had mean C:N ratio <17:1 when planted in mid-September and terminated in late April. June soil NO3(--N (0 to 30 cm depth averaged 62 kg ha(-1 for rye, 97 kg ha(-1 for the mixtures, and 119 kg ha(-1 for hairy vetch. Weeds comprised less of the mixtures biomass (20% weeds by weight at termination compared with the monocultures (29%. Cover crop mixtures provided a balance between biomass accumulation and N concentration, more consistent biomass over the six-year study, and were more effective at reducing winter weeds compared with monocultures.

  18. Induced mutations for crop improvement

    International Nuclear Information System (INIS)

    Micke, A.; Donini, B.; Maluszynski, M.

    1990-01-01

    Mutation induction has become an established tool in plant breeding to supplement existing germ plasma and to improve cultivars in certain specific traits. Hundreds of improved varieties have been released to farmers for many different crop species, demonstrating the economic value of the technology. Limitations arise mainly from the large mutagenized populations to be screened and from the unsatisfactory selection methods. Both limitations may be eased to some extent by advances in techniques of plant in-vitro culture. (author). Refs, 1 fig., 7 tabs

  19. Linyphiid spider populations in sustainable wheat‐clover bi‐cropping compared to conventional wheat‐growing practice

    DEFF Research Database (Denmark)

    Gravesen, Eigil Vestergaard

    2008-01-01

    Linyphiid web densities in wheat-clover bi-crop systems where winter wheat was grown in an under-storey of white clover were compared with web densities estimated in conventional wheat-growing systems. The web densities in the wheat-clover bi-crop systems were on average between 200 and 250 webs ...

  20. Variation in the volatile terpenoids of two industrially important basil (Ocimum basilicum L.) cultivars during plant ontogeny in two different cropping seasons from India.

    Science.gov (United States)

    Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit

    2012-02-01

    Two Ocimum basilicum cultivars, 'Vikarsudha' and 'CIM-Saumya', grown in the Kumaon region of western Himalaya were evaluated for their essential oil yield and composition at different stages of plant growth during two distinct cropping seasons (spring-summer and rain-autumn). The highest yield of essential oil was obtained at full bloom stage in both cultivars in both cropping seasons. The essential oils obtained from different stages in two cropping seasons were analysed by capillary gas chromatography with flame ionisation detection, and gas chromatography-mass spectrometry. The major component of cultivar 'Vikarsudha' was methyl chavicol (84.3-94.3%), while for cultivar 'CIM-Saumya' the main components were methyl chavicol (62.5-77.6%) and linalool (14.4-34.1%). This study clearly indicated that cultivar, cropping season, plant ontogeny and plant part had significant effects on the yield and quality of the essential oil of O. basilicum. Further, the amount of methyl chavicol in the cultivars grown in this region was higher than in cultivars from other parts of India. Copyright © 2011 Society of Chemical Industry.

  1. An individual-based model of the evolution of pesticide resistance in heterogeneous environments: control of Meligethes aeneus population in oilseed rape crops.

    Science.gov (United States)

    Stratonovitch, Pierre; Elias, Jan; Denholm, Ian; Slater, Russell; Semenov, Mikhail A

    2014-01-01

    Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus) population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape) was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of spring-sown oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to simulate how farming

  2. An individual-based model of the evolution of pesticide resistance in heterogeneous environments: control of Meligethes aeneus population in oilseed rape crops.

    Directory of Open Access Journals (Sweden)

    Pierre Stratonovitch

    Full Text Available Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of spring-sown oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to

  3. Development of a multiplex DNA-based traceability tool for crop plant materials.

    Science.gov (United States)

    Voorhuijzen, Marleen M; van Dijk, Jeroen P; Prins, Theo W; Van Hoef, A M Angeline; Seyfarth, Ralf; Kok, Esther J

    2012-01-01

    The authenticity of food is of increasing importance for producers, retailers and consumers. All groups benefit from the correct labelling of the contents of food products. Producers and retailers want to guarantee the origin of their products and check for adulteration with cheaper or inferior ingredients. Consumers are also more demanding about the origin of their food for various socioeconomic reasons. In contrast to this increasing demand, correct labelling has become much more complex because of global transportation networks of raw materials and processed food products. Within the European integrated research project 'Tracing the origin of food' (TRACE), a DNA-based multiplex detection tool was developed-the padlock probe ligation and microarray detection (PPLMD) tool. In this paper, this method is extended to a 15-plex traceability tool with a focus on products of commercial importance such as the emmer wheat Farro della Garfagnana (FdG) and Basmati rice. The specificity of 14 plant-related padlock probes was determined and initially validated in mixtures comprising seven or nine plant species/varieties. One nucleotide difference in target sequence was sufficient for the distinction between the presence or absence of a specific target. At least 5% FdG or Basmati rice was detected in mixtures with cheaper bread wheat or non-fragrant rice, respectively. The results suggested that even lower levels of (un-)intentional adulteration could be detected. PPLMD has been shown to be a useful tool for the detection of fraudulent/intentional admixtures in premium foods and is ready for the monitoring of correct labelling of premium foods worldwide.

  4. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    Science.gov (United States)

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2018-03-01

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  5. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    Science.gov (United States)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  6. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    Science.gov (United States)

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Remote detection of physiological depression in crop plants with infrared thermal imagery

    International Nuclear Information System (INIS)

    Inoue, Y.

