WorldWideScience

Sample records for crew module landings

  1. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    Science.gov (United States)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  2. Assessment of Ocean Wave Model used to Analyze the Constellation Program (CxP) Orion Project Crew Module Water Landing Conditions

    Science.gov (United States)

    Smith, Bryan K.; Bouchard, Richard; Teng, Chung-Chu; Dyson, Rodger; Jenson, Robert; OReilly, William; Rogers, Erick; Wang, David; Volovoi, Vitali

    2009-01-01

    Mr. Christopher Johnson, NASA's Systems Manager for the Orion Project Crew Module (CM) Landing and Recovery at the Johnson Space Center (JSC), and Mr. James Corliss, Project Engineer for the Orion CM Landing System Advanced Development Project at the Langley Research Center (LaRC) requested an independent assessment of the wave model that was developed to analyze the CM water landing conditions. A NASA Engineering and Safety Center (NESC) initial evaluation was approved November 20, 2008. Mr. Bryan Smith, NESC Chief Engineer at the NASA Glenn Research Center (GRC), was selected to lead this assessment. The Assessment Plan was presented and approved by the NESC Review Board (NRB) on December 18, 2008. The Assessment Report was presented to the NRB on March 12, 2009. This document is the final Assessment Report.

  3. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    Science.gov (United States)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  4. STS-110/Atlantic/ISS 8A Pre-Launch On Orbit-Landing-Crew Egress

    Science.gov (United States)

    2002-01-01

    The crew of STS-110, which consists of Commander Michael Bloomfield, Pilot Stephen Frick, and Mission Specialists Rex Walheim, Ellen Ochoa, Lee Morin, Jerry Ross, and Steven Smith is introduced at the customary pre-flight meal. The narrator provides background information on the astronauts during suit-up. Each crew member is shown in the White Room before boarding Space Shuttle Atlantis, and some display signs to loved ones. Launch footage includes the following replays: Beach Tracker, VAB, Pad B, Tower 1, DLTR-3, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, SLF Convoy, OTV-154, OTV-163, OTV-170 (mislabeled), and OTV-171 (mislabeled). After the launch, NASA administrator Sean O'Keefe gives a speech to the Launch Control Center, with political dignitaries present. While on-orbit, Atlantis docks with the International Space Station (ISS), and Canadarm 2 on the ISS lifts the S0 Truss out of the orbiter's payload bay. The video includes highlights of three extravehicular activities (EVAs). In the first, the S0 Truss is fastened to the Destiny Laboratory Module on the ISS. During the third EVA, Walheim and Smith assist in the checkout of the handcart on the S0 Truss. The Atlantis crew is shown gathered together with the Expedition 4 crew of the ISS, and again by itself after undocking. Replays of the landing include: VAB, Tower 1, Mid-field, Runway South End, Runway North End, Tower 2, Playalinda DOAMS, Cocoa Beach DOAMS, and Pilot Point of View (PPOV). After landing, Commander Bloomfield lets each of his crew members give a short speech.

  5. STS-95: Post Landing and Crew Walkaround of the Orbiter at the Shuttle Landing Facility

    Science.gov (United States)

    1998-01-01

    After landing, the STS-95 crew (Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, Pedro Duque, Payload Specialists Chiaki Mukai and the legendary John H. Glenn) descend from the Space Shuttle. Commander Brown congratulates the crew and team photos are taken. The crew does a walkaround inspection of the spacecraft, then boards the bus for departure from the facility.

  6. John Glenn and rest of STS-95 crew exit Crew Transport Vehicle

    Science.gov (United States)

    1998-01-01

    Following touchdown at 12:04 p.m. EST at the Shuttle Landing Facility, the mission STS-95 crew leave the Crew Transport Vehicle. Payload Specialist John H. Glenn Jr. (center), a senator from Ohio, shakes hands with NASA Administrator Daniel S. Goldin. At left is Center Director Roy Bridges. Other crew members shown are Pilot Steven W. Lindsey (far left) and, behind Glenn, Mission Specialists Scott E. Parazynski and Stephen K. Robinson, and Payload Specialist Chiaki Mukai, Ph.D., M.D., with the National Space Development Agency of Japan. Not seen are Mission Commander Curtis L. Brown Jr. and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The STS-95 crew completed a successful mission, landing at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  7. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    Science.gov (United States)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  8. STS-114: Discovery Crew Post Landing Press Briefing

    Science.gov (United States)

    2005-01-01

    The crew of the STS-114 Discovery is shown during a post landing press briefing. Commander Collins introduces the crew members who consist of Pilot Jim Kelley, Mission Specialist Soichi Noguchi from JAXA, Steve Robinson, Mission Specialist and Charlie Camarda, Mission Specialist. Steve Robinson answers a question from the news media about the repair that he performed in orbit, and his feelings about being back in his hometown of California. Commander Collins talks about the most significant accomplishment of the mission. The briefing ends as each crewmember reflects on the Space Shuttle Columbia tragedy and expresses their personal thoughts and feelings as they re-entered the Earth's atmosphere.

  9. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    Science.gov (United States)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  10. Probabilistic Analysis of a Composite Crew Module

    Science.gov (United States)

    Mason, Brian H.; Krishnamurthy, Thiagarajan

    2011-01-01

    An approach for conducting reliability-based analysis (RBA) of a Composite Crew Module (CCM) is presented. The goal is to identify and quantify the benefits of probabilistic design methods for the CCM and future space vehicles. The coarse finite element model from a previous NASA Engineering and Safety Center (NESC) project is used as the baseline deterministic analysis model to evaluate the performance of the CCM using a strength-based failure index. The first step in the probabilistic analysis process is the determination of the uncertainty distributions for key parameters in the model. Analytical data from water landing simulations are used to develop an uncertainty distribution, but such data were unavailable for other load cases. The uncertainty distributions for the other load scale factors and the strength allowables are generated based on assumed coefficients of variation. Probability of first-ply failure is estimated using three methods: the first order reliability method (FORM), Monte Carlo simulation, and conditional sampling. Results for the three methods were consistent. The reliability is shown to be driven by first ply failure in one region of the CCM at the high altitude abort load set. The final predicted probability of failure is on the order of 10-11 due to the conservative nature of the factors of safety on the deterministic loads.

  11. Improvement of the Russian system of medical care at the site of space crew landing

    Science.gov (United States)

    Rukavishnikov, Ilya; Bogomolov, Valery; Polyakov, Alexey

    The crew members are delivered to ISS and return back to the Earth on the space craft "Soyuz TMA" at present time. The technical means providing the safe landing of space crews are reliable enough. In spite of that the complex of negative factors (long lasting alternating and shock overloads, effects of landing apparatus rotation on vestibular system) affects the crew during landing and can reach the extreme values under the certain conditions. According to this fact there is a possibility of appearance of bodily damages of different weight besides the traditional functional disturbances. The group of search and rescue on the landing site includes the medical specialists appropriately equipped to stop the symptoms of medical contingency (strong vestibule-vegetative reactions, traumas of different weight, etc.) Medical evacuation complex which provides the acceptable conditions for the cosmonauts including the conditions for medical care is delivered to the landing site as well. The long term experience of search and rescue assurance at the landing site have shown that the specialists successfully cope with this task. In some cases it was required to give the medical help which allowed to improve the general condition and physical capacity of crewmembers and provide their evacuation to the places of postflight rehabilitation. At the same time the solution of some of the problems from our point of view could increase the efficacy of medical care for the landing crew. The organization of the training on emergency under the field conditions for medical specialists on the regular basis (not less that once a year) is extremely important. The equipment of medical specialists requires the regular improvement and modernization due to the fast changing medical technologies and standards. Wearable medical sets must provide the first aid performing in accordance to the modern medical requirements. It is also necessary to include in the list of equipment the textbook of

  12. PROCRU: A model for analyzing crew procedures in approach to landing

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Lancraft, R.; Zacharias, G.

    1980-01-01

    A model for analyzing crew procedures in approach to landing is developed. The model employs the information processing structure used in the optimal control model and in recent models for monitoring and failure detection. Mechanisms are added to this basic structure to model crew decision making in this multi task environment. Decisions are based on probability assessments and potential mission impact (or gain). Sub models for procedural activities are included. The model distinguishes among external visual, instrument visual, and auditory sources of information. The external visual scene perception models incorporate limitations in obtaining information. The auditory information channel contains a buffer to allow for storage in memory until that information can be processed.

  13. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. Armstrong practices in Lunar Module simulator

    Science.gov (United States)

    1969-01-01

    Neil A. Armstrong, Commander for the Apollo 11 Moon-landing mission, practices for the historic event in a Lunar Module simulator in the Flight Crew Training building at KSC. Accompanying Armstrong on the Moon flight will be Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. Aldrin Jr.

  15. The Manufacturing Process for the NASA Composite Crew Module Demonstration Structure

    Science.gov (United States)

    Pelham, Larry; Higgins, John E.

    2008-01-01

    This paper will describe the approaches and methods selected in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a).To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This abstract is based on Preliminary Design data..The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date. From a structures perspective, the.CCM can be viewed as a pressure module with variable pressure time histories and a series of both impact and quasi-static, high intensity point, line, and area distributed loads. The portion of the overall space vehicle being designed and. fabricated by the CCM team is just the pressure module and primary loading points. The heaviest point loads are applied and distributed to the pressure module at.an aluminum Service Module/Alternate Launch Abort System (SM/ALAS) fittings and at Main and Drogue Chute fittings. Significant line loads with metal to metal impact is applied at.the Lids ring. These major external point and line loads as well as pressure impact loads (blast and water landing) are applied to the lobed floor though the reentry shield and crushable materials. The pressure module is divided into upper and lower. shells that mate together with a bonded belly band splice joint to create the completed structural assembly. The benefits of a split CCM far outweigh the risks of a joint. These benefits include

  16. Rotary MR Damper for Launch/Landing Load Isolation and Resistive Crew Exercise for Exploration Spaceflight Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a rotary MR (magneto rheologic) Damper to integrate into exploration spacecraft crew seats to be used as an exercise device and launch/landing load isolation...

  17. Spacecraft Charging Considerations and Design Efforts for the Orion Crew Module

    Science.gov (United States)

    Scully, Bob

    2017-01-01

    The Orion Crew Module (CM) is nearing completion for the next flight, designated as Exploration Mission 1 (EM-1). For the uncrewed mission, the flight path will take the CM through a Perigee Raise Maneuver (PRM) out to an altitude of approximately 1800 km, followed by a Trans-Lunar Injection burn, a pass through the Van Allen belts then out to the moon for a lunar flyby, a Distant Retrograde Insertion (DRI) burn, a Distant Retrograde Orbit (DRO), a Distant Retrograde Departure (DRD) burn, a second lunar flyby, an Earth Insertion (EI) burn, and finally entry and landing. All of this, with the exception of the DRO associated maneuvers, is similar to the previous Apollo 8 mission in late 1968. In recent discussions, it is now possible that EM-1 will be a crewed mission, and if this happens, the orbit may be quite different from that just described. In this case, the flight path may take the CM on an out and back pass through the Van Allen belts twice, then out to the moon, again passing through the Van Allen belts twice, then finally back home. Even if the current EM-1 mission doesn't end up as a crewed mission, EM-2 and subsequent missions will undoubtedly follow orbital trajectories that offer comparable exposures to heightened vehicle charging effects. Because of this, and regardless of flight path, the CM vehicle will likely experience a wide range of exposures to energetic ions and electrons, essentially covering the gamut between low earth orbit to geosynchronous orbit and beyond. National Aeronautical and Space Administration (NASA) and Lockheed Martin (LM) engineers and scientists have been working to fully understand and characterize the vehicle's immunity level with regard to surface and deep dielectric charging, and the ramifications of that immunity level pertaining to materials and impacts to operational avionics, communications, and navigational systems. This presentation attempts to chronicle these efforts in a summary fashion, and attempts to capture

  18. Apollo 11 crew on ship during water egress training in Gulf of Mexico

    Science.gov (United States)

    1969-01-01

    The prime crew of the Apollo 11 lunar landing mission relaxes on the deck of the NASA Motor Vessel Retriever prior to participating in water egress training in the Gulf of Mexico. Left to right, are Astronauts Edwin A. Aldrin Jr., lunar module pilot; Neil A. Armstrong, commander; and Michael Collins, command module pilot. In the background is Apollo Boilerplate 1102 which was used in the training exercise.

  19. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  20. STS-47 MS Jemison trains in SLJ module at MSFC Payload Crew Training Complex

    Science.gov (United States)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison, wearing Autogenic Feedback Training System 2 suit, works with the Frog Embryology Experiment in a General Purpose Workstation (GPWS) in the Spacelab Japan (SLJ) module mockup at the Payload Crew Training Complex. The experiment will study the effects of weightlessness on the development of frog eggs fertilized in space. The Payload Crew Training Complex is located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. View provided with alternate number 92P-139.

  1. Systems Modeling for Crew Core Body Temperature Prediction Postlanding

    Science.gov (United States)

    Cross, Cynthia; Ochoa, Dustin

    2010-01-01

    The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.

  2. Using Paraffin PCM to Make Optical Communication Type of Payloads Thermally Self-Sufficient for Operation in Orion Crew Module

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    An innovative concept of using paraffin phase change material with a melting point of 28 C to make Optical Communication type of payload thermally self-sufficient for operation in the Orion Crew Module is presented. It stores the waste heat of the payload and permits it to operate for about one hour by maintaining its temperature within the maximum operating limit. It overcomes the problem of relying on the availability of cold plate heat sink in the Orion Crew Module.

  3. Commercial Crew Medical Ops

    Science.gov (United States)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  4. Orion Multi-Purpose Crew Vehicle Solving and Mitigating the Two Main Cluster Pendulum Problem

    Science.gov (United States)

    Ali, Yasmin; Sommer, Bruce; Troung, Tuan; Anderson, Brian; Madsen, Christopher

    2017-01-01

    The Orion Multi-purpose Crew Vehicle (MPCV) Orion spacecraft will return humans from beyond earth's orbit, including Mars and will be required to land 20,000 pounds of mass safely in the ocean. The parachute system nominally lands under 3 main parachutes, but the system is designed to be fault tolerant and land under 2 main parachutes. During several of the parachute development tests, it was observed that a pendulum, or swinging, motion could develop while the Crew Module (CM) was descending under two parachutes. This pendulum effect had not been previously predicted by modeling. Landing impact analysis showed that the landing loads would double in some places across the spacecraft. The CM structural design limits would be exceeded upon landing if this pendulum motion were to occur. The Orion descent and landing team was faced with potentially millions of dollars in structural modifications and a severe mass increase. A multidisciplinary team was formed to determine root cause, model the pendulum motion, study alternate canopy planforms and assess alternate operational vehicle controls & operations providing mitigation options resulting in a reliability level deemed safe for human spaceflight. The problem and solution is a balance of risk to a known solution versus a chance to improve the landing performance for the next human-rated spacecraft.

  5. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 3: Data from crew module testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.

  6. Crew Exploration Vehicle Service Module Ascent Abort Coverage

    Science.gov (United States)

    Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.

    2007-01-01

    The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.

  7. Soyuz-TM-based interim Assured Crew Return Vehicle (ACRV) for the Space Station Freedom

    Science.gov (United States)

    Semenov, Yu. P.; Babkov, Oleg I.; Timchenko, Vladimir A.; Craig, Jerry W.

    1993-01-01

    The concept of using the available Soyuz-TM Assured Crew Return Vehicle (ACRV) spacecraft for the assurance of the safety of the Space Station Freedom (SSF) crew after the departure of the Space Shuttle from SSF was proposed by the NPO Energia and was accepted by NASA in 1992. The ACRV will provide the crew with the capability to evacuate a seriously injured/ill crewmember from the SSF to a ground-based care facility under medically tolerable conditions and with the capability for a safe evacuation from SSF in the events SSF becomes uninhabitable or the Space Shuttle flights are interrupted for a time that exceeds SSF ability for crew support and/or safe operations. This paper presents the main results of studies on Phase A (including studies on the service life of ACRV; spacecraft design and operations; prelaunch processing; mission support; safety, reliability, maintenance and quality and assurance; landing, and search/rescue operations; interfaces with the SSF and with Space Shuttle; crew accommodation; motion of orbital an service modules; and ACRV injection by the Expendable Launch Vehicles), along with the objectives of further work on the Phase B.

  8. Discovery prepares to land after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  9. Crew Factors in Flight Operations XV: Alertness Management in General Aviation Education Module

    Science.gov (United States)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.; Cannon, Mary M. (Technical Monitor)

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  10. The Multi-purpose Crew Vehicle European Service Module: a European Contribution to Human Exploration

    Science.gov (United States)

    Berthe, Philippe; Schubert, Kathleen; Grantier, Julie; Pietsch, Klaus; Angelillo, Philippe; Price, Laurence

    2013-01-01

    This paper provides an overview of the system and subsystem configuration of the MPCV European Service Module (ESM) at Preliminary Design Review (PDR) stage as well as its perspectives of utilisation within the global space exploration endeavour. The MPCV ESM is a cylindrical module with a diameter of 4500 mm and a total length – main engine excluded – of 2700 mm. It is fitted with four solar array wings with a span of 18.8 m. Its dry mass is 3.5 metric tons and it can carry 8.6 tons of propellant. The main functions of the European Service Module are to bring the structural continuity between the launcher and the crew module, to provide propulsion to the MPCV, to ensure its thermal control as well as electrical power and to store water, oxygen and nitrogen for the mission. The current agreement foresees the development and production by Europe of one flight model, with an option for a second one. This module will be assembled in Europe and delivered to NASA in 2016. It will be used for a flight of the MPCV Orion in December 2017.

  11. The STS-95 crew poses with a Mercury capsule model before returning to JSC

    Science.gov (United States)

    1998-01-01

    Before returning to the Johnson Space Center in Houston, Texas, members of the STS-95 crew pose with a model of a Mercury capsule following a media briefing at the Kennedy Space Center Press Site Auditorium . From left to right are Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey; Mission Commander Curtis L. Brown Jr.; Friendship 7; Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Specialist Scott E. Parazynski; and Mission Specialist Pedro Duque, with the European Space Agency (ESA). Also on the crew is Mission Specialist and Payload Commander Stephen K. Robinson (not shown). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  12. APOLLO 10 ASTRONAUT ENTERS LUNAR MODULE SIMULATOR

    Science.gov (United States)

    1969-01-01

    Apollo 10 lunar module pilot Eugene A. Cernan prepares to enter the lunar module simulator at the Flight Crew Training Building at the NASA Spaceport. Cernan, Apollo 10 commander Thomas P. Stafford and John W. Young, command module pilot, are to be launched May 18 on the Apollo 10 mission, a dress rehearsal for a lunar landing later this summer. Cernan and Stafford are to detach the lunar module and drop to within 10 miles of the moon's surface before rejoining Young in the command/service module. Looking on as Cernan puts on his soft helmet is Snoopy, the lovable cartoon mutt whose name will be the lunar module code name during the Apollo 10 flight. The command/service module is to bear the code name Charlie Brown.

  13. Crew Factors in Flight Operations XIV: Alertness Management in Regional Flight Operations Education Module

    Science.gov (United States)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  14. NASA and ESA Partnership on the Multi-Purpose Crew Vehicle Service Module

    Science.gov (United States)

    Schubert, Kathleen E.; Grantier, Julie A.

    2012-01-01

    (1) ESA decided in its Council Meeting in March 2011 to partially offset the European ISS obligations after 2015 with different means than ATVs; (2) The envisioned approach is based on a barter element(s) that would generate cost avoidance on the NASA side; (3) NASA and ESA considered a number of Barter options, NASA concluded that the provision by ESA of the Service Module for the NASA Multi-Purpose Crew Vehicle (MPCV) was the barter with the most interest;. (4) A joint ESA - NASA working group was established in May 2011 to assess the feasibility of Europe developing this Module based on ATV heritage; (5)The working group was supported by European and US industry namely Astrium, TAS-I and Lockheed-Martin; and (6) The project is currently in phase B1 with the objective to prepare a technical and programmatic proposal for an ESA MPCV-SM development. This proposal will be one element of the package that ESA plans submit to go forward for approval by European Ministers in November 2012.

  15. Trail Crews: Developing a Service Component to Your Program.

    Science.gov (United States)

    Boehringer, Brad; Merrill, Kurt

    Through wilderness stewardship programs, service projects, or trail crews, college outdoor programs can help land management agencies with their maintenance needs and provide student participants with rewarding service learning opportunities. Trail crews are usually composed of volunteer outdoor enthusiasts who take part in a multitude of…

  16. STS-105/Discovery/ISS 7A.1: Pre-Launch Activities, Launch, Orbit Activities and Landing

    Science.gov (United States)

    2001-01-01

    The crew of Space Shuttle Discovery on STS-105 is introduced at their pre-launch meal and at suit-up. The crew members include Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Patrick Forrester and Daniel Barry, together with the Expedition 3 crew of the International Space Station (ISS). The Expedition 3 crew includes Commander Frank Culbertson, Soyuz Commander Vladimir Dezhurov, and Flight Engineer Mikhail Tyurin. When the astronauts depart for the launch pad in the Astrovan, their convoy is shown from above. Upon reaching the launch pad, they conduct a walk around of the shuttle, display signs for family members while being inspected in the White Room, and are strapped into their seats onboard Disciovery. The video includes footage of Discovery in the Orbiter Processing Facility, and some of the pre-launch procedures at the Launch Control Center are shown. The angles of launch replays include: TV-1, Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, OTV-70, Onboard, IGOR, and UCS-23. The moment of docking between Discovery and the ISS is shown from inside Discovery's cabin. While in orbit, the crew conducted extravehicular activities (EVAs) to attach an experiments container, and install handrails on the Destiny module of the ISS. The video shows the docking and unloading of the Leonardo Multipurpose Logistics Module (MPLM) onto the ISS. The deployment of a satellite from Discovery with the coast of the Gulf of Mexico in the background is shown. Cape Canaveral is also shown from space. Landing replays include VAB, Tower 1, mid-field, South End SLF, North End SLF, Tower 2, Playalinda DOAMS, UCS-23, and Pilot Point of View (PPOV). NASA Administrator Dan Goldin meets the crew upon landing and participates in their walk around of Discovery. The video concludes with a short speech by commander Horowitz.

  17. President Ford and both the Soviet and American ASTP crews

    Science.gov (United States)

    1974-01-01

    President Gerald R. Ford removes the Soviet Soyuz spacecraft model from a model set depicting the 1975 Apollo Soyuz Test Project (ASTP), an Earth orbital docking and rendezvous mission with crewmen from the U.S. and USSR. From left to right, Vladamir A. Shatalov, Chief, Cosmonaut training; Valeriy N. Kubasov, ASTP Soviet engineer; Aleksey A. Leonov, ASTP Soviet crew commander; Thomas P. Stafford, commander of the American crew; Donald K. Slayton, American docking module pilot; Vance D. Brand, command module pilot for the American crew. Dr. George M Low, Deputy Administrator for NASA is partially obscured behind President Ford.

  18. Orion Crew Module / Service Module Structural Weight and Center of Gravity Simulator and Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing

    Science.gov (United States)

    Ascoli, Peter A.; Haddock, Michael H.

    2014-01-01

    An Orion Crew Module Service Module Structural Weight and Center of Gravity Simulator and a Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing were designed during a summer 2014 internship in Kennedy Space Centers Structures and Mechanisms Design Branch. The simulator is a structure that supports ballast, which will be integrated into an existing Orion mock-up to simulate the mass properties of the Exploration Mission-1 flight vehicle in both fueled and unfueled states. The simulator mimics these configurations through the use of approximately 40,000 lbf of steel and water ballast, and a steel support structure. Draining four water tanks, which house the water ballast, transitions the simulator from the fueled to unfueled mass properties. The Ground Systems Development and Operations organization will utilize the simulator to verify and validate equipment used to maneuver and transport the Orion spacecraft in its fueled and unfueled configurations. The second design comprises a cantilevered tripod hoist structure that provides the capability to position a large Orion Service Module Umbilical in proximity to the Vehicle Motion Simulator. The Ground Systems Development and Operations organization will utilize the Vehicle Motion Simulator, with the hoist structure attached, to test the Orion Service Module Umbilical for proper operation prior to installation on the Mobile Launcher. Overall, these two designs provide NASA engineers viable concepts worthy of fabricating and placing into service to prepare for the launch of Orion in 2017.

  19. Investigation of Abnormal Grain Growth in a Friction Stir Welded and Spin-Formed Al-Li Alloy 2195 Crew Module

    Science.gov (United States)

    Tayon, Wesley A.; Domack, Marcia S.; Hoffman, Eric K.; Hales, Stephen J.

    2013-01-01

    In order to improve manufacturing efficiency and reduce structural mass and costs in the production of launch vehicle structures, NASA is pursuing a wide-range of innovative, near-net shape manufacturing technologies. A technology that combines friction stir welding (FSW) and spin-forming has been applied to manufacture a single-piece crew module using Aluminum-Lithium (AL-Li) Alloy 2195. Plate size limitations for Al-Li alloy 2195 require that two plates be FSW together to produce a spin-forming blank of sufficient size to form the crew module. Subsequent forming of the FSW results in abnormal grain growth (AGG) within the weld region upon solution heat treatment (SHT), which detrimentally impacts strength, ductility, and fracture toughness. The current study seeks to identify microstructural factors that contribute to the development of AGG. Electron backscatter diffraction (EBSD) was used to correlate driving forces for AGG, such as stored energy, texture, and grain size distributions, with the propensity for AGG. Additionally, developmental annealing treatments prior to SHT are examined to reduce or eliminate the occurrence of AGG by promoting continuous, or uniform, grain growth

  20. Vertical view of Apollo 16 landing site located Descartes area lunar nearside

    Science.gov (United States)

    1971-01-01

    A vertical view of the Apollo 16 landing site located in the Descartes area lunar nearside. The overlay indicates the location of the proposed touchdown point for the Apollo 16 Lunar Module. Descartes is located west of the Sea of Nectar and southwest of the Sea of Tranquility. This photograph was taken with a 500mm lens camera from lunar orbit by the Apollo 14 crew.

  1. Low Loss Tapered Fiber Waveguide Modulator for Crew Cognitive State Monitoring (CSM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew...

  2. Study of the suit inflation effect on crew safety during landing using a full-pressure IVA suit for new-generation reentry space vehicles

    Science.gov (United States)

    Wataru, Suzuki

    Recently, manned space capsules have been recognized as beneficial and reasonable human space vehicles again. The Dragon capsule already achieved several significant successes. The Orion capsule is going to be sent to a high-apogee orbit without crews for experimental purposes in September 2014. For such human-rated space capsules, the study of acceleration impacts against the human body during splashdown is essential to ensure the safety of crews. Moreover, it is also known that wearing a full pressure rescue suit significantly increases safety of a crew, compared to wearing a partial pressure suit. This is mainly because it enables the use of a personal life support system independently in addition to that which installed in the space vehicle. However, it is unclear how the inflation of the full pressure suit due to pressurization affects the crew safety during splashdown, especially in the case of the new generation manned space vehicles. Therefore, the purpose of this work is to investigate the effect of the suit inflation on crew safety against acceleration impact during splashdown. For this objective, the displacements of the safety harness in relation with the suit, a human surrogate, and the crew seats during pressurizing the suit in order to determine if the safety and survivability of a crew can be improved by wearing a full pressure suit. For these tests, the DL/H-1 full pressure IVA suit, developed by Pablo de Leon and Gary L. Harris, will be used. These tests use image analysis techniques to determine the displacements. It is expected, as a result of these tests, that wearing a full pressure suit will help to mitigate the impacts and will increase the safety and survivability of a crew during landing since it works as a buffer to mitigate impact forces during splashdown. This work also proposes a future plan for sled test experiments using a sled facility such as the one in use by the Civil Aerospace Medical Institute (CAMI) for experimental validation

  3. Reflex Marine celebrates 10. anniversary of FROG crew transfer device

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-07-15

    Reflex Marine developed the initial 3-person FROG crew transfer device in response to the main risks identified from incidents involving traditional rope baskets for personnel transfer: falling, collisions, hard landings, and immersion. To address these issues, the FROG was developed with 4-point harnesses, a protective shell, shock-absorbing landing feet, and self-righting capability. As a result of industry demand for a higher capacity transfer device, the company introduced 6- and 9-man versions of the FROG. The perceptions and reality of marine transfers have changed greatly over the past decade, from the design of the device to vessel specifications and increased focus on crane operations. Marine transfers offer a low-risk alternative to helicopter transfers. The TORO, a low-cost crew transfer capsule launched in February 2009, fits into a standard shipping container, providing significant logistical advantages. The TORO can carry 4 passengers, offer protection from side impacts and hard landings, and is buoyant and self-righting. Most of the units are being used by major oil and gas companies, but offshore wind turbines are an emerging source of demand for the crew transfer system. 3 figs.

  4. NASA Contingency Shuttle Crew Support (CSCS) Medical Operations

    Science.gov (United States)

    Adams, Adrien

    2010-01-01

    The genesis of the space shuttle began in the 1930's when Eugene Sanger came up with the idea of a recyclable rocket plane that could carry a crew of people. The very first Shuttle to enter space was the Shuttle "Columbia" which launched on April 12 of 1981. Not only was "Columbia" the first Shuttle to be launched, but was also the first to utilize solid fuel rockets for U.S. manned flight. The primary objectives given to "Columbia" were to check out the overall Shuttle system, accomplish a safe ascent into orbit, and to return back to earth for a safe landing. Subsequent to its first flight Columbia flew 27 more missions but on February 1st, 2003 after a highly successful 16 day mission, the Columbia, STS-107 mission, ended in tragedy. With all Shuttle flight successes come failures such as the fatal in-flight accident of STS 107. As a result of the STS 107 accident, and other close-calls, the NASA Space Shuttle Program developed contingency procedures for a rescue mission by another Shuttle if an on-orbit repair was not possible. A rescue mission would be considered for a situation where a Shuttle and the crew were not in immediate danger, but, was unable to return to Earth or land safely. For Shuttle missions to the International Space Station (ISS), plans were developed so the Shuttle crew would remain on board ISS for an extended period of time until rescued by a "rescue" Shuttle. The damaged Shuttle would subsequently be de-orbited unmanned. During the period when the ISS Crew and Shuttle crew are on board simultaneously multiple issues would need to be worked including, but not limited to: crew diet, exercise, psychological support, workload, and ground contingency support

  5. Feasibility Study of an Airbag-Based Crew Impact Attenuation System for the Orion MPCV

    Science.gov (United States)

    Do, Sydney; deWeck, Olivier

    2011-01-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential lightweight means of enabling safe land-landings for the Orion Multi-Purpose Crew Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the performance feasibility of this concept during a nominal 7.62m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85m/s, 0 deg. impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the airbag-based crew impact attenuation concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0 deg impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30 deg indicated that severe injury risk levels would be sustained beyond impact velocities of 5m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  6. Medical Operational Challenges in the Expedition 16 Landing and Recovery

    Science.gov (United States)

    Moynihan, S.; Johnston, S. L.; Ilcus, L. S.; Shevchenko, V.

    2009-01-01

    On April 19, 2008 the crew of Expedition 16 left the International Space Station and returned to earth via their Soyuz TMA-11 capsule after 192 days on orbit. Their capsule experienced the second consecutive and third ballistic reentry in the last 10 TMA recoveries and landed approximately 260 miles (420 km) from the prime landing site. Issues: The purpose of this presentation will be to describe, not only the typical medical operational challenges faced by Flight Surgeons recovering a long duration crew from space, but also address the unique challenges that existed with the Expedition 16 landing and crew recovery. Nominal Soyuz recovery challenges include remote recovery sites with crew exposures to sleep shifting and fatigue, dehydration, hypothermia and hyperthermia, and rotational, sustained, and impact g-forces. These environmental factors coupled with the patho-physiologic neuro-vestibular and orthostatic intolerance changes that occur secondary to the crews reintroduction into the earth s gravity field will be detailed. Additional challenges that were unique to this expedition included a ballistic reentry with higher g-loads, the presence of fire outside of the capsule on landing, a contingency medical event of a ground support personnel, and loss of communications with the crew just prior to landing and during recovery operations. Conclusions: In spite of these unique challenges the Russian Search and Rescue Forces and Medical Support personnel along with U.S. Medical Support performed well together. Possible improvements in training and coordination will be discussed.

