WorldWideScience

Sample records for critical flaw sizes

  1. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    Science.gov (United States)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  2. Comparison of COD, R6, and J-contour integral methods of defect assessment, modified to give critical flaw sizes

    International Nuclear Information System (INIS)

    Burdekin, F.M.; Turner, C.E.

    1982-01-01

    A comparative study of the application of different elastic-plastic fracture mechanics methods to the calculation of critical defect sizes in pressure vessels showed widely varying results. The present authors have investigated in detail the reasons for the variations resulting from the use of the CEGB R6, COD design curve, and J-design curve methods to the particular pressure vessel problems. To obtain reasonable agreement between the three methods for the calculation of critical flaw sizes in high stress gradient situations, the published COD method in PD6493 has to be modified to remove its inherent safety factor, and to allow for stress gradients, and a consistent treatment for gross yielding/collapse has to be adopted for all three methods. (author)

  3. Determination of Flaw Size from Thermographic Data

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  4. Reliably detectable flaw size for NDE methods that use calibration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  5. Ultrasonic simulation studies for sizing of planar flaws in thick carbon steel welds

    International Nuclear Information System (INIS)

    Prakash, Alok

    2015-01-01

    Ultrasonic non-destructive testing typically involves detection of flaws that may affect the integrity of component under test. Once detected, the flaw is sized for its critical dimensions and its nature. The detection of flaw in the component by ultrasonic test is based on the principle of echo or reflection. Once the echo from a flaw is received, there are several approaches for analyzing the signal so that more and accurate information is obtained on the size of the flaw and its nature. The 6dB drop method is commonly used for sizing of flaws. This technique is based on determining the end points where the ultrasonic signal amplitude from the flaw drops to half of the peak amplitude. Though this method works well for large flaws whose size is larger than the beam width, it has a tendency to oversize the flaw which is smaller than the beam dimensions. In addition to beam divergence, flaw sizing also depends upon the orientation of the flaw with respect to incident sound beam. The paper describes the results of simulation studies on ultrasonic response from planar flaws of various orientations, their imaging and the methodology to be adopted for their accurate depth sizing. The paper also describes the experimental results to validate the flaw sizing approach

  6. Probabilistic assessment of critically flawed LMFBR PHTS piping elbows

    International Nuclear Information System (INIS)

    Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

    1982-01-01

    One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results

  7. Ultrasonic signal processing for sizing under-clad flaws

    International Nuclear Information System (INIS)

    Shankar, R.; Paradiso, T.J.; Lane, S.S.; Quinn, J.R.

    1985-01-01

    Ultrasonic digital data were collected from underclad cracks in sample pressure vessel specimen blocks. These blocks were weld cladded under different processes to simulate actual conditions in US Pressure Water Reactors. Each crack was represented by a flaw-echo dynamic curve which is a plot of the transducer motion on the surface as a function of the ultrasonic response into the material. Crack depth sizing was performed by identifying in the dynamic curve the crack tip diffraction signals from the upper and lower tips. This paper describes the experimental procedure, digital signal processing methods used and algorithms developed for crack depth sizing

  8. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    Science.gov (United States)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  9. Statistical flaw strength distributions for glass fibres: Correlation between bundle test and AFM-derived flaw size density functions

    International Nuclear Information System (INIS)

    Foray, G.; Descamps-Mandine, A.; R’Mili, M.; Lamon, J.

    2012-01-01

    The present paper investigates glass fibre flaw size distributions. Two commercial fibre grades (HP and HD) mainly used in cement-based composite reinforcement were studied. Glass fibre fractography is a difficult and time consuming exercise, and thus is seldom carried out. An approach based on tensile tests on multifilament bundles and examination of the fibre surface by atomic force microscopy (AFM) was used. Bundles of more than 500 single filaments each were tested. Thus a statistically significant database of failure data was built up for the HP and HD glass fibres. Gaussian flaw distributions were derived from the filament tensile strength data or extracted from the AFM images. The two distributions were compared. Defect sizes computed from raw AFM images agreed reasonably well with those derived from tensile strength data. Finally, the pertinence of a Gaussian distribution was discussed. The alternative Pareto distribution provided a fair approximation when dealing with AFM flaw size.

  10. Flaw-size measurement in a weld samples by ultrasonic frequency analysis

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Whaley, H.L. Jr.; McClung, R.W.

    1975-01-01

    An ultrasonic frequency-analysis technique was developed and applies to characterize flaws in an 8-in. (203-mm) thick heavy-section steel weld specimen. The technique applies a multitransducer system. The spectrum of the received broad-band signal is frequency analyzed at two different receivers for each of the flaws. From the two spectra, the size and orientation of the flaw are determined by the use of an analytic model proposed earlier. (auth)

  11. Evaluation of Effect by Internal Flow on Ultrasonic Testing Flaw Sizing in Piping

    International Nuclear Information System (INIS)

    Lee, Jeong Seok; Yoon, Byung Sik; Kim, Yong Sik

    2013-01-01

    In this study, the ultrasonic amplitude difference between air filled and water filled piping in nuclear power plant is compared by modeling approach. In this study, ultrasonic amplitude differences between air and water filled pipe are evaluated by modeling approach. Consequently, we propose the following results. The ultrasonic amplitude difference between air and water filled condition is measured by lower than 1 dB in modeling calculation. The flaw length sizing error between air and water filled condition shows same results based on 12 dB drop method even thought the amplitude difference is 1 dB. Most of the piping welds in nuclear power plants are inspected periodically using ultrasonic techniques to detect service-induced flaws such as IGSCC cracking. The inspection results provide information such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these information. Specially, the amplitude of flaw response is very important to estimate the flaw size. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing methodology. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error

  12. A study on the measurement of flaw sizes by acoustical holography

    International Nuclear Information System (INIS)

    Yamamoto, M.; Ando, T.; Enami, K.; Yajima, M.; Fukui, S.

    1978-01-01

    As a means of evaluating the safety of flawed pressure vessels and other structures against fracture, fracture mechanics has come to be applied. For the application of fracture mechanics it is necessary to get information concerning the sizes and shapes of flaws. The ultrasonic flaw detection method which is widely used as a nondestructive inspection method cannot measure the sizes and shapes of flaws accurately. Considering that acoustical holography is an useful means for the measurement of flaws, we performed basic tests on this method and obtained the following results: (1) The measured values of artificial flaws (flat bottom drilled holes: 5 -- 36 mm) made on a steel plate with a thickness of 150 mm showed a good linear relation with their actual sizes and scatter in the measured values was +-3 -- 6 mm. (2) The measured values of fatigue cracks (length: 5 -- 57 mm) introduced into a steel plate with thickness of 150 mm also showed a good linear relation with their actual sizes and scatter in the measured values was +-3 mm. (3) It was found that acoustical holography can also be applied to heavy section cast steels. (4) The method of correcting distortion caused by curved surface was investigated by computer-aided simulation and it was considered that such distortion can be corrected by radial scanning of a transducer. (auth.)

  13. Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response

    Science.gov (United States)

    Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.

  14. Intentionally Flawed Manuscripts as Means for Teaching Students to Critically Evaluate Scientific Papers

    Science.gov (United States)

    Ferenc, Jaroslav; Cervenák, Filip; Bircák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Duríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Sona; Mentelová, Lucia; Slaninová, Miroslava; Ševcovicová, Andrea; Tomáška, Lubomír

    2018-01-01

    As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to…

  15. A procedure to detect flaws inside large size marble blocks by ultrasound

    OpenAIRE

    Bramanti, Mauro; Bozzi, Edoardo

    1999-01-01

    In stone and marble industry there is considerable interest in the possibility of using ultrasound diagnostic techniques for non-destructive testing of large size blocks in order to detect internal flaws such as faults, cracks and fissures. In this paper some preliminary measurements are reported in order to acquire basic knowledge of the fundamental properties of ultrasound, such as propagation velocity and attenuation, in the media here considered. We then outline a particular diagnostic pr...

  16. Irradiation effects and the duplication of detected flaws in service

    International Nuclear Information System (INIS)

    Mager, T.R.

    1976-01-01

    ASME Code procedure for evaluating the acceptability of flaws detected during in-service inspection is revised. Critical crack size for instability is proposed as criteria for detected flaws in operating plants

  17. Diagram Size vs. Layout Flaws: Understanding Quality Factors of UML Diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2016-01-01

    , though, is our third goal of extending our analysis aspects of diagram quality. Method: We improve our definition of diagram size and add a (provisional) definition of diagram quality as the number of topographic layout flaws. We apply these metrics on 60 diagrams of the five most commonly used types...... of UML diagram. We carefully analyze the structure of our diagram samples to ensure representativeness. We correlate diagram size and layout quality with modeler performance data obtained in previous experiments. The data set is the largest of its kind (n-156). Results: We replicate earlier findings......, and extend them to two new diagram types. We provide an improved definition of diagram size, and provide a definition of topographic layout quality, which is one more step towards a comprehensive definition of diagram quality as such. Both metrics are shown to be objectively applicable. We quantify...

  18. A surface flaw sizing study by time-of-flight ultrasonic technique

    International Nuclear Information System (INIS)

    Lamy, C.A.

    1990-07-01

    In this work, sizing of inclined slits and surface cracks in ferritic steel using the ultrasonic time-of-flight technique was studied. The surface cracks were vertical and inclined, nut the slits were only inclined. It was surface Rayleigh wave that was converted to shear wave mode in the material. The specimens with surface crack were submitted to a three four point loading fracture mechanics tests, so that the region of the crack tip became under an increasing tensile stress. Thus, the ultrasonic crack sizing could be compared to the material stress intensity factor (K) of the material for different loadings. Results show that the greater the slope and/or lenght of the slits the greater its subsizing. Vertical cracks int he parent metal are reliably and accuratly sized; in the weld the same remark held if one increases the gain of ultrasonic flaw detector to compensate for the weld attenuation phenomenon. Sizing of inclined cracks in the parent metal shows the same trends of the inclined slits, differing only in slopes over 30 sup(0) where the sizing in surface cracks is no longer reliable. A new appraisal procedure here proposed made reliable these results. The techniques employed in this work lead to reliable and accurate results for sizing of different slits and cracks. It should be noted however that good results are only obtained if a tensile stress state exists in the neighbourhood of the c rack tip. (author)

  19. Measurement of flaw size in a weld sample by ultrasonic frequency analysis

    International Nuclear Information System (INIS)

    Whaley, H.L. Jr.; Adler, L.; Cook, K.V.; McClung, R.W.

    1975-05-01

    An ultrasonic frequency analysis technique has been developed and applied to the measurement of flaws in an 8-in.-thick heavy-section steel specimen belonging to the Pressure Vessel Research Committee program. Using the technique the flaws occurring in the weld area were characterized in quantitative terms of both dimension and orientation. Several modifications of the technique were made during the study to include the application of several transducers and to consider ultrasonic mode conversion. (U.S.)

  20. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the

  1. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    Science.gov (United States)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  2. Development of a multi-beam laser ultrasonic inspection system and its application on flaw sizing

    International Nuclear Information System (INIS)

    Chivavibul, Pornthep; Lin, Shan; Fukutomi, Hiroyuki; Higuchi, Sadao; Ogata, Takashi; Fukuchi, Tetsuo

    2006-01-01

    Laser ultrasonic technique is a powerful tool for non-contact, nondestructive testing of materials. It is expected to apply to where the conventional ultrasonic technique is not applicable. However, this technique suffers from low sensitivity. In order to overcome this shortcoming, a multi-beam laser ultrasonic system was developed to increase signal-to-noise ratio (SNR) and steer beam direction. The system consisted of eight pulsed Nd:YAG lasers used for ultrasonic generation, and a two-wave mixing interferometer with a long-pulsed Nd:YAG used for ultrasonic detection. Spatial and temporal control of the firing of the individual lasers permitted the generation of both phased array single pulse and narrow-band ultrasonic signals. The performance of developed system was verified using aluminum specimens with the wave generation in a slight ablation mode. A significant increase in sensitivity was obtained, with an increase in signal amplitude with no change in noise level. In the narrow band case, tone bursts were successfully generated in both surface and bulk waves. Beam steering of bulk waves was also performed, and the directivity was confirmed by visualization using a conventional transducer. The developed system was applied to flaw sizing using two techniques: shadow and short-path of diffraction (SPOD), using aluminum specimens with 2-mm, 5-mm, 8-mm slit depths. The shadow technique accurately measured the 5- and 8-mm slits, but not the 2-mm slit. The SPOD technique, carried out using a 5-MHz normal longitudinal transducer as a detector instead of TWN interferometer, accurately measured slits in all specimens with an error less than 0.5 mm. (author)

  3. Critical sizes and critical characteristics of nanoclusters, nanostructures and nanomaterials

    International Nuclear Information System (INIS)

    Suzdalev, I.P.

    2005-01-01

    Full text: Critical sizes and characteristics of nanoclusters and nanostructures are introduced as the parameters of nanosystems and nanomaterials. The next critical characteristics are considered: atomic and electronic 'magic number', critical size of cluster nucleation, critical size of melting-freezing of cluster, critical size of quantum (laser) radiation, critical sizes for the single electron conductivity, critical energy and magnetic field for the magnetic tunneling, critical cluster sizes for the giant magnetic resistance, critical size of the first order magnetic phase transition. The critical characteristics are estimated by thermodynamic approaches, by Moessbauer spectroscopy, AFM, heat capacity, SQUID magnetometry and other technique, The influence of cluster-cluster interactions, cluster-matrix interactions and cluster defects on cluster atomic dynamics, cluster melting, cluster critical sizes, Curie or Neel points and the character of magnetic phase transitions were investigated. The applications of critical size and critical characteristic parameters for the nanomaterial characterization are considered

  4. Elastodynamic models for extending GTD to penumbra and finite size flaws

    International Nuclear Information System (INIS)

    Djakou, A Kamta; Darmon, M; Potel, C

    2016-01-01

    The scattering of elastic waves from an obstacle is of great interest in ultrasonic Non Destructive Evaluation (NDE). There exist two main scattering phenomena: specular reflection and diffraction. This paper is especially focused on possible improvements of the Geometrical Theory of Diffraction (GTD), one classical method used for modelling diffraction from scatterer edges. GTD notably presents two important drawbacks: it is theoretically valid for a canonical infinite edge and not for a finite one and presents discontinuities around the direction of specular reflection. In order to address the first drawback, a 3D hybrid method using both GTD and Huygens secondary sources has been developed to deal with finite flaws. ITD (Incremental Theory of Diffraction), a method developed in electromagnetism, has also been developed in elastodynamics to deal with small flaws. Experimental validation of these methods has been performed. As to the second drawback, a GTD uniform correction, the UTD (Uniform Theory of Diffraction) has been developed in the view of designing a generic model able to correctly simulate both specular reflection and diffraction. A comparison has been done between UTD numerical results and UAT (Uniform Asymptotic Theory of Diffraction) which is another uniform solution of GTD. (paper)

  5. Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches.

    Science.gov (United States)

    Bal, Kristof M; Neyts, Erik C

    2018-03-28

    A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.

  6. A Critical Assessment of Child Custody Evaluations: Limited Science and a Flawed System.

    Science.gov (United States)

    Emery, Robert E; Otto, Randy K; O'Donohue, William T

    2005-07-01

    further scientific investigation. We see the system for resolving custody disputes as deeply flawed, for reasons that go beyond the problem of limited science. The coupling of the vague "best interests of the child" test with the American adversary system of justice puts judges in the position of trying to perform an impossible task, and it exacerbates parental conflict and problems in parenting and coparenting, which psychological science clearly shows to be key factors predicting children's psychological difficulties in response to their parents' separation and divorce. Our analysis of the flawed system, together with our desire to sharply limit custody disputes and custody evaluations, leads us to propose three reforms. First, we urge continued efforts to encourage parents to reach custody agreements on their own-in divorce mediation, through collaborative law, in good-faith attorney negotiations, in therapy, and in other forums. Some such efforts have been demonstrated to improve parent-parent and parent-child relationships long after divorce, and they embrace the philosophical position that, in the absence of abuse or neglect, parents themselves should determine their children's best interests after separation, just as they do in marriage. Second, we urge state legislatures to move toward adopting more clear and determinative custody rules, a step that would greatly clarify the terms of the marriage contract, limit the need for custody evaluations, and sharply narrow the scope of the evaluation process. We find particular merit in the proposed "approximation rule" (recently embraced by the American Law Institute), in which postdivorce parenting arrangements would approximate parenting involvement in marriage. Third and finally, we recommend that custody evaluators follow the law and only offer opinions for which there is an adequate scientific basis. Related to this, we urge professional bodies to enact more specific standards of practice on this and related issues

  7. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    International Nuclear Information System (INIS)

    Jonathan D Buttram

    2005-01-01

    Described is a manual, portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary cooling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification

  8. Flaw distributions and use of ISI data in RPV integrity evaluations

    International Nuclear Information System (INIS)

    Dimitrijevic, V.; Ammirato, F.

    1993-01-01

    A probabilistic method for developing post-inspection flaw distributions has been developed that explicitly accounts for the capability of the inspection procedure to detect and size flaws. This methodology has been used to develop flaw distributions for calculating reactor vessel failure probability under postulated pressurized thermal shock (PTS) conditions. Realistic flaw distributions are important because plant-specific PTS safety assessments are very sensitive to assumptions made about major flaw parameters such as density, size, shape, and location. PTS analysis made in the past do not consider ISI. Two main reasons are (1) lack of a general and approved methodology which provides directions for involvement of ISI results in developing new flaw parameters and (2) lack of confidence in the capability of ISI procedures to detect critical flaws that may be present near the clad-to-base metal interface of the vessel, the location of most concern for PTS conditions. Recent developments in ISI practice, however, have led to substantial improvement in ISI capability and provide a basis for using ISI data to develop plant-specific post-inspection flaw distributions for vessel integrity evaluations. The key components of this evaluation are (1) the generic (preinspection) flaw distribution, (2) a probabilistic flaw detection model, and (3) Bayesian updating of the prior flaw distribution with the detection model to develop a post-inspection flaw distribution. Destructive analysis of RPV weld material was performed to develop data to support the pre-inspection flaw distributions. Since the probability of detection (POD) plays such an important role in the analysis and a high POD is needed to make significant reductions in probability of failure, a procedure was developed to achieve and demonstrate POD greater than 0.9 by using a combination of independent inspection techniques

  9. On the size of edge chromatic 5-critical graphs

    Directory of Open Access Journals (Sweden)

    K. Kayathri

    2017-04-01

    Full Text Available In this paper, we study the size of edge chromatic 5-critical graphs in several classes of 5-critical graphs. In most of the classes of 5-critical graphs in this paper, we have obtained their exact size and in the other classes of 5-critical graphs, we give new bounds on their number of major vertices and size.

  10. Eddy Current Flaw Characterization Using Neural Networks

    International Nuclear Information System (INIS)

    Song, S. J.; Park, H. J.; Shin, Y. K.

    1998-01-01

    Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw

  11. Cyber Vulnerabilities Within Critical Infrastructure: The Flaws of Industrial Control Systems in the Oil and Gas Industry

    Science.gov (United States)

    Alpi, Danielle Marie

    The 16 sectors of critical infrastructure in the US are susceptible to cyber-attacks. Potential attacks come from internal and external threats. These attacks target the industrial control systems (ICS) of companies within critical infrastructure. Weakness in the energy sector's ICS, specifically the oil and gas industry, can result in economic and ecological disaster. The purpose of this study was to establish means for oil companies to identify and stop cyber-attacks specifically APT threats. This research reviewed current cyber vulnerabilities and ways in which a cyber-attack may be deterred. This research found that there are insecure devices within ICS that are not regularly updated. Therefore, security issues have amassed. Safety procedures and training thereof are often neglected. Jurisdiction is unclear in regard to critical infrastructure. The recommendations this research offers are further examination of information sharing methods, development of analytic platforms, and better methods for the implementation of defense-in-depth security measures.

  12. Component flaw evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K [Babcock and Wilcox Co., Lynchburg, VA (United States). Nuclear Power Div.

    1988-12-31

    This document deals with flaw evaluation during in-service inspection. These flaws can be divided into two groups: defects originating from the manufacturing fabrication stage or service-induced flaws. These are mainly caused by high cycle thermal fatigue and are influenced by the presence of stress corrosion cracking mechanisms such as nozzles or pump shaft. (TEC).

  13. Flaw distribution development from vessel ISI data

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.; Basin, S.L.; Rosinski, S.T.

    1991-01-01

    Previous attempts to develop flaw distributions for use in the structural integrity evaluation of pressurized water reactor (PWR) vessels have aimed at the estimation of a ''generic'' distribution applicable to all vessels. In contrast, this paper describes the analysis of vessel-specific in-service inspection (ISI) data for the development of a flaw distribution reliably representative of the condition of the particular vessel inspected. The application of the methodology may be extended to other vessels, but has been primarily developed for PWR reactor vessels. For this study, the flaw data analyzed included data obtained from three recently performed PWR vessel ISIs and from laboratory inspection of selected weldment sections of the Midland reactor vessel. The variability in both the character of the reviewed data (size range of flaws, number of flaws) and the UT (ultrasonic test) inspection system performance identified a need for analyzing the inspection results on a vessel-, or data set-specific basis. For this purpose, traditional histogram-based methods were inadequate, and a new methodology that can accept a very small number of flaws (typical of vessel-specific ISI results) and that includes consideration of inspection system flaw detection reliability, flaw sizing accuracy and flaw detection threshold, was developed. Results of the application of the methodology to each of the four PWR reactor vessel cases studied are presented and discussed

  14. PWR vessel flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kennedy, E.L.; Foulds, J.R.; Kinsman, K.M.

    1990-01-01

    This paper reports on PWR pressure vessels which operate under NRC rules and regulatory guides intended to prevent failure of the vessels. Plants failing to meet the operating criteria specified under these rules and regulations are required to analytically demonstrate fitness for service in order to continue operation. The initial flaw size or distribution of initial vessel flaws is a key input to the required vessel integrity analyses. However, the flaw distribution assumed in the development of the NRC Regulations and recommended for the plant specific analyses is potentially over-conservative. This is because the distribution is based on the limited amount of vessel inspection data available at the time the criteria were being developed and does not take full advantage of the more recent and reliable domestic vessel inspection results. The U.S. Department of Energy is funding an effort through Sandia National Laboratories to investigate the possibility of developing a new flaw distribution based on the increased amount and improved reliability of domestic vessel inspection data. Results of Phase I of the program indicate that state-of-the-art NDE systems' capabilities are sufficient for development of a new flaw distribution that could ultimately provide life extension benefits over the presently required operating practice

  15. Currency flaw severity. [Banknotes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Burnett, M.; Goodman, C.; Sherrod, R.; Schmoyer, R.; Harrison, C.; Uppuluri, R.

    1986-01-01

    A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some very promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.

  16. Nuclear reactor pressure vessel flaw distribution development

    International Nuclear Information System (INIS)

    Kennedy, E.L.; Foulds, J.R.; Basin, S.L.

    1991-12-01

    Previous attempts to develop flaw distributions for probabilistic fracture mechanics analyses of pressurized water reactor (PWR) vessels have aimed at the estimation of a ''generic'' distribution applicable to all PWR vessels. In contrast, this report describes (1) a new flaw distribution development analytic methodology that can be applied to the analysis of vessel-specific inservice inspection (ISI) data, and (2) results of the application of the methodology to the analysis of flaw data for each vessel case (ISI data on three PWR vessels and laboratory inspection data on sections of the Midland reactor vessel). Results of this study show significant variation among the flaw distributions derived from the various data sets analyzed, strongly suggesting than a vessel-specific flaw distribution (for vessel integrity prediction under pressurized thermal shock) is preferred over a ''generic'' distribution. In addition, quantitative inspection system flaw sizing accuracy requirements have been identified for developing a flaw distribution from vessel ISI data. The new flaw data analysis methodology also permits quantifying the reliability of the flaw distribution estimate. Included in the report are identified needs for further development of several aspects of ISI data acquisition and vessel integrity prediction practice

  17. Recent changes in French flaw evaluation procedures: RSE-M

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [Electricite de France (EDF-SEPTEN), 69 - Villeurbanne (France)

    2001-07-01

    After a general presentation of the RSE-M, the French Code which describes the rules for in-service inspection of nuclear power plant components, this paper will be focused on the major new developments of the flaw evaluation procedure: critical crack size evaluation, material properties, safety factors and the major validation tasks done to support the RSE-M, edition 2000. The paper will conclude on on-going development in this area. (author)

  18. Recent changes in French flaw evaluation procedures: RSE-M

    International Nuclear Information System (INIS)

    Faidy, C.

    2001-01-01

    After a general presentation of the RSE-M, the French Code which describes the rules for in-service inspection of nuclear power plant components, this paper will be focused on the major new developments of the flaw evaluation procedure: critical crack size evaluation, material properties, safety factors and the major validation tasks done to support the RSE-M, edition 2000. The paper will conclude on on-going development in this area. (author)

  19. Critical threshold size for overwintering sandeels (Ammodytes marinus)

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Hartvig, Martin; Steffensen, John Fleng

    2011-01-01

    scales with body size and increases with temperature, and the two factors together determine a critical threshold size for passive overwintering below which the organism is unlikely to survive without feeding. This is because the energetic cost of metabolism exceeds maximum energy reserves...... independent long-term overwintering experiments. Maximum attainable energy reserves were estimated from published data on A. marinus in the North Sea. The critical threshold size in terms of length (Lth) for A. marinus in the North Sea was estimated to be 9.5 cm. We then investigated two general predictions...

  20. Fracture evaluation of an in-service piping flaw caused by microbiologically induced corrosion

    International Nuclear Information System (INIS)

    Rudland, D.L.; Scott, P.M.; Wilkowski, G.M.; Rahman, S.

    1996-01-01

    A pipe fracture experiment was conducted on a section of 6-inch nominal diameter pipe which was degraded by microbiologically induced corrosion (MIC) at a circumferential girth weld. The pipe was a section of one of the service water piping systems to one of the emergency diesel generators at the Haddam Neck (Connecticut Yankee) plant. The experimental results will help validate future ASME Section XI pipe flaw evaluation criteria for other than Class 1 piping. A critical aspect of this experiment was an assessment of the degree of conservatism embodied in the ASME definition of flaw size. The ASME flaw size definition assumes a rectangular shaped, constant depth flaw with a depth equal to its maximum depth for its entire length. Since most service flaws are irregular in shape, this definition may be overly conservative. Results from several fracture prediction models are compared with the experimental results. These results show that, for this case, the ASME Appendix H criteria significantly underpredicted the experimental maximum moment, while other fracture prediction models provided good predictions when accurate pipe, weld and flaw dimensions were used

  1. Flaw evaluation methodology for class 2, 3 components in light water reactors

    International Nuclear Information System (INIS)

    Miura, Naoki; Kashima, Koichi; Miyazaki, Katsumasa; Hasegawa, Kunio; Oritani, Naohiko

    2006-01-01

    It is quite important to validate the structural integrity of operating plant components as aged LWR plants are gradually increasing in Japan. The rules on fitness-for-service for nuclear power plants constituted by the JSME provides flaw evaluation methodology. They are mainly focused on Class 1 components, while flaw evaluation criteria for Class 2, 3 components are not consolidated. As such, they also required from the viewpoints of in-service inspection request, reduction of operating cost and systematization of consistent code/standard. In this study, basic concept of flaw evaluation for Class 2, 3 piping was considered, and it is concluded that the same evaluation procedure as Class 1 piping in the current rules is applicable. Some technical issues on practical flaw evaluation for Class 2, 3 piping were listed up, and a countermeasure for each issue was devised. Especially, both allowable flaw sizes in acceptance standards and critical flaw sizes in acceptance criteria have to be determined in consideration of degraded fracture toughness. (author)

  2. Flaw evaluation charts

    International Nuclear Information System (INIS)

    Korosec, D.; Vojvodic Tuma, J.

    1999-01-01

    The structural integrity of the primary components in pressurized water reactor nuclear power plant is very important in the respect of safe and efficient operation. These components have to be subjected to periodic controls. In the light of fracture mechanics concept, the acceptance criteria for defects (flaws) are developed. Flaw evaluation procedure is necessary, to evaluate the defects regarding their acceptability for further operation. The objective of the flaw evaluation charts is to provide a series of simple graphs as decision maps. that immediate decision may be taken regarding the acceptability of a detected defects, on the basis of ASME Code XI criteria.(author)

  3. Critical sizes and flux distributions in the shut down pile

    International Nuclear Information System (INIS)

    Banchereau, A.; Berthier, P.; Genthon, J.P.; Gourdon, C.; Lattes, R.; Martelly, J.; Mazancourt, R. de; Portes, L.; Sagot, M.; Schmitt, A.P.; Tanguy, P.; Teste du Bailler, A.; Veyssiere, A.

    1957-01-01

    An important part of the experiments carried out on the reactor G1 during a period of shut-down has consisted in determinations of critical sizes, and measurements of flux distribution by irradiations of detectors. This report deals with the following points: 1- Critical sizes of the flat pile, the long pile and the uranium-thorium pile. 2- Flux charts of the same piles, and study of an exponential experiment. 3- Determination of the slit effect. 4- Calculation of the anisotropy of the lattice. 5- Description of the experimental apparatus of the irradiation measurements. (author) [fr

  4. On star-critical and upper size Ramsey numbers

    NARCIS (Netherlands)

    Zhang, Yanbo; Broersma, Haitze J.; Chen, Yaojun

    2016-01-01

    In this paper, we study the upper size Ramsey number u(G1,G2)u(G1,G2), defined by Erdős and Faudree, as well as the star-critical Ramsey number r∗(G1,G2)r∗(G1,G2), defined by Hook and Isaak. We define Ramsey-full graphs and size Ramsey good graphs, and perform a detailed study on these graphs. We

  5. Origin and type of flaws in heat engine ceramic materials and components

    International Nuclear Information System (INIS)

    Govila, R.K.

    1995-01-01

    A number of ceramic materials such as Silicon Nitrides and Carbides, Sialons, Whisker-Reinforced Ceramic Composites and Partially-Stabilized Zirconias (PSZs) have been developed for use as structural components in heat engine applications. The reliability and durability of a structural engine component is critically dependent on the size, density of distribution and location of flaws. This information is critical for the processing and design engineers in order to design structural components using suitable materials and thus minimize stress intensity. In general, the failure initiating flaws are associated or produced due to material impurity, processing methods and parameters, and fabrication techniques (machining and grinding). Examples of each type of flaws associated with material impurity, processing methods and fabrication techniques are illustrated

  6. Atomic size effect on critical cooling rate and glass formation

    International Nuclear Information System (INIS)

    Jalali, Payman; Li Mo

    2005-01-01

    Atomic size effect on critical cooling rate and glass formability in a model binary system is investigated using molecular dynamics simulation. To isolate atomic size effect from the rest of the factors that critically influence the glass formation, a hard sphere model is employed in conjunction with a newly developed densification method. The glass formability is defined as a set of optimal conditions that result in the slowest cooling rate of the glass-forming liquid. Critical cooling rates are identified from extensive molecular dynamics simulations. A kinetic glass-forming diagram is mapped out that marks the boundary between the glass-forming regions and competing crystalline phases in terms of the parameters of the atomic size ratio and alloy concentration. It is found that the potency of the atomic size difference on glass formation is influenced greatly by the competing metastable and equilibrium crystalline phases in the system, and the kinetic processes leading to the formation of these phases. The mechanisms of the atomic size effect on topological instability of crystal packing and glass formation are discussed

  7. Evaluation of flaws in carbon steel piping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.; Yukawa, S.; Ranganath, S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductile tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively.

  8. Evaluation of flaws in carbon steel piping. Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Gamble, R.M.; Mehta, H.S.; Yukawa, S.; Ranganath, S.

    1986-10-01

    The objective of this program was to develop flaw evaluation procedures and allowable flaw sizes for ferritic piping used in light water reactor (LWR) power generation facilities. The program results provide relevant ASME Code groups with the information necessary to define flaw evaluation procedures, allowable flaw sizes, and their associated bases for Section XI of the code. Because there are several possible flaw-related failure modes for ferritic piping over the LWR operating temperature range, three analysis methods were employed to develop the evaluation procedures. These include limit load analysis for plastic collapse, elastic plastic fracture mechanics (EPFM) analysis for ductile tearing, and linear elastic fracture mechanics (LEFM) analysis for non ductile crack extension. To ensure the appropriate analysis method is used in an evaluation, a step by step procedure also is provided to identify the relevant acceptance standard or procedure on a case by case basis. The tensile strength and toughness properties required to complete the flaw evaluation for any of the three analysis methods are included in the evaluation procedure. The flaw evaluation standards are provided in tabular form for the plastic collapse and ductile tearing modes, where the allowable part through flaw depth is defined as a function of load and flaw length. For non ductile crack extension, linear elastic fracture mechanics analysis methods, similar to those in Appendix A of Section XI, are defined. Evaluation flaw sizes and procedures are developed for both longitudinal and circumferential flaw orientations and normal/upset and emergency/faulted operating conditions. The tables are based on margins on load of 2.77 and 1.39 for circumferential flaws and 3.0 and 1.5 for longitudinal flaws for normal/upset and emergency/faulted conditions, respectively

  9. The critical domain size of stochastic population models.

    Science.gov (United States)

    Reimer, Jody R; Bonsall, Michael B; Maini, Philip K

    2017-02-01

    Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.

  10. Size, Shape and Impurity Effects on Superconducting critical temperature.

    Science.gov (United States)

    Umeda, Masaki; Kato, Masaru; Sato, Osamu

    Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.

  11. Methodology for inferring initial flaw distribution

    International Nuclear Information System (INIS)

    Jouris, G.M.; Shaffer, D.H.

    1980-01-01

    It has been common practice in both deterministic and probabilistic assessment of the integrity of a pressure vessel to assume the presence of a rather large flaw (usually 1/4 the thickness of the vessel wall) in the belt-line region. Although it is highly unlikely that such a large flaw would be present, the assumption is adopted in order to be conservative. A more realistic approach, which can be incorporated in the probabilistic analysis of integrity, is to characterize the depth of a flaw as a random variable and thus allow the probabilities associated with the presence of various size flaws to be reflected in the final estimated probability of vessel failure. This is precisely the motivation for developing the methodology to obtain the distribution of initial flaw depth, which is presented in this paper. It should be mentioned that the methodology developed here is not an end in itself but rather provides an input distribution to be used in a comprehensive integrity assessment. (orig.)

  12. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws.

    Science.gov (United States)

    Spedding, Simon

    2014-04-11

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs). Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27). Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (-1.1 CI -0.7, -1.5). Vitamin D supplementation (≥800 I.U. daily) was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.

  13. Vitamin D and Depression: A Systematic Review and Meta-Analysis Comparing Studies with and without Biological Flaws

    Directory of Open Access Journals (Sweden)

    Simon Spedding

    2014-04-01

    Full Text Available Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines. The literature search was undertaken through four databases for randomized controlled trials (RCTs. Studies were critically appraised for methodological quality and biological flaws, in relation to the hypothesis and study design. Meta-analyses were performed for studies according to the presence of biological flaws. The 15 RCTs identified provide a more comprehensive evidence-base than previous systematic reviews; methodological quality of studies was generally good and methodology was diverse. A meta-analysis of all studies without flaws demonstrated a statistically significant improvement in depression with Vitamin D supplements (+0.78 CI +0.24, +1.27. Studies with biological flaws were mainly inconclusive, with the meta-analysis demonstrating a statistically significant worsening in depression by taking Vitamin D supplements (−1.1 CI −0.7, −1.5. Vitamin D supplementation (≥800 I.U. daily was somewhat favorable in the management of depression in studies that demonstrate a change in vitamin levels, and the effect size was comparable to that of anti-depressant medication.

  14. Asymmetric fluid criticality. II. Finite-size scaling for simulations.

    Science.gov (United States)

    Kim, Young C; Fisher, Michael E

    2003-10-01

    The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions L focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded "complete" thermodynamic (L--> infinity) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [Phys. Rev. E 67, 061506 (2003)] is extended to finite L, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when L--> infinity, the second temperature derivative (d2musigma/dT2) of the chemical potential along the phase boundary musigmaT diverges when T-->Tc-. The finite-size behavior of various special critical loci in the temperature-density or (T,rho) plane, in particular, the k-inflection susceptibility loci and the Q-maximal loci--derived from QL(T,L) is identical with 2L/L where m is identical with rho-L--is carefully elucidated and shown to be of value in estimating Tc and rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.

  15. The reliability of ultrasonic inspection and the critical defect size

    International Nuclear Information System (INIS)

    Vasilchenko, G.S.; Bely, V.E.; Ovchinnikov, A.V.; Rivkin, E.Yu.

    1991-01-01

    The ability to detect fabrication and service-induced defects in the welded joints of components and pipelines in nuclear power stations by ultrasonic inspection when this is conducted by using standard instruments and procedures appears to be insufficient. This fact was confirmed by the research carried out in PISC program and other studies. In order to increase the accuracy of measurement and to obtain the additional information on the character of any defect in ultrasonic testing as well as the validity of applying nondestructive testing data to strength calculation, scientific researches have been promoted and carried out in the USSR in a program under the guidance of NPO CNIITMASH. The reliability of the ultrasonic control of welded joints and the ways and means for its improvement are discussed. The presentation of the parameters realized by the ultrasonic inspection of defects in the form of schema for the use in strength calculation is explained. The calculation of stress intensity factor, the estimation of critical defect size, and the estimation of acceptable defect size are reported. (K.I.)

  16. Detecting flaws in welds

    International Nuclear Information System (INIS)

    Woodacre, A.; Lawton, H.

    1979-01-01

    An apparatus and a method for detecting flaws in welds in a workpiece, the portion of the workpiece containing the weld is maintained at a constant temperature and the weld is scanned by an infra red detector. The weld is then scanned again with the workpiece in contact with a cooling probe to produce a steeper temperature gradient across the weld. Comparison of the signals produced by each scan reveals the existence of defects in the welds. The signals may be displayed on an oscilloscope and the display may be observed by a TV camera and recorded on videotape. (UK)

  17. Flaw detection device

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    1998-01-01

    The present invention provides a device for detecting welded portions of a reactor pressure vessel. Namely, the device of the present invention comprises (1) a casing to be disposed on the surface to be detected, (2) a probe driving means loaded to the casing, (3) a probe driven along the surface to be detected and (4) a pressure reduction means for keeping the hollow portion in the casing to an evacuated atmosphere. The casing comprises a flexible suction edge to be tightly in contact with the surface to be tested for maintaining the air tight state, (6) a guide wheel for moving the casing along the surface to be tested and (7) a handle for performing transferring operation. The flaw detection device thus constituted has following features. The working efficiency upon conducting detection is improved. The influence of the weight of the device on the detection is small. The device can be applied on the surface of a nonmagnetic material. The efficiency for the flaw detection can be improved. (I.S.)

  18. Evaluation of canister weld flaw depth for concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Chul; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Jung, Sung Hun; Lee, Young Oh; Jung, In Su [Korea Nuclear Engineering and Service Corp, Daejeon (Korea, Republic of)

    2017-03-15

    Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radioactive materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B and PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

  19. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  20. Reliable critical sized defect rodent model for cleft palate research.

    Science.gov (United States)

    Mostafa, Nesrine Z; Doschak, Michael R; Major, Paul W; Talwar, Reena

    2014-12-01

    Suitable animal models are necessary to test the efficacy of new bone grafting therapies in cleft palate surgery. Rodent models of cleft palate are available but have limitations. This study compared and modified mid-palate cleft (MPC) and alveolar cleft (AC) models to determine the most reliable and reproducible model for bone grafting studies. Published MPC model (9 × 5 × 3 mm(3)) lacked sufficient information for tested rats. Our initial studies utilizing AC model (7 × 4 × 3 mm(3)) in 8 and 16 weeks old Sprague Dawley (SD) rats revealed injury to adjacent structures. After comparing anteroposterior and transverse maxillary dimensions in 16 weeks old SD and Wistar rats, virtual planning was performed to modify MPC and AC defects dimensions, taking the adjacent structures into consideration. Modified MPC (7 × 2.5 × 1 mm(3)) and AC (5 × 2.5 × 1 mm(3)) defects were employed in 16 weeks old Wistar rats and healing was monitored by micro-computed tomography and histology. Maxillary dimensions in SD and Wistar rats were not significantly different. Preoperative virtual planning enhanced postoperative surgical outcomes. Bone healing occurred at defect margin leaving central bone void confirming the critical size nature of the modified MPC and AC defects. Presented modifications for MPC and AC models created clinically relevant and reproducible defects. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Flaws in Commercial Reading Materials.

    Science.gov (United States)

    Axelrod, Jerome

    Three flaws found in commercial reading materials, such as workbooks and kits, are discussed in this paper, and examples of the flaws are taken from specific materials. The first problem noted is that illustrations frequently provide the information that the learner is supposed to supply through phonetic or structural analysis; the illustrations…

  2. Critical Parametric Study on Final Size of Magnetite Nanoparticles

    Science.gov (United States)

    Yusoff, A. H. M.; Salimi, M. N.; Jamlos, M. F.

    2018-03-01

    The great performance of magnetite nanoparticle in varsity field are mainly depended on their size since size determine the saturation magnetisation and also the phase purity. Magnetite nanoparticles were prepared using a simple co-precipitation method in order to study the influence of synthesis condition on the final size. Variable parameters include stirring rate, reaction temperature and pH of the solution can finely tuned the size of the resulting nanoparticles. Generally, any increase in these parameters had a gently reduction on particle size. But, the size was promoted to increase back at certain point due to the specific reason. Nucleation and growth processes are involved to clarify the impact of synthesis condition on the particle sizes. The result obtained give the correct conditions for pure magnetite synthesis at nanoscale size of dimensions less than 100 nm.

  3. Nuclear reactor pressure vessel-specific flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.

    1992-01-01

    Vessel integrity predictions performed through fracture mechanics analysis of a pressurized thermal shock event have been shown to be significantly sensitive to the overall flaw distribution input. It has also been shown that modem vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. Throughout the program, new insight was obtained into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. For example, the potential application of a vessel-specific flaw distribution now provides at least one method by which a vessel-specific reference flaw size applicable to pressure-temperature limit curves determination can be estimated. This paper will discuss the development and application of the methodology and the impact to future vessel integrity analyses

  4. A study on the dimensioning of flaws by acoustical holography

    International Nuclear Information System (INIS)

    Yamamoto, Michio; Ando, Tomozumi; Enami, Koji; Yajima, Minoru; Fukui, Shigetaka.

    1978-01-01

    As a means of evaluating the safety of flawed pressure vessels and other structures against fracture, fracture mechanics has come to be applied. For the application of fracture mechanics it is necessary to get information concerning the sizes and shapes of flaws. The ultrasonic flaw detection method that is widely used as a nondestructive inspection method cannot measure the sizes and shapes of flaws accurately. Considering that acoustical holography is an useful means for the dimensioning of flaws, we performed basic tests on this method and obtained the following results: (1) The measured values of artificial flaws (flat bottom drilled holes: 5 - 36 mm) made on a steel plate of 150 mm thick showed a good linear relation with their actual sizes and scatter in the measured values was +-3 - 6 mm. (2) The measured values of fatigue cracks (length: 5 - 57 mm) introduced into a steel plate of 150 mm thick also showed a good linear relation with their actual sizes and scatter in the measured values was +-3 mm. (3) It was found that acoustical holography can also be applied to heavy section cast steels. (4) The method of correcting distortion caused by curved surface was investigated by computer-aided simulation and it was considered that such distortion can be corrected by radial scanning of a transducer. (author)

  5. Statistical flaw detection: Application to flaws below curved surfaces

    International Nuclear Information System (INIS)

    Elsley, R.K.; Fertig, K.W.; Linebarger, R.S.; Richardson, J.M.

    1984-01-01

    This chapter presents a practical approach to the optimum detection of flaws in the presence of noise signals. A decision theoretic approach is used to derive a detection algorithm which is adapted to the noise environment in which a particular measurement is being made. An automatic procedure for characterizing the noises and developing the optimum detection algorithm is presented. The proposed method makes use of an explicit knowledge of the noise processes in order to design a flaw detection algorithm which optimally detects flaws in the presence of such noise. It is concluded that this approach will provide a number of advantages in practical testing situations, including the detection of smaller flaws, faster scanning due to the use of less highly focussed transducers, and less need for operator optimization of the measurement process. The described algorithms were implemented on the Digital Ultrasonic Instrument (DUI), which is a high speed all-digital instrument for performing sophisticated calculations on ultrasonic signals

  6. Webometrics: Some Critical Issues of WWW Size Estimation Methods

    Directory of Open Access Journals (Sweden)

    Srinivasan Mohana Arunachalam

    2018-04-01

    Full Text Available The number of webpages in the Internet has increased tremendously over the last two decades however only a part of it is indexed by various search engines. This small portion is the indexable web of the Internet and can be usually reachable from a Search Engine. Search engines play a big role in making the World Wide Web accessible to the end user, and how much of the World Wide Web is accessible on the size of the search engine’s index. Researchers have proposed several ways to estimate this size of the indexable web using search engines with and without privileged access to the search engine’s database. Our report provides a summary of methods used in the last two decades to estimate the size of the World Wide Web, as well as describe how this knowledge can be used in other aspects/tasks concerning the World Wide Web.

  7. Improved criteria for the repair of fabrication flaws

    International Nuclear Information System (INIS)

    Doctor, S.R.; Schuster, G.J.; Simonen, F.A.

    2003-01-01

    Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code for nuclear power plant components requires radiographic examinations (RT) of welds and requires repairs for RT indications that exceed code acceptable sizes. This paper describes research that has generated data on welding flaws, which indicated that the largest flaws occur in repaired welds. The fabrication flaws were detected in material removed from cancelled nuclear power plants using high sensitivity Nondestructive Examination (NDE) and validated by complementary NDE and destructive testing. Evidence suggests that repairs are often for small and benign RT indications at locations buried within the vessel or pipe wall. Probabilistic fracture mechanics calculations are described in this paper to predict the increases in vessel failure probabilities caused by the repair-induced flaws. Calculations address failures of embrittled vessel welds for pressurized thermal shock (PTS) transients. In this case small flaws, which are relatively common, can cause brittle fracture, such that the rarely encountered repair flaws of large sizes gave only modestly increased failure probabilities. The paper recommends the use of more discriminating ultrasonic examinations in place of RT examinations along with repair criteria based on a fitness-for-purpose approach that minimize the number of unjustified repairs. (author)

  8. Flaw identification using acoustic emission

    International Nuclear Information System (INIS)

    Woodward, B.; McDonald, N.R.

    1975-01-01

    Acoustic emission 'signatures' contain information about the fine structure of metallurgical source events and their interpretation may provide a means of assessing the severity of internal flaws as well as surface flaws. The ultimate aim of this research on signature analysis is to develop a real time non-destructive testing technique having the capability of flaw recognition as well as flaw location in nuclear reactor components and structures under stress. Thus the requisite, unlike that in most acoustic emission work to date, is for a technique which affords discrimination between acoustic emission from different types of flaws propagating simultaneously. The approach described here requires detailed analysis of the emission signatures in terms of a specific statistical parameter, energy spectral density. In order to realise the full inspection potential of acoustic emission monitoring data obtained from zirconium and steel testpieces have been correlated with metallurgical condition and mechanical behaviour, since the nature of emission signatures is strongly affected by the physical characteristics and internal structure of the material. (Auth.)