    1990-01-01

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis

  8. Remote detection of physiological depression in crop plants with infrared thermal imagery

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y. [Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    1990-12-15

    The infrared thermal imagery was measured concurrently with physiological status in stressed and non-stressed corn and wheat canopies. Thermal images were obtained with an infrared thermography system from a distance of 5 to 20 m. Each thermal image, composed of 512 (H) × 240 (V) pixels with a sensitivity of 0.05°C, was recorded in a video tape every 8 seconds in the field, and analyzed in a laboratory later. A root-reducing treatment was used for simulating environmental stresses, which treatment was carried out by cutting a root system with a thin metal plate at the depth of 20 cm, but brought little apparent change in plant stands. Photosynthesis, transpiration and stomatal conductance in the stressed canopy were depressed, which were accompanied with an inverse change in the canopy surface temperature. The maximum difference in mean surface temperatures of the stressed and non-stressed parts of the canopy was no less than 4.2°C in corn and 3.1°C in wheat. Gaussian distribution of spatial temperature frequency in the stressed part shifted toward higher temperature from that of non-stressed part of the canopy, which was visualized clearly on the pseudo-color thermal image while no visible changes were observed directly from the distance. The infrared imagery was effective, especially, for detecting phisiological depression or for comparing various canopies in their physiological status on a remote and real-time basis.

  9. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Cécile Villenave

    2010-01-01

    Full Text Available Free-living nematodes present several characteristics that have led to their use as bioindicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  10. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar): A Mesocosm Experiment

    International Nuclear Information System (INIS)

    Villenave, C.; Kichenin, E.; Djigal, D.; Blanchart, E.; Rabary, B.; Djigal, D.

    2010-01-01

    Free-living nematodes present several characteristics that have led to their use as bio indicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean) were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders) was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  11. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data.

    Science.gov (United States)

    Vanegas, Fernando; Bratanov, Dmitry; Powell, Kevin; Weiss, John; Gonzalez, Felipe

    2018-01-17

    Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used-the sensors, the UAV, and the flight operations-the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analising and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications.

  12. Planting woody crops on dredged contaminated sediment provides both positive and negative effects in terms of remediation

    International Nuclear Information System (INIS)

    Hartley, William; Riby, Philip; Dickinson, Nicholas M.; Shutes, Brian; Sparke, Shaun; Scholz, Miklas

    2011-01-01

    There is currently a requirement for studies focusing on the long-term sustainability of phytoremediation technologies. Trace element uptake by Salix, Populus and Alnus species planted in dredged contaminated canal sediment and concentrations in sediment and pore waters were investigated, eight years after a phytoremediation trial was initiated in NW England. Soil biological activity was also measured using invertebrate and microbial assays to determine soil quality improvements. Zinc was the dominant trace metal in foliage and woody stems, and the most mobile trace element in sediment pore water (∼14 mg l -1 ). Biological activity had improved; earthworm numbers had increased from 5 to 24, and the QBS index (an index of microarthropod groups in soil) had increased from 70 to 88. It is concluded that biological conditions had improved and natural processes appear to be enhancing soil quality, but there remains a potential risk of trace element transfer to the wider environment. - Highlights: → Trees provide positive and negative effects for remediation of dredged sediment. → Biological conditions had improved and natural processes enhance soil quality. → Zinc was the dominant trace metal in foliage and sediment pore waters. → Metal contaminants remain a problem in relation to their wider environmental fate. → A sustainable environment appears to be forming as a result of natural attenuation. - Soil biological quality improves in a woody crop stand eight years after a phytoremediation trial.

  13. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data

    Science.gov (United States)

    Vanegas, Fernando; Weiss, John; Gonzalez, Felipe

    2018-01-01

    Recent advances in remote sensed imagery and geospatial image processing using unmanned aerial vehicles (UAVs) have enabled the rapid and ongoing development of monitoring tools for crop management and the detection/surveillance of insect pests. This paper describes a (UAV) remote sensing-based methodology to increase the efficiency of existing surveillance practices (human inspectors and insect traps) for detecting pest infestations (e.g., grape phylloxera in vineyards). The methodology uses a UAV integrated with advanced digital hyperspectral, multispectral, and RGB sensors. We implemented the methodology for the development of a predictive model for phylloxera detection. In this method, we explore the combination of airborne RGB, multispectral, and hyperspectral imagery with ground-based data at two separate time periods and under different levels of phylloxera infestation. We describe the technology used—the sensors, the UAV, and the flight operations—the processing workflow of the datasets from each imagery type, and the methods for combining multiple airborne with ground-based datasets. Finally, we present relevant results of correlation between the different processed datasets. The objective of this research is to develop a novel methodology for collecting, processing, analysing and integrating multispectral, hyperspectral, ground and spatial data to remote sense different variables in different applications, such as, in this case, plant pest surveillance. The development of such methodology would provide researchers, agronomists, and UAV practitioners reliable data collection protocols and methods to achieve faster processing techniques and integrate multiple sources of data in diverse remote sensing applications. PMID:29342101

  14. Planting woody crops on dredged contaminated sediment provides both positive and negative effects in terms of remediation

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William, E-mail: w.hartley@salford.ac.uk [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford M5 4WT (United Kingdom); Riby, Philip [School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M. [Department of Ecology, Lincoln University, Lincoln 7647, Canterbury (New Zealand); Shutes, Brian [Urban Pollution Research Centre, Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT (United Kingdom); Sparke, Shaun [School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom); Scholz, Miklas [School of Computing, Science and Engineering, University of Salford, Cockcroft Building, Salford M5 4WT (United Kingdom)