  7. Expedition 8 Crew Interview: Pedro Duque

    Science.gov (United States)

    2003-01-01

    European Space Agency (ESA) astronaut Pedro Duque is interviewed in preparation for his flight to and eight day stay on the International Space Station (ISS) as part of the Cervantes mission. Duque arrived on the ISS with the Expedition 8 crew onboard a Soyuz TMA-3, the seventh Soyuz flight to the station. He departed from the ISS on a Soyuz TMA-2 with the Expedition 7 crew of the ISS. In the video, Duque answers questions on: the goals of his flight; his life and career path; the Columbus Module, which ESA will contribute to the ISS, the ride onboard a Soyuz, and the importance of the ISS.

  8. A personal airbag system for the Orion Crew Exploration Vehicle

    Science.gov (United States)

    Do, Sydney; de Weck, Olivier

    2012-12-01

    Airbag-based methods for crew impact attenuation have been highlighted as a potential simple, lightweight means of enabling safe land-landings for the Orion Crew Exploration Vehicle, and the next generation of ballistic shaped spacecraft. To investigate the feasibility of this concept during a nominal 7.62 m/s Orion landing, a full-scale personal airbag system 24% lighter than the Orion baseline has been developed, and subjected to 38 drop tests on land. Through this effort, the system has demonstrated the ability to maintain the risk of injury to an occupant during a 7.85 m/s, 0° impact angle land-landing to within the NASA specified limit of 0.5%. In accomplishing this, the personal airbag system concept has been proven to be feasible. Moreover, the obtained test results suggest that by implementing anti-bottoming airbags to prevent direct contact between the system and the landing surface, the system performance during landings with 0° impact angles can be further improved, by at least a factor of two. Additionally, a series of drop tests from the nominal Orion impact angle of 30° indicated that severe injury risk levels would be sustained beyond impact velocities of 5 m/s. This is a result of the differential stroking of the airbags within the system causing a shearing effect between the occupant seat structure and the spacecraft floor, removing significant stroke from the airbags.

  9. Crew Exploration Vehicle (CEV) (Orion) Occupant Protection

    Science.gov (United States)

    Currie-Gregg, Nancy J.; Gernhardt, Michael L.; Lawrence, Charles; Somers, Jeffrey T.

    2016-01-01

    Dr. Nancy J. Currie, of the NASA Engineering and Safety Center (NESC), Chief Engineer at Johnson Space Center (JSC), requested an assessment of the Crew Exploration Vehicle (CEV) occupant protection as a result of issues identified by the Constellation Program and Orion Project. The NESC, in collaboration with the Human Research Program (HRP), investigated new methods associated with occupant protection for the Crew Exploration Vehicle (CEV), known as Orion. The primary objective of this assessment was to investigate new methods associated with occupant protection for the CEV, known as Orion, that would ensure the design provided minimal risk to the crew during nominal and contingency landings in an acceptable set of environmental and spacecraft failure conditions. This documents contains the outcome of the NESC assessment. NASA/TM-2013-217380, "Application of the Brinkley Dynamic Response Criterion to Spacecraft Transient Dynamic Events." supercedes this document.

  10. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  11. Human Driving Forces and Their Impacts on Land Use/Land Cover. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    Science.gov (United States)

    Moser, Susanne

    This learning module aims to engage students in problem solving, critical thinking, scientific inquiry, and cooperative learning. The module is appropriate for use in any introductory or intermediate undergraduate course that focuses on human-environment relationships. The module explains that land use/cover change has occurred at all times in all…

  12. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    Science.gov (United States)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  13. Determining the optimal mix of federal and contract fire crews: a case study from the Pacific Northwest.

    Science.gov (United States)

    Geoffrey H. Donovan

    2006-01-01

    Federal land management agencies in the United States are increasingly relying on contract crews as opposed to agency fire crews. Despite this increasing reliance on contractors, there have been no studies to determine what the optimal mix of contract and agency fire crews should be. A mathematical model is presented to address this question and is applied to a case...

  14. Analysis of the problem of forced landing of aircraft on water surface and methods of simulation of aircraft crews at aircraft accidents of this type

    Directory of Open Access Journals (Sweden)

    V. M. Nedilko

    2017-06-01

    Full Text Available The article is devoted to an actual problem of emergency incidents of forced landing of aircraft on the water surface. The main content of the research is the analysis of statistical data and classification splashdown. The article reveals the main reasons that lead to the forced landing of aircraft. Analysis of accidents is interesting for us, as it can reveal the shortcomings and problems in the Rescue and disadvantages of rescue equipment. Considerable attention is paid to the analysis of simulators for flight and cabin crew. Based on the analysis of the problem the need for regular training and exercises is established. To conduct a full-fledged study on the problem of forced landing of airborne vessels on the water surface, the following methods were used: comparison method, generalization method, data analysis method.

  15. Apollo 16 Lunar Module 'Orion' at the Descartes landing site

    Science.gov (United States)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is part of the lunar scene at the Descartes landing site, as seen in the reproduction taken from a color television transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Note the U.S. flag deployed on the left. This picture was made during the second Apollo 16 extravehicular activity (EVA-2).

  16. The STS-95 crew and their families prepare for their return flight to JSC

    Science.gov (United States)

    1998-01-01

    At the Skid Strip at Cape Canaveral Air Station, STS-95 Pilot Steven W. Lindsey (left), Lindsey's daughter (front), and Payload Specialist John H. Glenn Jr. (right), a senator from Ohio and one of the original seven Project Mercury astronauts, give a thumbs up on the success of the mission. Members of the STS-95 crew and their families prepared for their return flight to the Johnson Space Center in Houston, Texas. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. Others returning were Mission Commander Curtis L. Brown Jr.; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  17. Crew emergency return vehicle - Electrical power system design study

    Science.gov (United States)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

  18. Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics

    Science.gov (United States)

    Aubuchon, Vanessa V.; Owens, D. Bruce

    2016-01-01

    Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.

  19. The STS-95 crew participates in a media briefing before returning to JSC

    Science.gov (United States)

    1998-01-01

    The day after their return to Earth on board the orbiter Discovery, members of the STS-95 crew participate in a media briefing at the Kennedy Space Center Press Site Auditorium before returning to the Johnson Space Center in Houston, Texas. From left to right are Lisa Malone, moderator and chief of NASA Public Affairs' Media Services at Kennedy Space Center; Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialist Scott E. Parazynski; Mission Specialist Pedro Duque, with the European Space Agency (ESA); Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); and Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.

  20. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  1. Crew portrait during 51-B mission

    Science.gov (United States)

    1985-01-01

    Crew portrait during 51-B mission. Note the gold T-shirts of 'gold' team members Robert F. Overmyer (bottom left), Don L. Lind (behind Overmyer), William E. Thornton (bottom right) and Taylor G. Wang (behind Thornton). Posing 'upside down' are 'silver team members (l.-r.) Frederick D. Gregory, Norman E. Thagard and Lodewijk van den Berg. The seven are in the long science module for Spacelab 3 in the cargo bay of the Shuttle Challenger.

  2. Commercial Crew Program Crew Safety Strategy

    Science.gov (United States)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  3. Continuous Improvements to East Coast Abort Landings for Space Shuttle Aborts

    Science.gov (United States)

    Butler, Kevin D.

    2003-01-01

    Improvement initiatives in the areas of guidance, flight control, and mission operations provide increased capability for successful East Coast Abort Landings (ECAL). Automating manual crew procedures in the Space Shuttle's onboard guidance allows faster and more precise commanding of flight control parameters needed for successful ECALs. Automation also provides additional capability in areas not possible with manual control. Operational changes in the mission concept allow for the addition of new landing sites and different ascent trajectories that increase the regions of a successful landing. The larger regions of ECAL capability increase the safety of the crew and Orbiter.

  4. Crew Exploration Vehicle (CEV) (Orion) Occupant Protection. Part 1; Appendices

    Science.gov (United States)

    Currie-Gregg, Nancy J.; Gernhardt, Michael L.; Lawrence, Charles; Somers, Jeffrey T.

    2016-01-01

    Dr. Nancy J. Currie, of the NASA Engineering and Safety Center (NESC), Chief Engineer at Johnson Space Center (JSC), requested an assessment of the Crew Exploration Vehicle (CEV) occupant protection as a result of issues identified by the Constellation Program and Orion Project. The NESC, in collaboration with the Human Research Program (HRP), investigated new methods associated with occupant protection for the Crew Exploration Vehicle (CEV), known as Orion. The primary objective of this assessment was to investigate new methods associated with occupant protection for the CEV, known as Orion, that would ensure the design provided minimal risk to the crew during nominal and contingency landings in an acceptable set of environmental and spacecraft failure conditions. This documents contains the appendices to the NESC assessment report. NASA/TM-2013-217380, Application of the Brinkley Dynamic Response Criterion to Spacecraft Transient Dynamic Events supersedes this document.

  5. The health and safety implications of local medical support for land seismic crews in remote locations in southeast Asia

    International Nuclear Information System (INIS)

    Win, P.M.; Suter, P.C.

    1991-01-01

    The paper attempts to detail the benefits and drawbacks of hiring local doctors to support the medical services needed for land seismic acquisition crews in remote locations in South East Asia. The actual conditions prevailing among such seismic operations will be presented highlighting the problems and risks involved. The management of these problems will be outlined in terms of prevention and actual diagnosis and treatment of disease and injuries including emergency stabilization and evacuation of critically ill patients. The results and lessons learned will be evaluated and discussed including the economics of setting up a reasonably reliable medical facility. The paper will conclude that local knowledge, high levels of training and low costs make this type of medical support beneficial for such operations and may well be applicable for similar operations in other parts of the world

  6. STS-89 crew arrives at KSC's SLF and speaks to the press

    Science.gov (United States)

    1998-01-01

    The STS-89 crew speak with the press after arriving at Kennedy Space Center's Shuttle Landing Facility in preparation for launch later this week. From left to right the crew include Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists Bonnie Dunbar, Ph.D.; Salizhan Sharipov with the Russian Space Agency; Michael Anderson; James Reilly, Ph.D.; and Andrew Thomas, Ph.D. (at microphone). Dr. Thomas will succeed David Wolf, M.D., on the Russian Space Station Mir. Launch is scheduled for January 22 at 9:48 p.m. EST.

  7. ASTP crewmen in Docking Module trainer during training session at JSC

    Science.gov (United States)

    1975-01-01

    An interior view of the Docking Module trainer in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. Astronaut Thomas P. Stafford, commander of the American ASTP prime crew, is on the right. The other crewman is Cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP prime crew. The training session simulated activities on the second day in Earth orbit. The Docking Module is designed to link the Apollo and Soyuz spacecraft.

  8. Reduced Gravity Landing Research Vehicle Design

    OpenAIRE

    Isert, Sarah

    2011-01-01

    Human and robotic missions beyond low earth orbit (LEO) are key components of NASA's currently emerging strategy for space exploration. These missions will inevitably include humancrewed lunar and planetary surface landings. Trips to near-earth asteroids are also in the incipient planning stages. A permanent presence on the surface of an extra terrestrial body like Mars or the Moon will require many landings by both human-crewed and robotic spacecraft. Planetary and lunar surface landings ...

  9. STS-114: Discovery Crew Arrival

    Science.gov (United States)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also

  10. The STS-93 crew pose in front of Columbia

    Science.gov (United States)

    1999-01-01

    The STS-93 crew pose in front of the Space Shuttle orbiter Columbia following their landing on runway 33 at the Shuttle Landing Facility. Main gear touchdown occurred at 11:20:35 p.m. EDT on July 27. From left to right, they are Mission Specialists Catherine G. Coleman (Ph.D.) and Stephen A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Commander Eileen Collins, and Mission Specialist Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  11. ASTP crewmen in Soyuz orbital module mock-up during training session at JSC

    Science.gov (United States)

    1975-01-01

    An interior view of the Soyuz orbital module mock-up in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. The ASTP crewmen are Astronaut Vance D. Brand (on left), command module pilot of the American ASTP prime crew; and Cosmonaut Valeriy N. Kubasov, engineer on the Soviet ASTP first (prime) crew. The training session simulated activities on the second day in Earth orbit.

  12. Command and Service Module Communications

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation examines Command and Service Module (CSM) Communications. The communication system's capabilities are defined, including CSM-Earth, CSM-Lunar Module and CSM-Extravehicular crewman communications. An overview is provided for S-band communications, including data transmission and receiving rates, operating frequencies and major system components (pre-modulation processors, unified S-band electronics, S-band power amplifier and S-band antennas). Additionally, data transmission rates, operating frequencies and the capabilities of VHF communications are described. Major VHF components, including transmitters and receivers, and the VHF multiplexer and antennas are also highlighted. Finally, communications during pre-launch, ascent, in-flight and entry are discussed. Overall, the CSM communication system was rated highly by flight controllers and crew. The system was mostly autonomous for both crew and flight controllers and no major issues were encountered during flight.

  13. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    Science.gov (United States)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system

  14. Wireless Crew Communication Feasibility Assessment

    Science.gov (United States)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  15. Apollo 7 prime crew during water egress training in Gulf of Mexico

    Science.gov (United States)

    1968-01-01

    The prime crew of the first manned Apollo space mission, Apollo 7, is seen in Apollo Command Module Boilerplate 1102 during water egress training in the Gulf of Mexico. In foreground is Astronaut Walter M. Schirra Jr., in center is Astronaut Donn F. Eisele, and in background is Astronaut Walter Cunningham.

  16. Coordination strategies of crew management

    Science.gov (United States)

    Conley, Sharon; Cano, Yvonne; Bryant, Don

    1991-01-01

    An exploratory study that describes and contrasts two three-person flight crews performing in a B-727 simulator is presented. This study specifically attempts to delineate crew communication patterns accounting for measured differences in performance across routine and nonroutine flight patterns. The communication patterns in the two crews evaluated indicated different modes of coordination, i.e., standardization in the less effective crew and planning/mutual adjustment in the more effective crew.

  17. Wireless Crew Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of...

  18. Crew Interviews: Treschev

    Science.gov (United States)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  19. Air ambulance tasking: mechanism of injury, telephone interrogation or ambulance crew assessment?

    Science.gov (United States)

    Wilmer, Ian; Chalk, Graham; Davies, Gareth Edward; Weaver, Anne Elizabeth; Lockey, David John

    2015-10-01

    The identification of serious injury is critical to the tasking of air ambulances. London's Air Ambulance (LAA) is dispatched by a flight paramedic based on mechanism of injury (MOI), paramedical interrogation of caller (INT) or land ambulance crew request (REQ).This study aimed to demonstrate which of the dispatch methods was most effective (in accuracy and time) in identifying patients with serious injury. A retrospective review of 3 years of data (to December 2010) was undertaken. Appropriate dispatch was defined as the requirement for LAA to escort the patient to hospital or for resuscitation on-scene. Inaccurate dispatch was where LAA was cancelled or left the patient in the care of the land ambulance crew. The χ(2) test was used to calculate p values; with significance adjusted to account for multiple testing. There were 2203 helicopter activations analysed: MOI 18.9% (n=417), INT 62.4% (n=1375) and REQ 18.7% (n=411). Appropriate dispatch rates were MOI 58.7% (245/417), INT 69.7% (959/1375) and REQ 72.2% (297/411). INT and REQ were both significantly more accurate than MOI (pinterrogation of the caller by a flight paramedic is as accurate as ground ambulance crew requests, and both are significantly better than MOI in identifying serious injury. Overtriage remains an issue with all methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Apollo 8 prime crew seen during water egress training in Gulf of Mexico

    Science.gov (United States)

    1968-01-01

    The prime crew of the Apollo 8 mission in life raft awaiting pickup by U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. They had just egressed Apollo Boilerplate 1102A, at left. Inflated bags were used to upright the boilerplate. Left to right, are Astronauts William A. Anders, lunar module pilot; James A. Lovell Jr., command module pilot; and Frank Borman, commander. A team of Manned Spacecraft Center (MSC) swimmers assisted with the training exercise.

  1. Crew Transportation Plan

    Science.gov (United States)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  2. Preflight and postflight microbiological results from 25 space shuttle crews

    Science.gov (United States)

    Pierson, Duane L.; Bassinger, Virginia J.; Molina, Thomas C.; Gunter, Emelie G.; Groves, Theron O.; Cioletti, Louis J.; Mishra, S. K.

    1993-01-01

    Clinical-microbiological investigations are an important aspect of the crew health stabilization program. To ensure that space crews have neither active nor latent infections, clinical specimens, including throat and nasal swabs and urine samples, are collected at 10 days (L-10) and 2days (L-2) before launch, and immediately after landing (L+0). All samples are examined for the presence of bacteria and fungi. In addition, fecal samples are collected at L-10 and examined for bacteria, fungi and parasites. This paper describes clinical-microbiological findings from 144 astronauts participating in 25 Space Shuttle missions spanning Space Transportation System (STS)-26 to STS-50. The spectrum of microbiological findings from the specimens included 25 bacterial and 11 fungal species. Among the bacteria isolated most frequently were Staphylococcus aureus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Streptococcus agalactiae. Candida albicans was the most frequently isolated fungal pathogen.

  3. Whole Module Offgas Test Report: Space-X Dragon Module

    Science.gov (United States)

    James, John T.

    2012-01-01

    Between 7 April and 11 April 2012 a chemist from the JSC Toxicology Group acquired samples of air in 500 ml evacuated canisters from the sealed Dragon Module at the Space-X facility at KSC. Three samples were taken of facility air (two before the test and one after the test), and a total of 9 samples were taken from the sealed module in triplicate at the following times: 0 hours, 48 hours, and 96 hours. The module contained 470 kg, which was 100% of the mass to be launched. Analytical data contained in the Toxicology Group Report (attached) show that the ambient facility air was clean except for almost 9 milligrams per cubic meter of isopropanol (IPA) in the sample taken at the end of the test. Space-X must ensure that IPA is not introduced into the module before it is sealed for launch. Other minor contaminants in the ambient air included the following: perfluoro(2-methyl)pentane and hexamethylcyclotrisiloxane. The first-acquired samples of each triplicate from the module were not analyzed. Analyses of pairs of samples that were taken during the test show excellent agreement between the pairs and a linear increase in the T-values during the 4 days of the test (figure below). The rate of increase averaged 0.124 T units per day. If the time from last purge of the module on the ground to crew first entry on orbit is 10 days, then the T value at first entry should be less than 1.2 units, which is well below the criterion of 3.0 for consideration of additional protection of the crew from offgas products. The primary contributors were as follows: trimethylsilanol (0.057), fluorotrimethylsilane (0.047), acetaldehyde (0.004), hexamethylcyclopentasiloxane (0.003), and toluene (0.002).

  4. Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry

    Science.gov (United States)

    Marichalar, J.; Lumpkin, F.; Boyles, K.

    2012-01-01

    During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources

  5. STS-96 Crew Training

    Science.gov (United States)

    1999-01-01

    The training for the crew members of the STS-96 Discovery Shuttle is presented. Crew members are Kent Rominger, Commander; Rick Husband, Pilot; Mission Specialists, Tamara Jernigan, Ellen Ochoa, and Daniel Barry; Julie Payette, Mission Specialist (CSA); and Valery Ivanovich Tokarev, Mission Specialist (RSA). Scenes show the crew sitting and talking about the Electrical Power System; actively taking part in virtual training in the EVA Training VR (Virtual Reality) Lab; using the Orbit Space Vision Training System; being dropped in water as a part of the Bail-Out Training Program; and taking part in the crew photo session.

  6. Apollo 9 prime crew participates in water egress training in Gulf of Mexico

    Science.gov (United States)

    1968-01-01

    The Apollo 9 prime crew participates in water egress training in the Gulf of Mexico. Being hoisted up to the U.S. Coast Guard helicopter in a new type of rescue net (called a Billy Pugh net) is Astronaut David R. Scott, command module pilot. Sitting in the life raft awaiting their turn for helicopter pickup are Astronauts Russell L. Schweickart (on left), lunar module pilot; and James A. McDivitt, commander. A team of Manned Spacecraft Center (MSC) swimmers assisted in the training exercise.

  7. Crew Scheduling Considering both Crew Duty Time Difference and Cost on Urban Rail System

    Directory of Open Access Journals (Sweden)

    Wenliang Zhou

    2016-11-01

    Full Text Available Urban rail crew scheduling problem is to allocate train services to crews based on a given train timetable while satisfying all the operational and contractual requirements. In this paper, we present a new mathematical programming model with the aim of minimizing both the related costs of crew duty and the variance of duty time spreads. In addition to iincorporating the commonly encountered crew scheduling constraints, it also takes into consideration the constraint of arranging crews having a meal in the specific meal period of one day rather than after a minimum continual service time. The proposed model is solved by an ant colony algorithm which is built based on the construction of ant travel network and the design of ant travel path choosing strategy. The performances of the model and the algorithm are evaluated by conducting case study on Changsha urban rail. The results indicate that the proposed method can obtain a satisfactory crew schedule for urban rails with a relatively small computational time.

  8. Apollo 10 astronauts in space suits in front of Command Module

    Science.gov (United States)

    1968-01-01

    Three astronauts named as the prime crew of the Apollo 10 space mission. Left to right, are Eugene A. Cernan, lunar module pilot; John W. Young, command module pilot; and Thomas P. Stafford, commander.

  9. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  10. Water Landing Impact of Recovery Space Capsule: A Research Overview

    OpenAIRE

    Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu

    2014-01-01

    For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...

  11. STS-95 crew members Duque and Mukai check out slidewire basket

    Science.gov (United States)

    1998-01-01

    At Launch Pad 39-B, STS-95 Mission Specialist Pedro Duque of Spain (left) and Payload Specialist Chiaki Mukai look over the gate for the slidewire basket, part of the emergency egress system on the pad. Mukai represents the National Space Development Agency of Japan (NASDA), and Duque the European Space Agency (ESA). The STS-95 crew are at KSC to participate in a Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cut-off exercise. Other STS-95 crew members are Mission Specialist Stephen K. Robinson, Mission Commander Curtis L. Brown, Pilot Steven W. Lindsey, Payload Specialists John H. Glenn Jr., senator from Ohio, and Mission Specialist Scott E. Parazynski. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  12. 49 CFR 1242.56 - Engine crews and train crews (accounts XX-51-56 and XX-51-57).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Engine crews and train crews (accounts XX-51-56 and XX-51-57). 1242.56 Section 1242.56 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Transportation § 1242.56 Engine crews and train crews (accounts XX-51-56 and...

  13. Getting a Crew into Orbit

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  14. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    Science.gov (United States)

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  15. Airline Crew Training

    Science.gov (United States)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  16. 78 FR 25758 - Migratory Birds; Eagle Conservation Plan Guidance: Module 1-Land-Based Wind Energy, Version 2

    Science.gov (United States)

    2013-05-02

    ...-FXMB123209EAGL0L2] RIN 1018-AX53 Migratory Birds; Eagle Conservation Plan Guidance: Module 1-- Land-Based Wind... Migratory Bird Management, U.S. Fish and Wildlife Service, 4401 North Fairfax Drive, Arlington, Virginia... Act (BGEPA) (16 U.S.C. 668-668c), the Migratory Bird Treaty Act (MBTA) (16 U.S.C. 703-12), and the...

  17. Approach and Landing Test emblem

    Science.gov (United States)

    1976-01-01

    This circular, red, white, and blue emblem has been chosen as the Official insignia for the Space Shuttle Approach and Landing Test (ALT) flights. A picture of the Orbiter 101 'Enterprise' is superimposed over a red triangle, which in turn is superimposed over a large inner circle of dark blue. The surnames of the members of the two ALT crews are in white in the field of blue.

  18. Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    Science.gov (United States)

    Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III

    2007-01-01

    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.

  19. An improved land biosphere module for use in the DCESS Earth system model (version 1.1 with application to the last glacial termination

    Directory of Open Access Journals (Sweden)

    R. Eichinger

    2017-09-01

    Full Text Available Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.

  20. APOLLO 11 COMMANDER NEIL ARMSTRONG IN SIMULATOR

    Science.gov (United States)

    1969-01-01

    Apollo 11 commander Neil Armstrong is going through flight training in the lunar module simulator situated in the flight crew training building at KSC. Armstrong will pilot the lunar module to a moon landing on July 20, following launch from KSC on July 16.

  1. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens

    Science.gov (United States)

    Chater, Caspar C.; Kamisugi, Yasuko

    2016-01-01

    The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis. Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system. PMID:27407102

  2. Land Application of Wastes: An Educational Program. Treatment Systems, Effluent Qualities, and Costs - Module 4, Objectives, Script, and Booklet.

    Science.gov (United States)

    Clarkson, W. W.; And Others

    This module describes the following conventional treatment systems and evaluates their use as pretreatment steps for land application: preliminary, primary, secondary, disinfection, and advanced waste treatment. Effluent qualities are summarized, a brief discussion of application systems is given, and cost comparisons are discussed in some detail.…

  3. ISS Crew Transportation and Services Requirements Document

    Science.gov (United States)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  4. A Framework for the Land Use Change Dynamics Model Compatible with RCMs

    Directory of Open Access Journals (Sweden)

    Xiangzheng Deng

    2013-01-01

    Full Text Available A framework of land use change dynamics (LUCD model compatible with regional climate models (RCMs is introduced in this paper. The LUCD model can be subdivided into three modules, namely, economic module, vegetation change module, and agent-based module. The economic module is capable of estimating the demand of land use changes in economic activities maximizing economic utility. A computable general equilibrium (CGE modeling framework is introduced and an approach to introduce land as a production factor into the economic module is proposed. The vegetation change module provides the probability of vegetation change driven by climate change. The agroecological zone (AEZ model is supposed to be the optimal option for constructing the vegetation change module. The agent-based module identifies whether the land use change demand and vegetation change can be realized and provides the land use change simulation results which are the underlying surfaces needed by RCM. By importing the RCMs' simulation results of climate change and providing the simulation results of land use change for RCMs, the LUCD model would be compatible with RCMs. The coupled simulation system composed of LUCD and RCMs can be very effective in simulating the land surface processes and their changing patterns.

  5. Crew Configuration, Ingress/Egress Procedures, and In-Flight Caregiving Capacity in a Space Ambulance Based on the Boeing X-37B

    Science.gov (United States)

    Halberg, Ephriam Etan

    This study proposes that a Boeing X-37B space plane, its dimensions and performance characteristics estimated from publicly available documents, diagrams, and photographs, could be internally redesigned as a medical evacuation (ambulance) vehicle for the International Space Station. As of 2017, there is currently no spacecraft designed to accommodate a contingency medical evacuation wherein a crew member aboard the ISS is injured or ailing and must be returned to Earth for immediate medical attention. The X-37B is an unmanned vehicle with a history of success in both sub-orbital testing and all four of its long-duration orbital missions to date. Research conducted at UC Davis suggests that it is possible to retain the outer mold line of the X-37B while expanding the internal payload compartment to a volume sufficient for a crew of three--pilot, crew medical officer, and injured crew member--throughout ISS un-dock and atmospheric entry, descent, and landing. In addition to crew life support systems, this re-purposed X-37B, hereafter referred to as the X-37SA (Space Ambulance), includes medical equipment for stabilization of a patient in-transit. This study suggests an optimal, ergonomic crew configuration and berthing port location, procedures for microgravity ingress and 1G egress, a minimum medical equipment list and location within the crew cabin for the medical care and monitoring equipment. Conceptual crew configuration, ingress/egress procedures, and patient/equipment access are validated via physical simulation in a full-scale mockup of the proposed X-37SA crew cabin.

  6. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  7. Identifying opportune landing sites in degraded visual environments with terrain and cultural databases

    Science.gov (United States)

    Moody, Marc; Fisher, Robert; Little, J. Kristin

    2014-06-01

    Boeing has developed a degraded visual environment navigational aid that is flying on the Boeing AH-6 light attack helicopter. The navigational aid is a two dimensional software digital map underlay generated by the Boeing™ Geospatial Embedded Mapping Software (GEMS) and fully integrated with the operational flight program. The page format on the aircraft's multi function displays (MFD) is termed the Approach page. The existing work utilizes Digital Terrain Elevation Data (DTED) and OpenGL ES 2.0 graphics capabilities to compute the pertinent graphics underlay entirely on the graphics processor unit (GPU) within the AH-6 mission computer. The next release will incorporate cultural databases containing Digital Vertical Obstructions (DVO) to warn the crew of towers, buildings, and power lines when choosing an opportune landing site. Future IRAD will include Light Detection and Ranging (LIDAR) point cloud generating sensors to provide 2D and 3D synthetic vision on the final approach to the landing zone. Collision detection with respect to terrain, cultural, and point cloud datasets may be used to further augment the crew warning system. The techniques for creating the digital map underlay leverage the GPU almost entirely, making this solution viable on most embedded mission computing systems with an OpenGL ES 2.0 capable GPU. This paper focuses on the AH-6 crew interface process for determining a landing zone and flying the aircraft to it.

  8. Aviation Crew Recovery Experiences on Outstations

    Directory of Open Access Journals (Sweden)

    Gislason Sigurdur Hrafn

    2016-12-01

    Full Text Available ACMI flight crews spend considerable time away from home on outstations. This study suggests that this long term stay carries its own considerations in regards to rest recovery with practical implications for Fatigue Risk Management as prescribed by ICAO. Four recovery experiences, Work Detachment, Control, Relaxation and Mastery, are identified and correlated with 28 crew behaviours on base. The results indicate improvement considerations for airline management organizing a long term contract with ACMI crews, in particular to increase schedule stability to improve the crew member’s sense of Control.

  9. Initial Sensorimotor and Cardiovascular Data Acquired from Soyuz Landings: Establishing a Functional Performance Recovery Time Constant

    Science.gov (United States)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; hide

    2015-01-01

    INTRODUCTION Testing of crew responses following long-duration flights has not been previously possible until a minimum of more than 24 hours after landing. As a result, it has not been possible to determine the trend of the early recovery process, nor has it been possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented joint testing at the Soyuz landing site. This International Space Station research effort has been identified as the functional Field Test, and represents data collect on NASA, Russian, European Space Agency, and Japanese Aerospace Exploration Agency crews. RESEARCH The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible on the day of landing (typically within 1 to 1.5 hours). This goal has both sensorimotor and cardiovascular elements. To date, a total of 15 subjects have participated in a 'pilot' version of the full 'field test'. The full version of the 'field test' will assess functional sensorimotor measurements included hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with the hands (both strength and ability to judge just noticeable differences of force), standing from a prone position, coordinated walking involving tandem heel-to-toe placement (tested with eyes both closed and open), walking normally while avoiding obstacles of differing heights, and determining postural ataxia while standing (measurement of quiet stance). Sensorimotor performance has been obtained using video records, and data from body worn inertial sensors. The cardiovascular portion of the investigation has measured blood pressure and heart rate during a timed stand test in conjunction with postural ataxia

  10. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    OpenAIRE

    J. Dong; Z. Sun; W. Rao; Y. Jia; L. Meng; C. Wang; B. Chen

    2017-01-01

    An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achiev...

  11. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Electronic manifest requirement for crew members... THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial...

  12. Wireless Monitoring of Changes in Crew Relations during Long-Duration Mission Simulation.

    Directory of Open Access Journals (Sweden)

    Bernd Johannes

    Full Text Available Group structure and cohesion along with their changes over time play an important role in the success of missions where crew members spend prolonged periods of time under conditions of isolation and confinement. Therefore, an objective system for unobtrusive monitoring of crew cohesion and possible individual stress reactions is of high interest. For this purpose, an experimental wireless group structure (WLGS monitoring system integrated into a mobile psychophysiological system was developed. In the presented study the WLGS module was evaluated separately in six male subjects (27-38 years old participating in a 520-day simulated mission to Mars. Two days per week, each crew member wore a small sensor that registered the presence and distance of the sensors either worn by the other subjects or strategically placed throughout the isolation facility. The registration between two sensors was on average 91.0% in accordance. A correspondence of 95.7% with the survey video on day 475 confirmed external reliability. An integrated score of the "crew relation time index" was calculated and analyzed over time. Correlation analyses of a sociometric questionnaire (r = .35-.55, p< .05 and an ethological group approach (r = .45-.66, p < 05 provided initial evidence of the method's validity as a measure of cohesion when taking behavioral and activity patterns into account (e.g. only including activity phases in the afternoon. This confirms our assumption that the registered amount of time spent together during free time is associated with the intensity of personal relationships.

