Sample records for critical rotational speeds

  1. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards. (United States)

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe


    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.

  2. The Shapes of Teeth of Circular Saw Blade and Their Influence on its Critical Rotational Speed

    Directory of Open Access Journals (Sweden)

    Adam Droba


    Full Text Available The main problems during cutting with circular saw blade are inaccurate cut, low quality of surface, high level of noise. These adverse effects are related to oscillation of circular saw blade. This oscillation cause adverse effects not only on workpiece but also on tool. In some case the circular saw blade reaches the value of critical rotational speed which leads to its instability and cause the oscillation of blade which may leads to destruction of tool. So the reduction of the amplitude of oscillation is essential for removing the adverse effects. This paper deals about influence of shapes of teeth as a type of modification that has positive effect oncritical rotational speed of circular saw blade. The parameters of studied models of circular saw blade were 42 number of teeth and the height of teeth with slice from sintered carbide was 14 mm. The variable parameter was the ratio between surface of teeth and surface of teeth gap. In this study was used computer software Creo Parametric 1.0 for obtaining natural frequencies of studied models. This software uses in analysis finite element method (FEM. There were done some steps to idealize the models. For calculating static and dynamics natural frequencies of modelswere used modal analysis. The critical rotational speed was calculated from obtained results by Creo Parametric 1.0 and compared on 5 models of tool.

  3. Controllable High-Speed Rotation of Nanowires (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.


    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  4. Dynamic of Friction Coupling Independently Rotating Wheels for High Speed

    Directory of Open Access Journals (Sweden)

    Yan Shi


    Full Text Available A new lateral coupling structure with independently rotating wheels (IRW is proposed, and longitudinal creepage is obtained by replacing the gear pair with the friction pair to synchronize the rotation speed of left and right wheels. The auxiliary wheelset made up of two friction wheels can be placed either under the primary suspension or on the frame. Vehicles dynamics models with three different kinds of bogies are developed, including friction coupling bogie with independently rotating wheels (FCIRW-bogie, bogie with independently rotating wheels (IRW-bogie, and bogie with rigid wheelsets, and their guiding and resetting capability when negotiating large-radius curves are compared and analyzed. Results show that FCIRW has the advantages of both IRW and rigid wheelset. On the straight track, FCIRW has sufficient wheel-rail longitudinal creep force to assist the reset; its critical speed is much higher than that of the rigid wheelset. On the curved track, the whole vehicle wear power of FCIRW-bogie vehicle is about 2/3 of the rigid axle level.

  5. Measuring Speed Of Rotation With Two Brushless Resolvers (United States)

    Howard, David E.


    Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.

  6. A novel method for sensing rotational speed, linear displacement ...

    Indian Academy of Sciences (India)


    We further demonstrate that such HTSC based magnetic sensors are capable of sensing the rotational speed, small displacement and direct current with good resolution. The experimental methods and results obtained are discussed. Keywords. Magnetic sensor; superconductor; rotational speed sensor; displacement ...

  7. Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine

    Directory of Open Access Journals (Sweden)

    Morgan Rossander


    Full Text Available A critical speed controller for avoiding a certain rotational speed is presented. The controller is useful for variable speed wind turbines with a natural frequency in the operating range. The controller has been simulated, implemented and tested on an open site 12 kW vertical axis wind turbine prototype. The controller is based on an adaptation of the optimum torque control. Two lookup tables and a simple state machine provide the control logic of the controller. The controller requires low computational resources, and no wind speed measurement is needed. The results suggest that the controller is a feasible method for critical speed control. The skipping behavior can be adjusted using only two parameters. While tested on a vertical axis wind turbine, it may be used on any variable speed turbine with the control of generator power.

  8. Rotating mandrel speeds assembly of plastic inflatables (United States)

    Mac Fadden, J. A.; Stenlund, S. J.; Wendt, A. J.


    Rotating mandrel permits the accurate cutting, forming, and sealing of plastic gores for assembly of an inflatable surface of revolution. The gores remain on the mandrel until the final seam is reached. Tolerances are tightly controlled by the mandrel configuration.

  9. Prediction Of Limit Rotational Speeds In A High-Speed Tool Bason FE Computed J-Integral Intensitiesed

    DEFF Research Database (Denmark)

    Hvejsel, Bjørn; Langmack, Lasse; Kristensen, Anders


    In order to obtain an estimate of the critical number of rotations for a high speed milling tool crack growth analysis has been performed. The crack growth is determined from stress intensities computed by J-integrals. The problem is solved in 3D using ANSYS. Boundary conditions arising from a co...


    Directory of Open Access Journals (Sweden)

    Mocanu Mihaela


    Full Text Available The present paper starts out from the challenge regarding auditor tenure launched in 2010 by the Green Paper of the European Commission Audit Policy: Lessons from the Crisis. According to this document, the European Commission speaks both in favor of the mandatory rotation of the audit firm, and in favor of the mandatory rotation of audit partners. Rotation is considered a solution to mitigate threats to independence generated by familiarity, intimidation and self-interest in the context of a long-term audit-client relationship. At international level, there are several studies on auditor rotation, both empirical (e.g. Lu and Sivaramakrishnan, 2009, Li, 2010, Kaplan and Mauldin, 2008, Jackson et al., 2008 and normative in nature (e.g. Marten et al., 2007, Muller, 2006 and Gelter, 2004. The objective of the present paper is to perform a critical and comparative analysis of the regulations on internal and external rotation in force at international level, in the European Union and in the United States of America. Moreover, arguments both in favor and against mandatory rotation are brought into discussion. With regard to the research design, the paper has a normative approach. The main findings are first of all that by comparison, all regulatory authorities require internal rotation at least in the case of public interest entities, while the external rotation is not in the focus of the regulators. In general, the most strict and detailed requirements are those issued by the Securities and Exchange Commission from the United States of America. Second of all, in favor of mandatory rotation speaks the fact that the auditor becomes less resilient in case of divergence of opinions between him and company management, less stimulated to follow his own interest, and more scrupulous in conducting the audit. However, mandatory rotation may also have negative consequences, thus the debate on the opportunity of this regulatory measure remains open-ended.

  11. Effect of rotational speed in rotary hammer forging process

    Directory of Open Access Journals (Sweden)

    Hamdy Muhammad M


    Full Text Available Rotary press forging (RPF has been used in the last century, but it produces many defects in the forgings. The author has invented the rotary hammer forging (RHF process to reduce such defects. RHF is a multi-axes compression process where the material is partially and incrementally deformed by the action of several repeated hammering blows, while the produced deformation region is swept through the whole area of the workpiece. The aim of the present work is to study the effects of rotational speed on the forgings produced by RPF and RHF to compare between the two processes. It has been found that as the rotational speed increases the mushroom effect is constant in RHF while it is greater and increases in RPF. As the rotational speed increases, the twist angle increases in both RHF and RPF, but it is bigger in RPF. These results demonstrate the benefits of using RHF instead of RPF.

  12. Design principles of a rotating medium speed mechanism (United States)

    Hostenkamp, R. G.; Achtermann, E.; Bentall, R. H.


    Design principles of a medium speed mechanism (MSM) are presented, including discussion on the relative merits of beryllium and aluminium as structural materials. Rotating at a speed of 60 rpm, the application envisaged for the MSM was as a despin bearing for the despun platform or despun antenna of a spin stabilized satellite. The MSM was built and tested to qualification level and is currently undergoing real time life testing.

  13. Research of rotating machinery vibration parameters - Shaft speed relationship (United States)

    Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.


    The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.

  14. Unsteady flow simulations of Pelton turbine at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Minsuk Choi


    Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.

  15. Research on motor rotational speed measurement in regenerative braking system of electric vehicle (United States)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua


    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  16. Composite reinforced metallic cylinder for high speed rotation (United States)

    Pradhan, Sahadev


    The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby improve the separation performance in a centrifugal gas separation processes through proper optimization of the internal parameters. According to Dirac equation (Cohen (1951)), the maximum separative work for a centrifugal gas separation process increase with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading. A detailed analysis is carried out to underline the basic hypothesis of each formulation. Further, we evaluate the steady state creep response of the rotating cylinder and analyze the stresses and strain rates in the cylinder.

  17. Pervasive Investigations of Critical Speed over Weight and Deflection Factors of Shaft Assembly in CNC Ball Screw System

    Directory of Open Access Journals (Sweden)

    Kuldeep Verma


    Full Text Available The demand for higher productivity requires machine tools to work on the adequate critical speed to have faster and more accurate ball screw system. Ball screw affects severely over the higher rotation speed of the shaft in computer numeric control (CNC machining centers. This paper deals with an approach to calculate the initial critical speed of the shaft. Critical speed requires significant attention due to its major use in the manufacturing sectors. The impacts of weight on the critical speed of shaft assembly have been analyzed from theoretical as well as analytical investigations. Additionally, we evaluated the impact of weight on the deflection of the shafts along with failure analysis of shafts with respect to critical speed. Further, we computed the results for critical speed based factor to enhance the accuracy of CNC machining centers. Finally, the analytical estimations have been carried out to prove the validity of our proposal.

  18. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions (United States)

    Wang, Yi; Xu, Guanghua; Zhang, Qing; Liu, Dan; Jiang, Kuosheng


    During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications significantly. In order to extend the conventional diagnosis technique to speed variation cases, a rotating speed isolation method is proposed. This method consists of four main steps: (a) a low-pass filter is used to separate the rotating speed components and the resonance frequency band from the original signal; (b) the trend line of instantaneous rotating frequency (IRF) is extracted by ridge detection from the short-time spectrum of the low-pass filtered signal; (c) the envelope signal is obtained by fast kurtogram based resonance demodulation; (d) the trend line of instantaneous fault characteristic frequency (IFCF) is extracted by ridge detection from the short-time spectrum of the envelope signal; (e) the rotating speed is isolated and the instantaneous fault characteristic order (FCO), which is obtained by simply dividing the IFCF by IRF, can be used to identify the fault type. By rotating speed isolation, the bearing faults under speed variation conditions can be detected without additional tachometers. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals. The results show that the proposed method outperforms the conventional envelope analysis method and is effective in bearing diagnosis under speed variation conditions.

  19. High-speed rotational angioplasty-induced echo contrast in vivo and in vitro optical analysis. (United States)

    Zotz, R J; Erbel, R; Philipp, A; Judt, A; Wagner, H; Lauterborn, W; Meyer, J


    High-speed rotational angioplasty is being evaluated as an alternative interventional device for the endovascular treatment of chronic coronary occlusions. It has been postulated that this type of angioplasty device may produce particulate debris or cavitations that induce myocardial ischemia. To determine the clinical presence of myocardial ischemia during rotational angioplasty, echocardiographic monitoring for wall motion abnormalities was performed in 9 patients undergoing rotational atheroablation using the Auth Rotablator for 10-sec intervals at 150,000 and 170,000 rpm. No wall motion abnormalities were detected in 5 patients evaluated with transesophageal echocardiography or in 4 patients monitored transthoracically, although AV block developed in one patient. Video intensitometry of the myocardial contrast effect for rotation times ranging from 3 to 20 sec found transient contrast enhancement of the myocardium supplied by the treated vessel. Intensity varied over time with half-time decay between 5.6 and 40 sec, indicating the likelihood of microcavitation. An in vitro model was constructed to measure the cavitation potential of the Auth Rotablator. A burr of 1.25 mm diameter rotating at 160,000 rpm achieves a velocity in excess of the 14.7 m/sec critical cavitation velocity. Testing the device in fresh human blood and distilled water produced microcavitations responsible for the enhanced echo effect, with the intensity and longevity of cavitation more pronounced in blood and proportional to the rotation time and speed. The mean size of the microcavitation bubbles in water was 90 +/- 33 (52-145) microns measured from photographs taken with a copper vapour laser emitting light pulses of 50 nsec duration as light source. The mean velocity of bubbles was found to be 0.62 +/- 0.30 ranging from 0.23 to 1.04 m/sec. It was measured via the motion of the bubbles during 5 laser pulses within 800 nsec. Clearly, microcavitations are associated with enhanced myocardial

  20. Critical speed as a predictor of aerobic performance in children

    National Research Council Canada - National Science Library

    Wagner de Campos; Rodrigo Bozza; Anderson Zampier Ulbrich; Antonio Stabelini Neto; Italo Quenni Araujo de Vasconcelos; Luís Paulo Gomes Mascarenhas


    To compare times achieved in a 1,600m rural road run with the times predicted from critical speed, in additionto verify any association between critical speed and VO2max with the aerobic performance (1,600m time) of children...

  1. Does a critical speed for railroad vehicles exist?

    DEFF Research Database (Denmark)

    True, Hans


    The author discusses the definition and existence of a critical speed for the onset of hunting of railroad vehicles. First the field test situation is described. It is argued that the important problem is the determination of the forces and accelerations in the vehicle and the rails, which may...... be large even when the vehicle does not hunt. Next the author discusses the relevance of the critical speed in railway engineering. It is desirable to know the speed below which a vehicle will not hunt, since hunting is always connected with large wheel-rail forces. Next the modelling of railroad vehicles...... is discussed and the nonlinear aspects are emphasized. The author explains why it is necessary to reformulate the mathematical problem for calculation of the critical speed due to the nonlinear character of the modelling. It is suggested that another critical speed be defined for a railroad vehicle. It can...

  2. Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®

    Directory of Open Access Journals (Sweden)

    Nancy Obregon


    Full Text Available Polycaprolactone (PCL fibers were produced using Forcespinning® (FS. The effects of PCL concentration, solvent mixture, and the spinneret rotational speed on fiber formation were evaluated. The concentration of the polymer in the solvents was a critical determinant of the solution viscosity. Lower PCL concentrations resulted in low solution viscosities with a correspondingly low fiber production rate with many beads. Bead-free fibers with high production rate and uniform fiber diameter distribution were obtained from the optimum PCL concentration (i.e., 12.5 wt% with tetrahydrofuran (THF as the solvent. The addition of N, N-dimethylformamide (DMF to the THF solvent promoted the gradual formation of beads, split fibers, and generally affected the distribution of fiber diameters. The crystallinity of PCL fibers was also affected by the processing conditions, spinning speed, and solvent mixture.

  3. Critical Speed Measurements in the Tevatron Cold Compressors (United States)

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W. M.


    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  4. Self-mixing interferometry for rotational speed measurement of servo drives. (United States)

    Sun, Hui; Liu, Ji-Gou; Zhang, Quan; Kennel, Ralph


    Self-mixing interferometry (SMI) is an efficient technique applied to measure distance, velocity, displacement, and vibration. In this work, a compact and low cost SMI is applied to measure the rotational speed of a servo drive up to 6000 RPM. The application of SMI to rotational speed measurement of servo drives instead of the usage of incremental encoders is proposed. The Doppler frequency is obtained via analysis on the power spectral density, which is estimated by the smoothing periodogram method based on the fast Fourier transformation. The signals are processed in MATLAB and LABVIEW, showing that the SMI can be applied to dynamic rotational speed measurement of servo drives. Results of experiments demonstrate that this system is implementable for rotational speed measurement over the whole range from 3 RPM to 6000 RPM. In addition, the system used to measure rotational speed can also accurately record changes in position without integrating the velocity.

  5. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio


    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  6. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.

    Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy


    Directory of Open Access Journals (Sweden)

    Tomasz Jachowicz


    Full Text Available This paper presents the rotational molding process. The general principles of this polymer processing technology have been described. The main applications have been introduced and leading advantages and typical disadvantages of rotational molding process have been discussed. Based on the conducted experimental tests, the influence of changing one selected technological parameter, which characterized rotational molding process, on selected geometrical features of the polymer cast has been determined. Rotational mold’s speed around axes was changed and a thickness of cast walls has been measured. Laboratory test stand, processing properties of polymer, also test program and experimental test methodology have been described.

  8. Rotational speed invariant fault diagnosis in bearings using vibration signal imaging and local binary patterns. (United States)

    Khan, Sheraz Ali; Kim, Jong-Myon


    Structural vibrations of bearing housings are used for diagnosing fault conditions in bearings, primarily by searching for characteristic fault frequencies in the envelope power spectrum of the vibration signal. The fault frequencies depend on the non-stationary angular speed of the rotating shaft. This paper explores an imaging-based approach to achieve rotational speed independence. Cycle length segments of the rectified vibration signal are stacked to construct grayscale images which exhibit unique textures for each fault. These textures show insignificant variation with the rotational speed, which is confirmed by the classification results using their local binary pattern histograms.

  9. Evaluation of the lubrication mechanism at various rotation speeds and granule filling levels in a container mixer using a thermal effusivity sensor. (United States)

    Uchiyama, Jumpei; Aoki, Shigeru


    To research the detailed mechanism of the lubrication process using the thermal effusivity sensor, the relationships of the lubrication progress with the pattern of powder flow, the rotation speed and the filling level were investigated. The thermal effusivity profile was studied as a function of the number of rotations at various rotation speeds. It was observed that at lower rotation speeds, the profiles of the lubrication progress were almost the same, regardless of the rotation speed. In this region, the highest speed was defined as the critical rotation speed (CRS), which was found to be one of the important factors. The CRS had close relations with avalanche flow in the blender. The first and the second phases were observed in the lubrication process. The first phase was influenced by the CRS and the filling level in the blender. The second phase was influenced by the rotation speed. The mechanism of two-phase process was proposed as a macro progression of the dispersion of the lubricant (first phase) and micro progression of the coating of the powder particles with lubricant (second phase). The accurate monitoring by the thermal effusivity sensor was able to help a better understanding in the lubrication process.

  10. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction


    Huang, J.W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S.N.


    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250?350?ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion o...

  11. Numerical Investigation on a Prototype Centrifugal Pump Subjected to Fluctuating Rotational Speed

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zhang


    Full Text Available The rotational speed of pumps often encounters fluctuation in engineering for some reasons. In this paper, in order to study the transient response characteristic of a prototype centrifugal pump subjected to fluctuating rotational speed, a closed-loop pipe system including the pump is built to accomplish unsteady flow calculations in which the boundary conditions at the inlet and the outlet of the pump are not required to be set. The external performance results show that the head’s responsiveness to the fluctuating rotational speed is very good, while the flow rate’s responsiveness is slightly delayed. The variation tendencies of the static pressures at the inlet and the outlet of the pump are almost completely opposite, wherein the variation tendency of the static pressure at the outlet is identical with that of the rotational speed. The intensity of the turbulence energy in each impeller channel is relatively uniform in the transient flow calculations, while, in the quasi-steady flow calculation, it becomes weaker in a channel closed to the volute tongue. The nondimensional flow rate and head coefficients are dependent on the rotational speed, and their variation tendencies are opposite to that of the fluctuating rotational speed as a whole.

  12. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction. (United States)

    Huang, J W; E, J C; Huang, J Y; Sun, T; Fezzaa, K; Luo, S N


    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250-350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real time via simultaneous imaging and diffraction.

  13. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J. W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S. N.


    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250–350 ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters,i.e.instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion of crystals, including translation and rotation, can be tracked in real timeviasimultaneous imaging and diffraction.

  14. Critical rotation of general-relativistic polytropic models revisited (United States)

    Geroyannis, V.; Karageorgopoulos, V.


    We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.

  15. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude


    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  16. A Soft Sensor Development for the Rotational Speed Measurement of an Electric Propeller

    Directory of Open Access Journals (Sweden)

    Fengchao Ye


    Full Text Available In recent decades, micro air vehicles driven by electric propellers have become a hot topic, and developed quickly. The performance of the vehicles depends on the rotational speed of propellers, thus, improving the accuracy of rotational speed measurement is beneficial to the vehicle’s performance. This paper presents the development of a soft sensor for the rotational speed measurement of an electric propeller. An adaptive learning algorithm is derived for the soft sensor by using Popov hyperstability theory, based on which a one-step-delay adaptive learning algorithm is further proposed to solve the implementation problem of the soft sensor. It is important to note that only the input signal and the commutation instant of the motor are employed as inputs in the algorithm, which makes it possible to be easily implemented in real-time. The experimental test results have demonstrated the learning performance and the accuracy of the soft sensor.

  17. A Review on the Linear and Nonlinear Critical Speeds

    DEFF Research Database (Denmark)

    True, Hans


    values with a reasonable accuracy. In some cases the 'easier numerical methods' are really just a gamble. In this presentation the methods will be discussed. For this purpose linearisations of the nonlinear dynamical problem are made. A linearisation of the nonlinear dynamical problem simplifies......In recent years several authors have proposed 'easier numerical methods' to find multiple attractors and the critical speed in railway dynamical problems. Actually, the methods do function in some cases, but they are not safe in the sense that you will calculate the relevant critical parameter...

  18. The rotated speeded-up robust features algorithm (R-SURF)


    Jurgensen, Sean M.


    Approved for public release; distribution is unlimited Includes supplementary material Weaknesses in the Fast Hessian detector utilized by the speeded-up robust features (SURF) algorithm are examined in this research. We evaluate the SURF algorithm to identify possible areas for improvement in the performance. A proposed alternative to the SURF detector is proposed called rotated SURF (R-SURF). This method utilizes filters that are rotated 45 degrees counter-clockwise, and this modifica...

  19. Use of double correlation techniques for the improvement of rotation speed measurement based on electrostatic sensors (United States)

    Li, Lin; Wang, Xiaoxin; Hu, Hongli; Liu, Xiao


    Electrostatic sensing technology using correlation signal processing offers an approach to the measurement of rotational speed in the automatic control system of large generators and centrifugal machines. In this article, a double autocorrelation method was proposed to improve the accuracy and robustness of the measurement on the designed test rig. An electrostatic sensor was used to obtain signals from the rotor surface. Then, the rotational speed was determined from the period of rotational motion calculated from a double autocorrelation method. At the same time, experiments with sampling rates of 2ksps (kilo samples per second), 5ksps, 10ksps, 20ksps were carried out on a laboratory-scale test rig under a rotational speed range from 400 r min-1 to 4200 r min-1. The results show that the double autocorrelation method improves the accuracy and robustness. The measurement accuracy also improves with the sampling rate-the relative errors using 2ksps, 5ksps, 10ksps, and 20ksps are within 1.5%, 1%, 0.4%, and 0.3% respectively. The linearity of them is 1.47%, 0.61%, 0.28%, 0.17% correspondingly. The experiments also reveal that the measurement error has a tendency to increase with the rotational speed.

  20. Kinematics and critical swimming speed of juvenile scalloped hammerhead sharks (United States)



    Kinematics and critical swimming speed (Ucrit) of juvenile scalloped hammerhead sharks Sphyrna lewini were measured in a Brett-type flume (635 l). Kinematic parameters were also measured in sharks swimming in a large pond for comparison with those of sharks swimming in the flume. Sharks in the flume exhibited a mean Ucrit of 65±11 cm s-1 (± s.d.) or 1.17±0.21 body lengths per second (L s-1), which are similar to values for other species of sharks. In both the flume and pond, tailbeat frequency (TBF) and stride length (LS) increased linearly with increases in relative swimming speed (Urel=body lengths traveled per second). In the flume, tailbeat amplitude (TBA) decreased with increasing speed whereas TBA did not change with speed in the pond. Differences in TBF and LS between sharks swimming in the flume and the pond decreased with increases in Urel. Sharks swimming at slow speeds (e.g. 0.55 L s-1) in the pond had LS 19 % longer and TBF 21 % lower than sharks in the flume at the same Urel. This implies that sharks in the flume expended more energy while swimming at comparable velocities. Comparative measurements of swimming kinematics from sharks in the pond can be used to correct for effects of the flume on shark swimming kinematics and energetics.

  1. On the Resistance of the Air at High Speeds and on the Automatic Rotation of Projectiles (United States)

    Riabouchinski, D


    Here, the laws governing the flow of a compressible fluid through an opening in a thin wall are applied to the resistance of the air at high speeds, especially as applied to the automatic rotation of projectiles. The instability which we observe in projectiles shot into the air without being given a moment of rotation about their axis of symmetry, or without stabilizing planes, is a phenomenon of automatic rotation. It is noted that we can prevent this phenomenon of automatic rotation by bringing the center of gravity sufficiently near one end, or by fitting the projectile with stabilizing planes or a tail. The automatic rotation of projectiles is due to the suction produced by the systematic formation of vortices behind the extremity of the projectile moving with the wind.

  2. Diagnosis of traction electric motor at irregularity in speed of anchor rotation

    Directory of Open Access Journals (Sweden)

    D.V. Cyernyayev


    Full Text Available Purpose. To offer a complex diagnostic parameter (or system of parameters that would allow determining the fault of electric traction motor as well as electromagnetic and mechanical nature. Methodology. Technology transition to maintenance and repair of equipment in accordance with its actual condition are developed rapidly in the world practice in recent years. Control of equipment and forecasting of its technical condition with the use of non-destructive testing and diagnosis in-place methods is the basis of such technologies. In operation the reliability level of electrical machines including traction electric motor is very difficult to maintain. Analyzing failures of rolling stock, which arise from the operation, we can see that traction electric motors are the least reliable nodes. Diagnostics of traction electric motor at irregularity in speed of anchor rotation is proposed. A measurement device for irregularity in speed of anchor rotation was developed. Findings. An experimental research in order to determine the irregularity in speed of anchor armature shaft rotation and coupling of irregularity in speed of anchor rotation with traction electric motors nodes failures was executed. The experimental dependence of the waveform uneven rotation anchor for engines with different technical conditions. Originality. A method for diagnosis of traction electric motors at irregularity in speed of anchor armature shaft rotation was first proposed. This method after further improvement can be used at bench test of engines in their work without load and for the quality of the repair. Practical value. The device for detecting defects of the traction electric motor nodes as well as electromagnetic and mechanical nature without engine disassembly may be used for control of engine assembly after repair, and at testing of traction electric motor without load.

  3. Elasto-plastic deformation analysis of rotating disc beyond its limit speed

    Energy Technology Data Exchange (ETDEWEB)

    Ekhteraei Toussi, Hamid [Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Boulevard, Mashhad (Iran, Islamic Republic of); RezaeiFarimani, Mahdi, E-mail: [Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Boulevard, Mashhad (Iran, Islamic Republic of)


    The development of new materials is leading to the production of more speedy rotating discs. The knowledge of elastic-plastic response of rotating discs may be helpful in the manufacture and development of discs. Using two types of material properties including the Elastic Perfectly Plastic (EPP) and Ramberg-Osgood models, the concepts of failure and limit speed of discs are studied. Different steps of solution consisting of discretization and imaging process are expounded. The effect of different parameters including the cross section profiles and material properties upon the limit speed is investigated. The study includes the analysis of the post failure mechanical behavior of the discs. It is seen that the hardening exponent in the Ramberg-Osgood equation controls the sensitivity of disc expansion relative to the increase of its rotational speed. For the special case of a disc with uniform thickness, the index of sensitivity is connected to the exponent of the Ramberg-Osgood equation. - Highlights: Black-Right-Pointing-Pointer The paper emphasizes the importance of the plastic limit speed of the rotating discs. Black-Right-Pointing-Pointer Two material models of elastic perfectly plastic (EPP) and Ramberg-Osgood are used in the analyses. Black-Right-Pointing-Pointer The analysis shows the difference between the material models in the prediction of rotating disc plastic failure. Black-Right-Pointing-Pointer Among the discs with similar thickness at the internal and external radii, the limit speed of a disc with linear cross section is the most. Black-Right-Pointing-Pointer Based on Ramberg-Osgood model, at velocities higher than the limit speed, the expansion of disc is not abrupt.

  4. A reference Pelton turbine - High speed visualization in the rotating frame (United States)

    Solemslie, Bjørn W.; Dahlhaug, Ole G.


    To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.

  5. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria


    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  6. Study on the influence of the rotational speed of polishing disk on material removal in aspheric surface compliant polishing

    Directory of Open Access Journals (Sweden)

    Liyong Hu


    Full Text Available When a soft polishing tool is compressed on a stiff workpiece of curved surface, the contact area is a piece of the curved surface. In the process of aspheric surface polishing, the machining speed is always provided by the rotational speed of the spindle of a computer numerical control lathe. Yet, the polishing tool is usually made rotating to remove cutting scraps and broken abrasives from the contact area. The rotational speed of the polishing tool would change the distribution state of the relative speed in the whole contact area, and it would definitely change the volume of material removal in the surface of the workpiece. This article studies how the rotational speed of the polishing tool changes the distribution state of the relative speed in the whole contact area and material removal in the volume of the surface of the workpiece. The computing results show that the volume of material removal increases with the increase in both the rotational speed of polishing disk and the rotational speed of lathe spindle, but the polishing quality is totally not in this case.

  7. Critical speed as a predictor of aerobic performance in children

    Directory of Open Access Journals (Sweden)

    Wagner de Campos


    Full Text Available To compare times achieved in a 1,600m rural road run with the times predicted from critical speed, in additionto verify any association between critical speed and VO2max with the aerobic performance (1,600m time of children. The sample consisted of 25 boys and 39 girls, aged 9 to 11 years. Their critical speeds were determined using the work versus time model, performed in the 200m and 800m maximum runs. The value of VO2max was measured using a 20-meter shuttlerun test. Endurance performance was determinate from the time obtained in a rural 1,600m road run. Statistical proceduresused were descriptive analyses, Student’s t test and Pearson’s moment correlation, with signifi cance level set at p RESUMO O estudo teve como objetivo comparar o tempo obtido na prova de 1.600m com o tempo predito pela velocidade crítica, bem como verifi car a associação da velocidade crítica e da potência aeróbia (VO2máx com o desempenho aeróbio (tempo 1.600m em crianças. A amostra foi composta de 25 meninos e 39 meninas, com faixa etária entre 9 a 11 anos, classifi cadas nos estágios de maturação sexual 1 e 2 de Tanner. A velocidade crítica foi obtida pelo modelo de avaliação trabalho versus tempo, na realização de dois tiros máximos de 200m e 800m. O VO2máx foi obtido através do teste de vai-vem de 20m. O desempenho aeróbio foi obtido através do tempo de percurso em uma prova rústica de 1.600m. Utilizou-se a estatística descritiva, teste “t” student e a correlação de Pearson, adotando p<0,05. Em ambos os grupos, odesempenho obtido na prova de 1.600m foi significativamente menor que o desempenho predito pela velocidade crítica (masculino: 8,43 ± 0,78 min versus 10,16 ± 1,37 min; feminino: 9,09 ± 0,75 min versus 10,30 ± 1,09 min (p= 0,0001.Observaram-se correlações inversamente significativas entre a velocidade crítica e o desempenho aeróbio nos grupos masculino e feminino (r= -0,52 e r= -0,70, respectivamente, e entre o VO2m

  8. How Safe Is High-Speed Burring in Spine Surgery? An In Vitro Study on the Effect of Rotational Speed and Heat Generation in the Bovine Spine. (United States)

    Singh, Taran Singh Pall; Yusoff, Abdul Halim; Chian, Yap Keat


    In vitro animal cadaveric study. To identify the appropriate rotational speed and safe bone distance from neural tissue during bone burring in spinal surgery. Bone burring is a common step in spinal surgery. Unwanted frictional heat produced during bone burring may result in thermal injury to the bone and adjacent neural structure. One of the important parameters influencing the bone temperature rise during bone burring is rotational speed. This laboratory-based animal study used bovine spine bones, and the tests were conducted using a steel round burr. The bone temperature was measured simultaneously with thermocouple at the distances of 1 mm, 3 mm, and 5 mm from the burring site during the burring process. The bone burring was done with 4 different rotational speeds of 35,000 revolutions per minute (rpm), 45,000 rpm, 65,000 rpm, and 75,000 rpm. This study showed that increasing the rotational speed significantly elevated bone temperature. The threshold temperature of 47°C was reached when bone was burred for 10 seconds, with a rotational speed of 45,000 rpm. The mean bone temperature measured at a distance 1 mm from the burring site for all 4 rotational speeds was always higher than that measured at a distance of 3 mm and 5 mm and this difference was statistically significant (P 0.05). Taking 47°C as the threshold temperature for causing significant impairment to the regenerative capacity of bone, a rotational speed of lower than 45,000 rpm is preferable so as to minimize thermal injury to bone tissue. We also concluded that a 3-mm distance between the site of burring and the neural tissue is a safe distance. N/A.

  9. A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis (United States)

    Wang, Xiaoxian; Guo, Jie; Lu, Siliang; Shen, Changqing; He, Qingbo


    Diagnosis of motor bearing faults under variable speed is a problem. In this study, a new computer-vision-based order tracking method is proposed to address this problem. First, a video recorded by a high-speed camera is analyzed with the speeded-up robust feature extraction and matching algorithm to obtain the instantaneous rotating speed (IRS) of the motor. Subsequently, an audio signal recorded by a microphone is equi-angle resampled for order tracking in accordance with the IRS curve, through which the frequency-domain signal is transferred to an angular-domain one. The envelope order spectrum is then calculated to determine the fault characteristic order, and finally the bearing fault pattern is determined. The effectiveness and robustness of the proposed method are verified with two brushless direct-current motor test rigs, in which two defective bearings and a healthy bearing are tested separately. This study provides a new noninvasive measurement approach that simultaneously avoids the installation of a tachometer and overcomes the disadvantages of tacholess order tracking methods for motor bearing fault diagnosis under variable speed.

  10. Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance (United States)

    Kueh, T. C.; Beh, S. L.; Ooi, Y. S.; Rilling, D. G.


    Water vortex turbine utilizes the natural behaviour of water to form free surface vortex for energy extraction. This allows simple construction and ease of management on the whole water vortex power plant system. To our findings, the literature study specifically on water vortex turbine is inadequate and low efficiency was reported. Influences of operating speed and blade shape on turbine performance are the two parameters investigated in this study. Euler Turbomachinery Equation and velocity triangle are used in the improvement analysis. Two turbines with flat blades and curved blades are tested and compared. Both turbines show similar rotational speed at no load condition. This suggested that the circulation force of the water vortex has more dominant effect on the turbine rotational speed, compared to the turbine’s geometry. Flat-blades turbine showed maximum efficiency of 21.63% at 3.27 rad/s whereas curved-blades turbine showed 22.24% at 3.56 rad/s. When operating load is applied, the backward-leaning curve helps the turbine blades to reduce the disturbance on the water vortex, and hence provide a better performance.

  11. On the Speed of Rotation of the Isotropic Space (the Home of Photons) (United States)

    Rabounski, Dmitri


    This paper applies the mathematical method of chronometric invariants, which are physical observable quantities in the General Theory of Relativity (Zelmanov A.L., Soviet Physics Doklady, 1956, v.1, 227-230). The isotropic region of the four-dimensional space-time is considered. This is the home for massless light-like particles (e.g. photons). It is shown that the isotropic space rotates, at each its point, with a linear velocity equal to the velocity of light. Even if the problem is tackled in the simplified conditions of Special Relativity, the same result is obtained. It is shown that the light-speed rotation of the isotropic space has a purely geometrical origin due to the space-time metric, where time is presented as the fourth coordinate, expressed through the velocity of light. This presentation is dedicated to Hermann Minkowski, on the 100th anniversary of his ``Raum und Zeit''.

  12. Suitable Stimuli to Obtain (No) Gender Differences in the Speed of Cognitive Processes Involved in Mental Rotation (United States)

    Jansen-Osmann, Petra; Heil, Martin


    Gender differences in speed of perceptual comparison, of picture-plane mental rotation, and in switching costs between trials that do and do not require mental rotation, were investigated as a function of stimulus material with a total sample size of N=360. Alphanumeric characters, PMA symbols, animal drawings, polygons and 3D cube figures were…

  13. Magnetic field variation caused by rotational speed change in a magnetohydrodynamic dynamo. (United States)

    Miyagoshi, Takehiro; Hamano, Yozo


    We have performed numerical magnetohydrodynamic dynamo simulations in a spherical shell with rotational speed or length-of-day (LOD) variation, which is motivated by correlations between geomagnetic field and climatic variations with ice and non-ice ages. The results show that LOD variation leads to magnetic field variation whose amplitude is considerably larger than that of LOD variation. The heat flux at the outer sphere and the zonal flow also change. The mechanism of the magnetic field variation due to LOD variation is also found. The keys are changes of dynamo activity and Joule heating.

  14. A parametric approach for the estimation of the instantaneous speed of rotating machinery (United States)

    Rodopoulos, Konstantinos; Yiakopoulos, Christos; Antoniadis, Ioannis


    A parametric method is proposed for the estimation of the instantaneous speed of rotating machines. The method belongs typically to the class of eigenvalue based parametric signal processing methods. The major advantage of parametric methods over frequency domain or time-frequency domain based methods, is their increased resolution and their reduced computational cost. Moreover, advantages of eigenvalue based methods over other parametric methods include their robustness to noise. Sensitivity analysis for the key parameters of the proposed method is performed, including the sampling frequency, the signal length and the robustness to noise. The effectiveness of the method is demonstrated in vibration measurements from a test rig during start-up and run-down, as well as during variations of the speed of a motorcycle engine. Compared to the Hilbert Transform and to the Discrete Energy Separation Algorithm (DESA), the proposed approach exhibits a better behavior, while it simultaneously presents computational simplicity, being able to be implemented analytically, even online.

  15. Numerical study on the vortex motion patterns around a rotating circular cylinder and their critical characters (United States)

    Ling, Guo-Ping; Shih, Tsi-Min


    A hybrid finite difference and vortex method (HFDV), based on the domain decomposition method (DDM), is used for calculating the flow around a rotating circular cylinder at Reynolds number Re=1000, 200 and the angular-to-rectilinear speed ratio (0.5, 3.25) respectively. A fully implicit third-order eccentric finite difference scheme is adopted in the finite difference method, and the deduced large broad band sparse matrix equations are solved by a highly efficient modified incomplete LU decomposition conjugate gradient method (MILU-CG). The long-time, fully developed features about the variations of the vortex patterns in the wake, as well as the drag and lift forces on the cylinder, are given. The calculated streamline contours are in good agreement with the experimentally visualized flow pictures. The existence of the critical state is confirmed again, and the single side shed vortex pattern at the critical state is shown for the first time. Also, the optimized lift-to-drag force ratio is obtained near the critical state. Copyright

  16. Role of Strain-Hardening Law on the Bursting Speed of a Rotating Thin-Walled Shaft (United States)

    Güven, U.