    2011-12-15

    There is currently a requirement for studies focusing on the long-term sustainability of phytoremediation technologies. Trace element uptake by Salix, Populus and Alnus species planted in dredged contaminated canal sediment and concentrations in sediment and pore waters were investigated, eight years after a phytoremediation trial was initiated in NW England. Soil biological activity was also measured using invertebrate and microbial assays to determine soil quality improvements. Zinc was the dominant trace metal in foliage and woody stems, and the most mobile trace element in sediment pore water ({approx}14 mg l{sup -1}). Biological activity had improved; earthworm numbers had increased from 5 to 24, and the QBS index (an index of microarthropod groups in soil) had increased from 70 to 88. It is concluded that biological conditions had improved and natural processes appear to be enhancing soil quality, but there remains a potential risk of trace element transfer to the wider environment. - Highlights: > Trees provide positive and negative effects for remediation of dredged sediment. > Biological conditions had improved and natural processes enhance soil quality. > Zinc was the dominant trace metal in foliage and sediment pore waters. > Metal contaminants remain a problem in relation to their wider environmental fate. > A sustainable environment appears to be forming as a result of natural attenuation. - Soil biological quality improves in a woody crop stand eight years after a phytoremediation trial.

  15. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    Science.gov (United States)

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  16. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops.

    Science.gov (United States)

    Ansari, Mohammad Wahid; Trivedi, Dipesh Kumar; Sahoo, Ranjan Kumar; Gill, Sarvajeet Singh; Tuteja, Narendra

    2013-09-01

    The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. The efficacy of Beauveria bassiana, jasmonic acid and chlorantraniliprole on larval populations of Helicoverpa armigera in chickpea crop ecosystems.

    Science.gov (United States)

    Younas, Aneela; Wakil, Waqas; Khan, Zaeema; Shaaban, Muhammad; Prager, Sean Michael

    2017-02-01

    A robust integrated pest management (IPM) programme is needed to reduce the use of insecticides in controlling Helicoverpa armigera. Therefore, a 2 year field study was conducted to evaluate the use of alternative control measures (biochemical use) for H. armigera relative to exclusively using chemical insecticides. The entomopathogenic fungus Beauveria bassiana, jasmonic acid and the insecticide chlorantraniliprole were each applied twice during the chickpea growing season. All three applied materials (either alone or combined) significantly (P ≤ 0.05) reduced the larval population of H. armigera and pod infestation. Effects increased with time, and the maximum difference was observed 7 days after the second application in each year. The lowest numbers of larvae per plant and pod infestation were in the B. bassiana 3.21 × 10 6 + chlorantraniliprole treatment in both 2009/2010 and 2010/2011 year. The reduction in the larval population and pod infestation increased chickpea yield and the highest yield in both seasons, and the maximum yield was obtained in the B. bassiana 3.21 × 10 6 + chlorantraniliprole treatment. The populations of natural enemies were highest in the jasmonic acid treatment. The results suggest that B. bassiana, jasmonic acid and chlorantraniliprole may be useful components for the H. armigera IPM strategy. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Gan et al., 2003). Nitrogen increases yield by influencing a variety of agronomic and quality parameters. In general, there was an increase in plant height and dry matter accumulation per plant in soybean (Manral and Saxena, ...

  19. Effect of cropping system and age of plant at harvest on tuber rot and performance of elite cassava varieties in derived savannah

    Directory of Open Access Journals (Sweden)

    Joy N Odedina

    2017-09-01

    Full Text Available Devastated tuber rot disease among farmers prompted the evaluation of the elite improved varieties in the intercrop and the practice of delaying harvesting when there is glut in the market necessitated this study. Trial was carried out at the Federal University of Agriculture, Abeokuta between 2011 and 2014 to evaluate yield performance of 21 elite cassava varieties planted as sole crop verse intercropped and harvested at different age. The 2 x 21 x 3 factorial experiment was laid out in randomized complete block design and replicated three times. The tuber yield obtained from sole plot in 2011/2012 cropping season was significantly higher than intercrop whereas those of 2012/2014 cropping season were similar. Land Equivalent Ratio was above one in both cropping seasons indicating that the performance of the improved varieties in intercrop was efficient. The pooled mean tuber yield showed that TMS 30572, 92/0326, 95/0211, 01/1371, 00/0338, 01/0046, 00/0098, 01/1097, 01/0085, 98/0581 and 98/510 were among the top eight varieties. Harvesting could be delayed up to 15 months after planting to reduce tuber rot.

  20. Weaving Together Space Biology and the Human Research Program: Selecting Crops and Manipulating Plant Physiology to Produce High Quality Food for ISS Astronauts

    Science.gov (United States)

    Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond

    2015-01-01

    Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.

  1. The Crop Journal: A new scientific journal for the global crop science community

    Directory of Open Access Journals (Sweden)

    Jianmin Wan

    2013-10-01

    Full Text Available As global population increases and demands for food supplies become greater, we face great challenges in providing more products and in larger quantities from less arable land. Crop science has gained increasing importance in meeting these challenges and results of scientific research must be communicated worldwide on a regular basis. In many countries, however, crop scientists have to publish the results of their investigations in national journals with heterogeneous contents and in their native languages. As a consequence, valuable work often remains unknown to scientists elsewhere. As a big country with a large number of crop scientists, China has a wide range of climatic and ecological environments, diverse plant species and cropping systems, and different regional needs for food supplies, which justify the recent decision by the Crop Science Society of China and the Institute of Crop Science within the Chinese Academy of Agricultural Sciences, to launch a new communication channel, The Crop Journal. The goal of The Crop Journal is to meet an urgent need for a major Asia-based journal that covers the diverse fields of crop science. Our aim is to create a vital and thought-provoking journal that will highlight state-of-the-art original work and reviews by high-profile crop scientists and investigative groups throughout the world — a journal that will respond to the needs of specialists in strategic crop research. We will work with scientific and publishing colleagues worldwide, using The Plant Journal and Crop Science as models, to establish The Crop Journal as a broadly based high quality journal and a premier forum for issues in crop science. The Crop Journal will cover a wide range of topics, including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics. The journal also encourages the submission of review

  2. Modeling the growth of individuals in plant populations: local density variation in a strand population of Xanthium strumarium (Asteraceae).