  9. Estimation of the number of physical flaws from periodic ISI data of SG tubes using effective POD

    International Nuclear Information System (INIS)

    Lee, Jae Bong; Park, Jai Hak; Kim, Hong Deok; Chung, Han Sub

    2008-01-01

    It is necessary to know the number of flaws and their size distribution in order to calculate the probability of failure or to estimate the amount of leakage through the tube wall of steam generators. But In-Service Inspection (ISI) flaw data is different from the physical flaw data. In case of a single inspection, it is easy to estimate the number of physical flaws using the POD curve. However, we may be faced with some difficulties in obtaining the number of physical flaws from the periodic in-service inspection data. In this study a method for estimating the number of physical flaws from periodic in-service inspection data is proposed. In order to calculate the number of physical flaws with periodic ISI data, both probabilities of detecting and missing flaws should be considered. And flaw initiation and growth history must be known also. The flaw initiation and growth history can be inferred from appropriate probabilistic flaw growth rate. Two inference methods are proposed and compared. One is Monte Carlo simulation method and the other is transition (stochastic) matrix method. The effective POD, the total possibility of detection considering both probabilities of detecting and missing flaws for each flaw size, can be calculated using above two inference methods. And two methods are compared and the usefulness and convenience are evaluated from several applications

  10. The influence of finite-length flaw effects on PTS analyses

    International Nuclear Information System (INIS)

    Keeney-Walker, J.; Dickson, T.L.

    1993-01-01

    Current licensing issues within the nuclear industry dictate a need to investigate the effects of cladding on the extension of small finite-length cracks near the inside surface of a vessel. Because flaws having depths of the order of the combined clad and heat affected zone thickness dominate the frequency distribution of flaws, their initiation probabilities can govern calculated vessel failure probabilities. Current pressurized-thermal-shock (PTS) analysis computer programs recognize the influence of the inner-surface cladding layer in the heat transfer and stress analysis models, but assume the cladding fracture toughness is the same as that for the base material. The programs do not recognize the influence cladding may have in inhibiting crack initiation and propagation of shallow finite-length surface flaws. Limited experimental data and analyses indicate the cladding can inhibit the propagation of certain shallow flaws. This paper describes an analytical study which was carried out to determine (1) the minimum flaw depth for crack initiation under PTS loading for semicircular surface flaws in a clad reactor pressure vessel and (2) the impact, in terms of the conditional probability of vessel failure, of using a semicircular surface flaw as the initial flaw and assuming that the flaw cannot propagate in the cladding. The analytical results indicate that for initiation a much deeper critical crack depth is required for the finite-length flaw than for the infinite-length flaw, except for the least severe transient. The minimum flaw depths required for crack initiation from the finite-length flaw analyses were incorporated into a modified version of the OCA-P code. The modified code was applied to the analysis of selected PTS transients, and the results produced a substantial decrease in the conditional probability of failure. This initial study indicates a significant effect on probabilistic fracture analyses by incorporating finite-length flaw results

  11. Methods to establish flaw tolerances

    International Nuclear Information System (INIS)

    Varga, T.

    1978-01-01

    Three conventional methods used to establish flaw tolerances are compared with new approaches using fracture mechanics. The conventional methods are those based on (a) non-destructive testing methods; (b) fabrication and quality assurance experience; and (c) service and damage experience. Pre-requisites of fracture mechanics methods are outlined, and summaries given of linear elastic mechanics (LEFM) and elastoplastic fracture mechanics (EPFM). The latter includes discussion of C.O.D.(crack opening displacement), the J-integral and equivalent energy. Proposals are made for establishing flaw tolerances. (U.K.)

  12. Firm Size, a Self-Organized Critical Phenomenon: Evidence from the Dynamical Systems Theory

    Science.gov (United States)

    Chandra, Akhilesh

    This research draws upon a recent innovation in the dynamical systems literature called the theory of self -organized criticality (SOC) (Bak, Tang, and Wiesenfeld 1988) to develop a computational model of a firm's size by relating its internal and the external sub-systems. As a holistic paradigm, the theory of SOC implies that a firm as a composite system of many degrees of freedom naturally evolves to a critical state in which a minor event starts a chain reaction that can affect either a part or the system as a whole. Thus, the global features of a firm cannot be understood by analyzing its individual parts separately. The causal framework builds upon a constant capital resource to support a volume of production at the existing level of efficiency. The critical size is defined as the production level at which the average product of a firm's factors of production attains its maximum value. The non -linearity is inferred by a change in the nature of relations at the border of criticality, between size and the two performance variables, viz., the operating efficiency and the financial efficiency. The effect of breaching the critical size is examined on the stock price reactions. Consistent with the theory of SOC, it is hypothesized that the temporal response of a firm breaching the level of critical size should behave as a flicker noise (1/f) process. The flicker noise is characterized by correlations extended over a wide range of time scales, indicating some sort of cooperative effect among a firm's degrees of freedom. It is further hypothesized that a firm's size evolves to a spatial structure with scale-invariant, self-similar (fractal) properties. The system is said to be self-organized inasmuch as it naturally evolves to the state of criticality without any detailed specifications of the initial conditions. In this respect, the critical state is an attractor of the firm's dynamics. Another set of hypotheses examines the relations between the size and the

  13. Design flaw could delay collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "A magnet for the Large Hadron Collider (LHC) failed during a key test at the European particle physics laboratory CERN last week. Physicists and engineers will have to repair the damaged magnet and retrofit others to correct the underlynig design flaw, which could delay the start-up of the mammouth subterranean machine." (1,5 page)

  14. Binomial Test Method for Determining Probability of Detection Capability for Fracture Critical Applications

    Science.gov (United States)

    Generazio, Edward R.

    2011-01-01

    The capability of an inspection system is established by applications of various methodologies to determine the probability of detection (POD). One accepted metric of an adequate inspection system is that for a minimum flaw size and all greater flaw sizes, there is 0.90 probability of detection with 95% confidence (90/95 POD). Directed design of experiments for probability of detection (DOEPOD) has been developed to provide an efficient and accurate methodology that yields estimates of POD and confidence bounds for both Hit-Miss or signal amplitude testing, where signal amplitudes are reduced to Hit-Miss by using a signal threshold Directed DOEPOD uses a nonparametric approach for the analysis or inspection data that does require any assumptions about the particular functional form of a POD function. The DOEPOD procedure identifies, for a given sample set whether or not the minimum requirement of 0.90 probability of detection with 95% confidence is demonstrated for a minimum flaw size and for all greater flaw sizes (90/95 POD). The DOEPOD procedures are sequentially executed in order to minimize the number of samples needed to demonstrate that there is a 90/95 POD lower confidence bound at a given flaw size and that the POD is monotonic for flaw sizes exceeding that 90/95 POD flaw size. The conservativeness of the DOEPOD methodology results is discussed. Validated guidelines for binomial estimation of POD for fracture critical inspection are established.

  15. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    Science.gov (United States)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  16. Nuclear Criticality Calculation for Determining the Bach Size in a Pyroprocessing Facility

    International Nuclear Information System (INIS)

    Ko, Won Il; Lee, Ho Hee; Chang, Hong Rae; Song, Dae Yong; Kwon, Eun Ha; Jung, Chang Jun; Yoon, Suk Kyun

    2009-01-01

    The criticality analysis in a pyroprocessing facility is very important element for the R and D and the facility design in terms of the determination of batch size of the sub-processes as well as facility safety. Particularly, the determining the batch size is essential at the beginning stage of the R and D. In this report, the criticality analysis was carried out for the subprocesses such as voloxidation, electrolytic reduction, electrorefining and electrowinning process in order to estimate the maximum batch size of each process by using Monte Carlo code (MCNP4/C2). On the whole, the criticality problem could not give a big effect on the batch sizes in the voloxidation, electrolytic reduction and electrorefining. However, it was resulted that permissible amount of nuclear material to prevent the criticality accident in the electrowinning process was about 10kgHM

  17. Nuclear Criticality Calculation for Determining the Bach Size in a Pyroprocessing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Lee, Ho Hee; Chang, Hong Rae; Song, Dae Yong; Kwon, Eun Ha; Jung, Chang Jun; Yoon, Suk Kyun [KAERI, Daejeon (Korea, Republic of)

    2009-01-15

    The criticality analysis in a pyroprocessing facility is very important element for the R and D and the facility design in terms of the determination of batch size of the sub-processes as well as facility safety. Particularly, the determining the batch size is essential at the beginning stage of the R and D. In this report, the criticality analysis was carried out for the subprocesses such as voloxidation, electrolytic reduction, electrorefining and electrowinning process in order to estimate the maximum batch size of each process by using Monte Carlo code (MCNP4/C2). On the whole, the criticality problem could not give a big effect on the batch sizes in the voloxidation, electrolytic reduction and electrorefining. However, it was resulted that permissible amount of nuclear material to prevent the criticality accident in the electrowinning process was about 10kgHM

  18. Grain size dependence of the critical current density in YBa2Cu3Ox superconductors

    International Nuclear Information System (INIS)

    Kuwabara, M.; Shimooka, H.

    1989-01-01

    The grain size dependence of the critical current density in bulk single-phase YBa 2 Cu 3 O x ceramics was investigated. The grain size of the materials was changed to range approximately from 1.0 to 25 μm by changing the conditions of power processing and sintering, associated with an increase in the sintered density of the materials with increasing grain size. The critical current density has been found to exhibit a significant grain size dependence, changing from 880 A/cm 2 to a value of 100 A/cm 2 with a small increase in the average grain size from 1.2 to 2.0 μm. This seems to provide information about the nature of the weak link between superconducting grains which might govern the critical current density of the materials

  19. Droplet size and velocity at the exit of a nozzle with two-component near critical and critical flow

    International Nuclear Information System (INIS)

    Lemonnier, H.; Camelo-Cavalcanti, E.S.

    1993-01-01

    Two-component critical flow modelling is an important issue for safety studies of various hazardous industrial activities. When the flow quality is high, the critical flow rate prediction is sensitive to the modelling of gas droplet mixture interfacial area. In order to improve the description of these flows, experiments were conducted with air-water flows in converging nozzles. The pressure was 2 and 4 bar and the gas mass quality ranged between 100% and 20%. The droplets size and velocity have been measured close to the outlet section of a nozzle with a 10 mm diameter throat. Subcritical and critical conditions were observed. These data are compared with the predictions of a critical flow model which includes an interfacial area model based on the classical ideas of Hinze and Kolmogorov. (authors). 9 figs., 12 refs

  20. Advances in flaw evaluation procedures and acceptance criteria for reactor piping

    International Nuclear Information System (INIS)

    Gamble, R.M.; Zahoor, A.; Norris, D.M.

    1986-01-01

    During the past several years, intergranular stress corrosion cracks (IGSCC) have been detected in stainless steel piping in boiling water reactors (BWRs) and have resulted in an increased number of flaw evaluations. To reduce the outage time associated with evaluating IGSCC, various research and ASME code groups have spent significant effort to provide utility personnel with efficient means to detect, classify, and size flaws, and to determine suitability for return to service for flawed stainless steel piping. One of the several nondestructive evaluation technologies that has received considerable attention is fracture mechanics, the discipline that considers the failure of flawed material. Fracture mechanics can be used to answer two key questions concerning return to service of flawed pipe: (a) what is the largest flaw size that can be returned to service and still maintain adequate safety margins at the applied loads, and (b) how much operating time remains before the crack reaches the largest allowable size? The purpose of this paper is to provide an overview of the recently developed ASME code Section XI flaw size evaluation procedure and acceptance criteria for stainless steel piping and their application by BWR owners to efficiently determine if flaws found by nondestructive examination are acceptable for continued service

  1. Advances in flaw evaluation procedures and acceptance criteria for reactor piping

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, R.M.; Zahoor, A.; Norris, D.M.

    1986-01-01

    During the past several years, intergranular stress corrosion cracks (IGSCC) have been detected in stainless steel piping in boiling water reactors (BWRs) and have resulted in an increased number of flaw evaluations. To reduce the outage time associated with evaluating IGSCC, various research and ASME code groups have spent significant effort to provide utility personnel with efficient means to detect, classify, and size flaws, and to determine suitability for return to service for flawed stainless steel piping. One of the several nondestructive evaluation technologies that has received considerable attention is fracture mechanics, the discipline that considers the failure of flawed material. Fracture mechanics can be used to answer two key questions concerning return to service of flawed pipe: (a) what is the largest flaw size that can be returned to service and still maintain adequate safety margins at the applied loads, and (b) how much operating time remains before the crack reaches the largest allowable size. The purpose of this paper is to provide an overview of the recently developed ASME code Section XI flaw size evaluation procedure and acceptance criteria for stainless steel piping and their application by BWR owners to efficiently determine if flaws found by nondestructive examination are acceptable for continued service.

  2. RID-41 gamma flaw detector

    International Nuclear Information System (INIS)

    Glebov, V.N.; Zubkov, V.S.; Majorov, A.N.; Murashev, A.I.; Firstov, V.G.; Yampol'skij, V.V.; Goncharov, V.I.; Sakhanov, A.S.

    1978-01-01

    The design is described and the main characteristics are given of a universal stationary hose-type gamma flow detector with a 60 Co source from 3O to 4g0 Ci for high-productive control of thick-walled products from steel and other materials. The principal units of the instrument are a radiation head, a control panel, and a charge-exchange container. The flaw detector may be used both in shield chambers and in shop or mounting conditions on complying with due requirements of radiation protection. The high activity of the source at relatively small dimensions of its active part ensures good detection of defects. The high radioscopy rate permits to use the flaw detector in conditions of increased background radiation, e.g. during routine repairs and inspections at nuclear power plants. The instrument may also be used in radiometric complexes, and produces a considerable economic effect. This flaw-detector corresponds to ISO and IAEA requirements and may be delivered for export

  3. Nanoparticle separation based on size-dependent aggregation of nanoparticles due to the critical Casimir effect.

    Science.gov (United States)

    Guo, Hongyu; Stan, Gheorghe; Liu, Yun

    2018-02-21

    Nanoparticles typically have an inherent wide size distribution that may affect the performance and reliability of many nanomaterials. Because the synthesis and purification of nanoparticles with desirable sizes are crucial to the applications of nanoparticles in various fields including medicine, biology, health care, and energy, there is a great need to search for more efficient and generic methods for size-selective nanoparticle purification/separation. Here we propose and conclusively demonstrate the effectiveness of a size-selective particle purification/separation method based on the critical Casimir force. The critical Casimir force is a generic interaction between colloidal particles near the solvent critical point and has been extensively studied in the past several decades due to its importance in reversibly controlling the aggregation and stability of colloidal particles. Combining multiple experimental techniques, we found that the critical Casimir force-induced aggregation depends on relative particle sizes in a system with larger ones aggregating first and the smaller ones remaining in solution. Based on this observation, a new size-dependent nanoparticle purification/separation method is proposed and demonstrated to be very efficient in purifying commercial silica nanoparticles in the lutidine/water binary solvent. Due to the ubiquity of the critical Casimir force for many colloidal particles in binary solvents, this method might be applicable to many types of colloidal particles.

  4. Evaluation of flawed-pipe experiments: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Gamble, R.M.

    1986-11-01

    The purpose of this work was to perform elastic plastic fracture mechanics evaluations of experimental data that have become available from the NRC Degraded Pipe Program, Phase II (DPII) and other NRC and EPRI sponsored programs. These evaluations were used to assess flaw evaluation procedures for austenitic and ferritic steel piping. The results also have application to leak before break fracture mechanics analysis. An improved relationship was developed for computing the J-Integral for pipes containing throughwall flaws and loaded in pure bending. The results from several DPII experiments were compared to predictions based on new J estimation scheme solutions for circumferential, finite length part-throughwall flaws in pipes with bending loading. Comparisons of experimental maximum loads with those predicted using procedures in Paragraph IWB-3640, Section XI of the ASME Code indicate that the Code flaw evaluation procedures and allowables for austenitic steel pipe are appropriate and conservative. However, the comparisons also indicate that the base metal Code allowable loads may be about 15 to 20% high for small diameter piping (less than 8-inch diameter) at allowable a/t larger than about 0.5. The work further indicates that there is justification for reducing the conservatism in IWB-3640 allowable flaw sizes and loads for austenitic steel pipe with submerged or shielded metal arc welds.

  5. Detecting accuracy of flaws by manual and automatic ultrasonic inspections

    International Nuclear Information System (INIS)

    Iida, K.

    1988-01-01

    As the final stage work in the nine year project on proving tests of the ultrasonic inspection technique applied to the ISI of LWR plants, automatic ultrasonic inspection tests were carried out on EDM notches, surface fatigue cracks, weld defects and stress corrosion cracks, which were deliberately introduced in full size structural components simulating a 1,100 MWe BWR. Investigated items are the performance of a newly assembled automatic inspection apparatus, detection limit of flaws, detection resolution of adjacent collinear or parallel EDM notches, detection reproducibility and detection accuracy. The manual ultrasonic inspection of the same flaws as inspected by the automatic ultrasonic inspection was also carried out in order to have comparative data. This paper reports how it was confirmed that the automatic ultrasonic inspection is much superior to the manual inspection in the flaw detection rate and in the detection reproducibility

  6. Flaw shape reconstruction – an experimental approach

    Directory of Open Access Journals (Sweden)

    Marilena STANCULESCU

    2009-05-01

    Full Text Available Flaws can be classified as acceptable and unacceptable flaws. As a result of nondestructive testing, one takes de decision Admit/Reject regarding the tested product related to some acceptability criteria. In order to take the right decision, one should know the shape and the dimension of the flaw. On the other hand, the flaws considered to be acceptable, develop in time, such that they can become unacceptable. In this case, the knowledge of the shape and dimension of the flaw allows determining the product time life. For interior flaw shape reconstruction the best procedure is the use of difference static magnetic field. We have a stationary magnetic field problem, but we face the problem given by the nonlinear media. This paper presents the results of the experimental work for control specimen with and without flaw.

  7. Bounding the conservatism in flaw-related variables for pressure vessel integrity analyses

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.

    1993-01-01

    The fracture mechanics-based integrity analysis of a pressure vessel, whether performed deterministically or probabilistically, requires use of one or more flaw-related input variables, such as flaw size, number of flaws, flaw location, and flaw type. The specific values of these variables are generally selected with the intent to ensure conservative predictions of vessel integrity. These selected values, however, are largely independent of vessel-specific inspection results, or are, at best, deduced by ''conservative'' interpretation of vessel-specific inspection results without adequate consideration of the pertinent inspection system performance (reliability). In either case, the conservatism associated with the flaw-related variables chosen for analysis remains examination (NDE) technology and the recently formulated ASME Code procedures for qualifying NDE system capability and performance (as applied to selected nuclear power plant components) now provides a systematic means of bounding the conservatism in flaw-related input variables for pressure vessel integrity analyses. This is essentially achieved by establishing probabilistic (risk)-based limits on the assigned variable values, dependent upon the vessel inspection results and on the inspection system unreliability. Described herein is this probabilistic method and its potential application to: (i) defining a vessel-specific ''reference'' flaw for calculating pressure-temperature limit curves in the deterministic evaluation of pressurized water reactor (PWR) reactor vessels, and (ii) limiting the flaw distribution input to a PWR reactor vessel-specific, probabilistic integrity analysis for pressurized thermal shock loads

  8. Coulomb systems seen as critical systems: Finite-size effects in two dimensions

    International Nuclear Information System (INIS)

    Jancovici, B.; Manificat, G.; Pisani, C.

    1994-01-01

    It is known that the free energy at criticality of a finite two-dimensional system of characteristic size L has in general a term which behaves like log L as L → ∞; the coefficient of this term is universal. There are solvable models of two-dimensional classical Coulomb systems which exhibit the same finite-size correction (except for its sign) although the particle correlations are short-ranged, i.e., noncritical. Actually, the electrical potential and electrical field correlations are critical at all temperatures (as long as the Coulomb system is a conductor), as a consequence of the perfect screening property of Coulomb systems. This is why Coulomb systems have to exhibit critical finite-size effects

  9. Ultrasonic flaw detection in a monorail box beam

    Science.gov (United States)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2009-03-01

    A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid

  10. Optimal system size for complex dynamics in random neural networks near criticality

    Energy Technology Data Exchange (ETDEWEB)

    Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)

    2013-12-15

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  11. Optimal system size for complex dynamics in random neural networks near criticality

    International Nuclear Information System (INIS)

    Wainrib, Gilles; García del Molino, Luis Carlos

    2013-01-01

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices

  12. Critical mutation rate has an exponential dependence on population size in haploid and diploid populations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Aston

    Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the

  13. Ultrasonographic Detection of Tooth Flaws

    Science.gov (United States)

    Bertoncini, C. A.; Hinders, M. K.; Ghorayeb, S. R.

    2010-02-01

    The goal of our work is to adapt pulse-echo ultrasound into a high resolution imaging modality for early detection of oral diseases and for monitoring treatment outcome. In this talk we discuss our preliminary results in the detection of: demineralization of the enamel and dentin, demineralization or caries under and around existing restorations, caries on occlusal and interproximal surfaces, cracks of enamel and dentin, calculus, and periapical lesions. In vitro immersion tank experiments are compared to results from a handpiece which uses a compliant delay line to couple the ultrasound to the tooth surface. Because the waveform echoes are complex, and in order to make clinical interpretation of ultrasonic waveform data in real time, it is necessary to automatically interpret the signals. We apply the dynamic wavelet fingerprint algorithms to identify and delineate echographic features that correspond to the flaws of interest in teeth. The resulting features show a clear distinction between flawed and unflawed waveforms collected with an ultrasonic handpiece on both phantom and human cadaver teeth.

  14. Theory of critical phenomena in finite-size systems scaling and quantum effects

    CERN Document Server

    Brankov, Jordan G; Tonchev, Nicholai S

    2000-01-01

    The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals

  15. Critical dimension and pattern size enhancement using pre-strained lithography

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jian-Wei [Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Yang, Chung-Yuan [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Lo, Cheng-Yao, E-mail: chengyao@mx.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China); Institute of NanoEngineering and MicroSystems, National Tsing Hua University, 101, Section 2, Kuang Fu Road, Hsin Chu 30013, Taiwan (China)

    2014-10-13

    This paper proposes a non-wavelength-shortening-related critical dimension and pattern size reduction solution for the integrated circuit industry that entails generating strain on the substrate prior to lithography. Pattern size reduction of up to 49% was achieved regardless of shape, location, and size on the xy plane, and complete theoretical calculations and process steps are described in this paper. This technique can be applied to enhance pattern resolution by employing materials and process parameters already in use and, thus, to enhance the capability of outdated lithography facilities, enabling them to particularly support the manufacturing of flexible electronic devices with polymer substrates.

  16. Biomimetic coatings for bone tissue engineering of critical-sized defects

    NARCIS (Netherlands)

    Liu, Y.; Wu, G.; de Groot, K.

    2010-01-01

    The repair of critical-sized bone defects is still challenging in the fields of implantology, maxillofacial surgery and orthopaedics. Current therapies such as autografts and allografts are associated with various limitations. Cytokine-based bone tissue engineering has been attracting increasing

  17. An approach to determine a critical size for rolling contact fatigue initiating from rail surface defects

    NARCIS (Netherlands)

    Li, Z.; Zhao, X.; Dollevoet, R.P.B.J.

    2016-01-01

    A methodology for the determination of a critical size of surface defects, above which RCF can initiate, has been developed and demonstrated with its application to the passive type of squats under typical Dutch railway loading conditions. Such a methodology is based on stress evaluation of

  18. Challenging "Size Matters" Messages: An Exploration of the Experiences of Critical Obesity Scholars in Higher Education

    Science.gov (United States)

    Cameron, Erin

    2016-01-01

    Given that postsecondary institutions are increasingly seen as sites to promote health, critical scholars are calling attention to how the contemporary Western weight-centred health paradigm reinforces a "size matters" message that is fueling harmful attitudes towards and judgments of bodies. As such, research that highlights strategies…

  19. Unicortical critical size defect of rabbit tibia is larger than 8 mm

    DEFF Research Database (Denmark)

    Aaboe, M; Pinholt, E M; Hjørting-Hansen, E

    1994-01-01

    The critical-size defect is important as an experimental model to test bone repair materials. Guided tissue regeneration is an established method for tissue regeneration within periodontal surgery. Bony defects covered by a membrane are allowed to be filled by bony tissue. Healing of 8-mm...

  20. Flaw evolution monitoring by acoustic emission technique

    International Nuclear Information System (INIS)

    Ghia, S.; Sala, A.; Lucia, A.

    1986-01-01

    Flaw evolution monitoring during mechanical fatigue test has been performed by acoustic emission (AE) technique. Testing on 1:5 reduced scale vessel containing fabrication defects was carried out in the frame of an European program for pressure component residual life evaluation. Characteristics of AE signals associated to flaw evolution are discussed

  1. Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples

    International Nuclear Information System (INIS)

    Lisboa-Filho, P N; Deimling, C V; Ortiz, W A

    2010-01-01

    In this contribution superconducting specimens of YBa 2 Cu 3 O 7-δ were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.

  2. Magnetic response and critical current properties of mesoscopic-size YBCO superconducting samples

    Energy Technology Data Exchange (ETDEWEB)

    Lisboa-Filho, P N [UNESP - Universidade Estadual Paulista, Grupo de Materiais Avancados, Departamento de Fisica, Bauru (Brazil); Deimling, C V; Ortiz, W A, E-mail: plisboa@fc.unesp.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos (Brazil)

    2010-01-15

    In this contribution superconducting specimens of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.

  3. Critical PO2 is size-independent in insects: implications for the metabolic theory of ecology.

    Science.gov (United States)

    Harrison, Jon F; Klok, C J; Waters, James S

    2014-10-01

    Insects, and all animals, exhibit hypometric scaling of metabolic rate, with larger species having lower mass-specific metabolic rates. The metabolic theory of ecology (MTE) is based on models ascribing hypometric scaling of metabolic rate to constrained O 2 supply systems in larger animals. We compiled critical PO 2 of metabolic and growth rates for more than 40 insect species with a size range spanning four orders of magnitude. Critical PO 2 values vary from far below 21kPa for resting animals to near 21kPa for growing or flying animals and are size-independent, demonstrating that supply capacity matches oxygen demand. These data suggest that hypometric scaling of resting metabolic rate in insects is not driven by constraints on oxygen availability. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    Science.gov (United States)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  5. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  6. Critical size for the grow of phases under irradiation: an example

    International Nuclear Information System (INIS)

    Sarce, Alicia

    1999-01-01

    The critical sizes d * a,c in the a and c-crystal directions for the grow of bcc β-85 wt % Nb precipitates in the hcp α-Zr (1 wt % Nb) matrix are calculated. The atomic interactions in the hcp α-Zr are represented with a many-body potential EAM2 based on the embedded atom method. The anisotropy of the diffusion of vacancies and interstitials in the lattice is explicitly included in calculations. The results are obtained at 560 K and at a displacement rate of about 1.4x10 -7 dpa/s. It is predicted that all particles will be able to grow in the plane perpendicular to c-crystal direction. Also, the particles could grow in this direction if the size d c > d * c . Then, the precipitates will have only a slightly anisotropic shape, with the smaller size parallel to c. (author)

  7. Probabilistic analysis of flaw distribution on structure under cyclic load

    International Nuclear Information System (INIS)

    Kwak, Sang Log; Choi, Young Hwan; Kim, Hho Jung

    2003-01-01

    Flaw geometries, applied stress, and material properties are major input variables for the fracture mechanics analysis. Probabilistic approach can be applied for the consideration of uncertainties within these input variables. But probabilistic analysis requires many assumptions due to the lack of initial flaw distributions data. In this study correlations are examined between initial flaw distributions and in-service flaw distributions on structures under cyclic load. For the analysis, LEFM theories and Monte Carlo simulation are applied. Result shows that in-service flaw distributions are determined by initial flaw distributions rather than fatigue crack growth rate. So initial flaw distribution can be derived from in-service flaw distributions

  8. Labor security in radiation flaw detection

    International Nuclear Information System (INIS)

    Margulis, U.Ya.; Chistov, E.D.; Partolin, O.F.; Pertsov, V.A.; Momzhiev, B.N.; Sprygaev, I.F.

    1986-01-01

    Problems of ensuring safe labour conditions in radiation flaw detection are considered. Methods for ionizing radiation protection are given calculating techniques for shielding flaw detectors and stationary structures are presented as well. Safe methods of nondestructive testing of items under field conditions, in a shop and special laboratories using gamma- and X-ray flaw detectors, betatrons, electron accelerators are described. Attention is paid to the principles of radiation factor stantardization as well as radiation monitoring. Analysis of accidents and recommendations on their prevention and liquidation of accidental consequences are given

  9. On flaw tolerance of nacre: a theoretical study

    Science.gov (United States)

    Shao, Yue; Zhao, Hong-Ping; Feng, Xi-Qiao

    2014-01-01

    As a natural composite, nacre has an elegant staggered ‘brick-and-mortar’ microstructure consisting of mineral platelets glued by organic macromolecules, which endows the material with superior mechanical properties to achieve its biological functions. In this paper, a microstructure-based crack-bridging model is employed to investigate how the strength of nacre is affected by pre-existing structural defects. Our analysis demonstrates that owing to its special microstructure and the toughening effect of platelets, nacre has a superior flaw-tolerance feature. The maximal crack size that does not evidently reduce the tensile strength of nacre is up to tens of micrometres, about three orders higher than that of pure aragonite. Through dimensional analysis, a non-dimensional parameter is proposed to quantify the flaw-tolerance ability of nacreous materials in a wide range of structural parameters. This study provides us some inspirations for optimal design of advanced biomimetic composites. PMID:24402917

  10. Microstructure, flaw tolerance, and reliability of Ce-TZP and Y-TZP ceramics

    International Nuclear Information System (INIS)

    Readey, M.J.; McCallen, C.L.

    1995-01-01

    Ce-TZP and Y-TZP ceramics were heat-treated for various times and temperatures in order to vary the microstructure. Flaw tolerance was investigated using the indentation-strength test. Reliability was quantified using conventional two-parameter Weibull statistics. Some Ce-TZP specimens were indented at slightly elevated temperatures where no transformation was observed. Results indicated that the Ce-TZP specimens were extremely flaw tolerant, and showed a relatively high Weibull modulus that scaled with both R-curve behavior and flaw tolerance. Y-TZP, on the other hand, with very little if any R-curve behavior or flaw tolerance, had a low Weibull modulus. The results also show that flaw history, i.e., whether or not a transformation zone exists along the wake of the crack, has a significant influence on strength. Strength was much less dependent on initial crack size when the crack had an associated transformation zone, whereas strength was highly dependent on cracks typical of natural processing defects. It is argued that the improvement in reliability, flaw tolerance, and dependence on flaw history are all ramifications of pronounced R-curve behavior

  11. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  12. Variable flaw shape analysis for a reactor vessel under pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Yang, C.Y.; Bamford, W.H.

    1984-01-01

    A study has been conducted to characterize the response of semi-elliptic surface flaws to thermal shock conditions which can result from safety injection actuation in nuclear reactor vessels. A methodology was developed to predict the behavior of a flaw during sample pressurized thermal shock events. The effects of a number of key variables on the flaw propagation were studied, including fracture toughness of the material and its gradient through the thickness, irradiation effects, effects of warm prestressing, and effects of the stainless steel cladding. The results of these studies show that under thermal shock loading conditions the flaw always tends to elongate along the vessel inside surface from the initial aspect ratio. However, the flaw shape always remains finite rather than becoming continuously long, as has often been assumed in earlier analyses. The final shape and size of the flaws were found to be rather strongly dependent on the effects of warm prestressing and the distribution of neutron flux. The improved methodology results in a more accurate and more realistic treatment of flaw shape changes during thermal shock events and provides the potential for quantifying additional margins for reactor vessel integrity analyses

  13. Fundamentally Flawed: Extension Administrative Practice (Part 1).

    Science.gov (United States)

    Patterson, Thomas F., Jr.

    1997-01-01

    Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)

  14. Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment

    International Nuclear Information System (INIS)

    Lee, Jeong Ki; Park, Moon Ho; Park, Ki Sung; Lee, Jae Ho; Lim, Sung Jin

    2004-01-01

    Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants

  15. Rapid and reliable healing of critical size bone defects with genetically modified sheep muscle.

    Science.gov (United States)

    Liu, F; Ferreira, E; Porter, R M; Glatt, V; Schinhan, M; Shen, Z; Randolph, M A; Kirker-Head, C A; Wehling, C; Vrahas, M S; Evans, C H; Wells, J W

    2015-09-21

    Large segmental defects in bone fail to heal and remain a clinical problem. Muscle is highly osteogenic, and preliminary data suggest that autologous muscle tissue expressing bone morphogenetic protein-2 (BMP-2) efficiently heals critical size defects in rats. Translation into possible human clinical trials requires, inter alia, demonstration of efficacy in a large animal, such as the sheep. Scale-up is fraught with numerous biological, anatomical, mechanical and structural variables, which cannot be addressed systematically because of cost and other practical issues. For this reason, we developed a translational model enabling us to isolate the biological question of whether sheep muscle, transduced with adenovirus expressing BMP-2, could heal critical size defects in vivo. Initial experiments in athymic rats noted strong healing in only about one-third of animals because of unexpected immune responses to sheep antigens. For this reason, subsequent experiments were performed with Fischer rats under transient immunosuppression. Such experiments confirmed remarkably rapid and reliable healing of the defects in all rats, with bridging by 2 weeks and remodelling as early as 3-4 weeks, despite BMP-2 production only in nanogram quantities and persisting for only 1-3 weeks. By 8 weeks the healed defects contained well-organised new bone with advanced neo-cortication and abundant marrow. Bone mineral content and mechanical strength were close to normal values. These data demonstrate the utility of this model when adapting this technology for bone healing in sheep, as a prelude to human clinical trials.

  16. The critical particle size for enhancing thermal conductivity in metal nanoparticle-polymer composites

    Science.gov (United States)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2018-02-01

    Polymers used as thermal interface materials are often filled with high-thermal conductivity particles to enhance the thermal performance. Here, we have combined molecular dynamics and the two-temperature model in 1D to investigate the impact of the metal filler size on the overall thermal conductivity. A critical particle size has been identified above which thermal conductivity enhancement can be achieved, caused by the interplay between high particle thermal conductivity and the added electron-phonon and phonon-phonon thermal boundary resistance brought by the particle fillers. Calculations on the SAM/Au/SAM (self-assembly-monolayer) system show a critical thickness Lc of around 10.8 nm. Based on the results, we define an effective thermal conductivity and propose a new thermal circuit analysis approach for the sandwiched metal layer that can intuitively explain simulation and experimental data. The results show that when the metal layer thickness decreases to be much smaller than the electron-phonon cooling length (or as the "thin limit"), the effective thermal conductivity is just the phonon portion, and electrons do not participate in thermal transport. As the thickness increases to the "thick limit," the effective thermal conductivity recovers the metal bulk value. Several factors that could affect Lc are discussed, and it is discovered that the thermal conductivity, thermal boundary resistance, and the electron-phonon coupling factor are all important in controlling Lc.

  17. SPONTANEOUS INITIATION OF DETONATIONS IN WHITE DWARF ENVIRONMENTS: DETERMINATION OF CRITICAL SIZES

    International Nuclear Information System (INIS)

    Seitenzahl, Ivo R.; Meakin, Casey A.; Townsley, Dean M.; Truran, James W.; Lamb, Don Q.

    2009-01-01

    Some explosion models for Type Ia supernovae (SNe Ia), such as the gravitationally confined detonation (GCD) or the double detonation sub-Chandrasekhar (DDSC) models, rely on the spontaneous initiation of a detonation in the degenerate 12 C/ 16 O material of a white dwarf (WD). The length scales pertinent to the initiation of the detonation are notoriously unresolved in multidimensional stellar simulations, prompting the use of results of one-dimensional simulations at higher resolution, such as those performed for this work, as guidelines for deciding whether or not conditions reached in the higher dimensional full star simulations successfully would lead to the onset of a detonation. Spontaneous initiation relies on the existence of a suitable gradient in self-ignition (induction) times of the fuel, which we set up with a spatially localized nonuniformity of temperature-a hot spot. We determine the critical (smallest) sizes of such hot spots that still marginally result in a detonation in WD matter by integrating the reactive Euler equations with the hydrodynamics code FLASH. We quantify the dependences of the critical sizes of such hot spots on composition, background temperature, peak temperature, geometry, and functional form of the temperature disturbance, many of which were hitherto largely unexplored in the literature. We discuss the implications of our results in the context of modeling of SNe Ia.

  18. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    Science.gov (United States)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  19. A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws.

    Science.gov (United States)

    Guan, Xuefei; He, Jingjing; Rasselkorde, El Mahjoub

    2015-02-01

    A direct time-domain reconstruction and sizing method of synthetic aperture focusing technique (SAFT) is developed to improve the spatial resolution and sizing accuracy for phased-array ultrasonic inspections. The basic idea of the reconstruction algorithm is to coherently superimpose multiple A-scan measurements, incorporating the phase information of the sampling points. The algorithm involves data mapping and in-phase summation according to time-of-flight (TOF). Data mapping refers to the process of placing each of the sampling points to a two-/three-dimensional grid that represents the geometry model of the object being inspected. The value for each of the cells of the grid is a summation of all sampling points mapped into the cell. A sizing method based on the concept of 6 dB-drop is proposed to characterize the flaw boundary. The extents, orientation and the shape of the flaw can then be inferred to provide more information for life assessment calculations. Lab experiments are performed using a 10 MHz phased-array ultrasonic transducer to collect data from a cylinder material block with closely spaced artificial flaws and from a material block with a natural flaw. The developed method is used to process the experimental data to characterize the flaws. Using the developed method, the improvement of spatial resolution is observed. Results indicate that four closely spaced 0.794 mm-diameter flat-bottomed holes are clearly identified, and the quantification of size and orientation of the natural flaw is very close to the actual measurement made from digital microscopy after cutting the testing piece apart. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Midland reactor pressure vessel flaw distribution

    International Nuclear Information System (INIS)

    Foulds, J.R.; Kennedy, E.L.; Rosinski, S.T.

    1993-12-01

    The results of laboratory nondestructive examination (NDE), and destructive cross-sectioning of selected weldment sections of the Midland reactor pressure vessel were analyzed per a previously developed methodology in order to develop a flaw distribution. The flaw distributions developed from the NDE results obtained by two different ultrasonic test (UT) inspections (Electric Power Research Institute NDE Center and Pacific Northwest Laboratories) were not statistically significantly different. However, the distribution developed from the NDE Center's (destructive) cross-sectioning-based data was found to be significantly different than those obtained through the UT inspections. A fracture mechanics-based comparison of the flaw distributions showed that the cross-sectioning-based data, conservatively interpreted (all defects considered as flaws), gave a significantly lower vessel failure probability when compared with the failure probability values obtained using the UT-based distributions. Given that the cross-sectioning data were reportedly biased toward larger, more significant-appearing (by UT) indications, it is concluded that the nondestructive examinations produced definitively conservative results. In addition to the Midland vessel inspection-related analyses, a set of twenty-seven numerical simulations, designed to provide a preliminary quantitative assessment of the accuracy of the flaw distribution method used here, were conducted. The calculations showed that, in more than half the cases, the analysis produced reasonably accurate predictions

  1. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  2. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  3. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species

    DEFF Research Database (Denmark)

    Horne, C.R.; Hirst, Andrew G.; Atkinson, D.

    2015-01-01

    of these gradients to date, and find that their direction and magnitude co-vary among 12 arthropod orders (r2 = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support...... the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T-S and L-S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial......Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) responses and latitude-size (L-S) clines. Yet, the degree to which these co-vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison...

  4. Critical defect size assessment in pipelines on a nuclear power plant

    Directory of Open Access Journals (Sweden)

    Dimova Galya

    2018-01-01

    Full Text Available In many energy industry structures, pipeline systems are subject to the impact of mechanical forces, moments of forces and fluid flows of high pressure and temperature. These load factors cause defects in the pipeline metal. As the years of operation increase, defects may occur and grow, which may lead to the destruction of pipeline walls. Special measures have been planned and implemented to ensure the safe operation of high-energy facilities. This study focused on pipelines and nozzles of nuclear power plant equipment with bimetal welded joints on which the size of critical defects was assessed. The base of assessment covers material properties, temperature and stress fields, fracture mechanics calculations. This study involves developing of finite element models and implementing simulations on them in order to obtain temperature fields and determine the stress-strain state of the component.

  5. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    Science.gov (United States)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  6. Real time automatic discriminating of ultrasonic flaws

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Marzuki Mustafa; Mohd Redzwan Rosli

    2009-01-01

    This paper is concerned with the real time automatic discriminating of flaws from two categories; i. cracks (planar defect) and ii. Non-cracks (volumetric defect such as cluster porosity and slag) using pulse-echo ultrasound. The raw ultrasonic flaws signal were collected from a computerized robotic plane scanning system over the whole of each reflector as the primary source of data. The signal is then filtered and the analysis in both time and frequency domain were executed to obtain the selected feature. The real time feature analysis techniques measured the number of peaks, maximum index, pulse duration, rise time and fall time. The obtained features could be used to distinguish between quantitatively classified flaws by using various tools in artificial intelligence such as neural networks. The proposed algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0 (author)

  7. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    International Nuclear Information System (INIS)

    Zahoor, A.; Ghassemi, B.B.

    1991-01-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.)

  8. Tearing stability analysis of an axial surface flaw in thick-walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Ghassemi, B.B. (NOVETECH Corp., Rockville, MD (USA))

    1991-04-01

    This paper presents two fracture mechanics models for evaluation of an axial surface flaw in pressure vessels. The surface flaw is located on the outside surface of the vessel. The first model assumes yielding of the remaining ligament directly ahead of the flaw. The second model assumes contained yielding ahead of the flaw and uses a linear elastic fracture mechanics solution. The former model is suitable for cases where the combination of material toughness, flaw size, and load is such that initiation of flaw growth follows ligament yielding. The latter model is suitable for low-toughness materials where initiation of crack growth and potential tearing instability may occur prior to the yielding of the ligament. Both models are suitable for thick-walled vessels. The paper discusses the applicability regime for both models. The models are then applied to a test vessel and the predicted failure pressure is compared against the pressure attained in the test. Results show that both models can be applied successfully. In particular, the contained yielding model when used with the plane-stress assumption can give reasonable predictions even for cases that involve yielding of the ligament. (orig.).

  9. Evaluation of flaws in ferritic piping: ASME Code Appendix J, Deformation Plasticity Failure Assessment Diagram (DPFAD)

    International Nuclear Information System (INIS)

    Bloom, J.M.

    1991-08-01

    This report summarizes the methods and bases used by an ASME Code procedure for the evaluation of flaws in ferritic piping. The procedure is currently under consideration by the ASME Boiler and Pressure Vessel Code Committee of Section 11. The procedure was initially proposed in 1985 for the evaluation of the acceptability of flaws detected in piping during in-service inspection for certain materials, identified in Article IWB-3640 of the ASME Boiler and Pressure Vessel Code Section 11 ''Rules for In-service Inspection of Nuclear Power Plant Components.'' for which the fracture toughness is not sufficiently high to justify acceptance based solely on the plastic limit load evaluation methodology of Appendix C and IWB-3641. The procedure, referred to as Appendix J, originally included two approaches: a J-integral based tearing instability (J-T) analysis and the deformation plasticity failure assessment diagram (DPFAD) methodology. In Appendix J, a general DPFAD approach was simplified for application to part-through wall flows in ferritic piping through the use of a single DPFAD curve for circumferential flaws. Axial flaws are handled using two DPFAD curves where the ratio of flaw depth to wall thickness is used to determine the appropriate DPFAD curve. Flaws are evaluated in Appendix J by comparing the actual pipe applied stress with the allowable stress with the appropriate safety factors for the flaw size at the end of the evaluation period. Assessment points for circumferential and axial flaws are plotted on the appropriate failure assessment diagram. In addition, this report summarizes the experimental test predictions of the results of the Battelle Columbus Laboratory experiments, the Eiber experiments, and the JAERI tests using the Appendix J DPFAD methodology. Lastly, this report also provides guidelines for handling residual stresses in the evaluation procedure. 22 refs., 13 figs., 5 tabs

  10. One-dimensional critical heat flux concerning surface orientation and gap size effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Hoon; Suh, Kune Y. E-mail: kysuh@snu.ac.kr

    2003-12-01

    Tests were conducted to examine the critical heat flux (CHF) on a one-dimensional downward heating rectangular channel having a narrow gap by changing the orientation of the copper test heater assembly in a pool of saturated water under atmospheric pressure. The test parameters include both the gap sizes of 1, 2, 5 and 10 mm, and the surface orientation angles from the downward-facing position (180 deg.) to the vertical position (90 deg.), respectively. Also, the CHF experiments were performed for pool boiling with varying heater surface orientations in the unconfined space at atmospheric pressure using the rectangular test section. It was observed that the CHF generally decreases as the surface inclination angle increases and as the gap size decreases. In consistency with several studies reported in the literature, it was found that there exists a transition angle at which the CHF changes with a rapid slope. An engineering correlation is developed for the CHF during natural convective boiling in the inclined, confined rectangular channels with the aid of dimensional analysis. This correlation agrees with the experimental data of this study within {+-}20%.

  11. Possible roles for corticosterone and critical size in the fledging of nestling pied flycatchers.

    Science.gov (United States)

    Kern, M; Bacon, W; Long, D; Cowie, R J

    2001-01-01

    Our study was designed to see whether corticosterone (B) rises abruptly in the blood of nestling pied flycatchers (Ficedula hypoleuca) at the time they fledge, as reported recently for kestrels, and if so, why. We measured the growth and blood levels of B and selected nutrients of nestlings in broods of five, seven, and nine chicks during 1998 and 1999. In half of the broods, we clipped selected wing and tail feathers of both parents with the intention of making it more difficult for them to provide their chicks with food. We collected blood samples when the chicks were six to 10 d old (period of rapid growth) and 15 d of age or older (0-5 d before fledging). B increased substantially several days before the chicks left the nest and then declined somewhat. We found no differences in rates of growth or blood levels of B, nutrients, and hematocrit as a function of either brood size or parental handicapping. Nestlings within a day of fledging appear to have been food deprived in 1998; their glucose was significantly reduced, and B, free fatty acids, and glycerol were significantly elevated compared to levels in chicks 1-4 d younger. Such changes did not occur in 1999. Blood levels of B were significantly correlated with brood size near the day of fledging, but not earlier, in both years of the study. It was possible to predict the day on which chicks would leave the nest, using their wing length when 12 d old. These results suggest that high blood levels of B associated with food restriction and sibling competition induce chicks to fledge, provided they have reached a critical size, and that the importance of fasting, sibling competition, and B may vary from year to year.

  12. Crack propagation from a filled flaw in rocks considering the infill influences

    Science.gov (United States)

    Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.

    2018-05-01

    This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.

  13. Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S

    2018-03-21

    Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.