    In the present work, the bursting speed of a rotating thin-walled shaft is considered. Under usual assumptions, the roles of modified Ludwik and Ramberg-Osgood stress-strain laws on the bursting speed are discussed. It can be seen from the present analysis that the strain hardening law plays a significant role.

  17. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum (United States)

    Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.


    Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.

  18. A critical analysis on the rotation barriers in butane. (United States)

    Mo, Yirong


    As a textbook prototype for the introduction of steric hindrance in organic chemistry, the elucidation of the butane rotation barriers is fundamental for structural theory, and requires a consistent theoretical model to differentiate the steric and electronic effects. Here we employed the BLW method to probe the electronic (hyperconjugative) interactions. Results show that although there are stronger hyperconjugative interactions in the staggered anti and gauche conformers than the eclipsed structures, the energy curve and barriers are dominated by the steric repulsion.

  19. Shoulder Rotator Muscle Dynamometry Characteristics: Side Asymmetry and Correlations with Ball-Throwing Speed in Adolescent Handball Players (United States)

    Pontaga, Inese; Zidens, Janis


    The aim of the investigation was to: 1) compare shoulder external/internal rotator muscles’ peak torques and average power values and their ratios in the dominant and non-dominant arm; 2) determine correlations between shoulder rotator muscles’ peak torques, average power and ball-throwing speed in handball players. Fourteen 14 to 15-year-old male athletes with injury-free shoulders participated in the study (body height: 176 ± 7 cm, body mass 63 ± 9 kg). The tests were carried out by an isokinetic dynamometer system in the shoulder internal and external rotation movements at angular velocities of 60°/s, 90°/s and 240°/s during concentric contractions. The eccentric external– concentric internal rotator muscle contractions were performed at the velocity of 90°/s. The player threw a ball at maximal speed keeping both feet on the floor. The speed was recorded with reflected light rays. Training in handball does not cause significant side asymmetry in shoulder external/internal rotator muscle peak torques or the average power ratio. Positive correlations between isokinetic characteristics of the shoulder internal and external rotator muscles and ball-throwing speed were determined. The power produced by internal rotator muscles during concentric contractions after eccentric contractions of external rotator muscles was significantly greater in the dominant than in the non-dominant arm. Thus, it may be concluded that the shoulder eccentric external/concentric internal rotator muscle power ratio is significantly greater than this ratio in the concentric contractions of these muscles. PMID:25414738

  20. Independently Rotating Wheels with Induction Motors for High-Speed Trains

    Directory of Open Access Journals (Sweden)

    B. Liang


    Full Text Available Railway vehicles with conventional wheelsets often experience problems of lateral instabilities or severe wear when running at high speed. The use of an independently rotating wheelset (IRW can potentially eliminate the cause of wheelset hunting and reduce wheel wear as the mechanical feedback mechanism causing the problem is decoupled. This paper presents an investigation into the design of a novel induction motor configuration and controller for IRW in order to provide the stability required to satisfy the performance requirements for railway vehicles. A computer model of the mechanical and electrical parts of the system was developed. Simulation and experiments of the wheelsets with active driving motor control have demonstrated that a wheelset with independently driven wheels has a good stability performance over a traditional wheelset. Controllers with indirect field orientation control for dynamic control of an induction motor have shown to be suitable for this application in both its response and its controllability.

  1. Accurate Extraction of the Self-Rotational Speed for Cells in an Electrokinetics Force Field by an Image Matching Algorithm

    Directory of Open Access Journals (Sweden)

    Xieliu Yang


    Full Text Available We present an image-matching-based automated algorithm capable of accurately determining the self-rotational speed of cancer cells in an optically-induced electrokinetics-based microfluidic chip. To automatically track a specific cell in a video featuring more than one cell, a background subtraction technique was used. To determine the rotational speeds of cells, a reference frame was automatically selected and curve fitting was performed to improve the stability and accuracy. Results show that the algorithm was able to accurately calculate the self-rotational speeds of cells up to ~150 rpm. In addition, the algorithm could be used to determine the motion trajectories of the cells. Potential applications for the developed algorithm include the differentiation of cell morphology and characterization of cell electrical properties.

  2. Characterization of gear faults in variable rotating speed using Hilbert-Huang Transform and instantaneous dimensionless frequency normalization (United States)

    Wu, T. Y.; Chen, J. C.; Wang, C. C.


    The objective of this research is to investigate the feasibility of utilizing the instantaneous dimensionless frequency (DLF) normalization and Hilbert-Huang Transform (HHT) to characterize the different gear faults in case of variable rotating speed. The normalized DLF of the vibration signals are calculated based on the rotating speed of shaft and the instantaneous frequencies of Intrinsic Mode Functions (IMFs) which are decomposed by Empirical Mode Decomposition (EMD) process. The faulty gear features on DLF-energy distribution of vibration signal can be extracted without the presence of shaft rotating speed, so that the proposed approach can be applied for characterizing the malfunctions of gearbox system under variable shaft rotating speed. A test rig of gear transmission system is performed to illustrate the gear faults, including worn tooth, broken tooth and gear unbalance. Different methods to determine the instantaneous frequency are employed to verify the consistence of characterization results. The DLF-energy distributions of vibration signals are investigated in different faulty gear conditions. The analysis results demonstrate the capability and effectiveness of the proposed approach for characterizing the gear malfunctions at the DLFs corresponding to the meshing frequency as well as the shaft rotating frequency. The support vector machine (SVM) is then employed to classify the vibration patterns of gear transmission system at different malfunctions. Using the energy distribution at the characteristic DLFs as the features, the different fault types of gear can be identified by SVM with high accuracy.

  3. LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009)

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, N.; Mikkelsen, Torben; Hansen, Kasper H.; Sjoeholm, M.; Harris, M.


    In the context of the increasing application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner-mounted wind lidar was tested during the SpinnerEx 2009 experiment. The objective was to install a QinetiQ (Natural Power) ZephIR lidar in the rotating spinner of a MW-sized wind turbine, and investigate the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50 Hz sampling rate were successfully obtained for approximately 60 days, during the measurement campaign lasting from April to August 2009. In this report, information is given regarding the experimental setup and the lidar's operation parameters. The geometrical model used for the reconstruction of the scanning pattern of the lidar is described. This model takes into account the lidar's pointing direction, the spinner axis's vertical tilt and the wind turbine's yaw relative to the mean wind speed direction. The data analysis processes are documented. A methodology for the calculation of the yaw misalignment of the wind turbine relative to the wind direction, as a function of various averaging times, is proposed, using the lidar's instantaneous line-of-sight radial wind speed measurements. Two different setups have been investigated in which the approaching wind field was measured at distances of 0.58 OE and 1.24 OE rotor diameters upwind, respectively. For both setups, the instantaneous yaw misalignment of the turbine has been estimated from the lidar measurements. Data from an adjacent meteorological mast as well as data logged within the wind turbine's control system were used to evaluate the results. (author)

  4. Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy

    Directory of Open Access Journals (Sweden)

    Ugender Singarapu


    Full Text Available In this investigation, the effect of friction stir welding (FSW parameters such as tool material rotational speed, and welding speed on the mechanical properties of tensile strength, hardness and impact energy of magnesium alloy AZ31B was studied. The experiments were carried out as per Taguchi parametric design concepts and an L9 orthogonal array was used to study the influence of various combinations of process parameters. Statistical optimization technique, ANOVA, was used to determine the optimum levels and to find the significance of each process parameter. The results indicate that rotational speed (RS and traverse speed (TS are the most significant factors, followed by tool material (TM, in deciding the mechanical properties of friction stir processed magnesium alloy. In addition, mathematical models were developed to establish relationship between different process variables and mechanical properties.

  5. The effect of dissolution medium, rotation speed and compaction pressure on the intrinsic dissolution rate of amlodipine besylate, using the rotating disk method

    Directory of Open Access Journals (Sweden)

    Leandro Giorgetti


    Full Text Available The aim of this study was to evaluate the effect of dissolution medium, rotation speed and compaction pressure on the intrinsic dissolution rate (IDR of the antihypertensive drug amlodipine besylate, using the rotating disk method. Accordingly, a fractional factorial design (33-1 was used, employing dissolution media (water, phosphate buffer pH 6.8 and HCl 0.1 M, rotation speed (50, 75 and 100 rpm, and compaction pressure (1000, 1500 and 2000 psi as independent variables. The assays were randomized and statistically compared using the Statistica(r 11 software program. Significance testing (ANOVA indicated that the dissolution medium had a considerable impact on the IDR of amlodipine besylate. Analysis of the linear and quadratic components of the variables led to the proposition of a mathematical model that describes the IDR as a function of the parameters studied. Conversely, the levels of compaction pressure and rotation speed employed during experimental planning were less relevant, especially when the assay was conducted in the HCl 0.1 M medium.

  6. Experiment of Critical Swimming Speed of Fingerling Masu Salmon (Oncorhynchus masou masou) Using River Water (United States)

    Izumi, Mattashi; Kato, Koh

    The authors conducted a field swimming experiment using cultured masu salmon (Oncorhynchus masou masou) fingerlings in order to study their critical swimming speed during their release into the river in the Iwaki River diversion weir. The experimental equipment was a small, rectangular cross-section channel, which was installed in a local riverbed at the fishway. The experiment was conducted using an average cross-sectional water flow velocity of 17 to 92 cm·s-1, and using masu salmon fingerlings from 4.8 to 7.1 cm in the length. River water temperature was between 13.7 and 20.6 °C. The critical swimming speed measured over 60 minutes was between 16 and 41 cm·s-1 and a positive correlation was found between the critical swimming speed and body length. The critical swimming speed measured by body length (BL) was 3.5 to 6.9 times (that is, the distance travelled per second based on body length), and the mean critical swimming speed was 5.5 (with a standard deviation of 1.1). Results showed that water temperature differences in the experiment had no significant effect on the critical swimming speed measured over 60 minutes.

  7. Nonlinear Adaptive Rotational Speed Control Design and Experiment of the Propeller of an Electric Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng


    Full Text Available Micro Air Vehicles (MAVs driven by electric propellers are of interest for military and civilian applications. The rotational speed control of such electric propellers is an important factor for improving the flight performance of the vehicles, such as their positioning accuracy and stability. Therefore, this paper presents a nonlinear adaptive control scheme for the electric propulsion system of a certain MAV, which can not only speed up the convergence rates of adjustable parameters, but can also ensure the overall stability of the adjustable parameters. The significant improvement of the dynamic tracking accuracy of the rotational speed can be easily achieved through the combination of the proposed control algorithm and linear control methods. The experimental test results have also demonstrated the positive effect of the nonlinear adaptive control scheme on the flight performance of the MAV.

  8. Alignment of Electrospun Nanofibers and Prediction of Electrospinning Linear Speed Using a Rotating Jet

    Directory of Open Access Journals (Sweden)

    M. Khamforoush


    Full Text Available Anew and effective electrospinning method has been developed for producing aligned polymer nanofibers. The conventional electrospinning technique has been modified to fabricate nanofibers as uniaxially aligned array. The key to the success of this technique is the creation of a rotating jet by using a cylindrical collector in which the needle tip is located at its center. The unique advantage of this method among the current methods is the ability of apparatus to weave continuously nanofibers in uniaxially aligned form. Fibers produced by this method are well-aligned, with several meters in length, and can be spread over a large area. We have employed a voltage range of (6-16 kV, a collector diameter in the range of 20-50 cm and various concentrations of PAN solutions ranging from 15 wt% to 19 wt %. The electrospun nanofibers could be conveniently formed onto the surface of any thin substrate such as glass sampling plate for subsequent treatments and other applications. Therefore, the linear speed of electrospinning process is determined experimentally as a function of cylindrical collector diameter, polymer concentration and field potential  difference.

  9. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini


    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  10. Critical point of a rotating Bose–Einstein condensates in optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, Azza M., E-mail:; Soliman, Shemi S.M.; Hassan, Ahmed S.


    In this paper, we have considered the critical point (critical atoms’ number and the corresponding critical temperature) of rotating condensate bosons trapped in optical lattices. Our system is formed by loading three dimensional harmonically trapped boson atoms into a 1D (axial direction) or 2D (radial direction) optical lattice. The system subjected to rotating with angular velocity Ω around to the axial direction z-axis. We employ the semiclassical approximation to calculate the critical point. Effects of the optical lattice depth, direction (axial or radial) and the rotation rate on the critical point are investigated using the semiclassical approximation. The calculated results showed that the temperature dependence of the critical point is changed in an optical lattice and depends crucially on the rotation rate. The effect of the finite size for one-dimensional optical lattice case, as required by experiment, is discussed. The outcome results furnish useful qualitatively theoretical results for the future Bose–Einstein condensation experiments in such traps.

  11. High-Speed Video-Oculography for Measuring Three-Dimensional Rotation Vectors of Eye Movements in Mice. (United States)

    Imai, Takao; Takimoto, Yasumitsu; Takeda, Noriaki; Uno, Atsuhiko; Inohara, Hidenori; Shimada, Shoichi


    The mouse is the most commonly used animal model in biomedical research because of recent advances in molecular genetic techniques. Studies related to eye movement in mice are common in fields such as ophthalmology relating to vision, neuro-otology relating to the vestibulo-ocular reflex (VOR), neurology relating to the cerebellum's role in movement, and psychology relating to attention. Recording eye movements in mice, however, is technically difficult. We developed a new algorithm for analyzing the three-dimensional (3D) rotation vector of eye movement in mice using high-speed video-oculography (VOG). The algorithm made it possible to analyze the gain and phase of VOR using the eye's angular velocity around the axis of eye rotation. When mice were rotated at 0.5 Hz and 2.5 Hz around the earth's vertical axis with their heads in a 30° nose-down position, the vertical components of their left eye movements were in phase with the horizontal components. The VOR gain was 0.42 at 0.5 Hz and 0.74 at 2.5 Hz, and the phase lead of the eye movement against the turntable was 16.1° at 0.5 Hz and 4.88° at 2.5 Hz. To the best of our knowledge, this is the first report of this algorithm being used to calculate a 3D rotation vector of eye movement in mice using high-speed VOG. We developed a technique for analyzing the 3D rotation vector of eye movements in mice with a high-speed infrared CCD camera. We concluded that the technique is suitable for analyzing eye movements in mice. We also include a C++ source code that can calculate the 3D rotation vectors of the eye position from two-dimensional coordinates of the pupil and the iris freckle in the image to this article.

  12. Validity and reliability of critical speed, critical stroke rate, and anaerobic capacity in relation to front crawl swimming performances. (United States)

    Dekerle, J; Sidney, M; Hespel, J M; Pelayo, P


    The purpose of this investigation was to determine whether the concepts of critical swimming speed, critical stroke rate and anaerobic swimming capacity could be used by coaches as a reliable index in order to monitor endurance performances in competitive swimmers. The results of this study conducted with well-trained swimmers showed that the 30-min test velocity (V30) is not different from the critical swimming speed determined from 200- and 400-m tests but is overestimated by 3.2 %. Furthermore, a regression analysis of the number of stroke cycles on time calculated for each swimmer showed a linear relationship (r(2) greater than 0.99 and p less than 0.01). The 30-min stroke rate test (SR30) was not different from the critical stroke rate determined from 200- and 400-m tests after a correction of minus 3.9 %. These data suggest that the slope of this regression line represents the critical stroke rate defined as the maximal stroke rate value, which can theoretically be maintained continuously without exhaustion. Coaches could easily use critical swimming speed combined with critical stroke rate in order not only to set aerobic training loads but also to control the swimming technique during training. Besides, anaerobic swimming capacity (ASC) values defined as the y-intercept of the regression line between distance and time were not correlated (p > 0.05) with the determined distance over which a significant drop in the maximal speed could be noticed on a 25-m test. Thus, ASC does not provide a reliable estimation of the anaerobic capacity.

  13. Critically-rotating accretors and non-conservative evolution in Algols


    Deschamps, R.; Siess, Lionel; Davis, Philip; Jorissen, Alain


    During the mass-transfer phase in Algol systems, a large amount of mass and angular momentum are accreted by the gainer star which can be accelerated up to its critical Keplerian velocity. The fate of the gainer once it reaches this critical value is unclear. We investigate the orbital and stellar spin evolution in semi-detached binary systems, specifically for systems with rapidly rotating accretors. Our aim is to better distinguish between the different spin-down mechanisms proposed which c...

  14. Effect of the rotational speed of on the surface quality of 6061 Al-alloy welded joint using friction stir welding (United States)

    Feng, T. T.; Zhang, X. H.; Fan, G. J.; Xu, L. F.


    The rotational speed of the stir-welding head is an important technological parameter in friction stir welding (FSW) process. For investigating the effect of the rotational speed of the stir-welding head on the surface quality of the welded joint, in this study, the weld tests were conducted under different rotational speeds (in which the welding speed was fixed), and then the effects were analyzed using the heat-fluid analysis model established. The test results revealed that cracks or grooves could be observed on the welded joint at small rotational speeds; with the increase of rotational speed, the weld surface became bright and clean; as the rotational speed further increased, the surface of the welded joint may be over burnt. Through analysis, it can be observed that appropriate increasing the rotational speed of the stir-welding joint increased the heat input in welding; meanwhile, fewer materials participated in the formation of weld, the material’s flowability was improved, and the resistance that impeded the advance of the stir-welding needle was reduced, thereby improving the quality of the welded joint.

  15. Use of a rotational bench viscometer to study the influence of temperature and agitation speed on vinasse viscosity

    Directory of Open Access Journals (Sweden)

    L.E. Brossard Perez


    Full Text Available Brookfield R.V.T. apparent viscosity measurements of 31.1 to 73º Brix vinasses, with and without nondissolved solids (N.D.S., were carried out at varying rotation speeds (N and temperatures (T. A regression analysis of this data was carried out to select the corresponding mathematical models. It was concluded that apparent Brookfield viscosity for low concentration vinasses (up to 52.4º Brix depends only on linear and quadratic temperature terms. At higher concentrations (66º and 73º Brix regression models for apparent viscosity, must also include quadratic as well as rotation speed-temperature interaction terms. This behavior is discussed, identifying two types of rheological behaviors and advancing a preliminary hypothesis about the role of solutes, N.D.S. and temperature.

  16. Critical speed for the dynamics of truck events on bridges with a smooth road surface


    González, Arturo; O'Brien, Eugene J.; Cantero, Daniel; Li, Yingyan; Dowling, Jason; Znidaric, Ales


    Simple numerical models of point loads are used to represent single and multiple vehicle events on two-lane bridges with a good road profile. While such models are insufficiently complex to calculate dynamic amplification accurately, they are presented here to provide an understanding of the influence of speed and distance between vehicles on the bridge dynamic response. Critical combinations of speed as a function of main bridge natural frequency and meeting point of two vehicles travelling ...

  17. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi


    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  18. Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance. (United States)

    Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C


    Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.

  19. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition (United States)

    Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas


    We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.

  20. Rotations (United States)

    John R. Jones; Wayne D. Shepperd


    The rotation, in forestry, is the planned number of years between formation of a crop or stand and its final harvest at a specified stage of maturity (Ford-Robertson 1971). The rotation used for many species is the age of culmination of mean usable volume growth [net mean annual increment (MAI)]. At that age, usable volume divided by age reaches its highest level. That...

  1. Computer–Aided Design of the Critical Speed of Shafts | Akpobi ...

    African Journals Online (AJOL)

    A computer aided design software for the analysis of the critical speed of shaft, is developed and presented in this work. The software was designed using the principles of object oriented programming, and implemented with the Microsoft Visual Basic Language. The package was tested on a number of benchmark design ...

  2. Investigation of the critical relaxation in MnF$_{2}$ by muon spin rotation

    CERN Document Server

    De Renzi, R; Cox, S F J; Guidi, G; Tedeschi, R A


    The magnetic relaxation in MnF/sub 2/ has been studied by means of Muon Spin Rotation. An increase was found close to T/sub N/ in the damping of the precession signal from positive muons implanted in a single-crystal sample. This is attributed to the critical slowing down of the antiferromagnetic spin fluctuations. An orientation-dependent shift in the signal frequency was also detected. The location of the muon in the lattice is tentatively determined.

  3. Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage (United States)

    Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding


    Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths

  4. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang


    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  5. Critical period and risk factors for retear following arthroscopic repair of the rotator cuff. (United States)

    Barth, Johannes; Andrieu, Kevin; Fotiadis, Elias; Hannink, Gerjon; Barthelemy, Renaud; Saffarini, Mo


    The incidence of retear following rotator cuff repair remains a major concern, and the cause and timing of retear remain unclear. The aim of this study was to prospectively investigate the timing of retears following rotator cuff repair at multiple time intervals. The hypothesis was that the 'critical period' for retears extends beyond the first three post-operative months. The authors prospectively studied 206 shoulders that underwent arthroscopic double-row (without suture bridge) suture anchor repair for rotator cuff tears. Patients were recalled to three follow-up visits at the following post-operative time intervals: 3, 6, and 12 months or longer. Ultrasonography was performed at each visit, and Constant score was collected during the last visit. A total of 176 shoulders attended all required follow-up visits with mean age 56.0 years. Ultrasonography revealed retears in 16 shoulders (9.1 %) at 3 months, in 6 shoulders (3.4 %) at 6 months, and in 5 others (2.8 %) at the last follow-up, while it confirmed intact rotator cuffs in 149 shoulders (84.7 %) at the last follow-up (median 35.5; range 12-61). The incidence of retears was significantly associated with tear size (p = 0.001) and tendon degeneration (p = 0.003). The 'critical period' for healing following rotator cuff repair, during which risks of retears are high, extends to the first 6 months. The risk of retear is greatest for massive 3-tendon tears, which may require longer periods of protection. The clinical relevance of this study is the identification of patients at risk of retear and the adjustment of their rehabilitation strategy and time for return to work. III.

  6. Reliability of the Single-Visit Field Test of Critical Speed in Trained and Untrained Adolescents

    Directory of Open Access Journals (Sweden)

    Alfred Nimmerichter


    Full Text Available Recent studies in adults have shown that the critical intensity during running and cycling estimated from three prediction trials interspersed by 30 min is valid and reliable. To establish the reliability of the single-visit field test to determine critical speed (CS and the distance above critical speed (D′ in adolescents, 29 trained and 14 untrained participants (mean ± SD age: 17.5 ± 0.5 years performed three tests on a 400-m outdoor track separated by 48 h. Each test consisted of three distances selected to result in finishing times between 2 and 15 min that must be completed as fast as possible. CS and D′ were modeled using the linear 1/time model (Speed = D′(1/t + CS. While the coefficient of variation (CV of CS was between 2.4% and 4.3%, the CV of D′ was 9.3% to 13.6%. Also the intraclass correlation coefficient ranged from 0.919 to 0.983 for CS and from 0.325 to 0.828 for D′. The results show that the single-visit field test provides reliable estimates of CS but not D′ in trained and untrained adolescents.

  7. The influence of pump rotation speed on hemodynamics and myocardial oxygen metabolism in left ventricular assist device support with aortic valve regurgitation. (United States)

    Iizuka, Kei; Nishinaka, Tomohiro; Takewa, Yoshiaki; Yamazaki, Kenji; Tatsumi, Eisuke


    Aortic valve regurgitation (AR) is a serious complication under left ventricular assist device (LVAD) support. AR causes LVAD-left ventricular (LV) recirculation, which makes it difficult to continue LVAD support. However, the hemodynamics and myocardial oxygen metabolism of LVAD support with AR have not been clarified, especially, how pump rotation speed influences them. An animal model of LVAD with AR was newly developed, and how pump rotation speed influences hemodynamics and myocardial oxygen metabolism was examined in acute animal experiments. Five goats (55 ± 9.3 kg) underwent centrifugal type LVAD, EVAHEART implantation. The AR model was established by placing a vena cava filter in the aortic valve. Hemodynamic values and the myocardial oxygen consumption, delivery, and oxygen extraction ratio (O 2 ER) were evaluated with changing pump rotation speeds with or without AR (AR+, AR-). AR+ was defined as Sellers classification 3 or greater. AR was successfully induced in five goats. Diastolic aortic pressure was significantly lower in AR+ than AR- (p = 0.026). Central venous pressure, mean left atrial pressure, and diastolic left ventricular pressure were significantly higher in AR+ than AR- (p = 0.010, 0.047, and 0.0083, respectively). Although systemic flow did not improve with increasing pump rotation speed, LVAD pump flow increased over systemic flow in AR+, which meant increasing pump rotation speed increased LVAD-LV recirculation and did not contribute to effective systemic circulation. O 2 ER in AR- decreased with increasing pump rotation speed, but O 2 ER in AR+ was hard to decrease. The O 2 ER in AR+ correlated positively with the flow rate of LVAD-LV recirculation (p = 0.012). AR caused LVAD-LV recirculation that interfered with the cardiac assistance of LVAD support and made it ineffective to manage with high pump rotation speed.

  8. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed (United States)

    Zhao, Dezun; Li, Jianyong; Cheng, Weidong; Wen, Weigang


    Multi-fault detection of the rolling element bearing under time-varying rotational speed presents a challenging issue due to its complexity, disproportion and interaction. Computed order analysis (COA) is one of the most effective approaches to remove the influences of speed fluctuation, and detect all the features of multi-fault. However, many interference components in the envelope order spectrum may lead to false diagnosis results, in addition, the deficiencies of computational accuracy and efficiency also cannot be neglected. To address these issues, a novel method for compound faults detection of rolling element bearing based on the generalized demodulation (GD) algorithm is proposed in this paper. The main idea of the proposed method is to exploit the unique property of the generalized demodulation algorithm in transforming an interested instantaneous frequency trajectory of compound faults bearing signal into a line paralleling to the time axis, and then the FFT algorithm can be directly applied to the transformed signal. This novel method does not need angular resampling algorithm which is the key step of the computed order analysis, and is hence free from the deficiencies of computational error and efficiency. On the other hand, it only acts on the instantaneous fault characteristic frequency trends in envelope signal of multi-fault bearing which include rich fault information, and is hence free from irrelevant items interferences. Both simulated and experimental faulty bearing signal analysis validate that the proposed method is effective and reliable on the compound faults detection of rolling element bearing under variable rotational speed conditions. The comprehensive comparison with the computed order analysis further shows that the proposed method produces higher accurate results in less computation time.

  9. The DC Motor Speed Controller Using AT89S52 Microcontroller to Rotate Stepper Motor Attached into Potentiometer in Variable Regulated Power Supply

    Directory of Open Access Journals (Sweden)

    Marhaposan Situmorang


    Full Text Available The DC motor speed controller using AT89S52 microcontroller with stepper motor attached into potentiometer in variable regulated power supply had been evaluated. The voltage across DC motor is varied using program subroutine in microcontroller. The reference speed was determined using keypad and actual speed measured using rotating disc with holes in optocoupler sensor. The actual speed in rpm was determined after running time base 1 second and substracted with reference speed. The error was used to turn right stepper motor if actual speed less than reference speed and vice versa. The number of step of stepper motor rotation in one cycle execution was varied using subroutine starting from 1 step, 3 step, 5 step and using approximation of difference value between actual speed and reference speed. It was observed that the best performance of controller was achieved if number of step of turning stepper motor was not constant but depending on the difference between actual speed and reference speed.

  10. The critical shoulder angle is associated with osteoarthritis in the shoulder but not rotator cuff tears

    DEFF Research Database (Denmark)

    Bjarnison, Arnar O; Sørensen, Thomas J; Kallemose, Thomas


    BACKGROUND: In 2013 Moor et al introduced the concept of the critical shoulder angle (CSA) and suggested that an abnormal CSA was a leading factor in development of rotator cuff tear (RCT) and osteoarthritis (OA) of the shoulder. This study assessed whether the CSA was associated with RCT and OA...... of the acromion to make the CSA smaller because it might increase the risk of developing OA without decreasing the risk of developing RCT. The CSA measurements showed excellent intra- and inter-rater reliability....

  11. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials. (United States)

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran


    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  12. Improving the Precision and Speed of Euler Angles Computation from Low-Cost Rotation Sensor Data

    Directory of Open Access Journals (Sweden)

    Aleš Janota


    Full Text Available This article compares three different algorithms used to compute Euler angles from data obtained by the angular rate sensor (e.g., MEMS gyroscope—the algorithms based on a rotational matrix, on transforming angular velocity to time derivations of the Euler angles and on unit quaternion expressing rotation. Algorithms are compared by their computational efficiency and accuracy of Euler angles estimation. If attitude of the object is computed only from data obtained by the gyroscope, the quaternion-based algorithm seems to be most suitable (having similar accuracy as the matrix-based algorithm, but taking approx. 30% less clock cycles on the 8-bit microcomputer. Integration of the Euler angles’ time derivations has a singularity, therefore is not accurate at full range of object’s attitude. Since the error in every real gyroscope system tends to increase with time due to its offset and thermal drift, we also propose some measures based on compensation by additional sensors (a magnetic compass and accelerometer. Vector data of mentioned secondary sensors has to be transformed into the inertial frame of reference. While transformation of the vector by the matrix is slightly faster than doing the same by quaternion, the compensated sensor system utilizing a matrix-based algorithm can be approximately 10% faster than the system utilizing quaternions (depending on implementation and hardware.

  13. Temporal and spatial strategies in an active place avoidance task on Carousel: a study of effects of stability of arena rotation speed in rats. (United States)

    Bahník, Štěpán; Stuchlík, Aleš


    The active place avoidance task is a dry-arena task used to assess spatial navigation and memory in rodents. In this task, a subject is put on a rotating circular arena and avoids an invisible sector that is stable in relation to the room. Rotation of the arena means that the subject's avoidance must be active, otherwise the subject will be moved in the to-be-avoided sector by the rotation of the arena and a slight electric shock will be administered. The present experiment explored the effect of variable arena rotation speed on the ability to avoid the to-be-avoided sector. Subjects in a group with variable arena rotation speed learned to avoid the sector with the same speed and attained the same avoidance ability as rats in a group with a stable arena rotation speed. Only a slight difference in preferred position within the room was found between the two groups. No difference was found between the two groups in the dark phase, where subjects could not use orientation cues in the room. Only one rat was able to learn the avoidance of the to-be-avoided sector in this phase. The results of the experiment suggest that idiothetic orientation and interval timing are not crucial for learning avoidance of the to-be-avoided sector. However, idiothetic orientation might be sufficient for avoiding the sector in the dark.

  14. Comparative study of the influence of cavity preparation with high-speed rotation or Er:YAG laser on infiltration of aesthetic restorations (United States)

    Costa, D. P. T. S.; Beatrice, L. C. S.; Guerra, L. S. C.; Ribeiro, M. A.; Zanin, F. A. A.; Queiroga, A. S.; Limeira Júnior, F. A.; Gerbi, M. E. M. M.


    The aim of the present study was to compare marginal infiltration in Class V cavities prepared on extracted human premolars with either high-speed rotation or a Er:YAG laser. Class V cavities were executed on the vestibular and lingual faces of twelve premolars, with high-speed rotation or a Er:YAG laser (300 mJ, 4 Hz, and 3 W), and cavity surfaces were conditioned with 37% phosphoric acid combined with laser treatment (80 mJ, 5 Hz, 3 W) or without laser treatment in the following manner: G1—high-speed rotation + conditioning with phosphoric acid; G2—high-speed rotation + conditioning with laser and phosphoric acid; G3—laser + conditioning with phosphoric acid; and G4—laser + conditioning with laser and phosphoric acid. Specimens were restored with the composite resin, thermocycled and immersed in 0.5% basic fuchsin for 24 h. Specimens were then cross-cut and analyzed using a stereoscopic magnifying glass. Evaluations were submitted to the Kruskall-Wallis statistical test. No significant differences were found between the averages of the groups ( p > 0.05). High-speed rotation and Er:YAG laser for the confection of cavity preparation exhibited a similar performance with regard to marginal infiltration.

  15. Influence of the relative rotational speed on component features in micro rotary swaging

    Directory of Open Access Journals (Sweden)

    Ishkina Svetlana


    Full Text Available Micro rotary swaging is a cold forming process for production of micro components with determined geometry and surface. It is also possible to change the microstructure of wires and hence the material properties. Swaging dies revolve around the work piece with an overlaid radial oscillation. Newly developed tools (Flat Surface Dies, FSD feature plain surfaces and do not represent the geometry of the formed part as in conventional swaging. Using these tools allows for producing wires with triangle geometry (cross section as well as a circular shape. To test the influence of FSD on material properties by micro swaging a new method is investigated: the variation of the relative speed between the specimen and dies in infeed rotary swaging. During this specific process copper (C11000 and steel (304 Alloy wires with diameter d0 = 1 mm are formed. It is noticed that the mechanical characteristics such as ductility and strength differ from the characteristics after conventional swaging. Moreover this approach enables new possibilities to influence the geometry and the surface quality of wires. The impact of the relative speed on the processed wire features is described in this paper.

  16. Experimental investigation of aerodynamic devices for wind turbine rotational speed control. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States)


    An investigation was undertaken to identify the aerodynamic performance of five separate trailing-edge control devices, and to evaluate their potential for wind turbine overspeed and power modulation applications. A modular two-dimensional wind tunnel model was constructed and evaluated during extensive wind tunnel testing. Aerodynamic lift, drag, suction, and pressure coefficient data were acquired and analyzed for various control configurations and angles of attack. To further interpret their potential performance, the controls were evaluated numerically using a generic wind turbine geometry and a performance analysis computer program. Results indicated that the Spoiler-Flap control configuration was best softed for turbine braking applications. It exhibited a large negative suction coefficient over a broad angle-of-attack range, and good turbine braking capabilities, especially at low tip-speed ratio.

  17. Critical object recognition in millimeter-wave images with robustness to rotation and scale. (United States)

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi


    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  18. An analysis of peak pelvis rotation speed, gluteus maximus and medius strength in high versus low handicap golfers during the golf swing. (United States)

    Callaway, Sarahann; Glaws, Kate; Mitchell, Melissa; Scerbo, Heather; Voight, Michael; Sells, Pat


    The kinematic sequence of the golf swing is an established principle that occurs in a proximal-to-distal pattern with power generation beginning with rotation of the pelvis. Few studies have correlated the influence of peak pelvis rotation to the skill level of the golfer. Furthermore, minimal research exists on the strength of the gluteal musculature and their ability to generate power during the swing. The purpose of this study was to explore the relationship between peak pelvis rotation, gluteus medius and gluteus maximus strength, and a golfer's handicap. 56 healthy subjects. Each subject was assessed using a hand-held dynamometry device per standardized protocol to determine gluteus maximus and medius strength. The K-vest was placed on the subject with electromagnetic sensors at the pelvis, upper torso, and gloved lead hand to measure the rotational speed at each segment in degrees/second. After K-vest calibration and 5 practice swings, each subject hit 5 golf balls during which time, the sensors measured pelvic rotation speed. A one-way ANOVA was performed to determine the relationships between peak pelvis rotation, gluteus medius and gluteus maximus strength, and golf handicap. A significant difference was found between the following dependent variables and golf handicap: peak pelvis rotation (p=0.000), gluteus medius strength (p=0.000), and gluteus maximus strength (p=0.000). Golfers with a low handicap are more likely to have increased pelvis rotation speed as well as increased gluteus maximus and medius strength when compared to high handicap golfers. The relationships between increased peak pelvis rotation and gluteus maximus and medius strength in low handicap golfers may have implications in designing golf training programs. Further research needs to be conducted in order to further explore these relationships.

  19. Critical collapse of a rotating scalar field in 2 +1 dimensions (United States)

    JałmuŻna, Joanna; Gundlach, Carsten


    We carry out numerical simulations of the collapse of a complex rotating scalar field of the form Ψ (t ,r ,θ )=ei m θΦ (t ,r ), giving rise to an axisymmetric metric, in 2 +1 spacetime dimensions with cosmological constant Λ 0 is very different from the case m =0 we have considered before: the thresholds for mass scaling and Ricci scaling are significantly different (for the same family); scaling stops well above the scale set by Λ , and the exponents depend strongly on the family. Hence, in contrast to the m =0 case, and to many other self-gravitating systems, there is only weak evidence for the collapse threshold being controlled by a self-similar critical solution and no evidence for it being universal.

  20. A Stock Propeller Design for the High Speed Sealift Hybrid Contra-Rotating Shaft-Pod, Model 5653-3A (United States)


    and strut mounted propeller. The aft propeller is driven by a COTS tractor pod. The full power speed of this design is 39 knots. The final design has a...being manufactured at model scale for open water and powering tests. 16. SUBJECT TERMS 15. NUMBER OF PAGES PROPELLERS, CONTRA-ROTATING, PODS 54 16. PRICE...20 DESIGN POIN T

  1. Critical speed for capillary-gravity surface flows in the dispersive shallow water limit (United States)

    Pham, Chi-Tuong; Nore, Caroline; Brachet, Marc-Étienne


    The stability of perfect-fluid capillary-gravity surface flows past a cylindrical obstacle is studied in the shallow water limit, using the two-dimensional compressible Euler equations, with leading-order dispersive corrections. Stationary solutions with different contact angles are obtained by Newton branch following, based on Fourier pseudospectral methods, using mapped Chebychev polynomials. Stable and unstable branches are found to meet, through a saddle-node bifurcation, at a critical speed beyond which no stationary solution exists. For large obstacles, the stable branch is compared with the stationary solutions of the compressible Euler equation without dispersion. Boundary layers are investigated. In this regime, the unstable dynamics are shown to lead to a finite-time dewetting singularity.

  2. Damped critical speeds and stability of a flexible rotor-SFDB-support structure system (United States)

    He, Xingsuo


    A new iterative method for solving the damped critical speeds and stability of a flexible rotor-SFDB (squeeze-film damper bearing) system is proposed. The parameters of the support structure, including the stiffness, damping, and effective mass of the shell, are taken into account. The proper ranges of parameters for a rotor system to be used in order to reduce vibration are a bearing parameter range of 0.11-0.15 and a clearance ratio range of 0.23-0.365 percent. The proper ranges of the parameters obtained are argued to be more precise than those determined by Feng (1988) and Zhu (1989). Compared with previous methods, the computational time is reduced by about 30 percent.