    Science.gov (United States)

    Weiner, J; Kinsman, S; Williams, S

    1998-11-01

    We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.

  3. Molecular taxonomic analysis of the plant associations of adult pollen beetles (Nitidulidae: Meligethinae), and the population structure of Brassicogethes aeneus.

    Science.gov (United States)

    Ouvrard, Pierre; Hicks, Damien M; Mouland, Molly; Nicholls, James A; Baldock, Katherine C R; Goddard, Mark A; Kunin, William E; Potts, Simon G; Thieme, Thomas; Veromann, Eve; Stone, Graham N

    2016-12-01

    Pollen beetles (Nitidulidae: Meligethinae) are among the most abundant flower-visiting insects in Europe. While some species damage millions of hectares of crops annually, the biology of many species is little known. We assessed the utility of a 797 base pair fragment of the cytochrome oxidase 1 gene to resolve molecular operational taxonomic units (MOTUs) in 750 adult pollen beetles sampled from flowers of 63 plant species sampled across the UK and continental Europe. We used the same locus to analyse region-scale patterns in population structure and demography in an economically important pest, Brassicogethes aeneus. We identified 44 Meligethinae at ∼2% divergence, 35 of which contained published sequences. A few specimens could not be identified because the MOTUs containing them included published sequences for multiple Linnaean species, suggesting either retention of ancestral haplotype polymorphism or identification errors in published sequences. Over 90% of UK specimens were identifiable as B. aeneus. Plant associations of adult B. aeneus were found to be far wider taxonomically than for their larvae. UK B. aeneus populations showed contrasting affiliations between the north (most similar to Scandinavia and the Baltic) and south (most similar to western continental Europe), with strong signatures of population growth in the south.

  4. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Science.gov (United States)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-10-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.

  5. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Co-ordinated Research Programme (CRP) on Improvement of Basic Food Crops in Africa Through Plant Breeding, Including the Use of Induced Mutations, funded by the Italian Government, was initiated in 1989 in the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The primary objective of this CRP was to breed improved varieties of stable food crops of Africa with the main emphasis on the indigenous species and their local cultivars. The fourth and final Research Co-ordination meeting under the CRP was held in Naples, Italy from 30 October - 3 November 1995. This publication includes the reports, conclusions and recommendations made by the participants. We hope that it will be of value to researchers, students and policy makers alike in their endeavour to promote plant breeding and increase food productions in Africa. Refs, figs, tabs.

  6. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1997-07-01

    The Co-ordinated Research Programme (CRP) on Improvement of Basic Food Crops in Africa Through Plant Breeding, Including the Use of Induced Mutations, funded by the Italian Government, was initiated in 1989 in the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The primary objective of this CRP was to breed improved varieties of stable food crops of Africa with the main emphasis on the indigenous species and their local cultivars. The fourth and final Research Co-ordination meeting under the CRP was held in Naples, Italy from 30 October - 3 November 1995. This publication includes the reports, conclusions and recommendations made by the participants. We hope that it will be of value to researchers, students and policy makers alike in their endeavour to promote plant breeding and increase food productions in Africa. Refs, figs, tabs

  7. Effect Of Cowpea Planting Density On Growth, Yield And ...

    African Journals Online (AJOL)

    Effect Of Cowpea Planting Density On Growth, Yield And Productivity Of Component Crops In Cowpea/Cassava Intercropping System. ... Similarly, fresh root yield (t/ha) of cassava was influenced by cropping system and population density in 2005/2006, but not in 2004/2005 cropping season. Cassava tuber yield was ...

  8. Computing the biomass potentials for maize and two alternative energy crops, triticale and cup plant (Silphium perfoliatum L.), with the crop model BioSTAR in the region of Hannover (Germany).

    Science.gov (United States)

    Bauböck, Roland; Karpenstein-Machan, Marianne; Kappas, Martin

    2014-01-01

    Lower Saxony (Germany) has the highest installed electric capacity from biogas in Germany. Most of this electricity is generated with maize. Reasons for this are the high yields and the economic incentive. In parts of Lower Saxony, an expansion of maize cultivation has led to ecological problems and a negative image of bioenergy as such. Winter triticale and cup plant have both shown their suitability as alternative energy crops for biogas production and could help to reduce maize cultivation. The model Biomass Simulation Tool for Agricultural Resources (BioSTAR) has been validated with observed yield data from the region of Hannover for the cultures maize and winter wheat. Predicted yields for the cultures show satisfactory error values of 9.36% (maize) and 11.5% (winter wheat). Correlations with observed data are significant ( P  alternative to maize in the region of Hanover and other places in Lower Saxony. The model BioSTAR simulated yields for maize and winter wheat in the region of Hannover at a good overall level of accuracy (combined error 10.4%). Due to input data aggregation, individual years show high errors though (up to 30%). Nevertheless, the BioSTAR crop model has proven to be a functioning tool for the prediction of agricultural biomass potentials under varying environmental and crop management frame conditions.