  13. Crew Resource Management: An Introductory Handbook

    Science.gov (United States)

    1992-08-01

    AND MAINTENANCE SKILLS: a cluster of CRM skills focusing on interpersonal relationships and effective team practices. 56 TEAM MANAGEMENT : command and...Information Service, Springfield, VA 22161 13. ABSTRACT (Maximum 200 words) Recent research findings suggest that crew resource management ( CRM ) training can...of ways to achieve effective CRM . 14. SUBJECT TERMS 15. NUMBER OF PAGES 62 Crew Resource Management ( CRM ). Air Carrier Training, Flight Crew

  14. The Evolution of On-Board Emergency Training for the International Space Station Crew

    Science.gov (United States)

    LaBuff, Skyler

    2015-01-01

    The crew of the International Space Station (ISS) receives extensive ground-training in order to safely and effectively respond to any potential emergency event while on-orbit, but few people realize that their training is not concluded when they launch into space. The evolution of the emergency On- Board Training events (OBTs) has recently moved from paper "scripts" to an intranet-based software simulation that allows for the crew, as well as the flight control teams in Mission Control Centers across the world, to share in an improved and more realistic training event. This emergency OBT simulator ensures that the participants experience the training event as it unfolds, completely unaware of the type, location, or severity of the simulated emergency until the scenario begins. The crew interfaces with the simulation software via iPads that they keep with them as they translate through the ISS modules, receiving prompts and information as they proceed through the response. Personnel in the control centers bring up the simulation via an intranet browser at their console workstations, and can view additional telemetry signatures in simulated ground displays in order to assist the crew and communicate vital information to them as applicable. The Chief Training Officers and emergency instructors set the simulation in motion, choosing the type of emergency (rapid depressurization, fire, or toxic atmosphere) and specific initial conditions to emphasize the desired training objectives. Project development, testing, and implementation was a collaborative effort between ISS emergency instructors, Chief Training Officers, Flight Directors, and the Crew Office using commercial off the shelf (COTS) hardware along with simulation software created in-house. Due to the success of the Emergency OBT simulator, the already-developed software has been leveraged and repurposed to develop a new emulator used during fire response ground-training to deliver data that the crew receives

  15. Study of the contribution of the different components of atmospheric cosmic radiation in dose received by the aircraft crew

    International Nuclear Information System (INIS)

    Pereira, Marlon A.; Prado, Adriane C.M.; Federico, Claudio A.; Goncalez, Odair L.

    2014-01-01

    The crews and aircraft passengers are exposed to atmospheric cosmic radiation. The flow of this radiation is modulated by the solar cycle and space weather, varying with the geomagnetic latitude and altitude. This paper presents a study of the contributions of radiation in total ambient dose equivalent of the crews depending on flight altitude up to 20 km, during maximum and minimum solar and in equatorial and polar regions. The results of calculations of the particle flows generated by the EXPACS and QARM codes are used. The particles evaluated that contributing significantly in the ambient dose equivalent are neutrons, protons, electrons, positrons, alphas, photons, muons and charged pions. This review allows us to characterize the origin of the dose received by crews and also support a project of a dosimetric system suitable for this ionizing radiation field in aircraft and on the ground

  16. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  17. Crew Workload Prediction Study.

    Science.gov (United States)

    1981-12-01

    computes Estimated Times of Arrival (ETA), fuel required/ remaining at waypoints, optimum Engine Pressure Ratio ( EPR ) settings for crew selected...similar information (quantities, pressures, and rates) in a centralized position. Also, the vertical-scale instruments are used to indicate EPR values to...integrity of the crew station as a whole, simply has not been available. This paradoxical situation has become even more pronounced in recent years with the

  18. Crew Selection and Training

    Science.gov (United States)

    Helmreich, Robert L.

    1996-01-01

    This research addressed a number of issues relevant to the performance of teams in demanding environments. Initial work, conducted in the aviation analog environment, focused on developing new measures of performance related attitudes and behaviors. The attitude measures were used to assess acceptance of concepts related to effective teamwork and personal capabilities under stress. The behavioral measures were used to evaluate the effectiveness of flight crews operating in commercial aviation. Assessment of team issues in aviation led further to the evaluation and development of training to enhance team performance. Much of the work addressed evaluation of the effectiveness of such training, which has become known as Crew Resource Management (CRM). A second line of investigation was into personality characteristics that predict performance in challenging environments such as aviation and space. A third line of investigation of team performance grew out of the study of flight crews in different organizations. This led to the development of a theoretical model of crew performance that included not only individual attributes such as personality and ability, but also organizational and national culture. A final line of investigation involved beginning to assess whether the methodologies and measures developed for the aviation analog could be applied to another domain -- the performance of medical teams working in the operating room.

  19. Frequency modulation system test procedure shuttle task 501 approach and landing test configuration

    Science.gov (United States)

    Doland, G. D.

    1976-01-01

    Shuttle Task 501 is an in-line task to test the performance and compatibility of radiofrequency links between the SSO and ground, and relay via a satellite. Under Shuttle Task 501 approach and landing test (ALT) phase only a limited portion of the communication and tracking (C&T) equipment is to be tested. The principal item to be tested is a frequency modulated (FM) data link. To test this RF link, an ALT FM System was designed, constructed, and the console wiring verified. A step-by-step procedure to be used to perform the ALT FM system is presented. The ALT FM system test is to be performed prior to delivery of the equipment to the Electronic Systems Test Laboratory (ESTL).

  20. Intercultural crew issues in long-duration spaceflight

    Science.gov (United States)

    Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi

    2003-01-01

    Before long-duration flights with international crews can be safely undertaken, potential interpersonal difficulties will need to be addressed. Crew performance breakdown has been recognized by the American Institute of Medicine, in scientific literature, and in popular culture. However, few studies of human interaction and performance in confined, isolated environments exist, and the data pertaining to those studies are mostly anecdotal. Many incidents involving crew interpersonal dynamics, those among flight crews, as well as between flight crews and ground controllers, are reported only in non-peer reviewed books and newspapers. Consequently, due to this lack of concrete knowledge, the selection of astronauts and cosmonauts has focused on individual rather than group selection. Additional selection criteria such as interpersonal and communication competence, along with intercultural training, will have a decisive impact on future mission success. Furthermore, industrial psychological research has demonstrated the ability to select a group based on compatibility. With all this in mind, it is essential to conduct further research on heterogeneous, multi-national crews including selection and training for long-duration space missions.

  1. Assessing public and crew exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    Rochedo, E.R.R.; Alves, V.A.; Silva, D.N.G.

    2015-01-01

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. The computer program CARI-6, developed by the U.S. Federal Aviation Administration, calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. The program takes into account changes in altitude and geographic location during the course of a flight. The aim of this project is to estimate the contribution of cosmic radiation exposure on commercial flights to the Brazilian population. A database, including about 4,000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights information for November 2011. Main fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, flight times (take-off, landing and cruse altitude times) and number of flights per year. This information was used to estimate individual and collective doses for crew and passengers. Doses for domestic flights in Brazil range from 1.8 to 8.8 μSv. Considering the occupational limit of 850 h of flight per year for crew members and numbers of flights for each route, average occupational dose would be about 0.76 mSv/y. Collective doses, for the total number of flights per year and airplane types were estimated to be 214 and 11 manSv/y for passengers and crew members, respectively. (authors)

  2. Apollo 11 Astronaut Neil Armstrong Approaches Practice Helicopter

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  3. Statistics concerning the Apollo command module water landing, including the probability of occurrence of various impact conditions, sucessful impact, and body X-axis loads

    Science.gov (United States)

    Whitnah, A. M.; Howes, D. B.

    1971-01-01

    Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.

  4. Astronaut Neil Armstrong participates in simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  5. Atmospheric Mars Entry and Landing Investigations & Analysis (AMELIA) by ExoMars 2016 Schiaparelli Entry Descent Module

    Science.gov (United States)

    Ferri, F.; Karatekin, O.; Aboudan, A.; VanHove, B.; Colombatti, C.; Bettanini, C.; Debei, S.; Lewis, S.; Forget, F.

    2017-09-01

    On the 19th October 2016, Schiaparelli, the Entry Demonstrator Module (EDM) of the ESA ExoMars Program entered into the martian atmosphere. Although it did not complete a safe landing on Mars, it transmitted data throughout its descent to the surface, until the loss of signal at 1 minute before the expected touch-down on Mars' surface. From the flight data, we reconstruct the actual dynamics of the vehicle during its descent towards Mars's surface and retrieve the atmospheric profile, in terms of density, pressure and temperature, along its trajectory for atmospheric investigations.

  6. Observations of Crew Dynamics during Mars Analog Simulations

    Science.gov (United States)

    Cusack, Stacy L.

    2010-01-01

    This presentation reviews the crew dynamics during two simulations of Mars Missions. Using an analog of a Mars habitat in two locations, Flashline Mars Arctic Research Station (FMARS) which is located on Devon Island at 75 deg North in the Canadian Arctic, and the Mars Desert Research Station (MDRS) which is located in the south of Utah, the presentation examines the crew dynamics in relation to the leadership style of the commander of the mission. The difference in the interaction of the two crews were shown to be related to the leadership style and the age group in the crew. As much as possible the habitats and environment was to resemble a Mars outpost. The difference between the International Space Station and a Mars missions is reviewed. The leadership styles are reviewed and the contrast between the FMARS and the MDRS leadership styles were related to crew productivity, and the personal interactions between the crew members. It became evident that leadership styles and interpersonal skill had more affect on mission success and crew dynamics than other characteristics.

  7. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    Science.gov (United States)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  8. Broadband Internet Based Service to Passengers and Crew On-board Aircraft

    Science.gov (United States)

    Azzarelli, Tony

    2003-07-01

    The Connexion by BoeingSM (CbB) global network will provide broadband information services to aircraft passengers and crews. Through this Ku-band (14 GHz (uplink) and 11/12 GHz (downlink)) satellite-based system, aircraft passengers and crew will no longer be limited to pre-packaged services, but instead will be able to access the full range of broadband services from their seats using their laptop, PDA or the on-board IFE console.The kind of services offered to passengers are based on the internet/intranet access via their own laptops and PDA (using Ethernet wired cable, or wireless 802.11b access), while those offered to the crew can range between various crew application (such as weather updates and travel information) and aircraft health monitoring.The CbB system is divided into four basic layers of infrastructure:(1) an airborne segment, i.e. the Aircraft Earth Station (AES) consisting of proprietary high gain antenna, transceivers and other on-board subsystems providing a nominal return link data rate of 1 Mbps and a forward link data rates up to 20 Mbps;(2) a space segment consisting of leased satellite transponders on existing in-orbit Geostationary satellites;(3) a ground segment consisting of one or more leased satellite land earth stations (LESs) and redundant interconnection facilities; and;(4) a network operations centre (NOC) segment.During 2003, trials with Lufthansa (DLH) and British Airways (BA) have proved very successful. This has resulted in the recent signing of an agreement with Lufthansa which calls for the Connexion by BoeingSM service to be installed on Lufthansa's fleet of approximately 80 long-haul aircraft, including Boeing 747-400 and Airbus A330 and A340 aircraft, beginning in early 2004. BA is expected to follow soon. In addition to the successful recent service demonstrations, both Japan Airlines (JAL) and Scandinavian Airlines System (SAS) have announced their intent to install the revolutionary service on their long-range aircraft.

  9. A model of a control-room crew

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Beveridge, R.L.

    1986-01-01

    This paper discusses the development of a model of a control-room crew based on observations of crews and concepts developed by cognitive psychologists. The model can help define, among other things, the requirements for SPDS or other operator aids. The paper discusses the relationship of the shift supervisor, the control board operators, the control and instrumentation systems and the written procedures in the control of the plant during normal and abnormal plant transients. These relationships cover the communications between crew members, use of the control equipment by the board operators, use of information, such as the SPDS, by the shift supervisor and integration of crew actions by the use of the procedures. Also discussed are the potential causes of erroneous actions by the crew in accident situations. The model is at this time purely qualitative, but it can be considered to be the basis for the development of a mathematical model

  10. Habitability Designs for Crew Exploration Vehicle

    Science.gov (United States)

    Woolford, Barbara

    2006-01-01

    NASA's space human factors team is contributing to the habitability of the Crew Exploration Vehicle (CEV), which will take crews to low Earth orbit, and dock there with additional vehicles to go on to the moon's surface. They developed a task analysis for operations and for self-sustenance (sleeping, eating, hygiene), and estimated the volumes required for performing the various tasks and for the associated equipment, tools and supplies. Rough volumetric mockups were built for crew evaluations. Trade studies were performed to determine the size and location of windows. The habitability analysis also contributes to developing concepts of operations by identifying constraints on crew time. Recently completed studies provided stowage concepts, tools for assessing lighting constraints, and approaches to medical procedure development compatible with the tight space and absence of gravity. New work will be initiated to analyze design concepts and verify that equipment and layouts do meet requirements.

  11. Development of a Virtual Crew Resource Management Training Program to Improve Communication.

    Science.gov (United States)

    Tschannen, Dana

    2017-11-01

    Crew Resource Management (CRM), a method focused on the management of human error and risk reduction, has shown promise in reducing communication failure in health care. The purpose of this project was to develop a virtual training program in CRM principles of effective leadership and followership, and evaluate the applicability to nurses working in the hospital setting. The intervention included the development of a virtual CRM training program consisting of a self-learning module and virtual simulation. Beta testing of the module was conducted by six nurses, followed by an evaluation of the training program by nurses (n = 5) in a general medicine department. Nurses reported the overall program to be worthwhile (X̄= 5; SD = 0.5), with great applicability to nursing care (X̄= 4.5, SD = 0.5). Nurses completing the simulation activity reported strong agreement to CRM applicability and training effectiveness. The CRM training module proved to be applicable to nursing care and is ready for widespread use to improve patient care and communication. J Contin Educ Nurs. 2017;48(11):525-532. Copyright 2017, SLACK Incorporated.

  12. The operational flight and multi-crew scheduling problem

    Directory of Open Access Journals (Sweden)

    Stojković Mirela

    2005-01-01

    Full Text Available This paper introduces a new kind of operational multi-crew scheduling problem which consists in simultaneously modifying, as necessary, the existing flight departure times and planned individual work days (duties for the set of crew members, while respecting predefined aircraft itineraries. The splitting of a planned crew is allowed during a day of operations, where it is more important to cover a flight than to keep planned crew members together. The objective is to cover a maximum number of flights from a day of operations while minimizing changes in both the flight schedule and the next-day planned duties for the considered crew members. A new type of the same flight departure time constraints is introduced. They ensure that a flight which belongs to several personalized duties, where the number of duties is equal to the number of crew members assigned to the flight, will have the same departure time in each of these duties. Two variants of the problem are considered. The first variant allows covering of flights by less than the planned number of crew members, while the second one requires covering of flights by a complete crew. The problem is mathematically formulated as an integer nonlinear multi-commodity network flow model with time windows and supplementary constraints. The optimal solution approach is based on Dantzig-Wolfe decomposition/column generation embedded into a branch-and-bound scheme. The resulting computational times on commercial-size problems are very good. Our new simultaneous approach produces solutions whose quality is far better than that of the traditional sequential approach where the flight schedule has been changed first and then input as a fixed data to the crew scheduling problem.

  13. Design Considerations for a Crewed Mars Ascent Vehicle

    Science.gov (United States)

    Rucker, Michelle A.

    2015-01-01

    Exploration architecture studies identified the Mars Ascent Vehicle (MAV) as one of the largest "gear ratio" items in a crewed Mars mission. Because every kilogram of mass ascended from the Martian surface requires seven kilograms or more of ascent propellant, it is desirable for the MAV to be as small and lightweight as possible. Analysis identified four key factors that drive MAV sizing: 1) Number of crew: more crew members require more equipment-and a larger cabin diameter to hold that equipment-with direct implications to structural, thermal, propulsion, and power subsystem mass. 2) Which suit is worn during ascent: Extravehicular Activity (EVA) type suits are physically larger and heavier than Intravehicular Activity (IVA) type suits and because they are less flexible, EVA suits require more elbow-room to maneuver in and out of. An empty EVA suit takes up about as much cabin volume as a crew member. 3) How much time crew spends in the MAV: less than about 12 hours and the MAV can be considered a "taxi" with few provisions for crew comfort. However, if the crew spends more than 12 consecutive hours in the MAV, it begins to look like a Habitat requiring more crew comfort items. 4) How crew get into/out of the MAV: ingress/egress method drives structural mass (for example, EVA hatch vs. pressurized tunnel vs. suit port) as well as consumables mass for lost cabin atmosphere, and has profound impacts on surface element architecture. To minimize MAV cabin mass, the following is recommended: Limit MAV usage to 24 consecutive hours or less; discard EVA suits on the surface and ascend wearing IVA suits; Limit MAV functionality to ascent only, rather than dual-use ascent/habitat functions; and ingress/egress the MAV via a detachable tunnel to another pressurized surface asset.

  14. Commercial Crew Development Program Overview

    Science.gov (United States)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  15. [The model of radiation shielding of the service module of the International space station].

    Science.gov (United States)

    Kolomenskiĭ, A V; Kuznetsov, V G; Laĭko, Iu A; Bengin, V V; Shurshakov, V A

    2001-01-01

    Compared and contrasted were models of radiation shielding of habitable compartments of the basal Mir module that had been used to calculate crew absorbed doses from space radiation. Developed was a model of the ISS Service module radiation shielding. It was stated that there is a good agreement between experimental shielding function and the one calculated from this model.

  16. Observations of Crew Dynamics During Mars Analog Simulations

    Science.gov (United States)

    Cusack, Stacy L.

    2009-01-01

    Crewmembers on Mars missions will face new and unique challenges compared to those in close communications proximity to Mission Control centers. Crews on Mars will likely become more autonomous and responsible for their day-to-day planning. These explorers will need to make frequent real time decisions without the assistance of large ground support teams. Ground-centric control will no longer be an option due to the communications delays. As a result of the new decision making model, crew dynamics and leadership styles of future astronauts may become significantly different from the demands of today. As a volunteer for the Mars Society on two Mars analog missions, this presenter will discuss observations made during isolated, surface exploration simulations. The need for careful crew selections, not just based on individual skill sets, but on overall team interactions becomes apparent very quickly when the crew is planning their own days and deciding their own priorities. Even more important is the selection of a Mission Commander who can lead a team of highly skilled individuals with strong and varied opinions in a way that promotes crew consensus, maintains fairness, and prevents unnecessary crew fatigue.

  17. Using Deficit Functions for Crew Planning in Aviation

    Directory of Open Access Journals (Sweden)

    Gertsbakh Ilya B.

    2017-12-01

    Full Text Available We use deficit functions (DFs to decompose an aviation schedule of aircraft flights into a minimal number of periodic and balanced chains (flight sequences. Each chain visits periodically a set S of airports and is served by several cockpit crews circulating along the airports of this set. We introduce the notion of ”chunks” which are a sequence of flights serviced by a crew in one day according to contract regulations. These chunks are then used to provide crew schedules and rosters. The method provides a simplicity for the construction of aircraft schedules and crew pairings which is absent in other approaches to the problem.

  18. Crew behavior and performance in space analog environments

    Science.gov (United States)

    Kanki, Barbara G.

    1992-01-01

    The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.

  19. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  20. Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing.

    Science.gov (United States)

    Schwendner, Petra; Mahnert, Alexander; Koskinen, Kaisa; Moissl-Eichinger, Christine; Barczyk, Simon; Wirth, Reinhard; Berg, Gabriele; Rettberg, Petra

    2017-10-04

    The Mars500 project was conceived as the first full duration simulation of a crewed return flight to Mars. For 520 days, six crew members lived confined in a specifically designed spacecraft mock-up. The herein described "MIcrobial ecology of Confined Habitats and humAn health" (MICHA) experiment was implemented to acquire comprehensive microbiota data from this unique, confined manned habitat, to retrieve important information on the occurring microbiota dynamics, the microbial load and diversity in the air and on various surfaces. In total, 360 samples from 20 (9 air, 11 surface) locations were taken at 18 time-points and processed by extensive cultivation, PhyloChip and next generation sequencing (NGS) of 16S rRNA gene amplicons. Cultivation assays revealed a Staphylococcus and Bacillus-dominated microbial community on various surfaces, with an average microbial load that did not exceed the allowed limits for ISS in-flight requirements indicating adequate maintenance of the facility. Areas with high human activity were identified as hotspots for microbial accumulation. Despite substantial fluctuation with respect to microbial diversity and abundance throughout the experiment, the location within the facility and the confinement duration were identified as factors significantly shaping the microbial diversity and composition, with the crew representing the main source for microbial dispersal. Opportunistic pathogens, stress-tolerant or potentially mobile element-bearing microorganisms were predicted to be prevalent throughout the confinement, while the overall microbial diversity dropped significantly over time. Our findings clearly indicate that under confined conditions, the community structure remains a highly dynamic system which adapts to the prevailing habitat and micro-conditions. Since a sterile environment is not achievable, these dynamics need to be monitored to avoid spreading of highly resistant or potentially pathogenic microorganisms and a

  1. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    Science.gov (United States)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  2. Lunar landing and launch facilities and operations

    Science.gov (United States)

    1988-01-01

    A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.

  3. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David M.

    2010-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  4. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Ryan, David; Lusby, Richard Martin

    2009-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However, ...

  5. Optimized bioregenerative space diet selection with crew choice

    Science.gov (United States)

    Vicens, Carrie; Wang, Carolyn; Olabi, Ammar; Jackson, Peter; Hunter, Jean

    2003-01-01

    Previous studies on optimization of crew diets have not accounted for choice. A diet selection model with crew choice was developed. Scenario analyses were conducted to assess the feasibility and cost of certain crew preferences, such as preferences for numerous-desserts, high-salt, and high-acceptability foods. For comparison purposes, a no-choice and a random-choice scenario were considered. The model was found to be feasible in terms of food variety and overall costs. The numerous-desserts, high-acceptability, and random-choice scenarios all resulted in feasible solutions costing between 13.2 and 17.3 kg ESM/person-day. Only the high-sodium scenario yielded an infeasible solution. This occurred when the foods highest in salt content were selected for the crew-choice portion of the diet. This infeasibility can be avoided by limiting the total sodium content in the crew-choice portion of the diet. Cost savings were found by reducing food variety in scenarios where the preference bias strongly affected nutritional content.

  6. ASTP crewmen in Apollo Command Module Trainer during training session at JSC

    Science.gov (United States)

    1975-01-01

    The three members of the American ASTP prime crew are photographed inside the Apollo Command Module (CM) trainer in a water tank in bldg 260 during water egress training at JSC. They are, left to right, Astronauts Thomas P. Stafford, commander; Vance D. Brand, command module pilot; and Donald K. Slayton, docking module pilot (23430); Slayton attaches his life preserver as he egresses an Apollo Command Module trainer in a water tank in bldg 260 during water egresss training at JSC. Astronauts Brand (on left) and Stafford have already egressed the trainer and are seated in a three-man life raft.

  7. Apollo 11 Astronaut Neil Armstrong Performs Ladder Practice

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first Lunar landing mission, Apollo 11 crew members underwent training activities to practice activities they would be performing during the mission. In this photograph, Neil Armstrong, donned in his space suit, practices getting back to the first rung of the ladder on the Lunar Module (LM). The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  8. Effective Crew Operations: An Analysis of Technologies for Improving Crew Activities and Medical Procedures

    Science.gov (United States)

    Harvey, Craig

    2005-01-01

    NASA's vision for space exploration (February 2004) calls for development of a new crew exploration vehicle, sustained lunar operations, and human exploration of Mars. To meet the challenges of planned sustained operations as well as the limited communications between Earth and the crew (e.g., Mars exploration), many systems will require crews to operate in an autonomous environment. It has been estimated that once every 2.4 years a major medical issue will occur while in space. NASA's future travels, especially to Mars, will begin to push this timeframe. Therefore, now is the time for investigating technologies and systems that will support crews in these environments. Therefore, this summer two studies were conducted to evaluate the technology and systems that may be used by crews in future missions. The first study evaluated three commercial Indoor Positioning Systems (IPS) (Versus, Ekahau, and Radianse) that can track equipment and people within a facility. While similar to Global Positioning Systems (GPS), the specific technology used is different. Several conclusions can be drawn from the evaluation conducted, but in summary it is clear that none of the systems provides a complete solution in meeting the tracking and technology integration requirements of NASA. From a functional performance (e.g., system meets user needs) evaluation perspective, Versus performed fairly well on all performance measures as compared to Ekahau and Radianse. However, the system only provides tracking at the room level. Thus, Versus does not provide the level of fidelity required for tracking assets or people for NASA requirements. From an engineering implementation perspective, Ekahau is far simpler to implement that the other two systems because of its wi-fi design (e.g., no required runs of cable). By looking at these two perspectives, one finds there was no clear system that met NASA requirements. Thus it would be premature to suggest that any of these systems are ready for

  9. Risk factors for skin cancer among Finnish airline cabin crew.

    Science.gov (United States)

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  10. 19 CFR 122.49c - Master crew member list and master non-crew member list requirement for commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard... sections, must electronically transmit to Customs and Border Protection (CBP), by means of an electronic...

  11. Columbia makes a nighttime landing at KSC following STS-93

    Science.gov (United States)

    1999-01-01

    The Space Shuttle orbiter Columbia swoops out of the darkness onto runway 33 at the Shuttle Landing Facility after a successful mission of nearly five days and 1.8 million miles. Main gear touchdown was at 11:20:35 p.m. EDT on July 27. Aboard are the STS-93 crew members: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history.

  12. Human Exploration Using Real-Time Robotic Operations (HERRO)- Crew Telerobotic Control Vehicle (CTCV) Design

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Chato, David; Fincannon, James; Landis, Geoff; Sandifer, Carl; Warner, Joe; Williams, Glenn; Colozza, Tony; hide

    2010-01-01

    The HERRO concept allows real time investigation of planets and small bodies by sending astronauts to orbit these targets and telerobotically explore them using robotic systems. Several targets have been put forward by past studies including Mars, Venus, and near Earth asteroids. A conceptual design study was funded by the NASA Innovation Fund to explore what the HERRO concept and it's vehicles would look like and what technological challenges need to be met. This design study chose Mars as the target destination. In this way the HERRO studies can define the endpoint design concepts for an all-up telerobotic exploration of the number one target of interest Mars. This endpoint design will serve to help planners define combined precursor telerobotics science missions and technology development flights. A suggested set of these technologies and demonstrator missions is shown in Appendix B. The HERRO concept includes a crewed telerobotics orbit vehicle as well three Truck rovers, each supporting two teleoperated geologist robots Rockhounds (each truck/Rockhounds set is landed using a commercially launched aeroshell landing system.) Options include a sample ascent system teamed with an orbital telerobotic sample rendezvous and return spacecraft (S/C) (yet to be designed). Each truck rover would be landed in a science location with the ability to traverse a 100 km diameter area, carrying the Rockhounds to 100 m diameter science areas for several week science activities. The truck is not only responsible for transporting the Rockhounds to science areas, but also for relaying telecontrol and high-res communications to/from the Rockhound and powering/heating the Rockhound during the non-science times (including night-time). The Rockhounds take the place of human geologists by providing an agile robotic platform with real-time telerobotics control to the Rockhound from the crew telerobotics orbiter. The designs of the Truck rovers and Rockhounds will be described in other

  13. COMMUNICATION PROBLEMS IN A MIXED CREW ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    CARMEN ASTRATINEI

    2016-06-01

    Full Text Available Shipping has become a highly international and multicultural industry due to a globalised labour market of seafarers. About two thirds of the world`s merchant fleets, are manned by a mixed crew, which may include two to three different nationalities. The common language used on board ship is English. So the crewmembers must have a good command of this language. 80% of all maritime accidents are, according to incident reports, caused by human error i.e. negligence, fatigue, incompetence or communication breakdown. Another factor that may affect the safety of crew and cargo is the cultural differences within the mixed nationality crews which, if not appeased in time, may lead to very serious conflicts. This paper proposes to analyse some characteristics of the Asian culture and traditions and suggest some ways of improving the professional relationship among multinational crew members by making them aware of their shipmates identities. A questionnaire, which we intend to use as a research tool, will be provided and explained.

  14. LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application

    Science.gov (United States)

    Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin

    2014-11-01

    The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product

  15. Expedition-8 Crew Members Portrait

    Science.gov (United States)

    2003-01-01

    This is a portrait of the Expedition-8 two man crew. Pictured left is Cosmonaut Alexander Y, Kaleri, Soyuz Commander and flight engineer; and Michael C. Foale (right), Expedition-8 Mission Commander and NASA ISS Science Officer. The crew posed for this portrait while training at the Gagarin Cosmonaut Training Center in Star City, Russia. The two were launched for the International Space Station (ISS) aboard a Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan, along with European Space Agency (ESA) Astronaut Pedro Duque of Spain, on October 18, 2003.

  16. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  17. Irregular working hours and fatigue of cabin crew.

    Science.gov (United States)

    Castro, Marta; Carvalhais, José; Teles, Júlia

    2015-01-01

    Beyond workload and specific environmental factors, flight attendants can be exposed to irregular working hours, conflicting with their circadian rhythms and having a negative impact in sleep, fatigue, health, social and family life, and performance which is critical to both safety and security in flight operations. This study focuses on the irregular schedules of cabin crew as a trigger of fatigue symptoms in a wet lease Portuguese airline. The aim was to analyze: what are the requirements of the cabin crew work; whether the schedules being observed and effective resting timeouts are triggering factors of fatigue; and the existence of fatigue symptoms in the cabin crew. A questionnaire has been adapted and applied to a sample of 73 cabin crew-members (representing 61.9% of the population), 39 females and 34 males, with an average age of 27.68 ± 4.27 years. Our data indicate the presence of fatigue and corresponding health symptoms among the airline cabin crew, despite of the sample favorable characteristics. Senior workers and women are more affected. Countermeasures are required. Recommendations can be made regarding the fatigue risk management, including work organization, education and awareness training programmes and specific countermeasures.

  18. Radiation Protection: The Specific Case of Cabin Crew

    International Nuclear Information System (INIS)

    Lecouturier, B.

    1999-01-01

    Exposure to cosmic radiation is one important element of the in-flight working environment. The new requirements of the Council Directive 96/29 Euratom set out basic safety standards in radiation protection which are particularly important to cabin crew. There are two major reasons why they relate specifically to this category of crew member. One is the great diversity of or in some cases the lack of, medical requirements and surveillance. The situation in this area notably differs from that relating to the cockpit crew, who have an aeronautical licence with detailed and rigid medical requirements. The other major reason is the very high percentage of women among the cabin crew (from 65% to 100% depending on the airline concerned), which emphasises the question of protection during pregnancy. The issue of radiation protection of aircrew therefore differs not only according to country and airline, but also according to the crew members concerned. The need is stressed for a harmonised application of the new requirements of the Council Directive 96/29 Euratom and, hopefully in the future, for equivalent protective provisions to be applied worldwide. (author)

  19. Crew Situation Awareness, Diagnoses, and Performance in Simulated Nuclear Power Plant Process Disturbances

    International Nuclear Information System (INIS)

    Sebok, Angelia; Kaarstad, Magnhild

    1998-01-01

    Research was conducted at the OECD Halden Reactor Project to identify issues in crew performance in complex simulated nuclear power plant scenarios. Eight crews of operators participated in five scenarios, administered over a two or three-day period. Scenarios required either rule-based or knowledge-based problem solving. Several performance parameters were collected, including Situation Awareness (SA), objective performance, rated crew performance, and crew diagnoses. The purpose of this study was to investigate differences in performance measures in knowledge-based and rule-based scenarios. Preliminary data analysis revealed a significant difference in crew SA between the two scenario types: crews in the rule-based scenarios had significantly higher SA then crews in the knowledge-based scenarios. Further investigations were initiated to determine if crews performed differently, in terms of objective performance, rated crew performance, and diagnoses, between the scenario types. Correlations between the various crew performance measurements were calculated to reveal insights into the nature of SA, performance, and diagnoses. The insights into crew performance can be used to design more effective interfaces and operator performance aids, thus contributing to enhanced crew performance and improved plant safety. (authors)

  20. Crew Transportation Technical Standards and Design Evaluation Criteria

    Science.gov (United States)

    Lueders, Kathryn L.; Thomas, Rayelle E. (Compiler)

    2015-01-01

    Crew Transportation Technical Standards and Design Evaluation Criteria contains descriptions of technical, safety, and crew health medical processes and specifications, and the criteria which will be used to evaluate the acceptability of the Commercial Providers' proposed processes and specifications.