  3. Stable Levitation System for a High Speed Rotating Shaft Levitated by a High Temperature Superconductor and Method for Passing through Critical Speeds by Using Rotating Magnetic Damper


    長屋, 幸助; 林, 乃生幸; 大関, 健一郎


    This article presents a new levitation technique, which uses a small superconductor and a set of permanent magnets. In the system, a small superconductor is connected to the bottom of the vertical shaft. The gravity force and axial vibration force are supported by the superconductor. A circular permanent magnet is attched to the top of the shaft, and the other circular permanent magnet lies at the frame. The N-pole of one of the magnets faces to the S-pole of the other magnet, so a drag force...

  4. Propeller charts for the determination of the rotational speed for the maximum ratio of the propulsive efficiency to the specific fuel consumption (United States)

    Biermann, David; Conway, Robert N


    A set of propeller operating efficiency charts, based on a coefficient from which the propeller rotational speed has been eliminated, is presented. These charts were prepared with data obtained from tests of full-size metal propellers in the NACA propeller-research tunnel. Working charts for nine propeller-body combinations are presented, including results from tests of dual-rotating propellers. These charts are to be used in the calculation of the range and the endurance of airplanes equipped with constant-speed propellers in which, for given flight conditions, it is desired to determine the propeller revolution speed that gives the maximum ratio of the propulsive efficiency to the specific fuel consumption. The coefficient on which the charts are based may be written in the form of a thrust coefficient or a thrust-power coefficient. A method of using the charts is outlined and sample computations for a typical airplane are included.

  5. Performance analysis of a novel planetary speed increaser used in single-rotor wind turbines with counter-rotating electric generator (United States)

    Saulescu, R.; Neagoe, M.; Munteanu, O.; Cretescu, N.


    The paper presents a study on the kinematic and static performances of a new type of 1DOF (Degree Of Freedom) planetary speed increaser to be implemented in wind turbines, a transmission with three operating cases: a) one input and one output, b) one input and two outputs, in which the speed of the secondary output is equal to the input speed, and c) with one input and two outputs, where the secondary output speed is higher than the input speed. The proposed speed increaser contains two sun gears and a double satellite, allowing operation with an output connected to the fixed stator of a classic generator (case I) or with two counterrotating outputs that drive a counter-rotating generator (with a mobile stator). A new variant of planetary transmission capable of providing the speed increase of the generator stator and, thus, the increase of the relative speed between the generator rotor and stator is obtained by the parallel connection of the speed increaser with a planetary gear. The three conceptual variants of planetary transmission are analytically modelled and comparatively analysed based on a set of kinematic and static parameters. The proposed transmission has higher performances compared to the same transmission with one input and one output, the increase of the kinematic amplification ratio and efficiency being achieved simultaneously.

  6. General surgery resident rotations in surgical critical care, trauma, and burns: what is optimal for residency training? (United States)

    Napolitano, Lena M; Biester, Thomas W; Jurkovich, Gregory J; Buyske, Jo; Malangoni, Mark A; Lewis, Frank R


    There are no specific Accreditation Council for Graduate Medical Education General Surgery Residency Program Requirements for rotations in surgical critical care (SCC), trauma, and burn. We sought to determine the experience of general surgery residents in SCC, trauma, and burn rotations. Data analysis of surgical rotations of American Board of Surgery general surgery resident applicants (n = 7,299) for the last 8 years (2006 to 2013, inclusive) was performed through electronic applications to the American Board of Surgery Qualifying Examination. Duration (months) spent in SCC, trauma, and burn rotations, and postgraduate year (PGY) level were examined. The total months in SCC, trauma and burn rotations was mean 10.2 and median 10.0 (SD 3.9 months), representing approximately 16.7% (10 of 60 months) of a general surgery resident's training. However, there was great variability (range 0 to 29 months). SCC rotation duration was mean 3.1 and median 3.0 months (SD 2, min to max: 0 to 15), trauma rotation duration was mean 6.3 and median 6.0 months (SD 3.5, min to max: 0 to 24), and burn rotation duration was mean 0.8 and median 1.0 months (SD 1.0, min to max: 0 to 6). Of the total mean 10.2 months duration, the longest exposure was 2 months as PGY-1, 3.4 months as PGY-2, 1.9 months as PGY-3, 2.2 months as PGY-4 and 1.1 months as PGY-5. PGY-5 residents spent a mean of 1 month in SCC, trauma, and burn rotations. PGY-4/5 residents spent the majority of this total time in trauma rotations, whereas junior residents (PGY-1 to 3) in SCC and trauma rotations. There is significant variability in total duration of SCC, trauma, and burn rotations and PGY level in US general surgery residency programs, which may result in significant variability in the fund of knowledge and clinical experience of the trainee completing general surgery residency training. As acute care surgery programs have begun to integrate emergency general surgery with SCC, trauma, and burn rotations

  7. Three-dimensional rotational angiography of the foot in critical limb ischemia: a new dimension in revascularization strategy

    NARCIS (Netherlands)

    Jens, Sjoerd; Lucatelli, Pierleone; Koelemay, Mark J. W.; Marquering, Henk A.; Reekers, Jim A.


    To evaluate the additional value of three-dimensional rotational angiography (3DRA) of the foot compared with digital subtraction angiography (DSA) in patients with critical limb ischemia (CLI). For 3DRA, the C-arm was placed in the propeller position with the foot in an isocentric position. The

  8. Normative data for critical speed and D' for high-level male rugby players. (United States)

    Kramer, Mark; Clark, Ida E; Jamnick, Nick; Strom, Cody; Pettitt, Robert W


    The critical speed (CS) concept helps characterize the aerobic and anaerobic fitness of an athlete. Rugby players should hypothetically have modest CS values but extremely high curvature constant (D') values, yet, normative data are currently unavailable. To develop normative data of CS and D' for high-level male rugby players, a total of 30 male rugby players, were recruited from the Eastern Cape of South Africa. All subjects performed the running 3-min all-out exercise test (3 MT) using global positioning system (GPS) technology to determine CS and D'. The GPS data were used to determine the total distance and velocities performed, and to examine for pacing affects. Summary statistics of mean ± SD are provided. High total running speeds for the initial 150 s (S150s = 5.79 ± 0.59 m/s) and total distance (3 MT distance = 871.5 ± 71.9 m) were observed. A total of 13 of 30 subjects surpassed the 300 m D' value (mean D' = 288.2 ± 49.1 m). The CS of the total group was 3.87 ± 0.55 m/s. All 3MT-derived data was categorized using stanine tables that allowed for the generation of normative data to which future performances, performances across similar sporting domains and more accurate contrasts across the literature can be compared. Skewing of CS and D' was observed between forwards and backs, therefore between-group differences in neither CS nor D' were observed (p > 0.05). Comparisons with previous literature indicate male rugby players have higher CS values than female rugby players. When compared with Olympic distance runners, male rugby players have markedly higher D' values and markedly lower CS values. The 3 MT provides a useful procedure for assessing and prescribing high-intensity interval training for rugby athletes.

  9. Critical period and risk factors for retear following arthroscopic repair of the rotator cuff

    NARCIS (Netherlands)

    Barth, J.; Andrieu, K.; Fotiadis, E.; Hannink, G.J.; Barthelemy, R.; Saffarini, M.


    PURPOSE: The incidence of retear following rotator cuff repair remains a major concern, and the cause and timing of retear remain unclear. The aim of this study was to prospectively investigate the timing of retears following rotator cuff repair at multiple time intervals. The hypothesis was that

  10. Expressions For Total Energy And Relativistic Kinetic Energy At Low Speeds In Special Relativity Must Include Rotational And Vibrational As Well As Linear Kinetic Energies (United States)

    Brekke, Stewart


    Einstein calculated the total energy at low speeds in the Special Theory of Relativity to be Etotal =m0c2 + 1 / 2m0v2 . However, the total energy must include the rotational and vibrational kinetic energies as well as the linear kinetic energies. If 1 / 2 Iω2 is the expression for the rotational kinetic energy of mass and 1 / 2 kx02 is the vibrational kinetic energy expression of a typical mass, the expression for the total energy of a mass at low speeds must be Etotal =m0c2 + 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 . If this expression is correct, the relativistic kinetic energy of a mass. at low speeds must include the rotational and vibrational kinetic energies as well as the linear kinetic energies since according to Einstein K = (m -m0) c2 and therefore, K = 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 .

  11. In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness (United States)

    Buffa, Gianluca; Campanella, Davide; Forcellese, Archimede; Fratini, Livan; Simoncini, Michela


    In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotational speed on the mechanical and microstructural properties of FSWed joints was analysed by comparing both the nominal stress vs. nominal strain curves and microstructure of FSWed joints obtained in different process conditions. It was observed that FSW performed by keeping constant the heat input to the joint leads to almost coincident results both in terms of the curve shape, ultimate tensile strength and ultimate elongation values, and microstructure.

  12. Critical care rotation impact on pediatric resident mental health and burnout. (United States)

    Wolfe, Katie K; Unti, Sharon M


    Burnout and depression are common among medical trainees and intensive care unit providers, negatively impacting both providers and patients. We hypothesized that at the end of the pediatric intensive care unit (PICU) rotation, there would be an increased prevalence of depression and burnout in pediatric residents when compared to the beginning. Pediatric residents were assessed prior to and following their PICU rotation using the Maslach Burnout Inventory, the Center for Epidemiologic Studies Depression Screen and a survey assessing positive and negative aspects of the rotation. Sixty residents were eligible to participate and initial response rate was 40%. The prevalence of positive depression screen increased from 4% to 41% during the PICU rotation. Regarding burnout, the prevalence of residents meeting criteria for emotional exhaustion increased from 41% to 59% and depersonalization increased from 41% to 53%. Fewer residents had low personal accomplishment scores at the end of the rotation, 13% to 0%. Autonomy, procedural opportunities, and interactions with non-trainee PICU providers were commonly cited negative aspects of the rotation. Resident education, patient acuity, and nursing-integrated rounding were consistently rated positively. Compared to the beginning, at the end of the PICU rotation there is a significantly higher prevalence of depression, emotional exhaustion, and depersonalization among pediatric residents. Pediatric residents may have a more favorable PICU experience if they feel involved in procedural aspects of patient care, are allowed more autonomy in decision making, and there is a continued focus on resident education and team-based care.

  13. Granular mixing and segregation in a horizontal rotating drum: A simulation study on the impact of rotational speed and fill level

    NARCIS (Netherlands)

    Arntz, M.M.H.D.; Otter, W.K. den; Briels, W.J.; Bussmann, P.J.T.; Beeltink, H.H.; Boom, R.M.


    The rich phase behavior of granular beds of bidisperse hard spherical particles in a rotating horizontal drum is studied by Discrete Element Method (DEM) simulations. Several flow regimes and various forms of radial segregation, as well as mixing, are observed by systematically varying the

  14. Effect of substrate rotation on structure, hardness and adhesion of magnetron sputtered TiB{sub 2} coating on high speed steel

    Energy Technology Data Exchange (ETDEWEB)

    Panich, N. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)]. E-mail:; Sun, Y. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore (Singapore)


    Titanium diboride (TiB{sub 2}) coatings have been deposited on stationary and rotating high speed steel substrates by magnetron sputtering of a TiB{sub 2} target. The structure and hardness of the coatings and the coating-substrate adhesion have been investigated by X-ray diffraction, field emission scanning electron microscopy, nanoindentation and microscratch tests. The results show that substrate rotation has a significant effect on these structural and properties features. It was found that, with substrate rotation, the TiB{sub 2} coating exhibits a columnar structure with random orientation and relatively low hardness and coating-substrate adhesion. On the other hand, without substrate rotation, the TiB{sub 2} coating shows a strong (001) texture with dense, equiaxed grain structure. The hardness and coating-substrate adhesion of the coatings deposited on stationary substrates are much higher than those deposited on rotating substrates. The observed phenomena are discussed in terms of the energy of the sputtered flux, which varies with the substrate-target distance during deposition.

  15. The critical speed of the Deutsche Reichsbahn's class-05 steam locomotive; Berechnung der kritischen Geschwindigkeit mittels Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Johannes [Stuttgart Univ. (Germany). Inst. fuer Technische und Numerische Mechanik; Heer, Andreas [Bosch Engineering GmbH, Abstatt (Germany). Bremsregelsysteme; Meinke, Peter [IAT Ingenieurgesellschaft fuer Angewandte Technologie mbH, Gauting (Germany); Wiese, Christoph [Stuttgart Univ. (Germany). Inst. fuer Leistungselektronik und Elektrische Antriebe, Stuttgart


    Modern high-speed trains are equipped with running gear that has been optimised for lateral stability at normal operational speeds and the minimisation of phenomena such as hunting oscillations. What, however, was the situation when the new world railway speed record of 200.4 km/h was established on 11 May 1936 by a steam locomotive, 05 002, hauling a rake of four passenger coaches? In those days, nobody was in a position to calculate critical speeds. It has only been since we have had access to computers that it has been possible to establish critical speeds mathematically by running simulations (using programs like SIMPACK). The simulation's output has shown that, provided the tender was rigidly coupled to the locomotive, these two vehicles together would have had stable running properties up to approximately 245 km/h. Evidence has at last been produced to show that the record-breaking run of 200.5 km/h was not in any danger on account of excessive instability due to hunting oscillations. (orig.)

  16. Nonlinear dynamics of a rotating double pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Soumyabrata, E-mail: [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, 711103 (India); Roy, Jyotirmoy, E-mail: [UM-DAE Centre for Excellence in Basic Sciences, Santa Cruz, Mumbai, 400098 (India); Mallik, Asok K., E-mail: [Department of Applied Mechanics and Aerospace Engineering, Indian Institute of Engineering Science and Technology, Shibpur, 711103 (India); Bhattacharjee, Jayanta K., E-mail: [Harish-Chandra Research Institute, Allahabad, 211019 (India)


    Nonlinear dynamics of a double pendulum rotating at a constant speed about a vertical axis passing through the top hinge is investigated. Transitions of oscillations from chaotic to quasiperiodic and back to chaotic again are observed with increasing speed of rotation. With increasing speed, a pair of new stable equilibrium states, different from the normal vertical one, appear and the quasiperiodic oscillations occur. These oscillations are first centered around the origin, but with increasing rotation speed they cover the origin and the new fixed points. At a still higher speed, more than one pair of fixed points appear and the oscillation again turns chaotic. The onset of chaos is explained in terms of internal resonance. Analytical and numerical results confirm the critical values of the speed parameter at various transitions. - Highlights: • The rotating double pendulum shows transitions from chaos to order and back to chaos. • These transitions occur as the rotation speed is increased. • The dynamics is quasi-periodic in the ordered state. • Within the ordered state the nature of quasi-periodicity changes with rotation speed. • The chaotic state always emerges as a result of an internal resonance.

  17. Influence of Tool Rotational Speed and Post-Weld Heat Treatments on Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel (United States)

    Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.


    The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ

  18. Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments. (United States)

    Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A


    Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.

  19. Cover crop termination timing is critical in organic rotational no-till systems (United States)

    Cover crop-based rotational no-till enables organic farmers to reduce labor and build soil health. In these systems, cover crops are terminated with a roller-crimper and cash crops are direct-seeded into the mulch. A cropping system experiment was conducted at three locations in the Mid-Atlantic t...

  20. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods

    Directory of Open Access Journals (Sweden)

    A Zareei


    Full Text Available Introduction Spiral conveyors effectively carry solid masses as free or partly free flow of materials. They create good throughput and they are the perfect solution to solve the problems of transport, due to their simple structure, high efficiency and low maintenance costs. This study aims to investigate the performance characteristics of conveyors as function of auger diameter, rotational speed and handling inclination angle. The performance characteristic was investigated according to volumetric efficiency. In another words, the purpose of this study was obtaining a suitable model for volumetric efficiency changes of steep auger to transfer agricultural products. Three different diameters of auger, five levels of rotational speed and three slope angles were used to investigate the effects of changes in these parameters on volumetric efficiency of auger. The used method is novel in this area and the results show that performance by ANFIS models is much better than common statistical models. Materials and Methods The experiments were conducted in Department of Mechanical Engineering of Agricultural Machinery in Urmia University. In this study, SAYOS cultivar of wheat was used. This cultivar of wheat had hard seeds and the humidity was 12% (based on wet. Before testing, all foreign material was separated from the wheat such as stone, dust, plant residues and green seeds. Bulk density of wheat was 790 kg m-3. The auger shaft of the spiral conveyor was received its rotational force through belt and electric motor and its rotation leading to transfer the product to the output. In this study, three conveyors at diameters of 13, 17.5, and 22.5 cm, five levels of rotational speed at 100, 200, 300, 400, and 500 rpm and three handling angles of 10, 20, and 30º were tested. Adaptive Nero-fuzzy inference system (ANFIS is the combination of fuzzy systems and artificial neural network, so it has both benefits. This system is useful to solve the complex non

  1. The method of the gas-dynamic centrifugal compressor stage characteristics recalculation for variable rotor rotational speeds and the rotation angle of inlet guide vanes blades if the kinematic and dynamic similitude conditions are not met (United States)

    Vanyashov, A. D.; Karabanova, V. V.


    A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.

  2. The Comparison of the Effect of Mental Rotation and Phonological Awareness Training on Accuracy, Speed and Comprehension in Students with Dyslexia in City of Tabriz, 2015-2016

    Directory of Open Access Journals (Sweden)

    Ramin Habibi-Kaleybar


    Full Text Available Abstract Background: The problem of learning disabilities is the reason of academic backwardness of students and dyslexia is considered the most common of these disorders.Therefore, the present study aimed to investigate the comparison of the effectiveness of mental rotation and phonological awareness training on reading performance of students with dyslexia. Materials and Methods: The design of the study was quasi-experimental in pre-test and post- test with control group. Statistical population composed of all dyslexic students in the city of Tabriz in 2015-2016. The sample of present research consisted of 45 students with dyslexia who were selected via available sampling and then were assigned randomly to experimental phonological awareness and mental rotation training and control groups(n=15 in each. To collect data, revised Wechsler intelligence scale for children and reading improvement and dyslexia test were used. Multivariate Covariance (MANCOVA was used to analyze the data. Results: Findings indicated that scores of mental rotation and phonological awareness training have a significant effect on reading performance of dyslexic students compared with control group (p0.05. Conclusion: It can be concluded that mental rotation and phonological awareness training are effective on accuracy, speed and comprehension of reading in students with dyslexia.

  3. The Impact of Speed of Play in Gambling on Psychological and Behavioural Factors: A Critical Review. (United States)

    Harris, Andrew; Griffiths, Mark D


    Conceptually, there is a common association between gambling games with fast speeds of play and problem gambling. This relationship however, is largely correlational in nature, which comes at the expense of carefully controlled empirical investigation. Research that does exist aimed towards investigating the impact of gambling speeds on psychological and behavioural factors, is in its relative infancy, and the research possesses disparate methodologies and variables of interest. The aims of the current review is therefore to evaluate and summarise the existing body of evidence relating to speed of play in gambling, as well as discuss how this evidence can be used to inform harm minimisation approaches aimed at facilitating self-control during gambling. Eleven studies were selected for review based on the inclusion criteria, comprising nine experimental and two qualitative studies (one self-report focus group study and one observational study). There was a consistent finding across studies that games with faster speeds of play were preferred and rated as more exciting for all gamblers, ranging from non-problem to problem gamblers. Of concern, was the repeated finding that fast games are particularly appealing to those suffering with a gambling problem. Behavioural results were more inconsistent across studies, though the general trend supports the notion that games with faster speeds of play encourage more wagers, longer game play, and caused players, particularly problem gamblers, to experience difficulty in ceasing gambling. The implications of these findings for gambling policy, harm minimisation approaches, and future research are discussed.

  4. Knowing the speed limit: weighing the benefits and risks of rehabilitation progression after arthroscopic rotator cuff repair. (United States)

    Thigpen, Charles A; Shaffer, Michael A; Kissenberth, Michael J


    Rotator cuff repairs have increased. Although clinical trials have examined the effect of immobilization and timing of passive range of motion (ROM) on patient outcomes and structural integrity, there is controversy as to the timing and progression for therapy. Primary goals are restoring function while maintaining the structural integrity of the repair. We advocate for a protocol of 4 to 6 weeks of immobilization, followed by protected passive ROM, which is followed by a gradual progression to active ROM and then appropriate resistance exercise program for most all rotator cuff repairs. The rate of progression should be adjusted individually. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Brushless tachometer gives speed and direction (United States)

    Nola, F. J.


    Brushless electronic tachometer measures rotational speed and rotational direction, maintaining accuracy at high or low speeds. Unit is particularly useful in vacuum environments requiring low friction.

  6. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling (United States)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu


    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  7. Universal Faraday Rotation in HgTe Wells with Critical Thickness. (United States)

    Shuvaev, A; Dziom, V; Kvon, Z D; Mikhailov, N N; Pimenov, A


    The universal value of the Faraday rotation angle close to the fine structure constant (α≈1/137) is experimentally observed in thin HgTe quantum wells with a thickness on the border between trivial insulating and the topologically nontrivial Dirac phases. The quantized value of the Faraday angle remains robust in the broad range of magnetic fields and gate voltages. Dynamic Hall conductivity of the holelike carriers extracted from the analysis of the transmission data shows a theoretically predicted universal value of σ_{xy}=e^{2}/h, which is consistent with the doubly degenerate Dirac state. On shifting the Fermi level by the gate voltage, the effective sign of the charge carriers changes from positive (holes) to negative (electrons). The electronlike part of the dynamic response does not show quantum plateaus and is well described within the classical Drude model.


    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)


    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  9. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

    KAUST Repository

    Leslie, G. A.


    The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study \\'full-ring\\' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013

  10. An investigational study of minimum rotational pump speed to avoid retrograde flow in three centrifugal blood pumps in a pediatric extracorporeal life support model. (United States)

    Clark, Joseph B; Guan, Yulong; McCoach, Robert; Kunselman, Allen R; Myers, John L; Undar, Akif


    During extracorporeal life support with centrifugal blood pumps, retrograde pump flow may occur when the pump revolutions decrease below a critical value determined by the circuit resistance and the characteristics of the pump. We created a laboratory model to evaluate the occurrence of retrograde flow in each of three centrifugal blood pumps: the Rotaflow, the CentriMag, and the Bio-Medicus BP-50. At simulated patient pressures of 60, 80, and 100 mmHg, each pump was evaluated at speeds from 1000 to 2200 rpm and flow rates were measured. Retrograde flow occurred at low revolution speeds in all three centrifugal pumps. The Bio-Medicus pump was the least likely to demonstrate retrograde flow at low speeds, followed by the Rotaflow pump. The CentriMag pump showed the earliest transition to retrograde flow, as well as the highest degree of retrograde flow. At every pump speed evaluated, the Bio-Medicus pump delivered the highest antegrade flow and the CentriMag pump delivered the least.

  11. A high fraction of Be stars in young massive clusters: evidence for a large population of near-critically rotating stars (United States)

    Bastian, N.; Cabrera-Ziri, I.; Niederhofer, F.; de Mink, S.; Georgy, C.; Baade, D.; Correnti, M.; Usher, C.; Romaniello, M.


    Recent photometric analyses of the colour-magnitude diagrams of young massive clusters (YMCs) have found evidence for splitting in the main sequence and extended main-sequence turn-offs, both of which have been suggested to be caused by stellar rotation. Comparison of the observed main-sequence splitting with models has led various authors to suggest a rather extreme stellar rotation distribution, with a minority (10-30 per cent) of stars with low rotational velocities and the remainder (70-90 per cent) of stars rotating near the critical rotation (I.e. near break-up). We test this hypothesis by searching for Be stars within two YMCs in the Large Magellanic Cloud (NGC 1850 and NGC 1856), which are thought to be critically rotating stars with decretion discs that are (partially) ionized by their host stars. In both clusters, we detect large populations of Be stars at the main-sequence turn-off (˜30-60 per cent of stars), which supports previous suggestions of large populations of rapidly rotating stars within massive clusters.

  12. Effects of crude oil and dispersed crude oil on the critical swimming speed of puffer fish, Takifugu rubripes. (United States)

    Yu, Xiaoming; Xu, Chuancai; Liu, Haiying; Xing, Binbin; Chen, Lei; Zhang, Guosheng


    In order to examine the effects of crude oil and dispersed crude oil (DCO) on the swimming ability of puffer fish, Takifugu rubripes, the critical swimming speeds (U crit) of fish exposed to different concentrations of water-soluble fraction (WSF) of crude oil and DCO solution were determined in a swimming flume. WSF and DCO significantly affected the U crit of puffer fish (p puffer fish exposed to 136 mg L(-1) WSF and 56.4 mg L(-1) DCO decreased 48.7 % and 43.4 %, respectively. DCO was more toxic to puffer fish than WSF. These results suggested that crude oil and chemically dispersed oil could weaken the swimming ability of puffer fish.

  13. Effect of welding parameters (plunge depths of shoulder, pin geometry, and tool rotational speed) on the failure mode and stir zone characteristics of friction stir spot welded aluminum 2024-T3 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Paidar, Moslem; Sarab, Mahsa Lali; Taheri, Morteza; Khodabandeh, Alireza [Islamic Azad University, Tehran (Iran, Islamic Republic of)


    The main purpose of this study was to investigate the effect of welding parameters on the failure mode and stir zone characteristics of aluminum alloy 2024-T3 joined by friction stir spot welding. The welding parameters in this work are tool rotational speed, plunge depths of shoulder, and pin geometry. In accordance with the methods of previous investigations, the rotational speeds were set to 630 rpm to 2000 rpm. Two pin geometries with concave shoulder were used: triangular and cylindrical. The plunge depths of the shoulder were 0.3, 0.5 and 0.7 mm. The shoulder diameter and pin height for both geometries were 14 and 2.4 mm, respectively. The diameter of the cylindrical and triangular pins was 5 mm. Results show that the parameters mentioned earlier influence fracture mode under tension shear loading. Two different fracture modes were observed during the examinations. Low-penetration depths and low-rotational speeds lead to shear fracture, whereas high values of these factors cause the tension-shear fracture mode. Fracture of the lower sheet sometimes occurs at high rotational speeds.

  14. Visible-Light-Driven Photoisomerization and Increased Rotation Speed of a Molecular Motor Acting as a Ligand in a Ruthenium(II) Complex. (United States)

    Wezenberg, Sander J; Chen, Kuang-Yen; Feringa, Ben L


    Toward the development of visible-light-driven molecular rotary motors, an overcrowded alkene-based ligand and the corresponding ruthenium(II) complex is presented. In our design, a 4,5-diazafluorenyl coordination motif is directly integrated into the motor function. The photochemical and thermal isomerization behavior has been studied by UV/Vis and NMR spectroscopy. Upon coordination to a Ru(II) bipyridine complex, the photoisomerization process can be driven by visible (λmax = 450 nm) instead of UV light and furthermore, a large increase of the speed of rotation is noted. DFT calculations point to a contraction of the diazafluorenyl lower half upon metal-coordination resulting in reduced steric hindrance in the "fjord region" of the molecule. Consequently, it is shown that metal-ligand interactions can play an important role in the adjustment of both photophysical and thermodynamic properties of molecular motors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of Tool Rotation Speed on Microstructure and Microhardness of Friction-Stir-Processed Cold-Sprayed SiCp/Al5056 Composite Coating (United States)

    Huang, Chunjie; Li, Wenya; Zhang, Zhihan; Planche, Marie-pierre; Liao, Hanlin; Montavon, Ghislain


    SiC-particle-reinforced Al5056-matrix composite coatings were deposited onto Al2024 substrates by cold spraying using a powder mixture having 15 vol.% SiC. To investigate the effects of friction stir processing (FSP) parameters on the microstructure and microhardness of the as-sprayed coating, the as-sprayed composite coating was then subjected to FSP using a stir tool having a threaded pin with rotation speed of 600 rpm and 1400 rpm. Results showed that the coatings presented Al and SiC phases before and after FSP treatment, and no other diffraction peaks were detected. Fine grains were produced in the Al5056 matrix due to severe plastic deformation during FSP, and the refined SiC particles exhibited a homogeneous distribution in the FSPed coating. In addition, an evident reduction of porosity (from 0.36% to 0.08% at 600 rpm or 0.09% at 1400 rpm) occurred, and a dramatic size reduction of the reinforcement from 12.5 µm to 6.5 µm at 600 rpm or 7.0 µm at 1400 rpm was achieved. Nevertheless, the microhardness profile presented general softening and a decrease from 143.9 HV to about 110 HV.

  16. Everyone Deserves a Speeding Ticket. (United States)

    Burris, Harold


    Presents a first day physics activity having students determine the fine for a speeding ticket if the speeds considered include the earth's rotation and revolution speed, and the movement through the galaxy. (MDH)

  17. Data acquisition in a high-speed rotating frame for New Mexico Institute of Mining and Technology liquid sodium αω dynamo experiment. (United States)

    Si, Jiahe; Colgate, Stirling A; Li, Hui; Martinic, Joe; Westpfahl, David


    New Mexico Institute of Mining and Technology liquid sodium αω-dynamo experiment models the magnetic field generation in the universe as discussed in detail by Colgate, Li, and Pariev [Phys. Plasmas 8, 2425 (2001)]. To obtain a quasi-laminar flow with magnetic Reynolds number R(m) ~ 120, the dynamo experiment consists of two co-axial cylinders of 30.5 cm and 61 cm in diameter spinning up to 70 Hz and 17.5 Hz, respectively. During the experiment, the temperature of the cylinders must be maintained to 110 °C to ensure that the sodium remains fluid. This presents a challenge to implement a data acquisition (DAQ) system in such high temperature, high-speed rotating frame, in which the sensors (including 18 Hall sensors, 5 pressure sensors, and 5 temperature sensors, etc.) are under the centrifugal acceleration up to 376g. In addition, the data must be transmitted and stored in a computer 100 ft away for safety. The analog signals are digitized, converted to serial signals by an analog-to-digital converter and a field-programmable gate array. Power is provided through brush/ring sets. The serial signals are sent through ring/shoe sets capacitively, then reshaped with cross-talk noises removed. A microcontroller-based interface circuit is used to decode the serial signals and communicate with the data acquisition computer. The DAQ accommodates pressure up to 1000 psi, temperature up to more than 130 °C, and magnetic field up to 1000 G. First physics results have been analyzed and published. The next stage of the αω-dynamo experiment includes the DAQ system upgrade.

  18. CdS films deposited by chemical bath under rotation

    Energy Technology Data Exchange (ETDEWEB)

    Oliva-Aviles, A.I., E-mail: [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico); Patino, R.; Oliva, A.I. [Centro de Investigacion y de Estudios Avanzados Unidad Merida, Departamento de Fisica Aplicada. A.P. 73-Cordemex, 97310 Merida, Yucatan (Mexico)


    Cadmium sulfide (CdS) films were deposited on rotating substrates by the chemical bath technique. The effects of the rotation speed on the morphological, optical, and structural properties of the films were discussed. A rotating substrate-holder was fabricated such that substrates can be taken out from the bath during the deposition. CdS films were deposited at different deposition times (10, 20, 30, 40 and 50 min) onto Corning glass substrates at different rotation velocities (150, 300, 450, and 600 rpm) during chemical deposition. The chemical bath was composed by CdCl{sub 2}, KOH, NH{sub 4}NO{sub 3} and CS(NH{sub 2}){sub 2} as chemical reagents and heated at 75 deg. C. The results show no critical effects on the band gap energy and the surface roughness of the CdS films when the rotation speed changes. However, a linear increase on the deposition rate with the rotation energy was observed, meanwhile the stoichiometry was strongly affected by the rotation speed, resulting a better 1:1 Cd/S ratio as speed increases. Rotation effects may be of interest in industrial production of CdTe/CdS solar cells.

  19. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar. (United States)

    Hvas, Malthe; Folkedal, Ole; Imsland, Albert; Oppedal, Frode


    The Atlantic salmon is extensively studied owing to conservation concerns and its economic importance in aquaculture. However, a thorough report of their aerobic capacity throughout their entire thermal niche has not been described. In this study, Atlantic salmon (∼450 g) were acclimated for 4 weeks at 3, 8, 13, 18 or 23°C, and then tested in a large Brett-type swimming respirometer in groups of 10 per trial. Both standard metabolic rate and active metabolic rate continued to increase with temperature, which resulted in an aerobic scope that also increased with temperature, but was statistically similar between 13, 18 and 23°C. The critical swimming speed peaked at 18°C (93.1±1.2 cm s-1), and decreased significantly at the extreme temperatures to 74.8±0.5 and 84.8±1.6 cm s-1 at 3 and 23°C, respectively. At 23°C, the accumulated mortality reached 20% over 4 weeks, while no fish died during acclimation at colder temperatures. Furthermore, fish at 23°C had poor appetite and lower condition factor despite still having a high aerobic scope, suggesting that oxygen uptake was not the limiting factor in the upper thermal niche boundary. In conclusion, Atlantic salmon were able to maintain a high aerobic capacity and good swimming capabilities throughout the entire thermal interval tested, thus demonstrating a high level of flexibility in respiratory capacity towards different temperature exposures. © 2017. Published by The Company of Biologists Ltd.

  20. Resistance and Stock Propulsion on the High Speed Sealift (HSS) Hybrid Contra-Rotating Shaft-Pod (HCRSP) Concept, Model 5653-3A

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S; Slutsky, Jonathan


    .... The HCRSP concept consists of two pairs of contra-rotating propellers, where the forward propellers are arranged on conventional shaftlines, and the aft propellers are powered by propulsion pods...

  1. High energy milling of alumina synthesized by combustion reaction using attritor mill vertical axis: influence of rotation speed; Moagem de alta energia de alumina sintetizada por reacao de combustao utilizando moinho atritor de eixo vertical: influencia da velocidade de rotacao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.C. da; Silva, F.N.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Costa, G.B. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Producao; Freitas, N.L. de, E-mail: [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Tecnologia do Desenvolvimento


    The use of a reactive high energy milling for the synthesis of ceramic powders of metal oxides, carbides, borides, nitrides or mixtures of ceramics or ceramic and metal compounds have been widely reported. The objective of this study is to assess how high energy ball milling (not reactive) using different rotations, 300, 400 and 500 rpm, alter the structure and morphology of alpha-alumina powders synthesized by combustion reaction. Time and temperature of the combustion reaction has been reported for the synthesis of aluminas. The samples of unmilled and milled alumina were characterized by XRD, SEM and particle size analysis. The results showed that the maximum reaction temperature reached was 598°C. The variation of the rotation of the mill did not affect the majority alpha-Al2O3 by stable crystal phase all samples. The median particle diameter of the milled samples at different speeds decreased with respect to unground sample. (author)

  2. Design Method for Contra-Rotating Propellers for High-Speed Crafts: Revising the Original Lerbs Theory in a Modern Perspective

    Directory of Open Access Journals (Sweden)

    Stefano Brizzolara


    Full Text Available The main theoretical and numerical aspects of a design method for optimum contrar-rotating (CR propellers for fast marine crafts are presented. We propose a reformulated version of a well-known design theory for contra-rotating propellers, by taking advantage of a new fully numerical algorithm for the calculation of the mutually induced velocities and introducing new features such as numerical lifting surface corrections, use of an integrated modern cavitation/strength criteria, a modified method to consider different numbers of blades among the two propellers, and to allow for an unloading function in the search for the optimal circulation distribution. The paper first introduces the main theoretical principles of the new methods and then discusses the influence of the main design parameters on an emblematic example of application in the case of counter rotating propellers for a pod propulsor designed for fast planing crafts (35 knots and above.

  3. Modulation of the shape and speed of a chemical wave in an unstirred Belousov-Zhabotinsky reaction by a rotating magnet. (United States)

    Okano, Hideyuki; Kitahata, Hiroyuki


    The objective of this study was to observe whether a rotating magnetic field (RMF) could change the anomalous chemical wave propagation induced by a moderate-intensity gradient static magnetic field (SMF) in an unstirred Belousov-Zhabotinsky (BZ) reaction. The application of the SMF (maximum magnetic flux density = 0.22 T, maximum magnetic flux density gradient = 25.5 T/m, and peak magnetic force product (flux density × gradient) = 4 T(2) /m) accelerated the propagation velocity in a two-dimensional pattern. Characteristic anomalous patterns of the wavefront shape were generated and the patterns were dependent on the SMF distribution. The deformation and increase in the propagation velocity were diminished by the application of an RMF at a rotation rate of 1 rpm for a few minutes. Numerical simulation by means of the time-averaged value of the magnetic flux density gradient or the MF gradient force over one rotation partially supported the experimental observations. These considerations suggest that RMF exposure modulates the chemical wave propagation and that the degree of modulation could be, at least in part, dependent on the time-averaged MF distribution over one rotation. Bioelectromagnetics 34:220-230, 2013. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  4. Vortices in a 2d rotating Bose-Einstein condensate; Tourbillons dans un condensat de Bose-Einstein 2d en rotation

    Energy Technology Data Exchange (ETDEWEB)

    Ignat, R.; Millot, V. [Universite Pierre et Marie Curie, Lab. Jacques-Louis Lions, 75 - Paris (France)


    We investigate the physical model for a two dimensional rotating Bose-Einstein condensate. We minimize a Gross-Pitaevskii functional defined in R{sup 2} under the unit mass constraint. We estimate the critical rotational speeds {omega}{sub d} for having d vortices in the condensate and we determine the location of the vortices. This relies on an asymptotic expansion of the energy. (authors)

  5. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O (United States)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Lodi, Lorenzo; Mizus, Irina I.


    This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O containstwo components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system

  6. Comparative CFD study of the effect of the presence of downstream turbines on upstream ones using a rotational speed control system (United States)

    Breton, S.-P.; Nilsson, K.; Ivanell, S.; Olivares-Espinosa, H.; Masson, C.; Dufresne, L.