  14. China’s Flawed Banking Market Structure Must be Rectified

    Institute of Scientific and Technical Information of China (English)

    于永臻

    2007-01-01

    There is great disparity between China’s banking management efficiency and the top international standard,with relatively low efficiency in credit monetary allocation.In this paper,Yu Yongzhen sets out the hypothesis that"medium-sized banks promote competition".He believes that an important reason for the low efficiency of Chinese banking is the seriously flawed banking market structure.Namely,credit market shares are highly concentrated in the hands of the four major state-owned banks,with very few shares held by medium-sized banks or the badly undeveloped small banks.Full development of medium-sized banks plays a key role in the promotion of competition and efficiency in banking.

  15. Critical Evolution of Damage Toward System-Size Failure in Crystalline Rock

    Science.gov (United States)

    Renard, François; Weiss, Jérôme; Mathiesen, Joachim; Ben-Zion, Yehuda; Kandula, Neelima; Cordonnier, Benoît

    2018-02-01

    Rock failure under shear loading conditions controls earthquake and faulting phenomena. We study the dynamics of microscale damage precursory to shear faulting in a quartz-monzonite rock representative of crystalline rocks of the continental crust. Using a triaxial rig that is transparent to X-rays, we image the mechanical evolution of centimeter-size core samples by in situ synchrotron microtomography with a resolution of 6.5 μm. Time-lapse three-dimensional images of the samples inside the rig provide a unique data set of microstructural evolution toward faulting. Above a yield point there is a gradual weakening during which microfractures nucleate and grow until this damage span the whole sample. This leads to shear faults oriented about 30° to the main compressive stress in agreement with Anderson's theory and macroscopic failure. The microfractures can be extracted from the three-dimensional images, and their dynamics and morphology (i.e., number, volume, orientation, shape, and largest cluster) are quantified as a function of increasing stress toward failure. The experimental data show for the first time that the total volume of microfractures, the rate of damage growth, and the size of the largest microfracture all increase and diverge when approaching faulting. The average flatness of the microfractures (i.e., the ratio between the second and third eigenvalues of their covariance matrix) shows a significant decrease near failure. The precursors to faulting developing in the future faulting zone are controlled by the evolving microfracture population. Their divergent dynamics toward failure is reminiscent of a dynamical critical transition.

  16. Critical sizes of light-water moderated UO2 and PuO2-UO2 lattices

    International Nuclear Information System (INIS)

    Tsuruta, Harumichi; Kobayashi, Iwao; Suzuki, Takenori; Ohno, Akio; Murakami, Kiyonobu

    1978-02-01

    Experimental critical sizes are presented for a total of about 250 lattices with 2.6 w/o UO 2 and 3.0 w/o PuO 2 -natural UO 2 fuel rods. The moderator was H 2 O and water-to-fuel volume ratios in the lattice cells ranged from 1.50 to 3.00 in the UO 2 lattices and from 2.42 to 5.55 in the PuO 2 -UO 2 lattices. The critical sizes were determined with the number of the fuel rods and a water level which were required to make the lattice critical in the shape of a rectangular parallelepiped over the temperature range from room temperature to 80 0 C. Reactivity variations of the PuO 2 -UO 2 lattices due to decaying of 241 Pu to 241 Am were traced during 3 years. Some critical sizes of the UO 2 and PuO 2 -UO 2 lattices with a water gap and of the UO 2 lattices with liquid poison in the moderator are also reported. Some physics parameters, such as the temperature coefficient of reactivity, the water-level worth, the reflector saving, the ratio between a migration area and an infinite multiplication factor and the critical buckling, are shown in relation to the critical sizes of the unperturbed lattices without the water gap and liquid poison. (auth.)

  17. Particle contamination effects in EUVL: enhanced theory for the analytical determination of critical particle sizes

    Science.gov (United States)

    Brandstetter, Gerd; Govindjee, Sanjay

    2012-03-01

    Existing analytical and numerical methodologies are discussed and then extended in order to calculate critical contamination-particle sizes, which will result in deleterious effects during EUVL E-chucking in the face of an error budget on the image-placement-error (IPE). The enhanced analytical models include a gap dependant clamping pressure formulation, the consideration of a general material law for realistic particle crushing and the influence of frictional contact. We present a discussion of the defects of the classical de-coupled modeling approach where particle crushing and mask/chuck indentation are separated from the global computation of mask bending. To repair this defect we present a new analytic approach based on an exact Hankel transform method which allows a fully coupled solution. This will capture the contribution of the mask indentation to the image-placement-error (estimated IPE increase of 20%). A fully coupled finite element model is used to validate the analytical models and to further investigate the impact of a mask back-side CrN-layer. The models are applied to existing experimental data with good agreement. For a standard material combination, a given IPE tolerance of 1 nm and a 15 kPa closing pressure, we derive bounds for single particles of cylindrical shape (radius × height < 44 μm) and spherical shape (diameter < 12 μm).

  18. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyright © 2012 Orthopaedic Research Society.

  19. Microarray gene expression during early healing of GBR-treated calvarial critical size defects.

    Science.gov (United States)

    Al-Kattan, R; Retzepi, M; Calciolari, E; Donos, N

    2017-10-01

    To investigate the gene expression and molecular pathways implicated in the regulation of the osseous healing process following guided bone regeneration (GBR). Six 6-month-old Wistar male rats were used. Standardized 5-mm critical size defects were created in the parietal bones of each animal and treated with an extracranial and intracranial ePTFE membrane, according to the GBR principle. Three animals were randomly sacrificed after 7 and 15 days of healing. Total RNA was extracted from each sample and prepared for gene expression analysis. RNA quality and quantity were assessed, followed by hybridization of the cRNA to Affymetrix GeneChip Rat Genome 230 2.0 Arrays. The Affymetrix data were processed, and first-order analysis, quality control and statistical analysis were performed. Biological interpretation was performed via pathway and Gene Ontology (GO) analysis. Between the 7- and 15-day samples, 538 genes were differently regulated. At day 7, inflammatory and immune responses were clearly upregulated. In addition, GO terms related to angiogenesis and cell cycle regulation were overexpressed. At day 15, a more complex cellular activity and cell metabolism were evident. The bone formation processes were significantly overexpressed, with several genes encoding growth factors, enzyme activity, and extracellular matrix formation found as upregulated. Remarkably, a negative regulation of Wnt signalling pathway was observed at 15 days. The gene expression profile of the cells participating in osseous formation varied depending on the healing stage. A number of candidate genes that seem differentially expressed during early stages of intramembranous bone regeneration was suggested. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Rail flaw sizing using conventional and phased array ultrasonic testing.

    Science.gov (United States)

    2012-12-01

    An approach to detecting and characterizing internal defects in rail through the use of phased array ultrasonic testing has shown the potential to reduce the risk of missed defects and improve transverse defect characterization. : Transportation Tech...

  1. Stress intensities in flawed pressure vessels

    International Nuclear Information System (INIS)

    Smith, C.W.; Jolles, M.; Peters, W.H.

    1977-01-01

    A technique for determining the stess intensity factor (SIF) near pressure vessel flaws or cracks experimentally from photoelastic data for use in two-dimensional problems was developed in the 1950's. This technique was modified and extended to a variety of two-dimensional problems. The technique has been refined further and what has evolved may be regarded as a hybrid technique which affects a marriage between ''frozen stress'' photoelastic results and a simple least-squares digital computer program for estimating SIF values in three-dimensional problems. This technique, in its original modified form, has been shown to be applicable to a study of surface flaws and the applicability of the method to complex crack body geometries of current technological importance are discussed. The analytical foundations of the method are reviewed

  2. A new digital correlation flaw detection system

    International Nuclear Information System (INIS)

    Lee, B.B.; Furgason, E.S.

    1981-01-01

    A new portable digital random signal flaw detection system is described which uses a digital delay line to replace the acoustic delay line of the original random signal system. Using this new system, a comparison was made between the two types of transmit signals which have been used in previous systems--m-sequences and random signals. This comparison has not been possible with these previous correlation flaw detection systems. Results indicated that for high-speed short code operation, the m-sequences produced slightly lower range sidelobes than typical samples of a clipped random signal. For normal long code operation, results indicated that system performance is essentially equivalent in resolution and signal-to-noise ratio using either m-sequences or clipped and sampled random signals. Further results also showed that for normal long code operation, the system produces outputs equivalent in resolution to pulse-echo systems, but with the added benefit of signal-to-noise ratio enhancement

  3. Size Fluctuations of Near Critical Nuclei and Gibbs Free Energy for Nucleation of BDA on Cu(001)

    Science.gov (United States)

    Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene

    2012-07-01

    We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei, determination of the supersaturation and the line tension of the crystallites, and, thus, derivation of the Gibbs free energy for nucleation. The resulting critical nucleus size nicely agrees with the measured value. Nuclei up to 4-6 times larger still decay with finite probability, urging reconsideration of the classic perception of a critical nucleus.

  4. Detection of flaws below curved surfaces

    International Nuclear Information System (INIS)

    Elsley, R.K.; Addison, R.C.; Graham, L.J.

    1983-01-01

    A measurement model has been developed to describe ultrasonic measurements made with circular piston transducers in parts with flat or cylindrically curved surfaces. The model includes noise terms to describe electrical noise, scatterer noise and echo noise as well as effects of attenuation, diffraction and Fresnel loss. An experimental procedure for calibrating the noise terms of the model was developed. Experimental measurements were made on a set of known flaws located beneath a cylindrically curved surface. The model was verified by using it to correct the experimental measurements to obtain the absolute scattering amplitude of the flaws. For longitudinal wave propagation within the part, the derived scattering amplitudes were consistent with predictions at internal angles of less than 30 0 . At larger angles, focusing and aberrations caused a lack of agreement; the model needs further refinement in this case. For shear waves, it was found that the frequency for optimum flaw detection in the presence of material noise is lower than that for longitudinal waves; lower frequency measurements are currently in progress. The measurement model was then used to make preliminary predictions of the best experimental measurement technique for the detection of cracks located under cylindrically curved surfaces

  5. Common methodological flaws in economic evaluations.

    Science.gov (United States)

    Drummond, Michael; Sculpher, Mark

    2005-07-01

    Economic evaluations are increasingly being used by those bodies such as government agencies and managed care groups that make decisions about the reimbursement of health technologies. However, several reviews of economic evaluations point to numerous deficiencies in the methodology of studies or the failure to follow published methodological guidelines. This article, written for healthcare decision-makers and other users of economic evaluations, outlines the common methodological flaws in studies, focussing on those issues that are likely to be most important when deciding on the reimbursement, or guidance for use, of health technologies. The main flaws discussed are: (i) omission of important costs or benefits; (ii) inappropriate selection of alternatives for comparison; (iii) problems in making indirect comparisons; (iv) inadequate representation of the effectiveness data; (v) inappropriate extrapolation beyond the period observed in clinical studies; (vi) excessive use of assumptions rather than data; (vii) inadequate characterization of uncertainty; (viii) problems in aggregation of results; (ix) reporting of average cost-effectiveness ratios; (x) lack of consideration of generalizability issues; and (xi) selective reporting of findings. In each case examples are given from the literature and guidance is offered on how to detect flaws in economic evaluations.

  6. Development and application of an LWR reactor pressure vessel-specific flaw distribution

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kennedy, E.L.; Foulds, J.R.

    1991-01-01

    Previous efforts by the US Department of Energy have shown that the PWR reactor vessel integrity predictions performed through probabilistic fracture mechanics analysis for a pressurized thermal shock event are significantly sensitive to the overall flaw distribution input. It has also been shown that modern vessel in-service inspection (ISI) results can be used for development of vessel flaw distribution(s) that are more representative of US vessels. This paper describes the development and application of a methodology to analyze ISI data for the purpose of flaw distribution determination. The resultant methodology considers detection reliability, flaw sizing accuracy, and flaw detection threshold in its application. Application of the methodology was then demonstrated using four recently acquired US PWR vessel inspection data sets. The methodology helped provide original insight into several key inspection performance and vessel integrity prediction practice issues that will impact future vessel integrity evaluation. This paper briefly discusses the development and application of the methodology and the impact to future vessel integrity analyses

  7. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    Science.gov (United States)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  8. Slip-Size Distribution and Self-Organized Criticality in Block-Spring Models with Quenched Randomness

    Science.gov (United States)

    Sakaguchi, Hidetsugu; Kadowaki, Shuntaro

    2017-07-01

    We study slowly pulling block-spring models in random media. Second-order phase transitions exist in a model pulled by a constant force in the case of velocity-strengthening friction. If external forces are slowly increased, nearly critical states are self-organized. Slips of various sizes occur, and the probability distributions of slip size roughly obey power laws. The exponent is close to that in the quenched Edwards-Wilkinson model. Furthermore, the slip-size distributions are investigated in cases of Coulomb friction, velocity-weakening friction, and two-dimensional block-spring models.

  9. Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep.

    Science.gov (United States)

    Li, Deqiang; Li, Ming; Liu, Peilai; Zhang, Yuankai; Lu, Jianxi; Li, Jianmin

    2014-11-01

    Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.

  10. Meal size is a critical driver of weight gain in early childhood

    OpenAIRE

    Syrad, Hayley; Llewellyn, Clare H.; Johnson, Laura; Boniface, David; Jebb, Susan A.; van Jaarsveld, Cornelia H. M.; Wardle, Jane

    2016-01-01

    Larger serving sizes and more frequent eating episodes have been implicated in the rising prevalence of obesity at a population level. This study examines the relative contributions of meal size and frequency to weight gain in a large sample of British children. Using 3-day diet diaries from 1939 children aged 21 months from the Gemini twin cohort, we assessed prospective associations between meal size, meal frequency and weight gain from two to five years. Separate longitudinal analyses demo...

  11. Meal size is a critical driver of weight gain in early childhood

    NARCIS (Netherlands)

    Syrad, H.; Llewellyn, C.H.; Johnson, L.; Boniface, D.; Jebb, S.A.; Jaarsveld, C.H.M. van; Wardle, J.

    2016-01-01

    Larger serving sizes and more frequent eating episodes have been implicated in the rising prevalence of obesity at a population level. This study examines the relative contributions of meal size and frequency to weight gain in a large sample of British children. Using 3-day diet diaries from 1939

  12. A critical evaluation of the insect body size model and causes of metamorphosis in solitary bees

    Science.gov (United States)

    The insect body size model posits that adult size is determined by growth rate and the duration of growth during the larval stage of development. Within the model, growth rate is regulated by many mechanistic elements that are influenced by both internal and external factors. However, the duration o...

  13. A dynamic fatigue study of soda-lime silicate and borosilicate glasses using small scale indentation flaws

    International Nuclear Information System (INIS)

    Dabbs, T.P.; Lawn, B.R.; Kelly, P.L.

    1982-01-01

    The dynamic fatigue characteristics of two glasses, soda-lime silicate and borosilicate, in water have been studied using a controlled indentation flaw technique. It is argued that the indentation approach offers several advantages over more conventional fatigue testing procedures: (i) the reproducibility of data is relatively high, eliminating statistics as a basis of analysis: (ii) the flaw ultimately responsible for failure is well defined and may be conveniently characterised before and after (and during, if necessary) the strength test; (iii) via adjustment of the indentation load, the size of the flaw can be suitably predetermined. Particular attention is devoted to the third point because of the facility it provides for systematic investigation of the range of flaw sizes over which macroscopic crack behaviour remains applicable. The first part of the paper summarises the essential fracture mechanics theory of the extension of an indentation flaw to failure. In the next part of the paper the results of dynamic fatigue tests on glass rods in distilled water are described. Data are obtained for Vickers indentation loads in the range 0.05 to 100 N, corresponding to contact dimensions of 2 to 100 μm. Finally, the implications of the results in relation to the response of 'natural' flaws are discussed. (author)

  14. Critical size of defaults inducing fast fracture of deposit stellite on a valve gate

    International Nuclear Information System (INIS)

    Boneh, B.; Gilles, P.; Champomier, F.; Abisror, A.

    1986-10-01

    The present study has been made to determine if, in the case of a valve gate, transversal cracks are the result of fatigue propagation or the result of fast fracture. The author shows that only a transversal crack, with a size up to 0.7 mm, induces a fast fracture and shows also that, at equal size, a crack located under the stellite is not also injurious than a transversal crack [fr

  15. Nondestructive detection of surface flaws in materials by infrared thermography

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ooka, Norikazu; Eto, Motokuni; Hoshiya, Taiji; Okamoto, Yoshizo

    1999-01-01

    Infrared thermography is one of the useful remote sensing techniques applied to the nondestructive detection of surface flaws in materials. Radiation temperatures of the specimen surface and surrounding walls as well as the difference in them are crucial factors to detect surface flaws from thermal images, and it is essential that these factors be properly evaluated beforehand in order to detect the flaws by infrared thermography. In this study, the radiation temperature of nuclear graphite specimens heated uniformly was measured by infrared thermography to evaluate the radiation characteristics such as emissivity, radiosity coefficient and variation of radiation temperature. The influence of the temperature difference between the test specimen and its surroundings on the limit of detection of pinhole flaws was discussed on the basis of the thermal images of graphite specimen with surface flaws. It was found that the thermal image of a small flaw was clearly visible with increase in the temperature difference. (author)

  16. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  17. Preclinical animal anxiety research - flaws and prejudices.

    Science.gov (United States)

    Ennaceur, Abdelkader; Chazot, Paul L

    2016-04-01

    The current tests of anxiety in mice and rats used in preclinical research include the elevated plus-maze (EPM) or zero-maze (EZM), the light/dark box (LDB), and the open-field (OF). They are currently very popular, and despite their poor achievements, they continue to exert considerable constraints on the development of novel approaches. Hence, a novel anxiety test needs to be compared with these traditional tests, and assessed against various factors that were identified as a source of their inconsistent and contradictory results. These constraints are very costly, and they are in most cases useless as they originate from flawed methodologies. In the present report, we argue that the EPM or EZM, LDB, and OF do not provide unequivocal measures of anxiety; that there is no evidence of motivation conflict involved in these tests. They can be considered at best, tests of natural preference for unlit and/or enclosed spaces. We also argued that pharmacological validation of a behavioral test is an inappropriate approach; it stems from the confusion of animal models of human behavior with animal models of pathophysiology. A behavioral test is developed to detect not to produce symptoms, and a drug is used to validate an identified physiological target. In order to overcome the major methodological flaws in animal anxiety studies, we proposed an open space anxiety test, a 3D maze, which is described here with highlights of its various advantages over to the traditional tests.

  18. Size fluctuations of near critical and Gibbs free energy for nucleation of BDA on Cu(001)

    NARCIS (Netherlands)

    Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Henricus J.W.; Poelsema, Bene

    2012-01-01

    We present a low-energy electron microscopy study of nucleation and growth of BDA on Cu(001) at low supersaturation. At sufficiently high coverage, a dilute BDA phase coexists with c(8×8) crystallites. The real-time microscopic information allows a direct visualization of near-critical nuclei,

  19. Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d > 2?

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2006-01-01

    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point splits into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards, Thouless, 1972; Last, Thouless, 1974; Schreiber, 1985). The possibility of restoring the conventional picture still exists but requires a radical reinterpretation of the raw numerical data

  20. Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement

    International Nuclear Information System (INIS)

    Wang Zhihong; Miao Jianmin

    2008-01-01

    Spatial distributions of piezoelectric displacement response across the top electrode have been used in this paper to measure the piezoelectric coefficient d 33 of films based on the converse piezoelectric effect. The technical details and features of a scanning laser Doppler vibrometer have been summarized and discussed for accurately obtaining the spatial displacement distributions. Three definitions, including the apparent, the effective and the constrained piezoelectric coefficient d 33 of films, have been clarified and used to better understand the fundamental phenomenon behind the measured displacement distributions. Finite element analysis reveals that both the apparent and the effective piezoelectric coefficients depend on the electrode radius of test capacitor as well as film thickness. However, there exists a critical electrode size for apparent piezoelectric coefficients and a critical test capacitor aspect ratio for effective piezoelectric coefficient. Beyond their respective critical values, both coefficients converge to the constrained piezoelectric coefficient irrespective of film thickness. The finding of the critical electric size makes it possible to consistently measure the constrained piezoelectric coefficient of films by using the spatial distributions of the piezoelectric displacement response and becomes the fundamental criterion of this measurement method

  1. The critical behaviour of self-dual Z(N) spin systems - Finite size scaling and conformal invariance

    International Nuclear Information System (INIS)

    Alcaraz, F.C.

    1986-01-01

    Critical properties of a family of self-dual two dimensional Z(N) models whose bulk free energy is exacly known at the self-dual point are studied. The analysis is performed by studing the finite size behaviour of the corresponding one dimensional quantum Hamiltonians which also possess an exact solution at their self-dual point. By exploring finite size scaling ideas and the conformal invariance of the critical infinite system the critical temperature and critical exponents as well as the central charge associated with the underlying conformal algebra are calculated for N up to 8. The results strongly suggest that the recently constructed Z(N) quantum field theory of Zamolodchikov and Fateev (1985) is the underlying field theory associated with these statistical mechanical systems. It is also tested, for the Z(5) case, the conjecture that these models correspond to the bifurcation points, in the phase diagram of the general Z(N) spin model, where a massless phase originates. (Author) [pt

  2. Fabrication Flaw Density and Distribution in Weld Repairs

    International Nuclear Information System (INIS)

    Doctor, Steven R.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.

  3. An intelligent software approach to ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress on this methodology, it has not been widely used in practical ultrasonic inspection of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments using various tools in artificial intelligence such as neural networks. This software shows excellent performances in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks.

  4. Approach for measuring the chemistry of individual particles in the size range critical for cloud formation.

    Science.gov (United States)

    Zauscher, Melanie D; Moore, Meagan J K; Lewis, Gregory S; Hering, Susanne V; Prather, Kimberly A

    2011-03-15

    Aerosol particles, especially those ranging from 50 to 200 nm, strongly impact climate by serving as nuclei upon which water condenses and cloud droplets form. However, the small number of analytical methods capable of measuring the composition of particles in this size range, particularly at the individual particle level, has limited our knowledge of cloud condensation nuclei (CCN) composition and hence our understanding of aerosols effect on climate. To obtain more insight into particles in this size range, we developed a method which couples a growth tube (GT) to an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS), a combination that allows in situ measurements of the composition of individual particles as small as 38 nm. The growth tube uses water to grow particles to larger sizes so they can be optically detected by the UF-ATOFMS, extending the size range to below 100 nm with no discernible changes in particle composition. To gain further insight into the temporal variability of aerosol chemistry and sources, the GT-UF-ATOFMS was used for online continuous measurements over a period of 3 days.

  5. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.

    Science.gov (United States)

    German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S

    2016-12-12

    In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.

  6. Stone size and quality of life: A critical evaluation after extracorporeal shock wave lithotripsy

    Directory of Open Access Journals (Sweden)

    Cahit Sahin

    2015-09-01

    Full Text Available Objectives: To evaluate the quality of life (QoL of the patients after extracorporeal shockwave lithotripsy (ESWL on a treated stone size related basis. Methods: 90 patients undergoing ESWL for kidney stones were divided into three groups; Group 1 (n: 30, ≤ 10mm, Group 2 (n: 28, 11 mm- ≤ 20 mm and Group 3 (n: 32, 20- 25 mm. During 3- months follow-up, outcome of the procedure, number of cases with emergency department visits, analgesic required, re-tretatment rates, additional procedures and the changes in the QoL were evaluated. Results: the number of emergency department visits and mean analgesic need; re-treatment rates and additional procedures were significantly higher in Group 3. Evaluation of the QoL scores in three groups showed that cases with larger stone still had lower scores during 3-month evaluation. Conclusions: Stone size could help us to predict the possible impact of ESWL on the QoL and depending on the size of the stone treated, a well planned indication and effective management possibly by an experienced urologist could limit the changes in the QoL of the patients.

  7. Flaw behavior in mechanically loaded clad plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Robinson, G.C.; Oland, C.B.

    1989-01-01

    A small crack near the inner surface of clad nuclear reactor pressure vessels is an important consideration in the safety assessment of the structural integrity of the vessel. Four-point bend tests on large plate specimens, conforming to ASTM specification for pressure vessel plates, alloy steels, quenched and tempered, Mn-Mo and Mn-Mo-Ni (A533) grade B six clad and two unclad with stainless steels 308, 309 and 312 weld wires, were performed to determine the effect of cladding upon the propagation of small surface cracks subjected to stress states. Results indicated that the tough surface layer composed of cladding and/or heat-affected zone has enhanced the load-bearing capacity of plates under conditions where unclad plates have ruptured. The results are interpreted in terms of fracture mechanics. The behavior of flaws in clad reactor pressure vessels is examined in the light of the test results. 11 refs., 8 figs., 2 tabs

  8. The Flaws of Fragmented Financial Standard Setting

    DEFF Research Database (Denmark)

    Mügge, Daniel; Perry, James

    2014-01-01

    rating, accounting, and derivatives trading, this article demonstrates why the appropriateness of the organizational architecture of global financial governance is necessarily contingent upon one’s understanding of how financial markets work. In particular, if financial markets are not anchored......In the half decade following the 2007 financial crisis, the reform of global financial governance was driven by two separate policy debates: one on the substantive content of regulations, the other on the organizational architecture of their governance. The separation of the two debates among...... policymakers has been mirrored in academia, where postcrisis analyses of financial governance have remained detached from reinvigorated discussions about the nature of financial markets. We argue that this separation is deeply flawed. Presenting an analysis of interactions between standards for banking, credit...

  9. Comparison of evaluation method for planar flaw in pressure tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Kim, Hyung Nam; Yoo, Hyun Joo; Hwang, Won Gul

    2009-01-01

    CSA N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA N285.8-05, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of FFSG(Fitness For Service Guideline for Zirconium alloy pressure in operation CANDU) used now. The object of this paper is to address the fracture initiation and plastic collapse evaluation for the planar flaw as it applies to the pressure tube on Wolsong NPP.

  10. Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model.

    Directory of Open Access Journals (Sweden)

    Melissa L Knothe Tate

    Full Text Available Pluripotent cells residing in the periosteum, a bi-layered membrane enveloping all bones, exhibit a remarkable regenerative capacity to fill in critical sized defects of the ovine femur within two weeks of treatment. Harnessing the regenerative power of the periosteum appears to be limited only by the amount of healthy periosteum available. Here we use a substitute periosteum, a delivery device cum implant, to test the hypothesis that directional delivery of endogenous periosteal factors enhances bone defect healing.Newly adapted surgical protocols were used to create critical sized, middiaphyseal femur defects in four groups of five skeletally mature Swiss alpine sheep. Each group was treated using a periosteum substitute for the controlled addition of periosteal factors including the presence of collagen in the periosteum (Group 1, periosteum derived cells (Group 2, and autogenic periosteal strips (Group 3. Control group animals were treated with an isotropic elastomer membrane alone. We hypothesized that periosteal substitute membranes incorporating the most periosteal factors would show superior defect infilling compared to substitute membranes integrating fewer factors (i.e. Group 3>Group 2>Group 1>Control.Based on micro-computed tomography data, bone defects enveloped by substitute periosteum enabling directional delivery of periosteal factors exhibit superior bony bridging compared to those sheathed with isotropic membrane controls (Group 3>Group 2>Group 1, Control. Quantitative histological analysis shows significantly increased de novo tissue generation with delivery of periosteal factors, compared to the substitute periosteum containing a collagen membrane alone (Group 1 as well as compared to the isotropic control membrane. Greatest tissue generation and maximal defect bridging was observed when autologous periosteal transplant strips were included in the periosteum substitute.Periosteum-derived cells as well as other factors

  11. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  12. CRITICAL FACTORS IN OUTSOURCING OF ACCOUNTING FUNCTIONS IN MALAYSIAN SMALL MEDIUM-SIZED ENTERPRISES (SMEs

    Directory of Open Access Journals (Sweden)

    Magiswary Dorasamy

    2010-01-01

    Full Text Available The challenges that business face in sustaining competitive advantage in the corporate world have become a major concern. Businesses are adopting cutting-edge technologies and best practices to cope with rapid, global changes. Various business functions are being reengineered for this purpose. Accounting functions play an important role in helping businesses to maintain competitive advantage. However, some small and medium-sized enterprises (SMEs face problems handling fundamental accounting functions. This is predominantly because of their lack of expertise; accounting functions require not only knowledge of generally accepted accounting rules or tax regulations but also the expertise needed to apply the rules in a given business environment (Everaert, Sarens and Rommel, 2006. This paper offers some insight on the outsourcing of accounting functions as there is paucity of data in this area in the context of Malaysia. Essentially, it presents empirical evidence regarding Malaysian SMEs' accounting outsourcing practices. A survey of SMEs was conducted to identify the overall outsourcing landscape as it relates to accounting and third-party organisations. The factors that contribute to the decision to outsource accounting functions are analysed. The study reveals a significant relationship between outsourcing accounting functions and two contributing factors, risks and operation management.

  13. Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications

    International Nuclear Information System (INIS)

    Walekhwa, Peter N.; Mugisha, Johnny; Drake, Lars

    2009-01-01

    Dependence on fossil energy sources is increasingly becoming unsustainable due to ecological and environmental problems and rapid depletion. Biogas energy could augment these conventional energy sources but despite its advantages and favourable conditions for its production, biogas energy use in Uganda remains low due to technical, economic and socio-cultural impediments. Based on primary data on households in Central and Eastern Uganda and the use of logistic regression, this study analyses factors affecting the adoption of biogas energy in Uganda. The empirical results suggest that the probability of a household adopting biogas technology increases with decreasing age of head of household, increasing household income, increasing number of cattle owned, increasing household size, male head of household and increasing cost of traditional fuels. In contrast, the likelihood of adoption decreases with increasing remoteness of household location and increasing household land area. Policy options and recommendations including educational and awareness campaigns on biogas benefits and successes, the provision of financial and non-financial incentives to households and establishment of an institutional framework could bolster wider biogas energy acceptance in Uganda.

  14. The Amplification of the Critical Temperature by Quantum Size Effects In a Superlattice of Quantum Wires

    International Nuclear Information System (INIS)

    Bianconi, A.; Missori, M.; Saini, N.L.; Oyanagi, H.; Yamaguchi, H.; Nishihara, Y.; Ha, D.H.; Della Longa, S.

    1995-01-01

    Here we report experimental evidence that the high Tc superconductivity in a cuprate perovskite occurs in a superlattice of quantum wires. The structure of the high Tc superconducting CuO 2 plane in Bi 2 Sr 2 CaCu 2 O 8+y (Bi2212) at the mesoscopic level (10-100 A) has been determined. It is decorated by a plurality of parallel superconducting stripes of width L=14± 1 A defined by the domain walls formed by stripes of width W=11+1 A characterized by a 0.17 A shorter Cu-O (apical) distance and a large tilting angle θ =12±4degree of the distorted square pyramids. We show that this particular heterostructure provides the physical mechanism raising Tc from the low temperature range Tc 2 plane by a factor ∼10 is realized by 1) tuning the Fermi level near the bottom of the second ubband of the stripes, with k y =2π/L, formed by the quantum size effect and 2) by forming a superlattice of wires with domain walls of width W of the order of the superconducting coherence length ξ 0 . (author)

  15. Focussed probes ultrasonic follow-up of actual flaw growth during fatigue testing

    International Nuclear Information System (INIS)

    Cinotti, C.; Dufresne, J.; Prot, A.C.; Touffait, A.M.; Saglio, R.

    1979-01-01

    A programme was undertaken to follow-up the growth of actual flaws purposely introduced during the welding process of five test specimens. The aim of this programme is to measure the actual size of the cracks which develop from the known defects during the fatigue testing. The sizing method is based on the use of focussed probes, which allow good accuracy and repeatability, as well as good sensitivity. Examples are given of the first results: sizing before testing, then step by step during the fatigue testing and also under compression. This last point is very important in view of the ultrasonic testing during periodic in-service inspection

  16. Critical analysis of consecutive unilateral cleft lip repairs: determining ideal sample size.

    Science.gov (United States)

    Power, Stephanie M; Matic, Damir B

    2013-03-01

    Objective : Cleft surgeons often show 10 consecutive lip repairs to reduce presentation bias, however the validity remains unknown. The purpose of this study is to determine the number of consecutive cases that represent average outcomes. Secondary objectives are to determine if outcomes correlate with cleft severity and to calculate interrater reliability. Design : Consecutive preoperative and 2-year postoperative photographs of the unilateral cleft lip-nose complex were randomized and evaluated by cleft surgeons. Parametric analysis was performed according to chronologic, consecutive order. The mean standard deviation over all raters enabled calculation of expected 95% confidence intervals around a mean tested for various sample sizes. Setting : Meeting of the American Cleft Palate-Craniofacial Association in 2009. Patients, Participants : Ten senior cleft surgeons evaluated 39 consecutive lip repairs. Main Outcome Measures : Preoperative severity and postoperative outcomes were evaluated using descriptive and quantitative scales. Results : Intraclass correlation coefficients for cleft severity and postoperative evaluations were 0.65 and 0.21, respectively. Outcomes did not correlate with cleft severity (P  =  .28). Calculations for 10 consecutive cases demonstrated wide 95% confidence intervals, spanning two points on both postoperative grading scales. Ninety-five percent confidence intervals narrowed within one qualitative grade (±0.30) and one point (±0.50) on the 10-point scale for 27 consecutive cases. Conclusions : Larger numbers of consecutive cases (n > 27) are increasingly representative of average results, but less practical in presentation format. Ten consecutive cases lack statistical support. Cleft surgeons showed low interrater reliability for postoperative assessments, which may reflect personal bias when evaluating another surgeon's results.

  17. Critical sizes and flux distributions in the shut down pile; Tailles critiques et cartes de flux a froid

    Energy Technology Data Exchange (ETDEWEB)

    Banchereau, A; Berthier, P; Genthon, J P; Gourdon, C; Lattes, R; Martelly, J; Mazancourt, R de; Portes, L; Sagot, M; Schmitt, A P; Tanguy, P; Teste du Bailler, A; Veyssiere, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    An important part of the experiments carried out on the reactor G1 during a period of shut-down has consisted in determinations of critical sizes, and measurements of flux distribution by irradiations of detectors. This report deals with the following points: 1- Critical sizes of the flat pile, the long pile and the uranium-thorium pile. 2- Flux charts of the same piles, and study of an exponential experiment. 3- Determination of the slit effect. 4- Calculation of the anisotropy of the lattice. 5- Description of the experimental apparatus of the irradiation measurements. (author) [French] Une part importante des experiences a froid effectuees sur le reacteur G1 a consiste en des determinations de tailles critiques et des mesures de distributions de flux par irradiations de detecteurs. Le present rapport traite les points suivants: 1- Tailles critiques de la pile plate, de la pile longue, de la pile a uranium-thorium. 2 - Cartes de flux des memes piles et etude d'une experience exponentielle. 3 - Determination de l'effet de fente. 4 - Calcul de l'anisotropie du reseau. 5 - Description de l'appareillage experimental des mesures d'irradiations. (auteur)

  18. Critical sizes and flux distributions in the shut down pile; Tailles critiques et cartes de flux a froid

    Energy Technology Data Exchange (ETDEWEB)

    Banchereau, A.; Berthier, P.; Genthon, J.P.; Gourdon, C.; Lattes, R.; Martelly, J.; Mazancourt, R. de; Portes, L.; Sagot, M.; Schmitt, A.P.; Tanguy, P.; Teste du Bailler, A.; Veyssiere, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    An important part of the experiments carried out on the reactor G1 during a period of shut-down has consisted in determinations of critical sizes, and measurements of flux distribution by irradiations of detectors. This report deals with the following points: 1- Critical sizes of the flat pile, the long pile and the uranium-thorium pile. 2- Flux charts of the same piles, and study of an exponential experiment. 3- Determination of the slit effect. 4- Calculation of the anisotropy of the lattice. 5- Description of the experimental apparatus of the irradiation measurements. (author) [French] Une part importante des experiences a froid effectuees sur le reacteur G1 a consiste en des determinations de tailles critiques et des mesures de distributions de flux par irradiations de detecteurs. Le present rapport traite les points suivants: 1- Tailles critiques de la pile plate, de la pile longue, de la pile a uranium-thorium. 2 - Cartes de flux des memes piles et etude d'une experience exponentielle. 3 - Determination de l'effet de fente. 4 - Calcul de l'anisotropie du reseau. 5 - Description de l'appareillage experimental des mesures d'irradiations. (auteur)

  19. Chitosan-Graphene Oxide 3D scaffolds as Promising Tools for Bone Regeneration in Critical-Size Mouse Calvarial Defects.

    Science.gov (United States)

    Hermenean, Anca; Codreanu, Ada; Herman, Hildegard; Balta, Cornel; Rosu, Marcel; Mihali, Ciprian Valentin; Ivan, Alexandra; Dinescu, Sorina; Ionita, Mariana; Costache, Marieta

    2017-11-30

    Limited self-regenerating capacity of human skeleton makes the reconstruction of critical size bone defect a significant challenge for clinical practice. Aimed for regenerating bone tissues, this study was designed to investigate osteogenic differentiation, along with bone repair capacity of 3D chitosan (CHT) scaffolds enriched with graphene oxide (GO) in critical-sized mouse calvarial defect. Histopathological/histomorphometry and scanning electron microscopy(SEM) analysis of the implants revealed larger amount of new bone in the CHT/GO-filled defects compared with CHT alone (p < 0.001). When combined with GO, CHT scaffolds synergistically promoted the increase of alkaline phosphatase activity both in vitro and in vivo experiments. This enhanced osteogenesis was corroborated with increased expression of bone morphogenetic protein (BMP) and Runx-2 up to week 4 post-implantation, which showed that GO facilitates the differentiation of osteoprogenitor cells. Meanwhile, osteogenesis was promoted by GO at the late stage as well, as indicated by the up-regulation of osteopontin and osteocalcin at week 8 and overexpressed at week 18, for both markers. Our data suggest that CHT/GO biomaterial could represent a promising tool for the reconstruction of large bone defects, without using exogenous living cells or growth factors.

  20. An interim report on shallow-flaw fracture technology development

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.

    1995-01-01

    Shallow-flaw fracture technology is being developed for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVS) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) a strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness

  1. Thermal-shock experiments with flawed clad cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bryson, J.W.; Alexander, D.J.

    1989-01-01

    The life expectancy of LWR pressure vessels is influenced by a reduction in fracture toughness that is the result of radiation damage. As the fracture toughness decreases, the probability of propagation of preexisting flaws (sharp, crack-like defects) in the wall of the vessel increases. The probability of propagation is also influenced by the type of loading condition and the type of flaws that might exist. A loading condition of particular concern is referred to as pressurized thermal shock (PTS), and a flaw of particular concern for PTS loading conditions is a shallow surface flaw. A sudden cooling (thermal shock) of the inner surface of the vessel results in relatively high tensile stresses and relatively low fracture toughness at the inner surface. In addition, the attenuation of the fast-neutron fluence also results in relatively low fracture toughness at the inner surface. Under some circumstances, this combination of high stress and low toughness at the inner surface makes it possible for very shallow surface flaws to propagate. The PTS issue has been under investigation for quite some time, but thus far possible beneficial effects, other than thermal resistance, of the cladding on the inner surface of the vessel have not been included in the analysis of flaw behavior. This document discusses this effect of cladding on surface flaws and crack propagation

  2. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  3. Flaws in the Concept of Nuclear Deterrance

    Directory of Open Access Journals (Sweden)

    John Scales Avery

    2012-04-01

    Full Text Available The concept of nuclear deterrence is seriously flawed, and it violates the fundamental ethical principles of all major religions. Besides being morally unacceptable, nuclear weapons are also illegal according to a historic 1996 decision of the International Court of Justice, a ruling that reflects the opinion of the vast majority of the worldʼs peoples. Even a small nuclear war would be an ecological catastrophe, not only killing civilian populations indiscriminately in both belligerent and neutral countries, but also severely damaging global agriculture and making large areas of the earth permanently uninhabitable through radioactive contamination. The danger of accidental nuclear war continues to be very great today, and the danger of nuclear terrorism is increasing. In this perilous situation, it is necessary for the nuclear nations to acknowledge that the concept of deterrence has been a mistake, which is threatening the lives of all human beings as well as threatening devastation of the biosphere. Acknowledging that the policy of nuclear deterrence has been a grave error can reduce risk of nuclear weapons proliferation.

  4. The behavior of shallow flaws in reactor pressure vessels

    International Nuclear Information System (INIS)

    Rolfe, S.T.

    1991-11-01

    Both analytical and experimental studies have shown that the effect of crack length, a, on the elastic-plastic toughness of structural steels is significant. The objective of this report is to recommend those research investigations that are necessary to understand the phenomenon of shallow behavior as it affects fracture toughness so that the results can be used properly in the structural margin assessment of reactor pressure vessels (RPVs) with flaws. Preliminary test results of A 533 B steel show an elevated crack-tip-opening displacement (CTOD) toughness similar to that observed for structural steels tested at the University of Kansas. Thus, the inherent resistance to fracture initiation of A 533 B steel with shallow flaws appears to be higher than that used in the current American Society of Mechanical Engineers (ASME) design curves based on testing fracture mechanics specimens with deep flaws. If this higher toughness of laboratory specimens with shallow flaws can be transferred to a higher resistance to failure in RPV design or analysis, then the actual margin of safety in nuclear vessels with shallow flaws would be greater than is currently assumed on the basis of deep-flaw test results. This elevation in toughness and greater resistance to fracture would be a very desirable situation, particularly for the pressurized-thermal shock (PTS) analysis in which shallow flaws are assumed to exist. Before any advantage can be taken of this possible increase in initiation toughness, numerous factors must be analyzed to ensure the transferability of the data. This report reviews those factors and makes recommendations of studies that are needed to assess the transferability of shallow-flaw toughness test results to the structural margin assessment of RPV with shallow flaws. 14 refs., 8 figs

  5. Analysis of portable gamma flaw detectors concerning radiation hygiene

    International Nuclear Information System (INIS)

    Makarova, T.V.

    1982-01-01

    Design and shields of gamma flaw detectors as one of the main factors responsible for personnel dose were studied. The analysis was conducted using the results of radiation hygienic surveys of gamma flaw detection laboratories functioning constantly in Estonia. It is shown that recently the replacement of GUP apparatuses by flaw detectors of RID and ''Gamma-RID'' (types which have design and shielding advantages is observed. However personnel doses have not reduced considerably for the last 10 years. This fact is attributed to design disadvantages of the RID and ''Gamma-RID'' apparatuses the removing of which will give the decreasing of annual personnel dose by 80 %

  6. Critical currents in polycrystalline Y Ba2Cu3O7-x: Self-field and grain size dependence

    International Nuclear Information System (INIS)

    Babic, E.; Prester, M.; Dobrac, D.; Marohnic, Z.; Nazar, P.; Stastny, P.; Matacotta, F.C.

    1991-10-01

    The variation of critical currents (I c ) and their distributions (CCD) with thickness (t) has been investigated for two high quality YBa 2 Cu 3 O 7-x samples with different average grain size (AG≅10 and 30 μm for samples S 1 and S 2 respectively) in the temperature range 78-90K and in the applied magnetic field H c ) for S 1 initially increased but later on leveled off on reducing the thickness, whereas for S 2 remained essentially unchanged even after three-fold reduction in thickness. Since the other parameters related to macroscopic homogeneity have not changed on reducing the thickness of the samples, the variations of J c are interpreted in terms of thickness and grain size dependent self-field effects. The same model explains well the changes of CCD curves with thickness and may also explain the variation of J c with the grain size, as reported recently for ceramic YBaCuO samples. (author). 18 refs, 7 figs, 2 tabs

  7. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  8. Development of portable phased array UT system for real-time flaw imaging

    International Nuclear Information System (INIS)

    Goto, M.

    1995-01-01

    Many functions and features of phased array UT technology must be useful for NDE in the industrial field. Some phased array UT systems have been developed for the inspection of nuclear pressure vessel and turbine components. However, phased array UT is still a special NDE technique and it has not been used widely in the past. The reasons of that are system size, cost, operator performance, equipment design and others. TOSHIBA has newly developed PC controlled portable phased array system to solve those problems. The portable phased array UT system is very compact and light but it is able to drive up to 32-channel linear array probe, to display real-time linear/sector B-scan, to display accumulated B-scan with an encoder and to display profile overlaid B-scan. The first applications were turbine component inspections for precise flaw investigation and flaw image data recording

  9. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  10. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  11. Detection of plane, poorly oriented wide flaws using focused transducers

    International Nuclear Information System (INIS)

    Vadder, D. de; Azou, P.; Bastien, P.; Saglio, R.

    1976-01-01

    The detection of plane, poorly oriented, wide flaws by ultrasonic non destructive testing is distinctly improved when using focused transducers. An increased echo can be obtained crossing the defect limit [fr

  12. Ductile fracture of cylindrical vessels containing a large flaw

    Science.gov (United States)

    Erdogan, F.; Irwin, G. R.; Ratwani, M.

    1976-01-01

    The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.

  13. Flaw evaluation of pressure vessel in pressurized water reactor

    International Nuclear Information System (INIS)

    Park, Ki Sung; Kim, Min Geol; Jeon, Chae Hong; Rhim, Soon Hyung; Kim, Seung Tae

    1999-01-01

    Flaw evaluation should be performed to determine the acceptance of a surface or a subsurface flaw detected during the in-service inspection without any repair or replacement. In this paper, the evaluation methodology and procedure were established according to ASME code Sec. XI and the evaluation program was coded. Using this program, a field engineer who doesn't have enough knowledge on fracture mechanics may be able to perform prompt and accurate flaw evaluation on site and decide whether a detected flaw be allowable or not. Analysis results were compared with those obtained from Westinghouse program called KCAL and FCG. Both results made good agreement and accuracy of the program developed in this paper was verified.=20

  14. Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model

    International Nuclear Information System (INIS)

    Kim, Jinku; McBride, Sean; Donovan, Amy; Hollinger, Jeffrey O; Darr, Aniq; Magno, Maria Hanshella R

    2015-01-01

    The aim of the study was to determine bone regeneration in a rabbit radius critical-size defect (CSD) model using a specific polymer composition (E1001(1k)) from a library of tyrosine-derived polycarbonate scaffolds coated with a calcium phosphate (CP) formulation (E1001(1k) + CP) supplemented with recombinant human bone morphogenetic protein-2 (rhBMP-2). Specific doses of rhBMP-2 (0, 17, and 35 μg/scaffold) were used. E1001(1k) + CP scaffolds were implanted in unilateral segmental defects (15 mm length) in the radial diaphyses of New Zealand White rabbits. At 4 and 8 weeks post-implantation, bone regeneration was determined using micro-computed tomography (µCT), histology, and histomorphometry. The quantitative outcome data suggest that E1001(1k) + CP scaffolds with rhBMP-2 were biocompatible and promoted bone regeneration in segmental bone defects. Histological examination of the implant sites showed that scaffolds made of E1001(1k) + CP did not elicit adverse cellular or tissue responses throughout test periods up to 8 weeks. Noteworthy is that the incorporation of a very small amount of rhBMP-2 into the scaffolds (as low as 17 μg/defect site) promoted significant bone regeneration compared to scaffolds consisting of E1001(1k) + CP alone. This finding indicates that E1001(1k) + CP may be an effective platform for bone regeneration in a critical size rabbit radius segmental defect model, requiring only a minimal dose of rhBMP-2. (paper)

  15. Direct transplantation of native pericytes from adipose tissue: A new perspective to stimulate healing in critical size bone defects.