  1. A Human Centred Interior Design of a Habitat Module for the International Space Station

    Science.gov (United States)

    Burattini, C.

    Since the very beginning of Space exploration, the interiors of a space habitat had to meet technological and functional requirements. Space habitats have now to meet completely different requirements related to comfort or at least to liveable environments. In order to reduce psychological drawbacks afflicting the crew during long periods of isolation in an extreme environment, one of the most important criteria is to assure high habitability levels. As a result of the Transhab project cancellation, the International Space Station (ISS) is actually made up of several research laboratories, but it has only one module for housing. This is suitable for short-term missions; middle ­ long stays require new solutions in terms of public and private spaces, as well as personal compartments. A design concept of a module appositely fit for living during middle-long stays aims to provide ISS with a place capable to satisfy habitability requirements. This paper reviews existing Space habitats and crew needs in a confined and extreme environment. The paper then describes the design of a new and human centred approach to habitation module typologies.

  2. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  3. Crew factors in the aerospace workplace

    Science.gov (United States)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  4. Crew Transportation Operations Standards

    Science.gov (United States)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  5. Crew Exploration Vehicle Launch Abort Controller Performance Analysis

    Science.gov (United States)

    Sparks, Dean W., Jr.; Raney, David L.

    2007-01-01

    This paper covers the simulation and evaluation of a controller design for the Crew Module (CM) Launch Abort System (LAS), to measure its ability to meet the abort performance requirements. The controller used in this study is a hybrid design, including features developed by the Government and the Contractor. Testing is done using two separate 6-degree-of-freedom (DOF) computer simulation implementations of the LAS/CM throughout the ascent trajectory: 1) executing a series of abort simulations along a nominal trajectory for the nominal LAS/CM system; and 2) using a series of Monte Carlo runs with perturbed initial flight conditions and perturbed system parameters. The performance of the controller is evaluated against a set of criteria, which is based upon the current functional requirements of the LAS. Preliminary analysis indicates that the performance of the present controller meets (with the exception of a few cases) the evaluation criteria mentioned above.

  6. New radiation limits and air crew exposure

    International Nuclear Information System (INIS)

    Antic, D.

    1999-01-01

    Commercial aircraft have optimum cruising speed of 800 - 900 km/h and the cruising altitude near 13 km.The flight paths are assigned according to airway corridors and safety requirements.The relatively high dose-equivalent rates at cruising altitudes near 13 km (about 0.5-2 mSv/h, and the shielding effect of the atmosphere corresponds to about 2 M of water) can cause exposures greater than 5 mSv/y, for a crew with full-time flight (500-600 h/y).The radiation exposure of the crew in commercial air traffic has been studied for the associations of the crews and airline management and published, and regulatory authorities are slowly accepting the fact that there indeed is a problem which needs investigations and protective regulation

  7. STS-47 Astronaut Crew Training Clip

    Science.gov (United States)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri, is seen during various parts of their training, including SAREX training in the Full Fuselage Trainer (FFT), firefighting training. A familiarization flight in the KC-135, a food tasting, photo training in the Crew Compartment Trainer, and bailout training in the Weightless Environment Training Facility (WETF) are also shown.

  8. Crew roles and interactions in scientific space exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  9. Crew Roles and Interactions in Scientific Space Exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  10. Shuttle Discovery Landing at Edwards

    Science.gov (United States)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout

  11. Women's Learning and Leadership Styles: Impact on Crew Resource Management.

    Science.gov (United States)

    Turney, Mary Ann

    With an increasing number of women becoming members of flight crews, the leadership styles of men and women are at issue. A study explored three basic questions: (1) How do male and female learning and leadership styles differ? (2) What barriers to gender integration and crew teamwork are perceived by pilot crew members? and (3) What…

  12. Space shuttle crew training at CERN

    CERN Multimedia

    Paola Catapano

    From 13 to 16 October, the crew of NASA Space Shuttle mission STS-134 came to CERN for a special physics training programme. Invited here by Samuel Ting, they will deliver the Alpha Magnetic Spectrometer (AMS) detector to the International Space Station (ISS).   The STS134 crew in the Lodge at the Aiguille du Midi wearing CERN fleeces. From left to right: Captain Mark Kelly, US Navy; Pilot Gregory Johnson, USAF ret.; Mission Specialist Andrew Feustel; Mission Specialist Mike Fincke, USAF, Mission Specialist Gregory Chamitoff and Mission Specialist Roberto Vittori, ESA and Italian Air Force. Headed by Commander Mark Kelly, a US Navy captain, the crew included pilot Gregory Johnson, a US Air Force (USAF) colonel, and mission specialists Mike Fincke (also a USAF Colonel), Andrew Feustel, and Gregory Chamitoff of NASA, as well as Colonel Roberto Vittori of the European Space Agency (ESA). Two flight directors, Gary Horlache and Derek Hassmann of NASA, and the engineer responsible for the Ext...

  13. New physical model calculates airline crews' radiation exposure

    Science.gov (United States)

    Schultz, Colin

    2013-12-01

    Airline pilots and crews, who spend hundreds of hours each year flying at high altitude, are exposed to increased doses of radiation from galactic cosmic rays and solar energy particles, enough that airline crew members are actually considered radiation workers by the International Commission on Radiological Protection.

  14. Apollo 11 Astronauts In Prayer Within Quarantine Facility

    Science.gov (United States)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was taken to safety aboard the USS Hornet, where they were quartered in a mobile quarantine facility. Shown here is the Apollo 11 crew inside the quarantine facility as prayer is offered by Lt. Commander John Pirrto, USS Hornet Chaplain accompanied by U.S. President Richard Nixon (front right). With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  15. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  16. 14 CFR 460.9 - Informing crew of risk.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Informing crew of risk. 460.9 Section 460.9 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... risk. An operator must inform in writing any individual serving as crew that the United States...

  17. A Quasi-Robust Optimization Approach for Crew Rescheduling

    NARCIS (Netherlands)

    Veelenturf, L.P.; Potthoff, D.; Huisman, D.; Kroon, L.G.; Maroti, G.; Wagelmans, A.P.M.

    2016-01-01

    This paper studies the real-time crew rescheduling problem in case of large-scale disruptions. One of the greatest challenges of real-time disruption management is the unknown duration of the disruption. In this paper we present a novel approach for crew rescheduling where we deal with this

  18. Astronaut Neil Armstrong participates in lunar surface simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  19. Solving Large Scale Crew Scheduling Problems in Practice

    NARCIS (Netherlands)

    E.J.W. Abbink (Erwin); L. Albino; T.A.B. Dollevoet (Twan); D. Huisman (Dennis); J. Roussado; R.L. Saldanha

    2010-01-01

    textabstractThis paper deals with large-scale crew scheduling problems arising at the Dutch railway operator, Netherlands Railways (NS). NS operates about 30,000 trains a week. All these trains need a driver and a certain number of guards. Some labor rules restrict the duties of a certain crew base

  20. STS-105 Crew Interview: Scott Horowitz

    Science.gov (United States)

    2001-01-01

    STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.

  1. Group-level issues in the design and training of cockpit crews

    Science.gov (United States)

    Hackman, J. Richard

    1987-01-01

    Cockpit crews always operate in an organizational context, and the transactions between the crew and representatives of that context (e.g., organizational managers, air traffic controllers) are consequential for any crew's performance. For a complete understanding of crew performance a look beyond the traditional focus on individual pilots is provided to see how team- and organization-level factors can enhance (or impede) the ability of even well-trained individuals to work together effectively. This way of thinking about cockpit crews (that is, viewing them as teams that operate in organizations) offers some potentially useful avenues for thinking about next steps in the development of CRM training programs. Those possibilities are explored, emphasizing how they can enrich (not replace) individually-focussed CRM training.

  2. Data entry module and manuals for the Land Treatment Digital Library

    Science.gov (United States)

    Welty, Justin L.; Pilliod, David S.

    2013-01-01

    Across the country, public land managers make decisions each year that influence landscapes and ecosystems within their jurisdictions. Many of these decisions involve vegetation manipulations, which often are referred to as land treatments. These treatments include removal or alteration of plant biomass, seeding of burned areas, application of herbicides, and other activities. Data documenting these land treatments usually are stored at local management offices in various formats. Therefore, anyone interested in the types and effects of land treatments across multiple jurisdictions must first assemble the information, which can be difficult if data discovery and organization involve multiple local offices. A centralized system for storing and accessing the data helps inform land managers when making policy and management considerations and assists scientists in developing sampling designs and studies. The Land Treatment Digital Library (LTDL) was created by the U.S. Geological Survey (USGS) as a comprehensive database incorporating tabular data, documentation, photographs, and spatial data about land treatments in a single system. It was developed over a period of several years and refined based on feedback from partner agencies and stakeholders. Currently, Bureau of Land Management (BLM) land treatment data are being entered by USGS personnel as part of a memorandum of understanding between the USGS and BLM. The LTDL has a website maintained by the USGS Forest and Rangeland Ecosystem Science Center where LTDL data can be viewed http://ltdl.wr.usgs.gov/. The resources and information provided in this data series allow other agencies, organizations, and individuals to download an empty, stand-alone LTDL database to individual or networked computers. Data entered in these databases may be submitted to the USGS for possible inclusion in the online LTDL. Multiple computer programs are used to accomplish the objective of the LTDL. The support of an information

  3. Crew Exercise

    Science.gov (United States)

    Rafalik, Kerrie K.

    2017-01-01

    Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.

  4. 20 CFR 404.1074 - Farm crew leader who is self-employed.

    Science.gov (United States)

    2010-04-01

    ... DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Self-Employment § 404.1074 Farm crew leader who is self-employed. If you are a farm crew leader and are deemed the... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Farm crew leader who is self-employed. 404...

  5. How Effective Is Communication Training For Aircraft Crews

    Science.gov (United States)

    Linde, Charlotte; Goguen, Joseph; Devenish, Linda

    1992-01-01

    Report surveys communication training for aircraft crews. Intended to alleviate problems caused or worsened by poor communication and coordination among crewmembers. Focuses on two training methods: assertiveness training and grid-management training. Examines theoretical background of methods and attempts made to validate their effectiveness. Presents criteria for evaluating applicability to aviation environment. Concludes communication training appropriate for aircraft crews.

  6. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions

    International Nuclear Information System (INIS)

    Alves, J. G.; Mairos, J. C.

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Inst. of Radiation Protection (Neuherberg (Germany)). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Inst., Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made. (authors)

  7. Multifunctional Coating for Crew Cabin Surfaces and Fabrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's crewed spacecrafts require routine cleaning of particulate, moisture, organic, and salt contaminants on the crew cabin surfaces and fabrics. Self-cleaning...

  8. 20 CFR 404.1010 - Farm crew leader as employer.

    Science.gov (United States)

    2010-04-01

    ... DISABILITY INSURANCE (1950- ) Employment, Wages, Self-Employment, and Self-Employment Income Employment § 404... leader's or the farm operator's), the crew leader is deemed to be the employer of the workers and is self... determine the crew leader's status. Work Excluded From Employment ...

  9. International Space Station Crew Quarters Ventilation and Acoustic Design Implementation

    Science.gov (United States)

    Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.

    2010-01-01

    The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  10. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  11. Evaluating Flight Crew Performance by a Bayesian Network Model

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2018-03-01

    Full Text Available Flight crew performance is of great significance in keeping flights safe and sound. When evaluating the crew performance, quantitative detailed behavior information may not be available. The present paper introduces the Bayesian Network to perform flight crew performance evaluation, which permits the utilization of multidisciplinary sources of objective and subjective information, despite sparse behavioral data. In this paper, the causal factors are selected based on the analysis of 484 aviation accidents caused by human factors. Then, a network termed Flight Crew Performance Model is constructed. The Delphi technique helps to gather subjective data as a supplement to objective data from accident reports. The conditional probabilities are elicited by the leaky noisy MAX model. Two ways of inference for the BN—probability prediction and probabilistic diagnosis are used and some interesting conclusions are drawn, which could provide data support to make interventions for human error management in aviation safety.

  12. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    Science.gov (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  13. STS-29 Landing Approach at Edwards

    Science.gov (United States)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission approaches for a landing at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload

  14. An approach to enhanced control room crew performance

    International Nuclear Information System (INIS)

    Frye, S.R.

    1988-01-01

    The function of a nuclear power plant control room team is similar to that of an airline cockpit crew or a critical task military team such as a flight crew, tank crew, combat squad or platoon. These teams encounter many of the same problems or challenges in their environments when dealing with abnormal or emergency situations. The competency of these teams in bringing about successful conclusions in situations depends on their ability to coordinate their actions. This is often referred to as teamwork and includes the interactions between team members which must occur during highly critical situations. The purpose of this paper is to present team skills training and the advances made in this crucial area by utilizing both classroom and high fidelity simulator training

  15. Air crew monitoring in Germany

    International Nuclear Information System (INIS)

    Stegemann, R.; Frasch, G.; Kammerer, L.

    2006-01-01

    Cosmic radiation at high altitudes, especially high energetic neutrons, significantly increases exposure to man. Pilots and flight attendants may receive annual effective doses comparable to doses received in occupations, in which ionising radiation is used or radioactive sources are handled. For this reason, the European Council Directive 96/29 EURATOM requires that air-crew members also be monitored for radiation protection. Flight personnel, receiving an effective dose from cosmic radiation of more than 1 mSv per year are subject to monitoring i.e. radiation exposure has to be assessed, limited and minimized. As the physical conditions causing cosmic radiation doses are well established, it is possible to calculate the expected radiation dose with sufficient accuracy. Several codes for this purpose are available. Since August 2003, the operators of airlines in Germany are obliged to assess the doses of their air crew personnel from cosmic radiation exposure and to minimise radiation exposure by means of appropriate work schedules, flight routes and flight profiles. Approx. 31 000 persons of 45 airlines are monitored by the German Radiation Protection Register. Gender, age and 3 different occupational categories are used to characterise different groups and their doses. The presentation will give an overview about the legislation and organisation of air crew monitoring in Germany and will show detailed statistical results from the first year of monitoring. (authors)

  16. ON SOME TERMS DENOTING CREW MEMBERS ON DUBROVNIK SHIPS

    Directory of Open Access Journals (Sweden)

    Ariana Violić-Koprivec

    2015-01-01

    Full Text Available The paper discusses selected terms denoting crew members on Dubrovnik ships throughout the history. The titles of the most important crew members are analyzed based on the corpus of the 18th century documents, literary works, and technical literature. The goal is to determine which terms are typical of the Dubrovnik area, whether their meanings have become restricted or extended, and how they have disappeared or remained in use over the centuries. It is obvious that the importance of individual crew members and their positions changed with time. Their responsibilities occasionally overlapped, and certain terms for their positions coexisted as synonyms, either belonging to the standard or local, i.e. colloquial use. A comparative analysis has revealed some specific features of the Dubrovnik maritime terminology referring to the ship’s crew. The terms škrivan, nokjer, nostromo, pilot, gvardijan and dispensjer are lexemes specific for this area. This is confirmed by their use in literary works.

  17. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  18. Matching Crew Diet and Crop Food Production in BIO-Plex

    Science.gov (United States)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  19. Payload crew activity planning integration. Task 2: Inflight operations and training for payloads

    Science.gov (United States)

    Hitz, F. R.

    1976-01-01

    The primary objectives of the Payload Crew Activity Planning Integration task were to: (1) Determine feasible, cost-effective payload crew activity planning integration methods. (2) Develop an implementation plan and guidelines for payload crew activity plan (CAP) integration between the JSC Orbiter planners and the Payload Centers. Subtask objectives and study activities were defined as: (1) Determine Crew Activity Planning Interfaces. (2) Determine Crew Activity Plan Type and Content. (3) Evaluate Automated Scheduling Tools. (4) Develop a draft Implementation Plan for Crew Activity Planning Integration. The basic guidelines were to develop a plan applicable to the Shuttle operations timeframe, utilize existing center resources and expertise as much as possible, and minimize unnecessary data exchange not directly productive in the development of the end-product timelines.

  20. Comparison and application study on cosmic radiation dose calculation received by air crew

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Ren Tianshan; Li Wenhong; Zhang Jing; Lu Xu

    2009-01-01

    Objective: To facilitate evaluation on Cosmic radiation dose received by flight crew by developing a convenient and effective measuring method. Methods: In comparison with several commonly used evaluating methods, this research employs CARI-6 software issued by FAA (Federal Aviation Administration) to measure Cosmic radiation dose for flight crew members exposed to. Results: Compared with other methods, CARI-6 is capable of providing reliable calculating results on radiation dose and applicable to all flight crew of different airlines. Conclusion: Cosmic radiation received by flight crew is on the list of occupational radiation. For a smooth running of Standards for controlling exposure to cosmic radiation of air crew, CARI software may be a widely applied tool in radiation close estimation of for flight crew. (authors)

  1. Investigation of crew performance in a multi-vehicle supervisory control task

    Science.gov (United States)

    Miller, R. A.; Plamondon, B. D.; Jagacinski, R. J.; Kirlik, A. C.

    1986-01-01

    Crew information processing and decision making in a supervisory control task which is loosely based on the mission of future generation helicopters is measured and represented. Subjects control the motion and activities of their own vehicle and direct the activities of four additional craft. The task involves searching an uncertain environment for cargo and enemies, returning cargo to home base and destroying enemies while attempting to avoid destruction of the scout and the supervised vehicles. A series of experiments with two-person crews and one-person crews were performed. Resulting crew performance was modeled with the objective of describing and understanding the information processing strategies utilized. Of particular interest are problem simplification strategies under time stress and high work load, simplification and compensation in the one-person cases, crew coordination in the two-person cases, and the relationship between strategy and errors in all cases. The results should provide some insight into the effective use of aids, particularly aids based on artificial intelligence, for similar tasks. The simulation is described which is used for the study and some preliminary results from the first two-person crew study are discussed.

  2. Land Use Change Modelling in R

    Science.gov (United States)

    Moulds, S.; Buytaert, W.

    2014-12-01

    Land use activities, through the provision of natural resources, are essential to human existence. In many regions land use change is degrading biodiversity and threatening the sustainability of ecosystem services upon which communities and livelihoods depend. Spatially explicit land use change models are widely used to understand and quantify key processes that affect land use change and make predictions about past and future change. These models typically include a module to estimate the suitability of different locations to particular land use types based on biophysical and socioeconomic predictor variables and a module to allocate change spatially. They are commonly implemented in languages such as C/C++ and Fortran and made available as standalone applications or through proprietary GIS. In many cases the models are released under closed source licences, limiting the reproducibility of scientific results and making model comparison difficult. This work presents a new R package providing methods and classes to support land use change modelling and model development and comparison within the open source R statistical computing environment. The package makes use of existing R implementations of methods such as random forests and recursive partitioning and regression trees to estimate location suitability, as well as providing methods for statistical model building and evaluation. Currently two spatial allocation methods are provided: the first based on the widely used and tested CLUE-S algorithm and the second a novel stochastic procedure developed for large scale applications. Some common tools for evaluating allocation results are implemented. It is hoped that the package will provide a framework for the development of new routines that can be incorporated into future releases of the code.

  3. A Combined Adaptive Tabu Search and Set Partitioning Approach for the Crew Scheduling Problem with an Air Tanker Crew Application

    Science.gov (United States)

    2002-08-15

    Agency Name(s) and Address(es) Maj Juan Vasquez AFOSR/NM 801 N. Randolph St., Rm 732 Arlington, VA 22203-1977 Sponsor/Monitor’s Acronym(s) Sponsor... Gelman , E., Patty, B., and R. Tanga. 1991. Recent Advances in Crew-Pairing Optimization at American Airlines, Interfaces, 21(1):62-74. Baker, E.K...Operations Research, 25(11):887-894. Chu, H.D., Gelman , E., and E.L. Johnson. 1997. Solving Large Scale Crew Scheduling Problems, European

  4. X-38 Drop Model: Landing Sequence Collage from Cessna Drop Test

    Science.gov (United States)

    1995-01-01

    This sequence of photographs shows a 4-foot-long model of NASA's X-38 gliding to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  5. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  6. Air crews - a new group of radiation workers

    International Nuclear Information System (INIS)

    Antic, D.

    1997-01-01

    Air crews on commercial flights are not generally regarded as occupationally exposed radiation workers. The studies show that they may receive radiation doses in excess of the ICRP recommended limits for members of the public. An international approach to this problem could be enforced through IATA and other organizations in commercial air traffic. The results of the analysis for air crews of Yugoslav Airlines are used as example. (author)

  7. The human story of Crew 173- capturing a Mars analog mission

    Science.gov (United States)

    Shaw, Niamh; Musilova, Michaela; Pons Lorente, Arnau; Sisaid, Idriss; Naor, Roy; Blake, Richard

    2017-04-01

    An international crew of six scientists, engineers, artists and entrepreneurs with different space specialisations were selected by the Mars Society to take part in a Martian simulation in January 2017. An ambitious outreach and media strategy was developed, aimed at communicating the benefits of missions to Mars to the public and to capture the public's interest by telling the human story of the crew's mission. Entitled Crew 173 Team PRIMA, they entered the Mars Desert Research Station in the Utah Desert and conducted research in 3D printing, hydroponics, geology and astronomy. Both the scientific and community experience of this mission was documented through still image, video, audio, diary and daily journalling by the resident artist of the mission, Niamh Shaw. The full experience of the crew was documented (before, during and after the expedition), to capture each individual experience of the crew and the human experience of isolation of future human space missions.

  8. Scenario-Based Analysis on the Structural Change of Land Uses in China

    Directory of Open Access Journals (Sweden)

    Qian Xu

    2013-01-01

    Full Text Available Land Use/Land Cover change (LUCC is a key aspect of global environmental change, which has a significant impact on climate change. In the background of increasing global warming resulting from greenhouse effect, to understand the impact of land use change on climate change is necessary and meaningful. In this study, we choose China as the study area and explore the possible land use change trends based on the AgLU module and ERB module of global change assessment model (GCAM model and Global Change Assessment Model. We design three scenarios based on socioeconomic development and simulated the corresponding structure change of land use according to the three scenarios with different parameters. Then we simulate the different emission of CO2 under different scenarios based on the simulation results of structure change of land use. At last, we choose the most suitable scenario that could control the emission of CO2 best and obtain the relatively better land use structure change for adaption of climate change. Through this research we can provide a theoretical basis for the future land use planning to adapt to climate change.

  9. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    Science.gov (United States)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  10. Individual differences in airline captains' personalities, communication strategies, and crew performance

    Science.gov (United States)

    Orasanu, Judith

    1991-01-01

    Aircrew effectiveness in coping with emergencies has been linked to captain's personality profile. The present study analyzed cockpit communication during simulated flight to examine the relation between captains' discourse strategies, personality profiles, and crew performance. Positive Instrumental/Expressive captains and Instrumental-Negative captains used very similar communication strategies and their crews made few errors. Their talk was distinguished by high levels of planning and strategizing, gathering information, predicting/alerting, and explaining, especially during the emergency flight phase. Negative-Expressive captains talked less overall, and engaged in little problem solving talk, even during emergencies. Their crews made many errors. Findings support the theory that high crew performance results when captains use language to build shared mental models for problem situations.

  11. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  12. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    Science.gov (United States)

    Santanello, J. A.; Kumar, S.; Peters-Lidard, C. D.; Harrison, K. W.; Zhou, S.

    2012-12-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  13. Crew Communication as a Factor in Aviation Accidents

    Science.gov (United States)

    Goguen, J.; Linde, C.; Murphy, M.

    1986-01-01

    The crew communication process is analyzed. Planning and explanation are shown to be well-structured discourse types, described by formal rules. These formal rules are integrated with those describing the other most important discourse type within the cockpit: the command-and-control speech act chain. The latter is described as a sequence of speech acts for making requests (including orders and suggestions), for making reports, for supporting or challenging statements, and for acknowledging previous speech acts. Mitigation level, a linguistic indication of indirectness and tentativeness in speech, was an important variable in several hypotheses, i.e., the speech of subordinates is more mitigated than the speech of superiors, the speech of all crewmembers is less mitigated when they know that they are in either a problem or emergency situation, and mitigation is a factor in failures of crewmembers to initiate discussion of new topics or have suggestions ratified by the captain. Test results also show that planning and explanation are more frequently performed by captains, are done more during crew- recognized problems, and are done less during crew-recognized emergencies. The test results also indicated that planning and explanation are more frequently performed by captains than by other crewmembers, are done more during crew-recognized problems, and are done less during-recognized emergencies.

  14. Communication constraints, indexical countermeasures, and crew configuration effects in simulated space-dwelling groups

    Science.gov (United States)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Banner, Michele J.; Gasior, Eric D.; Spence, Kevin R.

    2007-02-01

    Previous research with groups of individually isolated crews communicating and problem-solving in a distributed interactive simulation environment has shown that the functional interchangeability of available communication channels can serve as an effective countermeasure to communication constraints. The present report extends these findings by investigating crew performance effects and psychosocial adaptation following: (1) the loss of all communication channels, and (2) changes in crew configuration. Three-person crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crews developed and employed discrete navigation system operations that served as functionally effective communication signals (i.e., “indexical” or “deictic” cues) in generating appropriate crewmember responses and maintaining performance effectiveness in the absence of normal communication channels. Additionally, changes in crew configuration impacted both performance effectiveness and psychosocial adaptation.

  15. 46 CFR 252.31 - Wages of officers and crews.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Wages of officers and crews. 252.31 Section 252.31... Subsidy Rates § 252.31 Wages of officers and crews. (a) Definitions. When used in this part: (1) Base period. The first base period under the wage index systems, as provided in section 603 of the Act, is the...

  16. STS-93 crew have breakfast before launch in O&C Building

    Science.gov (United States)

    1999-01-01

    The STS-93 crew gathers a third time for a pre-launch breakfast in the Operations and Checkout Building before suiting up for launch. After Space Shuttle Columbia's July 22 launch attempt was scrubbed due to the weather, the launch was rescheduled for Friday, July 23, at 12:24 a.m. EDT. Seated from left are Mission Specialists Catherine G. Coleman (Ph.D.) and Steven A. Hawley (Ph.D.); Commander Eileen M. Collins; Mission Specialist Michel Tognini, of France, who represents the Centre National d'Etudes Spatiales (CNES); and Pilot Jeffrey S. Ashby. STS-93 is a five- day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Collins is the first woman to serve as commander of a Shuttle mission. The target landing date is July 27, 1999, at 11:20 p.m. EDT.

  17. Optimizing the physical conditioning of the NASCAR sprint cup pit crew athlete.

    Science.gov (United States)

    Ferguson, David P; Davis, Adam M; Lightfoot, J Timothy

    2015-03-01

    Stock car racing is the largest spectator sport in the United States. As a result, National Association for Stock Car Automobile Racing (NASCAR) Sprint Cup teams have begun to invest in strength and conditioning programs for their pit crew athletes. However, there is limited knowledge regarding the physical characteristics of elite NASCAR pit crew athletes, how the NASCAR Sprint Cup season affects basic physiological parameters such as body composition, and what is the most appropriate physical training program that meets the needs of a pit crew athlete. We conducted 3 experiments involving Sprint Cup motorsport athletes to determine predictors of success at the elite level, seasonal physiological changes, and appropriate physical training programs. Our results showed that hamstring flexibility (p = 0.015) and the score on the 2-tire front run test (p = 0.012) were significant predictors of NASCAR Sprint Cup Pit Crew athlete performance. Additionally, during the off season, pit crew athletes lost lean body mass, which did not return until the middle of the season. Therefore, a strength and conditioning program was developed to optimize pit crew athlete performance throughout the season. Implementation of this strength and conditioning program in 1 NASCAR Sprint Cup team demonstrated that pit crew athletes were able to prevent lean body mass loss and have increased muscle power output from the start of the season to the end of the season.

  18. Selecting pilots with crew resource management skills.

    Science.gov (United States)

    Hedge, J W; Bruskiewicz, K T; Borman, W C; Hanson, M A; Logan, K K; Siem, F M

    2000-10-01

    For years, pilot selection has focused primarily on the identification of individuals with superior flying skills and abilities. More recently, the aviation community has become increasingly aware that successful completion of a flight or mission requires not only flying skills but the ability to work well in a crew situation. This project involved development and validation of a crew resource management (CRM) skills test for Air Force transport pilots. A significant relation was found between the CRM skills test and behavior-based ratings of aircraft commander CRM performance, and the implications of these findings for CRM-based selection and training are discussed.

  19. Flight Activity and Crew Tracking System -

    Data.gov (United States)

    Department of Transportation — The Flight Activity and Crew Tracking System (FACTS) is a Web-based application that provides an overall management and tracking tool of FAA Airmen performing Flight...

  20. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Vekic, B.; Planinic, J.

    2005-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  1. Crew-Centered Operations: What HAL 9000 Should Have Been

    Science.gov (United States)

    Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.

    2005-01-01

    To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.

  2. Heart rate and core temperature responses of elite pit crews during automobile races.

    Science.gov (United States)

    Ferguson, David P; Bowen, Robert S; Lightfoot, J Timothy

    2011-08-01

    There is limited information regarding the physiological and psychological demands of the racing environment, and the subsequent effect on the performance of pit crew athletes. The purpose of this study was to evaluate heart rates (HRs) and core body temperatures (CTs) of pit crew athletes in the race environment. The HR and CT of pit crew athletes (n = 7) and control subjects were measured during 6 National Association for Stock Car Automobile Racing Sprint Cup races using ingestible sensors (HQ Inc, Palmetto, FL, USA). The HR and CT were measured before each race, at 15-minute intervals during the race, and upon completion of each pit stop. Compared to the control subject at each race, the pit crew athletes had significantly (p = 0.014) lower core temperatures (CTs). The pit crew athletes displayed higher HRs on the asphalt tracks than on concrete tracks (p = 0.011), and HR responses of the crew members were significantly (p = 0.012) different between pit crew positions, with the tire changers and jackman exhibiting higher HRs than the tire carriers. Unexpectedly, the CTs of the pit crew athletes were not elevated in the race environment, despite high ambient temperatures and the extensive fire-protection equipment (e.g., helmet, suit, gloves) each pit crew athlete wore. The lack of CT change is possibly the result of the increased HR more efficiently shunting blood to the skin and dissipating heat as a consequence of the athletes' extensive training regimen and ensuing heat acclimation. Additionally, it is possible that psychological stress unique to several of the tracks provided an additive effect resulting in increased heart rates.

  3. 49 CFR 230.65 - Steam blocking view of engine crew.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or...

  4. Crew Cerebral Oxygen Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal is aimed at developing a non-invasive, optical method for monitoring the state of consciousness of crew members in operational...

  5. Crew Cerebral Oxygen Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposal is aimed at developing a non-invasive, optical method for monitoring crew member state of awareness in operational environments. All...

  6. Is cosmic radiation exposure of air crew amenable to control?

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1999-01-01

    ICRP Committee 4 currently has a Working Party on Cosmic Ray Exposure in Aircraft and Space Flight. It has assembled information on doses arising in aircraft and space flight and considered the appropriateness of the Commission's recommendations relating to air crew. A central issue is whether the exposures received should be considered amenable to control. Factors of relevance to the enhanced cosmic radiation exposure of air crew, and frequent fliers such as couriers, are doses to pregnant staff, the issue of controllability of doses, and the implementation of regulatory controls. It is concluded that while air crew in the current range of subsonic jet aircraft are exposed to enhanced levels of cosmic radiation, these exposures are not readily controllable nor likely to exceed about 6 mSv/y. The revised ICRP Recommendations in 1991 (ICRP 60) propose air crew be designated as occupationally exposed. However, none of the usual optimisation of dose actions associated with regulation of practices, such as classification of work areas and rules governing working procedures, can be implemented, and in practice the doses are not amenable to control. The International Basic Safety Standards therefore leave this designation to the judgement of national regulatory authorities. One requirement that stems from designation as occupational exposure is that of restriction of doses to pregnant women. Both from the points of view that it is questionable whether exposure of air crew can reasonably be considered to be amenable to control, and the magnitude of the risks from exposures incurred, there is little reason to invoke additional restrictions to limit exposures of pregnant air crew. Copyright (1999) Australasian Radiation Protection Society Inc

  7. Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing

    Science.gov (United States)

    Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy

    2011-01-01

    Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.