    The effect of a downstream turbine on the production of a turbine located upstream of the latter is studied in this work. This is done through the use of two CFD simulation codes, namely OpenFOAM and EllipSys3D, which solve the Navier-Stokes equations in their incompressible form using a finite volume approach. In both EllipSys3D and OpenFoam, the LES (Large Eddy Simulation) technique is used for modelling turbulence. The wind turbine rotors are modelled as actuator disks whose loading is determined through the use of tabulated airfoil data by applying the blade-element method. A generator torque controller is used in both simulation methods to ensure that the simulated turbines adapt, in terms of rotational velocity, to the inflow conditions they are submited to. Results from both simulation codes, although they differ slightly, show that the downstream turbine affects the upstream one when the spacing between the turbines is small. This is also suggested to be the case looking at measurements performed at the Lillgrund offshore wind farm, whose turbines are located unusually close to each other. However, for distances used in today's typical wind farms, this effect is shown by our calculations not to be significant.

  7. Low Speed Control for Automatic Welding (United States)

    Iceland, W. E.


    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  8. Optimum shape design of rotating shaft by ESO method

    Energy Technology Data Exchange (ETDEWEB)

    An, Young Su; Choi, Byeong Keun [Gyeongsang National University, Tongyoung (Korea, Republic of); Kim, Yong Han; Tan, Andy [Queensland University of Technology, Brisbane (Australia); Yang, Bo Suk [Pukyong National University, Busan (Korea, Republic of)


    Evolutionary structural optimization (ESO) method is based on a simple idea that the optimal structure can be produced by gradually removing the ineffectively used material from the design domain. ESO seems to have some attractive features in engineering aspects: simple and fast. In this paper, ESO is applied to optimize shaft shape for the rotating machinery by introducing variable size of finite elements in optimization procedure. The goal of this optimization is to reduce total shaft weight and resonance magnification factor (Q factor), and to yield the critical speeds as far from the operating speed as possible. The constraints include restrictions on critical speed, unbalance response and bending stresses. Sensitivity analysis of the system parameters is also investigated. The results show that new ESO method can be efficiently used to optimize the shape of rotor shaft system with frequency and dynamic constraints.

  9. Rotational seismology (United States)

    Lee, William H K.


    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.


    Directory of Open Access Journals (Sweden)

    M. M. Achmedov


    Full Text Available In work results of researches on development of a new way of determination of optimum frequency of rotation of cans at rotational sterilization are presented.Optimum frequencies of rotation for various product range are specified in various banks. It is established that the optimum speed of rotation of cans can be determined on the maximum speed of heating of a product in the least warmed up point.

  11. Development of a Rotating Magnetized Plasma Device (United States)

    Cooke, David; Patton, James; Reid, Remington; Stiles, Ashley; Morrison, Patrik; Koch, Andrei


    Momentum coupling in plasma is a mechanism that is central to a wide range of interesting and important phenomena, magnetosphere-ionosphere coupling, solar eruptions, the interaction of an electro-dynamic tether system in the Earth's ionosphere, and the Critical Ionization Velocity (CIV) mechanism are a few examples. One result of the Space Shuttle Tethered Satellite experiment, TSS-1R, was that the current-voltage response of the experiment in all orbit conditions fell into a narrow range of curves when parameterized as a plasma probe [Thompson, GRL,1998]. Another striking result was the lack of dependence on the Alfvén velocity or other electro-magnetic parameters. This result has led us to revisit the understanding of the speed with which an electric field propagates along the magnetic field using EM-PIC simulation and experiments in our new magnetized plasma chamber. Our initial experiment is a rotating plasma using a solenoidal magnetic field and a radial electric field, with pulsed differential rotation of the plasma column to study the strength of coupling and propagation speed. Characteristics of our `first light' rotating plasma will be presented. Supported by Air Force Office Scientific Research 16RVCOR264.

  12. Are degenerative rotator cuff disorders a cause of shoulder pain? Comparison of prevalence of degenerative rotator cuff disease to prevalence of nontraumatic shoulder pain through three systematic and critical reviews. (United States)

    Vincent, Karl; Leboeuf-Yde, Charlotte; Gagey, Olivier


    The role of degeneration is not well understood for rotator cuff pain. If age-related degenerative changes would be the cause of symptoms, degeneration would precede or concur with self-reported pain. We performed 3 systematic literature reviews. Our objectives were to determine the prevalence estimates for rotator cuff partial or complete tears (1) in cadavers and (2) in the general population and (3) to estimate the incidence/prevalence of self-reported nontraumatic shoulder pain in the general population in order to compare their respective age-related profiles. We searched PubMed and ScienceDirect, including 2015, for cadaveric studies and transverse and longitudinal studies of the general population reporting the incidence/prevalence of rotator cuff disorders or nontraumatic shoulder pain, or both, according to age. The review process followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Results were interpreted visually. We found 6 cadaveric studies, 2 studies from the general population reporting complete tears, and 10 articles on nontraumatic shoulder pain in the general population that met our criteria. The profiles of degeneration vs. pain were very similar in early years. Although degenerative rotators cuff lesions increased gradually after 50 years, the incidence/prevalence of nontraumatic shoulder pain decreased after 65 years. The profile of age-related degenerative rotator cuff disorders fails to correlate systematically with self-reported nontraumatic shoulder pain, particularly in older age; thus, it appears that degeneration should not be considered the primary source of the pain. Physical activity may play an important role in the production of the pain, a theory that warrants further study. Copyright © 2017. Published by Elsevier Inc.

  13. HIGH SPEED CAMERA (United States)

    Rogers, B.T. Jr.; Davis, W.C.


    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  14. Strain effects on rotational property in nanoscale rotation system. (United States)

    Huang, Jianzhang; Han, Qiang


    This paper presents a study of strain effects on nanoscale rotation system consists of double-walls carbon nanotube and graphene. It is found that the strain effects can be a real-time controlling method for nano actuator system. The strain effects on rotational property as well as the effect mechanism is studied systematically through molecular dynamics simulations, and it obtains valuable conclusions for engineering application of rotational property management of nanoscale rotation system. It founds that the strain effects tune the rotational property by influencing the intertube supporting effect and friction effect of double-walls carbon nanotube, which are two critical factors of rotational performance. The mechanism of strain effects on rotational property is investigated in theoretical level based on analytical model established through lattice dynamics theory. This work suggests great potentials of strain effects for nanoscale real-time control, and provides new ideas for design and application of real-time controllable nanoscale rotation system.

  15. Rotating electrical machines

    CERN Document Server

    Le Doeuff, René


    In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

  16. Velocidade crítica em natação: fundamentos e aplicação Critical speed in swimming: theoretical basis and application

    Directory of Open Access Journals (Sweden)

    Marcos Franken


    Full Text Available O objetivo deste artigo foi efetuar uma revisão da origem do conceito e da aplicação da velocidade crítica (VC na natação. Em relação ao significado fisiológico, aumentos substanciais de alguns marcadores fisiológicos (concentração de lactato, consumo de oxigênio e frequência cardíaca foram observados durante esforços em intensidade retangular à VC, sugerindo que esta se situe acima do limiar anaeróbio e também da máxima fase estável de lactato. É sugerido que a VC seja influenciada por alguns fatores como: (1 utilização de diferentes combinações de distâncias para a sua determinação; (2 diferentes faixas etárias e (3 nível de experiência do nadador. Pode-se concluir que a VC é um adequado parâmetro para o controle dos efeitos do treinamento, e pode ser obtida de maneira simples em relação a outras formas de controle. No entanto, sua utilização como ferramenta para a predição do desempenho em natação ainda necessita ser melhor investigada.The aim of this paper was to review the origin of the critical speed (CS concept and how it may be applied to swimming. Regarding the physiological significance, substantial increases in some physiological markers (blood lactate, oxygen consumption and heart rate were observed in rectangular intensity efforts during the CS, suggesting that this is above the anaerobic threshold and the maximal steady state lactate. Factors influencing CS are thought to include (1 using different combinations of distances used in the test to determine CS, (2 age of the individual, and (3 the swimmer's level of experience. It can be concluded that the CS represents an adequate tool for controlling training intensity and has the benefit of being comparatively simple to measure in relation to others forms of control. However, use of CS as a tool for predicting performance in swimming still needs further investigation.

  17. Rotating Wavepackets (United States)

    Lekner, John


    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  18. Rotational elasticity (United States)

    Vassiliev, Dmitri


    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint

  19. High Speed Ice Friction (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben


    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  20. Marginal deformations & rotating horizons (United States)

    Anninos, Dionysios; Anous, Tarek; D'Agnolo, Raffaele Tito


    Motivated by the near-horizon geometry of four-dimensional extremal black holes, we study a disordered quantum mechanical system invariant under a global SU(2) symmetry. As in the Sachdev-Ye-Kitaev model, this system exhibits an approximate SL(2, ℝ) symmetry at low energies, but also allows for a continuous family of SU(2) breaking marginal deformations. Beyond a certain critical value for the marginal coupling, the model exhibits a quantum phase transition from the gapless phase to a gapped one and we calculate the critical exponents of this transition. We also show that charged, rotating extremal black holes exhibit a transition when the angular velocity of the horizon is tuned to a certain critical value. Where possible we draw parallels between the disordered quantum mechanics and charged, rotating black holes.

  1. Disentangling rotational velocity distribution of stars (United States)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra


    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  2. The Using of Scientific Based Physics Module in Learning to Enhance High School Students’ Critical Thinking Skills on Rotation Dynamics and Equilibrium of Rigid Body

    Directory of Open Access Journals (Sweden)

    Dhimas Nur Setyawan


    Full Text Available The purpose of this study was to determine the effectiveness of using a scientific based physics module to improve high school students' critical thinking skills. This study is a quasi experimental study which uses two classes taken at random experiment consists of one class and the control class. Class experiments using the scientific study using scientific-based modules and classroom experiments using books that have been owned by students. Experimental class numbered 25 students and control class numbered 28 students. The research was conducted in the first half (one Academic Year 2016/2017. The method used is the test method with a pretest-posttest design. Data were analyzed with quantitative and qualitative methods. Data were analyzed using a pretest form of the homogeneity test to find out that the experimental class and controls used homogeneous. Posttest results were analyzed using normality test to determine the normally distributed data, N-gain to determine the increase critical thinking skills, as well as test two parties not bound to determine whether or not there is a difference in the increase in critical thinking skills. Conclusions and recommendations are the use of scientifically-based modules effectively improve the ability to think critically and use physics-based scientific modules should be adjusted to the prevailing syllabus and curriculum so that learning can take place properly.

  3. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV. Energy levels and transition wavenumbers for D216O, D217O, and D218O (United States)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Dénes, Nóra; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Hu, Shui-Ming; Szidarovszky, Tamás; Vasilenko, Irina A.


    This paper is the fourth of a series of papers reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: D216O, D217O, and D218O. The MARVEL (Measured Active Rotational-Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-14 016, 0-7969, and 0-9108 cm-1 for D216O, D217O, and D218O, respectively. For D216O, D217O, and D218O, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for D216O, D217O, and D218O, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm-1, from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved.

  4. Speed mathematics

    CERN Document Server

    Handley, Bill


    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  5. Think Spatial: The Representation in Mental Rotation Is Nonvisual (United States)

    Liesefeld, Heinrich R.; Zimmer, Hubert D.


    For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information…

  6. Polygons on a rotating fluid surface

    DEFF Research Database (Denmark)

    Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.


    We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

  7. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah


    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  8. Implementation of PMSM speed control software based on CAN bus (United States)

    Cao, Wenlun; Chen, Bei; He, Yuyao


    In this paper, the driver's hardware structure based on TMS320F28335 is introduced, the control software flow of host computer based on CAN bus is designed, the rule of CAN communication protocol is fulfilled and accordingly the hybrid programming is realized in the background of low speed and large sinusoid operation. This system can realize the CAN communication setting, download the PID parameters to DSP, operate at constant rotate speed and at given large sinusoid rotate speed. Meanwhile the dynamical monitoring and alarm are implemented. Finally the real-time display and storage of measured current, voltage and rotate speed are completed well.

  9. Broadband Rotational Spectroscopy (United States)

    Pate, Brooks


    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  10. Rotator Cuff Exercises (United States)

    ... Home Prevention and Wellness Exercise and Fitness Injury Rehabilitation Rotator Cuff Exercises Rotator Cuff Exercises Share Print Rotator Cuff ... Best Rotator Cuff ExercisesNational Institutes of Health: MedlinePlus, ... and WellnessTags: Exercise Prescription, prevention, Shoulder Problems, ...

  11. Simultaneity on the Rotating Disk (United States)

    Koks, Don


    The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".

  12. Evolution of temporal disturbances in the boundary layer over a rotating disk (United States)

    Othman, Hesham; Corke, Thomas


    Small amplitude (linear) temporal disturbances are introduced into a laminar boundary layer on a rotating disk using a micro pulsed air jet. The rotating disk facility consists of a polished aluminum disk mounted on an air-bearing with an integrated dc-motor. An optical encoder feedback maintains a constant rotation speed to within 0.003%, and provides a reference for disk rotation ensemble averaging. The micro-jet is suspended above the disk with the jet flow directed downward towards the disk surface. The time duration of the jet pulse is much shorter than the disk rotation period and results in an azimuthally-narrow cross-flow instability wave packet. The evolution of the wave packet is measured with a hot wire sensor. Both the location of the micro-jet and hot wire sensor move independently so that their locations with respect to critical linear and absolute instability radii can be varied. Both stationary (with respect to the disk rotation frame) and traveling disturbances are followed along constant angle spiral arcs representative of the cross-flow modes. Their evolution is analyzed for evidence of temporal growth associated with an absolute instability.

  13. Rotating Wheel Wake (United States)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer


    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  14. Full Dynamic Ball Bearing Model with Elastic Outer Ring for High Speed Applications

    Directory of Open Access Journals (Sweden)

    Christian Wagner


    Full Text Available Ball bearings are commonly used in high speed turbomachinery and have a critical influence on the rotordynamic behavior. Therefore, a simulation model of the bearing to predict the dynamic influence is essential. The presented model is a further step to develop an accurate and efficient characterization of the ball bearing’s rotor dynamic parameters such as stiffness and deflections as well as vibrational excitations induced by the discrete rolling elements. To make it applicable to high speed turbomachinery, the model considers centrifugal forces, gyroscopic effects and ball spinning. The consideration of an elastic outer ring makes the bearing model suitable for integrated lightweight bearing constructions used in modern aircraft turbines. In order to include transient rotordynamic behavior, the model is built as a full dynamic multibody simulation with time integration. To investigate the influence of the elasticity of the outer ring, a comparison with a rigid formulation for several rotational speeds and loads is presented.

  15. Low speed phaselock speed control system. [for brushless dc motor (United States)

    Fulcher, R. W.; Sudey, J. (Inventor)


    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  16. Visual perception of axes of head rotation

    Directory of Open Access Journals (Sweden)

    David Mattijs Arnoldussen


    Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into

  17. A method to deconvolve stellar rotational velocities (United States)

    Curé, Michel; Rial, Diego F.; Christen, Alejandra; Cassetti, Julia


    Aims: Rotational speed is an important physical parameter of stars, and knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle v sin i. Methods: We developed a method to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities extending the work of Chandrasekhar & Münch (1950, ApJ, 111, 142) Results: This method is applied: a) to theoretical synthetic data recovering the original velocity distribution with a very small error; and b) to a sample of about 12.000 field main-sequence stars, corroborating that the velocity distribution function is non-Maxwellian, but is better described by distributions based on the concept of maximum entropy, such as Tsallis or Kaniadakis distribution functions. Conclusions: This is a very robust and novel method that deconvolves the rotational velocity cumulative distribution function from a sample of v sin i data in a single step without needing any convergence criteria.

  18. Modeling and Dynamical Behavior of Rotating Composite Shafts with SMA Wires

    Directory of Open Access Journals (Sweden)

    Yongsheng Ren


    Full Text Available A dynamical model is developed for the rotating composite shaft with shape-memory alloy (SMA wires embedded in. The rotating shaft is represented as a thin-walled composite of circular cross-section with SMA wires embedded parallel to shaft’s longitudinal axis. A thermomechanical constitutive equation of SMA proposed by Brinson is employed and the recovery stress of the constrained SMA wires is derived. The equations of motion are derived based on the variational-asymptotical method (VAM and Hamilton’s principle. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the Galerkin method. The model incorporates the transverse shear, rotary inertia, and anisotropy of composite material. Numerical results of natural frequencies and critical speeds are obtained. It is shown that the natural frequencies of the nonrotating shaft and the critical rotating speed increase as SMA wire fraction and initial strain increase and the increase in natural frequencies becomes more significant as SMA wire fraction increases. The initial strain of SMA wires appears to have marginal effect on dynamical behaviors of the shaft. The actuation performance of SMA wires is found to be closely related to the ply-angle.

  19. Rigidity of critical circle maps


    Guarino, Pablo; Martens, Marco; de Melo, Welington


    We prove that any two $C^4$ critical circle maps with the same irrational rotation number and the same odd criticality are conjugate to each other by a $C^1$ circle diffeomorphism. The conjugacy is $C^{1+\\alpha}$ for Lebesgue almost every rotation number.

  20. Analysis of counter-rotating wind turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zakkam, Vinod Arun Kumar; Sørensen, Jens Nørkær


    -Stokes code EllipSys3D. The analysis shows that the Annual Energy Production can be increased to about 43.5 %, as compared to a wind turbine with a single rotor. In order to determine the optimal settings of the CRWT turbine, parameters such as distance between two rotors and rotational speed have been......This paper presents a study on the performance of a wind turbine with two counter-rotating (CRWT) rotors. The characteristics of the two counter-rotating rotors are on a 3-bladed Nordtank 500 kW rotor. The analysis has been carried out by using an Actuator Line technique implemented in the Navier...

  1. Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing (United States)

    He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin

    In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds

  2. Rotating Cavitation Supression Project (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating cavitation,...

  3. Numerical simulation of turbulent flow between shrouded contra-rotating disks

    Directory of Open Access Journals (Sweden)

    Shu-Xian Chen


    Full Text Available The turbulent flow between shrouded contra-rotating disks was numerically studied with a two-layer turbulence model and a modified Launder–Sharma low-Reynolds number k-ε model. The dissipation rate decrease caused by solid body rotation was considered in the second model. The comparisons of the effectiveness between these two turbulence models for capturing the critical radius of flow structure transition and reproducing the flow velocity measurements data were presented. For the flow between shrouded disks rotating at the same speed but in opposite senses, that is, the angular velocity ratio of the two disks equals to −1, the Stewartson-type flow structure is found in the cavity. For the flow with one disk rotating more slowly than the other, Stewartson-type flow coexists with Batchelor-type flow, that is, Batchelor-type flow occurs radially outward of the stagnation point where two opposing boundary layer flows meet, and Stewartson-type flow occurs radially inward. The stagnation points near the slower disk move radially outward as the angular velocity ratio decreases toward −1. Theory of rotating fluids with the presence of centrifugal and Coriolis forces stemming from the disk rotation is employed to manifest the flow structure transition mechanisms as the rotation ratio of the disks is varied. The source of the earlier transition to turbulent flow in counter-rotating disk cavity compared with rotor-stator disk cavity is also explained through the research of instability of the flowing free shear layer formed by the counter secondary circulations. With the aid of the numerical results obtained from the two turbulence models, it is found that a more turbulent flow in the core can destroy the Batchelor-type flow and creates a larger Stewartson-type flow region.

  4. Shoulder proprioception is not related to throwing speed or accuracy in elite adolescent male baseball players. (United States)

    Freeston, Jonathan; Adams, Roger D; Rooney, Kieron


    Understanding factors that influence throwing speed and accuracy is critical to performance in baseball. Shoulder proprioception has been implicated in the injury risk of throwing athletes, but no such link has been established with performance outcomes. The purpose of this study was to describe any relationship between shoulder proprioception acuity and throwing speed or accuracy. Twenty healthy elite adolescent male baseball players (age, 19.6 ± 2.6 years), who had represented the state of New South Wales in the past 18 months, were assessed for bilateral active shoulder proprioception (shoulder rotation in 90° of arm abduction moving toward external rotation using the active movement extent discrimination apparatus), maximal throwing speed (MTS, meters per second measured via a radar gun), and accuracy (total error in centimeters determined by video analysis) at 80 and 100% of MTS. Although proprioception in the dominant and nondominant arms was significantly correlated with each other (r = 0.54, p proprioception and performance. Shoulder proprioception was not a significant determinant of throwing performance such that high levels of speed and accuracy were achieved without a high degree of proprioception. There is no evidence to suggest therefore that this particular method of shoulder proprioception measurement should be implemented in clinical practice. Consequently, clinicians are encouraged to consider proprioception throughout the entire kinetic chain rather than the shoulder joint in isolation as a determining factor of performance in throwing athletes.

  5. Capacity for visual features in mental rotation (United States)

    Xu, Yangqing; Franconeri, Steven L.


    Although mental rotation is a core component of scientific reasoning, we still know little about its underlying mechanism. For instance - how much visual information can we rotate at once? Participants rotated a simple multi-part shape, requiring them to maintain attachments between features and moving parts. The capacity of this aspect of mental rotation was strikingly low – only one feature could remain attached to one part. Behavioral and eyetracking data showed that this single feature remained ‘glued’ via a singular focus of attention, typically on the object’s top. We argue that the architecture of the human visual system is not suited for keeping multiple features attached to multiple parts during mental rotation. Such measurement of the capacity limits may prove to be a critical step in dissecting the suite of visuospatial tools involved in mental rotation, leading to insights for improvement of pedagogy in science education contexts. PMID:26174781

  6. Deformation of a Quantum Many-Particle System by a Rotating Impurity

    Directory of Open Access Journals (Sweden)

    Richard Schmidt


    Full Text Available During the past 70 years, the quantum theory of angular momentum has been successfully applied to describing the properties of nuclei, atoms, and molecules, and their interactions with each other as well as with external fields. Because of the properties of quantum rotations, the angular-momentum algebra can be of tremendous complexity even for a few interacting particles, such as valence electrons of an atom, not to mention larger many-particle systems. In this work, we study an example of the latter: a rotating quantum impurity coupled to a many-body bosonic bath. In the regime of strong impurity-bath couplings, the problem involves the addition of an infinite number of angular momenta, which renders it intractable using currently available techniques. Here, we introduce a novel canonical transformation that allows us to eliminate the complex angular-momentum algebra from such a class of many-body problems. In addition, the transformation exposes the problem’s constants of motion, and renders it solvable exactly in the limit of a slowly rotating impurity. We exemplify the technique by showing that there exists a critical rotational speed at which the impurity suddenly acquires one quantum of angular momentum from the many-particle bath. Such an instability is accompanied by the deformation of the phonon density in the frame rotating along with the impurity.

  7. Rotation sensing with trapped ions (United States)

    Campbell, W. C.; Hamilton, P.


    We present a protocol for rotation measurement via matter-wave Sagnac interferometry using trapped ions. The ion trap based interferometer encloses a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without contrast loss. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, Doppler laser cooling should be sufficient to reach a sensitivity of { S }=1.4× {10}-6 {{rad}} {{{s}}}-1 {{{H}}{{z}}}-1/2. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Wes Campbell was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  8. Effects of Friction Stir Welding Speed on AA2195 alloy

    Directory of Open Access Journals (Sweden)

    Lee Ho-Sung


    Full Text Available The application of friction stir welding (FSW to aerospace has grown rapidly due to the high efficiency and environmental friendly nature of the process. FSW is achieved by plastic flow of frictionally heated material in solid state and offers many advantages of avoiding hot cracking and limiting component distortion. Recently low density, high modulus and high strength AA2195 are used as substitute for conventional aluminum alloys since the weight saving is critical in aerospace applications. One of the problems for this alloy is weld metal porosity formation leading to hot cracking. Combination of FSW and AA2195 provides synergy effect to improve mechanical properties and weight saving of aerospace structure such as cryogenic fuel tanks for launch systems. The objective of this paper is to investigate the effect of friction stir welding speed on mechanical and microstructural properties of AA2195. The friction stir welded materials were joined with four different tool rotation speeds (350~800 rpm and five welding speeds (120~360 mm/min, which are the two prime welding parameters in this process.

  9. Dynamically possible pattern speeds of double bars


    Maciejewski, Witold


    The method to study oscillating potentials of double bars, based on invariant loops, is introduced here in a new way, intended to be more intelligible. Using this method, I show how the orbital structure of a double-barred galaxy (nested bars) changes with the variation of nuclear bar's pattern speed. Not all pattern speeds are allowed when the inner bar rotates in the same direction as the outer bar. Below certain minimum pattern speed orbital support for the inner bar abruptly disappears, w...

  10. Rotationally Vibrating Electric-Field Mill (United States)

    Kirkham, Harold


    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  11. Control design for axial flux permanent magnet synchronous motor which operates above the nominal speed

    Directory of Open Access Journals (Sweden)

    Xuan Minh Tran


    Full Text Available The axial flux permanent magnet synchronous motor (AFPM motor using magnet bearings instead of ball-bearings at both two shaft ends could allow rotational speed of shaft much greater than nominal speed. One of the solutions to increase motor speed higher than its nameplate speed is reducing rotor’s pole magnetic flux of rotor (Yp. This paper proposes a method to boost the speed of AFPM motor above nominal speed by adding a reversed current isd of (Yp.

  12. Propagation of waves in a gravitating and rotating anisotropic heat ...

    African Journals Online (AJOL)


    propagations become anti-symmetric. It is illustrated that the phase speed of the forward propagating mode increases with increasing drift and the backward propagating mode decreases with increasing drift. In this particular direction of propagation and axis of rotation, this wave mode is also independent of rotation ...

  13. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng


    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  14. The effect of changing disk parameters on whirling frequency of high speed rotor system (United States)

    Wahab, A. M. Abdul; Rasid, Z. A.; Abu, A.; Rudin, N. F. Mohd Noor; Yakub, F.


    The requirement for efficiency improvement of machines has caused machine rotor to be designed to rotate at high speeds. It is known that whirling natural frequency of a shaft changes with the change of shaft speed and the design needs to avoid points of resonance where the whirling frequency equals the shaft speed. At high speeds, a shaft may have to carry a huge torque along and this torsional effect has been neglected in past shaft analyses. Whirling behaviour of high speed rotating shaft is investigated in this study with consideration of the torsional effect of the shaft. The shaft system under study consists of a shaft, discs and two bearings, and the focus is on the effect of the disc parameters. A finite element formulation is developed based on Nelson’s 5 degrees of freedom (DOF) per node element that includes the torsional degree of freedom. Bolotin’s method is applied to the derived Mathieu-Hill type of equation to get quadratic eigenvalues problem that gives the forward and backward frequencies of the shaft. Campbell’s diagrams are drawn in studying the effect of discs on the whirling behaviour of the shaft. It is found that the addition of disks on the shaft decreases the whirling frequency of the shaft and the frequency is lower for mass located at the centre of the shaft compared to the one located near to the end. The effect of torsional motion is found to be significant where the difference between critical speed of 4DOF and 5DOF models can be as high as 15%.

  15. Rotational Twin Paradox (United States)

    Smarandache, Florentin


    Two twins settle on a massive spherical planet at a train station S. Let's consider that each twin has an accompanying clock, and the two clocks are synchronized. One twin T1 remains in the train station, while the other twin T2 travels at a uniform high speed with the train around the planet (on the big circle of the planet) until he gets back to the same train station S. Assume the planet is not rotating. Since the planet is massive, we can consider that on a very small part on its surface the train rail road is linear, so the train is in a linear uniform motion. The larger is the planet's radius the more the rail road approaches a linear trajectory. Because the GPS clocks are alleged to be built on the Theory of Relativity, one can consider the twin T2 train's circular trajectory alike the satellite's orbit. In addition, the gravitation is the same for the reference frames of T1 and T2. Each twin sees the other twin as traveling, therefore each twin finds the other one has aged slower than him. Thus herein we have a relativistic symmetry. When T2 returns to train station S, he finds out that he is younger than T1 (therefore asymmetry). Thus, one gets a contradiction between symmetry and asymmetry.

  16. Competition between axisymmetric and three-dimensional patterns between exactly counter-rotating disks (United States)

    Nore, C.; Martin Witkowski, L.; Foucault, E.; Pécheux, J.; Daube, O.; Le Quéré, P.


    The bifurcations and the nonlinear dynamics of the von Kármán swirling flow between exactly counter-rotating disks in a stationary cylinder are numerically and experimentally investigated. The dynamics are governed by two parameters, the radius-to-height ratio A =R/H and the Reynolds number, Re, based on disk rotation speed and cylinder height. The stability analysis performed for 2⩽A⩽20 shows that nonaxisymmetric and axisymmetric modes can be stationary or time dependent in this range. Three-dimensional modes are dominant for A ⩽13.25 while axisymmetric modes are critical for A >13.25. The patterns of the dominant perturbations are analyzed. In the particular case of A =15, nonlinear computations are performed at Reynolds numbers slightly above threshold and are compared to experimental results, showing the competition between axisymmetric and three-dimensional modes.

  17. Generation speed in Raven's Progressive Matrices Test

    NARCIS (Netherlands)

    Verguts, T.; Boeck, P. De; Maris, E.G.G.


    In this paper, we investigate the role of response fluency on a well-known intelligence test, Raven's (1962) Advanced Progressive Matrices (APM) test. Critical in solving this test is finding rules that govern the items. Response fluency is conceptualized as generation speed or the speed at which a

  18. The Concept of Speed Applied to Rigid Bodies in Rotation: Same alternative conceptions, varied interpretations O Conceito de Velocidade Aplicado em Corpos Rígidos em Rotação: mesmas concepções alternativas, variadas interpretações

    Directory of Open Access Journals (Sweden)

    Marcelo Alves Barros


    Full Text Available This work presents an investigation where some alternative conceptions are the origin and the processing of varied interpretations. As for that, it was proposed to high school students the resolution of certain problems that involved rigid bodies in constant rotation. These problems should be analysed within the perspective of the speed concept, which was previously known by the students, but abandoned by the explanations generated by the alternative conceptions.Este trabalho apresenta uma investigação em que algumas concepções alternativas são a origem e o desencadeamento de variadas interpretações. Para isso, foram propostos a alunos do ensino médio a resolução de determinados problemas que envolviam corpos rígidos em rotação constante. Estes problemas deveriam ser analisados dentro da perspectiva do conceito de velocidade, previamente conhecido dos alunos, mas abandonado pelas explicações geradas pelas concepções alternativas.

  19. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    DEFF Research Database (Denmark)

    Hu, Weihao; Zhang, Yunqian; Chen, Zhe


    Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG......) developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution) power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous...... operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power...

  20. Fourier analysis for rotating-element ellipsometers. (United States)

    Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo


    We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.

  1. Design and Characterization of a Novel Rotating Corrugated Drum Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Sarah M. Meunier


    Full Text Available A novel photoreactor system consisting of a TiO2-coated corrugated drum and a UV light source is experimentally characterized for the treatment of phenol-polluted wastewaters. The design incorporates periodic illumination and increased agitation through the introduction of rotation. The effects ofrent degrees and flat fins to increase surface area, varying rotational speed, initial pollutant concentration, and illumination intensities were studied. The corrugated and finned drums did not exhibit a critical rotational speed, indicating that there is excellent mass transfer in the system. A Langmuir-Hinshelwood kinetic analysis was applied to the degradation, and an average adsorption coefficient of K=0.120 L/mg was observed. The overall reaction rate increased with increasing surface area from 0.046 mg/L/min for the annular drum to 0.16 mg/L/min for the 40-fin drum. The apparent photonic efficiency was found to increase with increasing surface area at a faster rate for the corrugations than for the fin additions. The energy efficiency (EE/O found for the drums varied from 380–550 kWh/m3, which is up to 490% more energy-efficient than the annular drum.

  2. Relationship of frontal plane rotation of first metatarsal to proximal articular set angle and hallux alignment in patients undergoing tarsometatarsal arthrodesis for hallux abducto valgus: a case series and critical review of the literature. (United States)

    Dayton, Paul; Feilmeier, Mindi; Kauwe, Merrell; Hirschi, Jordan


    Rotation of the first metatarsal, as a component of hallux abducto valgus, is rarely discussed and is not addressed as a component of most hallux valgus corrective procedures. We believe frontal plane rotation of the first metatarsal to be an integral component of hallux abducto valgus deformity (the "third plane of deformity") and believe de-rotation is necessary for complete deformity correction. We observed the change in angular measurements commonly used in the evaluation of hallux valgus deformity in patients who underwent a modified lapidus procedure. We measured the intermetatarsal angle, hallux abductus angle, proximal articular set angle, and tibial sesamoid position on weightbearing radiographs of 25 feet in 24 patients who had undergone tarsal metatarsal corrective arthrodesis and lateral capsular release. Specific attention was given to reduction of the frontal plane rotation of the first metatarsal during correction. Our results showed a change in the angular measurements observed by 4 investigators as follows. The mean change in the intermetatarsal angle was 10.1° (p hallux abductus angle was 17.8° (p valgus, or everted position of the first metatarsal, was noted as a component of the hallux abducto valgus deformity in our patient population and was corrected by varus rotation or inversion of the metatarsal. We also reviewed the current literature related to anatomic changes in the first ray in the patient with hallux valgus deformity and reviewed our hypothesis regarding the reduction in the proximal articular set angle, which we believe to be related to frontal plane rotation of the first metatarsal, resulting in a radiographic artifact. Copyright © 2013. Published by Elsevier Inc.


    NARCIS (Netherlands)



    We have used the Tremaine-Weinberg method to measure the angular speed of rotation for the bar in the SBO galaxy NGC 936. With this technique, the bar's pattern speed, Omega(p), can be derived from the luminosity and stellar-kinematic information in long-slit spectral observations taken parallel to

  4. Rotational Preference in Gymnastics

    National Research Council Canada - National Science Library

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos


    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference...

  5. On continuum driven winds from rotating stars


    Shacham, Tomer; Shaviv, Nir J.


    We study the dynamics of continuum driven winds from rotating stars, and develop an approximate analytical model. We then discuss the evolution of stellar angular momentum, and show that just above the Eddington limit, the winds are sufficiently concentrated towards the poles to spin up the star. A twin-lobe structure of the ejected nebula is seen to be a generic consequence of critical rotation. We find that if the pressure in such stars is sufficiently dominated by radiation, an equatorial ...

  6. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  7. Optimization Design of the Ultra-High-Speed Vertical Rotor’s Supporting Mechanism

    Directory of Open Access Journals (Sweden)

    Yongguang Liu


    Full Text Available How to increase the rotational speed and decrease vibration of the rotor in the acceleration has become an attractive subject, especially for the vertical rotors. This paper introduces a novel supporting mechanism to make the vertical rotor work at 80000 r/min smoothly. How to design and optimize the sensitive parameters of the supporting mechanism is the core problem to reduce the vibration in passing through critical speeds. Therefore, the FEM (finite element method considering the gyroscopic couple is introduced to get the dynamic characteristic of the rotor system. The matching principle of the upper and lower supporting mechanism in the two-degree freedom system is extended to the multiple degree-freedom system, which is applied to optimize the parameters of the supporting mechanism combining with dynamic characteristic of the rotors system. At last, the rotor system can work at 80000 r/min smoothly in experiment.

  8. The Stability of Magnetized Rotating Plasmas with Superthermal Fields

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Psaltis, Dimitrios


    During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper, we investigate the local linear stability of differentially...... modes are subject to instabilities. We find that, for rotating configurations with Keplerian laws, the magnetorotational instability is stabilized at low wavenumbers for toroidal Alfven speeds exceeding the geometric mean of the sound speed and the rotational speed. We discuss the significance of our...

  9. Experimental study of a rotating packed bed distillation column

    Directory of Open Access Journals (Sweden)

    J. V. S. Nascimento


    Full Text Available The purpose of this work was to study the mass transfer performance of rotating packed beds applying the "Higee" process. The operations were carried out with the n-hexane/n-heptane distilling system at atmospheric pressure and under total reflux conditions. The rotating speed could be varied between 300 and 2500 rpm, which provided centrifugal forces from 5 to 316 times the Earth's gravity. The effects of concentration, vapor velocity, rotating speed and packing type (two different Raschig ring sizes and structured wire mesh packing on mass transfer behavior were analyzed. Experimental results showed that the mass transfer coefficient depends on the liquid flow rates and rotating speed. The equipment had high separation efficiency in a reduced bed volume.

  10. A novel method for sensing rotational speed, linear displacement ...

    Indian Academy of Sciences (India)

    The second harmonic response of sintered superconducting BPSCCO pellet in an alternating magnetic field at 40 kHz and 77 K being a strong linear function of low d.c. magnetic field has been utilized for the development of highly sensitive magnetic field sensors. The noise limited resolution of the sensor is found to be ...

  11. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.


    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  12. Galaxy cluster's rotation (United States)

    Manolopoulou, M.; Plionis, M.


    We study the possible rotation of cluster galaxies, developing, testing, and applying a novel algorithm which identifies rotation, if such does exist, as well as its rotational centre, its axis orientation, rotational velocity amplitude, and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z ≲ 0.1 with member galaxies selected from the Sloan Digital Sky Survey DR10 spectroscopic data base. After excluding a number of substructured clusters, which could provide erroneous indications of rotation, and taking into account the expected fraction of misidentified coherent substructure velocities for rotation, provided by our Monte Carlo simulation analysis, we find that ∼23 per cent of our clusters are rotating under a set of strict criteria. Loosening the strictness of the criteria, on the expense of introducing spurious rotation indications, we find this fraction increasing to ∼28 per cent. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation within 1.5 h^{-1}_{70} Mpc that the significance of their rotation is related to the dynamically younger phases of cluster formation but after the initial anisotropic accretion and merging has been completed. Finally, finding rotational modes in galaxy clusters could lead to the necessity of correcting the dynamical cluster mass calculations.

  13. High speed data converters

    CERN Document Server

    Ali, Ahmed MA


    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  14. Confirmation of bistable stellar differential rotation profiles (United States)

    Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.