  9. Comparison of adaptability to heavy metals among crop plants (part 2). Adaptability to zinc group metals-studies on the comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Tadano, T; Muto, K

    1975-01-01

    Eighteen crop species were grown in culture solution having graded levels of Zn, Cd and Hg, and the differences among species in response to these elements were discussed. As the average of all species tested, the metal content of the shoot is Ca > Mn > Zn > Cd > Hg, and the root-to-shoot content ratio is reversed at equivalent levels. These values increase with an increase in the level of respective ions in the culture solution. The metal concentration in the shoot among species does not change significantly with the level of that element. There is a positive correlation among species between Zn and Cd, but Hg shows a different trend. The tolerance to Zn is weak in many species of Gramineae and Curciferae, and strong Solanaceae and Umbelliferae. Many species of Gramineae are very tolerant to high levels of Zn or Cd due to a high excluding power of the roots, but possess a weak tolerance to high Hg levels. Egg-plant, soybean, and pea are susceptible to high levels of all three elements.

  10. Application of Radiation Degraded Chitosan as Plant Growth Promoter. A Pilot Scale Production and Field Trial Study of Radiation Processed Chitosan as Plant Growth Promoter for Rice Crops

    International Nuclear Information System (INIS)

    Dahlan, Khairul Zaman Hj Mohd; Hashim, Kamaruddin; Bahari, Kamarudin

    2010-01-01

    The application of radiation processed chitosan as plant growth promoter has been carried out in the 24 hectares of rice crops. For the field trial, a pilot scale production of oligochitosan was established using gamma irradiation for partial degradation of chitosan powder of DDA 90% and followed by gamma irradiation of aqueous solution of 3% irradiated chitosan powder in 2% lactic acids (3CL2). Radiation dose of 50 kGy was selected for initial degradation of chitosan powder and followed by 12 kGy irradiation of 3CL2. A viscosity average molecular weight of ~10,000 of oligochitosan was obtained and subsequently used in the field trial of MR219 type of rice seeds on 24 hectares of rice plots. The seedlings were carried out after the rice seeds were soaked 24hrs in water and 30 minutes in 200ppm oligochitosan. The rice plots that were sprayed with oligochitosan were found to have higher resistant towards blast diseases. Oligochitosan of 40ppm was found to be effective as fungicides and resulted in the increase of yield of rice seeds of about 5%. (author)

  11. Crop improvement using life cycle datasets acquired under field conditions

    Directory of Open Access Journals (Sweden)

    Keiichi eMochida

    2015-09-01

    Full Text Available Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer designed crops to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  12. Crop improvement using life cycle datasets acquired under field conditions.

    Science.gov (United States)

    Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi

    2015-01-01

    Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  13. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  14. The balance of planting and mortality in a street tree population

    Science.gov (United States)

    Lara A. Roman; John J. Battles; Joe R. McBride

    2013-01-01

    Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...

  15. Competition between Plant-Populations with Different Rooting Depths. 2. Pot Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1981-01-01

    In a previous paper in this series a model was proposed lor the competition between plant populations with different rooting depths. This model predicts that in mixtures of plant populations with different rooting depths the Relative Yield Total will exceed unity. Secondly it predicts that in these

  16. Fortifying Horticultural Crops with Essential Amino Acids: A Review.

    Science.gov (United States)

    Wang, Guoping; Xu, Mengyun; Wang, Wenyi; Galili, Gad

    2017-06-19

    To feed the world's growing population, increasing the yield of crops is not the only important factor, improving crop quality is also important, and it presents a significant challenge. Among the important crops, horticultural crops (particularly fruits and vegetables) provide numerous health compounds, such as vitamins, antioxidants, and amino acids. Essential amino acids are those that cannot be produced by the organism and, therefore, must be obtained from diet, particularly from meat, eggs, and milk, as well as a variety of plants. Extensive efforts have been devoted to increasing the levels of essential amino acids in plants. Yet, these efforts have been met with very little success due to the limited genetic resources for plant breeding and because high essential amino acid content is generally accompanied by limited plant growth. With a deep understanding of the biosynthetic pathways of essential amino acids and their interactions with the regulatory networks in plants, it should be possible to use genetic engineering to improve the essential amino acid content of horticultural plants, rendering these plants more nutritionally favorable crops. In the present report, we describe the recent advances in the enhancement of essential amino acids in horticultural plants and possible future directions towards their bio-fortification.

  17. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  18. Key plants preserve elements of culture: a study over distance and time of fresh crops in Puerto Rican markets in Hartford, Connecticut, "A moveable feast".

    Science.gov (United States)

    Taylor, David W; Anderson, Gregory J

    2014-04-01

    People retain culinary customs when they migrate. We tested this commitment via the study of Puerto Rican fresh produce markets in the continental United States over time, 18 yr, and space, by comparisons with source markets in Puerto Rico (PR). A survey of Puerto Rican markets in Hartford (HT), Connecticut in 1993-1994 was repeated in 2009-2010. A comparative study was made at open-air markets in PR in 2009. Surveys recorded fresh crops, and interviews with vendors and Hartford Puerto Rican residents provided context. We recorded 84 plant crops (64 species; 32 families) for seven categories. The largest category was viandas (fresh, starchy "root" crops and immature fruits), followed by saborizantes (flavorings). In the second HT survey, 80% of the crops were still present. And ∼90% of the HT 1993-1994 crops and ∼75% of the HT 2009-2010 crops were shared with markets in PR. On the basis of our results, we suggest two new concepts. The persistence of these largely tropical foods in a temperate market far removed from tropical PR shows the importance of basic foods as an element of cultural identification. We recognize this stability as an example of "culinary cultural conservation". Second, analysis of these fresh produce markets leads to the conclusion that viandas are the most prominent in diversity, persistence over time and distance, volume, and in terms of consumers' "willingness to pay". Accordingly, we consider the viandas a good example of a "cultural keystone food group", a food group that is emblematic of a community's culinary conservation.