    Science.gov (United States)

    König, Matthias A; Canepa, Daisy D; Cadosch, Dieter; Casanova, Elisa; Heinzelmann, Michael; Rittirsch, Daniel; Plecko, Michael; Hemmi, Sonja; Simmen, Hans-Peter; Cinelli, Paolo; Wanner, Guido A

    2016-01-01

    Fractures with a critical size bone defect (e.g., open fracture with segmental bone loss) are associated with high rates of delayed union and non-union. The prevention and treatment of these complications remain a serious issue in trauma and orthopaedic surgery. Autologous cancellous bone grafting is a well-established and widely used technique. However, it has drawbacks related to availability, increased morbidity and insufficient efficacy. Mesenchymal stromal cells can potentially be used to improve fracture healing. In particular, human fat tissue has been identified as a good source of multilineage adipose-derived stem cells, which can be differentiated into osteoblasts. The main issue is that mesenchymal stromal cells are a heterogeneous population of progenitors and lineage-committed cells harboring a broad range of regenerative properties. This heterogeneity is also mirrored in the differentiation potential of these cells. In the present study, we sought to test the possibility to enrich defined subpopulations of stem/progenitor cells for direct therapeutic application without requiring an in vitro expansion. We enriched a CD146+NG2+CD45- population of pericytes from freshly isolated stromal vascular fraction from mouse fat tissue and tested their osteogenic differentiation capacity in vitro and in vivo in a mouse model for critical size bone injury. Our results confirm the ability of enriched CD146+NG2+CD45- cells to efficiently generate osteoblasts in vitro, to colonize cancellous bone scaffolds and to successfully contribute to regeneration of large bone defects in vivo. This study represents proof of principle for the direct use of enriched populations of cells with stem/progenitor identity for therapeutic applications. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    Science.gov (United States)

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  17. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2015-12-01

    Full Text Available For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL and poly-(3-hydroxybutyrate/poly-(4-hydroxybutyrate (P(3HB/P(4HB. As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB. Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI with Green fluorescent protein (GFP-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  18. An empirical study on the critical success factors of small to medium sized projects in a South African mining company

    Directory of Open Access Journals (Sweden)

    Du Randt, Francois Jean

    2014-08-01

    Full Text Available Projects that fail, for whatever reason, can impact negatively on society, organisations, and other stakeholders. A number of researchers have identified various critical success factors (CSFs that can influence the outcome and success of a project. This research therefore aims to determine the CSFs that influence various success measures of small- to medium-sized projects at a South African mining company, Exxaro Resources’ Grootegeluk Coal Mine. Other objectives of this research include determining the extent of the impacts of these CSFs on the different success measures of a project. The investigation suggests that there are correlations among CSFs, and that certain factors impact the outcome of projects far more than others. This research finds that the single most important CSF for small- to medium-sized projects is the selection of a competent project manager. The competent project manager is characterised by a group of interrelated CSF factors: good leadership, commitment, and learning from past experiences. Based on the research results, other CSFs are discussed and explored in order for recommendations to be made on how this mining company, and possibly other organisations, can achieve greater project success.

  19. Gamma flaw detectors for radiographic control of welded joint quality under mounting conditions

    International Nuclear Information System (INIS)

    Khoroshev, V.N.; Galash, T.F.; Andreev, V.L.; Grigor'ev, V.M.; Medvedev, N.E.

    1978-01-01

    Main characteristics are presented of gamma flaw detector models used for radiographic control of the quality of welded steel and pipeline joints during assembly. Specially developed experimental models, operating with 75 Se, 90 Sr, 170 Tm, 137 Cs and 192 Ir sources are considered. The new instruments have been made on a single structural base, which creates a foundation for standardizing individual units of radiation heads, manual control panels, containers, exterior packings, devices and accessories, maintenance techniques, and repair techniques. They are distinguished by small sizes and weight, possibility of using a set of radiation sources ensuring control of 3-40 mm thick joints, and reliable protection. Special devices permit to reduce 2-3-folds the time needed for installing and orienting the flaw detectors. The expected economic effect from implementation of the new gamma flaw detectors into industry will amount to 1.5-10.0 thousand roubles per annum for one detector at approximate cost of each detector equal to 3.5-6.0 thousand roubles

  20. Intravascular ultrasound is a critical tool for accurate endograft sizing in the management of blunt thoracic aortic injury.

    Science.gov (United States)

    Wallace, Gabriel A; Starnes, Benjamin W; Hatsukami, Thomas S; Sobel, Michael; Singh, Niten; Tran, Nam T

    2015-03-01

    Accurate measurement of true aortic luminal diameter (ALD) is critical for endograft sizing in endovascular treatment of blunt thoracic aortic injury (BTAI), but ALD is dynamic and changes with respect to patients' hemodynamic status. This study aimed to characterize how ALD at the time of diagnosis of BTAI compares with ALD at the time of endovascular repair and later at follow-up. This is an Institutional Review Board-approved, single-institution retrospective analysis of prospectively obtained data. Patients were included who presented between July 2007 and December 2012 with computed tomography angiography (CTA)-diagnosed BTAI; who underwent thoracic endovascular aortic repair (TEVAR); and who underwent preoperative CTA, intraoperative intravascular ultrasound (IVUS), and postimplantation CTA. Comparison measurements of the ALD were made among CTA and IVUS images at the level of the left subclavian artery (LSCA) and between initial CTA and postimplantation CTA at 10, 15, and 20 cm distal to the LSCA. Theoretical endograft sizes were determined and compared for each ALD at the LSCA. Twenty-two patients were included in the analysis. Mean age was 38 ± 14 years (range, 17-61 years), with 82% men and mean Injury Severity Score of 43 ± 11 (range, 24-66). Mean time from emergency department admission to initial CTA was -1.2 ± 5 hours (range, -13 to 11.5 hours; negative time implies imaging at an outside facility before admission). Mean time from initial CTA to IVUS was 1.2 ± 1.4 days (range, 2.5 hours-5.7 days) and from IVUS to postimplantation CTA 33 ± 45 days (range, 17 hours-169 days). Overall, ALD measured by IVUS was significantly larger than that by initial CTA (Δ2.5 ± 3.1 mm; P < .05). ALD was also larger at 10, 15, and 20 cm distal to the LSCA in comparing the postimplantation CTA with the initial CTA (Δ2.4, 2.0, and 2.0 mm, respectively; all P < .05). More than half the devices would be sized differently with ALD measured by IVUS at the time of TEVAR

  1. Effect of combined loading on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Chung Yeonki

    1999-01-01

    Considering a rational maintenance rule of Light Water Reactor piping, reliable flaw evaluation criteria are essential to determine how a detected flaw is detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes to be considered for carbon steel piping, and can be analyzed by the elastic-plastic fracture mechanics. Currently the analytical results are provided as flaw evaluation criteria using load correction factors such like the Z-factor in ASME Code Section 6. The present correction factors were conventionally determined taken a conservatism and a simplicity into account, however, the effect of internal pressure which would be an important factor under an actual plant condition was not adequately considered. Recently, a J-estimation scheme, 'LBB.ENGC' for ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was newly developed to have a better prediction with more realistic manner. This method is explicitly incorporated the contribution of both bending and tension due to internal pressure by means of the scheme compatible with an arbitrary combined loading history. In this paper, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. A correction factor based on the new J-estimation scheme was compared with the present correction factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of internal pressure. (author)

  2. Influence of grain size and upper critical magnetic field on global pinning force of bronze-processed Nb/sub 3/Sn compound

    International Nuclear Information System (INIS)

    Ochiai, S.; Osamura, K.

    1986-01-01

    In order to know the dependency of global pinning force of Nb/sub 3/Sn compound on grain size and upper critical magnetic field, the global pinning force was measured at 3-15 T using bronze-processed multifilamentary composites. The grain size and upper critical magnetic field were varied by two types of annealing treatment: one is the isothermal annealing at 873, 973 and 1073 K up to 1730 ks and another is the two-stage annealing (low temperature annealing to form fine grains at 873 K for 1730 ks + high temperature annealing to raise upper critical magnetic field at 1073 K up to 18 ks). In the case of isothermal annealing treatment, both of grain size and upper critical magnetic field increased with increasing annealing temperature and time except for the annealing treatments at high temperature for prolonged times. In the case of two-stage annealing, both of them increased with second stage annealing time. The increase in grain size led to decrease in the pinning force but the increase in upper critical magnetic field to increase in it. From the analysis of the present data based on the Suenaga's speculation concerning with the density of pinning site and the Kramer's equation, it was suggested that the pinning force is, to a first approximation, proportional to the product of inverse grain size and (1-h)/sup 2/h/sup 1/2/ where h is the reduced magnetic field

  3. Regenerative potential and healing dynamics of the periodontium: a critical-size supra-alveolar periodontal defect study.

    Science.gov (United States)

    Polimeni, Giuseppe; Susin, Cristiano; Wikesjö, Ulf M E

    2009-03-01

    The nature and characteristics of the newly formed periodontium obtained following regenerative procedures remain a matter of controversy. The objective of this study was to evaluate the regenerative potential of the periodontal attachment and healing dynamics as observed from the spatial distribution of newly formed cementum, periodontal ligament (PDL) and alveolar bone following optimal circumstances for wound healing/regeneration in a discriminating animal model. Critical-size, 6-mm, supra-alveolar, periodontal defects were surgically created in six young adult Beagle dogs. Space-providing ePTFE devices with 300-microm laser-drilled pores were implanted to support wound stability and space provision in one jaw quadrant/animal. Treatments were alternated between left and right jaw quadrants in subsequent animals. The gingival flaps were advanced to submerge the defect sites for primary intention healing. Histometric analysis followed an 8-week healing interval. Healing was uneventful in all animals. The histometric analysis showed that cementum regeneration (2.99 +/- 0.22 mm) was significantly greater than PDL (2.54 +/- 0.18 mm, p=0.03) and bone regeneration (2.46 +/- 0.26 mm, p=0.03). The wound area showed significant positive non-linear effect on cementum (log beta=1.25, palveolar bone virtually regenerate in parallel under optimal circumstances for periodontal wound healing/regeneration. Moreover, space provision positively influences the extent of periodontal regeneration.

  4. Case study of the propagation of a small flaw under PWR loading conditions and comparison with the ASME code design life. Comparison of ASME Code Sections III and XI

    International Nuclear Information System (INIS)

    Yahr, G.T.; Gwaltney, R.C.; Richardson, A.K.; Server, W.L.

    1986-01-01

    A cooperative study was performed by EG and G Idaho, Inc., and Oak Ridge National Laboratory to investigate the degree of conservatism and consistency in the ASME Boiler and Pressure Vessel Code Section III fatigue evaluation procedure and Section XI flaw acceptance standards. A single, realistic, sample problem was analyzed to determine the significance of certain points of criticism made of an earlier parametric study by staff members of the Division of Engineering Standards of the Nuclear Regulatory Commission. The problem was based on a semielliptical flaw located on the inside surface of the hot-leg piping at the reactor vessel safe-end weld for the Zion 1 pressurized-water reactor (PWR). Two main criteria were used in selecting the problem; first, it should be a straight pipe to minimize the computational expense; second, it should exhibit as high a cumulative usage factor as possible. Although the problem selected has one of the highest cumulative usage factors of any straight pipe in the primary system of PWRs, it is still very low. The Code Section III fatigue usage factor was only 0.00046, assuming it was in the as-welded condition, and fatigue crack-growth analyses predicted negligible crack growth during the 40-year design life. When the analyses were extended past the design life, the usage factor was less than 1.0 when the flaw had propagated to failure. The current study shows that the criticism of the earlier report should not detract from the conclusion that if a component experiences a high level of cyclic stress corresponding to a fatigue usage factor near 1.0, very small cracks can propagate to unacceptable sizes

  5. Finite-element analysis of flawed and unflawed pipe tests

    International Nuclear Information System (INIS)

    James, R.J.; Nickell, R.E.; Sullaway, M.F.

    1989-12-01

    Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a ''macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab

  6. Improved flaw detection and characterization with difference thermography

    Science.gov (United States)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  7. Flaw location and characterization in anisotropic materials by ultrasonic spectral analysis

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Simpson, W.A.; Lewis, D.K.

    1978-01-01

    A method of quantitatively determining size and location of flaws in anisotropic materials such as stainless steel welds is described. In previous work, it was shown that spectral analysis of a broad band ultrasonic pulse scattered from a defect can be used to determine size and orientation in isotropic materials if the velocity of sound in the material is known. In an anisotropic structural material (stainless steel weld, centrifugal cast pipe), the velocity (both shear and longitudinal) is direction-dependent. When anisotropy is not taken into account, defect location and defect size estimation is misjudged. It will be shown that the effect of this structural variation in materials must be considered to obtain the correct size and location of defects by frequency analysis. A theoretical calculation, including anisotropy, of the scattered field from defects will also be presented

  8. Bell's "Theorem": loopholes vs. conceptual flaws

    Science.gov (United States)

    Kracklauer, A. F.

    2017-12-01

    An historical overview and detailed explication of a critical analysis of what has become known as Bell's Theorem to the effect that, it should be impossible to extend Quantum Theory with the addition of local, real variables so as to obtain a version free of the ambiguous and preternatural features of the currently accepted interpretations is presented. The central point on which this critical analysis, due originally to Edwin Jaynes, is that Bell incorrectly applied probabilistic formulas involving conditional probabilities. In addition, mathematical technicalities that have complicated the understanding of the logical or mathematical setting in which current theory and experimentation are embedded, are discussed. Finally, some historical speculations on the sociological environment, in particular misleading aspects, in which recent generations of physicists lived and worked are mentioned.

  9. Finite-Size Scaling in a Two-Temperature Lattice Gas: a Monte Carlo Study of Critical Properties

    DEFF Research Database (Denmark)

    Larsen, Heine; Præstgaard, Eigil; Zia, R.K.P.

    1994-01-01

    We present computer studies of the critical properties of an Ising lattice gas driven to a non-equilibrium steady state by coupling to two temperature baths. Anisotropic scaling, a dominant feature near criticality, is used as a tool to extract the values of the critical temperature and some expo...

  10. Statistical flaws in design and analysis of fertility treatment studies on cryopreservation raise doubts on the conclusions

    Science.gov (United States)

    van Gelder, P.H.A.J.M.; Nijs, M.

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care. PMID:24753877

  11. Statistical flaws in design and analysis of fertility treatment -studies on cryopreservation raise doubts on the conclusions.

    Science.gov (United States)

    van Gelder, P H A J M; Nijs, M

    2011-01-01

    Decisions about pharmacotherapy are being taken by medical doctors and authorities based on comparative studies on the use of medications. In studies on fertility treatments in particular, the methodological quality is of utmost -importance in the application of evidence-based medicine and systematic reviews. Nevertheless, flaws and omissions appear quite regularly in these types of studies. Current study aims to present an overview of some of the typical statistical flaws, illustrated by a number of example studies which have been published in peer reviewed journals. Based on an investigation of eleven studies at random selected on fertility treatments with cryopreservation, it appeared that the methodological quality of these studies often did not fulfil the -required statistical criteria. The following statistical flaws were identified: flaws in study design, patient selection, and units of analysis or in the definition of the primary endpoints. Other errors could be found in p-value and power calculations or in critical p-value definitions. Proper -interpretation of the results and/or use of these study results in a meta analysis should therefore be conducted with care.

  12. Development of flaw evaluation and acceptance procedures for flaw indications in the cooling water system at the Savannah River site K reactor

    International Nuclear Information System (INIS)

    Tandon, S.; Bamford, W.H.; Cowfer, C.D.; Ostrowski, R.

    1993-01-01

    This paper describes the methodology used in determining the criteria for acceptance of inspection indications in the K-Reactor Cooling Water System at the Savannah River Plant. These criteria have been developed in a manner consistent with the development of similar criteria in the ASME Code Section XI for commercial light water reactors, but with a realistic treatment of the operating conditions in the cooling water system. The technical basis for the development of these criteria called ''Acceptance Standards'' is contained in this paper. A second portion of this paper contains the methodology used in the construction of flaw evaluation charts which have been developed for each specific line size in the cooling water system. The charts provide the results of detailed fracture mechanics calculations which have been completed to determine the largest flaw which can be accepted in the cooling water system without repair. These charts are designed for use in conjunction with in-service inspections of the cooling water system, and only require inspection results to determine acceptability

  13. Experimental investigation of flawed pipes with respect to fracture behavior and development of crack opening area

    Energy Technology Data Exchange (ETDEWEB)

    Stoppler, W [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1993-12-31

    The critical length of a longitudinal through-wall flaw, defined as that causing rupture, was first determined hydro-statically on large experimental vessels under internal pressure; the leak before rupture diagram for the base material of the vessel is established by experiment and calculation; it gives a limit between the two modes of failure, leakage or rupture (catastrophic failure), depending on slit length and loading conditions. Tests under pneumatic pressure were then carried out to investigate crack arrest, with notched discs made of a brittle material welded in the cylindrical part of the vessel, and cracks triggered by means of a small charged ignited over the notch. In the case of discs of a diameter smaller than the critical slit length, crack arrest occurred when the crack entered the tough material, while a disc corresponding to the critical crack length of the vessel led to rupture. 5 refs., 16 figs., 2 tabs.

  14. Histologic Evaluation of Critical Size Defect Healing With Natural and Synthetic Bone Grafts in the Pigeon ( Columba livia ) Ulna.

    Science.gov (United States)

    Tunio, Ahmed; Jalila, Abu; Goh, Yong Meng; Shameha-Intan; Shanthi, Ganabadi

    2015-06-01

    Fracture and bone segment loss are major clinical problems in birds. Achieving bone formation and clinical union in a fracture case is important for the survival of the bird. To evaluate the efficacy of bone grafts for defect healing in birds, 2 different bone grafts were investigated in the healing of a bone defect in 24 healthy pigeons ( Columba livia ). In each bird, a 1-cm critical size defect (CSD) was created in the left ulna, and the fracture was stabilized with external skeletal fixation (ESF). A graft of hydroxyapatite (HA) alone (n = 12 birds) or demineralized bone matrix (DBM) combined with HA (n = 12 birds) was implanted in the CSD. The CSD healing was evaluated at 3 endpoints: 3, 6, and 12 weeks after surgery. Four birds were euthanatized at each endpoint from each treatment group, and bone graft healing in the ulna CSD was evaluated by histologic examination. The CSD and graft implants were evaluated for quality of union, cortex development, and bone graft incorporation. Results showed no graft rejection in any bird, and all birds had connective tissue formation in the defect because of the bone graft application. These results suggest that bone defect healing can be achieved by a combination of osteoinductive and osteoconductive bone graft materials for clinical union and new bone regeneration in birds. The combination of DBM and HA resulted in a better quality bone graft (P < .05) than did HA alone, but there was no significant differences in cortex development or bone graft incorporation at 3, 6, or 12 weeks. From the results of this study, we conclude that HA bone grafts, alone or in combination with DBM, with external skeletal fixation is suitable and safe for bone defect and fracture treatment in pigeons.

  15. Radiological Assessment of Bioengineered Bone in a Muscle Flap for the Reconstruction of Critical-Size Mandibular Defect

    Science.gov (United States)

    Al-Fotawei, Randa; Ayoub, Ashraf F.; Heath, Neil; Naudi, Kurt B.; Tanner, K. Elizabeth; Dalby, Matthew J.; McMahon, Jeremy

    2014-01-01

    This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm×15 mm) was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT), BMP-7 and rabbit mesenchymal stromal cells (rMSCs) was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT) scanning and micro-computed tomography (µ-CT) were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ±15, the mean volume of the radio-opaque areas was 63.4% ±20. Areas of a bone density higher than that of the mandibular bone (+35% ±25%) were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects. PMID:25226170

  16. Radiological assessment of bioengineered bone in a muscle flap for the reconstruction of critical-size mandibular defect.

    Directory of Open Access Journals (Sweden)

    Randa Al-Fotawei

    Full Text Available This study presents a comprehensive radiographic evaluation of bone regeneration within a pedicled muscle flap for the reconstruction of critical size mandibular defect. The surgical defect (20 mm × 15 mm was created in the mandible of ten experimental rabbits. The masseter muscle was adapted to fill the surgical defect, a combination of calcium sulphate/hydroxyapatite cement (CERAMENT™ |SPINE SUPPORT, BMP-7 and rabbit mesenchymal stromal cells (rMSCs was injected inside the muscle tissue. Radiographic assessment was carried out on the day of surgery and at 4, 8, and 12 weeks postoperatively. At 12 weeks, the animals were sacrificed and cone beam computerized tomography (CBCT scanning and micro-computed tomography (µ-CT were carried out. Clinically, a clear layer of bone tissue was identified closely adherent to the border of the surgical defect. Sporadic radio-opaque areas within the surgical defect were detected radiographically. In comparison with the opposite non operated control side, the estimated quantitative scoring of the radio-opacity was 46.6% ± 15, the mean volume of the radio-opaque areas was 63.4% ± 20. Areas of a bone density higher than that of the mandibular bone (+35% ± 25% were detected at the borders of the surgical defect. The micro-CT analysis revealed thinner trabeculae of the regenerated bone with a more condensed trabecular pattern than the surrounding native bone. These findings suggest a rapid deposition rate of the mineralised tissue and an active remodelling process of the newly regenerated bone within the muscle flap. The novel surgical model of this study has potential clinical application; the assessment of bone regeneration using the presented radiolographic protocol is descriptive and comprehensive. The findings of this research confirm the remarkable potential of local muscle flaps as local bioreactors to induce bone formation for reconstruction of maxillofacial bony defects.

  17. The size, morphology, site, and access score predicts critical outcomes of endoscopic mucosal resection in the colon.

    Science.gov (United States)

    Sidhu, Mayenaaz; Tate, David J; Desomer, Lobke; Brown, Gregor; Hourigan, Luke F; Lee, Eric Y T; Moss, Alan; Raftopoulos, Spiro; Singh, Rajvinder; Williams, Stephen J; Zanati, Simon; Burgess, Nicholas; Bourke, Michael J

    2018-01-25

    The SMSA (size, morphology, site, access) polyp scoring system is a method of stratifying the difficulty of polypectomy through assessment of four domains. The aim of this study was to evaluate the ability of SMSA to predict critical outcomes of endoscopic mucosal resection (EMR). We retrospectively applied SMSA to a prospectively collected multicenter database of large colonic laterally spreading lesions (LSLs) ≥ 20 mm referred for EMR. Standard inject-and-resect EMR procedures were performed. The primary end points were correlation of SMSA level with technical success, adverse events, and endoscopic recurrence. 2675 lesions in 2675 patients (52.6 % male) underwent EMR. Failed single-session EMR occurred in 124 LSLs (4.6 %) and was predicted by the SMSA score ( P  < 0.001). Intraprocedural and clinically significant postendoscopic bleeding was significantly less common for SMSA 2 LSLs (odds ratio [OR] 0.36, P  < 0.001 and OR 0.23, P  < 0.01) and SMSA 3 LSLs (OR 0.41, P  < 0.001 and OR 0.60, P  = 0.05) compared with SMSA 4 lesions. Similarly, endoscopic recurrence at first surveillance was less likely among SMSA 2 (OR 0.19, P  < 0.001) and SMSA 3 (OR 0.33, P  < 0.001) lesions compared with SMSA 4 lesions. This also extended to second surveillance among SMSA 4 LSLs. SMSA is a simple, readily applicable, clinical score that identifies a subgroup of patients who are at increased risk of failed EMR, adverse events, and adenoma recurrence at surveillance colonoscopy. This information may be useful for improving informed consent, planning endoscopy lists, and developing quality control measures for practitioners of EMR, with potential implications for EMR benchmarking and training. © Georg Thieme Verlag KG Stuttgart · New York.

  18. A critical analysis of penile enhancement procedures for patients with normal penile size: surgical techniques, success, and complications.

    Science.gov (United States)

    Vardi, Yoram; Har-Shai, Yaron; Harshai, Yaron; Gil, Tamir; Gruenwald, Ilan

    2008-11-01

    Most men who request surgical penile enhancement have a normal-sized and fully functional penis but visualize their penises as small (psychological dysmorphism). The aim of this review is to describe the various reported techniques and to provide the available scientific data on the success and complication rates of penile enhancement procedures. We performed an extensive systematic review based on a search of the MEDLINE database for articles published between 1965 and 2008. The following key words were used: penis, enhancement, enlargement, phalloplasty, reconstruction, girth, lengthening, and augmentation. Only English-language articles that were related to penile surgery and dysmorphobia were sought. We excluded articles in which fewer than five cases were described and articles in which the type of surgical treatment and the outcome were not clear. Of the 176 papers found, 34 were selected and critically analyzed. We found only a small number of well-designed and comprehensive studies, and most of the published articles reported data that were obtained from small cohorts of patients. The more recently published studies presented better methodologies and descriptions of the surgical techniques than did the older publications. In general, penile enhancement surgery can cause a 1-2-cm increase in penile length and a 2.5-cm augmentation of penile girth. Unwanted outcomes and complications, namely penile deformity, paradoxical penile shortening, disagreeable scarring, granuloma formation, migration of injected material, and sexual dysfunction were reported frequently in these studies. Disappointing short- and long-term patient satisfaction rates following these procedures were also reported in most studies. To date, the use of cosmetic surgery to enlarge the penis remains highly controversial. There is a lack of any standardization of all described procedures. Indications and outcome measures are poorly defined, and the reported complications are unacceptably high

  19. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    Science.gov (United States)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  20. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    Science.gov (United States)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  1. The effect of strongly anisotropic scattering on the critical size of a slab in one-speed neutron transport theory: Modified UN method

    International Nuclear Information System (INIS)

    Öztürk, Hakan

    2014-01-01

    Highlights: • The criticality problem for one-speed neutrons in homogeneous slab is investigated. • A combination of forward–backward and linear anisotropy is used. • The effect of the strongly anisotropic scattering on the critical size is analyzed. - Abstract: The criticality problem for one-speed neutrons in a uniform finite slab is studied in the case of a combination of forward and backward scattering with linearly anisotropic scattering using U N method based on the Chebyshev polynomials of second kind. The effect of the linear anisotropy on the critical thickness of the slab is investigated. The critical slab thicknesses are calculated by using Marshak boundary condition for various values of the anisotropy parameters and they are presented in the tables. In comparison to the results obtained by other methods, the results of this study are in compatible with the former ones

  2. Ultrasonic defect sizing using decibel drop methods. III

    International Nuclear Information System (INIS)

    Mills, C.; Goszczynski, J.; Mitchell, A.B.

    1988-03-01

    An earlier study on the use of ultrasonic decibel drop sizing methods for determining the length and vertical extent of flaws in welded steel sections was based on the scanning of machined flaws and fabrication flaws. The present study utilized the techniques developed to perform a similar study of the type of flaws expected to develop during service (e.g. fatigue cracks). The general findings are that: a) the use of decibel drops of less than 14 dB generally undersize the length of fatigue cracks; and b) the use of decibel drop methods to determine vertical extent is questionable

  3. Advanced Signal Processing for Thermal Flaw Detection; TOPICAL

    International Nuclear Information System (INIS)

    VALLEY, MICHAEL T.; HANSCHE, BRUCE D.; PAEZ, THOMAS L.; URBINA, ANGEL; ASHBAUGH, DENNIS M.

    2001-01-01

    Dynamic thermography is a promising technology for inspecting metallic and composite structures used in high-consequence industries. However, the reliability and inspection sensitivity of this technology has historically been limited by the need for extensive operator experience and the use of human judgment and visual acuity to detect flaws in the large volume of infrared image data collected. To overcome these limitations new automated data analysis algorithms and software is needed. The primary objectives of this research effort were to develop a data processing methodology that is tied to the underlying physics, which reduces or removes the data interpretation requirements, and which eliminates the need to look at significant numbers of data frames to determine if a flaw is present. Considering the strengths and weakness of previous research efforts, this research elected to couple both the temporal and spatial attributes of the surface temperature. Of the possible algorithms investigated, the best performing was a radiance weighted root mean square Laplacian metric that included a multiplicative surface effect correction factor and a novel spatio-temporal parametric model for data smoothing. This metric demonstrated the potential for detecting flaws smaller than 0.075 inch in inspection areas on the order of one square foot. Included in this report is the development of a thermal imaging model, a weighted least squares thermal data smoothing algorithm, simulation and experimental flaw detection results, and an overview of the ATAC (Automated Thermal Analysis Code) software that was developed to analyze thermal inspection data

  4. Detecting and revising flaws in OWL object property expressions

    CSIR Research Space (South Africa)

    Keet, CM

    2012-10-01

    Full Text Available to the ontologist's intention. However, the more one can do, the higher the chance modelling flaws are introduced; hence, an unexpected or undesired classification or inconsistency may actually be due to a mistake in the object property box, not the class axioms. We...

  5. According to Jim: The Flawed Normal Curve of Intelligence

    Science.gov (United States)

    Gallagher, James J.

    2008-01-01

    In this article, the author talks about the normal curve of intelligence which he thinks is flawed and contends that wrong conclusions have been drawn based on this spurious normal curve. An example is that of racial and ethnic differences wherein some authors maintain that some ethnic and racial groups are clearly superior to others based on…

  6. Detecting and Preventing Type flaws at Static Time

    DEFF Research Database (Denmark)

    Bodei, Chiara; Brodo, Linda; Degano, Pierpaolo

    2010-01-01

    A type flaw attack on a security protocol is an attack where an honest principal is cheated on interpreting a field in a message as the one with a type other than the intended one. In this paper, we shall present an extension of the LYSA calculus to cope with types, by using tags to represent...

  7. Ultrasonic imaging of material flaws exploiting multipath information

    Science.gov (United States)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  8. Ultrasonic defect-sizing using decibel drop methods. I

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1987-03-01

    Results are reported of a study performed to investigate the accuracy and repeatability of various ultrasonic decibel (dB) drop sizing methods in determining the length, vertical extent and orientation of artificial and real weld flaws in thin steel sections. Seven artificial flaws and nine real weld flaws were examined; over 200 data plots were produced. The general findings are: a) length and vertical extent are assessed most accurately when using a 14 dB drop from the maximum indication amplitude; b) decibel drops less that 14 dB generally undersize flaws while decibel drops greater than 14 dB generally oversize flaws; c) flaws which are smaller than the width of the sound beam cannot be assessed accurately using dB drop methods; d) large flaws are assessed most accurately when the sound beam strikes the flaws at near normal incidence; e) the vertical extent and orientation of large flaws are plotted most accurately using the beam centre line method as opposed to the beam profile method; and, f) the limitations of dB-drop-sizing methods have considerable ramifications for CAN3-N285.4-M83 and ASME XI evaluation criteria

  9. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  10. Applicability of Alignment and Combination Rules to Burst Pressure Prediction of Multiple-flawed Steam Generator Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Woo; Kim, Ji Seok; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Jeon, Jun Young [Doosan Heavy Industries and Consruction, Seoul (Korea, Republic of); Lee, Dong Min [Korea Plant Service and Engineering, Technical Research and Development Institute, Naju (Korea, Republic of)

    2016-05-15

    Alignment and combination rules are provided by various codes and standards. These rules are used to determine whether multiple flaws should be treated as non-aligned or as coplanar, and independent or combined flaws. Experimental results on steam generator (SG) tube specimens containing multiple axial part-through-wall (PTW) flaws at room temperature (RT) are compared with assessment results based on the alignment and combination rules of the codes and standards. In case of axial collinear flaws, ASME, JSME, and BS7910 treated multiple flaws as independent flaws and API 579, A16, and FKM treated multiple flaws as combined single flaw. Assessment results of combined flaws were conservative. In case of axial non-aligned flaws, almost flaws were aligned and assessment results well correlate with experimental data. In case of axial parallel flaws, both effective flaw lengths of aligned flaws and separated flaws was are same because of each flaw length were same. This study investigates the applicability of alignment and combination rules for multiple flaws on the failure behavior of Alloy 690TT steam generator (SG) tubes that widely used in the nuclear power plan. Experimental data of burst tests on Alloy 690TT tubes with single and multiple flaws that conducted at room temperature (RT) by Kim el al. compared with the alignment rules of these codes and standards. Burst pressure of SG tubes with flaws are predicted using limit load solutions that provide by EPRI Handbook.

  11. Determination of K-factors for arbitrarily shaped flaws at pressure vessel nozzle corners

    International Nuclear Information System (INIS)

    Bryson, J.W.

    1979-01-01

    Photoelastic and finite element studies are being conducted to determine Mode I stress intensity factor distributions along arbitrarily shaped flaw fronts at pressure vessel nozzle corners. Comparisons of results from NOZ-FLAW, BIGIF, and the photoelastic studies showed that (1) good agreement was obtained between NOZ-FLAW and the photoelastically determined K 1 's for the deep flaw in an ITV model, (2) good agreement was obtained between NOZ-FLAW BIGIF for shallow and moderately deep flaws in a BWR model, and (3) less satisfactory agreement was obtained between NOZ- FLAW and the photoelastic results for the BWR models, particularly for moderately deep to deep flaws. Attempts are presently being made at understanding and explaining the discrepancies between the two

  12. Analysis of the failure performance of internally pressurized piping with surface flaws

    International Nuclear Information System (INIS)

    Iorio, A.F; Crespi, J.C.

    1987-01-01

    Due to frequent failures an Atucha I PHWR moderator circuit branch piping, made of stainless steel type AISI 347 (DIN 1.4550), studies have been made, involving the application of several fracture mechanics criteria, in order to determine the conditions of leak-before-break (L.BB) and the critical crack length of the piping. These studies lead to the conclusions that, for a straight pipe of outer diameter of 219 mm and 16 mm wall thickness, with a circumferential flaw and the principal stress being in the bending, the L.BB criteria are satisfied, being the critical crack length of the order of 400 mm. A better mechanical finishing and heat treatment was suggested in order to improve the resistance to crack initiation. (Author)

  13. A general approach to flaw simulation in castings by superimposing projections of 3D models onto real X-ray images

    International Nuclear Information System (INIS)

    Hahn, D.; Mery, D.

    2003-01-01

    In order to evaluate the sensitivity of defect inspection systems, it is convenient to examine simulated data. This gives the possibility to tune the parameters of the inspection method and to test the performance of the system in critical cases. In this paper, a practical method for the simulation of defects in radioscopic images of aluminium castings is presented. The approach simulates only the flaws and not the whole radioscopic image of the object under test. A 3D mesh is used to model a flaw with complex geometry, which is projected and superimposed onto real radioscopic images of a homogeneous object according to the exponential attenuation law for X- rays. The new grey value of a pixel, where the 3D flaw is projected, depends only on four parameters: (a) the grey value of the original X-ray image without flaw; (b) the linear absorption coefficient of the examined material; (c) the maximal thickness observable in the radioscopic image; and (d) the length of the intersection of the 3D flaw with the modelled X-ray beam, that is projected into the pixel. A simulation of a complex flaw modelled as a 3D mesh can be performed in any position of the castings by using the algorithm described in this paper. This allows the evaluation of the performance of defect inspection systems in cases where the detection is known to be difficult. In this paper, we show experimental results on real X-ray images of aluminium wheels, in which 3D flaws like blowholes, cracks and inclusions are simulated

  14. Geophysics Fatally Flawed by False Fundamental Philosophy

    Science.gov (United States)

    Myers, L. S.

    2004-05-01

    For two centuries scientists have failed to realize Laplace's nebular hypothesis \\(1796\\) of Earth's creation is false. As a consequence, geophysicists today are misinterpreting and miscalculating many fundamental aspects of the Earth and Solar System. Why scientists have deluded themselves for so long is a mystery. The greatest error is the assumption Earth was created 4.6 billion years ago as a molten protoplanet in its present size, shape and composition. This assumption ignores daily accretion of more than 200 tons/day of meteorites and dust, plus unknown volumes of solar insolation that created coal beds and other biomass that increased Earth's mass and diameter over time! Although the volume added daily is minuscule compared with Earth's total mass, logic and simple addition mandates an increase in mass, diameter and gravity. Increased diameter from accretion is proved by Grand Canyon stratigraphy that shows a one kilometer increase in depth and planetary radius at a rate exceeding three meters \\(10 ft\\) per Ma from start of the Cambrian \\(540 Ma\\) to end of the Permian \\(245 Ma\\)-each layer deposited onto Earth's surface. This is unequivocal evidence of passive external growth by accretion, part of a dual growth and expansion process called "Accreation" \\(creation by accretion\\). Dynamic internal core expansion, the second stage of Accreation, did not commence until the protoplanet reached spherical shape at 500-600 km diameter. At that point, gravity-powered compressive heating initiated core melting and internal expansion. Expansion quickly surpassed the external accretion growth rate and produced surface volcanoes to relieve explosive internal tectonic pressure and transfer excess mass (magma)to the surface. Then, 200-250 Ma, expansion triggered Pangaea's breakup, first sundering Asia and Australia to form the Pacific Ocean, followed by North and South America to form the Atlantic Ocean, by the mechanism of midocean ridges, linear underwater

  15. OCA-II, a code for calculating the behavior of 2-D and 3-D surface flaws in a pressure vessel subjected to temperature and pressure transients

    International Nuclear Information System (INIS)

    Ball, D.G.; Drake, J.B.; Cheverton, R.D.; Iskander, S.K.

    1984-02-01

    The OCA-II computer code, like its predecessor OCA-I, performs the thermal, stress, and linear elastic fracture-mechanics analysis for long flaws on the surface of a cylinder that is subjected to thermal and pressure transients. OCA-II represents a revised and expanded version of OCA-I and includes as new features (1) cladding as a discrete region, (2) a finite-element subroutine for calculating the stresses, and (3) the ability to calculate stress intensity factors for certain three-dimensional flaws, for two-dimensional circumferential flaws on the inner surface, and for both axial and circumferential flaws on the outer surface. OCA-I considered only inner-surface flaws. An option is included in OCA-II that permits a search for critical values of fluence or nil-ductility reference temperature corresponding to a specified failure criterion. These and other features of OCA-II are described in the report, which also includes user instructions for the code

  16. Detector-device-independent quantum secret sharing with source flaws.

    Science.gov (United States)

    Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Liu, Hongwei; Yin, Zhenqiang; Cao, Zhu; Wu, Lingan

    2018-04-10

    Measurement-device-independent entanglement witness (MDI-EW) plays an important role for detecting entanglement with untrusted measurement device. We present a double blinding-attack on a quantum secret sharing (QSS) protocol based on GHZ state. Using the MDI-EW method, we propose a QSS protocol against all detector side-channels. We allow source flaws in practical QSS system, so that Charlie can securely distribute a key between the two agents Alice and Bob over long distances. Our protocol provides condition on the extracted key rate for the secret against both external eavesdropper and arbitrary dishonest participants. A tight bound for collective attacks can provide good bounds on the practical QSS with source flaws. Then we show through numerical simulations that using single-photon source a secure QSS over 136 km can be achieved.

  17. Acoustic emission/flaw relationships for inservice monitoring of LWRs

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Friesel, M.A.; Skorpik, J.R.; Dawson, J.F.

    1991-10-01

    The program concerning Acoustic Emission/Flaw Relationships for Inservice Monitoring of LWRs was initiated in FY76 with the objective of validating the application of acoustic emission (AE) to monitor nuclear reactor pressure-containing components during operation to detect cracking. The program has been supported by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Research and development has been performed by Pacific Northwest Laboratory, operated for the Department of Energy by Battelle Memorial Institute. The program has shown the feasibility of continuous, on-line AE monitoring to detect crack growth and produced validated methods for applying the technology. Included are relationships for estimating flaw severity from AE data and field applications at Watts Bar Unit 1 Reactor, Limerick Unit 1 Reactor, and the High Flux Isotope Reactor. This report discusses the program scope and organization, the three program phases and the results obtained, standard and code activities, and instrumentation and software developed under this program

  18. Reconstructing flaw image using dataset of full matrix capture technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Yong Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    A conventional phased array ultrasonic system offers the ability to steer an ultrasonic beam by applying independent time delays of individual elements in the array and produce an ultrasonic image. In contrast, full matrix capture (FMC) is a data acquisition process that collects a complete matrix of A-scans from every possible independent transmit-receive combination in a phased array transducer and makes it possible to reconstruct various images that cannot be produced by conventional phased array with the post processing as well as images equivalent to a conventional phased array image. In this paper, a basic algorithm based on the LLL mode total focusing method (TFM) that can image crack type flaws is described. And this technique was applied to reconstruct flaw images from the FMC dataset obtained from the experiments and ultrasonic simulation.

  19. AE/flaw characterization for nuclear pressure vessels

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Pappas, R.A.

    1984-01-01

    This chapter discusses the use of acoustic emission (AE) detected during continuous monitoring to identify and evaluate growing flaws in pressure vessels. Off-reactor testing and on-reactor testing are considered. Relationships for identifying acoustic emission (AE) from crack growth and using the AE data to estimate flaw severity have been developed experimentally by laboratory testing. The purpose of the off-reactor vessel test is to evaluate AE monitoring/interpretation methodology on a heavy section steel vessel under simulated reactor operating conditions. The purpose of on-reactor testing is to evaluate the capability of a monitor system to function in the reactor environment, calibrate the ability to detect AE signals, and to demonstrate that a meaningful criteria can be established to prevent false alarms. An expanded data base is needed from application testing and methodology standardization

  20. Flaws in design, analysis and interpretation of Pfizer's antifungal trials of voriconazole and uncritical subsequent quotations.

    Science.gov (United States)

    Jørgensen, Karsten J; Johansen, Helle Krogh; Gøtzsche, Peter C

    2006-01-19

    We have previously described how a series of trials sponsored by Pfizer of its antifungal drug, fluconazole, in cancer patients with neutropenia handicapped the control drug, amphotericin B, by flaws in design and analysis. We describe similar problems in two pivotal trials of Pfizer's new antifungal agent, voriconazole, published in a prestigious journal. In a non-inferiority trial, voriconazole was significantly inferior to liposomal amphothericin B, but the authors concluded that voriconazole was a suitable alternative. The second trial used amphothericin B deoxycholate as comparator, but handicapped the drug by not requiring pre-medication to reduce infusion-related toxicity or substitution with electrolytes and fluid to reduce nephrotoxicity, although the planned duration of treatment was 84 days. Voriconazole was given for 77 days on average, but the comparator for only 10 days, which precludes a meaningful comparison. In a random sample of 50 references to these trials, we found that the unwarranted conclusions were mostly uncritically propagated. It was particularly surprising that relevant criticism raised by the FDA related to the first trial was only quoted once, and that none of the articles noted the obvious flaws in the design of the second trial. We suggest that editors ensure that the abstract reflects fairly on the remainder of the paper, and that journals do not impose any time limit for accepting letters that point out serious weaknesses in a study that have not been noted before.

  1. Probabilistic assessment of flaw evaluation procedures for pressure vessel integrity

    International Nuclear Information System (INIS)

    Shaffer, D.H.; Bamford, W.H.; Jouris, G.M.

    1980-01-01

    Prudent design procedures, in order to err in the direction of conservative over-strength rather than risky under-strength, have taken bounding values rather than best estimates for material parameters, and wherever possible, used conservative input for the calculations. The growing data base for this work is now beginning to allow an assessment of the conservatism that has been incorporated into the design procedure. Quantitative estimates of the variability associated with crack growth rates and fracture toughness have been generated in connection with other studies, and it would be useful to incorporate such information into an overall assessment of the design margins that are prescribed. In addition to getting an estimate of the conservatism in the current procedure, this study should provide a useful insight into the relative degree of margin that is introduced at each stage of the flaw evaluation process. Identification of the step by step margins should lead to more effective data collection programs from which information for adequately controlling the design conservatism can be obtained. The study will also provide valuable guidance in fixing revised design reference curves and safety factors so that adequate overall margins can be maintained without excess conservatism. This study is limited to vessel rupture in a brittle mode, and examples for illustration are particularly related to the beltline region of a reactor pressure vessel. The methodology, however, is applicable to all regions for which the required stress analyses, operating history, and material parameters are available. The work being carried out here is in consonance with ASME Section XI on Flaw Evaluation Procedures. It is concerned both with flaws under normal operating conditions and flaws under faulted conditions. (author)

  2. Development of automatic flaw detection systems for magnetic particle examination

    International Nuclear Information System (INIS)

    Shirai, T.; Kimura, J.; Amako, T.

    1988-01-01

    Utilizing a video camera and an image processor, development was carried out on automatic flaw detection and discrimination techniques for the purpose of achieving automated magnetic particle examination. Following this, fluorescent wet magnetic particle examination systems for blade roots and rotor grooves of turbine rotors and the non-fluorescent dry magnetic particle examination system for butt welds, were developed. This paper describes these automatic magnetic particle examination (MT) systems and the functional test results

  3. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    Science.gov (United States)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  4. Critical Shape and Size for Dislocation Nucleation in Si1-xGex Islands on Si(001)

    International Nuclear Information System (INIS)

    Marzegalli, A.; Zinovyev, V. A.; Montalenti, F.; Miglio, Leo; Rastelli, A.; Schmidt, O. G.; Stoffel, M.; Merdzhanova, T.

    2007-01-01

    The critical volume for the onset of plastic strain relaxation in SiGe islands on Si(001) is computed for different Ge contents and realistic shapes by using a three-dimensional model, with position-dependent dislocation energy. It turns out that the critical bases for dome- and barnlike islands are different for any composition. By comparison to extensive atomic force microscopy measurements of the footprints left on the Si substrates by islands grown at different temperatures (and compositions), we conclude that, in contrast with planar films, dislocation nucleation in 3D islands is fully thermodynamic

  5. Estimation of Back-Surface Flaw Depth by Laminated Piezoelectric Highpolymer Film

    Directory of Open Access Journals (Sweden)

    Akinobu YAMAMOTO

    2009-08-01

    Full Text Available Piezoelectric thin films have been used to visualize back surface flaws in plates. If the plate with a surface flaw is deformed, the strain distribution appears on the other surface reflecting the location and the shape of the flaw. Such surface strain distribution can be transformed into the electric potential distribution on the piezoelectric film mounted on the plate surface. This paper deals with a NDE technique to estimate the depth of a back-surface flaw from the electric potential distribution on a laminated piezoelectric thin film. It is experimentally verified that the flaw depth can be exactly estimated by the peak height of the electric potential distribution.

  6. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  7. A review of recent advances in the role of leak-before-break concept in assessments of flaws detected in CANDU pressure tubes

    International Nuclear Information System (INIS)

    Crespi, J.C.