    Context. Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can also result in a slower equator and faster poles when the overall rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We also estimate the non-diffusive (Λ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. To avoid this problem while still representing the same rotational influence on the flow as in the Sun, we increase the luminosity by a factor of roughly 106 and the rotation rate by a factor of 102. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. The anti-solar profiles are found to be more stable against perturbations in the level of convective turbulent velocity than the solar-type solutions. Conclusions: Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main

  15. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos


    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  16. The Application of Counter-Rotating Turbine in Rocket Turbopump

    Directory of Open Access Journals (Sweden)

    Tang Fei


    Full Text Available Counter rotating turbine offers advantages on weight, volume, efficiency, and maneuverability relative to the conventional turbine because of its special architecture. Nowadays, it has been a worldwide research emphasis and has been used widely in the aeronautic field, while its application in the astronautic field is seldom investigated. Researches of counter rotating turbine for rocket turbopump are reviewed in this paper. A primary analysis of a vaneless counter rotating-turbine configuration with rotors of different diameters and rotational speeds is presented. This unconventional configuration meets the requirements of turbopump and may benefit the performance and reliability of rocket engines.

  17. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard


    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...... than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy...

  18. Índices técnicos correspondentes à velocidade crítica e à máxima velocidade de 30 minutos em nadadores com diferentes níveis de performance aeróbia Technical indexes corresponding to the critical speed and the maximal speed of 30 minutes in swimmers with different aerobic performance levels

    Directory of Open Access Journals (Sweden)

    Jailton Gregório Pelarigo


    was to verify the effect of aerobic performance level on the relationship between the technical indexes corresponding to critical speed (CS and maximal speed of 30 minutes (S30 in swimmers. Participated of this study 23 male swimmers with similar anthropometric characteristics, divided by aerobic performance level in groups G1 (n = 13 and G2 (n = 10. They had at least four years of experience in the modality and a weekly training volume between 30,000 to 45,000 m. The CS was determined through the angular coefficient of the linear regression line between the distances (200 and 400 m and respective times. The S30 was determined through the maximal distance covered in a 30 minutes test. All variables were determined in front crawl. CS was higher than S30 in G1 (1.30 ± 0.04 vs. 1.23 ± 0.06 m.s-1 and G2 (1.17 ± 0.08 vs. 1.07 ± 0.06 m.s -1. These variables were higher in group G1. The stroke rate corresponding to CS (SRCS and S30 (SRS30 obtained in group G1 (33.07 ± 4.34 vs. 31.38 ± 4.15 cycles.min-1 and G2 (35.57 ± 6.52 vs. 33.54 ± 5.89 cycles.min-1 were similar. The SRCS was significantly lower in group G1 than G2, while SRS30 was not different between groups. The stroke length corresponding to CS (SLCS and S30 (SLS30 was significantly higher in group G1 (2.41 ± 0.33 vs. 2.38 ± 0.30 m.cycle-1 than in G2 (2.04 ± 0.43 vs. 1.97 ± 0.40 m.cycle-1, and had similar values in both groups. The correlation (r between CS and S30 and technical variables corresponding to CS and S30 were significant in all comparisons (0.68 to 0.91. Thus, the relationship between the speed and technical variables corresponding to CS and S30 was not modified by the aerobic performance level.

  19. Mobile app reading speed test. (United States)

    Kingsnorth, Alec; Wolffsohn, James S


    To validate the accuracy and repeatability of a mobile app reading speed test compared with the traditional paper version. Twenty-one subjects wearing their full refractive correction glasses read 14 sentences of decreasing print size between 1.0 and -0.1 logMAR, each consisting of 14 words (Radner reading speed test) at 40 cm with a paper-based chart and twice on iPad charts. Time duration was recorded with a stop watch for the paper chart and on the App itself for the mobile chart allowing critical print size (CPS) and optimal reading speed (ORS) to be derived objectively. The ORS was higher for the mobile app charts (194±29 wpm; 195±25 wpm) compared with the paper chart (166±20 wpm; F=57.000, preading speed test is as good (ORS) or better (CPS) than previous studies on the paper test. While the results are not interchangeable with paper-based charts, mobile app tablet-based tests of reading speed are reliable and rapid to perform, with the potential to capture functional visual ability in research studies and clinical practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  20. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor (United States)

    Parks, Kelsey


    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  1. Transverse mixing of ellipsoidal particles in a rotating drum

    Directory of Open Access Journals (Sweden)

    He Siyuan


    Full Text Available Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.

  2. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.


    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  3. Defensive abdominal rotation patterns of tenebrionid beetle, Zophobas atratus, pupae. (United States)

    Ichikawa, Toshio; Nakamura, Tatsuya; Yamawaki, Yoshifumi


    Exarate pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have free appendages (antenna, palp, leg, and elytron) that are highly sensitive to mechanical stimulation. A weak tactile stimulus applied to any appendage initiated a rapid rotation of abdominal segments. High-speed photography revealed that one cycle of defensive abdominal rotation was induced in an all-or-none fashion by bending single or multiple mechanosensory hairs on a leg or prodding the cuticular surface of appendages containing campaniform sensilla. The direction of the abdominal rotation completely depended on the side of stimulation; stimulation of a right appendage induced a right-handed rotation about the anterior-posterior axis of the pupal body and vice versa. The trajectories of the abdominal rotations had an ellipsoidal or pear-shaped pattern. Among the trajectory patterns of the rotations induced by stimulating different appendages, there were occasional significant differences in the horizontal (right-left) component of abdominal rotational movements. Simultaneous stimulation of right and left appendages often induced variable and complex patterns of abdominal movements, suggesting an interaction between sensory signals from different sides. When an abdominal rotation was induced in a freely lying pupa, the rotation usually made the pupa move away from or turn its dorsum toward the source of stimulation with the aid of the caudal processes (urogomphi), which served as a fulcrum for transmitting the power of the abdominal rotation to the movement or turning of the whole body. Pattern generation mechanisms for the abdominal rotation were discussed.

  4. Electro-mechanical coupling of rotating 3D beams

    Directory of Open Access Journals (Sweden)

    Stoykov S.


    Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.

  5. Speed management program plan. (United States)


    Changing public attitudes regarding speeding and speed management will require a comprehensive and concerted effort, involving a wide variety of strategies. This plan identifies six primary focus areas: : A. Data and Data-Driven Approaches, : B. Rese...

  6. Heat transfer characteristics of rotating triangular thermosyphon (United States)

    Ibrahim, E.; Moawed, M.; Berbish, N. S.


    An experimental investigation is carried out to study heat transfer characteristics of a rotating triangular thermosyphon, using R-134a refrigerant as the working fluid. The tested thermosyphon is an equilateral triangular tube made from copper material of 11 mm triangular length, 2 mm thickness, and a total length of 1,500 mm. The length of the evaporator section is 600 mm, adiabatic section is 300 mm, and condenser section is 600 mm. The effects of the rotational speed, filling ratio, and the evaporator heat flux on each of the evaporator heat transfer coefficient, he, condenser heat transfer coefficient, hc, and the overall effective thermal conductance, Ct are studied. Experiments are performed with a vertical position of thermosyphon within heat flux ranges from 11 to 23 W/m2 for the three selected filling ratios of 10, 30 and 50 % of the evaporator section volume. The results indicated that the maximum values of the tested heat transfer parameters of the rotational equilateral triangular thermosyphon are obtained at the filling ratio of 30 %. Also, it is found that the heat transfer coefficient of the condensation is increased with increasing the rotational speed. The tested heat transfer parameters of the thermosyphon are correlated as a function of the evaporator heat flux and angular velocity.

  7. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.


    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  8. Speed Related Defect Detection in a Seta 4-Ball Life Testing Machine

    African Journals Online (AJOL)

    Many rotating machines operate over a range of speeds. It is therefore of practical interest in machine condition monitoring to see if there is a relationship between the speed at which diagnostic inspection is carried out and the early detection of incipient defect in the machine. In this paper, the effect of operating speed in the ...

  9. Rotating Snakes Illusion—Quantitative Analysis Reveals a Region in Luminance Space With Opposite Illusory Rotation

    Directory of Open Access Journals (Sweden)

    Lea Atala-Gérard


    Full Text Available The Rotating Snakes Illusion employs patterns with repetitive asymmetric luminance steps forming a “snake wheel.” In the underlying luminance sequence {black, dark grey, white, light grey}, coded as {0, g1, 100, g2}, we varied g1 and g2 and measured illusion strength via nulling: Saccades were performed next to a “snake wheel” that rotated physically; observers adjusted rotation until a stationary percept obtained. Observers performed the perceptual nulling of the seeming rotation reliably. Typical settings for (g1, g2, measured from images by Kitaoka, are around (20%, 60%. Indeed, we found a marked illusion in the region (g1≈{0%–25%}, g2≈{20%–75%} with a rotation speed of ≈1°/s. Surprisingly, we detected a second “island” around (70%, 95% with opposite direction of the illusory rotation and weaker illusion. Our quantitative measurements of illusion strength confirmed the optimal luminance choices of the standard snake wheel and, unexpectedly, revealed an opposite rotation illusion.

  10. Design of Stirrer Impeller with Variable Operational Speed for a Food Waste Homogenizer

    Directory of Open Access Journals (Sweden)

    Idris A. Kayode


    Full Text Available A conceptualized impeller called KIA is designed for impact agitation of food waste in a homogenizer. A comparative analysis of the performance of KIA is made with three conventional impeller types, Rushton, Anchor, and Pitched Blade. Solid–liquid mixing of a moisture-rich food waste is simulated under various operational speeds, in order to compare the dispersions and thermal distributions at homogenous slurry conditions. Using SolidWorks, the design of the impellers employs an Application Programming Interface (API which acts as the canvas for creating a graphical user interface (GUI for automation of its assembly. A parametric analysis of the homogenizer, at varying operational speeds, enables the estimation of the critical speed of the mixing shaft diameter and the deflection under numerous mixing conditions and impeller configurations. The numerical simulation of the moisture-rich food waste (approximated as a Newtonian carrot–orange soup is performed with ANSYS CFX v.15.0. The velocity and temperature field distribution of the homogenizer for various impeller rotational speeds are analyzed. It is anticipated that the developed model will help in the selection of a suitable impeller for efficient mixing of food waste in the homogenizer.

  11. Surface acoustic waves propagating over a rotating piezoelectric half-space. (United States)

    Fang, H; Yang, J; Jiang, Q


    Surface acoustic waves (SAW) propagating over a piezoelectric half-space rotating at a constant angular rate about a fixed axis are analyzed using the linear theory of piezoelectricity, including Coriolis and centrifugal forces. Rotation sensitivity, the rotation induced change of wave speed, is studied. The dependence of the rotation sensitivity on the orientation of the rotation axis and the orientation of the material is examined. Numerical results for polarized ceramics PZT-5H are presented to show the detailed characteristics of the rotation sensitivity. The implications of the numerical results are discussed for different applications.

  12. Developing an Asteroid Rotational Theory (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald


    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  13. Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanting Hu


    Full Text Available Grid-connected wind turbines are fluctuating power sources that may produce flicker during continuous operation. This paper presents a simulation model of a MW-level variable speed wind turbine with a full-scale back-to-back power converter and permanent magnet synchronous generator (PMSG developed in the simulation tool of PSCAD/EMTDC. Flicker emission of this system is investigated. The 3p (three times per revolution power oscillation due to wind shear and tower shadow effects is the significant part in the flicker emission of variable speed wind turbines with PMSG during continuous operation. A new method of flicker mitigation by controlling the rotational speed is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the rotational speed of the PMSG. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation speed controller is an effective means for flicker mitigation of variable speed wind turbines with full-scale back-to-back power converters and PMSG during continuous operation.

  14. Faraday rotation measure synthesis

    NARCIS (Netherlands)

    Brentjens, MA; de Bruyn, AG


    We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2)


    Baumgarten, A.; Karalis, A.J.


    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  16. Units of rotational information (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping


    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  17. Deconstructing Mental Rotation

    DEFF Research Database (Denmark)

    Larsen, Axel


    A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...

  18. SMAP Faraday Rotation (United States)

    Le Vine, David


    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  19. Rotating stars in relativity. (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos


    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  20. Speed in Acquisitions

    DEFF Research Database (Denmark)

    Meglio, Olimpia; King, David R.; Risberg, Annette


    The advantage of speed is often invoked by academics and practitioners as an essential condition during post-acquisition integration, frequently without consideration of the impact earlier decisions have on acquisition speed. In this article, we examine the role speed plays in acquisitions across...... the acquisition process using research organized around characteristics that display complexity with respect to acquisition speed. We incorporate existing research with a process perspective of acquisitions in order to present trade-offs, and consider the influence of both stakeholders and the pre......-deal-completion context on acquisition speed, as well as the organization’s capabilities to facilitating that speed. Observed trade-offs suggest both that acquisition speed often requires longer planning time before an acquisition and that associated decisions require managerial judgement. A framework for improving...

  1. Pictorial Visual Rotation Ability of Engineering Design Graphics Students (United States)

    Ernst, Jeremy Vaughn; Lane, Diarmaid; Clark, Aaron C.


    The ability to rotate visual mental images is a complex cognitive skill. It requires the building of graphical libraries of information through short or long term memory systems and the subsequent retrieval and manipulation of these towards a specified goal. The development of mental rotation skill is of critical importance within engineering…

  2. Socio-economic determinants of farmers\\' adoption of rotational ...

    African Journals Online (AJOL)

    Understanding the factors affecting farmers\\' adoption of rotational woodlot technologies is critical to the success of implementing tree planting programmes. This paper evaluates, using logistic and multiple regression analyses, the socioeconomic factors that influence farmers\\' decisions to adopt rotational woodlot ...

  3. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.


    Rotational augmentation of horizontal axis wind turbine blade aerodynamics currently remains incompletely characterized and understood. To address this, the present study concurrently analysed experimental measurements and computational predictions, both of which were unique and of high quality...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  4. Rapidly rotating red giants (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric


    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  5. Investigation on the propagation process of rotating detonation wave (United States)

    Deng, Li; Ma, Hu; Xu, Can; Zhou, Changsheng; Liu, Xiao


    Effects of mass flow rate and equivalence ratio on the wave speed performance and instantaneous pressure characteristics of rotating detonation wave are investigated using hydrogen and air mixtures. The interaction between air and fuel manifolds and combustion chamber is also identified. The results show that the rotating detonation waves are able to adapt themselves to the changes of equivalence ratio during the run, the rotating detonation waves decayed gradually and then quenched after the shutdown of reactants supply. The wave speed performance is closely related to the mass flow rate and the pressure ratio of the fuel to air manifolds at different equivalence ratios. The blockage ratio of the air manifold increases with the increasing of the wave speed due to high-pressure detonation products, while increasing of the equivalence ratios will reduce the blockage ratio of the hydrogen manifold. Higher equivalence ratio can enhance the stabilization of the rotating detonation wave and lower equivalence ratio will lead to the large fluctuations of the lap time and instantaneous pressure magnitude. The overpressure of rotating detonation wave is determined by the combination of mass flow rate and equivalence ratio, which increases with the increasing of mass flow rate in the equivalence ratio ranges that the rotating detonation wave propagates stably. The secondary spike in the instantaneous pressure and ionization signals indicates that a shocked mixing zone exists near the fuel injection holes and the reflection of shock in the mixing zone induces the reaction.

  6. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Nikolaos Stergioulas


    Full Text Available Because of the information they can yield about the equation of state of matter at extremely high densities and because they are one of the more possible sources of detectable gravitational waves, rotating relativistic stars have been receiving significant attention in recentyears. We review the latest theoretical and numerical methods for modeling rotating relativistic stars, including stars with a strong magnetic field and hot proto-neutron stars. We also review nonaxisymmetric oscillations and instabilities in rotating stars and summarize the latest developments regarding the gravitational wave-driven (CFS instability in both polar and axial quasi-normal modes.

  7. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)


    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  8. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades (United States)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael


    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  9. Speed and income

    DEFF Research Database (Denmark)

    Fosgerau, Mogens


    The relationship between speed and income is established in a microeconomic model focusing on the trade-off between travel time and the risk of receiving a penalty for exceeding the speed limit. This is used to determine when a rational driver will choose to exceed the speed limit. The relationship...... between speed and income is found again in the empirical analysis of a cross-sectional dataset comprising 60,000 observations of car trips. This is used to perform regressions of speed on income, distance travelled, and a number of controls. The results are clearly statistically significant and indicate...... an average income elasticity of speed of 0.02; it is smaller at short distances and about twice as large at the longest distance investigated of 200 km....

  10. Rotator Cuff Injuries (United States)

    ... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...

  11. Rotator cuff repair - slideshow (United States)

    ... presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  12. The Earth's rotation problem (United States)

    Brumberg, V. A.; Ivanova, T. V.


    The aim of the present paper is to find the trigonometric solution of the equations of the Earth's rotation around its centre of mass in the form of polynomial trigonometric series (Poisson series) without secular and mixed therms. For that the techniques of the General Planetary Theory (GPT) ( Brumberg, 1995) and the Poisson Series Processor (PSP) (Ivanova, 1995) are used. The GPT allows to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation in Euler parameters to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  13. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus


    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... to a non-linear manifold and re-normalization or orthogonalization must be applied to obtain proper rotations. These latter steps have been viewed as ad hoc corrections for the errors introduced by assuming a vector space. The article shows that the two approximative methods can be derived from natural...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation....

  14. Synchronization of coupled active rotators by common noise (United States)

    Dolmatova, Anastasiya V.; Goldobin, Denis S.; Pikovsky, Arkady


    We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law.

  15. Rotating Workforce Scheduling


    Granfeldt, Caroline


    Several industries use what is called rotating workforce scheduling. This often means that employees are needed around the clock seven days a week, and that they have a schedule which repeats itself after some weeks. This thesis gives an introduction to this kind of scheduling and presents a review of previous work done in the field. Two different optimization models for rotating workforce scheduling are formulated and compared, and some examples are created to demonstrate how the addition of...

  16. Ipsilateral Rotational Autokeratoplasty


    Yesim Altay


    Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opaci...

  17. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee


    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  18. CriticalEd

    DEFF Research Database (Denmark)

    Kjellberg, Caspar Mølholt; Meredith, David


    The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made...... such as Sibelius or Finale. It was hypothesized that it would be possible to develop a Sibelius plug-in, written in Manuscript 6, that would improve the critical editing work flow, but it was found that the capabilities of this scripting language were insufficient. Instead, a 3-part system was designed and built...

  19. Buoyancy effect on heat transfer in rotating smooth square U-duct at high rotation number

    Directory of Open Access Journals (Sweden)

    Yang Li


    Full Text Available The buoyancy effect on heat transfer in a rotating, two-pass, square channel is experimentally investigated in current work. The classical copper plate technique is performed to measure the regional averaged heat transfer coefficients. In order to perform a fundamental research, all turbulators are removed away. Two approaches of altering Buoyancy numbers are selected: varying rotation number from 0 to 2.08 at Reynolds number ranges of 10000 to 70000, and varying inlet density ratio from 0.07 to 0.16 at Reynolds number of 10000. And thus, Buoyancy numbers range from 0 to 12.9 for both cases. According to the experimental results, the relationships between heat transfer and Buoyancy numbers are in accord with those obtained under different rotation numbers. For both leading and trailing surface, a critical Buoyancy number exists for each X/D location. Before the critical point, the effect of Buoyancy number on heat transfer is limited; but after that, the Nusselt number ratios show different increase rate. Given the same rotation number, higher wall temperature ratios with its corresponding higher Buoyancy numbers substantially enhance heat transfer on both passages. And the critical exceed-point that heat transfer from trailing surface higher than leading surface happens at the same Buoyancy number for different wall temperature ratios in the second passage. Thus, the stronger buoyancy effect promotes heat transfer enhancement at high rotation number condition.

  20. Rotating superconductor magnet for producing rotating lobed magnetic field lines (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.


    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  1. Effectiveness of Motorcycle speed controlled by speed hump

    Directory of Open Access Journals (Sweden)

    Pornsiri Urapa


    Full Text Available Speed humps are one of the traffic calming measures widely accepted to control vehicle speed in the local road. Humps standards from the western countries are designed mainly for the passenger car. This study, therefore, aims to reveal the effectiveness of speed hump to control the motorcycle speed. This study observes the free-flow speed of the riders at the total of 20 speed bumps and humps. They are 0.3-14.8 meter in width and 5-18 centimeter in height. The results reveal that the 85th percentile speeds reduce 15-65 percent when crossing the speed bumps and speed humps. Besides, this study develops the speed model to predict the motorcycle mean speed and 85th percentile speed. It is found that speed humps follow the ITE standard can control motorcycle crossing speeds to be 25-30 Kph which are suitable to travel on the local road.


    Directory of Open Access Journals (Sweden)

    Jan-Cristian GRIGORE


    Full Text Available In this paper an algorithm based on [1] [2] are numerical simulations, achieving generalized coordinates of motion, positions, speeds of a rigid rotating kinematic coupling with big clearance in joint, case without friction

  3. Simple Models for the Dynamic Modeling of Rotating Tires

    Directory of Open Access Journals (Sweden)

    J.C. Delamotte


    Full Text Available Large Finite Element (FE models of tires are currently used to predict low frequency behavior and to obtain dynamic model coefficients used in multi-body models for riding and comfort. However, to predict higher frequency behavior, which may explain irregular wear, critical rotating speeds and noise radiation, FE models are not practical. Detailed FE models are not adequate for optimization and uncertainty predictions either, as in such applications the dynamic solution must be computed a number of times. Therefore, there is a need for simpler models that can capture the physics of the tire and be used to compute the dynamic response with a low computational cost. In this paper, the spectral (or continuous element approach is used to derive such a model. A circular beam spectral element that takes into account the string effect is derived, and a method to simulate the response to a rotating force is implemented in the frequency domain. The behavior of a circular ring under different internal pressures is investigated using modal and frequency/wavenumber representations. Experimental results obtained with a real untreaded truck tire are presented and qualitatively compared with the simple model predictions with good agreement. No attempt is made to obtain equivalent parameters for the simple model from the real tire results. On the other hand, the simple model fails to represent the correct variation of the quotient of the natural frequency by the number of circumferential wavelengths with the mode count. Nevertheless, some important features of the real tire dynamic behavior, such as the generation of standing waves and part of the frequency/wavenumber behavior, can be investigated using the proposed simplified model.

  4. Airfoil shape for flight at subsonic speeds (United States)

    Whitcomb, Richard T.


    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  5. Structural looseness investigation in slow rotating permanent magnet generators

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted


    Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...

  6. Measurement of rotating flows using PIV and image derotation

    Energy Technology Data Exchange (ETDEWEB)

    Stickland, M.T.; Scanlon, T.J.; Waddell, P. [University of Strathclyde, Department of Mechanical Engineering, Glasgow, G1 1XJ (United Kingdom); Fernandez-Francos, J.; Blanco, E. [University of Oviedo, Fluid Mechanics Group, Asturias (Spain)


    This paper describes the use of a rotating all-mirror image derotator system, high-speed video and particle image velocimetry (PIV) to visualise and quantitatively examine the flow patterns between the blades of a centrifugal impeller. The flow field relative to the moving centrifugal impeller is presented. (orig.)

  7. Measurement of rotating flows using PIV and image derotation (United States)

    Stickland, M. J.; Scanlon, T. J.; Waddell, P.; Fernandez-Francos, J.; Blanco, E.


    This paper describes the use of a rotating all-mirror image derotator system, high-speed video and particle image velocimetry (PIV) to visualise and quantitatively examine the flow patterns between the blades of a centrifugal impeller. The flow field relative to the moving centrifugal impeller is presented.

  8. On the Vortex Sound from Rotating Rods (United States)

    Yudin, E. Y.


    The motion of different bodies imersed in liquid or gaseous media is accompanied by characteristic sound which is excited by the formation of unstable surfaces of separation behind the body, usually disintegrating into a system of discrete vortices(such as the Karman vortex street due to the flow about an infintely long rod, etc.).In the noise from fans,pumps,and similar machtnery, vortexnQif3eI?Yequently predominates. The purpose of this work is to elucidate certain questions of the dependence ofthis sound upon the aerodynamic parameters and the tip speed of the rotating rods,or blades. Although scme material is given below,insufficientto calculate the first rough approximation to the solution of this question,such as the mechanics of vortex formation,never the less certain conclusions maybe found of practical application for the reduction of noise from rotating blades.

  9. Realization of mechanical rotation in superfluid helium (United States)

    Gordon, E. B.; Kulish, M. I.; Karabulin, A. V.; Matyushenko, V. I.; Dyatlova, E. V.; Gordienko, A. S.; Stepanov, M. E.


    The possibility of using miniaturized low-power electric motors submerged in superfluid helium for organization of rotation inside a cryostat has been investigated. It has been revealed that many of commercial micromotors can operate in liquid helium consuming low power. Turret with 5 sample holders, assembled on the base of stepper motor, has been successfully tested in experiments on the nanowire production in quantized vortices of superfluid helium. Application of the stepper motor made it possible in a single experiment to study the effect of various experimental parameters on the yield and quality of the nanowires. The promises for continuous fast rotation of the bath filled by superfluid helium by using high-speed brushless micromotor were outlined and tested. Being realized, this approach will open new possibility to study the guest particles interaction with the array of parallel linear vortices in He II.

  10. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  11. Ipsilateral Rotational Autokeratoplasty

    Directory of Open Access Journals (Sweden)

    Yesim Altay


    Full Text Available Corneal opacity is a leading cause of monocular blindness, and corneal transplantation is the most commonly performed solid organ transplantation in the world. Keratoplasty techniques for corneal opacities include lamellar allokeratoplasty and penetrating allokeratoplasty. Ipsilateral rotational autokeratoplasty can be an effective alternative to penetrating allokeratoplasty for some patients with corneal scars. This procedure involves a rotation of the patient%u2019s own cornea to move opacity out of the visual axis. An important consideration when selecting cases for rotational autokeratoplasty is the dimensions of the corneal scar. Although ipsilateral autokeratoplasty may not provide as good a quality of vision as penetrating allokeratoplasty because of higher astigmatism and reduced corneal pupillary clear zone, these disadvantages are often outweighed when the risk of allograft rejection is high, as in pediatric patients and those with vascularised corneas. This technique would at least partially resolve the issue of scarcity of donor corneal tissue in developing countries.

  12. The optical rotator

    DEFF Research Database (Denmark)

    Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel


    further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

  13. Formation of asteroid pairs by rotational fission. (United States)

    Pravec, P; Vokrouhlický, D; Polishook, D; Scheeres, D J; Harris, A W; Galád, A; Vaduvescu, O; Pozo, F; Barr, A; Longa, P; Vachier, F; Colas, F; Pray, D P; Pollock, J; Reichart, D; Ivarsen, K; Haislip, J; Lacluyze, A; Kusnirák, P; Henych, T; Marchis, F; Macomber, B; Jacobson, S A; Krugly, Yu N; Sergeev, A V; Leroy, A


    Pairs of asteroids sharing similar heliocentric orbits, but not bound together, were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process may explain their formation-critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs, revealing that the primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero, requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system, which subsequently disrupts under its own internal system dynamics soon after formation.

  14. Rotation of Giant Stars (United States)

    Kissin, Yevgeni; Thompson, Christopher


    The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.

  15. Optically tunable Quincke rotation of a nanometer-thin oblate spheroid (United States)

    Gu, Yu; Zeng, Haibo


    Ever since the discovery of Quincke rotation (spontaneous rotation of a particle in fluid under a dc electric field) more than 100 years ago [G. Quincke, Ann. Phys. (Leipzig) 295, 417 (1896), 10.1002/andp.18962951102], the strength of the dc field has been the only external parameter to actively tune the rotation speed. In this paper we theoretically propose an optically tunable Quincke rotor exploiting the photoconductivity of a semiconducting nanometer-thin oblate spheroid. A full analysis of the instability of the Quincke rotation reveals that, unlike a prolate spheroid, no bistability is possible in such a dynamical system. In addition, the required material property and the strength of the dc electric field needed to realize the rotation are also elucidated. It is also predicted that light can be used to tune the spinning speed or simply turn on and off the Quincke rotation very effectively.

  16. Traffic speed management

    Directory of Open Access Journals (Sweden)

    Subotić Jovana Lj.


    Full Text Available Speed, and vehicles themselves, affect the level of service and road safety, quality of life, noise from traffic, the environment, health, air pollution, emission of carbon dioxide, global warming, the economy and consumption of non-renewable energy such as oil. Therefore, the speed management of the traffic of multiple significance and that should be primarily to provide effective and economical conditions of the modern and preventive protection of human life as the greatest treasure and then the material resources. The way to accomplish this is by using various (different measures such as: appropriate planning and projecting roads and streets, speed control, the legislation, enforcement, campaigns, education, advanced technologies (ITS.

  17. Material properties of Al-Si-Cu aluminium alloy produced by the rotational cast technology

    Directory of Open Access Journals (Sweden)

    Muhammad Syahid


    Full Text Available The aim of the present study is to explore microstructural and mechanical properties of cast Al-Si-Cu aluminum alloy (ADC12. To obtain excellent material properties, the cast Al alloys were produced by an originally developed mold rotational machine, namely liquid aluminum alloy is solidified during high speed rotating. The casting process was conducted under various casting conditions, in which the following factors were altered, e.g., melt temperature, metal mold temperature and different rotational speed. Microstructural characteristics were examined by direct observation using an optical microscope and a scanning electron microscope (SEM, and the secondary dendrite arm spacing of alpha-Al phase (SDAS and the size of Si eutectic phase were identified. Mechanical properties were investigated by micro-hardness and tensile tests. Rotation speed and melt temperature were directly attributed to the SDAS, and severe shear stress arising from the rotation made fine and complicated grain structure, leading to the high mechanical properties. The extent of the shear stress was altered depending on the area of the sample due to the different shear stress. Furthermore, high melt temperature and high rotational speed decrease the size of Si eutectic phases. The high mechanical properties were detected for the cast samples produced by the casting condition as follows: melt temperature 700oC, mold temperature 400oC and rotation speed 400 rpm

  18. Damped bead on a rotating circular hoop - a bifurcation zoo

    CERN Document Server

    Dutta, Shovan


    The evergreen problem of a bead on a rotating hoop shows a multitude of bifurcations when the bead moves with friction. This motion is studied for different values of the damping coefficient and rotational speeds of the hoop. Phase portraits and trajectories corresponding to all different modes of motion of the bead are presented. They illustrate the rich dynamics associated with this simple system. For some range of values of the damping coefficient and rotational speeds of the hoop, linear stability analysis of the equilibrium points is inadequate to classify their nature. A technique involving transformation of coordinates and order of magnitude arguments is presented to examine such cases. This may provide a general framework to investigate other complex systems.

  19. Rotational Flow of Nonlinear Drilling Mud (United States)

    Ashrafi, Nariman; Yektapur, Mehdi


    To analyze the drilling process, the pseudoplastic flow between coaxial cylinders is investigated. Here, the inner cylinder is assumed to rotate and, at the same time, slide along its axis. A numerical scheme based on the spectral method is used to derive a low-order dynamical system from the conservation of mass and momentum equations under mixed boundary conditions. It is found that the Azimuthal stress develops far greater than other stress components. All stress components increase as pseudoplasticity is decreased. The flow loses its stability to the vortex structure at a critical Taylor number. The emergence of the vortices corresponds to the onset of a supercritical bifurcation. The Taylor vortices, in turn, lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. The rotational and axial velocities corresponding to the optimum drilling conditions are evaluated. Furthermore, complete stress and viscosity maps are presented for different scenarios in the flow regime.

  20. Research on Power Calculation Method of High Speed Rotary Device under Wind Loads Crystals (United States)

    Ji, M. S.; Xue, Y.; Wu, N.


    The wind load has a great influence on the power of large rotary devices working outdoors. In the power calculation formula of the rotary devices, the static air pressure is often used as the wind resistance of the whole device. But in fact, the rotating device bears the dynamic wind pressure during the rotation. This method of calculation will lead to large deviation. Based on this, this paper emphatically studied the dynamic wind load of the rotating device under rotation, and gave a more accurate formula for the calculation of the rotating power. This formula solves the problem of power calculation of the rotating device in high speed rotation. It can be widely used in all kinds of rotating devices.

  1. Dependence of Shear and Concentration on Fouling in a Membrane Bioreactor with Rotating Membrane Discs

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Pedersen, Malene Thostrup; Christensen, Morten Lykkegaard


    Rotating ceramic membrane discs were fouled with lab-scale membrane bioreactors (MBR) sludge. Sludge filtrations were performed at varying rotation speeds and in different concentric rings of the membranes on different sludge concentrations. Data showed that the back transport expressed by limiti...

  2. Modeling and control of surge and rotating stall in compressors

    Energy Technology Data Exchange (ETDEWEB)

    Gravdahl, Jan Tommy


    Compressors are used in power generation and a variety of other applications. This thesis contains new results in the field of modeling and control of rotating stall and surge in compressors. A close coupled valve is included in the Moore-Greitzer compression system model and controllers for both surge and rotating stall is derived using backstepping. Disturbances, constant and time varying, are then taken into account, and non-linear controllers are derived. Stability results are given. Then, passivity is used to derive a simple surge control law for the closed coupled valve. This propositional control law is shown to stabilize the system even in the presence of time varying disturbances in mass flow and pressure. A novel model for an axial compression system with non-constant compressor speed is derived by extending the Moore-Greitzer model. Rotating stall and surge is studied in connection with acceleration of the compressor. Finally, a model for a centrifugal compression system with time varying compressor speed is derived. The variable speed compressor characteristic is derived based on energy losses in the compressor components. Active control of surge in connection with varying speed is studied. Semi-global exponential stability of the compression system with both surge and speed control is proven. 103 refs., 38 figs., 5 tabs.

  3. Unbalance influence on the rotating assembly dynamics of a hydro (United States)

    Jurcu, M.; Pădureanu, I.; Campian, C. V.; Haţiegan, C.


    The dynamics of the rotating parts of a hydro is characterized by the dynamic interaction between the rotor, the stator and the working fluid in order to operate the hydro. The main factors influencing the dynamics of the rotating parts of a hydro are: rotor unbalance, unbalanced magnetic pull, shaft misalignment and hydraulic flow regime. Rotor unbalanced is one of the most common factors influencing the dynamic stability of the rotating parts of a hydro. The unbalanced is determined by: uneven distribution of rotating masses, displacement of parts in the rotor during rotation, inhomogeneity of rotor component materials, expansion of the rotor due to heating, and rising speed during the transient discharge of the load. The mechanical imbalance of a rotor can lead to important forces, responsible for the vibration of the machine, which ultimately leads to a shorter operating time. Even a low unbalance can lead, in the case of high speed machines, to major unbalance forces that cause significant damage to the equipment. The unbalance forces cause additional vibrations in the bearings as well as in the foundation plate. To avoid these vibrations, it is necessary in the first stage to balance the static rotor in the construction plant and then to a dynamic rotation balancing.

  4. The prevalence and cost of medical student visiting rotations

    Directory of Open Access Journals (Sweden)

    Matthew Winterton


    Full Text Available Abstract Background Performance on visiting rotations during the senior year of medical school is consistently cited by residency program directors as a critical factor in selecting residents. Nevertheless, the frequency with which visiting rotations are undertaken and the associated financial costs they impose have not been systematically examined. Method Under the auspices of the Electronic Residency Application Service, a survey was sent in March 2015 to all U.S. applicants for residency programs in the 2014-15 academic year. Students were asked how many visiting rotations they performed; the estimated cost of performing each rotation; their perception of their educational value and primary motivation for performing them; and the Match outcome of their residency application. Results The survey was completed by 2817 applicants, yielding a response rate of 11.3 %. 1898 applicants (67.4 % performed visiting rotations: 647 applicants (30.0 % performed one; 640 (22.7 % performed two; 322 (11.4 % performed three; and 289 (10.3 % reported four or more. When accounting for potential response bias, the true prevalence of away rotators was estimated to be 58.7 % of all fourth-year medical students (95 % CI 54.0–63.4 %. The mean number of rotations for participating students was 2.1. Most students performed rotations equally as an audition for residency placement and for education, with some of the more competitive subspecialties reporting more of an audition experience. The mean estimated cost for performing a single rotation was $958. Thirty-six percent of applicants reported matching at an institution where they had rotated, either their home institution or one at which a visiting rotation was performed. Conclusions Visiting rotations are prevalent, expensive, and only partly educational. As such, these rotations may impede optimal use of the senior year of medical school and limited student financial resources.

  5. The prevalence and cost of medical student visiting rotations. (United States)

    Winterton, Matthew; Ahn, Jaimo; Bernstein, Joseph


    Performance on visiting rotations during the senior year of medical school is consistently cited by residency program directors as a critical factor in selecting residents. Nevertheless, the frequency with which visiting rotations are undertaken and the associated financial costs they impose have not been systematically examined. Under the auspices of the Electronic Residency Application Service, a survey was sent in March 2015 to all U.S. applicants for residency programs in the 2014-15 academic year. Students were asked how many visiting rotations they performed; the estimated cost of performing each rotation; their perception of their educational value and primary motivation for performing them; and the Match outcome of their residency application. The survey was completed by 2817 applicants, yielding a response rate of 11.3 %. 1898 applicants (67.4 %) performed visiting rotations: 647 applicants (30.0 %) performed one; 640 (22.7 %) performed two; 322 (11.4 %) performed three; and 289 (10.3 %) reported four or more. When accounting for potential response bias, the true prevalence of away rotators was estimated to be 58.7 % of all fourth-year medical students (95 % CI 54.0-63.4 %). The mean number of rotations for participating students was 2.1. Most students performed rotations equally as an audition for residency placement and for education, with some of the more competitive subspecialties reporting more of an audition experience. The mean estimated cost for performing a single rotation was $958. Thirty-six percent of applicants reported matching at an institution where they had rotated, either their home institution or one at which a visiting rotation was performed. Visiting rotations are prevalent, expensive, and only partly educational. As such, these rotations may impede optimal use of the senior year of medical school and limited student financial resources.