  8. Bol d'Or success for all-women crew from CERN

    CERN Multimedia

    2001-01-01

    The boat 'Mic Mac' and its CERN's all-woman crew (left to right), Christine Theurillat, Ursula Haenger , Paola Catapano, Petra Riedler, and skipper Cristina Morone. Spectacular highlight of the Lake Leman sailing calendar is the annual Bol d'Or race. Held this year on 16 and 17 June, the event attracted nearly 500 teams who competed under extreme weather conditions for the honours. Among the competitors was an all-woman crew from the CERN Yachting Club, sailing their Surprise boat, Mic Mac. The team was not only among the 397 boats to finish, but also the first all-woman crewed single hull boat to cross the line.

  9. Interpretation of scenario results in terms of described and mapped land change trajectories and archetypes

    DEFF Research Database (Denmark)

    Kuemmerle, Tobias; Stürck, Julia; Levers, Christian

    Module VISIONS seeks to identify critical pathways to reach desired futures for land systems (i.e., visions). In order to do so, work package (WP) 11 links the model-based scenarios (module ASSESSMENT) to the visions formulated derived in a transdisciplinary process together with stakeholders...... of future developments of current land change archetypes; and (3) an interpretation of future land change in light of long-term land system trajectories. Synthesizing across these analyses, six key insights emerged. First, future land change was relatively similar across marker scenarios and different...... policy alternatives, for many regions in Europe, suggesting strong path dependency. Second, the impact of policy options can differ (a) between regions in Europe and (b) among marker scenarios, highlighting the need for contextualized, regionalized policy making. Third, the expansion and intensification...

  10. Comparing Communication Contents with the Associated Crew Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Park, Jin Kyun; Kim, Seung Hwan; Kim, Man Cheol

    2011-01-01

    In the case of human operators working in a large process control system, the consequence of inappropriate communications would be significant because they have to carry out many kinds of crucial activities based on communications. This means that one of the practical methods would be the investigation of communication contents, through which we are able to identify useful insights pertaining to the prevention of inappropriate communications. For this reason, communications of main control room (MCR) operating crews are analyzed to characterize communication contents. After that, communication contents and the associated crew performance data are compared. As a result, it seems that the performance of operating crews is proportional to the amount of 3-way communications. However, it is also revealed that a theoretical framework that is able to characterize the communication of MCR operating crews is needed because it is insufficient to retrieve insightful information from simple comparisons based on the empirical observation of crew communications

  11. Galvanizing medical students in the administration of influenza vaccines: the Stanford Flu Crew.

    Science.gov (United States)

    Rizal, Rachel E; Mediratta, Rishi P; Xie, James; Kambhampati, Swetha; Hills-Evans, Kelsey; Montacute, Tamara; Zhang, Michael; Zaw, Catherine; He, Jimmy; Sanchez, Magali; Pischel, Lauren

    2015-01-01

    Many national organizations call for medical students to receive more public health education in medical school. Nonetheless, limited evidence exists about successful servicelearning programs that administer preventive health services in nonclinical settings. The Flu Crew program, started in 2001 at the Stanford University School of Medicine, provides preclinical medical students with opportunities to administer influenza immunizations in the local community. Medical students consider Flu Crew to be an important part of their medical education that cannot be learned in the classroom. Through delivering vaccines to where people live, eat, work, and pray, Flu Crew teaches medical students about patient care, preventive medicine, and population health needs. Additionally, Flu Crew allows students to work with several partners in the community in order to understand how various stakeholders improve the delivery of population health services. Flu Crew teaches students how to address common vaccination myths and provides insights into implementing public health interventions. This article describes the Stanford Flu Crew curriculum, outlines the planning needed to organize immunization events, shares findings from medical students' attitudes about population health, highlights the program's outcomes, and summarizes the lessons learned. This article suggests that Flu Crew is an example of one viable service-learning modality that supports influenza vaccinations in nonclinical settings while simultaneously benefiting future clinicians.

  12. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Kojo, K.

    2013-03-01

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  13. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  14. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    Science.gov (United States)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  15. Crew Clothing Odor Absorbing Stowage Bag

    Data.gov (United States)

    National Aeronautics and Space Administration — Clothing accounts for a significant portion of the logistical mass launched on current space missions: 277 kg (including 62 kg of exercise clothing) for an ISS crew...

  16. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Science.gov (United States)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  17. Preliminary Results from the Joint Russian and US Field Test: Measurement of Sensorimotor and Cardiovascular Responses Immediately Following Landing of the Soyuz Spacecraft

    Science.gov (United States)

    Reschke, M. F.; Kozlovskaya, I. B.; Tomilovskaya, E. S.; Bloomberg, J. J.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Stenger, M. B.; Lee, S. M. C.; Wood, S. J.; hide

    2013-01-01

    Ongoing collaborative research efforts between NASA's Neuroscience and Cardiovascular Laboratories, and the Institute of Biomedical Problems' (IBMP) Sensory-Motor and Countermeasures Laboratories have been measuring functional sensorimotor, cardiovascular and strength responses following bed rest, dry immersion, short duration (Space Shuttle) and long duration (Mir and International Space Station) space flights. While the unloading paradigms associated with dry immersion and bed rest have do serve as acceptable flight analogs, testing of crew responses following the long duration flights does not begin until a minimum of 24 hours after landing. As a result it is not possible to estimate the nonlinear trend of the early (testing at the time of landing and before the flight crews have left the landing site. By joint agreement this research effort has been identified as the functional Field Test (FT). For practical reasons the FT has been divided into two phases: the full FT and a preliminary pilot version (PFT) of the FT that is reduced in both length and scope. The primary goal of this research is to determine functional abilities in long duration space flight crews beginning as soon after landing as possible (test in conjunction with postural ataxia testing. In addition to the immediate post-landing collection of data for the full FT, postflight data will be acquired at a minimum of one to three more other times within the 24 hr following landing and continue until functional sensorimotor and cardiovascular responses have returned to preflight normative values. The PFT represents a single trial run comprised of jointly agreed tests from the full FT and relies heavily on IBMP's Sensory-Motor and Countermeasures Laboratories for content, and implementation. The PFT is currently scheduled for the September 2013 landing of the Soyuz spacecraft (34S). Testing will include: (1) a sit-to-stand test, (2) recovery from a fall where the crewmember begins in the prone

  18. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  19. An all-woman crew to Mars: a radical proposal

    Science.gov (United States)

    Landis, G. A.

    2000-01-01

    It is logical to propose that if a human mission is flown to Mars, it should be composed of an entirely female crew. On the average, women have lower mass and take less volume than males, and use proportionately less consumables. In addition, sociological research indicates that a female crew may have a preferable interpersonal dynamic, and be likely to choose non-confrontational approaches to solve interpersonal problems.

  20. The impact of anthropogenic land use and land cover change on regional climate extremes.

    Science.gov (United States)

    Findell, Kirsten L; Berg, Alexis; Gentine, Pierre; Krasting, John P; Lintner, Benjamin R; Malyshev, Sergey; Santanello, Joseph A; Shevliakova, Elena

    2017-10-20

    Land surface processes modulate the severity of heat waves, droughts, and other extreme events. However, models show contrasting effects of land surface changes on extreme temperatures. Here, we use an earth system model from the Geophysical Fluid Dynamics Laboratory to investigate regional impacts of land use and land cover change on combined extremes of temperature and humidity, namely aridity and moist enthalpy, quantities central to human physiological experience of near-surface climate. The model's near-surface temperature response to deforestation is consistent with recent observations, and conversion of mid-latitude natural forests to cropland and pastures is accompanied by an increase in the occurrence of hot-dry summers from once-in-a-decade to every 2-3 years. In the tropics, long time-scale oceanic variability precludes determination of how much of a small, but significant, increase in moist enthalpy throughout the year stems from the model's novel representation of historical patterns of wood harvesting, shifting cultivation, and regrowth of secondary vegetation and how much is forced by internal variability within the tropical oceans.

  1. Apollo 11 Earth Training Exercises

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, taken at the Manned Spacecraft Center in Houston, Texas, an engineer, Bob Mason, donned in a space suit, goes through some of those training exercises on the mock lunar surface. He performed activites similar to those planned for astronauts Neil Armstrong and Edwin Aldrin during their moon walk. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  2. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  3. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    Science.gov (United States)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  4. Legal status of crew members on pleasure craft and vessels used in nautical tourism

    Directory of Open Access Journals (Sweden)

    Giovanni Marchiafava

    2018-02-01

    Full Text Available The paper aims at examining the issues related to the legal status of crew members of pleasure craft and vessels used in nautical tourism from an Italian perspective. Firstly, the definition of crew and its composition on pleasure craft and vessels is examined. Additionally, the legal regime of crew members together with the crew on-board documentation, is discussed. Furthermore, the main similarities and dissimilarities of the crew regime according to the type of pleasure craft and vessel and their use, as well as, the on-board services, is dealt with. Finally, the issue related to the legal classification of ‘’guests’’, undertaking complementary on-board services of pleasure craft and vessels is considered.

  5. STS-31 crew training: firefighting, food tasting, EVA prep and post

    Science.gov (United States)

    1990-03-01

    The Space Shuttle crew is shown lighting a pond of gasoline and then performing firefighting tasks. The crew is also shown tasting food including lemonade, chicken casserole, and tortillas, and performing extravehicular activity (EVA) equipment checkouts in the CCT middeck and airlock.

  6. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    Science.gov (United States)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  7. Crew transportation for the 1990s. I - Commercializing manned flight with today's propulsion

    Science.gov (United States)

    Staehle, Robert; French, J. R.

    Two commercial space transport concepts that have been developed employing reusable production engines are discussed. A winged space transport (WST) launched from a Boeing 747 was sized to carry six people to low orbit. With no margin for performance growth, it is not favored for development. A vertical launch/landing space transport was designed with capabilities and propulsion similar to the WST, but launched from the ground. A small launch mass penalty is offset by improved performance margins and by eliminating carrier aircraft costs. The two-pilot plus five-passenger vehicle is designed for short-duration trips to low earth orbit, or for docking up to 10 d at an orbiting station. Market applications include space station crew rotation, equipment delivery and product return, short-duration experiments, satellite servicing, reconnaissance, and tourism. Profitable per-mission prices are projected at $10-15 million, with development costs approaching $400 million.

  8. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  9. Payload Crew Training Complex (PCTC) utilization and training plan

    Science.gov (United States)

    Self, M. R.

    1980-01-01

    The physical facilities that comprise the payload crew training complex (PCTC) are described including the host simulator; experiment simulators; Spacelab aft flight deck, experiment pallet, and experiment rack mockups; the simulation director's console; payload operations control center; classrooms; and supporting soft- and hardware. The parameters of a training philosophy for payload crew training at the PCTC are established. Finally the development of the training plan is addressed including discussions of preassessment, and evaluation options.

  10. LANDSAFE: LANDING SITE RISK ANALYSIS SOFTWARE FRAMEWORK

    Directory of Open Access Journals (Sweden)

    R. Schmidt

    2012-08-01

    Full Text Available The European Space Agency (ESA is planning a Lunar Lander mission in the 2018 timeframe that will demonstrate precise soft landing at the polar regions of the Moon. To ensure a safe and successful landing a careful risk analysis has to be carried out. This is comprised of identifying favorable target areas and evaluating the surface conditions in these areas. Features like craters, boulders, steep slopes, rough surfaces and shadow areas have to be identified in order to assess the risk associated to a landing site in terms of a successful touchdown and subsequent surface operation of the lander. In addition, global illumination conditions at the landing site have to be simulated and analyzed. The Landing Site Risk Analysis software framework (LandSAfe is a system for the analysis, selection and certification of safe landing sites on the lunar surface. LandSAfe generates several data products including high resolution digital terrain models (DTMs, hazard maps, illumination maps, temperature maps and surface reflectance maps which assist the user in evaluating potential landing site candidates. This paper presents the LandSAfe system and describes the methods and products of the different modules. For one candidate landing site on the rim of Shackleton crater at the south pole of the Moon a high resolution DTM is showcased.

  11. Fuel Oxidizer Reaction Products (FORP) Contamination of Service Module (SM) and Release of N-nitrosodimethylamine(NDMA)in a Humid Environment from Crew EVA Suits Contaminated with FORP

    Science.gov (United States)

    Schmidl, William; Mikatarian, Ron; Lam, Chiu-Wing; West, Bil; Buchanan, Vanessa; Dee, Louis; Baker, David; Koontz, Steve

    2004-01-01

    The Service Module (SM) is an element of the Russian Segment of the International Space Station (ISS). One of the functions of the SM is to provide attitude control for the ISS using thrusters when the U.S. Control Moment Gyros (CMG's) must be desaturated. Prior to an Extravehicular Activity (EVA) on the Russian Segment, the Docking Compartment (DC1) is depressurized, as it is used as an airlock. When the DC1 is depressurized, the CMG's margin of momentum is insufficient and the SM attitude control thrusters need to fire to desaturate the CMG's. SM roll thruster firings induce contamination onto adjacent surfaces with Fuel Oxidizer Reaction Products (FORP). FORP is composed of both volatile and non-volatile components. One of the components of FORP is the potent carcinogen N-nitrosdimethylamine (NDMA). Since the EVA crewmembers often enter the area surrounding the thrusters for tasks on the aft end of the SM and when translating to other areas of the Russian Segment, the presence of FORP is a concern. This paper will discuss FORP contamination of the SM surfaces, the release of NDMA in a humid environment from crew EVA suits, if they happen to be contaminated with FORP, and the toxicological risk associated with the NDMA release.

  12. Onboard cross-calibration of the Pille-ISS Detector System and measurement of radiation shielding effect of the water filled protective curtain in the ISS crew cabin

    International Nuclear Information System (INIS)

    Szántó, P.; Apáthy, I.; Deme, S.; Hirn, A.; Nikolaev, I.V.; Pázmándi, T.; Shurshakov, V.A.; Tolochek, R.V.; Yarmanova, E.N.

    2015-01-01

    As a preparation for long duration space missions it is important to determine and minimize the impact of space radiation on human health. One of the methods to diminish the radiation burden is using an additional local shielding in the places where the crewmembers can stay for longer time. To increase the crew cabin shielding a special protective curtain was designed and delivered to ISS in 2010 containing four layers of hygienic wipes and towels providing an additional shielding thickness of about 8 g/cm"2 water-equivalent matter. The radiation shielding effect of the protective curtain, in terms of absorbed dose, was measured with the thermoluminescent Pille-ISS Detector System. In order to verify the reliability of the Pille system an onboard cross-calibration was also performed. The measurement proved that potentially 25% reduction of the absorbed dose rate in the crew cabin can be achieved, that results in 8% (∼16 μGy/day) decrease of the total absorbed dose to the crew, assuming that they spend 8 h in the crew cabin a day. - Highlights: • The dose level in the ISS Zvezda crew quarters is higher than the average dose level in the module. • A shielding made of hygienic wipes and towels was set up onboard as additional protection. • Onboard cross calibration of the Pille-ISS space dosimeter (TL) system was performed. • The shielding effect of the protective curtain in terms of absorbed dose was measured with the onboard Pille system. • The shielding effect of the protective water curtain is approximately 24 ± 9% in absorbed dose.

  13. How did crew resource management take-off outside of the cockpit? : a systematic review of how crew resource management training is conceptualised and evaluated for non-pilots

    NARCIS (Netherlands)

    Havinga, Jop; de Boer, R.J.; Rae, Andrew; Dekker, Sidney

    2017-01-01

    Crew resource management (CRM) training for flight crews is widespread and has been credited with improving aviation safety. As other industries have adopted CRM, they have interpreted CRM in different ways. We sought to understand how industries have adopted CRM, regarding its conceptualisation and

  14. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.

  15. STS-49 Landing at Edwards with First Drag Chute Landing

    Science.gov (United States)

    1992-01-01

    The Space Shuttle Endeavour concludes mission STS-49 at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, with a 1:57 p.m. (PDT) landing 16 May on Edward's concrete runway 22. The planned 7-day mission, which began with a launch from Kennedy Space Center, Florida, at 4:41 p.m. (PFT), 7 May, was extended two days to allow extra time to rescue the Intelsat VI satellite and complete Space Station assembly techniques originally planned. After a perfect rendezvous in orbit and numerous attempts to grab the satellite, space walking astronauts Pierre Thuot, Rick Hieb and Tom Akers successfully rescued it by hand on the third space walk with the support of mission specialists Kathy Thornton and Bruce Melnick. The three astronauts, on a record space walk, took hold of the satellite and directed it to the shuttle where a booster motor was attached to launch it to its proper orbit. Commander Dan Brandenstein and Pilot Kevin Chilton brought Endeavours's record setting maiden voyage to a perfect landing at Edwards AFB with the first deployment of a drag chute on a shuttle mission. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their

  16. CREW CHIEF: A computer graphics simulation of an aircraft maintenance technician

    Science.gov (United States)

    Aume, Nilss M.

    1990-01-01

    Approximately 35 percent of the lifetime cost of a military system is spent for maintenance. Excessive repair time is caused by not considering maintenance during design. Problems are usually discovered only after a mock-up has been constructed, when it is too late to make changes. CREW CHIEF will reduce the incidence of such problems by catching design defects in the early design stages. CREW CHIEF is a computer graphic human factors evaluation system interfaced to commercial computer aided design (CAD) systems. It creates a three dimensional man model, either male or female, large or small, with various types of clothing and in several postures. It can perform analyses for physical accessibility, strength capability with tools, visual access, and strength capability for manual materials handling. The designer would produce a drawing on his CAD system and introduce CREW CHIEF in it. CREW CHIEF's analyses would then indicate places where problems could be foreseen and corrected before the design is frozen.

  17. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  18. Don't Rock the Boat : How Antiphase Crew Coordination Affects Rowing

    NARCIS (Netherlands)

    de Brouwer, Anouk J.; de Poel, Harjo J.; Hofmijster, Mathijs J.

    2013-01-01

    It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous) rowing. In synchronous rowing, 5 to 6% of

  19. Nuclear power plant control room crew task analysis database: SEEK system. Users manual

    International Nuclear Information System (INIS)

    Burgy, D.; Schroeder, L.

    1984-05-01

    The Crew Task Analysis SEEK Users Manual was prepared for the Office of Nuclear Regulatory Research of the US Nuclear Regulatory Commission. It is designed for use with the existing computerized Control Room Crew Task Analysis Database. The SEEK system consists of a PR1ME computer with its associated peripherals and software augmented by General Physics Corporation SEEK database management software. The SEEK software programs provide the Crew Task Database user with rapid access to any number of records desired. The software uses English-like sentences to allow the user to construct logical sorts and outputs of the task data. Given the multiple-associative nature of the database, users can directly access the data at the plant, operating sequence, task or element level - or any combination of these levels. A complete description of the crew task data contained in the database is presented in NUREG/CR-3371, Task Analysis of Nuclear Power Plant Control Room Crews (Volumes 1 and 2)

  20. STS-96 Crew Training, Mission Animation, Crew Interviews, STARSHINE, Discovery Rollout and Repair of Hail Damage

    Science.gov (United States)

    1999-01-01

    Live footage shows the crewmembers of STS-96, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette and Valery Ivanovich Tokarev during various training activities. Scenes include astronaut suit-up, EVA training in the Virtual Reality Lab, Orbiter space vision training, bailout training, and crew photo session. Footage also shows individual crew interviews, repair activities to the external fuel tank, and Discovery's return to the launch pad. The engineers are seen sanding, bending, and painting the foam used in repairing the tank. An animation of the deployment of the STARSHINE satellite, International Space Station, and the STS-96 Mission is presented. Footage shows the students from Edgar Allen Poe Middle School sanding, polishing, and inspecting the mirrors for the STARSHINE satellite. Live footage also includes students from St. Michael the Archangel School wearing bunny suits and entering the clean room at Goddard Space Flight Center.

  1. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    Science.gov (United States)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  2. Considerations on radiation protection of aircraft crew in Brazil

    International Nuclear Information System (INIS)

    Federico, C.A.; Goncalez, O.L.

    2011-01-01

    This paper discuss the guidelines existing in the ICRP documents related to radiation protection applied to the aircraft crew and it is presented a brief report on the evolution of these studies in this field, and also the regulations already adopted by the integrating of the European Union, Canada and USA. Also, are presented some peculiarities of Brazilian air space and the legislation applied to work with ionizing radiation, discussing the general aspects of radiation protection applied to the aircraft crew in Brazil

  3. Planning for Crew Exercise for Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  4. The effect of training and job interruptions on logging crews' safety in ...

    African Journals Online (AJOL)

    The effect of training and job interruptions on logging crews' safety in ... method, experienced and inexperienced crews were studied before training, after ... that provision of appropriate safety gears as well as delivery of on job training are ...

  5. Prevalence of neck pain among cabin crew of Saudi Airlines.

    Science.gov (United States)

    Ezzat, Hesham M; Al-Sultan, Alanood; Al-Shammari, Anwar; Alyousef, Dana; Al-Hamidi, Hager; Al-Dossary, Nafla; Al-Zahrani, Nuha; Al-Abdulqader, Wala

    2015-01-01

    Neck pain is considered to be a major health problem in modern societies. Many previous studies found that certain occupations are related to this problem or are associated with the risk of developing it in future. Although the pain is caused by mechanical factors, it may progress to a serious problem and give rise to other abnormal symptoms such as vertigo, headache, or migraine. To investigate the prevalence of neck pain among the cabin crew of Saudi Airlines. A cross-sectional study was carried out on the available Saudi Airlines cabin crews in King Fahad Airport during our visits, using questionnaires and measurements of several parameters. Neck Pain Questionnaires were distributed to the cabin crews on Saudi Airlines and assessment sheets were completed by all participants of the study to evaluate the prevalence and distribution of neck pain. Physical therapy examination of neck motions in different directions and specific tests were performed by all the participants to identify any symptoms. Using these data the prevalence of neck pain among the cabin crews was calculated. Collected data were analyzed statistically using SPSS software calculating the mean, median, and score of the questionnaire. According to the scoring system of the study, 31 (30.09%) of 105 cabin crew staff of Saudi Airlines had neck pain. Our study confirmed a positive correlation between this occupation and neck pain, and in fact found that according to the results of logistic regression analysis, this occupation is the only significant factor that affects the positive compression test. The prevalence of neck pain among the cabin crews of Saudi Airlines was emphasized. The results show a high prevalence of neck pain in the participants of the study, with most cases appearing to run a chronic - episodic course. Further research is needed to help us understand more about the long-term course of neck pain and its broader outcomes and impacts.

  6. Instrumental Landing Using Audio Indication

    Science.gov (United States)

    Burlak, E. A.; Nabatchikov, A. M.; Korsun, O. N.

    2018-02-01

    The paper proposes an audio indication method for presenting to a pilot the information regarding the relative positions of an aircraft in the tasks of precision piloting. The implementation of the method is presented, the use of such parameters of audio signal as loudness, frequency and modulation are discussed. To confirm the operability of the audio indication channel the experiments using modern aircraft simulation facility were carried out. The simulated performed the instrument landing using the proposed audio method to indicate the aircraft deviations in relation to the slide path. The results proved compatible with the simulated instrumental landings using the traditional glidescope pointers. It inspires to develop the method in order to solve other precision piloting tasks.

  7. Evaluation of Fused Synthetic and Enhanced Vision Display Concepts for Low-Visibility Approach and Landing

    Science.gov (United States)

    Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence J., III; Wilz, Susan J.

    2009-01-01

    NASA is developing revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next generation air transportation system. A piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. Improvements in lateral path control performance were realized when the Head-Up Display concepts included a tunnel, independent of the imagery (enhanced vision or fusion of enhanced and synthetic vision) presented with it. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, of itself, provide an improvement in runway incursion detection without being specifically tailored for this application.

  8. 19 CFR 4.7b - Electronic passenger and crew arrival manifests.

    Science.gov (United States)

    2010-04-01

    .... “Commercial vessel” means any civilian vessel being used to transport persons or property for compensation or hire. Crew member. “Crew member” means a person serving on board a vessel in good faith in any capacity... due to a mechanical, medical, or security problem affecting the voyage, or to an urgent situation...

  9. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    Science.gov (United States)

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2017-08-01

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.

  10. Crew appliance study

    Science.gov (United States)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  11. Flight Crew Health Maintenance

    Science.gov (United States)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  12. Lunar Module 5 ascent stage being moved for mating with adapter

    Science.gov (United States)

    1969-01-01

    Interior view of the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building showing Lunar Module 5 being moved from workstand for mating with its Spacecraft Lunar Module Adapter (SLA). LM-5 is scheduled to be flown on the Apollo 11 lunar landing mission.

  13. Advanced flight deck/crew station simulator functional requirements

    Science.gov (United States)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  14. Augmented Reality to Enhance Crew Medical Training

    Data.gov (United States)

    National Aeronautics and Space Administration — Due to the large and diverse set of possible medical conditions, crew medical training focuses on the most likely medical scenarios that may occur in the current...

  15. Flight Crew State Monitoring Metrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — eSky will develop specific crew state metrics based on the timeliness, tempo and accuracy of pilot inputs required by the H-mode Flight Control System (HFCS)....

  16. STS-42 Pilot Oswald and MS Thagard work with Biorack samples in IML-1 module

    Science.gov (United States)

    1992-01-01

    STS-42 Pilot Stephen S. Oswald (left) and Mission Specialist (MS) and Payload Commmander (PLC) Norman E. Thagard, positioned in center aisle, handle Biorack samples while working inside the International Microgravity Laboratory 1 (IML-1) module. Oswald is wearing a Los Angeles Dodger baseball cap. Each crewmember wore the cap for a day during the flight to pay tribute to the late astronaut Manley L. (Sonny) Carter, originally assigned to this crew. Carter, an avid Dodger fan and versatile athlete, died in a commuter airline crash in 1991. In the background is the IML-1 spacelab (SL) module forward hatch and SL tunnel. The IML-1 SL module is located in Discovery's, Orbiter Vehicle (OV) 103's, payload bay (PLB).

  17. Changes in body composition of submarine crew during prolonged submarine deployment

    Directory of Open Access Journals (Sweden)

    Sourabh Bhutani

    2015-01-01

    Discussion: Increased body fat along with lack of physical activity can lead to development of lifestyle disorders in submarine crew. These crew members need to be actively encouraged to participate in physical activity when in harbour. In addition dieting program specifically to encourage reduced fat consumption needs to be instituted in submarines during sorties at sea.

  18. Theory underlying CRM training: Psychological issues in flight crew performance and crew coordination

    Science.gov (United States)

    Helmreich, Robert L.

    1987-01-01

    What psychological theory and research can reveal about training in Cockpit Resource Management (CRM) is summarized. A framework is provided for the critical analysis of current approaches to CRM training. Background factors and definitions critical to evaluating CRM are reviewed, followed by a discussion of issues directly related to CRM training effectiveness. Some of the things not known about the optimization of crew performance and the research needed to make these efforts as effective as possible are described.

  19. WRAP module 1 treatment plan

    International Nuclear Information System (INIS)

    Mayancsik, B.A.

    1995-05-01

    This document provides the methodology to treat waste in the Waste Receiving and Processing Module 1 facility to meet the Resource Conservation and Recovery Act (RCRA) land disposal restrictions or the Waste Isolation and Pilot Plant waste acceptance criteria. This includes Low-Level Mixed Waste, Transuranic Waste, and Transuranic Mixed Waste

  20. International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation

    Science.gov (United States)

    Broyan, James Lee, Jr.

    2009-01-01

    The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.

  1. A Gold Standards Approach to Training Instructors to Evaluate Crew Performance

    Science.gov (United States)

    Baker, David P.; Dismukes, R. Key

    2003-01-01

    The Advanced Qualification Program requires that airlines evaluate crew performance in Line Oriented Simulation. For this evaluation to be meaningful, instructors must observe relevant crew behaviors and evaluate those behaviors consistently and accurately against standards established by the airline. The airline industry has largely settled on an approach in which instructors evaluate crew performance on a series of event sets, using standardized grade sheets on which behaviors specific to event set are listed. Typically, new instructors are given a class in which they learn to use the grade sheets and practice evaluating crew performance observed on videotapes. These classes emphasize reliability, providing detailed instruction and practice in scoring so that all instructors within a given class will give similar scores to similar performance. This approach has value but also has important limitations; (1) ratings within one class of new instructors may differ from those of other classes; (2) ratings may not be driven primarily by the specific behaviors on which the company wanted the crews to be scored; and (3) ratings may not be calibrated to company standards for level of performance skill required. In this paper we provide a method to extend the existing method of training instructors to address these three limitations. We call this method the "gold standards" approach because it uses ratings from the company's most experienced instructors as the basis for training rater accuracy. This approach ties the training to the specific behaviors on which the experienced instructors based their ratings.

  2. Conflict-handling mode scores of three crews before and after a 264-day spaceflight simulation.

    Science.gov (United States)

    Kass, Rachel; Kass, James; Binder, Heidi; Kraft, Norbert

    2010-05-01

    In both the Russian and U.S. space programs, crew safety and mission success have at times been jeopardized by critical incidents related to psychological, behavioral, and interpersonal aspects of crew performance. The modes used for handling interpersonal conflict may play a key role in such situations. This study analyzed conflict-handling modes of three crews of four people each before and after a 264-d spaceflight simulation that was conducted in Russia in 1999-2000. Conflict was defined as a situation in which the concerns of two or more individuals appeared to be incompatible. Participants were assessed using the Thomas-Kilmann Conflict Mode Instrument, which uses 30 forced-choice items to produce scores for five modes of conflict handling. Results were compared to norms developed using managers at middle and upper levels of business and government. Both before and after isolation, average scores for all crews were above 75% for Accommodating, below 25% for Collaborating, and within the middle 50% for Competing, Avoiding, and Compromising. Statistical analyses showed no significant difference between the crews and no statistically significant shift from pre- to post-isolation. A crew predisposition to use Accommodating most and Collaborating least may be practical in experimental settings, but is less likely to be useful in resolving conflicts within or between crews on actual flights. Given that interpersonal conflicts exist in any environment, crews in future space missions might benefit from training in conflict management skills.

  3. STS-70 crew on their way to Launch Pad 39B for TCDT

    Science.gov (United States)

    1995-01-01

    The STS-70 flight crew walks out of the Operations and Checkout Building on their way to Launch Pad 39B to participate in the Terminal Countdown Demonstration Test (TCDT) for that mission. As they depart to board their Astrovan, Mission Commander Terence 'Tom' Henricks (front right) holds up a Buckeye nut to signify that this is the Buckeye crew. Pilot Kevin R. Kregel (front left) is the only STS-70 crew member who is not a native of Ohio, but was recently bestowed with honorary citizenship by the governor of that state. Mission Specialist Mary Ellen Weber is behind Kregel, followed by Mission Specialists Nancy Jane Currie and Donald A. Thomas. With the crew aboard the Space Shuttle Discovery, the TCDT simulated a final launch countdown until just beofre orbiter main engine ignition.