    1994-01-01

    If a crack develops in a pressure tube, the leak is detected by monitoring the moisture in the gas annulus and the reactor shutdown before it becomes unstable. Because the delayed hydride cracking has been associated to date with all pressure tube failures at a rolled joints, the delayed hydride cracking is considered to be the dominant mecanism by which the flaws can grow to a size which exceeds the critical crack length. For the delayed hydride cracking failure mode leak-before-break is used as defense in depth against unstable rupture. The methodology depends on showing than the time available to detect a delayed hydride crack is much greater that the time required to detect it in the gas annulus. The time available is estimated from measurements of: (a) axial delayed hydride crack growth rates, (b) crack lengths at penetrations of the tube wall when leakage first occurs and (c) critical crack lengths at instability when a crack is growing by the delayed hydride cracking mechanism. A review of recent advances in the experimental data used in leak-before-break assessment are presented and discussed. (author). 17 refs, 6 figs, 2 tabs

  8. Reliability assessment of hydraulic cylinders considering service loads and flaw distribution

    International Nuclear Information System (INIS)

    Altamura, Alessandra; Beretta, Stefano

    2012-01-01

    Manufacturing process, service conditions and material properties are all necessary requirements to a good design of tubular mechanical components subjected to fatigue. The most common approach to this design is usually deterministic, where a fixed NDT threshold, related to flaw acceptance limit, is set. However many uncertainties are left aside, i.e. the failure probability related to the fatigue strength under applied loads. This paper addresses the reliability evaluation of tubular mechanical components carrying some flaws and subjected to cyclic internal pressure variation. The aim is comparing the probability of failure obtained under several assumptions. A reliability assessment model, based on a random variable approach, has been implemented by using the Monte Carlo method. The analysis of the results, from a case study based on load spectra measurements of hydraulic cylinders of earth moving machines, has consented to evaluate the most important factors influencing the fatigue life prediction of these components. Highlights: ► Reliability evaluation of tubular components subjected to variable internal pressure. ► The dispersion of the threshold controls the stochasticity of crack growth. ► A random variable model has been developed using Monte Carlo. ► Initial crack size and spectrum shape are key factors in reliability evaluation.

  9. Universal Signatures of Quantum Critical Points from Finite-Size Torus Spectra: A Window into the Operator Content of Higher-Dimensional Conformal Field Theories.

    Science.gov (United States)

    Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M

    2016-11-18

    The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.

  10. Sheet of osteoblastic cells combined with platelet-rich fibrin improves the formation of bone in critical-size calvarial defects in rabbits.

    Science.gov (United States)

    Wang, Zhifa; Hu, Hanqing; Li, Zhijin; Weng, Yanming; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-04-01

    Techniques that use sheets of cells have been successfully used in various types of tissue regeneration, and platelet-rich fibrin (PRF) can be used as a source of growth factors to promote angiogenesis. We have investigated the effects of the combination of PRF and sheets of mesenchymal stem cells (MSC) from bone marrow on the restoration of bone in critical-size calvarial defects in rabbits to find out whether the combination promotes bony healing. Sheets of MSC and PRF were prepared from the same donor. We then implanted the combined MSC and PRF in critical-size calvarial defects in rabbits and assessed bony restoration by microcomputed tomography (microCT) and histological analysis. The results showed that PRF significantly increased bony regeneration at 8 weeks after implantation of sheets of MSC and PRF compared with sheets of MSC alone (p=0.0048). Our results indicate that the combination of sheets of MSC and PRF increases bone regeneration in critical-size calvarial defects in rabbits, and provides a new way to improve skeletal healing. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Using the Critical Incident Technique to Research Decision Making regarding Access to Training and Development in Medium-Sized Enterprises

    Science.gov (United States)

    Coetzer, Alan; Redmond, Janice; Sharafizad, Jalleh

    2012-01-01

    Employees in small and medium-sized enterprises (SMEs) form part of a "disadvantaged" group within the workforce that receives less access to training and development (T&D) than employees in large firms. Prior research into reasons for the relatively low levels of employee participation in training and development has typically…

  12. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles

    Directory of Open Access Journals (Sweden)

    Ester L. Pastor

    2015-10-01

    Full Text Available Mesoporous silicon has become a material of high interest for drug delivery due to its outstanding internal surface area and inherent biodegradability. We have previously reported the preparation of mesoporous silicon microparticles (MS-MPs synthesized by an advantageous electrochemical method, and showed that due to their inner structure they can adsorb proteins in amounts exceeding the mass of the carrier itself. Protein release from these MS-MPs showed low burst effect and fast delivery kinetics with complete release in a few hours. In this work, we explored if tailoring the size of the inner pores of the particles would retard the protein release process. To address this hypothesis, three new MS-MPs prototypes were prepared by electrochemical synthesis, and the resulting carriers were characterized for morphology, particle size, and pore structure. All MS-MP prototypes had 90 µm mean particle size, but depending on the current density applied for synthesis, pore size changed between 5 and 13 nm. The model protein α-chymotrypsinogen was loaded into MS-MPs by adsorption and solvent evaporation. In the subsequent release experiments, no burst release of the protein was detected for any prototype. However, prototypes with larger pores (>10 nm reached 100% release in 24–48 h, whereas prototypes with small mesopores (<6 nm still retained most of their cargo after 96 h. MS-MPs with ∼6 nm pores were loaded with the osteogenic factor BMP7, and sustained release of this protein for up to two weeks was achieved. In conclusion, our results confirm that tailoring pore size can modify protein release from MS-MPs, and that prototypes with potential therapeutic utility for regional delivery of osteogenic factors can be prepared by convenient techniques.

  13. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    Science.gov (United States)

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  14. Limitation of Infarct Size and No-Reflow by Intracoronary Adenosine Depends Critically on Dose and Duration.

    Science.gov (United States)

    Yetgin, Tuncay; Uitterdijk, André; Te Lintel Hekkert, Maaike; Merkus, Daphne; Krabbendam-Peters, Ilona; van Beusekom, Heleen M M; Falotico, Robert; Serruys, Patrick W; Manintveld, Olivier C; van Geuns, Robert-Jan M; Zijlstra, Felix; Duncker, Dirk J

    2015-12-28

    In the absence of effective clinical pharmacotherapy for prevention of reperfusion-mediated injury, this study re-evaluated the effects of intracoronary adenosine on infarct size and no-reflow in a porcine model of acute myocardial infarction using clinical bolus and experimental high-dose infusion regimens. Despite the clear cardioprotective effects of adenosine, when administered prior to ischemia, studies on cardioprotection by adenosine when administered at reperfusion have yielded contradictory results in both pre-clinical and clinical settings. Swine (54 ± 1 kg) were subjected to a 45-min mid-left anterior descending artery occlusion followed by 2 h of reperfusion. In protocol A, an intracoronary bolus of 3 mg adenosine injected over 1 min (n = 5) or saline (n = 10) was administered at reperfusion. In protocol B, an intracoronary infusion of 50 μg/kg/min adenosine (n = 15) or saline (n = 21) was administered starting 5 min prior to reperfusion and continued throughout the 2-h reperfusion period. In protocol A, area-at-risk, infarct size, and no-reflow were similar between groups. In protocol B, risk zones were similar, but administration of adenosine resulted in significant reductions in infarct size from 59 ± 3% of the area-at-risk in control swine to 46 ± 4% (p = 0.02), and no-reflow from 49 ± 6% of the infarct area to 26 ± 6% (p = 0.03). During reperfusion, intracoronary adenosine can limit infarct size and no-reflow in a porcine model of acute myocardial infarction. However, protection was only observed when adenosine was administered via prolonged high-dose infusion, and not via short-acting bolus injection. These findings warrant reconsideration of adenosine as an adjuvant therapy during early reperfusion. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Is signal detection theory fundamentally flawed? A response to Balakrishnan (1998a, 1998b, 1999).

    Science.gov (United States)

    Treisman, Michel

    2002-12-01

    For nearly 50 years, signal detection theory (SDT; Green & Swvets, 1966; Macmillan & Creelman, 1991) has been of central importance in the development of psychophysics and other areas of psychology. The theory has recently been challenged by Balakrishnan (1998b), who argues that, within SDT, an alternative index is "better justified" than d' and who claims to show (1998a, 1999) that SDT is fundamentally flawed and should be rejected. His evidence is based on new nonparametric measures that he has introduced and applied to experimental data. He believes his results show that basic assumptions of SDT are not supported-in particular, that payoff and probability manipulations do not affect the position of the decision criterion. In view of the importance of SDT in psychology, these claims deserve careful examination. They are critically reviewed here. It appears that it is Balakrishnans arguments that fail, and not SDT

  16. High-temperature flaw assessment procedure: A state-of-the-art survey

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.

    1989-05-01

    High-temperature crack growth under cyclic, static, and combined loading is received with an emphasis on fracture mechanics aspects. Experimental studies of the effects of loading history, microstructure, temperature, and environment on crack growth behavior are described and interpreted. The experimental evidence is used to examine crack growth parameters and theoretical models for fatigue, creep, and creep-fatigue crack propagation at elevated temperatures. The limitations of both elastic and elastic-plastic fracture mechanics for high-temperature subcritical crack growth are assessed. Existing techniques for modeling critical crack growth/ligament instability failure are also presented. Related topics of defect modeling and engineering flaw assessment procedures, nondestructive evaluation methods, and probabilistic failure analysis are briefly discussed. 142 refs., 33 figs

  17. Choice of sample size for high transport critical current density in a granular superconductor: percolation versus self-field effects

    International Nuclear Information System (INIS)

    Mulet, R.; Diaz, O.; Altshuler, E.

    1997-01-01

    The percolative character of the current paths and the self-field effects were considered to estimate optimal sample dimensions for the transport current of a granular superconductor by means of a Monte Carlo algorithm and critical-state model calculations. We showed that, under certain conditions, self-field effects are negligible and the J c dependence on sample dimensions is determined by the percolative character of the current. Optimal dimensions are demonstrated to be a function of the fraction of superconducting phase in the sample. (author)

  18. Household size is critical to varicella-zoster virus transmission in the tropics despite lower viral infectivity

    DEFF Research Database (Denmark)

    Nichols, Richard A; Averbeck, Karin T; Poulsen, Anja G

    2011-01-01

    with viral genetic information on routes of infection, to obtain precise estimates of disease transmission within and between houses. This community contains many large households in which different families live under a single roof, in living quarters divided by partitions. Our data show that household...... of infection as is commonly seen in other tropical countries. The young age of infection, which had drawn our attention to the Guinea Bissau population, can however be explained by the exceptionally large household sizes (mean 14.5 people). We have combined genetic and demographic data to show...

  19. A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Maheri, Alireza

    2014-01-01

    Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties affecting the amount of power produced by the system. In the design of systems subject to uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a deterministic design approach, the designer considers the presence of uncertainties and incorporates them indirectly into the design by applying safety factors. It is assumed that, by employing suitable safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the multi-objective optimisation problem with two objectives of reliability and cost is reduced to a single-objective optimisation problem with the objective of cost only. In this paper the competence of deterministic design methods in size optimisation of reliable standalone wind–PV–battery, wind–PV–diesel and wind–PV–battery–diesel configurations is examined. For each configuration, first, using different values of safety factors, the optimal size of the system components which minimises the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the effect of safety factors on the reliability and the cost are investigated. In performing reliability analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and average) and mean time between failures are considered. It is shown that the traditional methods of considering the effect of uncertainties in deterministic designs such as design for an autonomy period and employing safety factors have either little or unpredictable impact on the actual reliability of the designed wind–PV–battery configuration. In the case of wind–PV–diesel and wind–PV–battery–diesel configurations it is shown that, while using a high-enough margin of safety in sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading to a

  20. Evaluation of flaws or service induced cracks in pressure vessels

    International Nuclear Information System (INIS)

    Riccardella, P.C.; Copeland, J.F.; Gilman, J.

    1987-01-01

    An overview of the ASME flaw evaluation procedures for nuclear pressure vessels is presented, with emphasis on fatigue crack growth evaluations. Environmental and load-rate effects are further considered with respect to new crack growth data and a time-dependent crack growth model. This new crack growth model is applied to evaluate feedwater nozzle cracking in boiling water reactors and is compared to current and past ASME crack growth curves. The time-dependent model bounds the observed cracking and indicates that more detailed consideration of material susceptibility, in terms of sulfur content and product form, is needed

  1. Windows Vista Kernel-Mode: Functions, Security Enhancements and Flaws

    Directory of Open Access Journals (Sweden)

    Mohammed D. ABDULMALIK

    2008-06-01

    Full Text Available Microsoft has made substantial enhancements to the kernel of the Microsoft Windows Vista operating system. Kernel improvements are significant because the kernel provides low-level operating system functions, including thread scheduling, interrupt and exception dispatching, multiprocessor synchronization, and a set of routines and basic objects.This paper describes some of the kernel security enhancements for 64-bit edition of Windows Vista. We also point out some weakness areas (flaws that can be attacked by malicious leading to compromising the kernel.

  2. MILITARY RESEARCH: Researchers Target Flaws in Ballistic Missile Defense Plan.

    Science.gov (United States)

    Malakoff, D; Cho, A

    2000-06-16

    More than three dozen scientists journeyed to Washington, D.C., this week to warn lawmakers that a proposed $60 billion U.S. missile defense system, designed to knock incoming warheads out of the sky, is technically flawed because it can't pick out real warheads from decoys. Pentagon officials heatedly deny a new report by one scientist that contractors have rigged trials to hide the problem, although they admit that some tests were simplified to save time. In the wake of these events, a leading Democrat is urging President Bill Clinton to delay a pending decision on building the system.

  3. Toward critical bioethics.

    Science.gov (United States)

    Árnason, Vilhjálmur

    2015-04-01

    This article deals with the question as to what makes bioethics a critical discipline. It considers different senses of criticism and evaluates their strengths and weaknesses. A primary method in bioethics as a philosophical discipline is critical thinking, which implies critical evaluation of concepts, positions, and arguments. It is argued that the type of analytical criticism that restricts its critical role to critical thinking of this type often suffers from other intellectual flaws. Three examples are taken to demonstrate this: premature criticism, uncritical self-understanding of theoretical assumptions, and narrow framing of bioethical issues. Such flaws can lead both to unfair treatment of authors and to uncritical discussion of topics. In this context, the article makes use of Häyry's analysis of different rationalities in bioethical approaches and argues for the need to recognize the importance of communicative rationality for critical bioethics. A radically different critical approach in bioethics, rooted in social theory, focuses on analyses of power relations neglected in mainstream critical thinking. It is argued that, although this kind of criticism provides an important alternative in bioethics, it suffers from other shortcomings that are rooted in a lack of normative dimensions. In order to complement these approaches and counter their shortcomings, there is a need for a bioethics enlightened by critical hermeneutics. Such hermeneutic bioethics is aware of its own assumptions, places the issues in a wide context, and reflects critically on the power relations that stand in the way of understanding them. Moreover, such an approach is dialogical, which provides both a critical exercise of speech and a normative dimension implied in the free exchange of reasons and arguments. This discussion is framed by Hedgecoe's argument that critical bioethics needs four elements: to be empirically rooted, theory challenging, reflexive, and politely skeptical.

  4. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements

    Directory of Open Access Journals (Sweden)

    M.P. Smith

    2016-05-01

    Full Text Available The rare earth elements are unusual when defining giant-sized ore deposits, as resources are often quoted as total rare earth oxide, but the importance of a deposit may be related to the grade for individual, or a limited group of the elements. Taking the total REE resource, only one currently known deposit (Bayan Obo would class as giant (>1.7 × 107 tonnes contained metal, but a range of others classify as large (>1.7 × 106 tonnes. With the exception of unclassified resource estimates from the Olympic Dam IOCG deposit, all of these deposits are related to alkaline igneous activity – either carbonatites or agpaitic nepheline syenites. The total resource in these deposits must relate to the scale of the primary igneous source, but the grade is a complex function of igneous source, magmatic crystallisation, hydrothermal modification and supergene enrichment during weathering. Isotopic data suggest that the sources conducive to the formation of large REE deposits are developed in subcontinental lithospheric mantle, enriched in trace elements either by plume activity, or by previous subduction. The reactivation of such enriched mantle domains in relatively restricted geographical areas may have played a role in the formation of some of the largest deposits (e.g. Bayan Obo. Hydrothermal activity involving fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in grade, depending on primary mineralogy and the availability of ligands. Weathering and supergene enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld (Australia and Tomtor (Russia. For the individual REE with the current highest economic value (Nd and the HREE, the boundaries for the large and giant size classes are two orders of magnitude lower, and deposits enriched in these metals (agpaitic systems, ion absorption deposits may have significant economic impact in the near future.

  5. Effect of the critical current density and the junction size on the leakage current of Nb/Al-AlOx/Nb superconducting tunnel junctions for radiation detection

    International Nuclear Information System (INIS)

    Joosse, K.; Nakagawa, Hiroshi; Akoh, Hiroshi; Takada, Susumu; Maehata, Keisuke; Ishibashi, Kenji.

    1996-01-01

    Nb/Al-AlO x /Nb superconducting tunnel junctions (STJ's) designed for X-ray detection have been fabricated. The behavior of the low-temperature subgap leakage current, which severely limits the energy resolution obtained in such devices, is investigated. From trends in the dependence of the leakage currents on the critical current density and the size of the STJ, as well as from the low-temperature current-voltage characteristics, and an analysis of the base electrode surface morphology, it is concluded that physical defects in the barrier region are the most probable cause of the leakage currents. Suggestions are given for optimization of the device processing. (author)

  6. Rotating flux-focusing eddy current probe for flaw detection

    Science.gov (United States)

    Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Nath, Shridhar C. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)

    1997-01-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil, The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  7. Gun bore flaw image matching based on improved SIFT descriptor

    Science.gov (United States)

    Zeng, Luan; Xiong, Wei; Zhai, You

    2013-01-01

    In order to increase the operation speed and matching ability of SIFT algorithm, the SIFT descriptor and matching strategy are improved. First, a method of constructing feature descriptor based on sector area is proposed. By computing the gradients histogram of location bins which are parted into 6 sector areas, a descriptor with 48 dimensions is constituted. It can reduce the dimension of feature vector and decrease the complexity of structuring descriptor. Second, it introduce a strategy that partitions the circular region into 6 identical sector areas starting from the dominate orientation. Consequently, the computational complexity is reduced due to cancellation of rotation operation for the area. The experimental results indicate that comparing with the OpenCV SIFT arithmetic, the average matching speed of the new method increase by about 55.86%. The matching veracity can be increased even under some variation of view point, illumination, rotation, scale and out of focus. The new method got satisfied results in gun bore flaw image matching. Keywords: Metrology, Flaw image matching, Gun bore, Feature descriptor

  8. Eddy current probe and method for flaw detection in metals

    Science.gov (United States)

    Watjen, John P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner.

  9. Stepped frequency imaging for flaw monitoring: Final report

    International Nuclear Information System (INIS)

    Hildebrand, B.P.

    1988-09-01

    This report summarizes the results of research into the usefulness of stepped frequency imaging (SFI) to nuclear power plant inspection. SFI is a method for producing ultrasonic holographic images without the need to sweep a two-dimensional aperture with the transducer. Instead, the transducer may be translated along a line. At each position of the transducer the frequency is stepped over a finite preselected bandwidth. The frequency stepped data is then processed to synthesize the second dimension. In this way it is possible to generate images in regions that are relatively inaccessible to two-dimensional scanners. This report reviews the theory and experimental work verifying the technique, and then explores its possible applications in the nuclear power industry. It also outlines how this new capability can be incorporated into the SDL-1000 Imaging System previously developed for EPRI. The report concludes with five suggestions for uses for the SFI method. These are: monitoring suspect or repaired regions of feedwater nozzles; monitoring pipe cracks repaired by weld overlay; monitoring crack depth during test block production; imaging flaws where access is difficult; and imaging flaws through cladding without distortion

  10. Amplitude-independent flaw length determination using differential eddy current

    Science.gov (United States)

    Shell, E.

    2013-01-01

    Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.

  11. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  12. A methodology for determining fabrication flaws in a reactor pressure vessel

    International Nuclear Information System (INIS)

    Schuster, G.J.; Doctor, S.R.; Simonen, F.A.

    1996-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted a program with the major objective of estimating the rate of occurrence of fabrication flaws in US light-water reactor pressure vessels (RPVs). In this study, RPV mate4rial was examined using the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT-UT) to detect and characterize flaws created during fabrication. The inspection data obtained in this program has been analyzed to address the rates of flaw occurrence

  13. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Valevich, M.I.

    1984-01-01

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  14. Critical assessment of the pore size distribution in the rim region of high burnup UO{sub 2} fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cappia, F. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Department of Nuclear Engineering, Faculty of Mechanical Engineering, Technische Universität München, D-85748 Garching bei München (Germany); Pizzocri, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Nuclear Engineering Division, Energy Department, Politecnico di Milano, 20156 Milano (Italy); Schubert, A.; Van Uffelen, P.; Paperini, G.; Pellottiero, D. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Macián-Juan, R. [Department of Nuclear Engineering, Faculty of Mechanical Engineering, Technische Universität München, D-85748 Garching bei München (Germany); Rondinella, V.V., E-mail: Vincenzo.RONDINELLA@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2016-11-15

    A new methodology is introduced to analyse porosity data in the high burnup structure. Image analysis is coupled with the adaptive kernel density estimator to obtain a detailed characterisation of the pore size distribution, without a-priori assumption on the functional form of the distribution. Subsequently, stereological analysis is carried out. The method shows advantages compared to the classical approach based on the histogram in terms of detail in the description and accuracy within the experimental limits. Results are compared to the approximation of a log-normal distribution. In the investigated local burnup range (80–200 GWd/tHM), the agreement of the two approaches is satisfactory. From the obtained total pore density and mean pore diameter as a function of local burnup, pore coarsening is observed starting from ≈100 GWd/tHM, in agreement with a previous investigation. - Highlights: • A new methodology to analyse porosity is introduced. • The method shows advantages compared to the histogram. • Pore density and mean diameter data vs. burnup are presented. • Pore coarsening is observed starting from ≈100 GWd/tHM.

  15. Critical assessment of the pore size distribution in the rim region of high burnup UO_2 fuels

    International Nuclear Information System (INIS)

    Cappia, F.; Pizzocri, D.; Schubert, A.; Van Uffelen, P.; Paperini, G.; Pellottiero, D.; Macián-Juan, R.; Rondinella, V.V.

    2016-01-01

    A new methodology is introduced to analyse porosity data in the high burnup structure. Image analysis is coupled with the adaptive kernel density estimator to obtain a detailed characterisation of the pore size distribution, without a-priori assumption on the functional form of the distribution. Subsequently, stereological analysis is carried out. The method shows advantages compared to the classical approach based on the histogram in terms of detail in the description and accuracy within the experimental limits. Results are compared to the approximation of a log-normal distribution. In the investigated local burnup range (80–200 GWd/tHM), the agreement of the two approaches is satisfactory. From the obtained total pore density and mean pore diameter as a function of local burnup, pore coarsening is observed starting from ≈100 GWd/tHM, in agreement with a previous investigation. - Highlights: • A new methodology to analyse porosity is introduced. • The method shows advantages compared to the histogram. • Pore density and mean diameter data vs. burnup are presented. • Pore coarsening is observed starting from ≈100 GWd/tHM.

  16. Method for the detection of flaws in a tube proximate a contiguous member

    International Nuclear Information System (INIS)

    Holt, A.E.; Wehrmeister, A.E.; Whaley, H.L.

    1979-01-01

    A method for deriving the eddy current signature of a flaw in a tube proximate a contiguous member which is obscured in a composite signature of the flaw and contiguous member comprises subtracting from the composite signature a reference eddy current signature generated by scanning a reference or facsimile tube and contiguous member. The method is particularly applicable to detecting flaws in the tubes of heat exchangers of fossil fuel and nuclear power plants to enable the detection of flaws which would otherwise be obscured by contiguous members such as support plates supporting the tubes. (U.K.)

  17. Experimental verification on limit load estimation method for pipes with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Miura, Naoki; Hoshino, Katsuaki

    2010-01-01

    When a flaw is detected in stainless steel pipes during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in these codes, the limit load criterion is only provided for pipes containing a flaw with uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in pipes. In order to evaluate the integrity of the flawed pipes for general case, a limit load estimation method has been proposed by authors considering a circumferential surface flaw with arbitrary shape. The plastic collapse bending moment and corresponding stress are obtained by dividing the surface flaw into several segmented sub-flaws. In this paper, the proposed method was verified by comparing with experimental results. Four-point bending experiments were carried out for full scale stainless steel pipes with a symmetrical or non-symmetrical circumferential flaw. Estimated failure bending moments by the proposed method were found to be in good agreement with the experimental results, and the proposed method was confirmed to be effective for evaluating bending failure of pipes with flaw. (author)

  18. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats

    Science.gov (United States)

    Qi, Xin; Liu, Yang; Ding, Zhen-Yu; Cao, Jia-Qing; Huang, Jing-Huan; Zhang, Jie-Yuan; Jia, Wei-Tao; Wang, Jing; Liu, Chang-Sheng; Li, Xiao-Lin

    2017-02-01

    In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.

  19. Acceleration of bone union after structural bone grafts with a collagen-binding basic fibroblast growth factor anchored-collagen sheet for critical-size bone defects

    International Nuclear Information System (INIS)

    Ueno, Masaki; Uchida, Kentaro; Saito, Wataru; Inoue, Gen; Takahira, Naonobu; Takaso, Masashi; Matsushita, Osamu; Yogoro, Mizuki; Nishi, Nozomu; Ogura, Takayuki; Hattori, Shunji; Tanaka, Keisuke

    2014-01-01

    Bone allografts are commonly used for the repair of critical-size bone defects. However, the loss of cellular activity in processed grafts markedly reduces their healing potential compared with autografts. To overcome this obstacle, we developed a healing system for critical-size bone defects that consists of overlaying an implanted bone graft with a collagen sheet (CS) loaded with basic fibroblast growth factor (bFGF) fused to the collagen-binding domain derived from a Clostridium histolyticum collagenase (CB-bFGF). In a murine femoral defect model, defect sites treated with CS/CB-bFGF had a significantly larger callus volume than those treated with CS/native bFGF. In addition, treatment with CS/CB-bFGF resulted in the rapid formation of a hard callus bridge and a larger total callus volume at the host–graft junction than treatment with CS/bFGF. Our results suggest that the combined use of CS and CB-bFGF helps accelerate the union of allogenic bone grafts. (paper)

  20. Double-plating of ovine critical sized defects of the tibia: a low morbidity model enabling continuous in vivo monitoring of bone healing

    Directory of Open Access Journals (Sweden)

    Pearce Alexandra

    2011-09-01

    Full Text Available Abstract Background Recent studies using sheep critical sized defect models to test tissue engineered products report high morbidity and complications rates. This study evaluates a large bone defect model in the sheep tibia, stabilized with two, a novel Carbon fibre Poly-ether-ether-ketone (CF-PEEK and a locking compression plate (LCP which could sustain duration for up to 6 month with an acceptable low complication rate. Methods A large bone defect of 3 cm was performed in the mid diaphysis of the right tibia in 33 sheep. The defect was stabilised with the CF - PEEK plate and an LCP. All sheep were supported with slings for 8 weeks after surgery. The study was carried out for 3 months in 6 and for 6 months in 27 animals. Results The surgical procedure could easily be performed in all sheep and continuous in vivo radiographic evaluation of the defect was possible. This long bone critical sized defect model shows with 6.1% a low rate of complications compared with numbers mentioned in the literature. Conclusions This experimental animal model could serve as a standard model in comparative research. A well defined standard model would reduce the number of experimental animals needed in future studies and would therefore add to ethical considerations.

  1. Accomplishments: AE characterization program for remote flaw evaluation

    International Nuclear Information System (INIS)

    Hutton, P.H.; Schwenk, E.B.; Kurtz, R.J.

    1978-01-01

    The purpose of the program is to develop an experimental/analytical evaluation of the feasibility of detecting and analyzing flaw growth in reactor pressure boundaries by means of continuously monitoring acoustic emission (AE). The investigation is devoted exclusively to ASTM Type A533, Grade B, Class 1 material. The basic approach to interpretive model development is through laboratory testing of 1 to 1 1 / 2 inch (25.4 to 38 mm) thick fracture mechanics specimens in both fatigue and fracture at both room temperature and 550 0 F (288 0 C). Seven parameters are measured for each AE signal and related to fracture mechanics functions. AE data from fracture testing of 6 inch (152 mm) wall pressure vessels are also incorporated in analysis

  2. Design Flaws and Service System Breakdowns: Learning from Systems Thinking

    Directory of Open Access Journals (Sweden)

    David Ing

    2014-12-01

    Full Text Available In what ways might systems thinking be helpful to designers?  In the 21st century, the types of project with which designers have become engaged has expanded to include service systems.  Service systems are typically composites of mechanisms, organisms, human beings and ecologies.  Systems thinking is a perspective with theories, methods and practices that enables transcending disciplinary boundaries.  Application of systems thinking in designing a service system can aid in surfacing potential flaws and/or anticipating future breakdowns in functions, structures and/or processes. Designers and systems thinkers should work together to improve the nature of service systems.  As a starter set into these conversations, seven conditions are proposed as a starting context.  These conditions are presented neither as rigourously defined nor as exhaustive, but as an entry point into future joint engagement.

  3. 'Moral distress'--time to abandon a flawed nursing construct?

    Science.gov (United States)

    Johnstone, Megan-Jane; Hutchinson, Alison

    2015-02-01

    Moral distress has been characterised in the nursing literature as a major problem affecting nurses in all healthcare systems. It has been portrayed as threatening the integrity of nurses and ultimately the quality of patient care. However, nursing discourse on moral distress is not without controversy. The notion itself is conceptually flawed and suffers from both theoretical and practical difficulties. Nursing research investigating moral distress is also problematic on account of being methodologically weak and disparate. Moreover, the ultimate purpose and significance of the research is unclear. In light of these considerations, it is contended that the notion of moral distress ought to be abandoned and that concerted attention be given to advancing inquiries that are more conducive to improving the quality and safety of moral decision-making, moral conduct and moral outcomes in nursing and healthcare domains. © The Author(s) 2013.

  4. Profitable failure: antidepressant drugs and the triumph of flawed experiments.

    Science.gov (United States)

    McGoey, Linsey

    2010-01-01

    Drawing on an analysis of Irving Kirsch and colleagues' controversial 2008 article in "PLoS [Public Library of Science] Magazine" on the efficacy of SSRI antidepressant drugs such as Prozac, I examine flaws within the methodologies of randomized controlled trials (RCTs) that have made it difficult for regulators, clinicians and patients to determine the therapeutic value of this class of drug. I then argue, drawing analogies to work by Pierre Bourdieu and Michael Power, that it is the very limitations of RCTs -- their inadequacies in producing reliable evidence of clinical effects -- that help to strengthen assumptions of their superiority as methodological tools. Finally, I suggest that the case of RCTs helps to explore the question of why failure is often useful in consolidating the authority of those who have presided over that failure, and why systems widely recognized to be ineffective tend to assume greater authority at the very moment when people speak of their malfunction.

  5. Potential steam generator tube rupture in the presence of severe accident thermal challenge and tube flaws due to foreign object wear

    International Nuclear Information System (INIS)

    Liao, Y.; Guentay, S.

    2009-01-01

    This study develops a methodology to assess the probability for the degraded PWR steam generator to rupture first in the reactor coolant pressure boundary, under severe accident conditions with counter-current natural circulating high temperature gas in the hot leg and SG tubes. The considered SG tube flaws are caused by foreign object wear, which in recent years has emerged as a major inservice degradation mechanism for the new generation tubing materials. The first step develops the statistical distributions for the flaw frequency, size, and the flaw location with respect to the tube length and the tube's tubesheet position, based on data of hundreds of flaws reported in numerous SG inservice inspection reports. The next step performs thermal-hydraulic analysis using the MELCOR code and recent CFD findings to predict the thermal challenge to the degraded tubes and the tube-to-tube difference in thermal response at the SG entrance. The final step applies the creep rupture models in the Monte Carlo random walk to test the potential for the degraded SG to rupture before the surge line. The mean and range of the SG tube rupture probability can be applied to estimate large early release frequency in probabilistic safety assessment.

  6. An corrective method to correct of the inherent flaw of the asynchronization direct counting circuit

    International Nuclear Information System (INIS)

    Wang Renfei; Liu Congzhan; Jin Yongjie; Zhang Zhi; Li Yanguo

    2003-01-01

    As a inherent flaw of the Asynchronization Direct Counting Circuit, the crosstalk, which is resulted from the randomicity of the time-signal always exists between two adjacent channels. In order to reduce the counting error derived from the crosstalk, the author propose an effective method to correct the flaw after analysing the mechanism of the crosstalk

  7. Development of an Intelligent Ultrasonic Signature Classification Software for Discrimination of Flaws in Weldments

    International Nuclear Information System (INIS)

    Kim, H. J.; Song, S. J.; Jeong, H. D.

    1997-01-01

    Ultrasonic pattern recognition is the most effective approach to the problem of discriminating types of flaws in weldments based on ultrasonic flaw signals. In spite of significant progress in the research on this methodology, it has not been widely used in many practical ultrasonic inspections of weldments in industry. Hence, for the convenient application of this approach in many practical situations, we develop an intelligent ultrasonic signature classification software which can discriminate types of flaws in weldments based on their ultrasonic signals using various tools in artificial intelligence such as neural networks. This software shows the excellent performance in an experimental problem where flaws in weldments are classified into two categories of cracks and non-cracks. This performance demonstrates the high possibility of this software as a practical tool for ultrasonic flaw classification in weldments

  8. Ultrasonic Transducer Design for the Axial Flaw Detection of Dissimilar Metal Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Kim, Yong Sik; Yang, Seung Han

    2011-01-01

    Dissimilar metal welds in nuclear power plant are known as very susceptible to PWSCC flaws, and periodically inspected by the qualified inspector and qualified procedure during in-service inspection period. According to field survey data, the majority of their DMWs are located on tapered nozzle or adjacent to a tapered component. These types of configurations restrict examination access and also limit examination volume coverage. Additionally, circumferential scan for axially oriented flaw is very difficult to detect located on tapered surface because the transducer can't receive flaw response from reflector for miss-orientation. To overcome this miss-orientation, it is necessary adapt skewed ultrasonic transducer accommodate tapered surface. The skewed refracted longitudinal ultrasonic transducer designed by modeling and manufactured from the modelling result for axial flaw detection. Experimental results showed that the skewed refracted longitudinal ultrasonic transducer get higher flaw response than non-skewed refracted longitudinal ultrasonic transducer

  9. Development of technology on natural flaw fabrication and precise diagnosis for the major components in NPPs

    International Nuclear Information System (INIS)

    Han, Jung Ho; Choi, Myung Sik; Lee, Doek Hyun; Hur, Do Haeng

    2002-01-01

    The objective of this research is to develop a fabrication technology of natural flaw specimen of major components in NPPs and a technology of precise diagnosis for failure and degradation of components using natural flaw specimen. 1) Successful development of the natural flaw fabrication technology of SG tube 2) Evaluation of ECT signal and development of precise diagnosis using natural flaws. - Determination of length, depth, width, and multiplicity of fabricated natural flaws. - Informations about detectability and accuracy of ECT evaluation on various kinds of defects are collected when the combination of probe and frequency is changed. - An advanced technology for precise ECT evaluation is established. 3) Application of precise ECT diagnosis to failure analysis of SG tube in operation. - Fretting wear of KSNP SG. - ODSCC at tube expanded region of KSNP SG. - Determination of through/non-through wall of axial crack

  10. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model.

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo

    2013-11-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.

  11. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    Science.gov (United States)

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  12. One size fits all? Designer-institutions: Lessons from two flawed attempts in Malawi

    Directory of Open Access Journals (Sweden)

    Tomas Moe Skjølsvold

    2010-07-01

    Full Text Available This article observes two examples of attempted institutional design in Malawi's central region, Kasungu. In both cases external development actors enter local communities, and establish infrastructure to exploit two common sources of water. One is the exploitation of a river for group irrigation, the other a borehole to facilitate appropriation from a source of ground water. In both cases the infrastructure is accompanied by elaborate schemes of governance, ignoring the pre-existing social and bio-physical traits of the area. The results are two non-robust systems, collapsing under the weight of latent conflicts fuelled by the areas pre-existing institutional and bio-physical configuration. Using the framework of robustness in Social-Ecological Systems as a practical-analytical tool, the entities of the two systems are identified and their failure illustrated. The particular lessons drawn from the two cases are transformed into five general points meant to stimulate both development practitioners and future research endeavors.

  13. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    Directory of Open Access Journals (Sweden)

    Fu YC

    2015-12-01

    Full Text Available Yin-Chih Fu,1–4 Yan-Hsiung Wang,1,5 Chung-Hwan Chen,1,3,4 Chih-Kuang Wang,1,6 Gwo-Jaw Wang,1,3,4 Mei-Ling Ho1,3,7,8 1Orthopaedic Research Center, 2Graduate Institute of Medicine, 3Department of Orthopaedics, 4Department of Orthopaedics, College of Medicine, 5School of Dentistry, College of Dental Medicine, 6Department of Medicinal and Applied Chemistry, 7Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 8Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, TaiwanAbstract: Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid microspheres (SIM/PLGA that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration

  14. Simplified probabilistic approach to determine safety factors in deterministic flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Ardillon, E.

    1997-01-01

    The flaw acceptance rules in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a reliable method of evaluating the safety margins and the integrity of components led Electricite de France to launch a study to link safety factors with requested reliability. A simplified analytical probabilistic approach is developed to analyse the failure risk in Fracture Mechanics. Assuming lognormal distributions of the main random variables, it is possible considering a simple Linear Elastic Fracture Mechanics model, to determine the failure probability as a function of mean values and logarithmic standard deviations. The 'design' failure point can be analytically calculated. Partial safety factors on the main variables (stress, crack size, material toughness) are obtained in relation with reliability target values. The approach is generalized to elastic plastic Fracture Mechanics (piping) by fitting J as a power law function of stress, crack size and yield strength. The simplified approach is validated by detailed probabilistic computations with PROBAN computer program. Assuming reasonable coefficients of variations (logarithmic standard deviations), the method helps to calibrate safety factors for different components taking into account reliability target values in normal, emergency and faulted conditions. Statistical data for the mechanical properties of the main basic materials complement the study. The work involves laboratory results and manufacture data. The results of this study are discussed within a working group of the French in service inspection code RSE-M. (authors)

  15. Development of an intelligent system for ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung-Jin; Kim, Hak-Joon; Cho, Hyeon

    2002-01-01

    Even though ultrasonic pattern recognition is considered as the most effective and promising approach to flaw classification in weldments, its application to the realistic field inspection is still very limited due to the crucial barriers in cost, time and reliability. To reduce such barriers, previously we have proposed an intelligent system approach that consisted of the following four ingredients: (1) a PC-based ultrasonic testing (PC-UT) system; (2) an effective invariant ultrasonic flaw classification algorithm; (3) an intelligent flaw classification software; and (4) a database with abundant experimental flaw signals. In the present work, for performing the ultrasonic flaw classification in weldments in a real-time fashion in many real word situations, we develop an intelligent system, which is called the 'Intelligent Ultrasonic Evaluation System (IUES)' by the integration of the above four ingredients into a single, unified system. In addition, for the improvement of classification accuracy of flaws, especially slag inclusions, we expand the feature set by adding new informative features, and demonstrate the enhanced performance of the IUES with flaw signals in the database constructed previously. And then, to take care of the increased redundancy in the feature set due to the addition of features, we also propose two efficient schemes for feature selection: the forward selection with trial and error, and the forward selection with criteria of the error probability and the linear correlation coefficients of individual features

  16. Self-propelled x-ray flaw detector

    International Nuclear Information System (INIS)

    Ershov, L.S.; Krasilnikov, S.B.; Lozovoi, L.N.; Losev, J.F.; Morgovsky, L.Y.; Pelix, E.A.; Khakimyanov, R.R.

    1988-01-01

    A self-propelled X-ray flaw detector for radiographic inspection of welded joints in pipelines comprises a carriage mounting a motor, a detector having two Geiger counters, a pulsed X-ray generator, and an exposure and carriage electronic control system. A memory unit in the control system has four storage elements containing information about the motion of the carriage. As the carriage moves in direction A, first one and then the other of the Geiger counters receives radiation from an isotope source positioned near a joint, and by means of logic circuitry in the control system, the information in the storage elements is modified to stop the carriage and to operate a timer to expose the weld. During exposure the X-rays may interfere with the information in the storage elements, but by means of a square-wave generator and the logic circuitry, the stored information is correctly reset in order to eliminate false operation of the memory unit. (author)

  17. Enron Flaws In Organizational Architecture And Its Failure

    Directory of Open Access Journals (Sweden)

    Nguyen

    2015-08-01

    Full Text Available A series of corporate scandals at the beginning of last decade has given rise to the doubt on the efficiency of corporate governance practice in the United States. Of these scandals the collapse of Enron has exceptionally captured the public concern. It was the once seventh-largest company in the United States 1. It was rated the most innovative large company in America in Fortunes Most Admired Companies survey 2. In August 2000 its stock reached a peak of nearly 70 billion 3. However within a year its stock had become almost useless papers 2. It just was unbelievable for many people. What went wrong Was it due to the failure of corporate governance in general Actually the central factor leading to the collapse of Enron was the failure in its organizational architecture. This paper starts by providing an overview of corporate governance system with an emphasis on the corporate organizational architecture as its important facet. Then it discusses flaws in the organizational architecture of Enron and argues that these eventually led to the breakdown of the whole corporate governance system at Enron. Finally some implications and lessons for the practice of corporate governance are presented.

  18. Flaw assessment procedure for high temperature reactor components

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-01-01

    An interim high-temperature flaw assessment procedure is described. This is a result of a collaborative effort between Electric Power Research Institute in the USA, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the UK. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack growth laws may be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. Some of these limitations are to be addressed in an extension of the current collaborative program. 20 refs

  19. Design of Friction Stir Welding Tool for Avoiding Root Flaws.

    Science.gov (United States)

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-12-12

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.

  20. Cracking and Failure in Rock Specimen Containing Combined Flaw and Hole under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Xiang Fan

    2018-01-01

    Full Text Available Flaw is a key factor influencing failure behavior of a fractured specimen. In the present study, rectangular-flawed specimens were prepared using sandstone to investigate the effect of flaw on failure behavior of rock. Open flaw and cylindrical hole were simultaneously precut within rock specimens using high-pressure water jet cutting technology. Five series of specimens including intact, single-hole-alone, two-hole-alone, single-hole and two-flaw, and two-hole and single-flaw blocks were prepared. Uniaxial compressive tests using a rigid servo control instrument were carried out to investigate the fracture processes of these flawed specimens. It is observed that during loading, internal stress always intensively distributed at both sidewalls of open hole, especially at midpoint of sidewalls, so rock crumb flaking was firstly observed among all sandstone specimens containing single hole or two holes. Cracking around open hole is associated with the flaw inclination angle which was observed in Series III and V. Crack easily initiated at the tips of flaw with inclination angles of 0°, 30°, and 60° but hard for 90° in Series III and V. Rock burst was the major failure mode among most tested specimens, which generally induced new cracks and finally created crater shape. Additionally, due to extrusion between blocks, new shear or tensile cracks were generated and the rock specimen surface spalled. Eventually, four typical failure processes including rock crumb flaking, crack initiation and propagation, rock burst, and second rupture, were summarized.

  1. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo

    Directory of Open Access Journals (Sweden)

    Du B

    2015-03-01

    Full Text Available Bing Du,1,2 Weizhen Liu,1 Yue Deng,1,3 Shaobing Li,1 Xiangning Liu,4 Yan Gao,1 Lei Zhou1 1Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Center of Stomatology, The First People’s Hospital of Foshan, Foshan, Guangdong, People’s Republic of China; 3Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital, Qingdao, People’s Republic of China; 4Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China Abstract: To improve the regenerative performance of nano-hydroxyapatite/coralline (nHA/coral block grafting in a canine mandibular critical-size defect model, nHA/coral blocks were coated with recombinant human vascular endothelial growth factor165 (rhVEGF via physical adsorption (3 µg rhVEGF165 per nHA/coral block. After the nHA/coral blocks and VEGF/nHA/coral blocks were randomly implanted into the mandibular box-shaped defects in a split-mouth design, the healing process was evaluated by histological observation and histomorphometric and immunohistological analyses. The histological evaluations revealed the ingrowth of newly formed blood vessels and bone at the periphery and cores of the blocks in both groups at both 3 and 8 weeks postsurgery, respectively. In the histomorphometric analysis, the VEGF/nHA/coral group exhibited a larger quantity of new bone formation at 3 and 8 weeks postsurgery. The percentages of newly formed bone within the entire blocks in the VEGF/nHA/coral group were 27.3%±8.1% and 39.3%±12.8% at 3 weeks and 8 weeks, respectively, and these values were slightly greater than those of the nHA/coral group (21.7%±3.0% and 32.6%±10.3%, respectively, but the differences were not significant (P>0.05. The immunohistological evaluations revealed that the neovascular density in the VEGF/nHA/coral group (146±32.9 vessel/mm2 was much greater than

  2. Comparison of three flaw-location methods for automated ultrasonic testing

    International Nuclear Information System (INIS)

    Seiger, H.

    1982-01-01

    Two well-known methods for locating flaws by measurement of the transit time of ultrasonic pulses are examined theoretically. It is shown that neither is sufficiently reliable for use in automated ultrasonic testing. A third method, which takes into account the shape of the sound field from the probe and the uncertainty in measurement of probe-flaw distance and probe position, is introduced. An experimental comparison of the three methods indicates that use of the advanced method results in more accurate location of flaws. (author)

  3. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  4. Mesenchymal stem cells-seeded bio-ceramic construct for bone regeneration in large critical-size bone defect in rabbit

    Directory of Open Access Journals (Sweden)

    Maiti SK

    2016-11-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BMSC represent an attractive cell population for tissue engineering purpose. The objective of this study was to determine whether the addition of recombinant human bone morphogenetic protein (rhBMP-2 and insulin-like growth factor (IGF-1 to a silica-coated calcium hydroxyapatite (HASi - rabbit bone marrow derived mesenchymal stem cell (rBMSC construct promoted bone healing in a large segmental bone defect beyond standard critical -size radial defects (15mm in rabbits. An extensively large 30mm long radial ostectomy was performed unilaterally in thirty rabbits divided equally in five groups. Defects were filled with a HASi scaffold only (group B; HASi scaffold seeded with rBMSC (group C; HASi scaffold seeded with rBMSC along with rhBMP-2 and IGF-1 in groups D and E respectively. The same number of rBMSC (five million cells and concentration of growth factors rhBMP-2 (50µg and IGF-1 (50µg was again injected at the site of bone defect after 15 days of surgery in their respective groups. An empty defect served as the control group (group A. Radiographically, bone healing was evaluated at 7, 15, 30, 45, 60 and 90 days post implantation. Histological qualitative analysis with microCT (µ-CT, haematoxylin and eosin (H & E and Masson’s trichrome staining were performed 90 days after implantation. All rhBMP-2-added constructs induced the formation of well-differentiated mineralized woven bone surrounding the HASi scaffolds and bridging bone/implant interfaces as early as eight weeks after surgery. Bone regeneration appeared to develop earlier with the rhBMP-2 constructs than with the IGF-1 added construct. Constructs without any rhBMP-2 or IGF-1 showed osteoconductive properties limited to the bone junctions without bone ingrowths within the implantation site. In conclusion, the addition of rhBMP-2 to a HASi scaffold could promote bone generation in a large critical-size-defect.

  5. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves

    2014-01-01

    Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated. PMID:25365457

  6. Toward smart aerospace structures: design of a piezoelectric sensor and its analog interface for flaw detection.

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves

    2014-10-31

    Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated.