  6. Wind_Speeds_Master (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included wind speeds for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  7. Design of an Experimental Setup for Testing Multiphysical Effects on High Speed Mini Rotors

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; de Boer, Andries; Aarts, Ronald G.K.M.; Jonker, Jan B.


    Recently, there have been numerous research projects on the development of minirotating machines. These machines mostly operate at speeds above the first critical speed and have special levitation systems. Besides, the multiphysical effects become significant in small scale. Therefore, advanced

  8. Principle of bio-inspired insect wing rotational hinge design (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  9. High Speed Gear Sized and Configured to Reduce Windage Loss (United States)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)


    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  10. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard


    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  11. Multi-relaxation-time Lattice Boltzman model for uniform-shear flow over a rotating circular cylinder

    Directory of Open Access Journals (Sweden)

    Nemati Hasan


    Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.



    Suriano, John R.


    Lowering the gear reduction in actuators by utilizing high-torque low-speed motors enables the use of less expensive and simpler gear systems and decreases the overall system inertia. Variable reluctance machines can produce high torque at low speeds. Their static torque, a critical quantity for determination of low speed operation, is colnpared for three variable reluctance motor design variations using linear analysis. Saturation effects, which are crucial to the accurate determination of s...

  13. Rotationally Actuated Prosthetic Hand (United States)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.


    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  14. Rotational waves in geodynamics (United States)

    Gerus, Artyom; Vikulin, Alexander


    The rotation model of a geoblock with intrinsic momentum was constructed by A.V. Vikulin and A.G. Ivanchin [9, 10] to describe seismicity within the Pacific Ocean margin. It is based on the idea of a rotational motion of geoblocks as the parts of the rotating body of the Earth that generates rotary deformation waves. The law of the block motion was derived in the form of the sine-Gordon equation (SG) [5, 9]; the dimensionless form of the equation is: δ2θ δ2θ δξ2 - δη2 = sinθ, (1) where θ = β/2, ξ = k0z and η = v0k0t are dimensionless coordinates, z - length of the chain of masses (blocks), t - time, β - turn angle, ν0 - representative velocity of the process, k0 - wave number. Another case analyzed was a chain of nonuniformly rotating blocks, with deviation of force moments from equilibrium positions μ, considering friction forces α along boundaries, which better matched a real-life seismic process. As a result, the authors obtained the law of motion for a block in a chain in the form of the modified SG equation [8]: δ2θ δ2θ δθ- δξ2 - δ η2 = sin θ+ α δη + μδ(ξ)sin θ (2)

  15. The Spatiale Rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan


    The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...

  16. Rotator Cuff Injuries. (United States)

    Connors, G. Patrick

    Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

  17. Calculating Speed of Sound (United States)

    Bhatnagar, Shalabh


    Sound is an emerging source of renewable energy but it has some limitations. The main limitation is, the amount of energy that can be extracted from sound is very less and that is because of the velocity of the sound. The velocity of sound changes as per medium. If we could increase the velocity of the sound in a medium we would be probably able to extract more amount of energy from sound and will be able to transfer it at a higher rate. To increase the velocity of sound we should know the speed of sound. If we go by the theory of classic mechanics speed is the distance travelled by a particle divided by time whereas velocity is the displacement of particle divided by time. The speed of sound in dry air at 20 °C (68 °F) is considered to be 343.2 meters per second and it won't be wrong in saying that 342.2 meters is the velocity of sound not the speed as it's the displacement of the sound not the total distance sound wave covered. Sound travels in the form of mechanical wave, so while calculating the speed of sound the whole path of wave should be considered not just the distance traveled by sound. In this paper I would like to focus on calculating the actual speed of sound wave which can help us to extract more energy and make sound travel with faster velocity.

  18. Event alignment, warping between running speeds

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Douglas, Ryan


    marine conditions (different load settings on the propeller curve) was in the range from 60 to 120 rotations per minute; furthermore the running speed was stable within periods of fixed load. Electronically controlled engines can change the angular timing of certain events, such as fuel injection...... the methods on data from the fuel injection period where the largest deviations in timing occur. The idea is that we, given aligned data, can use the already developed component analysis framework for non-stationary monitoring of condition changes. It should further be noticed that the proposed warp framework...

  19. Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging

    National Research Council Canada - National Science Library

    Sloughter, J. M; Gneiting, Tilmann; Raftery, Adrian E


    Probabilistic forecasts of wind speed are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating...

  20. Speed-calming measures and their Effect on driving speed

    DEFF Research Database (Denmark)

    Agerholm, Niels; Knudsen, Daniel; Variyeswaran, Kajan


    Highlights •Speed humps and chicanes are widespread speed-calming measures. •Humps and chicanes have virtually the same reducing effect on mean speed. •Chicanes reduce speed variation less than humps and might therefore be a less safe measure.......Highlights •Speed humps and chicanes are widespread speed-calming measures. •Humps and chicanes have virtually the same reducing effect on mean speed. •Chicanes reduce speed variation less than humps and might therefore be a less safe measure....

  1. Theoretical analysis and experimental verification on optical rotational Doppler effect. (United States)

    Zhou, Hailong; Fu, Dongzhi; Dong, Jianji; Zhang, Pei; Zhang, Xinliang


    We present a theoretical model to sufficiently investigate the optical rotational Doppler effect based on modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the difference of mode index between input and output orbital angular momentum (OAM) light, and linear to the rotating speed of spinning object as well. An experiment is carried out to verify the theoretical model. We explicitly suggest that the spatial spiral phase distribution of spinning object determines the frequency content. The theoretical model makes us better understand the physical processes of rotational Doppler effect, and thus has many related application fields, such as detection of rotating bodies, imaging of surface and measurement of OAM light.

  2. Centripetal focusing of gyrotactic phytoplankton in solid-body rotation

    CERN Document Server

    Cencini, M; Santamaria, F; Boffetta, G


    A suspension of gyrotactic microalgae Chlamydomonas augustae swimming in a cylindrical water vessel in solid-body rotation is studied. Our experiments show that swimming algae form an aggregate around the axis of rotation, whose intensity increases with the rotation speed. We explain this phenomenon by the centripetal orientation of the swimming direction towards the axis of rotation. This centripetal focusing is contrasted by diffusive fluxes due to stochastic reorientation of the cells. The competition of the two effects lead to a stationary distribution, which we analytically derive from a refined mathematical model of gyrotactic swimmers. The temporal evolution of the cell distribution, obtained via numerical simulations of the stochastic model, is in quantitative agreement with the experimental measurements in the range of parameters explored.

  3. Bubble migration in a rotating, liquid-filled sphere (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.


    Results and analysis of ground-based experiments performed to aid in designing experiments on the behavior of bubbles in a rotating liquid body on board the Shuttle in free fall are presented. Spherical shells filled with silicone oil containing a small gas bubble were spun and filmed by high speed motion picture photography. The rotation of the shell and the trajectory of the bubble motion were recorded and the film was exposed to a motion analyzer connected to a keypunch. The analyzer measured Cartesian coordinates as well as angle, frame number, and rotation rate. Optical correction equations were employed to determine the apparent bubble trajectory relative to an inertial frame of reference. An analytical model for the bubble motion was defined, yielding predictions of velocity and position at different times. Rotation of the fluid container is concluded to aid in centering the bubbles.

  4. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch


    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  5. Miniature, Variable-Speed Control Moment Gyroscope (United States)

    Bilski, Steve; Kline-Schoder, Robert; Sorensen, Paul


    The Miniature Variable-Speed Control Moment Gyroscope (MVS-CMG) was designed for small satellites (mass from less than 1 kg up to 500 kg). Currently available CMGs are too large and heavy, and available miniature CMGs do not provide sufficient control authority for use on practical satellites. This primarily results from the need to greatly increase the speed of rotation of the flywheel in order to reduce the flywheel size and mass. This goal was achieved by making use of a proprietary, space-qualified, high-speed (100,000 rpm) motor technology to spin the flywheel at a speed ten times faster than other known miniature CMGs under development. NASA is supporting innovations in propulsion, power, and guidance and navigation systems for low-cost small spacecraft. One of the key enabling technologies is attitude control mechanisms. CMGs are particularly attractive for spacecraft attitude control since they can achieve higher torques with lower mass and power than reaction wheels, and they provide continuous torque capability that enables precision pointing (in contrast to on-off thruster control). The aim of this work was to develop a miniature, variable-speed CMG that is sized for use on small satellites. To achieve improved agility, these spacecraft must be able to slew at high rate, which requires attitude control actuators that can apply torques on the order of 5 N-m. The MVS-CMG is specifically designed to achieve a high-torque output with a minimum flywheel and system mass. The flywheel can be run over a wide range of speeds, which is important to help reduce/eliminate potential gimbal lock, and can be used to optimize the operational envelope of the CMG.

  6. Variable Speed Rotor System Project (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  7. speed related defect detection in a seta 4-ball life testing machine

    African Journals Online (AJOL)

    Dr Obe


    Sep 1, 1987 ... ABSTRACT. Many rotating machines operate over a range of speeds. It is therefore of practical interest in machine condition monitoring to see if there is a relationship between the speed at which diagnostic inspection is carried out and the early detection of incipient defect in the machine. In this paper, the ...

  8. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system (United States)

    Wu, Han; Zeng, Xiao-Hui; Yu, Yang


    In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.

  9. Anticyclonic precession of a plume in a rotating environment (United States)

    Frank, D.; Landel, J. R.; Dalziel, S. B.; Linden, P. F.


    Motivated by potential effects of the Earth's rotation on the Deepwater Horizon oil plume, we conducted laboratory experiments on saltwater point plumes in a homogeneous rotating environment across a wide range of Rossby numbers 0.02≤Ro≤1.3. We report a striking physical instability in the plume dynamics near the source: after approximately one rotation period, the plume tilts laterally and starts to precess anticyclonically. The mean precession frequency ω¯ scales linearly with the rotation rate Ω as ω¯≈0.4Ω. We find no evidence of a critical Rossby number above which precession ceases. We infer that a conventionally defined Rossby number is not an appropriate parameter when the plume is maintained over a long time: provided Ω ≠ 0, rotation is always important to the dynamics. This indicates that precession may occur in persistent oceanic or atmospheric plumes even at low latitudes.

  10. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail:; Cabezas, Carlos, E-mail:; Mata, Santiago, E-mail:; Alonso, Josè L., E-mail: [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)


    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  11. Rotational Baroclinic Adjustment

    DEFF Research Database (Denmark)

    Holtegård Nielsen, Steen Morten

    the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...... with the horizontal extent of many other parts of the Danish inland waters implies that the dynamics of these should also be discussed in terms of rotational effects....

  12. Isotropic stochastic rotation dynamics (United States)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten


    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  13. The Rotation of Europa (United States)

    Henrard, Jacques


    We present a semi-analytical theory of the rotation of Europa the Galilean satellite of Jupiter. The theory is semi-analytical in the sense that it is based on a synthetic theory of the orbit of Europa developed by Lainey. The theory is developed in the framework of Hamiltonian mechanics, using Andoyer variables and assumes that Europa is a rigid body. We consider this theory as a first step toward the modelization of a non rigid Europa covered by an ocean.

  14. Method for Design Rotation (United States)


    central composite design and give the orthogonal matrix that yields the rotation, but they do not discuss how the orthogonal matrix was found. Doehlert ... Doehlert and Klee (1972) was to start with a known orthogonal matrix of simple form and then augment the matrix with additional rows and columns to get a...larger region, a symmetric treatment of the factors, or both. 114. SUBJECT TERMS 15. NUMBER OF PAGES Orthogonal matrix Response surface design 27


    Directory of Open Access Journals (Sweden)

    Richard TAY


    Full Text Available While there has been extensive research on the effect of sensation seeking on risky driving, relatively little research has been conducted on Type-A personality. The motivations for speeding are likely to be different for each group and these differences have important implications for the design, implementation and expected efficacy of road safety countermeasures. This paper examines the influence of sensation seeking and Type-A behavior pattern on speeding behaviour. A sample of 139 staff and students in an Australian university were surveyed in July 2001 to gather information on their gender, age, personality and self-reported speeding behaviour. The data were analysed using correlations and analysis of variance procedures. Finally, some implications for road safety are discussed.

  16. Adding rotation to translation: percepts and illusions. (United States)

    Magnussen, Camilla M; Orbach, Harry S; Loffler, Gunter


    This study investigated how the perception of a translating object is affected by rotation. Observers were asked to judge the motion and trajectory of objects that rotated around their centroid while linearly translating. The expected percept, consistent with the actual dynamics used to generate the movie sequences, is that of a translating and rotating object, akin to a tumbling rugby ball. Observers, however, do not always report this and, under certain circumstances, perceive the object to translate on an illusory curved trajectory, similar to a car driving on a curved road. The prevalence of veridical versus nonveridical percepts depends on a number of factors. First, if the object's orientation remains within a limited range relative to the axis of translation, the illusory, curved percept dominates. If the orientation, at any point of the movie sequence, differs sufficiently from the axis of translation, the percept switches to linear translation with rotation. The angle at which the switch occurs is dependent upon a number of factors that relate to an object's elongation and, with it, the prominence of its orientation. For an ellipse with an aspect ratio of 3, the switch occurs at approximately 45 degrees. Higher aspect ratios increase the range; lower ratios decrease it. This applies similarly to rectangular shapes. A line is more likely to be perceived on a curved trajectory than an elongated rectangle, which, in turn, is more likely seen on a curved path than a square. This is largely independent of rotational and translational speeds. Measuring perceived directions of motion at different instants in time allows the shape of the perceived illusory curved path to be extrapolated. This results in a trajectory that is independent of object size and corresponds closely to the actual object orientation at different points during the movie sequence. The results provide evidence for a perceptual transition from an illusory curved trajectory to a veridical linear

  17. Bioreactor rotating wall vessel (United States)


    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.


    Directory of Open Access Journals (Sweden)

    Heather Gulgin


    Full Text Available Since labral pathology in professional golfers has been reported, and such pathology has been associated with internal/external hip rotation, quantifying the rotational velocity of the hips during the golf swing may be helpful in understanding the mechanism involved in labral injury. Thus, the purpose of this study was to determine the peak internal/external rotational velocities of the thigh relative to the pelvis during the golf swing. Fifteen female, collegiate golfers participated in the study. Data were acquired through high-speed three dimensional (3-D videography using a multi-segment bilateral marker set to define the segments, while the subjects completed multiple repetitions of a drive. The results indicated that the lead hip peak internal rotational velocity was significantly greater than that of the trail hip external rotational velocity (p = 0.003. It appears that the lead hip of a golfer experiences much higher rotational velocities during the downswing than that of the trail hip. In other structures, such as the shoulder, an increased risk of soft tissue injury has been associated with high levels of rotational velocity. This may indicate that, in golfers, the lead hip may be more susceptible to injury such as labral tears than that of the trailing hip

  19. Three-mode orthomax rotation

    NARCIS (Netherlands)

    Kiers, Henk A.L.


    Factor analysis and principal components analysis (PCA) are often followed by an orthomax rotation to rotate a loading matrix to simple structure. The simple structure is usually defined in terms of the simplicity of the columns of the loading matrix. In Three-made PCA, rotational freedom of the so

  20. Critical behavior of collapsing surfaces

    DEFF Research Database (Denmark)

    Olsen, Kasper; Sourdis, C.


    We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling that of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial...

  1. Rotating instability in low-temperature magnetized plasmas. (United States)

    Boeuf, Jean-Pierre; Chaudhury, Bhaskar


    The formation of a rotating instability associated with an ionization front ("rotating spoke") and driven by a cross-field current in a cylindrical magnetized plasma is shown and explained for the first time on the basis of a fully kinetic simulation. The rotating spoke is a strong double layer (electrostatic sheath) moving towards the higher potential region at a velocity close to the critical ionization velocity, a concept proposed by Alfvén in the context of the formation of the solar system. The mechanisms of cross-field electron transport induced by this instability are analyzed.

  2. Tip Speed Ratio Based Maximum Power Tracking Control of Variable Speed Wind Turbines; A Comprehensive Design

    Directory of Open Access Journals (Sweden)

    Murat Karabacak


    Full Text Available The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG. Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.

  3. Scaling regimes in spherical shell rotating convection

    CERN Document Server

    Gastine, T; Aubert, J


    Rayleigh-B\\'enard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\\times 10^{-7} \\leq E \\leq 10^{-1}$, Rayleigh numbers within the range $10^3 < Ra < 2\\times 10^{10}$ and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection $Nu\\sim Ra^{3/2}E^{2}$ in ...

  4. An algorithm for controlling of cutting speed based on soft calculations

    Directory of Open Access Journals (Sweden)

    Bobyr Maxim


    Full Text Available The algorithm for controlling of cutting speed during machining of parts on equipment CNC is presented in the article. A program code has been developed for controlling of cutting speed on a three-axis milling machine CNC. The fuzzy-logical MISO system in which cutting speed depends on the rotation frequency of the cutting tool and the feed is presented.

  5. MPPT Algorithm for Small Wind Systems based on Speed Control Strategy

    Directory of Open Access Journals (Sweden)

    Ciprian VLAD


    Full Text Available This paper presents experimental results of an autonomous low-power wind energy conversion system (WECS, based on a permanent-magnet synchronous generator (PMSG connected directly to the wind turbine. The purpose of this paper is to present an improving method for MPPT (Maximum Power Point Tracking algorithm based shaft rotational speed optimal control. The proposed method concern the variable delay compensation between measured wind speed from anemometer and wind shaft rotational speed proportional signal. Experimental results aiming to prove the efficiency of the proposed method are presented.

  6. Scientific Visualization in High Speed Network Environments (United States)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)


    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  7. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Directory of Open Access Journals (Sweden)

    Zhaoying Zhou


    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  8. Axisymmetric instabilities between coaxial rotating disks (United States)

    Pécheux, Jean; Foucault, E.


    This paper concerns the stability of the von Kármán swirling flow between coaxial disks. A linear stability analysis shows that for moderate Reynolds numbers (Re≤50) and for any rotation ratio sin[-1,1[ there is a radial location r_{pc} from which the self-similar von Kármán solutions become unstable to axisymmetric disturbances. When the disks are moderately counter-rotating (sin[-0.56,0[), two different disturbances (types I and II) appear at the same critical radius. A spatio-temporal analysis shows that, at a very short distance from this critical radius, the first disturbance (type I) becomes absolutely unstable whereas the second (type II) remains convectively unstable. Outside this range of aspect ratios, all the disturbances examined are found to be absolutely unstable. The flow between two coaxial rotating disks enclosed in a stationary sidewall is then numerically investigated. For sufficently large aspect ratios, the cavity flow is found to be globally unstable for axisymmetric disturbances similar to that calculated with the self-similar solutions. The flow in cavities with aspect ratios smaller than R {≈} 10.3 (and Re {≤} 50) is not destabilized by these axisymmetric disturbances. An experimental investigation conducted for a cavity with aspect ratio R {=} 15 confirms the numerical results. Axisymmetric disturbances similar to those calculated for the same cavity are detected and three-dimensional modes can also be observed near the sidewall.

  9. Thinking Critically about Critical Thinking (United States)

    Mulnix, Jennifer Wilson


    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  10. Differences in stride between healthy ostriches (Struthio camelus and those affected by tibiotarsal rotation : research note

    Directory of Open Access Journals (Sweden)

    R.G. Cooper


    Full Text Available Twenty healthy ostriches (ten cocks and ten hens, and twenty birds with tibiotarsal rotation (nine cocks and 11 hens (14 months old were isolated, hooded and weighed. A run (50m x 2.5 m was divided into sections marked 5m, 10m, 15m and 20 m. Time taken for each bird to pass these points was recorded and speed computed. The degree of tibiotarsal rotation in the right foot was mean + SEM, 156 + 2.69°. Comparisons between left and right foot length in healthy birds showed no significant differences. Foot length was significantly lower in tibiotarsal rotation (P=0.03. The right foot in tibiotarsal rotation was significantly shorter than the left foot. The number of strides per each 5 m division were significantly (P < 0.05 greater in tibiotarsal rotation by comparison with healthy birds. At 20 m, healthy cocks had more strides than hens. The stride length in hens was significantly (P < 0.05 greater than cocks at 5, 10 and 15 m, respectively, but lower throughout in tibiotarsal rotation (P = 0.001. The speed of hens was significantly (P < 0.05 greater than cocks. Tibiotarsal rotation resulted in significantly (P <0.05 reduced speeds. Hens may be able to escape danger faster than cocks. The occurrence of tibiotarsal rotation necessitates consideration of genetics, management, sex, nutrition and growth rates.

  11. Speeding Up Computers


    Kowalik, Janusz; Arłukowicz, Piotr; Parsons, Erika


    There are two distinct approaches to speeding up large parallel computers. The older method is the General Purpose Graphics Processing Units (GPGPU). The newer is the Many Integrated Core (MIC) technology . Here we attempt to focus on the MIC technology and point out differences between the two approaches to accelerating supercomputers. This is a user perspective.

  12. High speed preprocessing system

    Indian Academy of Sciences (India)

    (a) Digitizing and writing the video data in the memory at HR rate, and (b) once the data are ready in the memory, reading the data and generating the LR image. Thus the execution time mainly depends on (i) processor speed, and (ii) the time taken for fetching video information/data. Figure 1. Hardware block diagram. 514.

  13. Variable speed generators

    CERN Document Server

    Boldea, Ion


    With the deregulation of electrical energy production and distribution, says Boldea (Polytechnical Institute, Timisoara, Romania) producers are looking for ways to tailor their electricity for different markets. Variable-speed electric generators are serving that purpose, up to the 400 megavolt ampere unit size, in Japan since 1996 and Germany sinc

  14. CISM Course on Rotating Fluids

    CERN Document Server


    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  15. On general Earth's rotation theory (United States)

    Brumberg, V.; Ivanova, T.


    This paper dealing with the general problem of the rigid-body rotation of the three-axial Earth represents a straightforward extension of (Brumberg and Ivanova, 2007) where the simplified Poisson equations of rotation of the axially symmetrical Earth have been considered. The aim of the present paper is to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation around its centre of mass to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).

  16. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery (United States)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.


    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.


    Directory of Open Access Journals (Sweden)



    Full Text Available The document describes the creation of new tools that have changed (or trivialized the relationship of the humanbeing with the modernity dimensions he built, with the presentation of different organizational tensions analyzedwith a cultural analysis of two institutions related with transport policy, from a standpoint of critical psychology. Basedon the results from an investigation of the psychosociology of transport project, this work analyzes the discourse ofstaff of both organizations that work in transport policy, to achieve a closer look of the way in which they understandspace, time and speed within their everyday processes. The document sets forth questions to deepen this topic infurther research, especially space as a need for development, and speed as a characteristic that should be understood ina critical manner, before accepting it as a positive aspect of progress. The latter is the sense that the authors want to giveto the title of the document.

  18. Numerical simulation of VAWT on the effects of rotation cylinder (United States)

    Xing, Shuda; Cao, Yang; Ren, Fuji


    Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.

  19. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu


    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  20. Motion-induced eddy current thermography for high-speed inspection (United States)

    Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian


    This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  1. A Mathematical Model of Marine Diesel Engine Speed Control System (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo


    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  2. A Mathematical Model of Marine Diesel Engine Speed Control System (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo


    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  3. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul


    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t


    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.


    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  5. On the stellar rotation-activity connection (United States)

    Rosner, R.


    The relationship between rotation rates and surface activity in late-type dwarf stars is explored in a survey of recent theoretical and observational studies. Current theoretical models of stellar-magnetic-field production and coronal activity are examined, including linear kinematic dynamo theory, nonlinear dynamos using approximations, and full numerical simulations of the MHD equations; and some typical results are presented graphically. The limitations of the modeling procedures and the constraints imposed by the physics are indicated. The statistical techniques used in establishing correlations between various observational parameters are analyzed critically, and the methods developed for quasar luminosity functions by Avni et al. (1980) are used to evaluate the effects of upper detection bounds, incomplete samples, and missing data for the case of rotation and X-ray flux data.

  6. Critical Care (United States)

    Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...

  7. Design optimization of MR-compatible rotating anode x-ray tubes for stable operation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Lillaney, Prasheel [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)


    increase the fundamental frequency past the operating range at 50 Hz.Results: The first large vibration during the prototype motor operation was obtained at 21.64±0.68 Hz in the power spectrum. An abrupt decrease in acceleration occurred at 21.5 Hz due to struggling against the resonance vibrations. A bearing stiffness of 1.2×10{sup 5} N/m in the FEM simulation was used to obtain a critical speed of 21.4 Hz providing 1.1% error. This bearing stiffness value and the 3D model were then confirmed by the experiments with the anode removed, demonstrating an agreement within 6.4% between simulation results and measurements. A calculated first critical frequency (fundamental frequency) of 68.5 Hz was obtained by increasing the bearing stiffness to 1×10{sup 7} N/m and increasing the shaft diameter by 68.0%. Reducing the number of bearings in the design permits decreasing the total length of the motor by 1.7 in., and results in a fundamental frequency of 68.3 Hz in concert with additional changes (shaft diameter of 0.625 in., rotor diameter of 2.4 in., and bearing stiffness of 1×10{sup 6} N/m).Conclusions: An FEM model of the x-ray tube motor has been implemented and experimentally validated. A fundamental frequency above the operational rotation speed can be achieved through modification of multiple design parameters, which allows the motor to operate stably and safely in the MR environment during the repeated acceleration/deceleration cycles required for an interventional procedure. The validated 3D FEM model can now be used to investigate trade-offs between generated torque, maximum speed, and motor inertia to further optimize motor design.

  8. Rotational Spectrum of Saccharine (United States)

    Alonso, Elena R.; Mata, Santiago; Alonso, José L.


    A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).

  9. Numerical and Experimental Investigations of a Rotating Heat Pipe

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Todd A. [Univ. of New Mexico, Albuquerque, NM (United States)


    Rotating and revolving heat pipes have been used in a variety of applications including heat pipe heat exchangers, cooling of rotating electrical machines, and heat removal in high speed cutting operations. The use of heat pipes in rotating environments has prompted many analytical, numerical, and experimental investigations of the heat transfer characteristics of these devices. Past investigations, however, have been restricted to the study of straight heat pipes. In this work, a curved rotating heat pipe is studied numerically and experimentally. In certain types of rotating machines, heat generating components, which must be cooled during normal operation, are located at some radial distance from the axis of rotation. The bent heat pipe studied here is shown to have advantages when compared to the conventional straight heat pipes in these off-axis cooling scenarios. The heat pipe studied here is built so that both the condenser and evaporator sections are parallel to the axis of rotation. The condenser section is concentric with the axis of rotation while the evaporator section can be placed in contact with off-axis heat sources in the rotating machine. The geometry is achieved by incorporating an S-shaped curve between the on-axis rotating condenser section and the off-axis revolving evaporator section. Furthermore, the heat pipe uses an annular gap wick structure. Incorporating an annular gap wick structure into the heat pipe allows for operation in a non-rotating environment. A numerical model of this rotating heat pipe is developed. The analysis is based on a two-dimensional finite-difference model of the liquid flow coupled to a one-dimensional model of the vapor flow. Although the numerical model incorporates many significant aspects of the fluid flow, the flow in the actual heat pipe is expected to be threedimensional. The rotating heat pipe with the S-shaped curve is also studied experimentally to determine how well the numerical model captures the key

  10. Speed enforcement in Norway

    DEFF Research Database (Denmark)

    Elvik, Rune


    the game-theoretic model empirically. Testing the model rigorously is difficult, mainly because some of the relevant variables are not reliably measured and are endogenous. Two models were developed: one to identify sources of changes in the rate of violations, one to identify sources of changes......This paper probes the relationship between changes in the risk of apprehension for speeding in Norway and changes in the amount of speeding. The paper is based on a game-theoretic model of how the rate of violations and the amount of enforcement is determined by the interaction between drivers...... and the police. This model makes predictions both about how drivers will adapt to changes in the amount of enforcement (the more enforcement, the less violations) as well as how the police will adapt to changes in the rate of violations (the less violations, the less enforcement). The paper attempts to test...

  11. Biaxially textured Mo films with diverse morphologies by substrate-flipping rotation (United States)

    Chen, L.; Lu, T.-M.; Wang, G.-C.


    A class of nanostructured Mo thin films was grown by DC magnetron sputtering using a robust substrate rotation mode called 'flipping rotation'. In this rotation mode, the substrate is arranged to rotate continuously at a fixed speed around an axis lying within and parallel to the substrate. The incident flux is perpendicular to the rotational axis, and the incident flux angle changes continuously. Mo nanostructured films, grown under different rotation speeds with three orders of magnitude spread (ranging from 0.008 to 24 rotation min - 1), different flipping directions (clockwise and counter-clockwise), and different ending deposition angles, were characterized using scanning electron microscopy (SEM) and reflection high energy electron diffraction (RHEED) surface-pole-figure techniques. Despite their very different morphologies, such as 'C'-shaped, 'S'-shaped, and vertically aligned nanorods, the same (110)[1\\bar {1}0] biaxial texture with an average out-of-plane dispersion of ~ 15° was observed. In contrast, we showed that only a fiber-textured Mo film was obtained by using the conventional rotation mode where the oblique incident flux angle was fixed with the substrate rotating around the surface normal.

  12. Behavior of a heavy cylinder in a horizontal cylindrical liquid-filled cavity at modulated rotation (United States)

    Kozlov, Nikolai V.; Vlasova, Olga A.


    The behavior of a heavy cylindrical solid in a horizontal cylindrical cavity is experimentally investigated. The cavity is filled with a viscous liquid and rotates. Two rotation regimes are considered. The first one is steady rotation. A number of body motion regimes are found depending on the cavity rotation speed. The second regime is a modulated rotation, in which the rotation speed is varying periodically. It can be presented as a sum of steady rotation and librations. On the whole, three different cases of the body repulsion from the cavity wall are observed. In the first case, the repulsion occurs when the body slides over a rotating cavity wall. In the second case, the body being in the centrifuged state—when it rotates with the fluid—detaches from the cavity wall under the action of gravity. In the third case, at librations, the wall performs oscillations and the body is repulsed from the wall due to the nonlinear viscous interaction with the fluid.

  13. Pure Nano-Rotation Scanner

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee


    Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.

  14. Influence of defects on the vibrations of rotating systems; Influence de defauts sur le comportement vibratoire des systemes tournants

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, A. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/SEMT), 91 - Gif sur Yvette (France)


    For high rotation speeds, the imperfections (cracks, anisotropy...) of rotating machinery of the energy sector lead to a specific vibratory behavior which can damage the machine. The simulation of rotating machinery are usually realized for systems without defect. The aim of this thesis is to understand the influence of defects and to propose an algorithm to predict the dynamical behavior. In a first part the author studies the simplified rotating oscillators to propose a numerical method in order to taking into account the dynamic of these systems. This method is then applied to real rotating machinery with the Cast3m software. The numerical results are validated with experiments. (A.L.B.)

  15. Sensitivity Analysis of the Critical Speed in Railway Vehicle Dynamics

    DEFF Research Database (Denmark)

    Bigoni, Daniele; True, Hans; Engsig-Karup, Allan Peter


    applicability in many engineering fields and does not require the knowledge of the particular solver of the dynamical system. This analysis can be used as part of the virtual homologation procedure and to help engineers during the design phase of complex systems. The method is applied to a half car with a two...

  16. Sensitivity Analysis of the Critical Speed in Railway Vehicle Dynamics

    DEFF Research Database (Denmark)

    Bigoni, Daniele; True, Hans; Engsig-Karup, Allan Peter


    applicability in many engineering fields and does not require the knowledge of the particular solver of the dynamical system. This analysis can be used as part of the virtual homologation procedure and to help engineers during the design phase of complex systems. The method is applied to a half car with a two...

  17. Rigidity of smooth critical circle maps


    Guarino, Pablo; de Melo, Welington


    We prove that any two $C^3$ critical circle maps with the same irrational rotation number of bounded type and the same odd criticality are conjugate to each other by a $C^{1+\\alpha}$ circle diffeomorphism, for some universal $\\alpha>0$.

  18. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    Directory of Open Access Journals (Sweden)

    Sharf Abdusalam M.


    Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  19. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface (United States)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.


    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  20. High-speed cinematography of compressible mixing layers (United States)

    Mahadevan, R.; Loth, Eric


    Experiments are performed using high-speed film cinematography to temporally resolve compressible planar mixing layer structures using shadowgraphs and planar light sheet visualization. The technique is relatively inexpensive and allows multiple images. The time-dependent shadowgraph and Mie scattering images are documented with a rotating mirror camera operating at approximately 350 kHz. The results show the presence of large scale structures in the mixing layer which flatten as they convect downstream. Both spatial and temporal covariances have been obtained through digital image processing which yield, on average, elliptical structures with convective speeds above the isentropic prediction, and non-isotropic streamwise and transverse scalar transport fluctuations.

  1. Secondary Containment Design for a High Speed Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.


    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  2. How Critical Is Critical Thinking? (United States)

    Shaw, Ryan D.


    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  3. Algorithm for wind speed estimate with polarimetric radar

    Directory of Open Access Journals (Sweden)

    Ю. А. Авер’янова


    Full Text Available The connection of wind speed and drops behavior is substantiated as well as the drop behavior influence onto the polarization characteristics of electromagnetic waves. The expression to calculate the wind speed taking into account the Weber number for the critical regime of drop deformation is obtained. The critical regime of drop deformation is the regime when drop is divided into two parts. The dependency of critical wind speed on the drop diameter is calculated and shown. The concept o polarization spectrum that is introduced in the previous papers is used to estimate the dynamic processes in the atmosphere. At the moment when the drop is under the influence of the wind that is equal to the critical wind speed the drop will be divided into two parts. This process will be reflected as the appearance of the two equal components of polarization spectra of reflected electromagnetic waves at the orthogonal antennas of Doppler Polarimetric Radar. Owing the information about the correspondence of the polarization component energy level to the drop diameter it is possible to estimate the wind speed with the obtained dependency. The process of the wind speed estimate with polarimetric radar is presented with the developed common algorithm

  4. Wormholes immersed in rotating matter

    Directory of Open Access Journals (Sweden)

    Christian Hoffmann


    Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

  5. The role of visual processing speed in reading speed development. (United States)

    Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane


    A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children.

  6. Pay as You Speed, ISA with incentive for not speeding

    DEFF Research Database (Denmark)

    Lahrmann, Harry Spaabæk; Agerholm, Niels; Tradisauskas, Nerius


    , with and without incentive crossed with informative ISA present or absent. The results showed that ISA is an efficient tool for reducing speeding particularly on rural roads. The analysis of speed data demonstrated that the proportion of distance driven above the speed where the ISA equipment responded (PDA...

  7. The role of visual processing speed in reading speed development.

    Directory of Open Access Journals (Sweden)

    Muriel Lobier

    Full Text Available A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span, predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children.

  8. Pay as You Speed, ISA with incentives for not speeding

    DEFF Research Database (Denmark)

    Lahrmann, Harry Spaabæk; Agerholm, Niels; Tradisauskas, Nerius


    The Intelligent Speed Adaptation (ISA) project we describe in this article is based on Pay as You Drive principles. These principles assume that the ISA equipment informs a driver of the speed limit, warns the driver when speeding and calculates penalty points. Each penalty point entails the redu...

  9. Spontaneous Core Rotation in Ferrofluid Pipe Flow (United States)

    Krekhov, Alexei; Shliomis, Mark


    Ferrofluid flow along a tube of radius R in a constant axial magnetic field is revisited. Our analytical solution and numerical simulations predict a transition from an initially axial flow to a steady swirling one. The swirl dynamo arises above some critical pressure drop and magnetic field strength. The new flow pattern consists of two phases of different symmetry: The flow in the core resembles Poiseuille flow in a rotating tube of the radius r*flow remains purely axial. These phases are separated by a thin domain wall. The swirl appearance is accompanied with a sharp increase in the flow rate that might serve for the detection of the swirling instability.

  10. Isovector rotational model

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. (Inst. fuer Theoretische Physik, Univ. Tuebingen (Germany))


    The explicit form of the canonical angle operator is found and the isovector rotor is quantized in canonical relative variables ensuring the exact separation of the spurious mode. The main characteristics of the resulting joint mode, together with the low- and high-frequency parts of the split mode are obtained. It is found that the isovector rotational mode exhausts all the non-spurious M1 strength at low and high energy, providing a strong support for the interpretation of all the orbital 1[sup +] excitations as a scissors mode. Self-consistent residual interactions do not change the non-spurious restoring force of the deformed potential. Simple numerical estimates, derived from a schematic deformed oscillator, are in a good qualitative agreement with microscopic RPA results. Relationships with the results of the two-rotor model and the microscopic realization of the scissors state are established. (orig.)

  11. Earth's variable rotation (United States)

    Hide, Raymond; Dickey, Jean O.


    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  12. Asteroid Ida Rotation Sequence (United States)


    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  13. Application of variable speed operation on Francis Turbines

    Directory of Open Access Journals (Sweden)

    G. P. Heckelsmueller


    Full Text Available Francis turbines that are directly coupled to a synchronous generator operate at constant rotational speed around a design point characterized by a given water head, flow and guide vane aperture. When important changes occur in headwater level in power stations with large reservoirs, the turbines suffer a significant loss of efficiency. By applying variable speed technology it may be possible to adapt the runner speed and to operate with a higher efficiency over a wide range of water heads. This investigation is intended to reveal the possible benefits of using variable speed operation in regard to gains in efficiency and power output. Based on model test data it is possible to determine the characteristic curves of unitary speed and unitary flow of the respective prototype turbine for varying guide vane apertures. By varying rotor speed it is possible to maintain values that correspond to maximum efficiency. An analysis is made keeping guide vane aperture constant and introducing a proportionality factor of water flow to corresponding power output. The results show that for guide vane apertures and heads different from the design point, best efficiencies can be kept by adjusting rotor speed. At heads lower than the design head, significant efficiency gains can be achieved. Consequently, a significant proportion of the flow can be saved while generating the same amount of power.