  4. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    Science.gov (United States)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  5. Investigating the effect of communication characteristics on crew performance under the simulated emergency condition of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Yang, Joon-Eon

    2012-01-01

    It is well known that the safety of large process control systems could be significantly affected by the communication characteristics of crews that have a responsibility for their operations. Accordingly, many researchers have spent huge amount of effort to grasp the relationship between the characteristics of crew communications and the associated crew performance. Unfortunately, in the case of nuclear power plants (NPPs), it seems that most of existing studies have tried to identify the relationship between the characteristics of crew communications and the associated crew performance using empirical observations without a firm technical underpinning. For these reasons, Park suggested a novel framework that is able to represent the characteristics of crew communications based on social network analysis (SNA) metrics. In order to confirm the appropriateness of the suggested framework, in this study, the characteristics of crew communications that are gathered from the simulated emergency condition of NPPs are additionally compared with the associated crew performance data. As a consequence, it is observed that there are significant relationships between communication characteristics and the associated crew performance. Therefore, it is reasonable to expect that the characteristics of crew communications can be properly grasped using the suggested framework. - Highlights: ► Communication data of MCR operating crews are collected from a simulated emergency condition. ► Communication characteristics are represented by the associated SNA metrics. ► Identified communication characteristics are compared with the results of existing studies. ► SNA metrics are meaningful for explaining the characteristics of crew communications.

  6. Leaders in space: Mission commanders and crew on the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission

  7. From Crew Communication to Coordination: A Fundamental Means to an End

    Science.gov (United States)

    Kanki, Barbara G.; Connors, Mary M. (Technical Monitor)

    1998-01-01

    This viewgraph presentation describes the purposes and contexts of communication, factors which affect the interpretation of communication, and the advantages of effective, systematic communication to and from crews. Communication accomplishes information transfer, team/task management, shared problem solving and decision making, and establishment of the interpersonal climate. These accomplishments support outcomes: Technical task performance; CRM (crew resource management); Procedures and ATC (air traffic control); and Work/team atmosphere. The presentation lists various types of management inefficiency which can result from a lack of each of the four accomplishments. Communication skills are used within the following contexts: physical; social and organizational; task and operational; and speech and linguistic. Crew communication can be evaluated through investigation (case study), research (experimentation), and training.

  8. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    International Nuclear Information System (INIS)

    Spurny, F.; Votockova, I.

    1995-01-01

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ( 60 Co, 252 Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS 'Exposure of air crew to cosmic radiation' has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. The basic recommendations are the following: (a) air crew flying routinely at altitudes over 8 km are deemed to be category B workers, it is therefore important to estimate, record, control and, where necessary, to limit the doses; (b) the preferred procedure in order to estimate doses to air crew or frequent flyers is to determine route doses and fold these data with data on staff rostering; (c) where doses may exceed the limit for category B workers (6 mSv per year), on

  9. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy

    Science.gov (United States)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This

  10. 46 CFR 72.15-20 - Ventilation for crew quarters and passenger spaces.

    Science.gov (United States)

    2010-10-01

    ... shown that a natural system will provide adequate ventilation. However, vessels which trade regularly in... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for crew quarters and passenger spaces. 72... VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 72.15-20 Ventilation for crew quarters and passenger...

  11. Apollo 11 crewmembers participate in water egress training in Gulf of Mexico

    Science.gov (United States)

    1969-01-01

    The third member of the prime crew of the Apollo 11 lunar landing mission egresses Apollo Boilerplate 1102 during water egress training in the Gulf of Mexico. The other two crewmen are in raft. Taking part in the training were Astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. The three crewmen practiced donning and wearing biological isolation garments (B.I.G.) as a part of the exercise. The Manned Spacecraft Center (MSC) swimmer standing up, who assisted in the training, is also wearing a B.I.G.

  12. Evaluating nuclear power plant crew performance during emergency response drills

    International Nuclear Information System (INIS)

    Rabin, D.

    1999-01-01

    The Atomic Energy Control Board (AECB) is responsible for the regulation of the health, safety and environmental consequences of nuclear activities in Canada. Recently, the Human Factors Specialists of the AECB have become involved in the assessment of emergency preparedness and emergency response at nuclear facilities. One key contribution to existing AECB methodology is the introduction of Behaviourally Anchored Rating Scales (BARS) to measure crew interaction skills during emergency response drills. This report presents results of an on-going pilot study to determine if the BARS provide a reliable and valid means of rating the key dimensions of communications, openness, task coordination and adaptability under simulated emergency circumstances. To date, the objectivity of the BARS is supported by good inter-rater reliability while the validity of the BARS is supported by the agreement between ratings of crew interaction and qualitative and quantitative observations of crew performance. (author)

  13. Galvanizing medical students in the administration of influenza vaccines: the Stanford Flu Crew

    Directory of Open Access Journals (Sweden)

    Rizal RE

    2015-07-01

    Full Text Available Rachel E Rizal,1,* Rishi P Mediratta,1,* James Xie,1 Swetha Kambhampati,1 Kelsey Hills-Evans,1 Tamara Montacute,1 Michael Zhang,1 Catherine Zaw,2 Jimmy He,2 Magali Sanchez,2 Lauren Pischel1 1Stanford University School of Medicine, Stanford, CA, USA; 2Stanford University, Stanford, CA, USA *These authors contributed equally to this work Abstract: Many national organizations call for medical students to receive more public health education in medical school. Nonetheless, limited evidence exists about successful service-learning programs that administer preventive health services in nonclinical settings. The Flu Crew program, started in 2001 at the Stanford University School of Medicine, provides preclinical medical students with opportunities to administer influenza immunizations in the local community. Medical students consider Flu Crew to be an important part of their medical education that cannot be learned in the classroom. Through delivering vaccines to where people live, eat, work, and pray, Flu Crew teaches medical students about patient care, preventive medicine, and population health needs. Additionally, Flu Crew allows students to work with several partners in the community in order to understand how various stakeholders improve the delivery of population health services. Flu Crew teaches students how to address common vaccination myths and provides insights into implementing public health interventions. This article describes the Stanford Flu Crew curriculum, outlines the planning needed to organize immunization events, shares findings from medical students' attitudes about population health, highlights the program’s outcomes, and summarizes the lessons learned. This article suggests that Flu Crew is an example of one viable service-learning modality that supports influenza vaccinations in nonclinical settings while simultaneously benefiting future clinicians. Keywords: immunizations, vaccine delivery, vaccinations 

  14. Mars Sample Return Landed with Red Dragon

    Science.gov (United States)

    Stoker, Carol R.; Lemke, Lawrence G.

    2013-01-01

    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged

  15. Concurrent Pilot Instrument Monitoring in the Automated Multi-Crew Airline Cockpit.

    Science.gov (United States)

    Jarvis, Stephen R

    2017-12-01

    Pilot instrument monitoring has been described as "inadequate," "ineffective," and "insufficient" after multicrew aircraft accidents. Regulators have called for improved instrument monitoring by flight crews, but scientific knowledge in the area is scarce. Research has tended to investigate the monitoring of individual pilots when in the pilot-flying role; very little research has looked at crew monitoring, or that of the "monitoring-pilot" role despite it being half of the apparent problem. Eye-tracking data were collected from 17 properly constituted and current Boeing 737 crews operating in a full motion simulator. Each crew flew four realistic flight segments, with pilots swapping between the pilot-flying and pilot-monitoring roles, with and without the autopilot engaged. Analysis was performed on the 375 maneuvering-segments prior to localizer intercept. Autopilot engagement led to significantly less visual dwell time on the attitude director indicator (mean 212.8-47.8 s for the flying pilot and 58.5-39.8 s for the monitoring-pilot) and an associated increase on the horizontal situation indicator (18-52.5 s and 36.4-50.5 s). The flying-pilots' withdrawal of attention from the primary flight reference and increased attention to the primary navigational reference was paralleled rather than complemented by the monitoring-pilot, suggesting that monitoring vulnerabilities can be duplicated in the flight deck. Therefore it is possible that accident causes identified as "inadequate" or "insufficient" monitoring, are in fact a result of parallel monitoring.Jarvis SR. Concurrent pilot instrument monitoring in the automated multi-crew airline cockpit. Aerosp Med Hum Perform. 2017; 88(12):1100-1106.

  16. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    Science.gov (United States)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  17. Astronaut Ronald Sega in crew cabin

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  18. Expert assessments and content analysis of crew communication during ISS missions

    Science.gov (United States)

    Yusupova, Anna

    During the last seven years, we have analyzed the communication patterns between ISS crewmembers and mission control personnel and identified a number of different communication styles between these two groups (Gushin et al, 2005). In this paper, we will report on an external validity check we conducted that compares our findings with those of another study using the same research material. For many years the group of psychologists at the Medical Center of Space Flight Control (TCUMOKO) at the Institute for Biomedical Problems (IBMP) in Moscow has been analyzing audio communication sessions of Russian space crews with the ground-based Mission Control during long-duration spaceflight conditions. We compared week by week texts of the standard weekly monitoring reports made by the TsUP psychological group and audiocommunication of space crews with mission control centers. Expert assessments of the crewmembers' psychological state are made by IBMP psychoneurologists on the basis of daily schedule fulfillment, video and audio materials, and psychophysiological data from board. The second approach was based on the crew-ground communication analysis. For both population of messages we applied two corresponding schemas of content analysis. All statements made in communication sessions and weekly reports were divided into three groups in terms of their communication function (Lomov, 1981): 1) informative function (e.g., demands for information, requests, professional slang); 2) socio-regulatory function (e.g., rational consent or discord, operational complaint, refusal to cooperate); and 3) affective (emotional) function (e.g., encouragement, sympathy, emotional consent or discord). Number of statements of the audiocommunication sessions correlated with corresponding functions (informative, regulatory, affective) of communication in weekly monitioring reports made by experts. Crewmembers verbal behavior expresses its psycho-emotional state which is formulated by expert

  19. Interim results of the study of control room crew staffing for advanced passive reactor plants

    International Nuclear Information System (INIS)

    Hallbert, B.P.; Sebok, A.; Haugset, K.

    1996-01-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study

  20. Statistics of meteorology for dose evaluation of crews of nuclear ship

    International Nuclear Information System (INIS)

    Imai, Kazuhiko; Chino, Masamichi

    1981-01-01

    For the purpose of the dose evaluation of crews of a nuclear ship, the statistics of wind speed and direction relative to the ship is discussed, using wind data which are reported from ships crusing sea around Japan Island. The analysis on the data shows that the occurrence frequency of wind speed can be fitted with the γ-distribution having parameter p around 3 and wind direction frequency can be treated as a uniform distribution. Using these distributions and taking the ship speed u 3 and the long-term mean speed of natural wind anti u as constant parameters, frequency distribution of wind speed and direction relative to the ship was calculated and statistical quantities necessary for dose evaluation were obtained in the way similar to the procedure for reactor sites on land. The 97% value of wind speed u 97 , which should be used in the dose evaluation for accidental releases may give conservative doses, if it is evaluated as follows, u 97 = 0.64 u sub(s) in the cases u sub(s) > anti u, and u 97 = 0.86 anti u in the cases u sub(s) < anti u including u sub(s) = 0. (author)

  1. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  2. Effects of crew resource management training on the team performance of operators in an advanced nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Sa Kil; Byun, Seong Nam

    2011-01-01

    The objectives of the study are twofold: the development of a CRM training program appropriate to Korean NPPs and the evaluation of CRM training effectiveness. Firstly, the CRM program was developed with a focus on nontechnical skills - such as leadership, situational awareness, teamwork, and communication - which have been widely known to be critical for improving operational performance. Secondly, the effectiveness tests were conducted for two different crews of operators, performing six different emergency operation scenarios during a four-week period. All the crews (crews A and B) participated in the training program for the technical knowledge and skills, which were required to operate the simulator of the MCR during the first week. However, for the verification of the effectiveness of the CRM training program, only crew A was randomly selected to attend the CRM training after the technical knowledge and skills training. The results of the experiments showed that the CRM training program improved the individual attitudes of crew A with a statistical significance. The team skills of crew A were found to be significantly more advanced than those of crew B. However, the CRM training did not have a positive effect on enhancing the individual performance of crew A, as compared with that of crew B. (author)

  3. Mortality from cancer and other causes in commercial airline crews: a joint analysis of cohorts from 10 countries.

    Science.gov (United States)

    Hammer, Gaël P; Auvinen, Anssi; De Stavola, Bianca L; Grajewski, Barbara; Gundestrup, Maryanne; Haldorsen, Tor; Hammar, Niklas; Lagorio, Susanna; Linnersjö, Anette; Pinkerton, Lynne; Pukkala, Eero; Rafnsson, Vilhjálmur; dos-Santos-Silva, Isabel; Storm, Hans H; Strand, Trond-Eirik; Tzonou, Anastasia; Zeeb, Hajo; Blettner, Maria

    2014-05-01

    Commercial airline crew is one of the occupational groups with the highest exposures to ionising radiation. Crew members are also exposed to other physical risk factors and subject to potential disruption of circadian rhythms. This study analyses mortality in a pooled cohort of 93 771 crew members from 10 countries. The cohort was followed for a mean of 21.7 years (2.0 million person-years), during which 5508 deaths occurred. The overall mortality was strongly reduced in male cockpit (SMR 0.56) and female cabin crews (SMR 0.73). The mortality from radiation-related cancers was also reduced in male cockpit crew (SMR 0.73), but not in female or male cabin crews (SMR 1.01 and 1.00, respectively). The mortality from female breast cancer (SMR 1.06), leukaemia and brain cancer was similar to that of the general population. The mortality from malignant melanoma was elevated, and significantly so in male cockpit crew (SMR 1.57). The mortality from cardiovascular diseases was strongly reduced (SMR 0.46). On the other hand, the mortality from aircraft accidents was exceedingly high (SMR 33.9), as was that from AIDS in male cabin crew (SMR 14.0). This large study with highly complete follow-up shows a reduced overall mortality in male cockpit and female cabin crews, an increased mortality of aircraft accidents and an increased mortality in malignant skin melanoma in cockpit crew. Further analysis after longer follow-up is recommended.

  4. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  5. 76 FR 3831 - Crew Resource Management Training for Crewmembers in Part 135 Operations

    Science.gov (United States)

    2011-01-21

    ... training in the use of crew resource management principles, as appropriate for their operation. This final... incorporation of team management concepts in flight operations. This training focuses on communication and... document. Title: Crew Resource Management Training for Crewmembers in Part 135 Operations. Summary: This...

  6. Implementation of crew resource management: a qualitative study in 3 intensive care units.

    NARCIS (Netherlands)

    Kemper, P.F.; Dyck, C. van; Wagner, C.; Bruijne, M. de

    2017-01-01

    Objectives: Classroom-based crew resource management (CRM) training has been increasingly applied in health care to improve safe patient care. Crew resource management aims to increase participants' understanding of how certain threats can develop as well as provides tools and skills to respond to

  7. Application of MOGRA for migration of contaminants through different land utilization areas

    International Nuclear Information System (INIS)

    Amano, Hikaru; Uchida, Shigeo; Matsuoka, Syungo; Ikeda, Hiroshi; Hayashi, Hiroko; Kurosawa, Naohiro

    2003-01-01

    The functionality of MOGRA is being verified by applying it in the analyses of the migration rates of radioactive substances from the atmosphere to soils and plants and flow rates into the rivers. This has been achieved by also taking their mode classifications into consideration. In this report, a hypothetical combination of land usage was supposed to check the function of MOGRA. The land usage was consisted from cultivated lands, forests, uncultivated lands, urban area, river, and lake. Each land usage has its own inside model which is basic module. Also supposed was homogeneous contamination of the surface land from atmospheric deposition of Cs-137 (1.0 Bq/m 2 ). The system can analyze the dynamic changes of Cs-137 concentrations in each compartment, fluxes from one compartment to another compartment. (author)

  8. Effects of checklist interface on non-verbal crew communications

    Science.gov (United States)

    Segal, Leon D.

    1994-01-01

    The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.

  9. Advanced concept for a crewed mission to the martian moons

    Science.gov (United States)

    Conte, Davide; Di Carlo, Marilena; Budzyń, Dorota; Burgoyne, Hayden; Fries, Dan; Grulich, Maria; Heizmann, Sören; Jethani, Henna; Lapôtre, Mathieu; Roos, Tobias; Castillo, Encarnación Serrano; Schermann, Marcel; Vieceli, Rhiannon; Wilson, Lee; Wynard, Christopher

    2017-10-01

    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition.

  10. Avatar Robot for Crew Performance and Behavioral Health

    Data.gov (United States)

    National Aeronautics and Space Administration — This project investigates the effectiveness of using an avatar robotic platform as a crew assistant and a family member substitute. This type of avatar robot is...

  11. Cosmic rays score direct hits with Apollo crew

    CERN Multimedia

    1971-01-01

    Apollo 14 astronauts conduted experiments during the spaceflight to help scientists to understand why previous crews have seen flashes of light during missions, believed to be caused by cosmic rays (1 page).

  12. International Space Station Crew Restraint Design

    Science.gov (United States)

    Whitmore, M.; Norris, L.; Holden, K.

    2005-01-01

    With permanent human presence onboard the International Space Station (ISS), crews will be living and working in microgravity, dealing with the challenges of a weightless environment. In addition, the confined nature of the spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity areas, as well as prolonged periods of unnatural postures. Without optimum restraints, crewmembers may be handicapped for performing some of the on-orbit tasks. Currently, many of the tasks on ISS are performed with the crew restrained merely by hooking their arms or toes around handrails to steady themselves. This is adequate for some tasks, but not all. There have been some reports of discomfort/calluses on the top of the toes. In addition, this type of restraint is simply insufficient for tasks that require a large degree of stability. Glovebox design is a good example of a confined workstation concept requiring stability for successful use. They are widely used in industry, university, and government laboratories, as well as in the space environment, and are known to cause postural limitations and visual restrictions. Although there are numerous guidelines pertaining to ventilation, seals, and glove attachment, most of the data have been gathered in a 1-g environment, or are from studies that were conducted prior to the early 1980 s. Little is known about how best to restrain a crewmember using a glovebox in microgravity. In 2004, The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center completed development/evaluation of several design concepts for crew restraints to meet the various needs outlined above. Restraints were designed for general purpose use, for teleoperation (Robonaut) and for use with the Life Sciences Glovebox. All design efforts followed a human factors engineering design lifecycle, beginning with identification of requirements followed by an iterative prototype/test cycle. Anthropometric

  13. STS-93 crew heads out of O&C for ride to launch pad

    Science.gov (United States)

    1999-01-01

    The STS-93 crew wave and smile at onlookers as they walk out of the Operations and Checkout Building for the third time enroute to Launch Pad 39-B and liftoff of Space Shuttle Columbia. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. The target landing date is July 27, 1999, at 11:20 p.m. EDT. In their orange launch and entry suits, they are (starting at rear, left to right) Mission Specialists Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), and Catherine G. Coleman (Ph.D.); Pilot Jeffrey S. Ashby; Mission Specialist Stephen A. Hawley (Ph.D.); and Commander Eileen M. Collins. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Collins is the first woman to serve as commander of a Shuttle mission.

  14. Accuracy of Emergency Medical Services Dispatcher and Crew Diagnosis of Stroke in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Judy Jia

    2017-09-01

    Full Text Available BackgroundAccurate recognition of stroke symptoms by Emergency Medical Services (EMS is necessary for timely care of acute stroke patients. We assessed the accuracy of stroke diagnosis by EMS in clinical practice in a major US city.Methods and resultsPhiladelphia Fire Department data were merged with data from a single comprehensive stroke center to identify patients diagnosed with stroke or TIA from 9/2009 to 10/2012. Sensitivity and positive predictive value (PPV were calculated. Multivariable logistic regression identified variables associated with correct EMS diagnosis. There were 709 total cases, with 400 having a discharge diagnosis of stroke or TIA. EMS crew sensitivity was 57.5% and PPV was 69.1%. EMS crew identified 80.2% of strokes with National Institutes of Health Stroke Scale (NIHSS ≥5 and symptom duration <6 h. In a multivariable model, correct EMS crew diagnosis was positively associated with NIHSS (NIHSS 5–9, OR 2.62, 95% CI 1.41–4.89; NIHSS ≥10, OR 4.56, 95% CI 2.29–9.09 and weakness (OR 2.28, 95% CI 1.35–3.85, and negatively associated with symptom duration >270 min (OR 0.41, 95% CI 0.25–0.68. EMS dispatchers identified 90 stroke cases that the EMS crew missed. EMS dispatcher or crew identified stroke with sensitivity of 80% and PPV of 50.9%, and EMS dispatcher or crew identified 90.5% of patients with NIHSS ≥5 and symptom duration <6 h.ConclusionPrehospital diagnosis of stroke has limited sensitivity, resulting in a high proportion of missed stroke cases. Dispatchers identified many strokes that EMS crews did not. Incorporating EMS dispatcher impression into regional protocols may maximize the effectiveness of hospital destination selection and pre-notification.

  15. Impact of land cover and land use change on runoff characteristics.

    Science.gov (United States)

    Sajikumar, N; Remya, R S

    2015-09-15

    Change in Land Cover and Land Use (LCLU) influences the runoff characteristics of a drainage basin to a large extent, which in turn, affects the surface and groundwater availability of the area, and hence leads to further change in LCLU. This forms a vicious circle. Hence it becomes essential to assess the effect of change in LCLU on the runoff characteristics of a region in general and of small watershed levels (sub-basin levels) in particular. Such an analysis can effectively be carried out by using watershed simulation models with integrated GIS frame work. SWAT (Soil and Water Analysis Tool) model, being one of the versatile watershed simulation models, is found to be suitable for this purpose as many GIS integration modules are available for this model (e.g. ArcSWAT, MWSWAT). Watershed simulation using SWAT requires the land use and land cover data, soil data and many other features. With the availability of repository of satellite imageries, both from Indian and foreign sources, it becomes possible to use the concurrent local land use and land cover data, thereby enabling more accurate modelling of small watersheds. Such availability will also enable us to assess the effect of LCLU on runoff characteristics and their reverse impact. The current study assesses the effect of land use and land cover on the runoff characteristics of two watersheds in Kerala, India. It also assesses how the change in land use and land cover in the last few decades affected the runoff characteristics of these watersheds. It is seen that the reduction in the forest area amounts to 60% and 32% in the analysed watersheds. However, the changes in the surface runoff for these watersheds are not comparable with the changes in the forest area but are within 20%. Similarly the maximum (peak) value of runoff has increased by an amount of 15% only. The lesser (aforementioned) effect than expected might be due to the fact that forest has been converted to agricultural purpose with major

  16. Closed Environment Module - modularization and extension of the V-HAB

    Science.gov (United States)

    Plötner, Peter; Czupalla, M. Markus; Zhukov, Anton

    2012-07-01

    The `Virtual Habitat' (V-HAB), is a Life Support System (LSS) simulation, created to provide the possibility for dynamic simulation of LSS for future human spaceflight missions. V-HAB creates the option to optimize LSS during early design phases. Furthermore, it allows simulating e.g. worst case scenarios which cannot be tested in reality. In a nutshell the tool allows the testing of LSS robustness by means of computer simulations. V-HAB is a modular simulation consisting of a: Closed Environment Module (CEM) Crew Module Biological Module Physio-Chemical Module The focus of the paper will be the Closed Environment Module (CEM) which is the core of V-HAB. The main function of the CEM is the embedding of all modules in the entire simulation and the control of the LSS. The CEM includes the possibility to simulate an arbitrary number of compartments and tanks with the interaction between connected compartments. Furthermore, a control program to actuate the LSS Technologies was implemented in the CEM, and is also introduced. In this paper the capabilities of the CEM are introduced based on selected test cases. In particular the following capabilities are demonstrated: Supply Leakage ON/OFF controller Power management Un-/docking Controller for tanks with maximum filling degree The CEM of the V-HAB simulation was verified by simulating the Atmosphere Revitalization part of the ISS and comparing it to actual measurement data. The results of this analysis are also presented in the paper.

  17. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    Science.gov (United States)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  18. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  19. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  20. STS-95 Payload Specialist Duque arrives at KSC to participate in a SPACEHAB familiarization exercise

    Science.gov (United States)

    1998-01-01

    STS-95 Payload Specialist Pedro Duque of Spain, who represents the European Space Agency (ESA), waves after arriving in a T-38 jet aircraft at the Shuttle Landing Facility at KSC. He is joining other STS-95 crew members in a familiarization tour of the SPACEHAB module and the equipment that will fly with them on the Space Shuttle Discovery scheduled to launch Oct. 29, 1998. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  1. STS-93 crew gathers for pre-launch breakfast in O&C Building

    Science.gov (United States)

    1999-01-01

    The STS-93 crew gathers a second time for a pre-launch breakfast in the Operations and Checkout Building before suiting up for launch. After Space Shuttle Columbia's July 20 launch attempt was scrubbed at the T-7 second mark in the countdown, the launch was rescheduled for Thursday, July 22, at 12:28 a.m. EDT. Seated from left are Mission Specialists Michel Tognini, of France, who represents the Centre National d'Etudes Spatiales (CNES), and Steven A. Hawley (Ph.D.), Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. Collins is the first woman to serve as commander of a Shuttle mission. The target landing date is July 26, 1999, at 11:24 p.m. EDT.

  2. Impact of Optimized Land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    Science.gov (United States)

    Kumar, S.; Santanello, J. A.; Peters-Lidard, C. D.; Harrison, K.

    2011-12-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spinup of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  3. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    Science.gov (United States)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the

  4. STS-51B Crew Portrait

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-51B mission included (seated left to right) Robert F. Overmyer, commander; and Frederick D. Gregory, pilot. Standing, left to right, are Don L. Lind, mission specialist; Taylor G. Wang, payload specialist; Norman E. Thagard, mission specialist; William E. Thornton, mission specialist; and Lodewijk van den Berg, payload specialist. Launched aboard the Space Shuttle Challenger on April 29, 1985 at 12:02:18 pm (EDT), the STS-51A mission's primary payload was the Spacelab-3.

  5. The STS-95 crew addresses KSC employees in the Training Auditorium

    Science.gov (United States)

    1998-01-01

    In the Kennedy Space Center (KSC) Training Auditorium, STS-95 Commander Curtis L. Brown Jr. (at podium) addresses KSC employees who were invited to hear the STS-95 crew describe their experiences during their successful mission dedicated to microgravity research and to view a videotape of the highlights of the mission. The other STS-95 crew members are (seated, from left to right) Pilot Steven W. Lindsey; Mission Specialist and Payload Commander Stephen K. Robinson; Mission Specialists Scott E. Parazynski and Pedro Duque, with the European Space Agency (ESA); and Payload Specialists Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), and John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts. Later in the afternoon, the crew will participate in a parade down State Road A1A in nearby Cocoa Beach, reminiscent of those held after missions during the Mercury Program.

  6. Discrete dynamic event tree modeling and analysis of nuclear power plant crews for safety assessment

    International Nuclear Information System (INIS)

    Mercurio, D.

    2011-01-01

    Current Probabilistic Risk Assessment (PRA) and Human Reliability Analysis (HRA) methodologies model the evolution of accident sequences in Nuclear Power Plants (NPPs) mainly based on Logic Trees. The evolution of these sequences is a result of the interactions between the crew and plant; in current PRA methodologies, simplified models of these complex interactions are used. In this study, the Accident Dynamic Simulator (ADS), a modeling framework based on the Discrete Dynamic Event Tree (DDET), has been used for the simulation of crew-plant interactions during potential accident scenarios in NPPs. In addition, an operator/crew model has been developed to treat the response of the crew to the plant. The 'crew model' is made up of three operators whose behavior is guided by a set of rules-of-behavior (which represents the knowledge and training of the operators) coupled with written and mental procedures. In addition, an approach for addressing the crew timing variability in DDETs has been developed and implemented based on a set of HRA data from a simulator study. Finally, grouping techniques were developed and applied to the analysis of the scenarios generated by the crew-plant simulation. These techniques support the post-simulation analysis by grouping similar accident sequences, identifying the key contributing events, and quantifying the conditional probability of the groups. These techniques are used to characterize the context of the crew actions in order to obtain insights for HRA. The model has been applied for the analysis of a Small Loss Of Coolant Accident (SLOCA) event for a Pressurized Water Reactor (PWR). The simulation results support an improved characterization of the performance conditions or context of operator actions, which can be used in an HRA, in the analysis of the reliability of the actions. By providing information on the evolution of system indications, dynamic of cues, crew timing in performing procedure steps, situation

  7. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India

    Directory of Open Access Journals (Sweden)

    Amit Kumar Batar

    2017-04-01

    Full Text Available The Garhwal Himalaya has experienced extensive deforestation and forest fragmentation, but data and documentation detailing this transformation of the Himalaya are limited. The aim of this study is to analyse the observed changes in land cover and forest fragmentation that occurred between 1976 and 2014 in the Garhwal Himalayan region in India. Three images from Landsat 2 Multispectral Scanner System (MSS, Landsat 5 Thematic Mapper (TM, and Landsat 8 Operational Land Imager (OLI were used to extract the land cover maps. A cross-tabulation detection method in the geographic information system (GIS module was used to detect land cover changes during the 1st period (1976–1998 and 2nd period (1998–2014. The landscape fragmentation tool LFT v2.0 was used to construct a forest fragmentation map and analyse the forest fragmentation pattern and change during the 1st period (1976–1998 and 2nd period (1998–2014. The overall annual rate of change in the forest cover was observed to be 0.22% and 0.27% in the 1st period (1976–1998 and 2nd period (1998–2014, respectively. The forest fragmentation analysis shows that a large core forest has decreased throughout the study period. The total area of forest patches also increased from 1976 to 2014, which are completely degraded forests. The results indicate that anthropogenic activities are the main causes of the loss of forest cover and forest fragmentation, but that natural factors also contributed. An increase in the area of scrub and barren land also contributed to the accumulation of wasteland or non-forest land in this region. Determining the trend and the rate of land cover conversion is necessary for development planners to establish a rational land use policy.

  8. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  9. Improved Design of Crew Operation in Computerized Procedure System of APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Seong, No Kyu; Jung, Yeon Sub; Sung, Chan Ho [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    The operators perform the paper-based procedures in analog-based conventional main control room (MCR) depending on only communications between operators except a procedure controller such as a Shift Supervisor (SS), however in digital-based MCR the operators can confirm the procedures simultaneously in own console when the procedure controller of computerized procedure (CP) opens the CP. The synchronization and a synchronization function between procedure controller and other operators has to be considered to support the function of crew operation. This paper suggests the improved design of crew operation in computerized procedure system of APR1400. This paper suggests the improved design of APR1400 CPS. These improvements can help operators perform the crew procedures more efficiently. And they reduce a burden of communication and misunderstanding of computerized procedures. These improvements can be applied to CPS after human factors engineering verification and validation.

  10. STS-99 Flight Day Highlights and Crew Activities Report

    Science.gov (United States)

    2000-01-01

    Live footage shows the Blue Team (second of the dual shift crew), Dominic L. Pudwill Gorie, Janice E. Voss and Mamoru Mohri, beginning the first mapping swath covering a 140-mile-wide path. While Mohri conducts mapping operations, Voss and Gorie are seen participating in a news conference with correspondents from NBC and CNN. The Red Team (first of the dual shift crew), Kevin R. Kregel, Janet L. Kavandi and Gerhard P.J. Thiele, relieves the Blue Team and are seen continuing the mapping operations for this around the clock Shuttle Radar Topography Mission (SRTM). Commander Kregel is shown performing boom (mass) durability tests, calibrating the EarthCam Payload, and speaking with the Launch Control Center (LCC) about trouble shooting a bracket for better camera angle.

  11. 46 CFR 92.15-15 - Ventilation for crew quarters and, where provided, passenger spaces.

    Science.gov (United States)

    2010-10-01

    ..., unless it can be shown that a natural system will provide adequate ventilation. However, vessels which... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for crew quarters and, where provided...) CARGO AND MISCELLANEOUS VESSELS CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-15 Ventilation for crew...

  12. STS-93 crew cheers as they near the van for ride to launch pad

    Science.gov (United States)

    1999-01-01

    The STS-93 crew wave and cheer as they head for the 'Astrovan' a third time to take them to Launch Pad 39-B and liftoff of Space Shuttle Columbia. In their orange launch and entry suits, they are (starting at rear, left to right) Mission Specialists Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), Catherine G. Coleman (Ph.D.), and Stephen A. Hawley (Ph.D.); Pilot Jeffrey S. Ashby; and Commander Eileen M. Collins. After Space Shuttle Columbia's July 20 and 22 launch attempts were scrubbed, the launch was again rescheduled for Friday, July 23, at 12:24 a.m. EDT. The target landing date is July 27 at 11:20 p.m. EDT. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Collins is the first woman to serve as commander of a Shuttle mission.