  7. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection

    Directory of Open Access Journals (Sweden)

    Hamza Boukabache

    2014-10-01

    Full Text Available Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures’ reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure’s integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated.

  8. Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels

    International Nuclear Information System (INIS)

    Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

    1991-10-01

    This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs

  9. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect.

    Science.gov (United States)

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A; Green, David; Botchwey, Edward A

    2014-04-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with micro-computed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. A 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  10. Delivery of S1P Receptor-Targeted Drugs via Biodegradable Polymer Scaffolds Enhances Bone Regeneration in a Critical Size Cranial Defect*

    Science.gov (United States)

    Das, Anusuya; Tanner, Shaun; Barker, Daniel A.; Green, David; Botchwey, Edward A.

    2014-01-01

    Biodegradable polymer scaffolds can be used to deliver soluble factors to enhance osseous remodeling in bone defects. To this end, we designed a poly(lactic-co-glycolic acid) (PLAGA) microsphere scaffold to sustain the release of FTY720, a selective agonist for sphingosine 1-phosphate (S1P) receptors. The microsphere scaffolds were created from fast degrading 50:50 PLAGA and/or from slow-degrading 85:15 PLAGA. Temporal and spatial regulation of bone remodeling depended on the use of appropriate scaffolds for drug delivery. The release profiles from the scaffolds were used to design an optimal delivery system to treat critical size cranial defects in a rodent model. The ability of local FTY720 delivery to maximize bone regeneration was evaluated with microcomputed tomography (microCT) and histology. Following 4 weeks of defect healing, FTY720 delivery from 85:15 PLAGA scaffolds resulted in a significant increase in bone volumes in the defect region compared to the controls. 85:15 microsphere scaffolds maintain their structural integrity over a longer period of time, and cause an initial burst release of FTY720 due to surface localization of the drug. This encourages cellular in-growth and an increase in new bone formation. PMID:23640833

  11. Safety Evaluation of a Bioglass–Polylactic Acid Composite Scaffold Seeded with Progenitor Cells in a Rat Skull Critical-Size Bone Defect

    Science.gov (United States)

    El-Kady, Abeer M.; Arbid, Mahmoud S.; Abd El-Hady, Bothaina M.; Marzi, Ingo; Seebach, Caroline

    2014-01-01

    Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs. This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation. PMID:24498345

  12. A study on the effect of flaw detection probability assumptions on risk reduction achieved by non-destructive inspection

    International Nuclear Information System (INIS)

    Cronvall, O.; Simola, K.; Männistö, I.; Gunnars, J.; Alverlind, L.; Dillström, P.; Gandossi, L.

    2012-01-01

    Leakages and ruptures of piping components lead to reduction or loss of the pressure retaining capability of the system, and thus contribute to the overall risk associated with nuclear power plants. In-service inspection (ISI) aims at verifying that defects are not present in components of the pressure boundary or, if defects are present, ensuring that these are detected before they affect the safe operation of the plant. Reliability estimates of piping are needed e.g., in probabilistic safety assessment (PSA) studies, risk-informed ISI (RI-ISI) applications, and other structural reliability assessments. Probabilistic fracture mechanics models can account for ISI reliability, but a quantitative estimate for the latter is needed. This is normally expressed in terms of probability of detection (POD) curves, which correlate the probability of detecting a flaw with flaw size. A detailed POD curve is often difficult (or practically impossible) to obtain. If sufficient risk reduction can be shown by using simplified (but reasonably conservative) POD estimates, more complex PODs are not needed. This paper summarises the results of a study on the effect of piping inspection reliability assumptions on failure probability using structural reliability models. The main interest was to investigate whether it is justifiable to use a simplified POD curve. Further, the study compared various structural reliability calculation approaches for a set of analysis cases. The results indicate that the use of a simplified POD could be justifiable in RI-ISI applications.

  13. The use of fracture mechanics for the evaluation of NDE flaw acceptance standards

    Energy Technology Data Exchange (ETDEWEB)

    Alicino, A; Capurro, E; Ansaldo, Sp; Corvi, A [Ansaldo SpA, Genoa (Italy)

    1988-12-31

    This document deals with the use of fracture mechanics criteria to evaluate the Non Destructive Examination (NDE) flaw acceptance standards. The communication discusses the general schemes and the guidelines of the activity carried out. (TEC).

  14. Fracture behaviour assessment of a flawed pressure vessel in the hydro-test

    Energy Technology Data Exchange (ETDEWEB)

    Sarkimo, M; Rintamac, R

    1988-12-31

    This document deals with the fracture properties of a flawed pressure vessel. The experiment was carried out within the Nordic Countries on a vessel in a Finnish refinery. The instrumentation used included acoustic emission. Some results are provided. (TEC).

  15. Calculation and evaluation methodology of the flawed pipe and the compute program development

    International Nuclear Information System (INIS)

    Liu Chang; Qian Hao; Yao Weida; Liang Xingyun

    2013-01-01

    Background: The crack will grow gradually under alternating load for a pressurized pipe, whereas the load is less than the fatigue strength limit. Purpose: Both calculation and evaluation methodology for a flawed pipe that have been detected during in-service inspection is elaborated here base on the Elastic Plastic Fracture Mechanics (EPFM) criteria. Methods: In the compute, the depth and length interaction of a flaw has been considered and a compute program is developed per Visual C++. Results: The fluctuating load of the Reactor Coolant System transients, the initial flaw shape, the initial flaw orientation are all accounted here. Conclusions: The calculation and evaluation methodology here is an important basis for continue working or not. (authors)

  16. Development of a shallow-flaw fracture assessment methodology for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Dickson, T.L.; McAfee, W.J.; Pennell, W.E.

    1996-01-01

    Shallow-flaw fracture technology is being developed within the Heavy-Section Steel Technology (HSST) Program for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVs) containing postulated shallow flaws. Cleavage fracture in shallow-flaw cruciform beam specimens tested under biaxial loading at temperatures in the lower transition temperature range was shown to be strain-controlled. A strain-based dual-parameter fracture toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture. A probabilistic fracture mechanics (PFM) model that includes both the properties of the inner-surface stainless-steel cladding and a biaxial shallow-flaw fracture toughness correlation gave a reduction in probability of cleavage initiation of more than two orders of magnitude from an ASME-based reference case

  17. Consistent Practices for Characterizing the Detection Limits of Fracture Critical Metallic Component Inspection Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA-STD-5009 requires that successful flaw detection by NDE methods be statistically qualified for use on fracture critical metallic components using Probability of...

  18. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    Science.gov (United States)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  19. Magnetite Core-Shell Nanoparticles in Nondestructive Flaw Detection of Polymeric Materials.

    Science.gov (United States)

    Hetti, Mimi; Wei, Qiang; Pohl, Rainer; Casperson, Ralf; Bartusch, Matthias; Neu, Volker; Pospiech, Doris; Voit, Brigitte

    2016-10-04

    Nondestructive flaw detection in polymeric materials is important but difficult to achieve. In this research, the application of magnetite nanoparticles (MNPs) in nondestructive flaw detection is studied and realized, to the best of our knowledge, for the first time. Superparamagnetic and highly magnetic (up to 63 emu/g) magnetite core-shell nanoparticles are prepared by grafting bromo-end-group-functionalized poly(glycidyl methacrylate) (Br-PGMA) onto surface-modified Fe 3 O 4 NPs. These Fe 3 O 4 -PGMA NPs are blended into bisphenol A diglycidylether (BADGE)-based epoxy to form homogeneously distributed magnetic epoxy nanocomposites (MENCs) after curing. The core Fe 3 O 4 of the Fe 3 O 4 -PGMA NPs endows the MENCs with magnetic property, which is crucial for nondestructive flaw detection of the materials, while the shell PGMA promotes colloidal stability and prevents NP aggregation during curing. The eddy current testing (ET) technique is first applied to detect flaws in the MENCs. Through the brightness contrast of the ET image, surficial and subsurficial flaws in MENCs can be detected, even for MENCs with low content of Fe 3 O 4 -PGMA NPs (1 wt %). The incorporation of Fe 3 O 4 -PGMA NPs can be easily extended to other polymer and polymer-based composite systems and opens a new and very promising pathway toward MNP-based nondestructive flaw detection in polymeric materials.

  20. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  1. Evaluation of Fatigue Crack Initiation for Volumetric Flaw in Pressure Tube

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Yoo, Hyun Joo

    2005-01-01

    CAN/CSA.N285.4-94 requires the periodic inservice inspection and surveillance of pressure tubes in operating CANDU nuclear power reactors. If the inspection results reveal a flaw exceeding the acceptance criteria of the Code, the flaw must be evaluated to determine if the pressure is acceptable for continued service. Currently, the flaw evaluation methodology and acceptance criteria specified in CSA-N285.05-2005, 'Technical requirements for in-service evaluation of zirconium alloy pressure tubes in CANDU reactors'. The Code is applicable to zirconium alloy pressure tubes. The evaluation methodology for a crack-like flaw is similar to that of ASME B and PV Sec. XI, 'Inservice Inspection of Nuclear Power Plant Components'. However, the evaluation methodology for a blunt volumetric flaw is described in CSA-N285.05-2005 code. The object of this paper is to address the fatigue crack initiation evaluation for the blunt volumetric flaw as it applies to the pressure tube at Wolsong NPP

  2. THE FAILURE OD THE INTELLIGENCE COMMUNITY OF THE UNITED STATES ON SEPTEMBER 11. SYSTEMIC OR HUMAN FLAWS?

    Directory of Open Access Journals (Sweden)

    FRANKLIN BARRIENTOS RAMÍREZ

    2018-01-01

    Full Text Available The terrorist attacks of September 11th, put the blame on to the US’ intelligence community, and mainly the CIA, FBI and the NSA, because they failed to set an early warning alert of the incoming terrorist threat. The Senate’s Intelligence Committee and the Intelligence Permanent Committee of the House of Representatives were the first to create an investigation commission to analyze the causes that drove to the 911 attacks. Later on, and due to the citizen’s pressure, President Bush installed the National Investigation Commission for the Terrorist Attacks to the US. Beyond of the criticisms both commission received, it can be said that they perform an honest and accurate work over the real causes of the terrorist attacks. Among the aws and mistakes of the security and intelligence agencies, organizational, cultural, systemic and human flaws were detected.

  3. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model.

    Science.gov (United States)

    van Houdt, C I A; Cardoso, D A; van Oirschot, B A J A; Ulrich, D J O; Jansen, J A; Leeuwenburgh, S C G; van den Beucken, J J J P

    2017-09-01

    Demineralized bone matrix (DBM) is an allograft bone substitute used for bone repair surgery to overcome drawbacks of autologous bone grafting, such as limited supply and donor-site comorbidities. In view of different demineralization treatments to obtain DBM, we examined the biological performance of two differently demineralized types of DBM, i.e. by acidic treatment using hydrochloric acid (HCl) or treatment with the chelating agent ethylene diamine tetra-acetate (EDTA). First, we evaluated the osteo-inductive properties of both DBMs by implanting the materials subcutaneously in rats. Second, we evaluated the effects on bone formation by incorporating DBM in a hyaluronic acid (HA) gel to fill a porous titanium scaffold for use in a critical-sized calvarial defect model in 36 male Wistar rats. These porous titanium scaffolds were implanted empty or filled with HA gel containing either DBM HCl or DBM EDTA. Ectopically implanted DBM HCl and DBM EDTA did not induce ectopic bone formation over the course of 12 weeks. For the calvarial defects, mean percentages of newly formed bone at 2 weeks were significantly higher for Ti-Empty compared to Ti-HA + DBM HCl , but not compared to Ti-HA + DBM EDTA. Significant temporal bone formation was observed for Ti-Empty and Ti-HA + DBM HCl, but not for Ti-HA + DBM EDTA. At 8 weeks there were no significant differences in values of bone formation between the three experimental constructs. In conclusion, these results showed that, under the current experimental conditions, neither DBM HCl nor DBM EDTA possess osteo-inductive properties. Additionally, in combination with an HA gel loaded in a porous titanium scaffold, DBM HCl and DBM EDTA showed similar amounts of new bone formation after 8 weeks, which were lower than using the empty porous titanium scaffold. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study.

    Science.gov (United States)

    Dau, Michael; Kämmerer, Peer W; Henkel, Kai-Olaf; Gerber, Thomas; Frerich, Bernhard; Gundlach, Karsten K H

    2016-05-01

    Healing characteristics as well as level of tissue integration and degradation of two different nanostructured hydroxyapatite bone substitute materials (BSM) in comparison with a deproteinized hydroxyapatite bovine BSM were evaluated in an in vivo animal experiment. In the posterior mandible of 18 minipigs, bilateral mono cortical critical size bone defects were created. Randomized augmentation procedures with NanoBone(®) (NHA1), Ostim(®) (NHA2) or Bio-Oss(®) (DBBM) were conducted (each material n = 12). Samples were analyzed after five (each material n = 6) and 8 months (each material n = 6). Defect healing, formation of soft tissue and bone as well as the amount of remaining respective BSM were quantified both macro- and microscopically. For NHA2, the residual bone defect after 5 weeks was significantly less compared to NHA1 or DBBM. There was no difference in residual BSM between NHA1 and DBBM, but the amount in NHA2 was significantly lower. NHA2 also showed the least amount of soft tissue and the highest amount of new bone after 5 weeks. Eight months after implantation, no significant differences in the amount of residual bone defects, in soft tissue or in bone formation were detected between the groups. Again, NHA2 showed significant less residual material than NHA1 and DBBM. We observed non-significant differences in the biological hard tissue response of NHA1 and DBBM. The water-soluble NHA2 initially induced an increased amount of new bone but was highly compressed which may have a negative effect in less stable augmentations of the jaw. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Development of a probe for inner profile measurement and flaw detection

    Science.gov (United States)

    Yoshizawa, Toru; Wakayama, Toshitaka; Kamakura, Yoshihisa

    2011-08-01

    It is one of the important necessities to precisely measure the inner diameter and/or the inner profile of pipes, tubes and other objects similar in shape. Especially in mechanical engineering field, there are many requests from automobile industry because the inner surface of engine blocks and other die casts are strongly required to be inspected and measured by non-contact methods (not by the naked eyes inspection using a borescope). If the inner diameter is large enough like water pipes or drain pipes, complicated and large equipment may be applicable. However, small pipes with a diameter ranging from 10mm to 100mm are difficult to be inspected by such a large instrument as is used for sewers inspection. And we have proposed an instrument which has no moving elements such as a rotating mirror or a prism for scanning a beam. Our measurement method is based on optical sectioning using triangulation. This optically sectioned profile of an inner wall of pipe-like objects is analyzed to produce numerical data of inner diameter or profile. Here, we report recent development of the principle and applications of the optical instrument with a simple and compact configuration. In addition to profile measurement, we found flaws and defects on the inner wall were also detected by using the similar principle. Up to now, we have developed probes with the diameter of 8mm to 25mm for small size objects and another probe (80 mm in diameter) for such a larger container with the dimensional size of 600mm.

  6. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep.

    Science.gov (United States)

    Liu, Tie; Wu, Gang; Wismeijer, Daniel; Gu, Zhiyuan; Liu, Yuelian

    2013-09-01

    for repairing a critical-sized bone defect. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Oh, Young Jin

    2014-01-01

    If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis

  8. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2006-01-01

    Considering a rational maintenance rule of Light Water Reactor piping, reliable flaw evaluation criteria are essential to determine how a detected flaw is detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes to be considered for carbon steel piping, and can be analyzed by the elastic-plastic fracture mechanics. Some analytical efforts have been provided as flaw evaluation criteria using load correction factors such like the Z-factors in the JSME codes on fitness-for-service for nuclear power plants or the ASME boiler and pressure vessel code section XI. The present correction factors were conventionally determined taken conservatism and simplicity into account, however, the effect of internal pressure which would be an important factor under an actual plant condition was not adequately considered. Recently, a J-estimation scheme, 'LBB. ENGC' for ductile fracture analysis of circumferentially through-wall-cracked pipes subjected combined loading was newly developed to have a better prediction with more realistic manner. This method is explicitly incorporated the contribution of both bending and tension due to internal pressure by means of the scheme compatible with an arbitrary combined loading history. In this paper, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. A correction factor based on the new J-estimation scheme was compared with the present correction factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of internal pressure. (author)

  9. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-01-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  10. Regulation No. 0-31 on handling of radiation flaw-detectors

    International Nuclear Information System (INIS)

    1975-01-01

    The regulation contains mandatory design, commissioning, and operational requirements for laboratories using flaw-detectors emitting ionizing radiation; also, design, manufacturing, and operational requirements for the production of any type of X-ray or gamma-ray flaw-detectors. Laboratories carrying out non-destructive testing are either stationary or mobile. Conceptual and operating designs are elaborated, including the building and the laboratory lay-outs, the mains, water supply, and sewerage system technological lay-out, explanatory comments, and a lay-out of the shielding equipment. Approbated designs are implemented, and the laboratories commissioned to representatives of the State Sanitary Inspectorate. Licences are issued by the Ministry of Public Health (MPH) and the Committee on Peaceful Uses of Atomic Energy (CPUAE). Any flaw-detector has to conform to the Bulgarian State Standards and be coordinated with the MPH, the CPUAE, and the Central Laboratory for Nuclear Flaw-Detection (CLNFD). The laboratories are required to have operational instructions, an emergency plan, and to keep technological and dosimetric records. The latter are provided and processed by the relevant service at the Research Institute of Radiobiology and Radiation Hygiene. For operations involving of flaw-detectors, presence of at least two workers is required. (G.G.)

  11. A study on the development of a real-time intelligent system for ultrasonic flaw classification

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Hak Joon; Lee, Hyun; Lee, Seung Seok

    1998-01-01

    In spite of significant progress in research on ultrasonic pattern recognition it is not widely used in many practical field inspection in weldments. For the convenience of field application of this methodology, following four key issues have to be suitably addressed; 1) a software where the ultrasonic pattern recognition algorithm is efficiently implemented, 2) a real-time ultrasonic testing system which can capture the digitized ultrasonic flaw signal so the pattern recognition software can be applied in a real-time fashion, 3) database of ultrasonic flaw signals in weldments, which is served as a foundation of the ultrasonic pattern recognition algorithm, and finally, 4) ultrasonic features which should be invariant to operational variables of the ultrasonic test system. Presented here is the recent progress in the development of a real-time ultrasonic flaw classification by the novel combination of followings; an intelligent software for ultrasonic flaw classification in weldments, a computer-base real-time ultrasonic nondestructive evaluation system, database of ultrasonic flaw signals, and invariant ultrasonic features called 'normalized features.'

  12. Methodological Flaws, Conflicts of Interest, and Scientific Fallacies: Implications for the Evaluation of Antidepressants' Efficacy and Harm.

    Science.gov (United States)

    Hengartner, Michael P

    2017-01-01

    In current psychiatric practice, antidepressants are widely and with ever-increasing frequency prescribed to patients. However, several scientific biases obfuscate estimates of antidepressants' efficacy and harm, and these are barely recognized in treatment guidelines. The aim of this mini-review is to critically evaluate the efficacy and harm of antidepressants for acute and maintenance treatment with respect to systematic biases related to industry funding and trial methodology. Narrative review based on a comprehensive search of the literature. It is shown that the pooled efficacy of antidepressants is weak and below the threshold of a minimally clinically important change once publication and reporting biases are considered. Moreover, the small mean difference in symptom reductions relative to placebo is possibly attributable to observer effects in unblinded assessors and patient expectancies. With respect to trial dropout rates, a hard outcome not subjected to observer bias, no difference was observed between antidepressants and placebo. The discontinuation trials on the efficacy of antidepressants in maintenance therapy are systematically flawed, because in these studies, spontaneous remitters are excluded, whereas half of all patients who remitted on antidepressants are abruptly switched to placebo. This can cause a severe withdrawal syndrome that is easily misdiagnosed as a relapse when assessed on subjective symptom rating scales. In accordance, the findings of naturalistic long-term studies suggest that maintenance therapy has no clear benefit, and non-drug users do not show increased recurrence rates. Moreover, a growing body of evidence from hundreds of randomized controlled trials suggests that antidepressants cause suicidality, but this risk is underestimated because data from industry-funded trials are systematically flawed. Unselected, population-wide observational studies indicate that depressive patients who use antidepressants are at an increased

  13. Methodological Flaws, Conflicts of Interest, and Scientific Fallacies: Implications for the Evaluation of Antidepressants’ Efficacy and Harm

    Directory of Open Access Journals (Sweden)

    Michael P. Hengartner

    2017-12-01

    Full Text Available BackgroundIn current psychiatric practice, antidepressants are widely and with ever-increasing frequency prescribed to patients. However, several scientific biases obfuscate estimates of antidepressants’ efficacy and harm, and these are barely recognized in treatment guidelines. The aim of this mini-review is to critically evaluate the efficacy and harm of antidepressants for acute and maintenance treatment with respect to systematic biases related to industry funding and trial methodology.MethodsNarrative review based on a comprehensive search of the literature.ResultsIt is shown that the pooled efficacy of antidepressants is weak and below the threshold of a minimally clinically important change once publication and reporting biases are considered. Moreover, the small mean difference in symptom reductions relative to placebo is possibly attributable to observer effects in unblinded assessors and patient expectancies. With respect to trial dropout rates, a hard outcome not subjected to observer bias, no difference was observed between antidepressants and placebo. The discontinuation trials on the efficacy of antidepressants in maintenance therapy are systematically flawed, because in these studies, spontaneous remitters are excluded, whereas half of all patients who remitted on antidepressants are abruptly switched to placebo. This can cause a severe withdrawal syndrome that is easily misdiagnosed as a relapse when assessed on subjective symptom rating scales. In accordance, the findings of naturalistic long-term studies suggest that maintenance therapy has no clear benefit, and non-drug users do not show increased recurrence rates. Moreover, a growing body of evidence from hundreds of randomized controlled trials suggests that antidepressants cause suicidality, but this risk is underestimated because data from industry-funded trials are systematically flawed. Unselected, population-wide observational studies indicate that depressive patients

  14. A Serious Flaw in the Collegiate Learning Assessment [CLA] Test

    Directory of Open Access Journals (Sweden)

    Kevin Possin

    2013-09-01

    Full Text Available The Collegiate Learning Assessment Test (CLA has become popular and highly recommended, praised for its reliability and validity. I argue that while the CLA may be a commendable test for measuring critical-thinking, problem-solving, and logical-reasoning skills, those who are scoring students’ answers to the test’s questions are rendering the CLA invalid.

  15. Security Design Flaws That Affect Usability in Online Banking

    Science.gov (United States)

    Gurlen, Stephanie

    2013-01-01

    As the popularity of online banking Websites has increased, the security of these sites has become increasingly critical as attacks against these sites are on the rise. However, the design decisions made during construction of the sites could make usability more difficult, where the user has difficulty making good security decisions. This study…

  16. Flaw evaluation of thermally aged cast stainless steel in light-water reactor applications

    International Nuclear Information System (INIS)

    Lee, S.; Kuo, P.T.; Wichman, K.; Chopra, O.

    1997-01-01

    Cast stainless steel may be used in the fabrication of the primary loop piping, fittings, valve bodies, and pump casings in light-water reactors. However, this material is subject to embrittlement due to thermal aging at the reactor temperature, that is 290 o C (550 o F). The Argonne National Laboratory (ANL) recently completed a research program and the results indicate that the lower-bound fracture toughness of thermally aged cast stainless steel is similar to that of submerged arc welds (SAWs). Thus, the US Nuclear Regulatory Commission (NRC) staff has accepted the use of SAW flaw evaluation procedures in IWB-3640 of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to evaluate flaws in thermally aged cast stainless steel for a license renewal evaluation. Alternatively, utilities may estimate component-specific fracture toughness of thermally aged cast stainless steel using procedures developed at ANL for a case-by-case flaw evaluation. (Author)

  17. Experimental study on flaw detectability of remote field eddy current testing

    International Nuclear Information System (INIS)

    Kamimura, T.; Fukui, S.; Iwahashi, Y.; Yamada, H.

    1988-01-01

    For the purpose of comprehending the effect in practical use of the remote field eddy current (RFEC) testing that becomes noticeable for the ISI technique of steel tubes, its flaw detectability was clarified through a model test. This study used straight and bending tubes of 3.8 mm in wall thickness and 31.8 mm in outside diameter. These tubes were inspected from their inside. After relations among the pickup coil output, coil distance, testing frequency, etc. were measured, a probe of the practical use type was manufactured to investigate its flaw detectability by means of simulated flaws. The authors discuss how it has been found that light local wall thinning on the outside surfaces can be detected by this technique and its effect in practical use can be expected with small influences due to magnetic permeability variations of tube materials, bending of tubes, etc

  18. Characterization of flaws in a tube bundle mock-up for reliability studies

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Bakhtiari, S.

    1997-01-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes

  19. Characterization of flaws in a tube bundle mock-up for reliability studies

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Bakhtiari, S.

    1996-10-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes

  20. Flaw density examinations of a clad boiling water reactor pressure vessel segment

    International Nuclear Information System (INIS)

    Cook, K.V.; McClung, R.W.

    1986-01-01

    Flaw density is the greatest uncertainty involved in probabilistic analyses of reactor pressure vessel failure. As part of the Heavy-Section Steel Technology (HSST) Program, studies have been conducted to determine flaw density in a section of reactor pressure vessel cut from the Hope Creek Unit 2 vessel [nominally 0.7 by 3 m (2 by 10 ft)]. This section (removed from the scrapped vessel that was never in service) was evaluated nondestructively to determine the as-fabricated status. We had four primary objectives: (1) evaluate longitudinal and girth welds for flaws with manual ultrasonics, (2) evaluate the zone under the nominal 6.3-mm (0.25-in.) clad for cracking (again with manual ultrasonics), (3) evaluate the cladding for cracks with a high-sensitivity fluorescent penetrant method, and (4) determine the source of indications detected

  1. Mode Selection for Axial Flaw Detection in Steam Generator Tube Using Ultrasonic Guided Wave

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Guon, Ki Il; Kim, Yong Sik

    2009-01-01

    The eddy current testing method is mainly used to inspect steam generator tube during in-service inspection period. But the general problem of assessing the structural integrity of the steam generator tube using eddy current inspection is rather complex due to the presence of noise and interference signal under various conditions. However, ultrasonic testing as a nondestructive testing tool has become quite popular and effective for the flaw detection and material characterization. Currently, ultrasonic guided wave is emerging technique in power industry because of its various merits. But most of previous studies are focused on detection of circumferential oriented flaws. In this study, the steam generator tube of nuclear power plant was selected to detect axially oriented flaws and investigate guided wave mode identification. The longitudinal wave mode is generated using piezoelectric transducer frequency from 0.5 MHz, 1.0 MHz, 2.25MHz and 5MHz. Dispersion based STFT algorithm is used as mode identification tool

  2. Influence of the size of Gd211 starting powder on the critical current density of Gd-Ba-Cu-O bulk superconductor

    International Nuclear Information System (INIS)

    Nariki, S.; Seo, S.J.; Sakai, N.; Murakami, M.

    2000-01-01

    The relationship between the particle size of Gd211 powder in the precursor and the particle size of Gd211 inclusions in Gd-Ba-Cu-O bulk has been investigated. Gd211 starting powders with various diameters were prepared by the calcination of Gd 2 O 3 , BaO 2 and CuO powders at different temperatures between 800 and 1000 deg. C. The particle size of Gd211 in the melt-grown bulk was proportional to the particle size of the initial Gd211 powder. In conclusion, the employment of fine Gd211 powder led to a size reduction of 211 particles in the bulk, while largely enhancing the J c values in low magnetic fields. A large Gd-Ba-Cu-O/Ag bulk sample, 32 mm in diameter, could also be fabricated by the hot-seeding method. The maximum trapped field value revealed 1.5 T at 77 K. (author)

  3. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  4. Potential change in flaw geometry of an initially shallow finite-length surface flaw during a pressurized-thermal-shock transient

    International Nuclear Information System (INIS)

    Shum, D.K.; Bryson, J.W.; Merkle, J.G.

    1993-09-01

    This study presents preliminary estimates on whether an shallow, axially oriented, inner-surface finite-length flaw in a PWR-RPV would tend to elongate in the axial direction and/or deepen into the wall of the vessel during a postulated PTS transient. Analysis results obtained based on the assumptions of (1) linear-elastic material response, and (2) cladding with same toughness as the base metal, indicate that a nearly semicircular flaw would likely propagate in the axial direction followed by propagation into the wall of the vessel. Note that these results correspond to initiation within the lower-shelf fracture toughness temperature range, and that their general validity within the lower-transition temperature range remains to be determined. The sensitivity of the numerical results aid conclusions to the following analysis assumptions are evaluated: (1) reference flaw geometry along the entire crack front and especially within the cladding region; (2) linear-elastic vs elastic-plastic description of material response; and (3) base-material-only vs bimaterial cladding-base vessel-model assumption. The sensitivity evaluation indicates that the analysis results are very sensitive to the above assumptions

  5. Influence of circumferential flaw length on internal burst pressure of a wall-thinned pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Masataka, E-mail: tsuji-m@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan); Meshii, Toshiyuki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan)

    2013-02-15

    Highlights: ► The effect of θ on p{sub f} was examined by experimental analysis and FEA. ► Here θ is the circumferential angle of a flaw, p{sub f} is the internal burst pressure. ► p{sub f} decreased as θ increased in some cases. ► The effect of θ on p{sub f} should be taken into consideration in evaluating p{sub f}. -- Abstract: This paper examines the effect of the circumferential angle of a flaw θ on the internal burst pressure p{sub f} of pipes with artificial wall-thinned flaws. The effect of θ has conventionally been regarded as unimportant in the evaluation of the p{sub f} of wall-thinned straight pipes. Therefore, a burst pressure equation for an axial crack inside a cylinder (Fig. 1, left), such as Kiefner's equation (Kiefner et al., 1973), has been widely applied (ANSI/ASME B31.G., 1991; Hasegawa et al., 2011). However, the following implicit assumptions notably exist when applying the equation to planar flaws in situations with non-planar flaws. 1)The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 2)The effect of θ on p{sub f}, which is not considered for an axial crack, is small or negligible. However, the experimental results from the systematic burst tests for carbon steel pipes with artificial wall-thinned flaws examined in this paper showed that these implicit assumptions may be incorrect. In this paper the experimental results are evaluated in further detail. The purpose of the evaluation was to clarify the effect of θ on p{sub f}. Specifically, the significance of the flaw configuration (axial length δ{sub z} and wall-thinning ratio t{sub 1}/t) was studied for its effects on θ and p{sub f}. In addition, a simulation of this effect was conducted using a large strain elastic-plastic Finite Element Analysis (FEA) model. As observed from the experimental results, θ tended to affect p{sub f} in cases with large δ{sub z}, and t{sub 1}/t was also correlated with a decrease in p{sub f

  6. Evaluating empirical/analytical techniques to predict structural integrity of pipe containing surface flaws

    International Nuclear Information System (INIS)

    Reuter, W.G.; Server, W.L.

    1982-01-01

    Data from flat-plate specimens containing either triangular-, ellipsoidal- or rectangular-shaped surface flaws were evaluated by several potential analytical techniques. These techniques were modified as needed to predict conditions for initiation of subcritical crack growth, for the defect to penetrate the 6.4 mm (0.25 in.) wall thickness, and for instability (plastic or unstable). The modified analytical techniques developed from the plate specimens were then used to make predictions which are compared with test results obtained from pipe specimens containing triangular-shaped surface flaws

  7. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1996-01-01

    The rules that are currently under application to verify the acceptance of flaws in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation to reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R6 procedure for assessing the integrity of the structure. (authors). 5 refs., 5 figs

  8. Internal Rot Detection with the Use of Low-Frequency Flaw Detector

    Science.gov (United States)

    Proskórnicki, Marek; Ligus, Grzegorz

    2014-12-01

    The issue of rot detection in standing timber or stocked wood is very important in forest management. Rot flaw detection used for that purpose is represented by invasive and non-invasive devices. Non-invasive devices are very accurate, but due to the cost and complicated operation they have not been applied on a large scale in forest management. Taking into account the practical needs of foresters a prototype of low-frequency flaw was developed. The principle of its operation is based on the difference in acoustic wave propagation in sound wood and wood with rot.

  9. Imaging flaws in thin metal plates using a magneto-optic device

    Science.gov (United States)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  10. Probabilistic calibration of safety coefficients for flawed components in nuclear engineering

    International Nuclear Information System (INIS)

    Ardillon, E.; Pitner, P.; Barthelet, B.; Remond, A.

    1995-01-01

    The current rules applied to verify the flaws acceptance in nuclear components rely on deterministic criteria supposed to ensure the plant safe operation. The interest in have a precise and reliable method to evaluate the safety margins and the integrity of components led Electricite de France to launch an approach to link directly safety coefficients with safety levels. This paper presents a probabilistic methodology to calibrate safety coefficients in relation do reliability target values. The proposed calibration procedure applies to the case of a ferritic flawed pipe using the R 6 procedure for assessing the structure integrity. (author). 5 refs., 5 figs., 1 tab

  11. Twenty years of fracture mechanics and flaw evaluation applications in the ASME Nuclear Code

    International Nuclear Information System (INIS)

    Riccardella, P.C.

    1991-01-01

    The paper presents a retrospective on the development and applications of fracture mechanics-based toughness requirements and flaw evaluation methodology in Sections III and XI of the ASME Code. Section III developments range from the rules and requirements for thick section Class 1 pressure vessels to thinner section components in other Classes. Section XI applications include flaw acceptance standards and evaluation methodology for various components ranging from pressure vessels to thins section piping of carbon and austenitic steels. The experience gained in operating plant applications of these rules and procedures are also discussed

  12. Fiber Optic Thermographic Detection of Flaws in Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  13. The effect of specimen and flaw dimensions on fracture toughness

    International Nuclear Information System (INIS)

    Nevalainen, M.J.

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account

  14. Critical review of methodology and application of risk ranking for prioritisation of food and feed related issues, on the basis of the size of anticipated health impact

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Asselt, van E.D.; Raley, M.; Poulsen, M.; Korsgaard, H.; Bredsdorff, L.; Nauta, M.; Flari, V.; Agostino, D' M.; Coles, D.G.; Frewer, L.J.

    2015-01-01

    This study aimed to critically review methodologies for ranking of risks related to feed/food safety and nutritional hazards, on the basis of their anticipated human health impact. An extensive systematic literature review was performed to identify and characterize the available methodologies for

  15. A study on the extraction of feature variables for the pattern recognition for welding flaws

    International Nuclear Information System (INIS)

    Kim, J. Y.; Kim, C. H.; Kim, B. H.

    1996-01-01

    In this study, the researches classifying the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing, feature extraction, feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function classifier, the empirical Bayesian classifier. Also, the pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack, lack of penetration, lack of fusion, porosity, and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately teamed the neural network classifier is better than stastical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  16. Modeling validation to structural flaws in the foundations of oil tanks

    International Nuclear Information System (INIS)

    Couto, Larissa Goncalves; Leite, Sandro Passos

    2014-01-01

    This paper presents the modeling of an experiment used to study the application of backscattered neutrons in the identification of structural flaws in the foundations of oil tanks. This modeling was a preliminary validation procedure of the method of calculation, performed with the radiation transport code MCNP, to study the application of backscattered neutrons as inspection tool. (author)

  17. Flawed Implementation or Inconsistent Logics? Lessons from Higher Education Reform in Ukraine

    Science.gov (United States)

    Shaw, Marta A.

    2013-01-01

    This article investigates two competing explanations of why reforms associated with the Bologna process brought disappointing results in Ukraine. The lack of anticipated benefits from the reforms may stem either from a flawed implementation of the Bologna process, or from more fundamental differences between the models of higher education…

  18. Acoustic emission and estimation of flaw significance in reactor pressure boundaries

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.

    1982-01-01

    The work discussed is intended to establish the feasibility of using acoustic emission (AE) to detect and evaluate growing flaws in nuclear reactor pressure boundaries. Basic AE identification and interpretation methods have grown out of Phase 1. Phases 2 and 3 to test and demonstrate developed methodology on a vessel test and on a reactor are in progress

  19. Stabilized transistor transformer for self-moving Sirena-1 X-ray flaw detector

    International Nuclear Information System (INIS)

    Krasil'nikov, S.B.; Kristalinskij, A.L.; Lozovoj, L.N.; Markov, S.N.; Sindalovskij, E.I.

    1986-01-01

    Electric circuit of stabilized transistor transformer for self-moving ''Sirena'' type X-ray flaw detector is described. Specifications of the transformer and results of the experimental studies, which can be used when tuning and adjusting the transformer under industrial conditions

  20. CLEAVAGE FRACTURE ANALYSIS OF CLADDED BEAMS WITH AN EMBEDDED FLAW UNDER FOUR-POINT BENDING

    International Nuclear Information System (INIS)

    Yin, Shengjun; Williams, Paul T; Bass, Bennett Richard

    2008-01-01

    Semi-large scale embedded flaw beams were tested at Nuclear Research Institute (NRI) Rez in the Czech Republic for the 6th Network for Evaluating Structural Components (NESC-VI) project. The experiments included, among others, a series of semi-large scale tests on cladded beam specimens containing simulated sub-clad flaws. Oak Ridge National Laboratory (ORNL) conducted numerical studies to analyze the constraint issues associated with embedded flaws using various fracture mechanics methods, including T-Stress, hydrostatic stress based QH stress, and the Weibull stress model. The recently developed local approach using the modified Weibull stress model combined with the Master Curve methodology was also utilized to predict the failure probability (Pf) of semi-large scale beams. For this study, the Weibull statistical model associated with the Master Curve methodology was employed to stochastically simulate the fracture toughness data using the available Master Curve reference temperature T0 for the tested base material from the 'aged' WWER-440 Reactor Pressure Vessel (RPV). The study was also conducted to investigate the sensitivity of predicated probability of failure of semi-large scale beams with embedded flaw with different Weibull shape parameters, m

  1. Advantages of using 192Ir γ-ray flaw detector for some products

    International Nuclear Information System (INIS)

    Qin Xiqi

    1989-01-01

    This paper describes the advantages of 192 Ir γ-ray flaw detector made in China in welding seam testings. The authors made a comparison between 192 Ir γ-ray and X-ray machine. 192 Ir γ-ray machine showed many advantages, such as shorter working hours and less labour intensity

  2. The flaws and human harms of animal experimentation.

    Science.gov (United States)

    Akhtar, Aysha

    2015-10-01

    Nonhuman animal ("animal") experimentation is typically defended by arguments that it is reliable, that animals provide sufficiently good models of human biology and diseases to yield relevant information, and that, consequently, its use provides major human health benefits. I demonstrate that a growing body of scientific literature critically assessing the validity of animal experimentation generally (and animal modeling specifically) raises important concerns about its reliability and predictive value for human outcomes and for understanding human physiology. The unreliability of animal experimentation across a wide range of areas undermines scientific arguments in favor of the practice. Additionally, I show how animal experimentation often significantly harms humans through misleading safety studies, potential abandonment of effective therapeutics, and direction of resources away from more effective testing methods. The resulting evidence suggests that the collective harms and costs to humans from animal experimentation outweigh potential benefits and that resources would be better invested in developing human-based testing methods.

  3. Methods and means of the radioisotope flaw detection of the nuclear power reactors components

    International Nuclear Information System (INIS)

    Dekopov, A.S.; Majorov, A.N.; Firsov, V.G.

    1979-01-01

    Methods and means are considered for the radioisotopic flaw detection of the nuclear reactors pressure vessels and structural components of the reactor circuit. Methods of control are described as in the technological process of fabrication of the power reactors assemblies as during the systematic-preventive repair of the nuclear power station equipment during exploitation. Methodological base is given of the technology of radiation control of welded joints of the pressure vessel branch piper of the WWER-440 and WWER-1000 reactors in the process of assembling and exploitation and joining pipes with the pipe-plate of the steamgenerator in the process of fabrication. Methods of the radioisotope flaw detection in the process of exploitation take into consideration the influence of the radioisotope background, and ensure obtaining of the demanded by the rules of control, sensitivity. Methods of control of welded joints of the steamgenerator of nuclear power plants are based on the simultaneous examination of all joints with application of the shaped radiographic plate-holders. Special gamma-flaw-detection equipment is developed for control of the welded joints of the main branch-pipes. Design peculiarities are given of the installation for flaw detection. These installations are equipped with the system for emergency return of the radiation source into the storage position from the position for exposure. They have automatic exposure-meters for determination of the exposure time. Successfull exploitation of such installations in the Finland during assembling equipment for the nuclear reactor of the nuclear power plant ''Loviisa-1'' and in the USSR on the Novovoronezh nuclear power plant has shown possibility for detection of flaws having dimensions about 1% of the equipment used. For control of welded joints of pipes with pipe-plates at the steam generators, portable flaw-detectors are used. Sensitivity of these flaw-detectors towards detection of the wire standards has

  4. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending

    International Nuclear Information System (INIS)

    Tsuji, Masataka; Meshii, Toshiyuki

    2011-01-01

    Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.

  5. Characterization of type, position and dimension of flaws by transit time locus curves of ultrasonic inspections - ALOK. Pt. 2

    International Nuclear Information System (INIS)

    Grohs, B.; Barbian, O.A.; Kappes, W.; Paul, H.

    1981-01-01

    With automatic ultrasonic testing, flaws can be detected and described and thus characterized according to their type, position and dimensions. During scanning of a test object, the flaws are registered by many different pathways and many different acoustic irradiation directions. The transit time locus curve represents the distance between the relfecting points of a flaw and the source in dependence of the probe position; hence, information on flaw position and dimensions can be derived from this curve. If the sound velocity is known, the transit path can then be calculated from the transit time. This requires, above all, a constant sound velocity along the whole transit path. Various methods are presented for reconstructing the flaw border in the plane of incidence. (orig./RW) [de

  6. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, Marie [Univ. of Tennessee, Knoxville, TN (United States); Williams, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, B. Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klasky, Hilda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decision making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.

  7. Effect of combined loading due to bending and internal pressure on pipe flaw evaluation criteria

    International Nuclear Information System (INIS)

    Miura, Naoki; Sakai, Shinsuke

    2008-01-01

    Considering a rule for the rationalization of maintenance of Light Water Reactor piping, reliable flaw evaluation criteria are essential for determining how a detected flaw will be detrimental to continuous plant operation. Ductile fracture is one of the dominant failure modes that must be considered for carbon steel piping and can be analyzed by elastic-plastic fracture mechanics. Some analytical efforts have provided various flaw evaluation criteria using load correction factors, such as the Z-factors in the JSME codes on fitness-for-service for nuclear power plants and the section XI of the ASME boiler and pressure vessel code. The present Z-factors were conventionally determined, taking conservativity and simplicity into account; however, the effect of internal pressure, which is an important factor under actual plant conditions, was not adequately considered. Recently, a J-estimation scheme, LBB.ENGC for the ductile fracture analysis of circumferentially through-wall-cracked pipes subjected to combined loading was developed for more accurate prediction under more realistic conditions. This method explicitly incorporates the contributions of both bending and tension due to internal pressure by means of a scheme that is compatible with an arbitrary combined-loading history. In this study, the effect of internal pressure on the flaw evaluation criteria was investigated using the new J-estimation scheme. The Z-factor obtained in this study was compared with the presently used Z-factors, and the predictability of the current flaw evaluation criteria was quantitatively evaluated in consideration of the internal pressure. (author)

  8. The effect of specimen and flaw dimensions on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Nevalainen, M.J. [VTT Manufacturing Technology, Espoo (Finland)

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account. 64 refs. The thesis includes also four previous publications by author.

  9. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting.

    Science.gov (United States)

    Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel

    2017-08-01

    The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.

  10. Stress-induced light scattering method for the detection of latent flaws on fine polished glass substrates.

    Science.gov (United States)

    Sakata, Y; Sakai, K; Nonaka, K

    2014-08-01

    Fine polishing techniques, such as the chemical mechanical polishing treatment, are one of the most important technique to glass substrate manufacturing. Mechanical interaction in the form of friction occurs between the abrasive and the substrate surface during polishing, which may cause formation of latent flaws on the glass substrate surface. Fine polishing-induced latent flaws may become obvious during a subsequent cleaning process if glass surfaces are corroded away by chemical interaction with the cleaning liquid. Latent flaws thus reduce product yield. In general, non-destructive inspection techniques, such as the light-scattering methods, used to detect foreign matters on the glass substrate surface. However, it is difficult to detect latent flaws by these methods because the flaws remain closed. Authors propose a novel inspection technique for fine polishing-induced latent flaws by combining the light scattering method with stress effects, referred to as the stress-induced light scattering method (SILSM). SILSM is able to distinguish between latent flaws and particles on the surface. In this method, samples are deformed by an actuator and stress effects are induced around the tips of latent flaws. Due to the photoelastic effect, the refractive index of the material around the tip of a latent flaw is changed. This changed refractive index is in turn detected by a cooled charge-coupled device camera as variations in light scattering intensity. In this report, surface latent flaws are detected non-destructively by applying SILSM to glass substrates, and the utility of SILSM evaluated as a novel inspection technique.

  11. Critical size for the generation of misfit dislocations and their effects on electronic properties in GaAs nanosheets on Si substrate

    International Nuclear Information System (INIS)

    Yuan, Zaoshi; Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro

    2013-01-01

    While nanowires and nanosheets (NSs) grown on lattice-mismatched substrates have a number of promising technological applications such as solar cells, generation of misfit dislocations (MFDs) at their interfaces is a major concern for the efficiency of these devices. Here, combined molecular-dynamics and quantum-mechanical simulations are used to study MFDs at the interface between a GaAs NS and a Si substrate. Simulation results show the existence of a critical NS thickness, below which NSs are grown free of MFDs. The calculated critical thickness value is consistent with available experimental observations. Charge transfer at the MFD core is found to modify the electronic band profile at the GaAs/Si interface significantly. These effects should have profound impacts on the efficiency of lattice-mismatched NS devices

  12. Evaluation of crack-like flaw in Japanese fitness-for-service code for nuclear power plant components

    International Nuclear Information System (INIS)

    Kashima, Koichi

    2003-01-01

    For evaluation of faults detected at nuclear appliances, establishment of fitness-for-service code in Japan is focused by most of peoples. The code is a management rule to keep features of the appliances under supplying operation to their constant safe level and is a rule composing a pair with design rule. The codes for nuclear power generation facilities-rules of fitness-for-service for nuclear power plants were issued on May, 2002, by the Japan Society of Mechanical Engineering (JSME), which was added on October, 2002, by its inspection code, for its amendment. Under such states, Japan Government is proceeding on establishment of the fitness-for-service code in Japan on a base of the private rule. Here were introduced present state and tasks on content of crack-like flaw evaluation on the code under an example of the private rule of JSME, which is composed of three items of inspection, evaluation, and recovery and exchange. The evaluation of defects consists of 1) the first step of evaluation of defects and 2) the second step of evaluation of defects. The first step determines the size of defect by modeling form. When the size of defect is smaller than the evaluation criterion, the appliances can be used unconditionally. However, its size is larger than the evaluation criterion, the appliances have to be evaluated by the second step. When the estimated defects size at end of evaluation period is smaller than the permissible value, the appliances can be used within the evaluation period. But, if its size is larger than the permissible value, the appliances have to be recovered and exchanged. Modeling, evaluation criterion, evaluation of destruction, safety standards and future problems are described. (S.Y.)