  14. Rotations, quaternions, and double groups

    CERN Document Server

    Altmann, Simon L


    This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g

  15. The earth rotation parameters - Conceptual and conventional definitions (United States)

    Capitaine, N.


    Conceptual definitions of the earth rotational parameters (ERP) used for obtaining astronomical references with an accuracy of 0.001 arcsec are reviewed, along with the fit between conceptual and conventional values. Conceptually, the instantaneous rotation of the earth is selected for calculating the ERP from a terrestrial frame of reference. It is shown that in calculating the third parameter, the UT1 value becomes unclear when it is related to the mean sidereal time using conventional models, and can be improved by using the stellar angle to obtain the angular speed of the earth in space directly. The accuracy of the value for the Celestial Ephemeris Pole (CEP) is demonstrated to be higher if considered conventionally in terms of the model of the precessional nutation of the earth. This formation accounts for the terrestrial motion of the instantaneous pole of rotation and the corresponding celestial motion.

  16. Precise measurement of velocity dependent friction in rotational motion

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh, E-mail: [School of Science and Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A, Lahore 54792 (Pakistan)


    Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the disc. It is thus observed how the maximum height is achieved by the hanger decrements in every bounce. From the decrements, the rotational frictional losses are measured. The precision is enhanced by correlating vertical motion with the angular motion. This method leads to a substantial improvement in precision. Furthermore, the frictional torque is shown to be proportional to the angular speed. The experiment has been successfully employed in the undergraduate lab setting.

  17. Measuring unbalance-induced vibrations in rotating tools

    Directory of Open Access Journals (Sweden)

    Kimmelmann Martin


    Full Text Available Unbalances in a tool cause vibrations of the spindle and the machine itself and lead to a waviness of the machined workpiece surface. This paper presents an experimental and analytical procedure for optically measuring the unbalance-induced displacements of the tool centre point (TCP. Therefore, a new method is introduced to determine the dynamic vibrations of a tool by comparing the geometrical profile of the tool with the dynamical profile at a high rotational speed. The necessary steps for measuring the signals and calculating the underlying dynamic vibrations of the tool are presented here. Afterwards, the unbalance-induced vibrations of a milling tool are shown as well as their influence on the eccentricity of the rotation axis. With this newly introduced method it is possible to directly link the displacements of the tool under rotation to the waviness of the workpiece surface and the dynamic stiffness of machine tools.

  18. The research of a ball rotation influence on a trajectory of its flight in basketball shots skills


    Kudimov, V.


    It is analyzed the influence of a basketball ball rotation degree on the form of a trajectory of its flight by results of photoshooting throws of a white ball on a black background and also the speed of a ball rotation on the data of videoshooting is estimated.

  19. Stellar dynamics around transient co-rotating spiral arms

    Directory of Open Access Journals (Sweden)

    Cropper M.


    Full Text Available Spiral density wave theory attempts to describe the spiral pattern in spiral galaxies in terms of a long-lived wave structure with a constant pattern speed in order to avoid the winding dilemma. The pattern is consequently a rigidly rotating, long-lived feature. We run an N-body/SPH simulation of a Milky Way-sized barred disk, and find that the spiral arms are transient features whose pattern speeds decrease with radius, in such a way that the pattern speed is almost equal to the rotation curve of the galaxy. We trace particle motion around the spiral arms. We show that particles from behind and in front of the spiral arm are drawn towards and join the arm. Particles move along the arm in the radial direction and we find a clear trend that they migrate toward the outer (inner radii on the trailing (leading side of the arm. Our simulations demonstrate that tat all radii where there is a co-rotating spiral arm the particles continue to be accelerated (decelerated by the spiral arm for long periods, which leads to strong migration.

  20. Dawn-Dusk Asymmetries in Rapidly Rotating Magnetospheres (United States)

    Jia, X.; Kivelson, M.


    Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. As plasma rotates from dawn to noon on a dipolarizing flux tube, it flows away from the equator at close to the sound speed. As plasma rotates from noon to dusk on a stretching flux tube, it is accelerated back to the equator by centrifugal acceleration at flow speeds typically smaller than the sound speed. Correspondingly, the plasma sheet remains far thicker in the afternoon than in the morning. Using two magnetohydrodynamic simulations, we analyze the forces that account for flows along and across the field in Saturn's magnetosphere and point out analogous effects at Jupiter. Different radial force balance in the morning and afternoon sectors produces net dusk to dawn flow, or equivalently, a large-scale electric field oriented from post-noon to pre-midnight.

  1. Critical Jostling

    Directory of Open Access Journals (Sweden)

    Pippin Barr


    Full Text Available Games can serve a critical function in many different ways, from serious games about real world subjects to self-reflexive commentaries on the nature of games themselves. In this essay we discuss critical possibilities stemming from the area of critical design, and more specifically Carl DiSalvo’s adversarial design and its concept of reconfiguring the remainder. To illustrate such an approach, we present the design and outcomes of two games, Jostle Bastard and Jostle Parent. We show how the games specifically engage with two previous games, Hotline Miami and Octodad: Dadliest Catch, reconfiguring elements of those games to create interactive critical experiences and extensions of the source material. Through the presentation of specific design concerns and decisions, we provide a grounded illustration of a particular critical function of videogames and hope to highlight this form as another valuable approach in the larger area of videogame criticism.

  2. Rotator Cuff Strength Ratio and Injury in Glovebox Workers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Amelia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Rotator cuff integrity is critical to shoulder health. Due to the high workload imposed upon the shoulder while working in an industrial glovebox, this study investigated the strength ratio of the rotator cuff muscles in glovebox workers and compared this ratio to the healthy norm. Descriptive statistics were collected using a short questionnaire. Handheld dynamometry was used to quantify the ratio of forces produced in the motions of shoulder internal and external rotation. Results showed this population to have shoulder strength ratios that were significantly different from the healthy norm. The deviation from the normal ratio demonstrates the need for solutions designed to reduce the workload on the rotator cuff musculature of glovebox workers in order to improve health and safety. Assessment of strength ratios can be used to screen for risk of symptom development.

  3. Comparing crop rotations between organic and conventional farming. (United States)

    Barbieri, Pietro; Pellerin, Sylvain; Nesme, Thomas


    Cropland use activities are major drivers of global environmental changes and of farming system resilience. Rotating crops is a critical land-use driver, and a farmers' key strategy to control environmental stresses and crop performances. Evidence has accumulated that crop rotations have been dramatically simplified over the last 50 years. In contrast, organic farming stands as an alternative production way that promotes crop diversification. However, our understanding of crop rotations is surprisingly limited. In order to understand if organic farming would result in more diversified and multifunctional landscapes, we provide here a novel, systematic comparison of organic-to-conventional crop rotations at the global scale based on a meta-analysis of the scientific literature, paired with an independent analysis of organic-to-conventional land-use. We show that organic farming leads to differences in land-use compared to conventional: overall, crop rotations are 15% longer and result in higher diversity and evener crop species distribution. These changes are driven by a higher abundance of temporary fodders, catch and cover-crops, mostly to the detriment of cereals. We also highlighted differences in organic rotations between Europe and North-America, two leading regions for organic production. This increased complexity of organic crop rotations is likely to enhance ecosystem service provisioning to agroecosystems.

  4. Overdose deaths demand a new paradigm for opioid rotation. (United States)

    Webster, Lynn R; Fine, Perry G


    An increasing number of deaths have been inferred to be associated with current opioid rotation practices and evidence is mounting that the use of widely accepted protocols for opioid rotation is an important contributing factor. Based on the findings of a literature review published in conjunction with this article, we propose a new paradigm for a potentially safer method of opioid rotation and present a case study illustrating the paradigm. This new paradigm suggests three easy-to-remember steps in opioid rotation and obviates the need to use a conversion table. Report of a clinical case of a patient undergoing opioid rotation using this new paradigm. The patient was successfully rotated from extended-release oxycodone to extended-release hydromorphone. The dose of oxycodone was slowly decreased, while the hydromorphone dose was slowly titrated. A critical element to this approach involved providing sufficient immediate-release opioid to treat breakthrough pain and to reverse acute abstinence signs and symptoms if the dosing changes prove insufficient. A safer new paradigm for opioid rotation may provide an important incremental step forward in reducing adverse public health consequences of inappropriate opioid dosing. Wiley Periodicals, Inc.

  5. Quantum sensing of rotation velocity based on transverse field Ising model (United States)

    Ma, Yu-Han; Sun, Chang-Pu


    We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system's rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength δ between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM.

  6. Surface dimpling on rotating work piece using rotation cutting tool (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard


    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  7. A Model of Cognitive Speed. (United States)

    Fulford, Catherine P.


    Introduces a model of cognitive speed and considers its relevance to research and practice. Topics include information processing; semantic cognitive flow; compressed speech; speed-reading; cognitive speed and interaction; and implications for distance education, video multimedia, computer-assisted instruction, hypermedia, interactive multimedia,…

  8. Guidelines for setting speed limits

    CSIR Research Space (South Africa)

    Wium, DJW


    Full Text Available A method is described for setting the speed limit for a particular road section. Several speed limits based on different criteria are described for each of nine traffic and road factors. The most appropriate speed limit for each relevant factor...

  9. Speed control variable rate irrigation (United States)

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  10. Rotational energy surfaces of molecules exhibiting internal rotation (United States)

    Ortigoso, Juan; Hougen, Jon T.


    Rotational energy surfaces [W. G. Harter and C. W. Patterson, J. Chem. Phys. 80, 4241 (1984)] for a molecule with internal rotation are constructed. The study is limited to torsional states at or below the top of the barrier to internal rotation, where the extra (torsional) degree of freedom can be eliminated by expanding eigenvalues of the torsion-K-rotation Hamiltonian as a Fourier series in the rotational degree of freedom. For acetaldehyde, considered as an example, this corresponds to considering vt=0, 1, and 2 (below the barrier) and vt=3 (just above the barrier). The rotational energy surfaces are characterized by locating their stationary points (maxima, minima, and saddles) and separatrices. Rather complicated catastrophe histories describing the creation and annihilation of pairs of stationary points as a function of J are found at moderate J for given torsional quantum number (vt) and symmetry species (A,E). Trajectories on the rotational energy surface which quantize the action are examined, and changes from rotational to vibrational trajectories caused by changes in the separatrix structure are found as a function of J for vt=2. The concept of a ``best'' quantization axis for the molecule-fixed component of the total angular momentum is examined from a classical point of view, and it is shown that labeling ambiguities encountered in the literature for torsion-rotation energy levels, calculated numerically in the rho-axis system, can be eliminated by reprojecting basis-set K values onto an axis passing through an appropriate stationary point on the rotational energy surface.

  11. Massive rotator cuff tears: definition and treatment. (United States)

    Lädermann, Alexandre; Denard, Patrick J; Collin, Philippe


    The aim of this review is to summarise tear pattern classification and management options for massive rotator cuff tears (MRCT), as well as to propose a treatment paradigm for patients with a MRCT. Data from 70 significant papers were reviewed in order to define the character of reparability and the possibility of alternative techniques in the management of MRCT. Massive rotator cuff tears (MRCT) include a wide panoply of lesions in terms of tear pattern, functional impairment, and reparability. Pre-operative evaluation is critical to successful treatment. With the advancement of medical technology, arthroscopy has become a frequently used method of treatment, even in cases of pseudoparalytic shoulders. Tendon transfer is limited to young patients with an irreparable MRCT and loss of active rotation. Arthroplasty can be considered for the treatment of a MRCT with associated arthritis. There is insufficient evidence to establish an evidence-based treatment algorithm for MRCTs. Treatment is based on patient factors and associated pathology, and includes personal experience and data from case series.

  12. More quantum centrifugal effect in rotating frame (United States)

    Gazeau, J.-P.; Koide, T.; Murenzi, R.


    The behaviour of quantum systems in non-inertial frames is revisited from the point of view of affine coherent state (ACS) quantization. We restrict our approach to the one-particle dynamics confined in a rotating plane about a fixed axis. This plane is considered as punctured due to the existence of the rotation center, which is viewed as a singularity. The corresponding phase space is the affine group of the plane and the ACS quantization enables us to quantize the system by respecting the affine symmetry of the true phase space. Our formulation predicts the appearance of an additional quantum centrifugal term, besides the usual angular-momentum one, which prevents the particle to reach the singular rotation center. Moreover it helps us to understand why two different non-inertial Schrödinger equations are obtained in previous works. The validity of our equation can be confirmed experimentally by observing the harmonic oscillator bound states and the critical angular velocity for their existence.

  13. Double-reflection polygon mirror for high-speed optical coherence microscopy. (United States)

    Liu, Linbo; Chen, Nanguang; Sheppard, C J R


    We report on a high-speed, high-efficiency, high-duty-cycle, path-length-maintaining and linear beam scanner suitable for en face scanning optical coherence microscopy. Fast transverse beam scanning is achieved by use of a double-reflection polygon mirror (DRPM) rotating at a constant speed. With a motor speed of 18,000 rpm and a scanner diameter of 50 mm, the DRPM provides a line rate up to 3 kHz, +/-1.8 degrees scanning range, and 90% duty cycle. A much higher scanning speed and much larger scanning range can be readily achieved by increasing the scanner diameter.

  14. High-Current Rotating Contactor (United States)

    Hagan, David W.; Wolff, Edwin D.


    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  15. Rotation of the planet mercury. (United States)

    Jefferys, W H


    The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.


    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)


    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  17. Critical Review

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Olsen, Stig Irving


    Manipulation and mistakes in LCA studies are as old as the tool itself, and so is its critical review. Besides preventing misuse and unsupported claims, critical review may also help identifying mistakes and more justifiable assumptions as well as generally improve the quality of a study. It thus...

  18. Critical Muralism (United States)

    Rosette, Arturo


    This study focuses on the development and practices of Critical Muralists--community-educator-artist-leader-activists--and situates these specifically in relation to the Mexican mural tradition of los Tres Grandes and in relation to the history of public art more generally. The study examines how Critical Muralists address artistic and…

  19. [Education of clinical pharmacy specialists in critical care in Japan]. (United States)

    Maeda, Mikihiro


    In Japan, recent initiation of the reimbursement from the government to monitor patients in intensive care unit (ICU) and the foundation of certified emergency medicine and critical care specialist resulted in the increased number of ICU pharmacists. Because most pharmacy schools in Japan have provided few lectures or rotations related to critical care, pharmacy students may think critical care is a difficult field. Pharmacy students in the United States usually have basic didactic courses for critical care such as sepsis or sedation. They can also take critical care rotations as an elective advanced rotation. An organized postgraduate training programs, pharmacy practice residency programs (PGY1; post graduate year 1) and specialized pharmacy practice residency programs (PGY2), develop clinical knowledge and skills as clinical pharmacists. Critical care is one of the most popular areas in PGY2 specialty residency programs. Through three years pharmacy students and residents can develop required knowledge and skills in critical care such as patient monitoring skill. As a part of new pharmacists training, our institution provides a week of critical care rotation. The main objective is the introduction of critical care to be a pharmacy generalist and to develop patient monitoring skills. The critical care rotation is the first step to develop critical care clinical pharmacy specialists in the future.

  20. Increasing Speed of Processing With Action Video Games


    Dye, Matthew W.G.; Green, C. Shawn; Bavelier, Daphne


    In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games significantly reduces reaction times without sacrificing accuracy. Critically, this increase in speed is observed across various tasks be...

  1. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)


    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  2. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu


    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  3. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke


    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  4. Minimum weight design of inhomogeneous rotating discs

    Energy Technology Data Exchange (ETDEWEB)

    Jahed, Hamid [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of); Farshi, Behrooz [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)]. E-mail:; Bidabadi, Jalal [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)


    There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far.

  5. Skilled basketball players rotate their shoulders more during running while dribbling. (United States)

    Fujii, Keisuke; Yamada, Yosuke; Oda, Shingo


    The relationship between running velocity and trunk rotation during normal running and running while dribbling was investigated in 7 male competitive basketball players and 7 male nonplayers. Participants performed a normal 20-m sprint and a 20-m sprint while dribbling a basketball. For the motion analysis, all individuals also performed normal running and running while dribbling at target of their maximal speed of sprinting and dribbling, respectively. Basketball players showed significantly smaller decreases in their running velocity from 85% maximal (target) sprint to 85% maximal (target) dribbling speeds than nonplayers. Furthermore, basketball players rotated their shoulders significantly more during target dribbling than during target running. For all participants, significant positive correlations were found between the decreases in running velocity and shoulder rotation. The results suggested that the basketball players' greater shoulder rotation during dribbling permits their running velocity to decrease less during target dribbling compared to a maximal sprint.

  6. Rotation periods and photometric variability of rapidly rotating ultracool dwarfs (United States)

    Miles-Páez, P. A.; Pallé, E.; Zapatero Osorio, M. R.


    We used the optical and near-infrared imagers located on the Liverpool, the IAC80, and the William Herschel telescopes to monitor 18 M7-L9.5 dwarfs with the objective of measuring their rotation periods. We achieved accuracies typically in the range ±1.5-28 mmag by means of differential photometry, which allowed us to detect photometric variability at the 2σ level in the 50 per cent of the sample. We also detected periodic modulation with periods in the interval 1.5-4.4 h in 9 out of 18 dwarfs that we attribute to rotation. Our variability detections were combined with data from the literature; we found that 65 ± 18 per cent of M7-L3.5 dwarfs with v sin I ≥ 30 km s-1 exhibit photometric variability with typical amplitudes ≤20 mmag in the I band. For those targets and field ultracool dwarfs with measurements of v sin I and rotation period we derived the expected inclination angle of their rotation axis, and found that those with v sin I ≥ 30 km s-1 are more likely to have inclinations ≳40 deg. In addition, we used these rotation periods and others from the literature to study the likely relationship between rotation and linear polarization in dusty ultracool dwarfs. We found a correlation between short rotation periods and large values of linear polarization at optical and near-infrared wavelengths.

  7. Differential rotation in solar-like stars from global simulations

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, G.; Kosovichev, A. G. [Solar Physics, HEPL, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom); Mansour, N. N., E-mail:, E-mail:, E-mail:, E-mail: [NASA, Ames Research Center, Moffett Field, Mountain View, CA 94040 (United States)


    To explore the physics of large-scale flows in solar-like stars, we perform three-dimensional anelastic simulations of rotating convection for global models with stratification resembling the solar interior. The numerical method is based on an implicit large-eddy simulation approach designed to capture effects from non-resolved small scales. We obtain two regimes of differential rotation, with equatorial zonal flows accelerated either in the direction of rotation (solar-like) or in the opposite direction (anti-solar). While the models with the solar-like differential rotation tend to produce multiple cells of meridional circulation, the models with anti-solar differential rotation result in only one or two meridional cells. Our simulations indicate that the rotation and large-scale flow patterns critically depend on the ratio between buoyancy and Coriolis forces. By including a sub-adiabatic layer at the bottom of the domain, corresponding to the stratification of a radiative zone, we reproduce a layer of strong radial shear similar to the solar tachocline. Similarly, enhanced super-adiabaticity at the top results in a near-surface shear layer located mainly at lower latitudes. The models reveal a latitudinal entropy gradient localized at the base of the convection zone and in the stable region, which, however, does not propagate across the convection zone. In consequence, baroclinicity effects remain small, and the rotation isocontours align in cylinders along the rotation axis. Our results confirm the alignment of large convective cells along the rotation axis in the deep convection zone and suggest that such 'banana-cell' pattern can be hidden beneath the supergranulation layer.

  8. VizieR Online Data Catalog: Rotational mixing in CEMP-s stars (Matrozis+, 2017) (United States)

    Matrozis, E.; Stancliffe, R. J.


    Summary of all rotating models that reach an age of at least 10Gyr and do not reach critical rotation after relaxation following mass accretion. The table contains chiefly abundances at key points of evolution: after mass accretion, after thermohaline mixing, at the main-sequence turn-off, after first dredge-up, and near the tip of the RGB. (1 data file).

  9. Speeding Up Innovation

    DEFF Research Database (Denmark)

    Sørensen, Flemming; Mattsson, Jan


    . Much innovation today takes place in open structures in which networks play an important role. However, little is known about how innovation networks can facilitate parallel innovation processes. This paper discusses how innovation network structures develop and support exploration and exploitation......Minimisation of time-to-market strategies can provide companies with a competitive advantage in dynamic and competitive environments. Using parallel innovation processes has been emphasised as one strategy to speed up innovation processes and consequently minimise the time-to-market of innovations...... in parallel innovation processes and in this way sustain speedy innovation processes. A case study of an innovation network is carried out by analysing communication structures and the information contents of emails related to a particular innovation process. The analysis shows how certain characteristics...

  10. Increasing Speed of Processing With Action Video Games (United States)

    Dye, Matthew W.G.; Green, C. Shawn; Bavelier, Daphne


    In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games significantly reduces reaction times without sacrificing accuracy. Critically, this increase in speed is observed across various tasks beyond game situations. Video gaming may therefore provide an efficient training regimen to induce a general speeding of perceptual reaction times without decreases in accuracy of performance. PMID:20485453

  11. Increasing Speed of Processing With Action Video Games. (United States)

    Dye, Matthew W G; Green, C Shawn; Bavelier, Daphne


    In many everyday situations, speed is of the essence. However, fast decisions typically mean more mistakes. To this day, it remains unknown whether reaction times can be reduced with appropriate training, within one individual, across a range of tasks, and without compromising accuracy. Here we review evidence that the very act of playing action video games significantly reduces reaction times without sacrificing accuracy. Critically, this increase in speed is observed across various tasks beyond game situations. Video gaming may therefore provide an efficient training regimen to induce a general speeding of perceptual reaction times without decreases in accuracy of performance.



    Yaşar; Alper


    The aim of the present study was to determine the effect of playing tennis on shoulder rotators strenght and proprioception. Ten beginner tennis players and 10 age matched sedentary controls voluntarily participated in this study. Shoulder internal and external rotators strength were evaluated by isokinetic dynamometer at a speed of 60°/sec. Shoulder proprioception was also determined by isokinetic dynamometer and assessed by measuring reproduction of passive positioning at 15º and 30º joint ...

  13. Waves propagation in turbulent superfluid helium in presence of combined rotation and counterflow


    Peruzza, Rosa Anna; Sciacca, Michele


    A complete study of the propagation of waves (namely longitudinal density and temperature waves, longitudinal and transversal velocity waves and heat waves) in turbulent superfluid helium is made in three situations: a rotating frame, a thermal counterflow, and the simultaneous combination of thermal counterflow and rotation. Our analysis aims to obtain as much as possible information on the tangle of quantized vortices from the wave speed and attenuation factor of these different waves, depe...

  14. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition (United States)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.


    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  15. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li


    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  16. Further Development of Rotating Rake Mode Measurement Data Analysis (United States)

    Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.


    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.


    Directory of Open Access Journals (Sweden)



    Full Text Available Mung bean wastewater containing valuable protein is very potential to be recovered for reuse. In this study, rotary disk ultrafiltration was employed to recover this protein. The effects of transmembrane pressure (TMP and membrane rotational speeds on process efficiency were studied and the optimum condition was chosen based on membrane permeate flux and protein retention. The results suggested that the use of TMP of 1.2 bar and rotating speed of 1,683 rpm under total recycle mode tended to achieve highest permeate flux (43 L/m3h compared to those using lower TMP and rotating speeds. The permeate fluxes under total recycle mode and batch concentration mode tended to increase with processing time, indicating the effectiveness of rotating shear force. In addition, the effect of stabilization technique on process performance under batch concentration mode was also studied. However, the variable did not show positive impacts on permeate flux and protein retention improvement. The optimum condition to achieve volume concentration factor (VCF of 5 was TMP of 1.2 bar and rotating speed of 1,403 rpm without stabilization. Under this condition, the average flux, protein retention and energy consumption were 42 L/m2h, 96% and 81 kWh/m3, respectively.

  18. Thermal Behavior of High-Speed Helical Gear Trains Investigated (United States)

    Handschuh, Robert F.


    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  19. How bar strength and pattern speed affect galactic spiral structure

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, M.P. (Monash Univ., Clayton (Australia). Dept. of Mathematics)


    The response of a gaseous disc to rotating stellar bars of various strengths and pattern speeds is studied. The arm-to-interarm density contrast and the pitch angle of the induced spiral arms both increase with increasing bar strength. Furthermore, along the sequence there is a widening of a region in which stable periodic orbits are difficult to find until it encompasses the whole annulus between corotation (CR) and the outer Lindblad resonance (OLR). Stars moving in quasi-stochastic orbits originating in this region form an exponential tail in the surface density profile of the stellar disc. As the pattern speed is lowered more structure appears inside CR. In models with pattern speed so low that an inner Lindblad resonance (ILR) exists, spiral arms form there, and as a result gas is moved inward toward the centre.

  20. Longitudinal and transverse modes of slosh wave excitation in rotating dewar associated with gravity jitters (United States)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.


    Characteristics of slosh waves based on the dynamical behavior of oscillations at the liquid-vapor interface have been investigated. Twelve case studies of slosh wave excitation due to various frequencies of gravity jitters under different rotating speeds of the propellant tank and different levels of background gravity environment have been simulated. The study shows that slosh waves excited inside the spacecraft propellant tank are characterized by the lowest frequency of the waves initiated, frequencies of the gravity jitters imposed on the propellant system, the levels of background gravity environment, and dewar rotating speeds. Conditions for suppression and amplification of the slosh waves are discussed.

  1. Measurement of small light absorption in microparticles by means of optically induced rotation

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.


    The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters of the pa......The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters...

  2. Rayleigh Wave in a Rotating Initially Stressed Piezoelectric Half-Space (United States)

    Singh, Baljeet; Singh, Ranbir


    The governing equations of an initially stressed rotating piezoelectric medium are solved for surface wave solutions. The appropriate solutions in the half-space of the medium satisfy the required boundary conditions to obtain the frequency equation of Rayleigh wave for charge free as well as electrically shorted cases. The non-dimensional speed of the Rayleigh wave is computed numerically for particular examples of Lithium niobate and PZT-5H ceramics. The effects of rotation and initial stress are observed graphically on the non-dimensional speed of the Rayleigh wave.

  3. Characteristics of steady vibration in a rotating hub-beam system (United States)

    Zhao, Zhen; Liu, Caishan; Ma, Wei


    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  4. Critical Proximity

    Directory of Open Access Journals (Sweden)

    Jane Simon


    Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.

  5. Critical proximity

    Directory of Open Access Journals (Sweden)

    Simon, Jane


    Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.

  6. A rotational ablation tool for calcified atherosclerotic plaque removal. (United States)

    Kim, Min-Hyeng; Kim, Hyung-Jung; Kim, Nicholas N; Yoon, Hae-Sung; Ahn, Sung-Hoon


    Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.

  7. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.


    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  8. Transport and diffusion properties of Brownian particles powered by a rotating wheel. (United States)

    Ai, Bao-Quan


    Diffusion and rectification of Brownian particles powered by a rotating wheel are numerically investigated in a two-dimensional channel. The nonequilibrium driving comes from the rotating wheel, which can break thermodynamical equilibrium and induce the directed transport in an asymmetric potential. It is found that the direction of the transport along the potential is determined by the asymmetry of the potential and the position of the wheel. The average velocity is a peaked function of the angular speed (or the diffusion coefficient) and the position of the peak shifts to large angular speed (or diffusion coefficient) when the diffusion coefficient (or the angular speed) increases. There exists an optimal angular speed (or diffusion coefficient) at which the effective diffusion coefficient takes its maximal value. Remarkably, the giant acceleration of diffusion is observed by suitably adjusting the system parameters. The parameters corresponding to the maximum effective diffusion coefficient are not the same as the parameters at which average velocity is maximum.

  9. Numerical results in a vertical wind axis turbine with relative rotating blades

    Energy Technology Data Exchange (ETDEWEB)

    Bayeul-Laine, Annie-Claude; Dockter, Aurore; Simonet, Sophie; Bois, Gerard [Arts et Metiers PARISTECH (France)


    The use of wind energy to produce electricity through wind turbines has spread world-wide. The quantity of electricity produced is affected by numerous factors such as wind speed and direction and turbine design; the aim of this paper is to assess the influence of different blades on the performance of a turbine. This study was performed on a turbine in which the blades have a rotating movement, each around its own axis and around the turbine's axis. Unsteady simulations were carried out with several blade stagger angles and one wind speed and 2 different blade geometries were used for 4 rotational speeds. Results showed that the studied turbine gave better performance than vertical axis wind turbines and that blade sketch, blade speed ratios, and blade stagger angle were important influences on the performance. This study showed that this kind of turbine has the potential to achieve good performance but that further work needs to be done.

  10. Canonical elements of rotational motion (United States)

    Fukushima, T.


    We present a new set of canonical variables to describe general rotation of a triaxial rigid body. Explicit are both the forward and backward transformations from the new variables to the Andoyer canonical variables, which are universal. The rotational kinetic energy is expressed as a quadratic monomial of one new momentum. Consequently, the torque-free rotations are expressed as a linear function of time for the conjugate coordinate and constants of time for the rest two coordinates and three momenta. This means that the new canonical variables are universal elements in a broad sense.

  11. Interchange rotation factors and player characteristics influence physical and technical performance in professional Australian Rules football. (United States)

    Dillon, Patrick A; Kempton, Thomas; Ryan, Samuel; Hocking, Joel; Coutts, Aaron J


    To examine the effects of match-related and individual player characteristics on activity profile and technical performance during rotations in professional Australian football. Longitudinal observational study. Global positioning system data and player rating scores were collected from 33 professional Australian football players during 15 Australian football League matches. Player rating scores were time aligned with their relative total and high-speed running (HSR) distance (>20kmh-1) for each on ground rotation. Individual players' maximal aerobic running speed (MAS) was determined from a two-kilometre trial. A multilevel linear mixed model was used to examine the influence of rotations on physical activity profiles and skill execution during match play. Rotation duration and accumulated distance resulted in a trivial-to-moderate reduction in relative total and HSR distances as well as relative rating points. The number of disposals in a rotation had a small positive effect on relative total and HSR distances and a large positive effect on relative rating points. MAS was associated with a moderate-to-large increase in relative total distance, but had a large negative effect on relative rating points. Previous rotation time, stoppages and the number of rotations in the quarter had a trivial-to-small negative effect on relative total and HSR distances. A greater speed (mmin-1) was associated with a trivial increase in rating points during a rotation, while there was a trivial decrease in relative total distance as rating points increased. The complex relationship between factors that influence activity profile and technical performance during rotations in Australian football needs to be considered when interpreting match performance. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Computational Aerodynamic Simulations of a 1484 ft/sec Tip Speed Quiet High-Speed Fan System Model for Acoustic Methods Assessment and Development (United States)

    Tweedt, Daniel L.


    Computational Aerodynamic simulations of a 1484 ft/sec tip speed quiet high-speed fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, low-noise research fan/nacelle model that has undergone experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating points simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, which includes a core duct and a bypass duct that merge upstream of the fan system nozzle. As a result, only fan rotational speed and the system bypass ratio, set by means of a translating nozzle plug, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. Computed blade row flow fields at all fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive or critical boundary layer separations or related secondary-flow problems, with the exception of the hub boundary layer at the core duct entrance. At that location a significant flow separation is present. The region of local flow

  13. Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines (United States)

    Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander


    This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.

  14. Development and testing of pulsed and rotating detonation combustors (United States)

    St. George, Andrew C.

    Detonation is a self-sustaining, supersonic, shock-driven, exothermic reaction. Detonation combustion can theoretically provide significant improvements in thermodynamic efficiency over constant pressure combustion when incorporated into existing cycles. To harness this potential performance benefit, countless studies have worked to develop detonation combustors and integrate these devices into existing systems. This dissertation consists of a series of investigations on two types of detonation combustors: the pulse detonation combustor (PDC) and the rotating detonation combustor (RDC). In the first two investigations, an array of air-breathing PDCs is integrated with an axial power turbine. The system is initially operated with steady and pulsed cold air flow to determine the effect of pulsed flow on turbine performance. Various averaging approaches are employed to calculate turbine efficiency, but only flow-weighted (e.g., mass or work averaging) definitions have physical significance. Pulsed flow turbine efficiency is comparable to steady flow efficiency at high corrected flow rates and low rotor speeds. At these conditions, the pulse duty cycle expands and the variation of the rotor incidence angle is constrained to a favorable range. The system is operated with pulsed detonating flow to determine the effect of frequency, fill fraction, and rotor speed on turbine performance. For some conditions, output power exceeds the maximum attainable value from steady constant pressure combustion due to a significant increase in available power from the detonation products. However, the turbine component efficiency estimated from classical thermodynamic analysis is four times lower than the steady design point efficiency. Analysis of blade angles shows a significant penalty due to the detonation, fill, and purge processes simultaneously imposed on the rotor. The latter six investigations focus on fundamental research of the RDC concept. A specially-tailored RDC data

  15. The (Very) Slow Rotation of Magnetic Ap Stars (United States)

    Mathys, Gautier


    To this date, 34 magnetic Ap stars that have periods of variation longer than 30 days are known. They represent a considerable fraction of the total number of Ap stars whose period has been reliably determined. All the available evidence unambiguously indicates that the observed variations of those long-period Ap stars result from the changing aspect of their visible hemisphere as they rotate, thus that the oblique rotator model is applicable throughout the whole range of periods of variation of the Ap stars. We show that the periods of the most slowly rotating Ap stars must be of the order of 300 years, and that some may even be longer, possibly up to 1000 years. The 5 to 6 orders of magnitude spanned by the rotation periods of the Ap stars present a major challenge for the understanding of their origin and their evolution. To guide the theo- retical developments, observational hints may be found in possible differences between the magnetic properties of stars that have rotation periods in different ranges. Such differences are starting to emerge from the existing data. To increase their significance level, study of the longest-period stars must be continued over their full rotation cycle. Failure to secure observations now may leave critical data missing for several decades, or even centuries.

  16. Galaxy rotation and supermassive black hole binary evolution (United States)

    Mirza, M. A.; Tahir, A.; Khan, F. M.; Holley-Bockelmann, H.; Baig, A. M.; Berczik, P.; Chishtie, F.


    Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, Laser Interferometer Space Antenna, an ESA/NASA mission currently set to launch by 2034.

  17. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)


    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  18. Semi-analytical Vibration Characteristics of Rotating Timoshenko Beams Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimia

    Full Text Available AbstractFree vibration analysis of rotating functionally graded (FG thick Timoshenko beams is presented. The material properties of FG beam vary along the thickness direction of the constituents according to power law model. Governing equations are derived through Hamilton's principle and they are solved applying differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The emphasis is placed on investigating the effect of several beam parameters such as constituent volume fractions, slenderness ratios, rotational speed and hub radius on natural frequencies and mode shapes of the rotating thick FG beam.

  19. Optical wheel-rotation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Veeser, L.; Rodriguez, P.; Forman, P. [Los Alamos National Lab., NM (United States); Deeter, M. [National Inst. of Standards and Technology, Boulder, CO (United States)


    We describe a fiber-optic rotation sensor based on diffraction of light in a magneto-optic crystal (BIG). Exploitation of this effect permits the construction of a sensor requiring no polarization elements or lenses.

  20. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain


    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  1. Wind speed perception and risk.

    Directory of Open Access Journals (Sweden)

    Duzgun Agdas

    Full Text Available BACKGROUND: How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human-wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. METHOD: We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. RESULTS: Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk. The number of tropical cyclones people had experienced moderated the strength of the actual-perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. CONCLUSION: These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.

  2. Wind Speed Perception and Risk (United States)

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.


    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  3. Variable speed pumped storage system fed by large-scale cycloconverter

    Energy Technology Data Exchange (ETDEWEB)

    T, Taguchi. (The Tokyo Electric Power Co. Inc., Tokyo (Japan)); Mukai, K.; Yanagisawa, T.; Kanai, T. (Toshiba Corp., Tokyo (Japan))


    The world{prime}s first variable speed pumped storage system fed by large-scale cycloconverter was brought into operation at the Yagisawa power station Unit 2 of Tokyo Electric Power Co. in December, 1990. The present paper introduces an outline and operation results of this system. This remarkable system incorporates the latest large-scale, large-capacity power electronics technology, ultrahigh-speed digital control technology, and large-scale, large-capacity generator-motor technology. From the actual machine tests conducted at the Yagisawa power station, various functions of the variable speed pumped storage system were verified. The variable speed system enabled to regulate the input of the pump within the range of about 50 to 85MW. Additionally, in the turbine operation, vibration of the pump-turbine was improved by operating with the optimum rotating speed. Furthermore, the variable speed system did not cause unstable condition of power swing. 4 refs., 16 figs., 2 tabs.

  4. Measurements of the Rotation of the Flagellar Motor by Bead Assay. (United States)

    Kasai, Taishi; Sowa, Yoshiyuki


    The bacterial flagellar motor is a reversible rotary nano-machine powered by the ion flux across the cytoplasmic membrane. Each motor rotates a long helical filament that extends from the cell body at several hundreds revolutions per second. The output of the motor is characterized by its generated torque and rotational speed. The torque can be calculated as the rotational frictional drag coefficient multiplied by the angular velocity. Varieties of methods, including a bead assay, have been developed to measure the flagellar rotation rate under various load conditions on the motor. In this chapter, we describe a method to monitor the motor rotation through a position of a 1 μm bead attached to a truncated flagellar filament.

  5. Emotion and affect in mental imagery: Do fear and anxiety manipulate mental rotation performance?

    Directory of Open Access Journals (Sweden)

    Sandra eKaltner


    Full Text Available Little is known about the effects of fear as a basic emotion on mental rotation performance. We expected that the emotional arousal evoked by fearful stimuli presented prior to each mental rotation trial would enhance mental rotation performance. Regarding the influence of anxiety, high anxious participants are supposed to show slower responses and higher error rates in this specific visuo-spatial ability. Furthermore, with respect to the embodied cognition viewpoint we wanted to investigate if the influence of fear on mental rotation performance is the same for egocentric and object-based transformations. Results show that fear enhances mental rotation performance, expressed by a higher mental rotation speed. Interestingly, this influence is stimulus-specific: it is restricted to egocentric transformations. Both observation of emotional stimuli and egocentric strategies are associated with left hemisphere activation which could explain a stronger influence on this type of transformation during observation. Another possible notion is the conceptual link between visuo-spatial perspective taking and empathy based on the co-activation of parietal areas. Stronger responses in egocentric transformations could result from this specific link. Regarding the influence of anxiety, participants with high scores on the trait-anxiety scale showed poor results in both reaction time and mental rotation speed. Findings of impoverished recruitment of prefrontal attentional control in patients with high scores in trait anxiety could be the explanation for this reduced performance.