  13. Communication Research in Aviation and Space Operations: Symptoms and Strategies of Crew Coordination

    Science.gov (United States)

    Kanki, Barbara G.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    The day-to-day operators of today's aerospace systems work under increasing pressures to accomplish more with less. They work in operational systems which are complex, technology-based, and high-risk; in which incidents and accidents have far-reaching and costly consequences. For these and other reasons, there is concern that the safety net formerly built upon redundant systems and abundant resources may become overburdened. Although we know that human ingenuity can overcome incredible odds, human nature can also fail in unpredictable ways. Over the last 20 years, a large percentage of aviation accidents and incidents have been attributed to human errors rather than hardware or environmental factors alone. A class of errors have been identified which are not due to a lack of individual, technical competencies. Rather, they are due to the failure of teams to utilize readily available resources or information in a timely fashion. These insights began a training revolution in the aviation industry called Cockpit Resource Management, which later became known as Crew Resource Management (CRM) as its concepts and applications extended to teams beyond the flightdeck. Then, as now, communication has been a cornerstone in CRM training since crew coordination and resource management largely resides within information transfer processes--both within flightcrews, and between flightcrews and the ground operations teams that support them. The research I will describe takes its roots in CRM history as we began to study communication processes in order to discover symptoms of crew coordination problems, as well as strategies of effective crew management. On the one hand, communication is often the means or the tool by which team members manage their resources, solve problems, maintain situational awareness and procedural discipline. Conversely, it is the lack of planning and resource management, loss of vigilance and situational awareness, and non-standard communications that are

  14. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  15. KASTOR – A VEHICLE AND CREW SCHEDULING SYSTEM FOR REGULAR BUS PASSENGER TRANSPORT

    Directory of Open Access Journals (Sweden)

    Stanislav PALÚCH

    2017-04-01

    Full Text Available The challenge in vehicle and crew scheduling is to arrange a given set of bus trips into running boards while minimizing certain objectives and complying with a given set of constraints. This scheduling was solved several tens years ago manually by a dispatcher who used his skill, experience, knowledge of history, and intuition. This attitude worked quite well in small instances but could not be applied in larger ones. Development of computers brought opportunities to build computerized vehicle and crew optimization systems. This paper describes a computer system KASTOR developed for vehicle and crew optimization, which complies with the special requirements of Czech and Slovak bus providers, and is significantly different from those in some west European countries.

  16. Personality factors in flight operations. Volume 1: Leader characteristics and crew performance in a full-mission air transport simulation

    Science.gov (United States)

    Chidester, Thomas R.; Kanki, Barbara G.; Foushee, H. Clayton; Dickinson, Cortlandt L.; Bowles, Stephen V.

    1990-01-01

    Crew effectiveness is a joint product of the piloting skills, attitudes, and personality characteristics of team members. As obvious as this point might seem, both traditional approaches to optimizing crew performance and more recent training development highlighting crew coordination have emphasized only the skill and attitudinal dimensions. This volume is the first in a series of papers on this simulation. A subsequent volume will focus on patterns of communication within crews. The results of a full-mission simulation research study assessing the impact of individual personality on crew performance is reported. Using a selection algorithm described in previous research, captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one-and-one-half-day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, verbal aggressiveness, and impatience and irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  17. Cancer incidence among Nordic airline cabin crew.

    Science.gov (United States)

    Pukkala, Eero; Helminen, Mika; Haldorsen, Tor; Hammar, Niklas; Kojo, Katja; Linnersjö, Anette; Rafnsson, Vilhjálmur; Tulinius, Hrafn; Tveten, Ulf; Auvinen, Anssi

    2012-12-15

    Airline cabin crew are occupationally exposed to cosmic radiation and jet lag with potential disruption of circadian rhythms. This study assesses the influence of work-related factors in cancer incidence of cabin crew members. A cohort of 8,507 female and 1,559 male airline cabin attendants from Finland, Iceland, Norway and Sweden was followed for cancer incidence for a mean follow-up time of 23.6 years through the national cancer registries. Standardized incidence ratios (SIRs) were defined as ratios of observed and expected numbers of cases. A case-control study nested in the cohort (excluding Norway) was conducted to assess the relation between the estimated cumulative cosmic radiation dose and cumulative number of flights crossing six time zones (indicator of circadian disruption) and cancer risk. Analysis of breast cancer was adjusted for parity and age at first live birth. Among female cabin crew, a significantly increased incidence was observed for breast cancer [SIR 1.50, 95% confidence interval (95% CI) 1.32-1.69], leukemia (1.89, 95% CI 1.03-3.17) and skin melanoma (1.85, 95% CI 1.41-2.38). Among men, significant excesses in skin melanoma (3.00, 95% CI 1.78-4.74), nonmelanoma skin cancer (2.47, 95% CI 1.18-4.53), Kaposi sarcoma (86.0, 95% CI 41.2-158) and alcohol-related cancers (combined SIR 3.12, 95% CI 1.95-4.72) were found. This large study with complete follow-up and comprehensive cancer incidence data shows an increased incidence of several cancers, but according to the case-control analysis, excesses appear not to be related to the cosmic radiation or circadian disruptions from crossing multiple time zones. Copyright © 2012 UICC.

  18. Radiation exposure of airplane crews. Exposure levels

    International Nuclear Information System (INIS)

    Bergau, L.

    1995-01-01

    Even at normal height levels of modern jet airplanes, the flying crew is exposed to a radiation level which is higher by several factors than the terrestrial radiation. There are several ways in which this can be hazardous; the most important of these is the induction of malignant growths, i.e. tumours. (orig./MG) [de

  19. Decision support system for outage management and automated crew dispatch

    Science.gov (United States)

    Kang, Ning; Mousavi, Mirrasoul

    2018-01-23

    A decision support system is provided for utility operations to assist with crew dispatch and restoration activities following the occurrence of a disturbance in a multiphase power distribution network, by providing a real-time visualization of possible location(s). The system covers faults that occur on fuse-protected laterals. The system uses real-time data from intelligent electronics devices coupled with other data sources such as static feeder maps to provide a complete picture of the disturbance event, guiding the utility crew to the most probable location(s). This information is provided in real-time, reducing restoration time and avoiding more costly and laborious fault location finding practices.

  20. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    Science.gov (United States)

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  1. Alertness Management In Flight Operations: A NASA Education and Training Module

    Science.gov (United States)

    Rosekind, Mark R.; Lebacqz, Victor J.; Gander, Philippa H.; Co, Elizabeth L.; Weldon, Keri J.; Smith, Roy M.; Miller, Donna L.; Gregory, Kevin B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Since 1980, the NASA Ames Fatigue Countermeasures Program has been conducting research on sleep, circadian rhythms, and fatigue in a variety of flight operations 1. An original goal of the program was to return the scientific and operational knowledge to the aviation industry. To meet this goal, the NASA Ames Fatigue Countermeasures Program has created an Education and Training Module entitled, "Strategies for Alertness Management in Flight Operations." The Module was designed to meet three objectives: 1) explain the current state of knowledge about the physiological mechanisms underlying fatigue, 2) demonstrate how this knowledge can be applied to improve flight crew sleep, performance, and alertness, and 3) offer countermeasure recommendations. The Module is composed of two components: 1) a 60-minute live presentation provided by a knowledgeable individual and 2) a NASA/FAA Technical Memorandum (TM) that contains the presentation materials and appendices with complementary information. The TM is provided to all individuals attending the live presentation. The Module content is divided into three parts: 1) basic information on sleep, sleepiness, circadian rhythms, fatigue, and how flight operations affect these physiological factors, 2) common misconceptions about sleep, sleepiness, and fatigue, and 3) alertness management strategies. The Module is intended for pilots, management personnel, schedulers, flight attendants, and the many other individuals involved in the aviation system.

  2. Flammability on textile of flight crew professional clothing

    Science.gov (United States)

    Silva-Santos, M. C.; Oliveira, M. S.; Giacomin, A. M.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    The issue about flammability of textile materials employed in passenger cabins of commercial aircrafts is an important part of safety routines planning. Once an in-flight emergency initiated with fire or smoke aboard, time becomes critical and the entire crew must be involved in the solution. It is part of the crew functions, notably the attendants, the in-flight firefighting. This study compares the values of textile material of flight attendant working cloths and galley curtain fabric with regard to flammability and Limiting Oxygen Index (LOI). Values to the professional clothing material indicate that they are flammable and the curtains, self-extinguishing. Thus, despite of the occurrences of fire outbreaks in aircrafts are unexceptional, the use of other materials and technologies for uniforms, such as alternative textile fibers and flame retardant finishes should be considered as well as the establishment of performance limits regarding flame and fire exposing.

  3. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Science.gov (United States)

    Clegg, Ryan; Metzger, Philip; Roberson, Luke; Stephen, Huff

    2010-03-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor III spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon. The low ejection angle and high velocity are concerns for the lunar outpost. As a first step in investigating this concern, we have performed a series of low-velocity impact experiments in a modified sandblasting hood using lunar soil simulant impacted upon various materials that are commonly used in spaceflight hardware. It was seen that considerable damage is inevitable and protective barriers need to be designed.

  4. Cyber Safety and Security for Reduced Crew Operations (RCO)

    Science.gov (United States)

    Driscoll, Kevin

    2017-01-01

    NASA and the Aviation Industry is looking into reduced crew operations (RCO) that would cut today's required two-person flight crews down to a single pilot with support from ground-based crews. Shared responsibility across air and ground personnel will require highly reliable and secure data communication and supporting automation, which will be safety-critical for passenger and cargo aircraft. This paper looks at the different types and degrees of authority delegation given from the air to the ground and the ramifications of each, including the safety and security hazards introduced, the mitigation mechanisms for these hazards, and other demands on an RCO system architecture which would be highly invasive into (almost) all safety-critical avionics. The adjacent fields of unmanned aerial systems and autonomous ground vehicles are viewed to find problems that RCO may face and related aviation accident scenarios are described. The paper explores possible data communication architectures to meet stringent performance and information security (INFOSEC) requirements of RCO. Subsequently, potential challenges for RCO data communication authentication, encryption and non-repudiation are identified. The approach includes a comprehensive safety-hazard analysis of the RCO system to determine top level INFOSEC requirements for RCO and proposes an option for effective RCO implementation. This paper concludes with questioning the economic viability of RCO in light of the expense of overcoming the operational safety and security hazards it would introduce.

  5. High Level Rule Modeling Language for Airline Crew Pairing

    Science.gov (United States)

    Mutlu, Erdal; Birbil, Ş. Ilker; Bülbül, Kerem; Yenigün, Hüsnü

    2011-09-01

    The crew pairing problem is an airline optimization problem where a set of least costly pairings (consecutive flights to be flown by a single crew) that covers every flight in a given flight network is sought. A pairing is defined by using a very complex set of feasibility rules imposed by international and national regulatory agencies, and also by the airline itself. The cost of a pairing is also defined by using complicated rules. When an optimization engine generates a sequence of flights from a given flight network, it has to check all these feasibility rules to ensure whether the sequence forms a valid pairing. Likewise, the engine needs to calculate the cost of the pairing by using certain rules. However, the rules used for checking the feasibility and calculating the costs are usually not static. Furthermore, the airline companies carry out what-if-type analyses through testing several alternate scenarios in each planning period. Therefore, embedding the implementation of feasibility checking and cost calculation rules into the source code of the optimization engine is not a practical approach. In this work, a high level language called ARUS is introduced for describing the feasibility and cost calculation rules. A compiler for ARUS is also implemented in this work to generate a dynamic link library to be used by crew pairing optimization engines.

  6. A new landing impact attenuation seat in manned spacecraft biologically-inspired by felids

    Directory of Open Access Journals (Sweden)

    Yu Hui

    2015-04-01

    Full Text Available When manned spacecraft comes back to the earth, it relies on the impact attenuation seat to protect astronauts from injuries during landing phase. Hence, the seat needs to transfer impact load, as small as possible, to the crew. However, there is little room left for traditional seat to improve further. Herein, a new seat system biologically-inspired by felids’ landing is proposed. Firstly, a series of experiments was carried out on cats and tigers, in which they were trained to jump down voluntarily from different heights. Based on the ground reaction forces combined with kinematics, the experiment indicated that felids’ landing after self-initial jump was a multi-step impact attenuation process and the new seat was inspired by this. Then the construction and work process of new seat were redesigned to realize the multi-step impact attenuation. The dynamic response of traditional and new seat is analyzed under the identical conditions and the results show that the new concept seat can significantly weaken the occupant overload in two directions compared with that of traditional seat. As a consequence, the risk of injury evaluated for spinal and head is also lowered, meaning a higher level of protection which is especially beneficial to the debilitated astronaut.

  7. Human and Robotic Exploration Missions to Phobos Prior to Crewed Mars Surface Missions

    Science.gov (United States)

    Gernhardt, Michael L.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F.

    2016-01-01

    Phobos is a scientifically significant destination that would facilitate the development and operation of the human Mars transportation infrastructure, unmanned cargo delivery systems and other Mars surface systems. In addition to developing systems relevant to Mars surface missions, Phobos offers engineering, operational, and public engagement opportunities that could enhance subsequent Mars surface operations. These opportunities include the use of low latency teleoperations to control Mars surface assets associated with exploration science, human landing-site selection and infrastructure development which may include in situ resource utilization (ISRU) to provide liquid oxygen for the Mars Ascent Vehicle (MAV). A human mission to Mars' moons would be preceded by a cargo predeploy of a surface habitat and a pressurized excursion vehicle (PEV) to Mars orbit. Once in Mars orbit, the habitat and PEV would spiral to Phobos using solar electric propulsion based systems, with the habitat descending to the surface and the PEV remaining in orbit. When a crewed mission is launched to Phobos, it would include the remaining systems to support the crew during the Earth-Mars transit and to reach Phobos after insertion in to Mars orbit. The crew would taxi from Mars orbit to Phobos to join with the predeployed systems in a spacecraft that is based on a MAV, dock with and transfer to the PEV in Phobos orbit, and descend in the PEV to the surface habitat. A static Phobos surface habitat was chosen as a baseline architecture, in combination with the PEV that was used to descend from orbit as the main exploration vehicle. The habitat would, however, have limited capability to relocate on the surface to shorten excursion distances required by the PEV during exploration and to provide rescue capability should the PEV become disabled. To supplement exploration capabilities of the PEV, the surface habitat would utilize deployable EVA support structures that allow astronauts to work

  8. NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning

  9. An epidemiological study of rates of illness in passengers and crew at a busy Caribbean cruise port.

    Science.gov (United States)

    Marshall, Cathy Ann; Morris, Euclid; Unwin, Nigel

    2016-04-12

    The Caribbean has one of the largest cruise ship industries in the world, with close to 20 million visitors per year. The potential for communicable disease outbreaks on vessels and the transmission by ship between countries is high. Barbados has one of the busiest ports in the Caribbean. Our aim was to describe and analyse the epidemiology of illnesses experienced by passengers and crew arriving at the Bridgetown Port, Barbados between 2009 and 2013. Data on the illnesses recorded were extracted from the passenger and crew arrival registers and passenger and crew illness logs for all ships and maritime vessels arriving at Barbados' Ports and passing through its territorial waters between January 2009 and December 2013. Data were entered into an Epi Info database and most of the analysis undertaken using Epi Info Version 7. Rates per 100,000 visits were calculated, and confidence intervals on these were derived using the software Openepi. There were 1031 cases of illness from over 3 million passenger visits and 1 million crew visits during this period. The overall event rate for communicable illnesses was 15.7 (95 % CI 14.4-17.1) per 100,000 passengers, and for crew was 24.0 (21.6-26.6) per 100, 000 crew. Gastroenteritis was the predominant illness experienced by passengers and crew followed by influenza. The event rate for gastroenteritis among passengers was 13.7 (12.5-15.0) per 100,000 and 14.4 (12.6, 16.5) for crew. The event rate for non-communicable illnesses was 3.4 per 100,000 passengers with myocardial infarction being the main diagnosis. The event rate for non-communicable illnesses among crew was 2.1 per 100,000, the leading cause being injuries. The predominant illnesses reported were gastroenteritis and influenza similar to previous published reports from around the world. This study is the first of its type in the Caribbean and the data provide a baseline for future surveillance and for comparison with other countries and regions.

  10. Is Equality always desirable? : Analyzing the Trade-Off between Fairness and Attractiveness in Crew Rostering

    NARCIS (Netherlands)

    T. Breugem (Thomas); T.A.B. Dollevoet (Twan); D. Huisman (Dennis)

    2017-01-01

    textabstractIn this paper, we analyze the trade-off between perceived fairness and perceived attractiveness in crew rostering. First, we introduce the Fairness-oriented Crew Rostering Problem. In this problem, attractive cyclic rosters have to be constructed, while respecting a pre-specified

  11. The risk of melanoma in airline pilots and cabin crew: a meta-analysis.

    Science.gov (United States)

    Sanlorenzo, Martina; Wehner, Mackenzie R; Linos, Eleni; Kornak, John; Kainz, Wolfgang; Posch, Christian; Vujic, Igor; Johnston, Katia; Gho, Deborah; Monico, Gabriela; McGrath, James T; Osella-Abate, Simona; Quaglino, Pietro; Cleaver, James E; Ortiz-Urda, Susana

    2015-01-01

    Airline pilots and cabin crew are occupationally exposed to higher levels of cosmic and UV radiation than the general population, but their risk of developing melanoma is not yet established. To assess the risk of melanoma in pilots and airline crew. PubMed (1966 to October 30, 2013), Web of Science (1898 to January 27, 2014), and Scopus (1823 to January 27, 2014). All studies were included that reported a standardized incidence ratio (SIR), standardized mortality ratio (SMR), or data on expected and observed cases of melanoma or death caused by melanoma that could be used to calculate an SIR or SMR in any flight-based occupation. Primary random-effect meta-analyses were used to summarize SIR and SMR for melanoma in any flight-based occupation. Heterogeneity was assessed using the χ2 test and I2 statistic. To assess the potential bias of small studies, we used funnel plots, the Begg rank correlation test, and the Egger weighted linear regression test. Summary SIR and SMR of melanoma in pilots and cabin crew. Of the 3527 citations retrieved, 19 studies were included, with more than 266 431 participants. The overall summary SIR of participants in any flight-based occupation was 2.21 (95% CI, 1.76-2.77; P < .001; 14 records). The summary SIR for pilots was 2.22 (95% CI, 1.67-2.93; P = .001; 12 records). The summary SIR for cabin crew was 2.09 (95% CI, 1.67-2.62; P = .45; 2 records). The overall summary SMR of participants in any flight-based occupation was 1.42 (95% CI, 0.89-2.26; P = .002; 6 records). The summary SMR for pilots was 1.83 (95% CI, 1.27-2.63, P = .33; 4 records). The summary SMR for cabin crew was 0.90 (95% CI, 0.80-1.01; P = .97; 2 records). Pilots and cabin crew have approximately twice the incidence of melanoma compared with the general population. Further research on mechanisms and optimal occupational protection is needed.

  12. U.S. Coast Guard Guide for the Management of Crew Endurance Risk Factors - Version 1.0

    National Research Council Canada - National Science Library

    Comperatore, Carlos

    2001-01-01

    .... This Guide will show you how to identify and manage crew endurance risk factors. The step-by-step process will guide you in selecting and implementing the controls necessary to improve crew endurance...

  13. Astronaut Neil A. Armstrong Undergoes Communications Systems Final Check

    Science.gov (United States)

    1969-01-01

    Dunned in his space suit, mission commander Neil A. Armstrong does a final check of his communications system before before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Armstrong; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) Pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. Apollo 11 Astronaut Neil Armstrong During Lunar Rock Collection Training

    Science.gov (United States)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil A. Armstrong uses a geologist's hammer in selecting rock specimens during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas. Armstrong, alongside astronaut Edwin (Buzz) Aldrin, practiced gathering rock specimens using special lunar geological tools in preparation for the first Lunar landing. Mission was accomplished in July of the same year. Aboard the Marshall Space Fight center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Armstrong, commander; Aldrin, Lunar Module pilot; and a third astronaut Michael Collins, Command Module pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin, while Collins remained in lunar orbit. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The lunar surface exploration was concluded in 2½ hours.

  15. Risk of Performance Decrement and Crew Illness Due to an Inadequate Food System

    Science.gov (United States)

    Douglas, Grace L.; Cooper, Maya; Bermudez-Aguirre, Daniela; Sirmons, Takiyah

    2016-01-01

    NASA is preparing for long duration manned missions beyond low-Earth orbit that will be challenged in several ways, including long-term exposure to the space environment, impacts to crew physiological and psychological health, limited resources, and no resupply. The food system is one of the most significant daily factors that can be altered to improve human health, and performance during space exploration. Therefore, the paramount importance of determining the methods, technologies, and requirements to provide a safe, nutritious, and acceptable food system that promotes crew health and performance cannot be underestimated. The processed and prepackaged food system is the main source of nutrition to the crew, therefore significant losses in nutrition, either through degradation of nutrients during processing and storage or inadequate food intake due to low acceptability, variety, or usability, may significantly compromise the crew's health and performance. Shelf life studies indicate that key nutrients and quality factors in many space foods degrade to concerning levels within three years, suggesting that food system will not meet the nutrition and acceptability requirements of a long duration mission beyond low-Earth orbit. Likewise, mass and volume evaluations indicate that the current food system is a significant resource burden. Alternative provisioning strategies, such as inclusion of bioregenerative foods, are challenged with resource requirements, and food safety and scarcity concerns. Ensuring provisioning of an adequate food system relies not only upon determining technologies, and requirements for nutrition, quality, and safety, but upon establishing a food system that will support nutritional adequacy, even with individual crew preference and self-selection. In short, the space food system is challenged to maintain safety, nutrition, and acceptability for all phases of an exploration mission within resource constraints. This document presents the

  16. Influence of storm electromagnetic field on the aircraft crew

    Directory of Open Access Journals (Sweden)

    Э. Г. Азнакаев

    2000-12-01

    Full Text Available Considered is the biophysical influence of alternative electromagnetic fields, caused by electrical discharges in atmosphere. Analyzed are conditions which may provoke inadequate actions and errors of the crew in airplane flight control

  17. Radiation exposure of the Yugoslav Airlines crews according to new radiation limits

    International Nuclear Information System (INIS)

    Antic, D.

    1998-01-01

    Radiation exposure of the Yugoslav Airlines (JAT) crews in commercial air traffic has been studied according to the new radiation limits (ICRP 60). Selected pilots make the groups, for different types in use by JAT, and two groups of the co-pilots ('flight engineers' for B-727 and DC-10 aircraft's). Cabin crew members make three groups of pursers and two groups of STW/STD (they include both male and female workers). Annual doses and added risks have been assessed. (author)

  18. Promoting Crew Autonomy: Current Advances and Novel Techniques

    Science.gov (United States)

    Harris, Samantha

    2017-01-01

    Since the dawn of the era of human space flight, mission control centers around the world have played an integral role in guiding space travelers toward mission success. In the International Space Station (ISS) program, astronauts and cosmonauts have the benefit of near constant access to the expertise and resources within mission control, as well as lifeboat capability to quickly return to Earth if something were to go wrong. As we move into an era of longer duration missions to more remote locations, rapid and ready access to mission control on earth will no longer be feasible. To prepare for such missions, long duration crews must be prepared to operate more autonomously, and the mission control paradigm that has been successfully employed for decades must be re-examined. The team at NASA's Payload Operations and Integration Center (POIC) in Huntsville, Alabama is playing an integral role in the development of concepts for a more autonomous long duration crew of the future via research on the ISS.

  19. The Integrated Medical Model: Statistical Forecasting of Risks to Crew Health and Mission Success

    Science.gov (United States)

    Fitts, M. A.; Kerstman, E.; Butler, D. J.; Walton, M. E.; Minard, C. G.; Saile, L. G.; Toy, S.; Myers, J.

    2008-01-01

    The Integrated Medical Model (IMM) helps capture and use organizational knowledge across the space medicine, training, operations, engineering, and research domains. The IMM uses this domain knowledge in the context of a mission and crew profile to forecast crew health and mission success risks. The IMM is most helpful in comparing the risk of two or more mission profiles, not as a tool for predicting absolute risk. The process of building the IMM adheres to Probability Risk Assessment (PRA) techniques described in NASA Procedural Requirement (NPR) 8705.5, and uses current evidence-based information to establish a defensible position for making decisions that help ensure crew health and mission success. The IMM quantitatively describes the following input parameters: 1) medical conditions and likelihood, 2) mission duration, 3) vehicle environment, 4) crew attributes (e.g. age, sex), 5) crew activities (e.g. EVA's, Lunar excursions), 6) diagnosis and treatment protocols (e.g. medical equipment, consumables pharmaceuticals), and 7) Crew Medical Officer (CMO) training effectiveness. It is worth reiterating that the IMM uses the data sets above as inputs. Many other risk management efforts stop at determining only likelihood. The IMM is unique in that it models not only likelihood, but risk mitigations, as well as subsequent clinical outcomes based on those mitigations. Once the mathematical relationships among the above parameters are established, the IMM uses a Monte Carlo simulation technique (a random sampling of the inputs as described by their statistical distribution) to determine the probable outcomes. Because the IMM is a stochastic model (i.e. the input parameters are represented by various statistical distributions depending on the data type), when the mission is simulated 10-50,000 times with a given set of medical capabilities (risk mitigations), a prediction of the most probable outcomes can be generated. For each mission, the IMM tracks which conditions

  20. Developing a Prototype ALHAT Human System Interface for Landing

    Science.gov (United States)

    Hirsh, Robert L.; Chua, Zarrin K.; Heino, Todd A.; Strahan, Al; Major, Laura; Duda, Kevin

    2011-01-01

    effect of terrain/lighting on the human pilot, and how they use windows and displays during landing activities. The Apollo missions were limited to about 28 possible launch days a year due to lighting and orbital constraints. In order to take advantage of more landing opportunities and venture to more challenging landing locations, future landers will need to utilize sensors besides human eyes for scanning the surface. The ALHAT HSI system must effectively convey ALHAT produced information to the operator, so that landings can occur during less "optimal" conditions (lighting, surface terrain, slopes, etc) than was possible during Apollo missions. By proving this capability, ALHAT will simultaneously provide more flexible access to the moon, and greater safety margins for future landers. This paper will specifically focus on the development of prototype displays (the Trajectory Profile Display (TPD), Landing Point Designation (LPD), and Crew Camera View (CCV) ), implementation of realistic planetary terrain, human modeling, and future HSI plans.

  1. More explicit communication after classroom-based crew resource management training: results of a pragmatic trial.

    NARCIS (Netherlands)

    Verbeek-van Noord, I.; Bruijne, M.C. de; Twisk, J.W.R.; Dyck, C. van; Wagner, C.

    2015-01-01

    Rationale, aims and objectives: Aviation-based crew resource management trainings to optimize non-technical skills among professionals are often suggested for health care as a way to increase patient safety. Our aim was to evaluate the effect of a 2-day classroom-based crew resource management (CRM)

  2. More explicit communication after classroom-based crew resource management training: results of a pragmatic trial

    NARCIS (Netherlands)

    van Noord, I.; de Bruijne, M.C.; Twisk, J.W.R.; van Dyck, C.; Wagner, C.

    2015-01-01

    Rationale, aims and objectives Aviation-based crew resource management trainings to optimize non-technical skills among professionals are often suggested for health care as a way to increase patient safety. Our aim was to evaluate the effect of a 2-day classroom-based crew resource management (CRM)

  3. Land use/land cover and land capability data for evaluating land utilization and official land use planning in Indramayu Regency, West Java, Indonesia

    Science.gov (United States)

    Ambarwulan, W.; Widiatmaka; Nahib, I.

    2018-05-01

    Land utilization in Indonesia is regulated in an official spatial land use planning (OSLUP), stipulated by government regulations. However in fact, land utilizations are often develops inconsistent with regulations. OSLUP itself is also not usually compatible with sustainable land utilizations. This study aims to evaluate current land utilizations and OSLUP in Indramayu Regency, West Java. The methodology used is the integrated analysis using land use and land cover (LU/LC) data, land capability data and spatial pattern in OSLUP. Actual LU/LC are interpreted using SPOT-6 imagery of 2014. The spatial data of land capabilities are derived from land capability classification using field data and laboratory analysis. The confrontation between these spatial data is interpreted in terms of future direction for sustainable land use planning. The results shows that Indramayu regency consists of 8 types of LU/LC. Land capability in research area range from class II to VIII. Only a small portion of the land in Indramayu has been used in accordance with land capability, but most of the land is used exceeding its land capability.

  4. Identification of the operating crew's information needs for accident management

    International Nuclear Information System (INIS)

    Nelson, W.R.; Hanson, D.J.; Ward, L.W.; Solberg, D.E.

    1988-01-01

    While it would be very difficult to predetermine all of the actions required to mitigate the consequences of every potential severe accident for a nuclear power plant, development of additional guidance and training could improve the likelihood that the operating crew would implement effective sever-accident management measures. The US Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe-accident research results to enhance the capability of the plant operating crew to effectively manage severe accidents. One element of this program includes identification of the information needed by the operating crew in severe-accident situations. This paper discusses a method developed for identifying these information needs and its application. The methodology has been applied to a generic reactor design representing a PWR with a large dry containment. The information needs were identified by systematically determining what information is needed to assess the health of the critical functions, identify the presence of challenges, select strategies, and assess the effectiveness of these strategies. This method allows the systematic identification of information needs for a broad range of severe-accident scenarios and can be validated by exercising the functional models for any specific event sequence

  5. The Incidence and Fate of Volatile Methyl Siloxanes in a Crewed Spacecraft Cabin

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2017-01-01

    Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.

  6. An epidemiological study of rates of illness in passengers and crew at a busy Caribbean cruise port

    Directory of Open Access Journals (Sweden)

    Cathy Ann Marshall

    2016-04-01

    Full Text Available Abstract Background The Caribbean has one of the largest cruise ship industries in the world, with close to 20 million visitors per year. The potential for communicable disease outbreaks on vessels and the transmission by ship between countries is high. Barbados has one of the busiest ports in the Caribbean. Our aim was to describe and analyse the epidemiology of illnesses experienced by passengers and crew arriving at the Bridgetown Port, Barbados between 2009 and 2013. Methods Data on the illnesses recorded were extracted from the passenger and crew arrival registers and passenger and crew illness logs for all ships and maritime vessels arriving at Barbados’ Ports and passing through its territorial waters between January 2009 and December 2013. Data were entered into an Epi Info database and most of the analysis undertaken using Epi Info Version 7. Rates per 100,000 visits were calculated, and confidence intervals on these were derived using the software Openepi. Results There were 1031 cases of illness from over 3 million passenger visits and 1 million crew visits during this period. The overall event rate for communicable illnesses was 15.7 (95 % CI 14.4–17.1 per 100,000 passengers, and for crew was 24.0 (21.6–26.6 per 100, 000 crew. Gastroenteritis was the predominant illness experienced by passengers and crew followed by influenza. The event rate for gastroenteritis among passengers was 13.7 (12.5–15.0 per 100,000 and 14.4 (12.6, 16.5 for crew. The event rate for non-communicable illnesses was 3.4 per 100,000 passengers with myocardial infarction being the main diagnosis. The event rate for non-communicable illnesses among crew was 2.1 per 100,000, the leading cause being injuries. Conclusions The predominant illnesses reported were gastroenteritis and influenza similar to previous published reports from around the world. This study is the first of its type in the Caribbean and the data provide a baseline for future surveillance

  7. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    Science.gov (United States)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  8. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  9. The European space suit, a design for productivity and crew safety

    Science.gov (United States)

    Skoog, A. Ingemar; Berthier, S.; Ollivier, Y.