  13. Current and historical perspectives on methodological flaws in processing umbilical cord blood.

    Science.gov (United States)

    Mehrishi, J N

    2013-11-01

    Umbilical cord blood (UCB) hematopoietic stem cells (HSC-CD34+) are valuable for treating malignant or nonmalignant disease. Processing UCB by HESPAN-6% and anti-CD34-Miltenyi particles provides insufficient cells for treating adults. Physicochemical-electrokinetic studies on UCB-mononuclear cells (MNCs) under conditions of delayed processing, ice or very low temperatures, and some cell separation media identified artifacts introduced by procedures. Adsorption of biomaterials from cell damage by temperature, degradation products after using enzymes, harsh reagents, dithiothreitol, and HESPAN affect cell properties and distribution. Miltenyi particles internalized by cells could release iron that accumulating in liver or spleen would then risk toxicity. Summary topics included the effects of temperature, HESPAN (fast sedimenting agent), glycoproteases, DNase, and dithiothreitol risk affecting cell receptors in recognition, "homing," leading to possible unintended iatrogenic bioeffects should such cells be transfused into humans. The loss of undetectable and uncaptured low CD34 antigen-bearing cells by Miltenyi particles seems to occur when the current methods of isolation of CD34+ cells and other cells are critically assessed. The purpose here is to highlight and suggest avoiding the procedural flaws involved. Preventing ice temperatures avoids ice-damaged platelets releasing biomaterials that are adsorbed on cells altering UBC-MNCs/HSC properties and cell loss. Omitting the positive selection with antibody-linked Miltenyi particles obviates the use of harsh reagents to release the cells. Internalized Miltenyi particles are a toxicity hazard that needs investigations. Achieving approximately 5% yields of CD34+ cells (153 × 10(5) /110 mL cord-placenta blood) is a major advance holding great promise, for the first time increasing the prospect of stem cell therapy of 70-kg adults, using a single UCB donation (with dose of 1.5 × 10(5) cells/kg) and

  14. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.

    Science.gov (United States)

    Nath, Sunil

    2017-11-01

    The vital coupled processes of oxidative phosphorylation and photosynthetic phosphorylation synthesize molecules of adenosine-5'-triphosphate (ATP), the universal biological energy currency, and sustain all life on our planet. The chemiosmotic theory of energy coupling in oxidative and photophosphorylation was proposed by Mitchell >50years ago. It has had a contentious history, with part of the accumulated body of experimental evidence supporting it, and part of it in conflict with the theory. Although the theory was strongly criticized by many prominent scientists, the controversy has never been resolved. Here, the mathematical steps of Mitchell's original derivation leading to the principal equation of the chemiosmotic theory are scrutinized, and a fundamental flaw in them has been identified. Surprisingly, this flaw had not been detected earlier. Discovery of such a defect negates, or at least considerably weakens, the theoretical foundations on which the chemiosmotic theory is based. Ad hoc or simplistic ways to remedy this defect are shown to be scientifically unproductive and sterile. A novel two-ion theory of biological energy coupling salvages the situation by rectifying the fundamental flaw in the chemiosmotic theory, and the governing equations of the new theory have been shown to accurately quantify and predict extensive recent experimental data on ATP synthesis by F 1 F O -ATP synthase without using adjustable parameters. Some major biological implications arising from the new thinking are discussed. The principles of energy transduction and coupling proposed in the new paradigm are shown to be of a very general and universal nature. It is concluded that the timely availability after a 25-year research struggle of Nath's torsional mechanism of energy transduction and ATP synthesis is a rational alternative that has the power to solve the problems arising from the past, and also meet present and future challenges in this important interdisciplinary field

  15. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    OpenAIRE

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    Abstract We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500??m and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, ?-tricalcium phosphate (?-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, prolife...

  16. Investigation with automatic ultrasonic equipment to trace flaws in a large test piece, and experience gained in carrying out inspections

    International Nuclear Information System (INIS)

    Lindner, J.P.

    1975-01-01

    Based on the FRG codes providing guide lines for the Reactor Safety Commission regarding the size and location of flaws to be detected during in-service inspections, investigations were carried out into the possibility of detecting defects in thick-walled reactor pressure vessel components with the aid of ultrasonic inspection systems. A large test rig was used and, in a similar manner to the in-service inspections on a reactor, the tests were carried out with remote-controlled, automatically guided inspection equipment. For this purpose, a test specimen weighing about 10 tons was produced and provided with two weld seams having a large number of artificial defects. Essential parameters for the various reflectors in the test specimen were the size, location, angle and roughness or structure of the reflecting surfaces. As it is known that austenitic cladding has a considerable influence on flaw detection, the tests were undertaken first without cladding and then with cladding. A manipulator was designed for automatic remote-controlled inspection with which the inspection system travels on a meandering route over the area to be inspected. The inspection system employed was of the same type as the one used for baseline tests during external inspections of reactor vessel walls with parallel surfaces. Digital data collection was by a magnetic tape recorder designed to store both the data of the ultrasonic inspection system as well as the allied position data. The data stored on the tape are evaluated with electronic data processing programmes especially developed for this purpose. These programmes allow locally coherent indication patterns to be prepared, thus simplifying the interpretation of the data obtained. The author initially describes the equipment with the aid of which the studies were undertaken. A detailed discussion is then presented on the design of the test specimen and the inspection systems employed. Following this, the results obtained are explained and

  17. "The Bell Curve" and Its Critical Progeny: A Review.

    Science.gov (United States)

    Davis, Alan

    1997-01-01

    Discusses R. Herrnstein's and C. Murray's attempt to persuade an educated white readership that they, the readers, are genetically, socially, and intellectually superior. The most effective criticisms are those that rely on scientific evidence about the manipulation of data and flawed analyses rather than the display of moral outrage. (SLD)

  18. NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) Benchmark. Volume II: uncertainty and sensitivity analyses of void distribution and critical power - Specification

    International Nuclear Information System (INIS)

    Aydogan, F.; Hochreiter, L.; Ivanov, K.; Martin, M.; Utsuno, H.; Sartori, E.

    2010-01-01

    This report provides the specification for the uncertainty exercises of the international OECD/NEA, NRC and NUPEC BFBT benchmark problem including the elemental task. The specification was prepared jointly by Pennsylvania State University (PSU), USA and the Japan Nuclear Energy Safety (JNES) Organisation, in cooperation with the OECD/NEA and the Commissariat a l'energie atomique (CEA Saclay, France). The work is sponsored by the US NRC, METI-Japan, the OECD/NEA and the Nuclear Engineering Program (NEP) of Pennsylvania State University. This uncertainty specification covers the fourth exercise of Phase I (Exercise-I-4), and the third exercise of Phase II (Exercise II-3) as well as the elemental task. The OECD/NRC BFBT benchmark provides a very good opportunity to apply uncertainty analysis (UA) and sensitivity analysis (SA) techniques and to assess the accuracy of thermal-hydraulic models for two-phase flows in rod bundles. During the previous OECD benchmarks, participants usually carried out sensitivity analysis on their models for the specification (initial conditions, boundary conditions, etc.) to identify the most sensitive models or/and to improve the computed results. The comprehensive BFBT experimental database (NEA, 2006) leads us one step further in investigating modelling capabilities by taking into account the uncertainty analysis in the benchmark. The uncertainties in input data (boundary conditions) and geometry (provided in the benchmark specification) as well as the uncertainties in code models can be accounted for to produce results with calculational uncertainties and compare them with the measurement uncertainties. Therefore, uncertainty analysis exercises were defined for the void distribution and critical power phases of the BFBT benchmark. This specification is intended to provide definitions related to UA/SA methods, sensitivity/ uncertainty parameters, suggested probability distribution functions (PDF) of sensitivity parameters, and selected

  19. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-01-01

    This work has demonstrated the statistical concepts behind the XBAR R method for determining sample limits to verify billet I c performance and process uniformity. Using a preliminary population estimate for μ and σ from a stable production lot of only 5 billets, we have shown that reasonable sensitivity to systematic process drift and random within billet variation may be achieved, by using per billet subgroup sizes of moderate proportions. The effects of subgroup size (n) and sampling risk (α and β) on the calculated control limits have been shown to be important factors that need to be carefully considered when selecting an actual number of measurements to be used per billet, for each supplier process. Given the present method of testing in which individual wire samples are ramped to I c only once, with measurement uncertainty due to repeatability and reproducibility (typically > 1.4%), large subgroups (i.e. >30 per billet) appear to be unnecessary, except as an inspection tool to confirm wire process history for each spool. The introduction of the XBAR R method or a similar Statistical Quality Control procedure is recommend for use in the superconducing wire production program, particularly when the program transitions from requiring tests for all pieces of wire to sampling each production unit

  20. Critical review of methodology and application of risk ranking for prioritisation of food and feed related issues, on the basis of the size of anticipated health impact

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H. J.; van Asselt, E. D.; Raley, M.

    , an overarching framework was developed for selection of the appropriate method(s) that could be used for risk ranking of feed and food related hazards, on the basis of human health impact. This framework has the format of a decision tool, with which – given the characteristics of the risk ranking question...... at hand - the most appropriate method(s) can be selected. Application of this overall framework to several case studies showed it can be a useful tool for risk managers/assessors to select the most suitable method for risk ranking of feed/food and diet related hazards, on the basis of expected human......This study aimed to critically review methodologies for ranking of risks related to feed/food safety and nutritional hazards, on the basis of their anticipated human health impact. An extensive systematic literature review was performed to identify and characterize the available methodologies...

  1. Star junctions and watermelons of pure or random quantum Ising chains: finite-size properties of the energy gap at criticality

    Science.gov (United States)

    Monthus, Cécile

    2015-06-01

    We consider M  ⩾  2 pure or random quantum Ising chains of N spins when they are coupled via a single star junction at their origins or when they are coupled via two star junctions at the their two ends leading to the watermelon geometry. The energy gap is studied via a sequential self-dual real-space renormalization procedure that can be explicitly solved in terms of Kesten variables containing the initial couplings and and the initial transverse fields. In the pure case at criticality, the gap is found to decay as a power-law {ΔM}\\propto {{N}-z(M)} with the dynamical exponent z(M)=\\frac{M}{2} for the single star junction (the case M   =   2 corresponds to z   =   1 for a single chain with free boundary conditions) and z(M)   =   M  -  1 for the watermelon (the case M   =   2 corresponds to z   =   1 for a single chain with periodic boundary conditions). In the random case at criticality, the gap follows the Infinite Disorder Fixed Point scaling \\ln {ΔM}=-{{N}\\psi}g with the same activated exponent \\psi =\\frac{1}{2} as the single chain corresponding to M   =   2, and where g is an O(1) random positive variable, whose distribution depends upon the number M of chains and upon the geometry (star or watermelon).

  2. Prevention of criticality accidents

    International Nuclear Information System (INIS)

    Canavese, S.I.

    1982-01-01

    These notes used in the postgraduate course on Radiological Protection and Nuclear Safety discuss macro-and microscopic nuclear constants for fissile materials systems. Critical systems: their definition; criteria to analyze the critical state; determination of the critical size; analysis of practical problems about prevention of criticality. Safety of isolated units and of sets of units. Application of standards. Conception of facilities from the criticality control view point. (author) [es

  3. Evaluation of J-integral estimation scheme for flawed throughwall pipes

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.

    1987-02-01

    The accuracy of the EPRI J-integral estimation scheme for pipes with throughwall cracks and subjected to pure bending was assessed using available experimental data on circumferentially flawed throughwall pipes. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. The results indicated that the EPRI J estimation scheme solutions are unnecessarily conservative compared to results from pipe experiments. As a result of these evaluations an improved J estimation scheme is developed, which is shown to have improved accuracy compared to the original EPRI J estimation scheme. These results imply that the flaw evaluation procedures in the ASME Code on austenitic piping welds are conservative. These results also have applications to the leak before break fracture mechanics analyses.

  4. Evaluation of J-integral estimation scheme for flawed throughwall pipes

    International Nuclear Information System (INIS)

    Zahoor, A.

    1987-01-01

    The accuracy of the EPRI J-integral estimation scheme for pipes with throughwall cracks and subjected to pure bending was assessed using available experimental data on circumferentially flawed throughwall pipes. The evaluations were performed using elastic plastic J-integral (J) and tearing modulus (T) analysis methods. The results indicated that the EPRI J estimation scheme solutions are unnecessarily conservative compared to results from pipe experiments. As a result of these evaluations an improved J estimation scheme is developed, which is shown to have improved accuracy compared to the original EPRI J estimation scheme. These results imply that the flaw evaluation procedures in the ASME Code on austenitic piping welds are conservative. These results also have applications to the leak before break fracture mechanics analyses. (orig.)

  5. Visualization of flaws within heavy section ultrasonic test blocks using high energy computed tomography

    International Nuclear Information System (INIS)

    House, M.B.; Ross, D.M.; Janucik, F.X.; Friedman, W.D.; Yancey, R.N.

    1996-05-01

    The feasibility of high energy computed tomography (9 MeV) to detect volumetric and planar discontinuities in large pressure vessel mock-up blocks was studied. The data supplied by the manufacturer of the test blocks on the intended flaw geometry were compared to manual, contact ultrasonic test and computed tomography test data. Subsequently, a visualization program was used to construct fully three-dimensional morphological information enabling interactive data analysis on the detected flaws. Density isosurfaces show the relative shape and location of the volumetric defects within the mock-up blocks. Such a technique may be used to qualify personnel or newly developed ultrasonic test methods without the associated high cost of destructive evaluation. Data is presented showing the capability of the volumetric data analysis program to overlay the computed tomography and destructive evaluation (serial metallography) data for a direct, three-dimensional comparison

  6. Arc-discharge system for nondestructive detection of flaws in thin ceramic coatings

    International Nuclear Information System (INIS)

    Scott, G.W.; Davis, E.V.

    1978-04-01

    The feasibility of nondestructively detecting small cracks or holes in plasma-sprayed ceramic coatings with an electric arc-discharge system was studied. We inspected ZrO 2 coatings 0.46 mm (0.018 in.) thick on Incoloy alloy 800 substrates. Cracks were artificially induced in controlled areas of the specimens by straining the substrates in tension. We designed and built a system to scan the specimen's surface at approximately 50 μm (0.002 in.) clearance with a sharp-pointed metal-tipped probe at high dc potential. The system measures the arc currents occurring at flaws, or plots a map of the scanned area showing points where the arc current exceeds a preset threshold. A theoretical model of the probe-specimen circuit shows constant dc potential to be the best choice for arc-discharge inspection of insulating coatings. Experimental observations and analysis of the data disclosed some potential for flaw description

  7. Warning About the Use of Critical-Size Defects for the Translational Study of Bone Repair: Analysis of a Sheep Tibial Model.

    Science.gov (United States)

    Lammens, Johan; Maréchal, Marina; Geris, Lisbet; Van der Aa, Joshua; Van Hauwermeiren, Hadewych; Luyten, Frank P; Delport, Hendrik

    2017-11-01

    The repair of large long bone defects requires complex surgical procedures as the bone loss cannot simply be replaced by autologous grafts due to an insufficient bone stock of the human body. Tissue engineering strategies and the use of Advanced Therapy Medicinal Products (ATMPs) for these reconstructions remain a considerable challenge, in particular since robust outcomes in well-defined large animal models are lacking. To be suitable as a model for treatment of human sized bone defects, we developed a large animal model in both skeletally immature and mature sheep and made close observations on the spontaneous healing of defects. We warn for the spontaneous repair of large defects in immature animals, which can mask the (in)effectiveness of ATMP therapies, and propose the use of large 4.5 cm defects that are pretreated with a polymethylmethacrylate (PMMA) spacer in skeletally mature animals.

  8. Continuous AE monitoring of nuclear plants to detect flaws - status and future

    International Nuclear Information System (INIS)

    Hutton, P.H.

    1986-01-01

    This paper gives a brief commentary on the evolution of acoustic emission (AE) technology for continuous monitoring of nuclear reactors and the current status. The technical work described to support the status description has the objective of developing and validating the use of AE to detect, locate, and evaluate growing flaws in reactor pressure boundaries. The future of AE for continuous monitoring is discussed in terms of envisioned applications and further accomplishments required to achieve them. 12 refs.

  9. Detection and characterization of flaws in segments of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Cook, K.V.; Cunningham, R.A. Jr.; McClung, R.W.

    1988-01-01

    Studies have been conducted to determine flaw density in segments cut from light water reactor )LWR) pressure vessels as part of the Oak Ridge National Laboratory's Heavy-Section Steel Technology (H SST) Program. Segments from the Hope Creek Unit 2 vessel and the Pilgrim Unit 2 Vessel were purchased from salvage dealers. Hope Creek was a boiling water reactor (BWR) design and Pilgrim was a pressurized water reactor (PWR) design. Neither were ever placed in service. Objectives were to evaluate these LWR segments for flaws with ultrasonic and liquid penetrant techniques. Both objectives were successfully completed. One significant indication was detected in a Hope Creek seam weld by ultrasonic techniques and characterized by further analyses terminating with destructive correlation. This indication [with a through-wall dimension of ∼6 mm (∼0.24 in.)] was detected in only 3 m (10 ft) of weldment and offers extremely limited data when compared to the extent of welding even in a single pressure vessel. However, the detection and confirmation of the flaw in the arbitrarily selected sections implies the Marshall report estimates (and others) are nonconservative for such small flaws. No significant indications were detected in the Pilgrim material by ultrasonic techniques. Unfortunately, the Pilgrim segments contained relatively little weldment; thus, we limited our ultrasonic examinations to the cladding and subcladding regions. Fluorescent liquid penetrant inspection of the cladding surfaces for both LWR segments detected no significant indications [i.e., for a total of approximately 6.8 m 2 (72 ft 2 ) of cladding surface]. (author)

  10. Automated eddy-current installation AVD-01 for detecting flaws in fuel element cans

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Martishchenko, L.G.; Popov, V.K.; Romanov, M.L.; Shlepnev, I.O.; Shmatok, V.P.

    1986-01-01

    This paper describes an automated installation for eddy-current flaw detection in thin-walled pipes with small diameter; its unified transport system makes it possible to use the installation in inspection lines and production lines of fuel elements. The article describes the structural diagrams of the installation and presents the results of investigations connected with the selection for establishing the optimum regimes and sensitivity of feedthrough transducers with focusing screens

  11. Flaw evaluation of Nd:YAG laser welding based plume shape by infrared thermal camera

    International Nuclear Information System (INIS)

    Kim, Jae Yeol; Yoo, Young Tae; Yang, Dong Jo; Song, Kyung Seol; Ro, Kyoung Bo

    2003-01-01

    In Nd:YAG laser welding evaluation methods of welding flaw are various. But, the method due to plume shape is difficult to classification od welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of plume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, plume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipment. Here, two results are composed of measurement results of plume quantities due to plume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  12. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@pusan.ac.kr [Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Oh, Young-Jin [KEPCO Engineering & Construction Co. Inc., Seongnam 463-870 (Korea, Republic of); Majumdar, Saurin [Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-11-15

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  13. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Young-Jin; Majumdar, Saurin

    2015-01-01

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  14. Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures

    International Nuclear Information System (INIS)

    Chen, Wen; Liu, Ze; Robinson, Hannah Mae; Schroers, Jan

    2014-01-01

    Stochastic cellular structures are prevalent in nature and engineering materials alike. They are difficult to manipulate and study systematically and almost always contain imperfections. To design and characterize various degrees of imperfections in perfect periodic, stochastic and natural cellular structures, we fabricate a broad range of metallic glass cellular structures from perfectly periodic to highly stochastic by using a novel artificial microstructure approach based on thermoplastic replication of metallic glasses. For these cellular structures, precisely controlled imperfections are implemented and their effects on the mechanical response are evaluated. It is found that the mechanical performance of the periodic structures is generally superior to that of the stochastic structures. However, the stochastic structures experience a much higher tolerance to flaws than the periodic structure, especially in the plastic regime. The different flaw tolerance is explained by the stress distribution within the various structures, which leads to an overall 'strain-hardening' behavior of the stochastic structure compared to a 'strain-softening' behavior in the periodic structure. Our findings reveal how structure, 'strain-hardening' and flaw tolerance are microscopically related in structural materials

  15. On self-propagating methodological flaws in performance normalization for strength and power sports.

    Science.gov (United States)

    Arandjelović, Ognjen

    2013-06-01

    Performance in strength and power sports is greatly affected by a variety of anthropometric factors. The goal of performance normalization is to factor out the effects of confounding factors and compute a canonical (normalized) performance measure from the observed absolute performance. Performance normalization is applied in the ranking of elite athletes, as well as in the early stages of youth talent selection. Consequently, it is crucial that the process is principled and fair. The corpus of previous work on this topic, which is significant, is uniform in the methodology adopted. Performance normalization is universally reduced to a regression task: the collected performance data are used to fit a regression function that is then used to scale future performances. The present article demonstrates that this approach is fundamentally flawed. It inherently creates a bias that unfairly penalizes athletes with certain allometric characteristics, and, by virtue of its adoption in the ranking and selection of elite athletes, propagates and strengthens this bias over time. The main flaws are shown to originate in the criteria for selecting the data used for regression, as well as in the manner in which the regression model is applied in normalization. This analysis brings into light the aforesaid methodological flaws and motivates further work on the development of principled methods, the foundations of which are also laid out in this work.

  16. An engineering approach for examining crack growth and stability in flawed structures

    International Nuclear Information System (INIS)

    Shih, C.F.; German, M.D.; Kumar, V.

    1981-01-01

    Progress made in two research programmes, sponsored by the Electric Power Research Institute (EPRI), to identify viable parameters for characterising crack initiation and continued extension are summarised. An engineering/design methodology, based on these parameters, for the assessment of crack growth and instability in engineering structures which are stressed beyond the regime of applicability of linear elastic fracture mechanics is developed. The ultimate goal in the development of such a methodology is to establish an improved basis for analysing the effect of flaws (postulated or detected) on the safety margins of pressure boundary components of light water-cooled type nuclear steam supply systems. The methodology can also be employed for structural integrity analyses of other engineering components. Extensive experimental and analytical investigations undertaken to evaluate potential criteria for crack initiation and growth and the selection of the final criteria for analysing crack growth and stability in flawed structures are summarised. The experimental and analytical results obtained to date suggest that parameters based on the J-integral and the crack tip opening displacement, delta, are the most promising. This is not surprising since, from a theoretical basis, the two approaches are similar if certain conditions are met. An engineering/design approach for the assessment of crack growth and instability in flawed structures is outlined. (author)

  17. A statistical rationale for establishing process quality control limits using fixed sample size, for critical current verification of SSC superconducting wire

    International Nuclear Information System (INIS)

    Pollock, D.A.; Brown, G.; Capone, D.W. II; Christopherson, D.; Seuntjens, J.M.; Woltz, J.

    1992-03-01

    The purpose of this paper is to demonstrate a statistical method for verifying superconducting wire process stability as represented by I c . The paper does not propose changing the I c testing frequency for wire during Phase 1 of the present Vendor Qualification Program. The actual statistical limits demonstrated for one supplier's data are not expected to be suitable for all suppliers. However, the method used to develop the limits and the potential for improved process through their use, may be applied equally. Implementing the demonstrated method implies that the current practice of testing all pieces of wire from each billet, for the purpose of detecting manufacturing process errors (i.e. missing a heat-treatment cycle for a part of the billet, etc.) can be replaced by other less costly process control measures. As used in this paper process control limits for critical current are quantitative indicators of the source manufacturing process uniformity. The limits serve as alarms indicating the need for manufacturing process investigation

  18. Derivation of the critical effect size/benchmark response for the dose-response analysis of the uptake of radioactive iodine in the human thyroid.

    Science.gov (United States)

    Weterings, Peter J J M; Loftus, Christine; Lewandowski, Thomas A

    2016-08-22

    Potential adverse effects of chemical substances on thyroid function are usually examined by measuring serum levels of thyroid-related hormones. Instead, recent risk assessments for thyroid-active chemicals have focussed on iodine uptake inhibition, an upstream event that by itself is not necessarily adverse. Establishing the extent of uptake inhibition that can be considered de minimis, the chosen benchmark response (BMR), is therefore critical. The BMR values selected by two international advisory bodies were 5% and 50%, a difference that had correspondingly large impacts on the estimated risks and health-based guidance values that were established. Potential treatment-related inhibition of thyroidal iodine uptake is usually determined by comparing thyroidal uptake of radioactive iodine (RAIU) during treatment with a single pre-treatment RAIU value. In the present study it is demonstrated that the physiological intra-individual variation in iodine uptake is much larger than 5%. Consequently, in-treatment RAIU values, expressed as a percentage of the pre-treatment value, have an inherent variation, that needs to be considered when conducting dose-response analyses. Based on statistical and biological considerations, a BMR of 20% is proposed for benchmark dose analysis of human thyroidal iodine uptake data, to take the inherent variation in relative RAIU data into account. Implications for the tolerated daily intakes for perchlorate and chlorate, recently established by the European Food Safety Authority (EFSA), are discussed. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Ultrasonic TOFD method application for steel components and welds of 10 mm wall thickness using ultrasonic flaw detector and ULTRA7 TOFD software

    International Nuclear Information System (INIS)

    Kasarov, R.; Tabakova, B.

    2008-01-01

    Pressure Vessels inspection is carried out using complex of NDT techniques. A relatively recent technique ultrasonic NDJ is the Time-of-Flight Diffraction (TOFD,) method as an effective method for detection and sizing of flaws. One of the way inspection heavy duty steel elements and welds is to use manual TOFD technique with longitudinal waves at refracted angles of 45 to 70 degrees. Typically inspections using this method have been on steel elements and welds varying from 12 mm to 300 mm wall thickness. In this paper is presented examples of using the TOFD techniques for 10 mm wall thickness using USM 35X5 and ULTRA-7 TOFD software. This software provides TOFD inspection design (PCS, sound path, beam coverage, dead zones) and validation services. The calculations of the two dead zones are derived from relatively trigonometric equation, graphically displayed on a PC-screen and weld frame form. Using ULTRA-7 TOFD the user must move the gate at which the flaw is located on PC-screen to determine the depth of defect. The diffraction points graphically displayed in a weld frame form and analyzed using geometry calculations. (authors)

  20. Benford analysis of quantum critical phenomena: First digit provides high finite-size scaling exponent while first two and further are not much better

    Science.gov (United States)

    Bera, Anindita; Mishra, Utkarsh; Singha Roy, Sudipto; Biswas, Anindya; Sen(De), Aditi; Sen, Ujjwal

    2018-06-01

    Benford's law is an empirical edict stating that the lower digits appear more often than higher ones as the first few significant digits in statistics of natural phenomena and mathematical tables. A marked proportion of such analyses is restricted to the first significant digit. We employ violation of Benford's law, up to the first four significant digits, for investigating magnetization and correlation data of paradigmatic quantum many-body systems to detect cooperative phenomena, focusing on the finite-size scaling exponents thereof. We find that for the transverse field quantum XY model, behavior of the very first significant digit of an observable, at an arbitrary point of the parameter space, is enough to capture the quantum phase transition in the model with a relatively high scaling exponent. A higher number of significant digits do not provide an appreciable further advantage, in particular, in terms of an increase in scaling exponents. Since the first significant digit of a physical quantity is relatively simple to obtain in experiments, the results have potential implications for laboratory observations in noisy environments.

  1. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model.

    Science.gov (United States)

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that

  2. Application of Fourier elastodynamics to direct and inverse problems for the scattering of elastic waves from flaws near surfaces

    International Nuclear Information System (INIS)

    Richardson, J.M.; Fertig, K.W. Jr.

    1983-01-01

    In order to inspect flaws which lie too close to the surface a Fourier elastodynamic formalism is proposed which enables one to decompose the elastodynamic system into separately charterizable parts by means of planes perpendicular to the z-axis. The process can be represented by a generalized transfer function relating the near-field scattered waves to the waves incident on a slab of material containing the flaw. The Fourier elastodynamics are applied to the characterization of the total scattering process involving a flaw at various distances from a plastic-water interface. An abbreviated discussion of Fourier elastodynamics is presented, and the results specialized to the case of spherical voids and inclusions bear an interface. Finally, the computational results for several ranges of temporal frequency and for a sequence of values of the distance from the flaw center to the interface are discussed

  3. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-01-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  4. Vitamin D and Depression: A Systematic Review and Meta-Analysis Comparing Studies with and without Biological Flaws

    OpenAIRE

    Simon Spedding

    2014-01-01

    Efficacy of Vitamin D supplements in depression is controversial, awaiting further literature analysis. Biological flaws in primary studies is a possible reason meta-analyses of Vitamin D have failed to demonstrate efficacy. This systematic review and meta-analysis of Vitamin D and depression compared studies with and without biological flaws. The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The literature search was un...

  5. An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers

    Science.gov (United States)

    Chen, Qiang; Gorb, Stanislav; Kovalev, Alexander; Li, Zhiyong; Pugno, Nicola

    2016-10-01

    Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an airfoil stabilized by robust interlocking between barbules. Thus, revealing the robustness of the interlocking mechanical behavior of the barbules is very important to understand the function and long-term resilience of bird feathers. This paper, basing on the small- and large-beam deflection solutions, presents a hierarchical mechanical model for deriving the critical delamination conditions of the interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high robustness and flaw-tolerant design of the structure. This work contributes to the understanding of the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather, and provides a basis for design of feather-inspired materials with robust interlocking mechanism, such as advanced bio-inspired micro-zipping devices.

  6. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haiyan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    field in the presence of a finite a two-layer rod and a conductive tube. The results are in very good agreement with those obtained by using a 2D finite element code. In the third part, a new probe technology with enhanced flaw detection capability is described. The new probe can reduce inspection time through the use of multiple Hall sensors. A prototype Hall array probe has been built and tested with eight individual Hall sensor ICs and a racetrack coil. Electronic hardware was developed to interface the probes to an oscilloscope or an eddy current instrument. To achieve high spatial resolution and to limit the overall probe size, high-sensitivity Hall sensor arrays were fabricated directly on a wafer using photolithographic techniques and then mounted in their unencapsulated form. The electronic hardware was then updated to interface the new probes to a laptop computer.

  7. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.

    Science.gov (United States)

    Haberstroh, Kathrin; Ritter, Kathrin; Kuschnierz, Jens; Bormann, Kai-Hendrik; Kaps, Christian; Carvalho, Carlos; Mülhaupt, Rolf; Sittinger, Michael; Gellrich, Nils-Claudius

    2010-05-01

    The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from periost (OLP). In a prospective and randomized design nine sheep underwent osteotomy to create four critical-sized calvarial defects. Three animals each were assigned to the HYDR-, the TCP/Col-, or the PLGA-group. In each animal, one defect was treated with a cell-free, an OLB- or OLP-seeded group-specific scaffold, respectively. The fourth defect remained untreated as control (UD). Fourteen weeks later, animals were euthanized for histo-morphometrical analysis of the defect healing. OLB- and OLP-seeded HYDR and OLB-seeded TCP/Col scaffolds significantly increased the amount of newly formed bone (NFB) at the defect bottom and OLP-seeded HYDR also within the scaffold area, whereas PLGA-scaffolds showed lower rates. The relative density of NFB was markedly higher in the HYDR/OLB group compared to the corresponding PLGA group. TCP/Col had good stiffness to prepare complex structures by bioplotting but HYDR and PLGA were very soft. HYDR showed appropriate biodegradation, TCP/Col and PLGA seemed to be nearly undegraded after 14 weeks. 3D-bioplotted, cell-seeded HYDR and TCP/Col scaffolds increased the amount of NFB within ovine critical-size calvarial defects, but stiffness, respectively, biodegradation of

  8. Textual and language flaws: problems for Spanish doctors in producing abstracts in English

    Directory of Open Access Journals (Sweden)

    Lourdes Divasson Cilveti

    2006-04-01

    Full Text Available Scientific journals are the primary source of information for researchers. The number of articles currently indexed in databases is so large that it has become almost impossible to read every relevant article in a particular field. Thus, research paper abstracts (RPAs have acquired increasing importance. Several studies have shown that they are the skipping point, particularly among non-native English speakers. To our knowledge, little research has been carried out on RPA writing by Spanish doctors. It is thus the objective of this article to analyse the way abstracts are structured and linguistically realized by these professionals. We selected 30 RPAs written in English by Spanish speaking doctors from three leading Spanish journals on internal medicine. We recorded their textual level flaws by measuring the degree of informativeness with regard to three main variables: move patterning, ordering and structuring, and their language use flaws under two broad categories: ortho-typographic and grammatical. Length, use of hedges and keywords were also identified. 86.6% of the abstracts were informative, 13.3% uninformative while none of them could be classified as highly informative. With regard to the authors' use of language, over 70% presented some kind of flaws: 21.55% of these mistakes were ortho-typographic while 78.44% were grammatical. Our results support the need of designing specific units geared on the one hand towards explicit teaching of structured abstracts and on the other, towards the difficulties found by doctors because they lack language competence. They would also benefit from clearer guidelines from journal editors.

  9. CriticalEd

    DEFF Research Database (Denmark)

    Kjellberg, Caspar Mølholt; Meredith, David

    2014-01-01

    . Since the comments are not input sequentially, with regard to position, but in arbitrary order, this list must be sorted by copy/pasting the rows into place—an error-prone and time-consuming process. Scholars who produce critical editions typically use off-the-shelf music notation software......The best text method is commonly applied among music scholars engaged in producing critical editions. In this method, a comment list is compiled, consisting of variant readings and editorial emendations. This list is maintained by inserting the comments into a document as the changes are made......, consisting of a Sibelius plug-in, a cross-platform application, called CriticalEd, and a REST-based solution, which handles data storage/retrieval. A prototype has been tested at the Danish Centre for Music Publication, and the results suggest that the system could greatly improve the efficiency...

  10. Possibility of obtaining reliable information on component safety by means of large-scale tensile samples with Orowan-Soete flaws

    International Nuclear Information System (INIS)

    Aurich, D.; Wobst, K.; Kafka, H.

    1984-01-01

    The aim of the paper is to review the present knowledge regarding the ability of wide plate tensile specimen with saw cut trough center flaws of providing accurate information on component reliability; it points out the advantages and disadvantages of this specimen geometries. The effect of temperature, specimen geometry, ligament size and notch radii are discussed in comparison with other specimen geometries. This is followed by a comparison of the results of such tests with tests on inside stressed tanks. Conclusions: wide-plate tensile specimen are generally appropriate for assessing welded joints. However, they result in a more favourable evaluation of low-toughness steels from the point of view of crack growth than of high-toughness and soft steels in case of stresses with incipient cracks, as compared with the results obtained with three-point bending samples. (orig.) [de

  11. Ductile growth of crack like flawing during hydrotest; Propagacao dutil de defeitos planares durante teste hidrostatico

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jose C; Donato, Guilherme V [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Silva, Marcinei S. da; Bastian, Fernando L [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Romulo S. de [PETROBRAS/AB-RE, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In this paper effects of hydrostatic testing on ductile propagation of crack like flaw defects were evaluated in API X-60 steel. The model used was based on the J-tearing theory, supported by elastic - plastic fracture mechanics. The J-initiation resistance values (JIc) were determined by fracture mechanic tests using potential drop technique and compact test specimen. The JIc values were also determined from flow stress and Charpy V-notch at plateau, which are both usually available in mill-test data. Despite of being based on small database it seems it could be extended and it will be useful for future analysis. (author)

  12. The shallow flaw effect and the local approach to cleavage fracture

    International Nuclear Information System (INIS)

    Moinereau, D.

    1996-10-01

    The capability of Beremin model to explain the shallow flaw effect in cleavage fracture is evaluated. Numerous two-dimensional finite element calculations are performed on several cracked specimens (cladded and un-cladded specimens with different values of a/W ratio) submitted to mechanical or thermal loading. The behavior of different specimens is examined using the Weibull stress σ w versus stress intensity factor K J curves. The stress fields and plastic zones at the crack tip are also compared on respective cracked specimens. (K.A.)

  13. Development of flaw assesment methodology for elevated temperature components of FBR plants

    International Nuclear Information System (INIS)

    Shimakawa, Takashi; Takahashi, Yukio; Miura, Naoki; Nakayama, Yasunari; Sawai, Tatsuaki; Tooya, Yuuji

    1999-01-01

    Fracture mechanics is applicable for the safety assessment of FBR component if a crack is assumed to exist. Inelastic response should be taken into account due to high temperature operation of FBR components. However, methodology for the application of inelastic fracture mechanics has not been established sufficiently. CRIEPI has been conducted research projects to develop a flaw assessment guideline for FBR components. This guideline consists of evaluation methods for creep-fatigue crack propagation, ductile fracture and sodium leak rate. The summary of evaluation methods on creep-fatigue crack and ductile fracture is presented in this paper. (author)

  14. Use of Master Curve technology for assessing shallow flaws in a reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, Bennett Richard; Taylor, Nigel

    2006-01-01

    In the NESC-IV project an experimental/analytical program was performed to develop validated analysis methods for transferring fracture toughness data to shallow flaws in reactor pressure vessels subject to biaxial loading in the lower-transition temperature region. Within this scope an extensive range of fracture tests was performed on material removed from a production-quality reactor pressure vessel. The Master Curve analysis of this data is reported and its application to the assessment of the project feature tests on large beam test pieces.

  15. RSE-M code progress in the field of examination evaluation and flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Le Delliou, P.; Heliot, J.; Faidy, C.; Drubay, B.

    1995-01-01

    The RSE-M Code provides rules and requirements for in service inspection of light water cooled nuclear power plants. The code first edition was established by EDF and published in 1990 by AFCEN. In 1992, a second RSE-M project was launched by EDF and FRAMATOME with the objective to address a 1995 edition more completed considering the needs of owners, users, manufacturers and inspectors. This paper focuses on evaluation of examination results and presents the work done in the field of flaw acceptance criteria over the last three years. (author). 5 refs., 3 figs

  16. The influence of long-range residual stress on plastic collapse of pressurised pipes with and without flaws

    International Nuclear Information System (INIS)

    Wu, Gui-Yi; Smith, David J.; Pavier, Martyn J.

    2013-01-01

    Structural integrity assessments of pressurised pipes include plastic collapse as a potential failure mode. This paper uses analytical and numerical models to explore the effect of the end conditions of the pipe on the collapse pressure. The pipe is open-ended and two bounding conditions are addressed: one where axial loading is applied to the ends of the pipe and the other where a fixed axial displacement is applied. The fixed axial displacement condition represents long-range or fit-up residual stress. It is common practice to treat long-range residual stress in the same way as axial loading, leading to the conclusion that such long-range residual stress reduces the collapse pressure. Pipes in a number of states are considered: pipes with no flaws, pipes with fully circumferential flaws and pipes with part circumferential flaws. The flaws consist of either a crack or a slot on the external surface of the pipe. For the axial load condition, the collapse pressure for a flawed pipe is reduced when higher magnitudes of tensile or compressive axial loads are applied. For the fixed displacement condition however, the magnitude of the displacement may have little or no effect on the collapse pressure. The results of the work indicate that substantially conservative assessments may be made of the collapse pressures of pipes containing flaws, when long-range residual stress is taken to be a form of axial loading. -- Highlights: • The effect of end conditions on the collapse pressure of a pipe has been explored. • Fixed displacement conditions represent long-range residual stress. • Long-range residual stress is commonly thought to contribute to plastic collapse. • We show long-range residual stress has no influence on collapse for flawed pipes. • It is therefore possible to reduce conservatism in structural integrity assessment

  17. Choice-Induced Preference Change in the Free-Choice Paradigm: A Critical Methodological Review

    Directory of Open Access Journals (Sweden)

    Keise eIzuma

    2013-02-01

    Full Text Available Choices not only reflect our preference, but they also affect our behavior. The phenomenon of choice-induced preference change has been of interest to cognitive dissonance researchers in social psychology, and more recently, it has attracted the attention of researchers in economics and neuroscience. Preference modulation after the mere act of making a choice has been repeatedly demonstrated over the last 50 years by an experimental paradigm called the free-choice paradigm. However, in 2010, Chen and Risen pointed out a serious methodological flaw in this paradigm, arguing that evidence for choice-induced preference change is still insufficient. Despite the flaw, studies using the traditional free-choice paradigm continue to be published without addressing the criticism. Here, aiming to draw more attention to this issue, we briefly explain the methodological problem, and then describe simple simulation studies that illustrate how the free-choice paradigm produces a systematic pattern of preference change consistent with cognitive dissonance, even without any change in true preference. Our stimulation also shows how a different level of noise in each phase of the free-choice paradigm independently contributes to the magnitude of artificial preference change. Furthermore, we review ways of addressing the critique and provide a meta-analysis to show the effect size of choice-induced preference change after addressing the critique. Finally, we review and discuss, based on the results of the stimulation studies, how the criticism affects our interpretation of past findings generated from the free-choice paradigm. We conclude that the use of the conventional free-choice paradigm should be avoided in future research and the validity of past findings from studies using this paradigm should be empirically re-established.

  18. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    DEFF Research Database (Denmark)

    Jensen, Jonas; Tvedesøe, Claus; Rölfing, Jan Hendrik Duedal

    2016-01-01

    marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D) polycaprolactone (PCL) - hyaluronic acid - tricalcium phosphate (HT-PCL) scaffold. Population doubling (PD), alkaline phosphatase (ALP) activity, and calcium deposition were...... measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1) empty defects vs. HT-PCL scaffolds; (2) PCL scaffolds vs. HT...... a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion...

  19. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Kuo-Hwa Wang

    Full Text Available Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage and neoRAT (neo-rat cartilage constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.

  20. Dental pulp-derived stromal cells exhibit a higher osteogenic potency than bone marrow-derived stromal cells in vitro and in a porcine critical-size bone defect model

    Directory of Open Access Journals (Sweden)

    Jensen Jonas

    2016-01-01

    Full Text Available Introduction: The osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs was compared with that of dental pulp-derived stromal cells (DPSCs in vitro and in a pig calvaria critical-size bone defect model. Methods: BMSCs and DPSCs were extracted from the tibia bone marrow and the molar teeth of each pig, respectively. BMSCs and DPSCs were cultured in monolayer and on a three-dimensional (3D polycaprolactone (PCL – hyaluronic acid – tricalcium phosphate (HT-PCL scaffold. Population doubling (PD, alkaline phosphatase (ALP activity, and calcium deposition were measured in monolayer. In the 3D culture ALP activity, DNA content, and calcium deposition were evaluated. Six non-penetrating critical-size defects were made in each calvarium of 14 pigs. Three paired sub-studies were conducted: (1 empty defects vs. HT-PCL scaffolds; (2 PCL scaffolds vs. HT-PCL scaffolds; and (3 autologous BMSCs on HT-PCL scaffolds vs. autologous DPSCs on HT-PCL scaffolds. The observation time was five weeks. Bone volume fractions (BV/TV were assessed with micro-computed tomography (μCT and histomorphometry. Results and discussion: The results from the in vitro study revealed a higher ALP activity and calcium deposition of the DPSC cultures compared with BMSC cultures. Significantly more bone was present in the HT-PCL group than in both the pure PCL scaffold group and the empty defect group in vivo. DPSCs generated more bone than BMSCs when seeded on HT-PCL. In conclusion, DPSCs exhibited a higher osteogenic potential compared with BMSCs both in vitro and in vivo, making it a potential cell source for future bone tissue engineering.

  1. Flux-focusing eddy current probe and rotating probe method for flaw detection

    Science.gov (United States)

    Wincheski, Buzz A.; Fulton, James P.; Nath, Shridhar C.; Simpson, John W.; Namkung, Min

    1994-11-01

    A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks about circular fasteners and other circular inhomogeneities in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. By rotating the probe in a path around a circular fastener such as a rivet while maintaining a constant distance between the probe and the center of a rivet, the signal due to current flow about the rivet can be held constant. Any further changes in the current distribution, such as due to a fatigue crack at the rivet joint, can be detected as an increase in the output voltage above that due to the flow about the rivet head.

  2. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  3. Validation of favor code linear elastic fracture solutions for finite-length flaw geometries

    International Nuclear Information System (INIS)

    Dickson, T.L.; Keeney, J.A.; Bryson, J.W.

    1995-01-01

    One of the current tasks within the US Nuclear Regulatory Commission (NRC)-funded Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is the continuing development of the FAVOR (Fracture, analysis of Vessels: Oak Ridge) computer code. FAVOR performs structural integrity analyses of embrittled nuclear reactor pressure vessels (RPVs) with stainless steel cladding, to evaluate compliance with the applicable regulatory criteria. Since the initial release of FAVOR, the HSST program has continued to enhance the capabilities of the FAVOR code. ABAQUS, a nuclear quality assurance certified (NQA-1) general multidimensional finite element code with fracture mechanics capabilities, was used to generate a database of stress-intensity-factor influence coefficients (SIFICs) for a range of axially and circumferentially oriented semielliptical inner-surface flaw geometries applicable to RPVs with an internal radius (Ri) to wall thickness (w) ratio of 10. This database of SIRCs has been incorporated into a development version of FAVOR, providing it with the capability to perform deterministic and probabilistic fracture analyses of RPVs subjected to transients, such as pressurized thermal shock (PTS), for various flaw geometries. This paper discusses the SIFIC database, comparisons with other investigators, and some of the benchmark verification problem specifications and solutions

  4. Time-dependent leak behavior of flawed Alloy 600 tube specimens at constant pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Majumdar, Saurin [Argonne National Laboratory, Argonne, IL 60439 (United States); Harris, Charles [United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2011-10-15

    Leak rate testing has been performed using Alloy 600 tube specimens with throughwall flaws. Some specimens have shown time-dependent leak behavior at constant pressure conditions. Fractographic characterization was performed to identify the time-dependent crack growth mechanism. The fracture surface of the specimens showed the typical features of ductile fracture, as well as the distinct crystallographic facets, typical of fatigue crack growth at low {Delta}K level. Structural vibration appears to have been caused by the oscillation of pressure, induced by a high-pressure pump used in a test facility, and by the water jet/tube structure interaction. Analyses of the leak behaviors and crack growth indicated that both the high-pressure pump and the water jet could significantly contribute to fatigue crack growth. To determine whether the fatigue crack growth during the leak testing can occur solely by the water jet effect, leak rate tests at constant pressure without the high-pressure pump need to be performed. - Highlights: > Leak rate of flawed Alloy 600 tubing increased at constant pressure condition. > Fractography revealed two cases: ductile tearing and crystallographic facets. > Crystallographic facets are typical features of fatigue crack growth at low {Delta}K. > Fatigue source could be water jet-induced vibration and/or high-pressure pump pulsation.

  5. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  6. The Secret of Future Defeat: The Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations

    Science.gov (United States)

    2007-05-24

    The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations A...4. TITLE AND SUBTITLE The Secret of Future Defeat: the Evolution of US Joint and 5a. CONTRACT NUMBER Army Doctrine 1993-2006 and the Flawed... The Secret of Future Defeat: the Evolution of US Joint and Army Doctrine 1993-2006 and the Flawed Conception of Stability Operations Approved by

  7. Fatigue crack initiation at complex flaws in hydrided Zr-2.5%Nb samples from CANDU pressure tubes

    International Nuclear Information System (INIS)

    Stoica, L.; Radu, V.