  6. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation (United States)


    liquid rocket engines, studied the concept of rotating detonation rocket engine in both gaseous and two-phase propellants . Recently, there have been...AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER

  7. Measurement of plasma rotation velocities with electrode biasing in the Saskatchewan Torus-Modified (STOR-M) tokamak (United States)

    Xiao, C.; Jain, K. K.; Zhang, W.; Hirose, A.


    In the Saskatchewan Torus-Modified (STOR-M) tokamak [Phys. Fluids B 4, 3277 (1992)], application of a negative bias results in large negative radial electric field, Er, at the plasma edge, reduced plasma toroidal rotation velocity, and a large poloidal rotation in the electron diamagnetic drift direction. Conversely, a positive bias leads to a relatively small negative Er at the plasma edge, a positive Er in the scrape-off layer, increased toroidal rotation, and an increased poloidal rotation speed in the ion diamagnetic drift direction. Increases in edge plasma density and steepening of its radial profile have also been observed for both polarities.

  8. Kinematic signature of a rotating bar near a resonance (United States)

    Weinberg, Martin D.


    Recent work based on H I, star count and emission data suggests that the Milky Way has rotating bar-like features. In this paper, I show that such features cause distinctive stellar kinematic signatures near Outer Lindblad Resonance (OLR) and Inner Lindblad Resonance (ILR). The effect of these resonances may be observable far from the peak density of the pattern and relatively nearby the solar position. The details of the kinematic signatures depend on the evolutionary history of the 'bar' and therefore velocity data, both systematic and velocity dispersion, may be used to probe the evolutionary history as well as the present state of Galaxy. Kinematic models for a variety of sample scenarios are presented. Models with evolving pattern speeds show significantly stronger dispersion signatures than those with static pattern speeds, suggesting that useful observational constraints are possible. The models are applied to the proposed rotating spheroid and bar models; we find (1) none of these models chosen to represent the proposed large-scale rotating spheroid are consistent with the stellar kinematics and (2) a Galactic bar with semimajor axis of 3 kpc will cause a large increase in velocity dispersion in the vicinity of OLR (approximately 5 kpc) with little change in the net radial motion and such a signature is suggested by K-giant velocity data. Potential future observations and analyses are discussed.

  9. Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J. E.; Greenwald, M. J.; Podpaly, Y. A.; Reinke, M. L.; Hughes, J. W.; Howard, N. T.; Ma, Y.; Cziegler, I.; Ennever, P. C.; Ernst, D.; Fiore, C. L.; Gao, C.; Irby, J. H.; Marmar, E. S.; Porkolab, M.; Tsujii, N.; Wolfe, S. M. [Plasma Science and Fusion Center, MIT, Cambridge, Massachusetts 02139 (United States); Diamond, P. H. [UCSD, La Jolla, California 92903 (United States); Duval, B. P. [CRPP, EPFL, Lausanne 1015 (Switzerland)


    Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidal magnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.

  10. Pulsed rotating supersonic source used with merged molecular beams

    CERN Document Server

    Sheffield, L; Krasovitskiy, V; Rathnayaka, K D D; Lyuksyutov, I F; Herschbach, D R


    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10^12 molecules at lab speeds as low as 35 m/s and ~ 10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when...

  11. High Speed Viterbi Decoder Architecture

    DEFF Research Database (Denmark)

    Paaske, Erik; Andersen, Jakob Dahl


    The fastest commercially available Viterbi decoders for the (171,133) standard rate 1/2 code operate with a decoding speed of 40-50 Mbit/s (net data rate). In this paper we present a suitable architecture for decoders operating with decoding speeds of 150-300 Mbit/s....

  12. Optimal Speed Control for Cruising

    DEFF Research Database (Denmark)

    Blanke, M.


    With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability......With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability...

  13. Critical Vidders

    DEFF Research Database (Denmark)

    Svegaard, Robin Sebastian Kaszmarczyk


    This article will introduce and take a look at a specific subset of the fan created remix videos known as vids, namely those that deal with feminist based critique of media. Through examples, it will show how fans construct and present their critique, and finally broach the topic of the critical ...

  14. Simultaneous Rotational and Axial Flow of Nonlinear Fluids (United States)

    Ashrafi, Nariman; Yektapour, Mehdi; Shafahi, Mehdi


    An axial flow is introduced to the rotational flow of pseudoplastic fluids in the gap between concentric cylinders. The outer cylinder is fixed while the inner one has simultaneous and independent rotational and translational motions. The fluid follows the Carreau-Bird model and mixed boundary conditions are imposed. The four-dimensional low-order equations resulted from Galerkin projection of the conservation of mass and momentum equations, includes highly non-linear terms in the velocity components. Without axial flow, stability of the base radial flow is lost to the vortex structure at a lower critical Taylor number, with increase of the fluid pseudoplasticity. The vortices imply onset of a supercritical bifurcation which occurs in the rotational flow of linear fluids as well. In contrast to the Newtonian case, pseudoplastic Taylor vortices lose their stability at a second critical Taylor number is reached a second critical number that corresponds to the onset of a Hopf bifurcation. The axial flow, caused by the translational motion of the inner cylinder advance each critical point on the bifurcation diagram. The flow field and viscosity maps are provided for major stability regions.

  15. Development of the six-component rotating shaft balances for counter rotating open rotor testing (United States)

    Bogdanov, V. V.; Lytov, V. V.; Manvelyan, V. S.


    Measurement of total aerodynamic loads acting on airplane's high speed CRORs, is one of the tasks of experimental aerodynamics. A special plant for this task solving was developed in TsAGI. One of the main challenges in the way of solving this problem is to develop a six-component rotating shaft balance (RSB) for the front and rear airscrews of CROR. The substantial stage of the balance development is the choice of the design. A promising design for the RSB was developed. It is a system of 12 non-prismatic beams, which is transmitting loads from the airscrews throughout a rim to a support. The rim connected to an airscrews hub and support rigidly connected to the shaft of VVP. Calculations have shown that this design has several advantages compared to known designs of eight beams.

  16. Dissipative dark matter explains rotation curves (United States)

    Foot, R.


    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  17. Mercury's rotational state from combined MESSENGER laser altimeter and image data (United States)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.


    With orbital data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we measured the rotational state of Mercury. We developed a novel approach that combined digital terrain models from stereo images (stereo DTMs) and laser altimeter data, and we applied it to 3 years of MESSENGER observations. We find a large libration amplitude, which in combination with the measured obliquity confirms that Mercury possesses a liquid outer core. Our results confirm previous Earth-based observations of Mercury's rotational state. However, we measured a rotation rate that deviates significantly from the mean resonant rotation rate. The larger rotation rate can be interpreted as the signature of a long-period libration cycle. From these findings we derived new constraints on the interior structure of Mercury. The measured rotational parameters define Mercury's body-fixed frame and are critical for the coordinate system of the planet as well as for planning the future BepiColombo spacecraft mission.

  18. Diesel engine torsional vibration control coupling with speed control system (United States)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen


    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  19. Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation (United States)

    Sharma, Prerana; Patidar, Archana


    The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to

  20. Shoulder rotator isokinetic strength profile in young swimmers

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Prazeres Batalha


    Full Text Available DOI:  Considering that some studies suggest that shoulder rotators muscle imbal­ances are related to joint pain and injury, and that there are no normative data for young swimmers, the aim of this study was: i to describe the muscle balance, fatigue and isokinetic strength profile of the shoulder rotators in young swimmers; ii to compare the results between swimmers and a group of young non-practitioners; iii to contribute to the acquisition of normative data of unilateral ratios of shoulder rotators. We evaluated the shoulder rotators concentric strength and unilateral ratios (ratio between torque of external and internal rotators of 60 swimmers (age: 14.55 ± 0.5 years old; body mass: 61.16 ± 7.08 kg and 60 non-practitioners (age: 14.62 ± 0.49 years old; body mass: 60.22 ± 10.01 kg. The evaluation was performed in the sitting position (90° abduction and elbow flexion at 60º.s-1 and 180º.s-1 angular speeds using an isokinetic dynamometer (Biodex System 3. The results of the fatigue ratios revealed no differences between the groups. Swimmers showed unilateral ratios of 73.39 ± 17.26% in the dominant limb (DL and 77.89 ± 15,23% in the non-dominant limb (NDL for assessments at 60º.s-1. At 180º.s-1, ratios were 74.77± 13.99% for DL and 70.11 ± 14.57% for NDL. Swimmers presented greater muscle imbalance, and differed from non-practitioners in the ability to produce power with the internal rotators, which was significantly higher in the former group.

  1. Generated forces and heat during the critical stages of friction stir welding and processing

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Sadiq Aziz; Tahir, Abd Salam Md; Izamshah, R. [University Teknikal Malaysia Melaka, Malacca (Malaysia)


    The solid-state behavior of friction stir welding process results in violent mechanical forces that should be mitigated, if not eliminated. Plunging and dwell time are the two critical stages of this welding process in terms of the generated forces and the related heat. In this study, several combinations of pre-decided penetration speeds, rotational speeds, tool designs, and dwell time periods were used to investigate these two critical stages. Moreover, a coupled-field thermal-structural finite element model was developed to validate the experimental results and the induced stresses. The experimental results revealed the relatively large changes in force and temperature during the first two stages compared with those during the translational tool movement stage. An important procedure to mitigate the undesired forces was then suggested. The model prediction of temperature values and their distribution were in good agreement with the experimental prediction. Therefore, the thermal history of this non-uniform heat distribution was used to estimate the induced thermal stresses. Despite the 37% increase in these stresses when 40 s dwell time was used instead of 5 s, these stresses showed no effect on the axial force values because of the soft material incidence and stir effects.

  2. Simulated front crawl swimming performance related to critical speed and critical power

    NARCIS (Netherlands)

    Toussaint, H.M.; Wakayoshi, K.; Hollander, A.P.; Ogita, F.


    Purpose: Competitive pool swimming events range in distance from 50 to 1500 m. Given the difference in performance times (±23-1000 s), the contribution of the aerobic and anaerobic energy systems changes considerably with race distance. In training practice the regression line between swimming

  3. Pelvic step: the contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill. (United States)

    Liang, Bo Wei; Wu, Wen Hua; Meijer, Onno G; Lin, Jian Hua; Lv, Go Rong; Lin, Xiao Cong; Prins, Maarten R; Hu, Hai; van Dieën, Jaap H; Bruijn, Sjoerd M


    Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young male subjects, walking on a treadmill at 1-5 km/h, with normal or big steps. Step length, pelvis rotation amplitude, leg-pelvis relative phase, and the contribution of pelvis rotation to step length were calculated. When speed increased in normal walking, pelvis rotation changed from more out-of-phase to in-phase with the upper leg. Consequently, the contribution of pelvis rotation to step length was negative at lower speeds, switching to positive at 3 km/h. With big steps, leg and pelvis were more in-phase, and the contribution of pelvis rotation to step length was always positive, and relatively large. Still, the overall contribution of pelvis rotations to step length was small, less than 3%. Regression analysis revealed that leg-pelvis relative phase predicted about 60% of the variance of this contribution. The results of the present study suggest that, during normal slow walking, pelvis rotations increase, rather than decrease, the vertical movements of the centre of mass. With large steps, this does not happen, because leg and pelvis are in-phase at all speeds. Finally, it has been suggested that patients with hip flexion limitation may use larger pelvis rotations to increase step length. This, however, may only work as long as the pelvis rotates in-phase with the leg. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Instabilities in electrically driven rotating MHD layers (United States)

    Mistrangelo, C.; Bühler, L.


    Flows of electrically conducting fluids exposed to intense magnetic fields exhibit a common feature i.e. the formation of uniform cores in which electromagnetic forces are dominant. Cores are separated from each other by thin layers that extend along magnetic field lines. Across these parallel layers strong gradients of flow variables are present, which can lead to the onset of instabilities and non-linear flow transitions. In this work we investigate dynamics and stability issues of rotating parallel layers driven by electromagnetic forces caused by the interaction of injected electric currents with an applied magnetic field. The geometry considered consists of two coaxial circular electrodes used for current injection. They are placed in parallel electrically insulating planes perpendicular to a uniform magnetic field. The basic axisymmetric steady state flow, characterized by a rotating velocity jet confined in a parallel layer that connects the rims of the electrodes, is rather well understood. By increasing the driving current above a critical value the basic flow becomes unstable and undergoes a sequence of supercritical bifurcations.

  5. Rotating hydraulic adjustment in a parabolic channel (United States)

    Helfrich, K.


    Rotating hydraulics forms the basis of our interpretation of flows through oceanic straits and abyssal passages. These theories are used to predict overflow transport and characteristics of hydraulic features such as jumps. However, details of the transient hydraulic adjustment and the properties of hydraulic jumps and bores have been explored only for unrealistic rectangular cross-section channel geometry. Here the classic problem of upstream influence due to the introduction of an obstacle is extended to a rotating channel with parabolic cross-section. The critical obstacle height for upstream influence as a function of Froude number is found under the assumptions of single-layer (reduced-gravity) semi-geostrophic flow with uniform potential vorticity. The theoretical development is supplemented with two-dimensional numerical simulations of the transient adjustment to hydraulically controlled states. The numerical results reveal novel features including upstream propagating disturbances that consist of both a localized shock-like feature and non-local rarefaction upstream of the shock. The non-locality poses an impediment for the development of a shock-joining theory. Downstream hydraulic jumps from super to subcritical flow occur as both depth and width transitions. However, the lateral expansions in a parabolic channel are not as abrupt as their rectangular channel counterparts. This may help explain the lack of oceanic observations of abrupt hydraulic jumps downstream of abyssal sills.

  6. Flow study in the formatted channel for two disks in rotation; Estudo do escoamento no canal formado por dois discos em rotacao

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Marcos Pinotti


    Flow study in the formatted channel for two disks in rotation is discussed including the following main issues: flow description between disks in rotation; computational model; and numerical results. The parametric studies accomplished of the spacing between disks, of the diameter, and of the rotor angular speed allowed the influence analysis of these variables in the flow inside the channel and in the generated pressure difference. The disks rotation, evaluated through Reynolds' rotational number, is the main parameter that influences the pressure difference between channel entrance and exit. It verified although how much larger the rotation larger the pressure difference.

  7. Spline screw multiple rotations mechanism (United States)

    Vranish, John M. (Inventor)


    A system for coupling two bodies together and for transmitting torque from one body to another with mechanical timing and sequencing is reported. The mechanical timing and sequencing is handled so that the following criteria are met: (1) the bodies are handled in a safe manner and nothing floats loose in space, (2) electrical connectors are engaged as long as possible so that the internal processes can be monitored throughout by sensors, and (3) electrical and mechanical power and signals are coupled. The first body has a splined driver for providing the input torque. The second body has a threaded drive member capable of rotation and limited translation. The embedded drive member will mate with and fasten to the splined driver. The second body has an embedded bevel gear member capable of rotation and limited translation. This bevel gear member is coaxial with the threaded drive member. A compression spring provides a preload on the rotating threaded member, and a thrust bearing is used for limiting the translation of the bevel gear member so that when the bevel gear member reaches the upward limit of its translation the two bodies are fully coupled and the bevel gear member then rotates due to the input torque transmitted from the splined driver through the threaded drive member to the bevel gear member. An output bevel gear with an attached output drive shaft is embedded in the second body and meshes with the threaded rotating bevel gear member to transmit the input torque to the output drive shaft.

  8. A self-consistent model for estimating the critical current of superconducting devices (United States)

    Zermeño, V.; Sirois, F.; Takayasu, M.; Vojenciak, M.; Kario, A.; Grilli, F.


    Nowadays, there is growing interest in using superconducting wires or tapes for the design and manufacture of devices such as cables, coils, rotating machinery, transformers, and fault current limiters, among others. Their high current capacity has made them the candidates of choice for manufacturing compact and light cables and coils that can be used in the large-scale power applications described above. However, the performance of these cables and coils is limited by their critical current, which is determined by several factors, including the conductor’s material properties and the geometric layout of the device itself. In this work we present a self-consistent model for estimating the critical current of superconducting devices. This is of large importance when the operating conditions are such that the self-field produced by the current is a significant fraction of the total field. The model is based on the asymptotic limit when time approaches infinity of Faraday’s equation written in terms of the magnetic vector potential. It uses a continuous E-J relationship and takes the angular dependence of the critical current density on the magnetic flux density into account. The proposed model is used to estimate the critical current of superconducting devices such as cables, coils, and coils made of transposed cables with very high accuracy. The high computing speed of this model makes it an ideal candidate for design optimization.

  9. Comparing reading speed for horizontal and vertical English text. (United States)

    Yu, Deyue; Park, Heejung; Gerold, David; Legge, Gordon E


    There are three formats for arranging English text for vertical reading-upright letters arranged vertically (marquee), and horizontal text rotated 90 degrees clockwise or counterclockwise. Previous research has shown that reading is slower for all three vertical formats than for horizontal text, with marquee being slowest (M. D. Byrne, 2002). It has been proposed that the size of the visual span-the number of letters recognized with high accuracy without moving the eyes-is a visual factor limiting reading speed. We predicted that reduced visual-span size would be correlated with the slower reading for the three vertical formats. We tested this prediction with uppercase and lowercase letters. Reading performance was measured using two presentation methods: RSVP (Rapid Serial Visual Presentation) and flashcard (a block of text on four lines). On average, reading speed for horizontal text was 139% faster than marquee text and 81% faster than the rotated texts. Size of the visual span was highly correlated with changes in reading speed for both lowercase and uppercase letters and for both RSVP and flashcard reading. Our results are consistent with the view that slower reading of vertical text is due to a decrease in the size of the visual span for vertical reading.

  10. Critical reading and critical thinking Critical reading and critical thinking

    Directory of Open Access Journals (Sweden)

    Loni Kreis Taglieber


    Full Text Available The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of no use due to the enormous amount of it. The purpose of this paper is to provide, for L1 and L2 reading and writing teachers, a brief overview of the literature about critical reading and higher level thinking skills. The teaching of these skills is still neglected in some language classes in Brazil, be it in L1 or in L2 classes. Thus, this paper may also serve as a resource guide for L1 and/or L2 reading and writing teachers who want to incorporate critical reading and thinking into their classes. In modern society, even in everyday life people frequently need to deal with complicated public and political issues, make decisions, and solve problems. In order to do this efficiently and effectively, citizens must be able to evaluate critically what they see, hear, and read. Also, with the huge amount of printed material available in all areas in this age of “information explosion” it is easy to feel overwhelmed. But often the information piled up on people’s desks and in their minds is of

  11. Trajectory Control of Small Rotating Projectiles by Laser Sparks (United States)

    Starikovskiy, Andrey; Limbach, Christopher; Miles, Richard


    The possibility of controlling the trajectory of the supersonic motion of a rotating axisymmetric projectile using a remotely generated laser spark was investigated. The dynamic images of the interaction of thermal inhomogeneity created by the laser spark with the bow shock in front of the projectile were obtained. The criterion for a strong shock wave interaction with the thermal inhomogeneity at different angles of a shock wave was derived. Significant changes in the configuration of the bow shock wave and changes in the pressure distribution over the surface of the rotating projectile can appear for laser spark temperature of T' = 2500-3000 K. The experiment showed that strong interaction takes place for both plane and oblique shock waves. The measurement of the velocity of the precession of the rotating projectile axis from the initial position in time showed that the angle of attack of the projectile deviates with a typical time of perturbation propagation along the projectile's surface. Thus the laser spark can change the trajectory of the rotating projectile, moving at supersonic speed, through the creation of thermal heterogeneity in front of it.

  12. Gravitational collapse of rotating supermassive stars including nuclear burning effects (United States)

    Uchida, Haruki; Shibata, Masaru; Yoshida, Takashi; Sekiguchi, Yuichiro; Umeda, Hideyuki


    Supermassive stars (SMSs) of mass ≳105 M⊙ are candidates for seeds of supermassive black holes found in the center of many massive galaxies. We simulate the gravitational collapse of a rigidly rotating SMS core including nuclear burning effects in axisymmetric numerical relativity. We consider SMS cores composed of primordial metallicity and of helium in this paper. We find that for our chosen initial conditions, the nuclear burning does not play an important role. After the collapse, a torus surrounding a rotating black hole is formed and a fraction of the torus material is ejected by a hydrodynamical effect. We quantitatively study the relation between the properties of these objects and rotation. We find that if a SMS core is sufficiently rapidly rotating, the rest mass of the torus and outflow are approximately 6% and 1% of the initial rest mass, respectively. The typical average velocity and the total kinetic energy of the outflow are 0.2 c and 1 054 -56 erg where c is the speed of light. Finally, we briefly discuss the possibility for observing the outflow, ringdown gravitational waves associated with the formation of black holes, and gravitational waves from the torus.

  13. Optimum charge of working fluids in horizontal rotating heat pipes (United States)

    Nakayama, W.; Ohtsuka, Y.; Itoh, H.; Yoshikawa, T.

    The performance of wickless straight heat pipes rotating about their horizontal axes was investigated. The data reported herein were obtained with the copper pipes of 28 and 37 mm ID, 480 mm long with the evaporator and condenser sections each 170 mm long, and distilled water as the working fluid. The transition of two-phase flow in the heat pipe from the stratified to the annular structure occurs at a certain rotational speed (Froude number), and this affects the heat transfer performance. The volumetric percentage of liquid phase in the heat pipe (volumetric charge) determines the transition Froude numbers. For a given Froude number and a heat load, a too lean volumetric charge invites dry-out of the evaporator wall. A too high volumetric charge reduces the area for thin film evaporation and condensation on the rotating wall which dips and leaves the liquid reservoir of the stratified fluid. In the range of Froude numbers less than 13 which include many cases of heat pipe applications to conventional rotating machines, the volumetric charge of 10-14 percent minimizes the wall temperature difference between the evaporator and the condenser.


    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Abbot, Dorian S. [Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Boué, Gwenaël; Fabrycky, Daniel C., E-mail: [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)


    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  15. Efficient computation of quasiperiodic oscillations in nonlinear systems with fast rotating parts

    DEFF Research Database (Denmark)

    Schilder, Frank; Rübel, Jan; Starke, Jens


    We present a numerical method for the investigation of quasiperiodic oscillations in applications modeled by systems of ordinary differential equations. We focus on systems with parts that have a significant rotational speed. An important element of our approach is that it allows us to verify...

  16. On the development of lift and drag in a rotating and translating cylinder (United States)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon


    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  17. A parametric study on the growth of yield front in rotating annular disks

    African Journals Online (AJOL)

    The growth of elastic-plastic front under post-elastic conditions in high speed rotating annular disks having exponential and parabolic geometry variation is investigated in the present study. The problem is addressed in post-elastic regime through an extension of variational method based on von-Mises yield criterion and ...

  18. Rotating solitary wave at the wall of a cylindrical container

    KAUST Repository

    Amaouche, Mustapha


    This paper deals with the theoretical modeling of a rotating solitary surface wave that was observed during water drainage from a cylindrical reservoir, when shallow water conditions were reached. It represents an improvement of our previous study, where the radial flow perturbation was neglected. This assumption led to the classical planar Korteweg–de Vries equation for the wall wave profile, which did not account for the rotational character of the base flow. The present formulation is based on a less restricting condition and consequently corrects the last shortcoming. Now the influence of the background flow appears in the wave characteristics. The theory provides a better physical depiction of the unique experiment by predicting fairly well the wave profile at least in the first half of its lifetime and estimating the speed of the observed wave with good accuracy.

  19. A rotating disk study of gold dissolution by bromine (United States)

    Pesic, Batric; Sergent, Rodney H.


    Gold dissolution with bromine was studied using the rotating disk technique with Geobrom™ 3400 as a source of bromine. The parameters studied were speed of rotation, lixiviant concentration, pH, temperature, sulfuric acid and hydrochloric acid concentrations, and the concentrations of various cations (i.e., copper, iron, zinc, aluminum, manganese, potassium, and sodium) and anions (i.e., chloride, bromide, sulfate, nitrate, and iodide). According to the Lavich plot and activation energy, gold dissolution is controlled by a chemical reaction rate. Copper, iron, and manganese in their highest oxidation states, as well as aluminum, zinc, sodium, and potassium, have no effect on the rate of gold dissolution. The presence of manganous ion substantially decreases the gold dissolution rate. The kinetic performance of bromine was found to be dramatically better than the performance of cyanide and thiourea.

  20. Critical scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics


    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.

  1. Rotational Modes in Phononic Crystals (United States)

    Wu, Ying; Peng, Pai; Mei, Jun


    We propose a lumped model for the rotational modes in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model not only can reproduce the dispersion relations in a certain range with one fitted parameter, but also gives simple analytical expressions for the frequencies of the eigenmodes at the high symmetry points in the Brillouin zone. These expressions provide physical understandings of the rotational modes as well as certain translational and hybrid mode, and predict the presence of accidental degeneracy of the rotational and dipolar modes, which leads to a Dirac-like cone in the Brillouin zone center. Supported by KAUST Baseline Research Fund, National Natural Science Foundation of China (Grants No. 10804086 and No. 11274120), and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0077).

  2. Instabilities in coaxial rotating jets (United States)

    Ivanic, Tanja; Foucault, Eric; Pecheux, Jean; Gilard, Virginie


    The aim of this study is the characterization of the cylindrical mixing layer resulting from the interaction of two coaxial swirling jets. The experimental part of this study was performed in a cylindrical water tunnel, permitting an independent rotation of two coaxial jets. The rotations are generated by means of 2×36 blades localized in two swirling chambers. As expected, the evolution of the main instability modes presents certain differences compared to the plane-mixing-layer case. Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex pairs in the near field region. This method also permitted the observation of the evolution and interaction of different modes. PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distorts the typical top-hat axial velocity profile. The transition of the axial velocity profile from jet-like into wake-like is also observed.

  3. Hall thruster plume measurements from High-speed Dual Langmuir Probes with Ion Saturation Reference (United States)

    Sekerak, M.; McDonald, M.; Hofer, R.; Gallimore, A.

    The plasma plume of a 6 kW Hall Effect Thruster (HET) has been investigated in order to determine time-averaged and time-resolved plasma properties in a 2-D plane. HETs are steady-state devices with a multitude of kilohertz and faster plasma oscillations that are poorly understood yet impact their performance and may interact with spacecraft subsystems. HETs are known to operate in different modes with differing efficiencies and plasma characteristics, particularly the axial breathing mode and the azimuthal spoke mode. In order to investigate these phenomena, high-speed diagnostics are needed to observe time-resolved plasma properties and correlate them to thruster operating conditions. A new technique called the High-speed Dual Langmuir Probe with Ion Saturation Reference (HDLP-ISR) builds on recent results using an active and an insulated or null probe in conjunction with a third, fixed-bias electrode maintained in ion saturation for ion density measurements. The HDLP-ISR was used to measure the plume of a 6-kW-class single-channel HET called the H6 operated at 300 V and 20 A at 200 kHz. Time-averaged maps of electron density, electron temperature and plasma potential were determined in a rectangular region from the exit plane to over five channel radii downstream and from the centrally mounted cathode radially out to over three channel radii. The power spectral density (PSD) of the time-resolved plasma density oscillations showed four discrete peaks between 16 and 28 kHz which were above the broad breathing mode peak between 10 and 15 kHz. Using a high-speed camera called FastCam imaging at 87,500 frames per second, the plasma oscillations were correlated with visible rotating spokes in the discharge channel. Probes were vertically spaced in order to identify azimuthal plasma transients around the discharge channel where density delays of 14.4 μ s were observed correlating to a spoke velocity of 1800 m/s in the E× B direction. The results presented- here are

  4. Convective flow patterns in inclined rectangular cavities with rotation (United States)

    Avila, Ruben; Perez-Espejel, Diana


    The natural convection in inclined three dimensional rectangular cavities with rotation is numerically investigated by using a spectral element method. When the rate of rotation (Ta number) is equal to zero, the critical Rayleigh number Rac for the onset of transverse or longitudinal rolls is obtained by solving (using the Tau-Chebyshev spectral method) the equations of the linear stability theory. In the numerical approach, the rotation is imposed once the steady state of the longitudinal or transverse rolls is attained. The cavity rotates around an axis that is orthogonal to its cold and hot surfaces, and passes through the center of these surfaces. In all the analyzed cases, the tilted angle δ, from the horizontal, varies in the interval 0° <= δ <90° (the cavity is heated from its lower surface, then an unstable condition prevails) and 90° < δ <= 180° (the cavity is heated from its upper surface, then a stable condition prevails). We report the influence of the Ta number on the critical Ra number, the average Nusselt number (evaluated at the hot surface), and the flow patterns in the tilted cavity. DGAPA-PAPIIT Project: IN117314-3.

  5. Counter-Rotating Tandem Motor Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    Kent Perry


    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger

  6. Viscous free-surface flows on rotating elliptical cylinders (United States)

    Li, Weihua; Carvalho, Marcio S.; Kumar, Satish


    The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.

  7. Influence of number of dental autoclave treatment cycles on rotational performance of commercially available air-turbine handpieces. (United States)

    Nagai, Masahiro; Takakuda, Kazuo


    The influence of number of autoclave treatment cycles (N) on rotational speed and total indicated run-out of commercially available air-turbine handpieces from five manufacturers was investigated at N=0, 50, 100, 150, 200, 250 and 300 cycles, and the significance in the test results was assessed by Dunnett's multiple comparison test. Some air-turbine handpieces showed the significant differences in rotational speed at N=300 cycles, however, the decreases of the rotational speeds were only 1 to 3.5 percent. Some air-turbine handpieces showed the significant differences in total indicated run-out, however, the respective values were smaller than that at N=0 cycle. Accordingly, it can be considered that the ball bearing in the air-turbine handpieces is not affected significantly by autoclave. To further evaluate rotational performance, this study focused on the rotational vibration of the ball bearing components of the air-turbine, as measured by Fast Fourier Transform (FFT) analysis; the power spectra of frequency of the ball's revolution, frequency of the cage's rotation and frequency of the ball's rotation were comparatively investigated at N=0, 150 and 300 cycles, and the influence of autoclave was evaluated qualitatively. No abnormalities in the ball bearings were recognized.

  8. Astrogeodynamic Studies of Earth Rotation (United States)

    Pacheco, A.; Alonso, E.; Podesta, R.; Actis, E.


    From OAFA's Photoelectric Astrolabe Pa II systematic observations of stellar fundamental groups on period 1992 - 2002 we have determined (UT0-UTC) Time Variation Curve corresponding to Earth Rotation and its comparison with data (UT1-UTC) given by International Earth Rotation Service (IERS) We have obtained values of the curve from the average of observations of each night with their respective weights, and have corrected them by Pole Movement. We have also studied the possibility of relations between anomalies on Time Variation (UT0-UTC) and important earthquakes happened on the neighborhood of the Astrolabe.

  9. Rotationally actuated prosthetic helping hand (United States)

    Norton, William E. (Inventor); Belcher, Jewell G., Jr. (Inventor); Carden, James R. (Inventor); West, Thomas W. (Inventor)


    A prosthetic device has been developed for below-the-elbow amputees. The device consists of a cuff, a stem, a housing, two hook-like fingers, an elastic band for holding the fingers together, and a brace. The fingers are pivotally mounted on a housing that is secured to the amputee's upper arm with the brace. The stem, which also contains a cam, is rotationally mounted within the housing and is secured to the cuff, which fits over the amputee's stump. By rotating the cammed stem between the fingers with the lower arm, the amputee can open and close the fingers.

  10. Mercury's rotation axis and period (United States)

    Klaasen, K. P.


    Recent measurements made from high-resolution Mariner 10 photography of the planet Mercury yield a rotation period of 58.6461 + or 0.005 days, in excellent agreement with the period required for a precise 2/3 resonance with its orbital period (58.6462 days). The axis of rotation of the planet was calculated to be offset about 2 deg from the perpendicular to its orbital plane within a 50% probability error ellipse of + or - 2.6 deg by + or - 6.5 deg. Dynamical considerations make it most likely that the true displacement from the orbit normal is less than 1 deg.

  11. Relativity on Rotated Graph Paper

    CERN Document Server

    Salgado, Roberto B


    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called "light-clock diamonds") represent units of measurement modeled on the ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra. We use the Doppler Effect, in the spirit of the Bondi k-calculus, to motivate the method.

  12. Strongly interacting matter under rotation

    Directory of Open Access Journals (Sweden)

    Jiang Yin


    Full Text Available The vorticity-driven effects are systematically studied in various aspects. With AMPT the distributions of vorticity has been investigated in heavy ion collisions with different collision parameters. Taking the rotational polarization effect into account a generic condensate suppression mechanism is discussed and quantitatively studied with NJL model. And in chiral restored phase the chiral vortical effects would generate a new collective mode, i.e. the chiral vortical wave. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of induced flavor quadrupole in QGP and estimate the elliptic flow splitting effect for Λ baryons.

  13. Bar pattern speeds in CALIFA galaxies. I. Fast bars across the Hubble sequence

    NARCIS (Netherlands)

    Aguerri, J. A. L.; Méndez-Abreu, J.; Falcón-Barroso, J.; Amorin, A.; Barrera-Ballesteros, J.; Cid Fernandes, R.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; Husemann, B.; Kalinova, V.; Lyubenova, M.; Marino, R. A.; Márquez, I.; Mast, D.; Pérez, E.; Sánchez, S. F.; van de Ven, G.; Walcher, C. J.; Backsmann, N.; Cortijo-Ferrero, C.; Bland-Hawthorn, J.; del Olmo, A.; Iglesias-Páramo, J.; Pérez, I.; Sánchez-Blázquez, P.; Wisotzki, L.; Ziegler, B.

    Context. The bar pattern speed (Ωb) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring Ωb. The non-parametric method proposed by Tremaine & Weinberg (1984, ApJ, 282, L5; TW) and based on stellar kinematics is the

  14. Limits, modeling and design of high-speed permanent magnet machines

    NARCIS (Netherlands)

    Borisavljevic, A.


    There is a growing number of applications that require fast-rotating machines; motivation for this thesis comes from a project in which downsized spindles for micro-machining have been researched (TU Delft Microfactory project). The thesis focuses on analysis and design of high-speed PM machines and

  15. Wind turbine power curve prediction with consideration of rotational augmentation effects (United States)

    Tang, X.; Huang, X.; Sun, S.; Peng, R.


    Wind turbine power curve expresses the relationship between the rotor power and the hub wind speed. Wind turbine power curve prediction is of vital importance for power control and wind energy management. To predict power curve, the Blade Element Moment (BEM) method is used in both academic and industrial communities. Due to the limited range of angles of attack measured in wind tunnel testing and the three-dimensional (3D) rotational augmentation effects in rotating turbines, wind turbine power curve prediction remains a challenge especially at high wind speeds. This paper presents an investigation of considering the rotational augmentation effects using characterized lift and drag coefficients from 3D computational fluid dynamics (CFD) simulations coupled in the BEM method. A Matlab code was developed to implement the numerical calculation. The predicted power outputs were compared with the NREL Phase VI wind turbine measurements. The results demonstrate that the coupled method improves the wind turbine power curve prediction.

  16. Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space

    Directory of Open Access Journals (Sweden)

    Baljeet Singh


    Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.

  17. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings. (United States)

    Eberle, A L; Dickerson, B H; Reinhall, P G; Daniel, T L


    Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Translational versus rotational energy flow in water solvation dynamics (United States)

    Rey, Rossend; Hynes, James T.


    Early molecular dynamics simulations discovered an important asymmetry in the speed of water solvation dynamics for charge extinction and charge creation for an immersed solute, a feature representing a first demonstration of the breakdown of linear response theory. The molecular level mechanism of this asymmetry is examined here via a novel energy flux theoretical approach coupled to geometric probes. The results identify the effect as arising from the translational motions of the solute-hydrating water molecules rather than their rotational/librational motions, even though the latter are more rapid and dominate the energy flow.

  19. Elasticity, friction, and pathway of γ-subunit rotation in FoF1-ATP synthase. (United States)

    Okazaki, Kei-ichi; Hummer, Gerhard


    We combine molecular simulations and mechanical modeling to explore the mechanism of energy conversion in the coupled rotary motors of FoF1-ATP synthase. A torsional viscoelastic model with frictional dissipation quantitatively reproduces the dynamics and energetics seen in atomistic molecular dynamics simulations of torque-driven γ-subunit rotation in the F1-ATPase rotary motor. The torsional elastic coefficients determined from the simulations agree with results from independent single-molecule experiments probing different segments of the γ-subunit, which resolves a long-lasting controversy. At steady rotational speeds of ∼ 1 kHz corresponding to experimental turnover, the calculated frictional dissipation of less than k(B)T per rotation is consistent with the high thermodynamic efficiency of the fully reversible motor. Without load, the maximum rotational speed during transitions between dwells is reached at ∼ 1 MHz. Energetic constraints dictate a unique pathway for the coupled rotations of the Fo and F1 rotary motors in ATP synthase, and explain the need for the finer stepping of the F1 motor in the mammalian system, as seen in recent experiments. Compensating for incommensurate eightfold and threefold rotational symmetries in Fo and F1, respectively, a significant fraction of the external mechanical work is transiently stored as elastic energy in the γ-subunit. The general framework developed here should be applicable to other molecular machines.

  20. High speed rail distribution study. (United States)


    The Texas Central Partners are in the process of developing a high speed rail line connecting : Houston and Dallas, Texas. Ultimately, plans are for 8 car trains that accommodate 200 people per : vehicle scheduled every 30 minutes. In addition, Texas...