  19. Flowering catch crops used as forage plants for dairy cows: influence on fatty acids and tocopherols in milk.

    Science.gov (United States)

    Kälber, T; Meier, J S; Kreuzer, M; Leiber, F

    2011-03-01

    The effect of several flowering dicotyledonous catch crop plants (dicots) on milk fat quality in cows was investigated to test the hypothesis that their phenolic compounds may inhibit ruminal biohydrogenation and thus enhance the transfer to milk of intact, plant-derived polyunsaturated fatty acids. Berseem clover (Trifolium alexandrinum), buckwheat (Fagopyrum esculentum), and phacelia (Phacelia tanacetifolia) were sown in mixture with ryegrass (Lolium multiflorum; intended biomass proportion of 0.2) on 1ha. For comparison, nonflowering chicory (Cichorium intybus, also sown in mixture with ryegrass) and pure ryegrass were cultivated. Realized biomass proportions (wet weight) were 91% for berseem clover, 69% for buckwheat, 54% for phacelia, and 51% for chicory. At the start of flowering (or from d 47 after sowing onward), cultures were harvested daily and fed for 20 d ad libitum to groups of 6 midlactation cows each. Additionally, 1 kg each of energy and protein concentrate and pure ryegrass hay were fed. Individual intake and milk yield of the cows were measured daily. Milk samples were obtained twice daily 5 d before and from 11 to 20 d after the start of treatment feeding. Feed samples were drawn twice a week from the fresh feeds. Apart from standard traits, feeds and milk were analyzed for fatty acids, tocopherols, and phenolic fractions. Only a few substantial treatment effects on intake and performance were observed. All diets based on dicots increased α-linolenic acid (ALA) concentrations in milk fat compared with the ryegrass diet even though the corresponding swards were not generally richer in ALA. The highest ALA concentration in milk fat (1.3 g/100g of fatty acids) occurred with the berseem clover diet. Transfer rate of ALA from feed to milk was highest with the buckwheat diet (0.09) and lowest with ryegrass (0.05). This was congruent with the differences in total extractable phenols, being high in the buckwheat sward (2.6% of dry matter) and low in the

  20. A phosphate starvation-driven bidirectional promoter as a potential tool for crop improvement and in vitro plant biotechnology.

    Science.gov (United States)

    Araceli, Oropeza-Aburto; Alfredo, Cruz-Ramírez; Javier, Mora-Macías; Luis, Herrera-Estrella

    2017-05-01

    Phosphate (Pi)-deficient soils are a major limitant factor for crop production in many regions of the world. Despite that plants have innovated several developmental and biochemical strategies to deal with this stress, there are still massive extensions of land which combine several abiotic stresses, including phosphate starvation, that limit their use for plant growth and food production. In several plant species, a genetic programme underlies the biochemical and developmental responses of the organism to cope with low phosphate (Pi) availability. Both protein- and miRNA-coding genes involved in the adaptative response are transcriptionally activated upon Pi starvation. Several of the responsive genes have been identified as transcriptional targets of PHR1, a transcription factor that binds a conserved cis-element called PHR1-binding site (P1BS). Our group has previously described and characterized a minimal genetic arrangement that includes two P1BS elements, as a phosphate-responsive enhancer (EZ2). Here, we report the engineering and successful use of a phosphate-dependent bidirectional promoter, which has been designed and constructed based on the palindromic sequences of the two P1BS elements present in EZ2. This bidirectional promoter has a potential use in both plant in vitro approaches and in the generation of improved crops adapted to Pi starvation and other abiotic stresses. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.

    Science.gov (United States)

    Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the

  2. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.

    Science.gov (United States)

    Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François

    2008-03-01

    Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

  3. Impact of tillage, plant population and mulches on phenological characters of maize

    International Nuclear Information System (INIS)

    Gul, B.; Khan, M.A.; Khan, H.

    2014-01-01

    Field experiments were conducted during 2006 and 2007 in Peshawar, using open pollinated maize variety Azam in RCB design having 3 factors viz., tillage, maize populations and mulches with split-split plot arrangements. Tillage levels (zero and conventional) were assigned to the main plots, populations (90000, 60000 and 30000 plants ha/sup -1/) to sub-plots and four types of mulches (weeds mulch, black plastic mulch, white plastic mulch and mungbean as living mulch), a hand weeding and a weedy check were allotted to sub-sub plots, respectively. Data were recorded on days to tasseling, days to silking, days to maturity, leaf area of maize plant-1 (cm/sub 2/) and plant height (cm). Tillage affected leaf area of maize, where zero tillage resulted lower leaf area of 4094 cm/sub 2/ compared to conventional tillage (4722 cm/sub 2/). Different levels of plant populations affected all the physiological parameters. Days to tasseling, silking and maturity were more in higher plant population as compared to medium and lower plant population. Similarly, minimum leaf area plant-1 was recorded in higher plant population (3894 cm/sub 2/) than medium and lower plant population of 4398 and 4932 cm/sub 2/, respectively. Maximum plant height was recorded in hand weeding treatment (173 cm). However, it was statistically at par with black plastic mulch (171 cm), followed by weeds mulch (162 cm) and white plastic mulch (161 cm) as compared to weedy check (152 cm). Based on two years study it is suggested that even if tillage options and plant populations are a part of the weed management program, it should not be used as a sole management tool, as both have a negative impact on the phenological parameters of maize which subsequently affected the final yield and must be integrated and supplemented with other control methods. (author)

  4. Plant Nutriomics in China: An Overview

    OpenAIRE

    YAN, XIAOLONG; WU, PING; LING, HONGQING; XU, GUOHUA; XU, FANGSEN; ZHANG, QIFA

    2006-01-01

    • Background Population and environmental pressure have imposed a great challenge on agriculture in China to explore innovative and effective solutions to its pressing plant nutritional problems. Plant nutriomics is a new frontier in plant biology that can provide innovative solutions for improving plant nutrient efficiency, thus increasing crop productivity through genetic and molecular approaches.