    2016-01-01

    The paper addresses the phenomena which occur at locations where the oxide layer of the inner surface of CANDU tube pressure is damaged by the contact with the fuel element or due to the action of hard particles at the interface between the tube pressure and bearing pad of fuel element. In such situations generate defects, which most often are defects known as ''bearing pad fretting flaws'' or ''debris fretting flaws''. In this paper the experiments are completed in a series of previous works on the mechanical fatigue phenomenon on samples prepared from the pressure tube Zr-2.5% Nb alloy. The phenomenon of variable mechanical stress (or fatigue) may lead to initiation of cracks at the tip of volumetric flaws, according to the accumulation of hydrides, which then fractures and can propagate through the tube wall pressure due to the mechanism of type DHC (Delayed Hydride Cracking). (authors)

  8. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E. [Oak Ridge National Lab., Heavy-Section Steel Technology Program, Oak Ridge, TN (United States)

    2001-07-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  9. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E.

    2001-01-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  10. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  11. Engineering approach for examining crack growth and stability in flawed structures

    International Nuclear Information System (INIS)

    Shih, C.F.

    1980-01-01

    Progress made in two research programs sponsored by the Electric Power Research Institute (EPRI), to identify viable parameters for characterizing crack initiation and continued extension, and to develop an engineering/design methodology, based on these parameters, for the assessment of crack growth and instability in engineering structures which are stressed beyond the regime of applicability of linear elastic fracture mechanics is reported. The goal in the development of such methodology is to establish an improved basis for analyzing the effect of flaws (postulated or detected) on the safety margins of pressure boundary components of light water-cooled type nuclear steam supply systems. The methodology can also be employed for structural integrity analyses of other engineering structures

  12. The Seductive-Plausibility of Patent Hold-Up Myths — A Flawed Historiography of Patents

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D

    In previous work we have shown that a flawed historiography of patents continues to be the basis for patent policy advocacy. We set out objective standards of evidence that allegations of development block due to assertion of patents must meet. We show the extent of the errors in the historical...... record in the aircraft, automobile, radio and incandescent lamp technologies. We then evaluate how they measure against the objective standards. We find many simple errors and that an absence of indicia of development block characterise scholarship alleging that assertion of patents blocked development...... of multiple case studies subjected to such standards justifies the rebuttable presumption that “pioneer patents have never blocked development”....

  13. The flaw-detected coating and its applications in R&M of aircrafts

    Science.gov (United States)

    Hu, Feng; Liu, Mabao; Lü, Zhigang

    2009-07-01

    A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with lfuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.

  14. Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments

    Science.gov (United States)

    Peris-Lopez, Pedro; Hernandez-Castro, Julio C.; Tapiador, Juan M. E.; Millán, Enrique San; van der Lubbe, Jan C. A.

    In 2004, Settharam and Rhee tackled the design of a lightweight Pseudo-Random Number Generator (PRNG) suitable for low-power environments (e.g. sensor networks, low-cost RFID tags). First, they explicitly fixed a set of requirements for this primitive. Then, they proposed a PRNG conforming to these requirements and using a free-running timer [9]. We analyze this primitive discovering important security faults. The proposed algorithm fails to pass even relatively non-stringent batteries of randomness such as ENT (i.e. a pseudorandom number sequence test program). We prove that their recommended PRNG has a very short period due to the flawed design of its core. The internal state can be easily revealed, compromising its backward and forward security. Additionally, the rekeying algorithm is defectively designed mainly related to the unpractical value proposed for this purpose.

  15. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    Science.gov (United States)

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  16. Distributed system for parallel data processing of ECT signals for electromagnetic flaw detection in materials

    International Nuclear Information System (INIS)

    Guliashki, Vassil; Marinova, Galia

    2002-01-01

    The paper proposes a distributed system for parallel data processing of ECT signals for flaw detection in materials. The measured data are stored in files on a host computer, where a JAVA server is located. The host computer is connected through Internet to a set of client computers, distributed geographically. The data are distributed from the host computer by means of the JAVA server to the client computers according their requests. The software necessary for the data processing is installed on each client computer in advance. The organization of the data processing on many computers, working simultaneously in parallel, leads to great time reducing, especially in cases when huge amount of data should be processed in very short time. (Author)

  17. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  18. Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Choi, Sang Woo

    2006-01-01

    The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared

  19. Fatigue flaw growth assessment and inclusion of stratification to the LBB assessment

    Energy Technology Data Exchange (ETDEWEB)

    Samohyl, P.

    1997-04-01

    The application of the LBB requires also fatigue flaw growth assessment. This analysis was performed for PWR nuclear power plants types VVER 440/230, VVER 440/213c, VVER 1000/320. Respecting that these NPP`s were designed according to Russian codes that differ from US codes it was needed to compare these approaches. Comparison with our experimental data was accomplished, too. Margins of applicability of the US methods and their modifications for the materials used for construction of Czech and Slovak NPP`s are shown. Computer code accomplishing the analysis according to described method is presented. Some measurement and calculations show that thermal stratifications in horizontal pipelines can lead to additive loads that are not negligible and can be dangerous. An attempt to include these loads induced by steady-state stratification was made.

  20. Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology.

    Science.gov (United States)

    Michaud, J-P; Schoenly, Kenneth G; Moreau, G

    2012-01-01

    Forensic entomology is an inferential science because postmortem interval estimates are based on the extrapolation of results obtained in field or laboratory settings. Although enormous gains in scientific understanding and methodological practice have been made in forensic entomology over the last few decades, a majority of the field studies we reviewed do not meet the standards for inference, which are 1) adequate replication, 2) independence of experimental units, and 3) experimental conditions that capture a representative range of natural variability. Using a mock case-study approach, we identify design flaws in field and lab experiments and suggest methodological solutions for increasing inference strength that can inform future casework. Suggestions for improving data reporting in future field studies are also proposed.

  1. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed

  2. Fatigue test results of straight pipe with flaws in inner surface

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Oba, Toshihiro; Kawamura, Takaichi; Yokoyama, Norio; Miyazono, Shohachiro

    1981-01-01

    Fatigue and fracture tests of piping models with flaws in the inner surface were carried out to investigate the fatigue crack growth, coalescence of multiple cracks and fracture behavior. Two straight test pipes with and without weldment in the test section of SUS304L stainless steel were tested under almost the same test conditions. Three artificial defects were machined in the inner surface of the test section of the test pipes. The fatigue test were performed untill the cracks coalesced and grew through the thickness. Subsequently, a static load was imposed on test pipe which contained a large crack in the test section. The test results show that the fatigue crack growth is slower than that predicted by the method specified in the Section XI of ASME Boiler and Pressure Vessel Code, and that the test pipes can endure more than the static load of 3Sm without an unstable fracture. (author)

  3. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  4. Critical appraisal of published literature

    Science.gov (United States)

    Umesh, Goneppanavar; Karippacheril, John George; Magazine, Rahul

    2016-01-01

    With a large output of medical literature coming out every year, it is impossible for readers to read every article. Critical appraisal of scientific literature is an important skill to be mastered not only by academic medical professionals but also by those involved in clinical practice. Before incorporating changes into the management of their patients, a thorough evaluation of the current or published literature is an important step in clinical practice. It is necessary for assessing the published literature for its scientific validity and generalizability to the specific patient community and reader's work environment. Simple steps have been provided by Consolidated Standard for Reporting Trial statements, Scottish Intercollegiate Guidelines Network and several other resources which if implemented may help the reader to avoid reading flawed literature and prevent the incorporation of biased or untrustworthy information into our practice. PMID:27729695

  5. Critical appraisal of published literature

    Directory of Open Access Journals (Sweden)

    Goneppanavar Umesh

    2016-01-01

    Full Text Available With a large output of medical literature coming out every year, it is impossible for readers to read every article. Critical appraisal of scientific literature is an important skill to be mastered not only by academic medical professionals but also by those involved in clinical practice. Before incorporating changes into the management of their patients, a thorough evaluation of the current or published literature is an important step in clinical practice. It is necessary for assessing the published literature for its scientific validity and generalizability to the specific patient community and reader′s work environment. Simple steps have been provided by Consolidated Standard for Reporting Trial statements, Scottish Intercollegiate Guidelines Network and several other resources which if implemented may help the reader to avoid reading flawed literature and prevent the incorporation of biased or untrustworthy information into our practice.

  6. Evaluation of ASME code flaw analysis procedure using the influence function method for application to PWR primary piping

    International Nuclear Information System (INIS)

    Hong, S.Y.; Yeater, M.L.

    1985-01-01

    This paper discusses stress intensity factor calculations and fatigue analysis for a PWR primary coolant piping system. The influence function method is applied to evaluate ASME Code Section XI Appendix A ''analysis of flaw indication'' for the application to a PWR primary piping. Results of the analysis are discussed in detail. (orig.)

  7. Investigation of the radiation leakage from X ray flaw detectors and the improvement measures for the unqualified products

    International Nuclear Information System (INIS)

    Li Yiachun; Wu Yi; Pang Hu; Bai Bin

    1997-01-01

    The authors introduce investigation methods and results for radiation leakage from X ray flaw detectors, which are used in Beijing area. Total 21 sets of flaw detectors made in 8 factories in Beijing, Shanghai etc. have been tested, of which 16 sets made in Beijing, Dandong and Japan are gas cooling flaw detectors, and rest 5 sets made in Shanghai and Germany are water or oil cooling detectors. The air Kerma rate of leakage radiation at 1 m from the X ray tube target were measured by Type FJ-347A X, γ dosimeter. It can be seen from the results that, compared with the trade standard ZBY315-83, 5 sets of water or oil cooling flaw detectors are all qualified. However, only two sets of gas cooling detectors are qualified, and the radiation leakage of another 14 sets are over the values specified in the standard. The reason is analyzed, and some advices about the measures of improving radiation protection structure design and production technology for the unqualified products have been proposed

  8. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  9. What Is a Pediatric Critical Care Specialist?

    Science.gov (United States)

    ... Text Size Email Print Share What is a Pediatric Critical Care Specialist? Page Content Article Body If ... in the PICU. What Kind of Training Do Pediatric Critical Care Specialists Have? Pediatric critical care specialists ...

  10. The IARC monographs: critics and controversy.

    Science.gov (United States)

    Samet, Jonathan M

    2015-07-01

    The monograph program of the International Agency for Research on Cancer (IARC), which relies on the efforts of volunteer Working Groups, uses a transparent approach to evaluate the carcinogenicity of agents for which scoping has determined that there is sufficient evidence to warrant a review. Because of the potentially powerful implications of the conclusions of the monographs and the sometimes challenging nature of the evidence reviewed, the monographs and the IARC process have been criticized from time to time. This commentary describes the IARC monograph process and addresses recent criticisms of the program, drawing on a recent defense of the program authored by 124 researchers. These authors concluded that the IARC processes are robust and transparent and not flawed and biased as suggested by some critics. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Thinking Critically about Critical Thinking

    Science.gov (United States)

    Mulnix, Jennifer Wilson

    2012-01-01

    As a philosophy professor, one of my central goals is to teach students to think critically. However, one difficulty with determining whether critical thinking can be taught, or even measured, is that there is widespread disagreement over what critical thinking actually is. Here, I reflect on several conceptions of critical thinking, subjecting…

  12. The approach to analysis of significance of flaws in ASME section III and section XI

    International Nuclear Information System (INIS)

    Cowan, A.

    1979-01-01

    ASME III Appendix G and ASME XI Appendix A describe linear elastic fracture mechanics methods to assess the significance of defects in thick-walled pressure vessels for nuclear reactor systems. The assessment of fracture toughness, Ksub(Ic), is based upon recommendations made by a Task Group of the USA Pressure Vessel Research Committee and is dependent upon correlations with drop weight and Charpy V-notch data to give a lower bound of fracture toughness Ksub(IR). The methods used in the ASME Appendices are outlined noting that, whereas ASME III Appendix G defines a procedure for obtaining allowable pressure vessel loadings for normal service in the presence of a defect, ASME XI Appendix A defines methods for assessing the significance of defects (found by volumetric inspection) under normal and emergency and faulted conditions. The methods of analysis are discussed with respect to material properties, flaw characterisation, stress analysis and recommended safety factors; a short discussion is given on the applicability of the data and methods to other materials and non-nuclear structures. (author)

  13. Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions

    Science.gov (United States)

    Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming

    2018-04-01

    Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.

  14. Marine Protected Dramas: The Flaws of the Brazilian National System of Marine Protected Areas

    Science.gov (United States)

    Gerhardinger, Leopoldo C.; Godoy, Eduardo A. S.; Jones, Peter J. S.; Sales, Gilberto; Ferreira, Beatrice P.

    2011-04-01

    This article discusses the current problems and issues associated with the implementation of a National System of Marine Protected Areas in Brazil. MPA managers and higher governmental level authorities were interviewed about their perceptions of the implementation of a national MPA strategy and the recent changes in the institutional arrangement of government marine conservation agencies. Interviewees' narratives were generally pessimistic and the National System was perceived as weak, with few recognizable marine conservation outcomes on the ground. The following major flaws were identified: poor inter-institutional coordination of coastal and ocean governance; institutional crisis faced by the national government marine conservation agency; poor management within individual MPAs; problems with regional networks of marine protected areas; an overly bureaucratic management and administrative system; financial shortages creating structural problems and a disconnect between MPA policy and its delivery. Furthermore, a lack of professional motivation and a pessimistic atmosphere was encountered during many interviews, a malaise which we believe affects how the entire system is able to respond to crises. Our findings highlight the need for a better understanding of the role of `leadership' in the performance of socio-ecological systems (such as MPA networks), more effective official evaluation mechanisms, more localized audits of (and reforms if necessary to) Brazil's federal biodiversity conservation agency (ICMBio), and the need for political measures to promote state leadership and support. Continuing to focus on the designation of more MPAs whilst not fully addressing these issues will achieve little beyond fulfilling, on paper, Brazil's international marine biodiversity commitments.

  15. PowerPoint® Presentation Flaws and Failures: A Psychological Analysis

    Directory of Open Access Journals (Sweden)

    Stephen Michael Kosslyn

    2012-07-01

    Full Text Available Electronic slideshow presentations are often faulted anecdotally, but little empirical work has documented their faults. Three studies reported here document psychological causes of their flaws. In Study 1 we found that eight psychological principles are often violated in PowerPoint® presentations, across different fields—for example, academic research presentations generally were no better or worse than business presentations. In Study 2 we found that respondents reported having noticed, and having been annoyed by, specific problems in presentations arising from violations of particular psychological principles. Finally, in Study 3 we showed that observers are not highly accurate in recognizing when slides violated a specific psychological rule. Furthermore, even when they correctly identified the violation, they often could not explain the nature of the problem. In sum, the psychological foundations for effective slideshow presentation design are neither obvious nor necessarily intuitive, and presentation designers in all fields, from education to business to government, could benefit from explicit instruction in relevant aspects of psychology.

  16. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig

  17. Robust and reliable banknote authentification and print flaw detection with opto-acoustical sensor fusion methods

    Science.gov (United States)

    Lohweg, Volker; Schaede, Johannes; Türke, Thomas

    2006-02-01

    The authenticity checking and inspection of bank notes is a high labour intensive process where traditionally every note on every sheet is inspected manually. However with the advent of more and more sophisticated security features, both visible and invisible, and the requirement of cost reduction in the printing process, it is clear that automation is required. As more and more print techniques and new security features will be established, total quality security, authenticity and bank note printing must be assured. Therefore, this factor necessitates amplification of a sensorial concept in general. We propose a concept for both authenticity checking and inspection methods for pattern recognition and classification for securities and banknotes, which is based on the concept of sensor fusion and fuzzy interpretation of data measures. In the approach different methods of authenticity analysis and print flaw detection are combined, which can be used for vending or sorting machines, as well as for printing machines. Usually only the existence or appearance of colours and their textures are checked by cameras. Our method combines the visible camera images with IR-spectral sensitive sensors, acoustical and other measurements like temperature and pressure of printing machines.

  18. A Bayesian approach to modeling and predicting pitting flaws in steam generator tubes

    International Nuclear Information System (INIS)

    Yuan, X.-X.; Mao, D.; Pandey, M.D.

    2009-01-01

    Steam generators in nuclear power plants have experienced varying degrees of under-deposit pitting corrosion. A probabilistic model to accurately predict pitting damage is necessary for effective life-cycle management of steam generators. This paper presents an advanced probabilistic model of pitting corrosion characterizing the inherent randomness of the pitting process and measurement uncertainties of the in-service inspection (ISI) data obtained from eddy current (EC) inspections. A Markov chain Monte Carlo simulation-based Bayesian method, enhanced by a data augmentation technique, is developed for estimating the model parameters. The proposed model is able to predict the actual pit number, the actual pit depth as well as the maximum pit depth, which is the main interest of the pitting corrosion model. The study also reveals the significance of inspection uncertainties in the modeling of pitting flaws using the ISI data: Without considering the probability-of-detection issues and measurement errors, the leakage risk resulted from the pitting corrosion would be under-estimated, despite the fact that the actual pit depth would usually be over-estimated.

  19. Application of flaw detection methods for detection of fatigue processes in low-alloyed steel

    Directory of Open Access Journals (Sweden)

    Zbigniew H. śUREK

    2007-01-01

    Full Text Available The paper presents the investigations conducted in the Fraunhofer Institute (IZFP Saarbrücken by use of a BEMI microscope (BEMI= Barkhausenrausch- und Wirbelstrom-Mikroskopie or Barkhausen Noise and Eddy Current Microscopy. The ability to detect cyclic and contact fatigue load influences has been investigated. The measurement amplitudes obtained with Barkhausen Noise and Eddy Current probes havebeen analysed. Correlation of measurement results and material’s condition has been observed in case of the eddy current mode method for frequencies above 2 MHz (for contact-loaded material samples. Detection of material’s fatigue process (at 80 % fatiguelife in the sample subjected to series of high-cyclic loads has been proven to be practically impossible. Application of flaw detection methods in material fatigue tests requires modification of test methods and use of investigation methods relevant to physical parameters of the investigated material. The magnetic leakage field method, which has been abandoned by many researchers, may be of significant use in the material fatigue assessment and may provide new research prospects.

  20. Systematic reviews identify important methodological flaws in stroke rehabilitation therapy primary studies: review of reviews.

    Science.gov (United States)

    Santaguida, Pasqualina; Oremus, Mark; Walker, Kathryn; Wishart, Laurie R; Siegel, Karen Lohmann; Raina, Parminder

    2012-04-01

    A "review of reviews" was undertaken to assess methodological issues in studies evaluating nondrug rehabilitation interventions in stroke patients. MEDLINE, CINAHL, PsycINFO, and the Cochrane Database of Systematic Reviews were searched from January 2000 to January 2008 within the stroke rehabilitation setting. Electronic searches were supplemented by reviews of reference lists and citations identified by experts. Eligible studies were systematic reviews; excluded citations were narrative reviews or reviews of reviews. Review characteristics and criteria for assessing methodological quality of primary studies within them were extracted. The search yielded 949 English-language citations. We included a final set of 38 systematic reviews. Cochrane reviews, which have a standardized methodology, were generally of higher methodological quality than non-Cochrane reviews. Most systematic reviews used standardized quality assessment criteria for primary studies, but not all were comprehensive. Reviews showed that primary studies had problems with randomization, allocation concealment, and blinding. Baseline comparability, adverse events, and co-intervention or contamination were not consistently assessed. Blinding of patients and providers was often not feasible and was not evaluated as a source of bias. The eligible systematic reviews identified important methodological flaws in the evaluated primary studies, suggesting the need for improvement of research methods and reporting. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Systematization of simplified J-integral evaluation method for flaw evaluation at high temperature

    International Nuclear Information System (INIS)

    Miura, Naoki; Takahashi, Yukio; Nakayama, Yasunari; Shimakawa, Takashi

    2000-01-01

    J-integral is an effective inelastic fracture parameter for the flaw evaluation of cracked components at high temperature. The evaluation of J-integral for an arbitrary crack configuration and an arbitrary loading condition can be generally accomplished by detailed numerical analysis such as finite element analysis, however, it is time-consuming and requires a high degree of expertise for its implementation. Therefore, it is important to develop simplified J-integral estimation techniques from the viewpoint of industrial requirements. In this study, a simplified J-integral evaluation method is proposed to estimate two types of J-integral parameters. One is the fatigue J-integral range to describe fatigue crack propagation behavior, and the other is the creep J-integral to describe creep crack propagation behavior. This paper presents the systematization of the simplified J-integral evaluation method incorporated with the reference stress method and the concept of elastic follow-up, and proposes a comprehensive evaluation procedure. The verification of the proposed method is presented in Part II of this paper. (author)

  2. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  3. Hazard analysis and critical control points among Chinese food business operators

    OpenAIRE

    Stefano Saccares; Paolo Amadei; Gianfranco Masotti; Roberto Condoleo; Alessandra Guidi

    2014-01-01

    The purpose of the present paper is to highlight some critical situations emerged during the implementation of long-term projects locally managed by Prevention Services, to control some manufacturing companies in Rome and Prato, Central Italy. In particular, some critical issues on the application of self-control in marketing and catering held by Chinese operators are underlined. The study showed serious flaws in preparing and controlling of manuals for good hygiene practice, participating of...

  4. Critical Care

    Science.gov (United States)

    Critical care helps people with life-threatening injuries and illnesses. It might treat problems such as complications from surgery, ... attention by a team of specially-trained health care providers. Critical care usually takes place in an ...

  5. Use of flawed multiple-choice items by the New England Journal of Medicine for continuing medical education.

    Science.gov (United States)

    Stagnaro-Green, Alex S; Downing, Steven M

    2006-09-01

    Physicians in the United States are required to complete a minimum number of continuing medical education (CME) credits annually. The goal of CME is to ensure that physicians maintain their knowledge and skills throughout their medical career. The New England Journal of Medicine (NEJM) provides its readers with the opportunity to obtain weekly CME credits. Deviation from established item-writing principles may result in a decrease in validity evidence for tests. This study evaluated the quality of 40 NEJM MCQs using the standard evidence-based principles of effective item writing. Each multiple-choice item reviewed had at least three item flaws, with a mean of 5.1 and a range of 3 to 7. The results of this study demonstrate that the NEJM uses flawed MCQs in its weekly CME program.

  6. Acoustic Emission Behavior of Rock-Like Material Containing Two Flaws in the Process of Deformation Failure

    Directory of Open Access Journals (Sweden)

    Quan-Sheng Liu

    2015-01-01

    Full Text Available Many sudden disasters (such as rock burst by mining extraction originate in crack initiation and propagation. Meanwhile a large number of shock waves are produced by rock deformation and failure. With the purpose of investigating crack coalescence and failure mechanism in rock, experimental research of rock-like materials with two preexisting flaws was performed. Moreover, the AE technique and photographic monitoring were adopted to clarify further the procedure of the crack coalescence and failure. It reveals that AE location technique can record the moments of crack occurrences and follow the crack growth until final failure. Finally, the influence of different flaw geometries on crack initiation strength is analyzed in detail. This research provides increased understanding of the fracture mechanism of mining-induced disasters.

  7. Sizing of intergranular stress corrosion cracking using low frequency ultrasound

    International Nuclear Information System (INIS)

    Fuller, M.D.; Avioli, M.J.; Rose, J.L.

    1985-01-01

    Based upon the work thus far accomplished on low frequency sizing, the following conclusions can be drawn: the potential of low frequency ultrasound for the sizing of IGSCC seams encouraging as demonstrated in this work. If minimal walking is expected, larger values of crack height/wavelength ratios should not affect the reliability of estimates; notch data points out the validity of signal amplitude for sizing. With care in frequency consideration, the technique can be extended to cracks; when wavelength is greater than flaw size, importance of orientation and reflector shape diminishes although less so for deeper cracks; when beam profile is larger than the defect size, echo amplitude is proportional to defect area when using shear wave probes and corner reflectors; other factors, in addition to crack size, affect signal amplitude. Reference data to compensate for depth and material (HAZ) is a must; additional crack samples should be studied in order to further develop and characterize the use of low frequency ultrasonics

  8. Preliminary experimental results for a non-intrusive scheme for the detection of flaws in metal pipelines

    Science.gov (United States)

    Aydin, K.; Shinde, S.; Suhail, M.; Vyas, A.; Zieher, K. W.

    2002-05-01

    An acoustic pulse echo scheme for non-intrusive detection of flaws in metal pipelines has been investigated in the laboratory. The primary pulse is generated by a pulsed magnetic field enclosing a short section of a free pipe. The detection is by an electrostatic detector surrounding a short section of the pipe. Reflected pulses from thin areas, with a longitudinal extension of about one pipe radius and a reduction of the wall thickness of 40%, can be detected clearly.

  9. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study

    OpenAIRE

    Douglas H. Marin dos Santos; Álvaro N. Atallah

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the ...

  10. Periodontal wound healing/regeneration following the application of rhGDF-5 in a beta-TCP/PLGA carrier in critical-size supra-alveolar periodontal defects in dogs.

    Science.gov (United States)

    Kwon, David H; Bisch, Frederick C; Herold, Robert W; Pompe, Cornelius; Bastone, Patrizia; Rodriguez, Nancy A; Susin, Cristiano; Wikesjö, Ulf M E

    2010-07-01

    The objective of this study was to evaluate the effect of a novel recombinant human GDF-5 (rhGDF-5) construct intended for onlay and inlay indications on periodontal wound healing/regeneration. Contralateral, surgically created, critical-size, 6-mm, supra-alveolar periodontal defects in five adult Hound Labrador mongrel dogs received rhGDF-5 coated onto beta-tricalcium phosphate (beta-TCP) particles and immersed in a bioresorbable poly(lactic-co-glycolic acid) (PLGA) composite or the beta-TCP/PLGA carrier alone (control). The rhGDF-5 and control constructs were moulded around the teeth and allowed to set. The gingival flaps were then advanced; flap margins were adapted 3-4 mm coronal to the teeth and sutured. The animals were euthanized at 8 weeks post-surgery when block biopsies were collected for histometric analysis. Healing was generally uneventful. A few sites exhibited minor exposures. Three control sites and one rhGDF-5 site (in separate animals) experienced more extensive wound dehiscencies. The rhGDF-5 and control constructs were easy to apply and exhibited adequate structural integrity to support the mucoperiosteal flaps in this challenging onlay model. Limited residual beta-TCP particles were observed at 8 weeks for both rhGDF-5/beta-TCP/PLGA and beta-TCP/PLGA control sites. The rhGDF-5/beta-TCP/PLGA sites showed significantly greater cementum (2.34 +/- 0.44 versus 1.13 +/- 0.25 mm, p=0.02) and bone (2.92 +/- 0.66 versus 1.21 +/- 0.30 mm, p=0.02) formation compared with the carrier control. Limited ankylosis was observed in four of five rhGDF-5/beta-TCP/PLGA sites but not in control sites. Within the limitations of this study, the results suggest that rhGDF-5 is a promising candidate technology in support of periodontal wound healing/regeneration. Carrier and rhGDF-5 dose optimization are necessary before further advancement of the technology towards clinical evaluation.

  11. Portion size

    Science.gov (United States)

    ... of cards One 3-ounce (84 grams) serving of fish is a checkbook One-half cup (40 grams) ... for the smallest size. By eating a small hamburger instead of a large, you will save about 150 calories. ...

  12. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Douglas H. Marin dos Santos

    2015-06-01

    Full Text Available The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA, aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov. We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.

  13. FDAAA legislation is working, but methodological flaws undermine the reliability of clinical trials: a cross-sectional study.

    Science.gov (United States)

    Marin Dos Santos, Douglas H; Atallah, Álvaro N

    2015-01-01

    The relationship between clinical research and the pharmaceutical industry has placed clinical trials in jeopardy. According to the medical literature, more than 70% of clinical trials are industry-funded. Many of these trials remain unpublished or have methodological flaws that distort their results. In 2007, it was signed into law the Food and Drug Administration Amendments Act (FDAAA), aiming to provide publicly access to a broad range of biomedical information to be made available on the platform ClinicalTrials (available at https://www.clinicaltrials.gov). We accessed ClinicalTrials.gov and evaluated the compliance of researchers and sponsors with the FDAAA. Our sample comprised 243 protocols of clinical trials of biological monoclonal antibodies (mAb) adalimumab, bevacizumab, infliximab, rituximab, and trastuzumab. We demonstrate that the new legislation has positively affected transparency patterns in clinical research, through a significant increase in publication and online reporting rates after the enactment of the law. Poorly designed trials, however, remain a challenge to be overcome, due to a high prevalence of methodological flaws. These flaws affect the quality of clinical information available, breaching ethical duties of sponsors and researchers, as well as the human right to health.

  14. Combining usability evaluations to highlight the chain that leads from usability flaws to usage problems and then negative outcomes.

    Science.gov (United States)

    Watbled, Ludivine; Marcilly, Romaric; Guerlinger, Sandra; Bastien, J-M Christian; Beuscart-Zéphir, Marie-Catherine; Beuscart, Régis

    2018-02-01

    Poor usability of health technology is thought to diminish work system performance, increase error rates and, potentially, harm patients. The present study (i) used a combination of usability evaluation methods to highlight the chain that leads from usability flaws to usage problems experienced by users and, ultimately, to negative patient outcomes, and (ii) validated this approach by studying two different discharge summary production systems. To comply with quality guidelines, the process of drafting and sending discharge summaries is increasingly being automated. However, the usability of these systems may modify their impact (or the absence thereof) in terms of production times and quality, and must therefore be evaluated. Here, we applied three successive techniques for usability evaluation (heuristic evaluation, user testing and field observation) to two discharge summary production systems (underpinned by different technologies). The systems' main usability flaws led respectively to an increase in the time need to produce a discharge summary and the risk of patient misidentification. Our results are discussed with regard to the possibility of linking the usability flaws, usage problems and the negative outcomes by successively applying three methods for evaluating usability (heuristic evaluation, user testing and in situ observations) throughout the system development life cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  16. The impacts of observing flawed and flawless demonstrations on clinical skill learning.

    Science.gov (United States)

    Domuracki, Kurt; Wong, Arthur; Olivieri, Lori; Grierson, Lawrence E M

    2015-02-01

    Clinical skills expertise can be advanced through accessible and cost-effective video-based observational practice activities. Previous findings suggest that the observation of performances of skills that include flaws can be beneficial to trainees. Observing the scope of variability within a skilled movement allows learners to develop strategies to manage the potential for and consequences associated with errors. This study tests this observational learning approach on the development of the skills of central line insertion (CLI). Medical trainees with no CLI experience (n = 39) were randomised to three observational practice groups: a group which viewed and assessed videos of an expert performing a CLI without any errors (F); a group which viewed and assessed videos that contained a mix of flawless and errorful performances (E), and a group which viewed the same videos as the E group but were also given information concerning the correctness of their assessments (FA). All participants interacted with their observational videos each day for 4 days. Following this period, participants returned to the laboratory and performed a simulation-based insertion, which was assessed using a standard checklist and a global rating scale for the skill. These ratings served as the dependent measures for analysis. The checklist analysis revealed no differences between observational learning groups (grand mean ± standard error: [20.3 ± 0.7]/25). However, the global rating analysis revealed a main effect of group (d.f.2,36 = 4.51, p = 0.018), which describes better CLI performance in the FA group, compared with the F and E groups. Observational practice that includes errors improves the global performance aspects of clinical skill learning as long as learners are given confirmation that what they are observing is errorful. These findings provide a refined perspective on the optimal organisation of skill education programmes that combine physical and observational practice

  17. Medicare payment data for spine reimbursement; important but flawed data for evaluating utilization of resources.

    Science.gov (United States)

    Menger, Richard P; Wolf, Michael E; Kukreja, Sunil; Sin, Anthony; Nanda, Anil

    2015-01-01

    Medicare data showing physician-specific reimbursement for 2012 were recently made public in the mainstream media. Given the ongoing interest in containing healthcare costs, we analyze these data in the context of the delivery of spinal surgery. Demographics of 206 leading surgeons were extracted including state, geographic area, residency training program, fellowship training, and academic affiliation. Using current procedural terminology (CPT) codes, information was evaluated regarding the number of lumbar laminectomies, lumbar fusions, add-on laminectomy levels, and anterior cervical fusions reimbursed by Medicare in 2012. In 2012 Medicare reimbursed the average neurosurgeon slightly more than an orthopedic surgeon for all procedures ($142,075 vs. $110,920), but this was not found to be statistically significant (P = 0.218). Orthopedic surgeons had a statistical trend illustrating increased reimbursement for lumbar fusions specifically, $1187 versus $1073 (P = 0.07). Fellowship trained spinal surgeons also, on average, received more from Medicare ($125,407 vs. $76,551), but again this was not statistically significant (P = 0.112). A surgeon in private practice, on average, was reimbursed $137,495 while their academic counterparts were reimbursed $103,144 (P = 0.127). Surgeons performing cervical fusions in the Centers for Disease Control West Region did receive statistically significantly less reimbursement for that procedure then those surgeons in other parts of the country (P = 0.015). Surgeons in the West were reimbursed on average $849 for CPT code 22,551 while those in the Midwest received $1475 per procedure. Medicare reimbursement data are fundamentally flawed in determining healthcare expenditure as it shows a bias toward delivery of care in specific patient demographics. However, neurosurgeons, not just policy makers, must take ownership to analyze, investigate, and interpret these data as it will affect healthcare reimbursement and delivery moving

  18. Swedish-Norwegian tradable green certificates: Scheme design flaws and perceived investment barriers

    International Nuclear Information System (INIS)

    Linnerud, Kristin; Simonsen, Morten

    2017-01-01

    The EU Commission recommends using market-based support schemes for renewable-electricity projects. One example is the Swedish-Norwegian tradable green certificate scheme. We examine whether design features in the Norwegian part of this scheme, specifically, the scheme's short duration and the way it is to be abruptly terminated, contribute to investors' perceptions of barriers. We apply econometric techniques on primary data collected in two surveys of Norwegian investors in hydropower, and we use real options theory to predict and interpret investors' responses. We show that: (1) immediately after the scheme was introduced, investors are eager to lock in future subsidies by investing immediately and concerned with factors that may delay the completion of their projects; (2) as the certificate deadline neared, investors have become increasingly pessimistic and concerned with economic and risk barriers. Investors in big hydropower plants with regulation reservoirs are particularly concerned with the risk of not completing their projects in time to gain the right to sell certificates. These findings are consistent with the predicted responses to the scheme design derived from real options theory. In contrast to earlier studies, we find no difference in responses to the scheme design across investor types. - Highlights: • The Swedish-Norwegian tradable green certificate scheme is intended to promote cost-efficiency. • We examine the optimism about and barriers against investing in new hydropower projects in Norway. • We find that scheme design may have contributed to barriers against Norwegian hydropower projects. • Thus, scheme design flaws may have prevented the scheme from working as intended. • These findings are consistent with real options theory predictions.

  19. How Critical Is Critical Thinking?

    Science.gov (United States)

    Shaw, Ryan D.

    2014-01-01

    Recent educational discourse is full of references to the value of critical thinking as a 21st-century skill. In music education, critical thinking has been discussed in relation to problem solving and music listening, and some researchers suggest that training in critical thinking can improve students' responses to music. But what exactly is…

  20. Program to develop acoustic emission: flaw relationship for inservice monitoring of nuclear pressure vessels. Progress report No. 1, July 1, 1976--February 1, 1977

    International Nuclear Information System (INIS)

    Hutton, P.H.; Schwenk, E.B.

    1977-03-01

    This is a laboratory research program to characterize acoustic emission (AE) from flaw growth and noise from innocuous sources in A533B Class 1 pressure vessel steel. The objectives are: characterize AE from a limited range of defects and material property conditions of concern to reactor pressure vessel integrity; characterize AE from innocuous sources (including defects); develop criteria for distinguishing significant flaws from innocuous sources; and develop an AE flaw damage model to serve as a basis for relating in-service AE to pressure vessel integrity. The purpose of the program is to build an experimental evaluation of the feasibility of detecting and analyzing flaw growth in reactor pressure boundaries by continuously monitoring for AE. A detailed program plan in the form of an analysis-before-test document has been prepared and approved

  1. The ability of winter grazing to reduce wildfire size, intensity ...

    Science.gov (United States)

    A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience more fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, this commentary will show that the study by Davies et al. has underlying methodological flaws, lacks data necessary to support their conclusions, and does not provide an accurate discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based off their observed fire behavior metrics of maximum temperature and a term described as the “heat load”. However, neither metric is appropriate for elucidating the heat flux impacts on plants. This lack of post-fire data, several methodological flaws, and the use of inadequate metrics describing heat cast doubts on the authors’ ability to support their stated conclusions. This article is a commentary highlights the scientific shortcomings in a forthcoming paper by Davies et al. in the International Journal of Wildland Fire. The study has methodological flaw

  2. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    International Nuclear Information System (INIS)

    Cui, J.; Shek, G.K.; Wang, Z.R.

    2007-01-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  3. Sustainable Sizing.

    Science.gov (United States)

    Robinette, Kathleen M; Veitch, Daisy

    2016-08-01

    To provide a review of sustainable sizing practices that reduce waste, increase sales, and simultaneously produce safer, better fitting, accommodating products. Sustainable sizing involves a set of methods good for both the environment (sustainable environment) and business (sustainable business). Sustainable sizing methods reduce (1) materials used, (2) the number of sizes or adjustments, and (3) the amount of product unsold or marked down for sale. This reduces waste and cost. The methods can also increase sales by fitting more people in the target market and produce happier, loyal customers with better fitting products. This is a mini-review of methods that result in more sustainable sizing practices. It also reviews and contrasts current statistical and modeling practices that lead to poor fit and sizing. Fit-mapping and the use of cases are two excellent methods suited for creating sustainable sizing, when real people (vs. virtual people) are used. These methods are described and reviewed. Evidence presented supports the view that virtual fitting with simulated people and products is not yet effective. Fit-mapping and cases with real people and actual products result in good design and products that are fit for person, fit for purpose, with good accommodation and comfortable, optimized sizing. While virtual models have been shown to be ineffective for predicting or representing fit, there is an opportunity to improve them by adding fit-mapping data to the models. This will require saving fit data, product data, anthropometry, and demographics in a standardized manner. For this success to extend to the wider design community, the development of a standardized method of data collection for fit-mapping with a globally shared fit-map database is needed. It will enable the world community to build knowledge of fit and accommodation and generate effective virtual fitting for the future. A standardized method of data collection that tests products' fit methodically

  4. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    trash bags according to size of plates and weighed in bulk. Results Those eating from smaller plates (n=145) left significantly less food to waste (aver. 14,8g) than participants eating from standard plates (n=75) (aver. 20g) amounting to a reduction of 25,8%. Conclusions Our field experiment tests...... the hypothesis that a decrease in the size of food plates may lead to significant reductions in food waste from buffets. It supports and extends the set of circumstances in which a recent experiment found that reduced dinner plates in a hotel chain lead to reduced quantities of leftovers....

  5. Critical Jostling

    Directory of Open Access Journals (Sweden)

    Pippin Barr

    2016-11-01

    Full Text Available Games can serve a critical function in many different ways, from serious games about real world subjects to self-reflexive commentaries on the nature of games themselves. In this essay we discuss critical possibilities stemming from the area of critical design, and more specifically Carl DiSalvo’s adversarial design and its concept of reconfiguring the remainder. To illustrate such an approach, we present the design and outcomes of two games, Jostle Bastard and Jostle Parent. We show how the games specifically engage with two previous games, Hotline Miami and Octodad: Dadliest Catch, reconfiguring elements of those games to create interactive critical experiences and extensions of the source material. Through the presentation of specific design concerns and decisions, we provide a grounded illustration of a particular critical function of videogames and hope to highlight this form as another valuable approach in the larger area of videogame criticism.

  6. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dinwiddie, Ralph Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gockel, Joy E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Additive manufacturing has demonstrated the ability to fabricate complex geometries and components not possible with conventional casting and machining. In many cases, industry has demonstrated the ability to fabricate complex geometries with improved efficiency and performance. However, qualification and certification of processes is challenging, leaving companies to focus on certification of material though design allowable based approaches. This significantly reduces the business case for additive manufacturing. Therefore, real time monitoring of the melt pool can be used to detect the development of flaws, such as porosity or un-sintered powder and aid in the certification process. Characteristics of the melt pool in the Direct Laser Sintering (DLS) process is also of great interest to modelers who are developing simulation models needed to improve and perfect the DLS process. Such models could provide a means to rapidly develop the optimum processing parameters for new alloy powders and optimize processing parameters for specific part geometries. Stratonics’ ThermaViz system will be integrated with the Renishaw DLS system in order to demonstrate its ability to measure melt pool size, shape and temperature. These results will be compared with data from an existing IR camera to determine the best approach for the determination of these critical parameters.

  7. Critical Proximity

    OpenAIRE

    Simon, Jane

    2010-01-01

    This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how w...

  8. Criticality Model

    International Nuclear Information System (INIS)

    Alsaed, A.

    2004-01-01

    The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality

  9. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  10. Critical Review

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Olsen, Stig Irving

    2018-01-01

    Manipulation and mistakes in LCA studies are as old as the tool itself, and so is its critical review. Besides preventing misuse and unsupported claims, critical review may also help identifying mistakes and more justifiable assumptions as well as generally improve the quality of a study. It thus...... supports the robustness of an LCA and increases trust in its results and conclusions. The focus of this chapter is on understanding what a critical review is, how the international standards define it, what its main elements are, and what reviewer qualifications are required. It is not the objective...... of this chapter to learn how to conduct a critical review, neither from a reviewer nor from a practitioner perspective. The foundation of this chapter and the basis for any critical review of LCA studies are the International Standards ISO 14040:2006, ISO 14044:2006 and ISO TS 14071:2014....

  11. Sample size in usability studies

    NARCIS (Netherlands)

    Schmettow, Martin

    2012-01-01

    Usability studies are important for developing usable, enjoyable products, identifying design flaws (usability problems) likely to compromise the user experience. Usability testing is recommended for improving interactive design, but discovery of usability problems depends on the number of users

  12. Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael

    2012-11-01

    The shakeout in the solar cell and module industry is in full swing. While the number of companies and production locations shutting down in the Western world is increasing, the capacity expansion in the Far East seems to be unbroken. Size in combination with a good sales network has become the key to success for surviving in the current storm. The trade war with China already looming on the horizon is adding to the uncertainties. (orig.)

  13. Crack Propagation Test Results for Variable Amplitude Spectrum Loading in Surface Flawed D6ac Steel

    National Research Council Canada - National Science Library

    Wood, H

    1971-01-01

    .... All spectra used in the program represented the critical wing pivot locations for the F-lll aircraft and were applied in a randomized block sequence containing 58 layers representing 200 flight hours...

  14. A model-based approach to crack sizing with ultrasonic arrays.

    Science.gov (United States)

    Tant, Katherine M M; Mulholland, Anthony J; Gachagan, Anthony

    2015-05-01

    Ultrasonic phased array systems have become increasingly popular in the last 10 years as tools for flaw detection and characterization within the nondestructive testing industry. The existence and location of flaws can often be deduced via images generated from the data captured by these arrays. A factor common to these imaging techniques is the subjective thresholding required to estimate the size of the flaw. This paper puts forward an objective approach which employs a mathematical model. By exploiting the relationship between the width of the central lobe of the scattering matrix and the crack size, an analytical expression for the crack length is reached via the Born approximation. Conclusions are then drawn on the minimum resolvable crack length of the method and it is thus shown that the formula holds for subwavelength defects. An analytical expression for the error that arises from the discrete nature of the array is then derived and it is observed that the method becomes less sensitive to the discretization of the array as the distance between the flaw and array increases. The methodology is then extended and tested on experimental data collected from welded austenitic plates containing a lack-of-fusion crack of 6 mm length. An objective sizing matrix (OSM) is produced by assessing the similarity between the scattering matrices arising from experimentally collected data with those arising from the Born approximation over a range of crack lengths and frequencies. Initially, the global minimum of the OSM is taken as the objective estimation of the crack size, giving a measurement of 7 mm. This is improved upon by the adoption of a multifrequency averaging approach, with which an improved crack size estimation of 6.4 mm is obtained.

  15. Real time flaw detection and characterization in tube through partial least squares and SVR: Application to eddy current testing

    Science.gov (United States)

    Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco

    2018-04-01

    This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.

  16. Identification of Flaws Responsible for Crack Initiation and Micromechanisms of Slow Crack Growth in the Delayed Fracture of Alumina.

    Science.gov (United States)

    1982-02-01

    A-"AIS012 CALIFORNIA UNdIV LOS ANSELES DEPT OF MATERIALS SCIEN--ETC F/S 11/6 IDENTIFICATION OF FLAWS RESPONSIBLE FOR CRACK INITIATION AM %I--ETC(U...Sines and Adams . 71 It might be thought that other compressive loading devices could serve the same purpoee. For example, a spherical joint instead of the...compressive strength can be 18 times the tensile strength as reported by Adams . 92 This is because the established criteria are damage criter- ia, not

  17. Questioning: a critical skill in postmodern health-care service delivery.

    Science.gov (United States)

    Brown, Cary A; Bannigan, Katrina; Gill, Joanna R

    2009-06-01

    Occupational therapists can no longer rely exclusively on biomedical frameworks to guide their practice and facilitate clinical problem-solving. A postmodernist perspective of health and well-being underlines that the illness experience is not a linear, cause-and-effect equation. Rather, life experiences are constructed through a myriad of social, cultural, physical and economic contexts that are highly unique to each individual. In other words, the assumption that 'one-size-fits-all' is as flawed in health care as it is in clothing design. This paper contributes to the growing discussion of health care within the postmodern context of the twenty-first century through first presenting a brief discussion of emerging postmodern thinking and application within the profession, followed by a rationale for the need to scrutinise prevalent modernist assumptions that guide decision-making. Finally, the paper introduces the method of Socratic questioning as a critical tool in successfully carrying out this scrutiny in an empowering and respectful manner for all stakeholders.

  18. Critical Arts

    African Journals Online (AJOL)

    both formal and informal) in culture and social theory. CRITICAL ARTS aims to challenge and ... Book Review: Brian McNair, An Introduction to Political Communication (3rd edition), London: Routledge, 2003, ISBN 0415307082, 272pp. Phil Joffe ...

  19. Critical Proximity

    Directory of Open Access Journals (Sweden)

    Jane Simon

    2010-09-01

    Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.

  20. Critical proximity

    Directory of Open Access Journals (Sweden)

    Simon, Jane

    2010-01-01

    Full Text Available This essay considers how written language frames visual objects. Drawing on Michel Foucault’s response to Raymond Roussel’s obsessive description, the essay proposes a model of criticism where description might press up against its objects. This critical closeness is then mapped across the conceptual art practice and art criticism of Ian Burn. Burn attends to the differences between seeing and reading, and considers the conditions which frame how we look at images, including how we look at, and through words. The essay goes on to consider Meaghan Morris’s writing on Lynn Silverman’s photographs. Both Morris and Burn offer an alternative to a parasitic model of criticism and enact a patient way of looking across and through visual landscapes.