  5. The effect of different crop plant densities on radiation absorption and use efficiency by corn (Zea mays L. and bean (Phaseolus vulgaris L. intercropped canopy

    Directory of Open Access Journals (Sweden)

    L. Rostami

    2016-05-01

    Full Text Available In order to determinate the effects of plant densities in intercropped corn (Zea mays L. and bean (Phaseolus vulgaris L. on radiation absorption and use efficiency, an experiment was conducted at the Agricultural Research Station, Ferdowsi University of Mashhad, Iran during growing season of 2007-2008. This experiment was conducted in low input system. A randomized complete block design with three replications was used. Treatments were included bean intercropping with corn in normal density of bean plus 10%, 20% and 30% excess bean C (B+10%, C (B+20%, C (B+30%, increasing in density bean intercropping with corn in normal density of corn plus 10%, 20% and 30% excess corn B (C+10%, B (C+20%, B (C+30% and sole crops of corn (C and bean (B. Results indicated that leaf area index, radiation absorption, total dry matter and radiation use efficiency of corn increased in all intercropped treatments compared to sole cropping, but it reversed for bean. It seems that complementary and facilitative effects of intercropping were more for corn. Range of corn and bean radiation use efficiency was from 1.92 g.MJ-1 (in sole cropping and 0.72 g.MJ-1 {in (C+30% (B+30%} to 2.30 g.MJ-1 {in C (B+30%} and 1.45 g.MJ-1 (in sole cropping, respectively.

  6. Site selection and evaluation for nuclear power plants with respect to population distribution

    International Nuclear Information System (INIS)

    1980-01-01

    This safety guide, relating population distribution to site selection and evaluation, for nuclear power plants, forms part of the IAEA's programme, referred to as the NUSS programme (Nuclear Safety Standards). The guide presents population distribution data, requirements, examples of site screening methods, and an overview of radiological impact assessment with respect to population distribution

  7. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    Energy Technology Data Exchange (ETDEWEB)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan, E-mail: yjin@udel.edu [University of Delaware, Department of Plant and Soil Sciences (United States)

    2016-10-15

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant–bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant–bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.Graphical Abstract.

  8. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

    International Nuclear Information System (INIS)

    Doody, Michael A.; Wang, Dengjun; Bais, Harsh P.; Jin, Yan

    2016-01-01

    As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 ± 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant–bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant–bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.Graphical Abstract

  9. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    Science.gov (United States)

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  10. Applications of 15N-isotopic dilution techniques to study the recovery of nitrogen fertilizer in the soil and plant uptake in wheat cropping system

    International Nuclear Information System (INIS)

    Rouanet, Juan Luis; Godoy, Alejandra; Montenegro, Adolfo; Mera, Mario; Uribe, Hamil; Pino, Ines; Parada, Ana Maria; Nario, Adriana

    1999-01-01

    Soil erosion is a major concern of the Chilean Ministry of Agriculture, which supports actions to develop new approaches in order to decrease the loss of this fragile natural resource and to promote sustainable production systems. This study, based on the management of biological, chemical and physical characteristics of the soil, was aimed to save nitrogen fertilizer. Nitrogen fertilization is the most costly production factor in wheat cropping systems on Ultisols, one of the most eroded soil types in southern Chile. A field experiment was undertaken on a Ultisol (''Buenos Aires'' Farm) at Imperial, IX Region, during 1997 and 1998, in order to assess the nitrogen and water use efficiency by a wheat crop (cv. Dalcahue-INIA) under alternative soil tillage systems. 15 N-isotopic dilution techniques allowed determining aspects of plant nutrition, nitrogen and water movement in the soil, processes not evaluated so far under these conditions. A strip-plot field layout with four replications was used , with soil tillage systems (traditional, burning/no-till, and no burning/no-till) as the main plots and crop successions (wheat-lupin-wheat and lupin-wheat-oat) as the subplots (30 m-2). In each subplot, a microplot (1m-2 ) was delimited. N fertilizer in the form of urea was added on subplots, except the microplot, at the rate of 150 kg N ha-1. 15N-labelled urea at c. 10 atom % excess, at the rate of 150 kg N ha-1, was added to the microplots. The fertilizer was split three times, 10% at planting, 45% at tillering and 45% jointing stage. No significant differences were found for wheat grain yield among tillage treatments. N fertilizer recovery by the wheat crop was 43%, and 56% on the nitrogen found in plants was derived from soil. No significant differences for these proportions were found among treatments. Although the wheat crop did not respond to tillage treatments in terms of 15N recovery, the physiological nitrogen use efficiency, or grain production per unit of

  11. Use of the antiozonant ethylenediurea (EDU) in Italy: verification of the effects of ambient ozone on crop plants and trees and investigation of EDU's mode of action.

    Science.gov (United States)

    Paoletti, Elena; Contran, Nicla; Manning, William J; Ferrara, Anna M

    2009-05-01

    Twenty-four experiments where EDU was used to protect plants from ozone (O(3)) in Italy are reviewed. Doses of 150 and 450 ppm EDU at 2-3 week intervals were successfully applied to alleviate O(3)-caused visible injury and growth reductions in crop and forest species respectively. EDU was mainly applied as soil drench to crops and by stem injection or infusion into trees. Visible injury was delayed and reduced but not completely. In investigations on mode of action, EDU was quickly (8 days), as it cannot move via phloem. EDU did not enter cells, suggesting it does not directly affect cell metabolism. EDU delayed senescence, did not affect photosynthesis and foliar nitrogen content, and stimulated antioxidant responses to O(3) exposure. Preliminary results suggest developing an effective soil application method for forest trees is warranted.

  12. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  13. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  14. Socio environmental policy and populational resettlement in hydropower plants

    International Nuclear Information System (INIS)

    Regini Nuti, Mirian; Feitosa Garcia, Marcia

    2003-01-01

    This paper aims to discuss the resettlement process caused by hydropower plants considering the Brazilian Power Sector ongoing context It is based on the analysis of the hydropower plants that started operation phase in the last tem years There are 17 projects provoking the displacement of 21000 families The paper presents the resettlement modalities used in these projects Finally, the main aspects of the resettlement process in the last decade are focused in order to contribute to the Brazilian Power Sector Resettlement Guidelines improvement and actualization

  15. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.

    Science.gov (United States)

    Cocking, Edward C; Stone, Philip J; Davey, Michael R

    2005-09-01

    It has been forecast that the challenge of meeting increased food demand and protecting environmental quality will be won or lost in maize, rice and wheat cropping systems, and that the problem of environmental nitrogen enrichment is most likely to be solved by substituting synthetic nitrogen fertilizers by the creation of cereal crops that are able to fix nitrogen symbiotically as legumes do. In legumes, rhizobia present intracellularly in membrane-bound vesicular compartments in the cytoplasm of nodule cells fix nitrogen endosymbiotically. Within these symbiosomes, membrane-bound vesicular compartments, rhizobia are supplied with energy derived from plant photosynthates and in return supply the plant with biologically fixed nitrogen, usually as ammonia. This minimizes or eliminates the need for inputs of synthetic nitrogen fertilizers. Recently we have demonstrated, using novel inoculation conditions with very low numbers of bacteria, that cells of root meristems of maize, rice, wheat and other major non-legume crops, such as oilseed rape and tomato, can be intracellularly colonized by the non-rhizobial, non-nodulating, nitrogen fixing bacterium,Gluconacetobacter diazotrophicus that naturally occurs in sugarcane.G. diazotrophicus expressing nitrogen fixing (nifH) genes is present in symbiosome-like compartments in the cytoplasm of cells of the root meristems of the target cereals and non-legume crop species, somewhat similar to the intracellular symbiosome colonization of legume nodule cells by rhizobia. To obtain an indication of the likelihood of adequate growth and yield, of maize for example, with reduced inputs of synthetic nitrogen fertilizers, we are currently determining the extent to which nitrogen fixation, as assessed using various methods, is correlated with the extent of systemic intracellular colonization byG. diazotrophicus, with minimal or zero inputs.

  16. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication. Refs, figs, tabs.

  17. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication

  18. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis.

    Science.gov (United States)

    Bogaert, Florent; Chesnais, Quentin; Catterou, Manuella; Rambaud, Caroline; Doury, Géraldine; Ameline, Arnaud

    2017-08-01

    The use of nitrogen fertiliser in agrosystems can alter plant nitrogen and consequently improve nutrient availability for herbivores, potentially leading to better performance for herbivores and higher pest pressure in the field. We compared, in laboratory conditions, the effects of nitrogen fertilisation on a promising biomass crop, Miscanthus × giganteus, and its parents M. sinensis and M. sacchariflorus. The plant-mediated effects were compared on the second trophic level, the green corn leaf aphid Rhopalosiphum maidis. Results showed that the biomass and leaf C:N ratio of M. sinensis plants treated with nitrogen fertiliser were significantly greater than those of non-treated plants. As regards M. × giganteus and M. sacchariflorus, the only reported change was a significantly smaller leaf C:N ratio for treated M. sacchariflorus compared with non-treated plants. Surprisingly, nitrogen fertilisation had opposite effects on plant-herbivore interactions. Following nitrogen treatments, M. sinensis was less suitable in terms of intrinsic rate of increase for R. maidis, the feeding behaviour of which was negatively affected, while M. sacchariflorus and M. × giganteus exhibited greater suitability in terms of aphid weight. Nitrogen fertilisation had contrasting effects on the three species of Miscanthus plants. These effects cascaded up to the second trophic level, R. maidis aphid pests, either through a modification of their weight or demographic parameters. The implications of these results were discussed in the context of agricultural sustainability and intensive production practices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.

    Science.gov (United States)

    Moshelion, Menachem; Halperin, Ofer; Wallach, Rony; Oren, Ram; Way, Danielle A

    2015-09-01

    The global shortage of fresh water is one of our most severe agricultural problems, leading to dry and saline lands that reduce plant growth and crop yield. Here we review recent work highlighting the molecular mechanisms allowing some plant species and genotypes to maintain productivity under water stress conditions, and suggest molecular modifications to equip plants for greater production in water-limited environments. Aquaporins (AQPs) are thought to be the main transporters of water, small and uncharged solutes, and CO2 through plant cell membranes, thus linking leaf CO2 uptake from the intercellular airspaces to the chloroplas