    In order to fulfil the two major mission objectives, i.e. support planned and unplanned external servicing of the COLUMBUS FFL and support the HERMES vehicle for safety critical operations and emergencies, the European Space Suit System baseline configuration incorporates a number of design features, which shall enhance the productivity and the crew safety of EVA astronauts. The work in EVA is today - and will be for several years - a manual work. Consequently, to improve productivity, the first challenge is to design a suit enclosure which minimizes movement restrictions and crew fatigue. It is covered by the "ergonomic" aspect of the suit design. Furthermore, it is also necessary to help the EVA crewmember in his work, by giving him the right information at the right time. Many solutions exist in this field of Man-Machine Interface, from a very simple system, based on cuff check lists, up to advanced systems, including Head-Up Displays. The design concept for improved productivity encompasses following features: • easy donning/doffing thru rear entry, • suit ergonomy optimisation, • display of operational information in alpha-numerical and graphical from, and • voice processing for operations and safety critical information. Concerning crew safety the major design features are: • a lower R-factor for emergency EVA operations thru incressed suit pressure, • zero prebreath conditions for normal operations, • visual and voice processing of all safety critical functions, and • an autonomous life support system to permit unrestricted operations around HERMES and the CFFL. The paper analyses crew safety and productivity criteria and describes how these features are being built into the design of the European Space Suit System.

  10. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    Science.gov (United States)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  11. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...

  12. The two Coissac's novels : l'Envol and Sur la Lune

    Science.gov (United States)

    Villain, Jacques

    2002-01-01

    Coissac wrote two novels with his friend Charles Rouch.: "L'Envol" in 1934 and "Sur la Lune" in 1935. In these books he describes the preparation of the lunar rocket weigthing 3000 tons and powered by solid propellants. This rocket is launched from a base built at the top of a peruvian volcano. The seven men crew (5 french and one american) is sent to the Moon in a 45 tons command module from which two lunar modules can be separated and can descent to the lunar surface. Coissac describes along the trajectory the means to guide and control the rocket. The exploration of the Moon is done with bicycles ans suits. The explorers meet strange animals and strange people living under ground like termites in perfect love and happiness. After having explored the two faces of the Moon, the lunar modules leave the Moon for a docking with the main vehicle waiting on a lunar orbit and the crew comes back to the Earth. The spacecraft lands in the Pacific Ocean. Except the direct flight from Earth to the Moon, the travel to the Moon proposed by Coissac is very similar to that of Apollo but more than thirty years earlier.

  13. Socio-economic Survey of Commercial Fishing Crew in the Northeast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northeast Fisheries Science Center's Social Sciences Branch (SSB) completed a survey of crew, including hired captains, participating in commercial fisheries in...

  14. Personal traits and a sense of job-related stress in a military aviation crew

    Directory of Open Access Journals (Sweden)

    Čabarkapa Milanko

    2011-01-01

    Full Text Available Background/Aim. Accelerated technological and organizational changes in numerous professions lead to increase in jobrelated stress. Since these changes are particularly common in military aviation, this study examined the way military aviation crew experiences job-related stress during a regular aviation drill, depending on particular social-demographic factors and personal traits. Methods. The modified Cooper questionnaire was used to examine the stress related factors at work. The questionnaire was adapted for the aviation crew in the army environment. Personal characteristics were examined using the NEO-PI-R personality inventory. The study included 50 examinees (37 pilots and 13 other crew members employed in the Serbian Army. The studies were performed during routine physical examinations at the Institute for Aviation Medicine during the year 2007. Statistical analysis of the study results contained descriptive analysis, one-way analysis of variance and correlation analysis. Results. It was shown that army aviation crew works under high stress. The highest stress value had the intrinsic factor (AS = 40.94 and role in organisation (AS = 39.92, while the lowest one had the interpersonal relationship factor (AS = 29.98. The results also showed that some social-demographic variables (such as younger examinees, shorter working experience and neuroticism as a personality trait, were in correlation with job-related stress. Conclusion. Stress evaluation and certain personality characteristics examination can be used for the devalopment of the basic anti-stress programs and measures in order to achieve better psychological selection, adaptation career leadership and organization of military pilots and other crew members.

  15. [Personal traits and a sense of job-related stress in a military aviation crew].

    Science.gov (United States)

    Cabarkapa, Milanko; Korica, Vesna; Rodjenkov, Sanja

    2011-02-01

    Accelerated technological and organizational changes in numerous professions lead to increase in job-related stress. Since these changes are particularly common in military aviation, this study examined the way military aviation crew experiences job-related stress during a regular aviation drill, depending on particular social-demographic factors and personal traits. The modified Cooper questionnaire was used to examine the stress related factors at work. The questionnaire was adapted for the aviation crew in the army environment. Personal characteristics were examined using the NEO-PI-R personality inventory. The study included 50 examinees (37 pilots and 13 other crew members) employed in the Serbian Army. The studies were performed during routine physical examinations at the Institute for Aviation Medicine during the year 2007. Statistical analysis of the study results contained descriptive analysis, one-way analysis of variance and correlation analysis. It was shown that army aviation crew works under high stress. The highest stress value had the intrinsic factor (AS = 40.94) and role in organisation (AS = 39.92), while the lowest one had the interpersonal relationship factor (AS = 29.98). The results also showed that some social-demographic variables (such as younger examinees, shorter working experience) and neuroticism as a personality trait, were in correlation with job-related stress. Stress evaluation and certain personality characteristics examination can be used for the development of the basic anti-stress programs and measures in order to achieve better psychological selection, adaptation career leadership and organization of military pilots and other crew members.

  16. Whither CRM? Future directions in Crew Resource Management training in the cockpit and elsewhere

    Science.gov (United States)

    Helmreich, Robert L.

    1993-01-01

    The past decade has shown worldwide adoption of human factors training in civil aviation, now known as Crew Resource Management (CRM). The shift in name from cockpit to crew reflects a growing trend to extend the training to other components of the aviation system including flight attendants, dispatchers, maintenance personnel, and Air Traffic Controllers. The paper reports findings and new directions in research into human factors.

  17. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    Science.gov (United States)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  18. ASTP crewmen have a meal during training session at JSC

    Science.gov (United States)

    1975-01-01

    Three ASTP crewmen have a meal in the Apollo Command Module trainer in bldg 35 during Apollo Soyuz Test Project (ASTP) joint crew training at JSC. They are, left to right, Cosmonaut Aleksay A. Leonov, commander of the Soviet ASTP first (prime) crew; Astronaut Donald K. Slayton, docking module pilot of the American ASTP prime crew; and Astronaut Thomas P. Stafford, commander of the American ASTP prime crew.

  19. Crew Fatigue and Performance on U.S. Coast Guard Cutters

    National Research Council Canada - National Science Library

    1998-01-01

    .... Descriptive measures were obtained on five cutters of three types under normal operations. Evidence of mild fatigue, specifically daytime sleepiness and a degradation of vigilance performance, was observed in many crew members...

  20. Elemental Resource Breakdown Approach to Crew-Vehicle Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TSRCo and CU are developing a framework to quantify and predict crew performance in various spacecraft designs in the context of the design process. The framework...

  1. Use of UAV-Borne Spectrometer for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Sowmya Natesan

    2018-04-01

    Full Text Available Unmanned aerial vehicles (UAV are being used for low altitude remote sensing for thematic land classification using visible light and multi-spectral sensors. The objective of this work was to investigate the use of UAV equipped with a compact spectrometer for land cover classification. The UAV platform used was a DJI Flamewheel F550 hexacopter equipped with GPS and Inertial Measurement Unit (IMU navigation sensors, and a Raspberry Pi processor and camera module. The spectrometer used was the FLAME-NIR, a near-infrared spectrometer for hyperspectral measurements. RGB images and spectrometer data were captured simultaneously. As spectrometer data do not provide continuous terrain coverage, the locations of their ground elliptical footprints were determined from the bundle adjustment solution of the captured images. For each of the spectrometer ground ellipses, the land cover signature at the footprint location was determined to enable the characterization, identification, and classification of land cover elements. To attain a continuous land cover classification map, spatial interpolation was carried out from the irregularly distributed labeled spectrometer points. The accuracy of the classification was assessed using spatial intersection with the object-based image classification performed using the RGB images. Results show that in homogeneous land cover, like water, the accuracy of classification is 78% and in mixed classes, like grass, trees and manmade features, the average accuracy is 50%, thus, indicating the contribution of hyperspectral measurements of low altitude UAV-borne spectrometers to improve land cover classification.

  2. Application of virtual reality for crew mental health in extended-duration space missions

    Science.gov (United States)

    Salamon, Nick; Grimm, Jonathan M.; Horack, John M.; Newton, Elizabeth K.

    2018-05-01

    Human exploration of the solar system brings a host of environmental and engineering challenges. Among the most important factors in crew health and human performance is the preservation of mental health. The mental well-being of astronaut crews is a significant issue affecting the success of long-duration space missions, such as habitation on or around the Moon, Mars exploration, and eventual colonization of the solar system. If mental health is not properly addressed, these missions will be at risk. Upkeep of mental health will be especially difficult on long duration missions because many of the support systems available to crews on shorter missions will not be available. In this paper, we examine the use of immersive virtual reality (VR) simulations to maintain healthy mental states in astronaut crews who are removed from the essential comforts typically associated with terrestrial life. Various methods of simulations and their administration are analyzed in the context of current research and knowledge in the fields of psychology, medicine, and space sciences, with a specific focus on the environment faced by astronauts on long-term missions. The results of this investigation show that virtual reality should be considered a plausible measure in preventing mental state deterioration in astronauts, though more work is needed to provide a comprehensive view of the effectiveness and administration of VR methods.

  3. Air crew exposure on board of long-haul flights of the Belgian airlines

    International Nuclear Information System (INIS)

    Verhaegen, F.; Poffijn, A.

    2000-01-01

    New European radiation protection recommendations state that measures need to be taken for flight crew members whose annual radiation exposure exceeds 1 mSv. This will be the case for flight crew members who accumulate most of their flying hours on long-haul flights. The Recommendations for the Implementation of the Basic Safety Standards Directive states that for annual exposure levels between 1 and 6 mSv individual dose estimates should be obtained, whereas for annual exposures exceeding 6 mSv, which might rarely occur, record keeping with appropriate medical surveillance is recommended. To establish the exposure level of Belgian air crews, radiation measurements were performed on board of a total of 44 long-haul flights of the Belgian airlines. The contribution of low linear energy transfer (LET) radiation (photons, electrons, protons) was assessed by using TLD-700H detectors. The exposure to high-LET radiation (mostly neutrons) was measured with bubble detectors. Results were compared to calculations with an adapted version of the computer code CARI. For the low-LET radiation the calculations were found to be in good agreement with the measurements. The measurements of the neutron dose were consistently lower than the calculations. With the current flight schedules used by the Belgian airlines, air crew members are unlikely to receive annual doses exceeding 4 mSv. (author)

  4. Evaluation of Life Sciences Glovebox (LSG) and Multi-Purpose Crew Restraint Concepts

    Science.gov (United States)

    Whitmore, Mihriban

    2005-01-01

    Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.

  5. Historical Land Use Dynamics in the Highly Degraded Landscape of the Calhoun Critical Zone Observatory

    Directory of Open Access Journals (Sweden)

    Michael R. Coughlan

    2017-05-01

    Full Text Available Processes of land degradation and regeneration display fine scale heterogeneity often intimately linked with land use. Yet, examinations of the relationships between land use and land degradation often lack the resolution necessary to understand how local institutions differentially modulate feedback between individual farmers and the spatially heterogeneous effects of land use on soils. In this paper, we examine an historical example of a transition from agriculture to forest dominated land use (c. 1933–1941 in a highly degraded landscape on the Piedmont of South Carolina. Our landscape-scale approach examines land use and tenure at the level that individuals enact management decisions. We used logistic regression techniques to examine associations between land use, land tenure, topography, and market cost-distance. Our findings suggest that farmer responses to changing market and policy conditions were influenced by topographic characteristics associated with productivity and long-term viability of agricultural land use. Further, although local environmental feedbacks help to explain spatial patterning of land use, property regime and land tenure arrangements also significantly constrained the ability of farmers to adapt to changing socioeconomic and environmental conditions.

  6. Automatic mental heath assistant : monitoring and measuring nonverbal behavior of the crew during long-term missions

    NARCIS (Netherlands)

    Voynarovskaya, N.; Gorbunov, R.D.; Barakova, E.I.; Rauterberg, G.W.M.; Barakova, E.I.; Ruyter, B.; Spink, A.

    2010-01-01

    This paper presents a method for monitoring the mental state of small isolated crews during long-term missions (such as space mission, polar expeditions, submarine crews, meteorological stations, and etc.) The research is done as a part of Automatic Mental Health Assistant (AMHA) project which aims

  7. Air traffic and cosmic radiation. An epidemiological study among aircraft crews in Germany

    International Nuclear Information System (INIS)

    Blettner, M.; Hammer, G.P.; Langner, I.; Zeeb, H.

    2003-01-01

    Airline pilots and cabin crew are exposed to cosmic ionizing radiation and other occupational factors that may influence their health status. The mortality of some 6,000 pilots and 20,000 cabin crew members was investigated in a cohort study. Overall a pronounced healthy worker effect was seen. The cancer mortality risk is slightly lower than in the general population. Currently there is no indication for an increase in cancer mortality due to cosmic radiation. A further follow-up is planned. (orig.) [de

  8. Use of Data Comm by Flight Crew to Conduct Interval Management Operations to Parallel Dependent Runways

    Science.gov (United States)

    Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James

    2011-01-01

    The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM

  9. Real-Time Simulation of Ship Impact for Crew Training

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    2003-01-01

    Real-time simulation of marine accidents and representation in a realistic, virtual environment may be an efficient way to train emergency procedures for ship?s crews and thus improve safety at sea. However, although various fast, simplified methods have been presented over the past decades...

  10. Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    Science.gov (United States)

    Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob

    2014-01-01

    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.

  11. Don't rock the boat: how antiphase crew coordination affects rowing.

    Directory of Open Access Journals (Sweden)

    Anouk J de Brouwer

    Full Text Available It is generally accepted that crew rowing requires perfect synchronization between the movements of the rowers. However, a long-standing and somewhat counterintuitive idea is that out-of-phase crew rowing might have benefits over in-phase (i.e., synchronous rowing. In synchronous rowing, 5 to 6% of the power produced by the rower(s is lost to velocity fluctuations of the shell within each rowing cycle. Theoretically, a possible way for crews to increase average boat velocity is to reduce these fluctuations by rowing in antiphase coordination, a strategy in which rowers perfectly alternate their movements. On the other hand, the framework of coordination dynamics explicates that antiphase coordination is less stable than in-phase coordination, which may impede performance gains. Therefore, we compared antiphase to in-phase crew rowing performance in an ergometer experiment. Nine pairs of rowers performed a two-minute maximum effort in-phase and antiphase trial at 36 strokes min(-1 on two coupled free-floating ergometers that allowed for power losses to velocity fluctuations. Rower and ergometer kinetics and kinematics were measured during the trials. All nine pairs easily acquired antiphase rowing during the warm-up, while one pair's coordination briefly switched to in-phase during the maximum effort trial. Although antiphase interpersonal coordination was indeed less accurate and more variable, power production was not negatively affected. Importantly, in antiphase rowing the decreased power loss to velocity fluctuations resulted in more useful power being transferred to the ergometer flywheels. These results imply that antiphase rowing may indeed improve performance, even without any experience with antiphase technique. Furthermore, it demonstrates that although perfectly synchronous coordination may be the most stable, it is not necessarily equated with the most efficient or optimal performance.

  12. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  13. Crew resource management training adapted to nuclear power plant operators for enhancing safety attitude

    International Nuclear Information System (INIS)

    Ishibashi, Akira; Kitamura, Masaharu; Takahashi, Makoto

    2015-01-01

    A conventional training program for nuclear power plant operators mainly focuses on the improvement of knowledge and skills of individual operators. Although it has certainly contributed to safety operation of nuclear power plants, some recent incidents have indicated the necessity of an additional training program aiming at the improvement of team performance. In the aviation domain, crew resource management (CRM) training has demonstrated the effectiveness in resolving team management issues of flight crews, aircraft maintenance crews, and so on. In the present research, we attempt to introduce the CRM concept into operator training in nuclear power plant for the training of conceptual skill (that is, non-technical skill). In this paper an adapted CRM training for nuclear power plant operators is proposed. The proposed training method has been practically utilized in the training course of the managers of nuclear power plants. (author)

  14. Integrated Measurement of Crew Resource Management and Technical Flying Skills

    Science.gov (United States)

    1993-08-01

    This report presents the findings of a study designed with two objectives: to produce a prototype performance : measurement instrument (PMI) that integrates the assessment of Crew Resource Management (CRM) and technical flying : skills and to investi...

  15. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    Science.gov (United States)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  16. Croatian Airports as Potential European Flight Crew Training Centres

    Directory of Open Access Journals (Sweden)

    Tomislav Gradišar

    2012-10-01

    Full Text Available The paper deals with the possibilities of offering Croatianailports as potential flight crew training centres on the Europeanmarket of se!Vices. With her available ai1port capacities,mainly those located on the Adriatic coast, Croatia has significantadvantages compared to other countries of Westem andCentral Europe. The most important condition for establishinga specialised training centre for the European market is the harmonisationof the national aviation regulations i.e. the implementationof global and European standards of flight crewtraining, as well as conditions that have to be met by a specialisedtraining centre from the aspect of the necessary infrastructure.The study has evaluated the potential airports of Rijeka,Pula and Losinj, acc01ding to the basic criteria of their geo-Lraffic location, infrastructure resources (technical elements ofrunway, navigation equipment, abport se1vices, availability ofspecial equipment for flight crew training on the ground and inthe ail; as well as climate conditions.

  17. Supporting Fiscal Aspect of Land Administration through an LADM-based Valuation Information Model

    NARCIS (Netherlands)

    Kara, A.; Çağdaş, V.; Lemmen, C.H.J.; Işıkdağ, Ü.; van Oosterom, P.J.M.; Stubkjær, E.

    2018-01-01

    This paper presents an information system artifact for the fiscal aspect of land administration, a valuation information model for the specification of inventories or databases used in valuation for recurrently levied immovable property taxes. The information model is designed as an extension module

  18. METHODOLOGICAL BASIS IMPOSING RESTRICTIONS IN LAND USE, BURDENED LAND RIGHTS DURING LAND TENURE

    Directory of Open Access Journals (Sweden)

    Dorosh J.

    2016-05-01

    Full Text Available The question of balanced consolidation of social legislation in a reasonable ratio of land rights and the interests of society as a whole, as well as local communities, citizens and legal entities established by them are general in nature and require specificity it is. Proved that one way of solving this problem is the establishment of restoictions of land rights, restrictions in land use. However, the mechanism of regulation establishment, implementation and termination of restrictions on the rights to land are not very functional and needs improvement. Current legislation in Ukraine does not contain a balanced set of regulations that would determine the nature and objectives of the restrictions, including encumbrances of land rights, their types, the reasons establishing and implementing restrictions of ownership and other rights to land and so on. Based on our analysis, we provide scientifically grounded suggestions on improving the legal framework, particularly, in terms of restrictions on land use and registration in the land management process, as an important means of influence on those rights in order to ensure rational land use and protection it is. Proved that the efficiency of administrative decisions during setting restrictions on land use purpose and usage of land is possible on the basis of land zoning, thus, it is necessary to adopt the Law of Ukraine "On land zoning." In addition, the current classification of land use restrictions, which was proposed by prominent scientists in Ukraine AM Tretyak (classification of restrictions in land use by functional features, and D.S. Dobryak and D.I. Babmindra (classification of restrictions on land use based on their placement by owners and land users, is complemented by types, namely: legal, environmental, ecological, technological, sanitation, urban and special. In the result of scientific studies,we have proposed a model of methodological process of land management actions on formation

  19. Reporters Interview Family of Apollo 11 Astronaut Neil Armstrong

    Science.gov (United States)

    1969-01-01

    Newsmen talked with the wife and sons of Apollo 11 astronaut Neil A. Armstrong after the successful launch of Apollo 11 on its trajectory to the moon. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. Crew resource management: applications in healthcare organizations.

    Science.gov (United States)

    Oriol, Mary David

    2006-09-01

    Healthcare organizations continue their struggle to establish a culture of open communication and collaboration. Lessons are learned from the aviation industry, which long ago acknowledged that most errors were the result of poor communication and coordination rather than individual mistakes. The author presents a review of how some healthcare organizations have successfully adopted aviation's curriculum called Crew Resource Management, which promotes and reinforces the conscious, learned team behaviors of cooperation, coordination, and sharing.

  1. 46 CFR 2.01-50 - Persons other than crew on towing, oyster, or fishing steam vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Persons other than crew on towing, oyster, or fishing steam vessels. 2.01-50 Section 2.01-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES... than crew on towing, oyster, or fishing steam vessels. (a) A steam vessel engaged in towing, oyster...

  2. Shuttle Columbia Post-landing Tow - with Reflection in Water

    Science.gov (United States)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials

  3. Routing helicopters for crew exchanges on off-shore locations

    NARCIS (Netherlands)

    Sierksma, G.; Tijssen, G.A.

    This paper deals with a vehicle routing problem with split demands, namely the problem of determining a flight schedule for helicopters to off-shore platform locations for exchanging crew people employed on these platforms. The problem is formulated as an LP model and solved by means of a

  4. The environmental effects of radiation on flight crews

    International Nuclear Information System (INIS)

    Connor, C.W.

    1991-01-01

    A review is presented of a continuing investigation of flight deck radiation and its potential effects on flight crews. Attention is given to the various critical factors concerned in UV radiation exposure and detection including skin cancer classifications, skin types, effectiveness of different sun protection factors, and flight deck color configuration and sunglasses. Consideration is given to both UV and ionizing radiation

  5. Nutrient cycle benchmarks for earth system land model

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  6. Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions

    Science.gov (United States)

    Shelhamer, Mark

    2015-01-01

    NASA plans to send humans to Mars in about 20 years. The NASA Human Research Program supports research to mitigate the major risks to human health and performance on extended missions. However, there will undoubtedly be unforeseen events on any mission of this nature - thus mitigation of known risks alone is not sufficient to ensure optimal crew health and performance. Research should be directed not only to mitigating known risks, but also to providing crews with the tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory and network theory to assess crew and individual resilience. The entire crew or the individual crewmember can be viewed as a complex system that is composed of subsystems (individual crewmembers or physiological subsystems), and the interactions between subsystems are of crucial importance for overall health and performance. An understanding of the structure of the interactions can provide important information even in the absence of complete information on the component subsystems. This is critical in human spaceflight, since insufficient flight opportunities exist to elucidate the details of each subsystem. Enabled by recent advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and also during preflight training to establish baseline values and ranges. Coupled with appropriate mathematical modeling, this can provide real-time assessment of health and function, and detect early indications of imminent breakdown. Since the interconnected web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). There are many parameters and interactions to choose from. Normal variability is an established characteristic of a healthy

  7. Experimental Evaluation of the Hydrodynamic Response of Crew Boat Hulls

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter

    This report presents the results of an experimental study on 3 different hulls of crew boats intended for service to offshore wind turbines. Their hydrodynamic behaviour has been tested in various sea states representing general wave conditions that could be expected at offshore wind farms. Two...... main setups were used during the tests, corresponding to the hulls being connected to an offshore windmill and being free floating. The following aspects were the main subjects of investigation: • The Response Amplitude Operators of the hulls in two different configurations and with waves coming from 3...... different directions. • The connection forces between the hulls and the wind turbine pile. • The natural frequency of oscillation. For the study, realistic scale models of the hulls of the crew boats were supplied by the client, Hauschildt Marine. The laboratory tests were performed by Arthur Pecher under...

  8. STS-47 Astronaut Crew at Pad B for TCDT, Emergency Egress Training, and Photo Opportunity

    Science.gov (United States)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri are seen during emergency egress training. Then Commander Gibson introduces the members of the crew and they each give a brief statement about the mission and answer questions from the press.

  9. Cytogenetic effects of ionizing radiation in peripheral lymphocytes of ISS crew members

    Science.gov (United States)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra; Obe, Günter; Horstmann, Markus

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). The effect of the increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required.The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second sample was drawn within 3 days after return from their flights. From lymphocyte cultures metaphase plates were prepared on glass slides. Metaphases were Giemsa stained or hybridised using multicolour FISH probes. All types of chromosome changes were scored in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to cosmic radiation exposure. Overall significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed in long-term crew members. Our data indicate no elevation of mutation rates due to short-term stays on-board the ISS.

  10. Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland.

    Science.gov (United States)

    Ciccolini, Valentina; Ercoli, Laura; Davison, John; Vasar, Martti; Öpik, Maarja; Pellegrino, Elisa

    2016-12-01

    Land-use change is known to be a major threat to biodiversity and ecosystem services in Mediterranean areas. However, the potential for different host plants to modulate the effect of land-use intensification on community composition of arbuscular mycorrhizal fungi (AMF) is still poorly understood. To test the hypothesis that low land-use intensity promotes AMF diversity at different taxonomic scales and to determine whether any response is dependent upon host plant species identity, we characterised AMF communities in the roots of 10 plant species across four land use types of differing intensity in a Mediterranean peatland system. AMF were identified using 454 pyrosequencing. This revealed an overall low level of AMF richness in the peaty soils; lowest AMF richness in the intense cropping system at both virtual taxa and family level; strong modulation by the host plant of the impact of land-use intensification on AMF communities at the virtual taxa level; and a significant effect of land-use intensification on AMF communities at the family level. These findings have implications for understanding ecosystem stability and productivity and should be considered when developing soil-improvement strategies in fragile ecosystems, such as Mediterranean peatlands. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Occupational Health Screenings of Aeromedical Evacuation and Critical Care Air Transport Team Crew Members

    Science.gov (United States)

    2015-08-01

    long work hours, constant vigilance, and the need for both physical and emotional stamina . AE crew members must possess characteristics beyond what is...tests were used in place of chi-square analyses when expected cell counts in contingency tables were less than five. Odds ratios (ORs) were reported to...members being female are 2.26 times greater than the odds of CCATT crew members being female. Odds ratios could not be computed with an observed cell

  12. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    Science.gov (United States)

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  13. Sensitivity analysis for modules for various biosphere types

    International Nuclear Information System (INIS)

    Karlsson, Sara; Bergstroem, U.; Rosen, K.

    2000-09-01

    This study presents the results of a sensitivity analysis for the modules developed earlier for calculation of ecosystem specific dose conversion factors (EDFs). The report also includes a comparison between the probabilistically calculated mean values of the EDFs and values gained in deterministic calculations. An overview of the distribution of radionuclides between different environmental parts in the models is also presented. The radionuclides included in the study were 36 Cl, 59 Ni, 93 Mo, 129 I, 135 Cs, 237 Np and 239 Pu, sel to represent various behaviour in the biosphere and some are of particular importance from the dose point of view. The deterministic and probabilistic EDFs showed a good agreement, for most nuclides and modules. Exceptions from this occurred if very skew distributions were used for parameters of importance for the results. Only a minor amount of the released radionuclides were present in the model compartments for all modules, except for the agricultural land module. The differences between the radionuclides were not pronounced which indicates that nuclide specific parameters were of minor importance for the retention of radionuclides for the simulated time period of 10 000 years in those modules. The results from the agricultural land module showed a different pattern. Large amounts of the radionuclides were present in the solid fraction of the saturated soil zone. The high retention within this compartment makes the zone a potential source for future exposure. Differences between the nuclides due to element specific Kd-values could be seen. The amount of radionuclides present in the upper soil layer, which is the most critical zone for exposure to humans, was less then 1% for all studied radionuclides. The sensitivity analysis showed that the physical/chemical parameters were the most important in most modules in contrast to the dominance of biological parameters in the uncertainty analysis. The only exception was the well module where

  14. Orbiting Depot and Reusable Lander for Lunar Transportation

    Science.gov (United States)

    Petro, Andrew

    2009-01-01

    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  15. Pining for home: Studying crew homesickness aboard a cruise liner ...

    African Journals Online (AJOL)

    Research in Hospitality Management ... Crew homesickness should be seen as important by both shipboard and liner company management because it can ultimately impact on customer service experiences, and can be ameliorated by ... Keywords: homesickness, cruise-liner, crewmembers, shipboard hotel services ...

  16. STS-112 Crew Interviews: Yurchikhin

    Science.gov (United States)

    2002-01-01

    A preflight interview with mission specialist Fyodor Yurchikhin is presented. He worked for a long time in Energia in the Russian Mission Control Center (MCC). Yurchikhin discusses the main goal of the STS-112 flight, which is to install the Integrated Truss Assembly S1 (Starboard Side Thermal Radiator Truss) on the International Space Station. He also talks about the three space walks required to install the S1. After the installation of S1, work with the bolts and cameras are performed. Yurchikhin is involved in working with nitrogen and ammonia jumpers. He expresses the complexity of his work, but says that he and the other crew members are ready for the challenge.

  17. Nonflammable Crew Clothing Utilizing Phosphorus-Based Fire-Retardant Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For maintaining U.S. leadership in space exploration, there is an urgent need to develop nonflammable crew clothing with the requirements of comfort, ease of...

  18. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  19. Land values and planning: a common interest of land policy and land taxation

    Energy Technology Data Exchange (ETDEWEB)

    Lichfield, N

    1979-06-01

    This paper focuses on a relatively neglected area of land policy: the relation between land use and land value as influenced by land-use planning. It discusses the need for and nature of land-use planning, the relationship of planning and land value, the compensation-betterment problem, and some particular issues of current relevance. It concludes that there is a need to ensure that valuation officers and planners complement each other in their respective tasks rather than undermine each other as happens when they do not understand the interaction of land values and planning.

  20. Crew awareness as key to optimizing habitability standards onboard naval platforms: A 'back-to-basics' approach.

    Science.gov (United States)

    Neelakantan, Anand; Ilankumaran, Mookkiah; Ray, Sougat

    2017-10-01

    A healthy habitable environment onboard warships is vital to operational fleet efficiency and fit sea-warrier force. Unique man-machine-armament interface issues and consequent constraints on habitability necessitate a multi-disciplinary approach toward optimizing habitability standards. Study of the basic 'human factor', including crew awareness on what determines shipboard habitability, and its association with habitation specifications is an essential step in such an approach. The aim of this study was to assess crew awareness on shipboard habitability and the association between awareness and maintenance of optimal habitability as per specifications. A cross-sectional descriptive study was carried out among 552 naval personnel onboard warships in Mumbai. Data on crew awareness on habitability was collected using a standardized questionnaire, and correlated with basic habitability requirement specifications. Data was analyzed using Microsoft Excel, Epi-info, and SPSS version 17. Awareness level on basic habitability aspects was very good in 65.3% of crew. Area-specific awareness was maximum with respect to living area (95.3%). Knowledge levels on waste management were among the lowest (65.2%) in the category of aspect-wise awareness. Statistically significant association was found between awareness levels and habitability standards (OR = 7.27). The new benchmarks set in the form of high crew awareness levels on basic shipboard habitability specifications and its significant association with standards needs to be sustained. It entails re-iteration of healthy habitation essentials into training; and holds the key to a fit fighting force.

  1. Official portrait of the STS 61-B crew

    Science.gov (United States)

    1985-01-01

    Official portrait of the STS 61-B crew. Kneeling next to the Official mission emblam are Astronaut Brewster Shaw, Jr., (right), mission commander; and Bryan D. O'Conner (left), pilot. In the back row are (l.-r.) Charles D. Walker, McDonnell Douglas payload specialist; Jerry L. Ross, Mary L. Cleve and Sherwood C. Spring -- all mission specialists; and Rodolfo Neri, Morelos payload specialist.

  2. The need for the vegetarian crew for long-term LSS

    Science.gov (United States)

    Gorgolewski, S.

    The long-term space missions pose very stringent demands on the high degree of closure levels. One obvious requirements is to assure the human crew a steady state self-supporting and self-regenerating LSS environment. The strictly vegetarian crew is the primary requirement to minimize the cost and weight of the spacecraft. This ensures the minimal matter circulation problems, because we can also use for food as many as possible fuly edible plants with nex to none, non digestable plant tissues. One important task is to select a range of plants which should satisfy the nutritional needs of the crew for a long-term, in the range of several years. Preliminary fitotron experiments with lettuce, demonstrated that one can achieve this goal, with a plant which is wholy edible even with the roots. This has been achieved with the use of several teens times stronger electrical field, than the 130 V/m fair weather global atmospheric electrical field. More experiments are in progress for the extension of the list of such vegetarian food. The selection of suitable plants which meet these highly demanding selection criteria, has to be done and can be done in ground based experiments. Plants ensure one important requirements of a closed loop CO2 and O2 circulation with the vegetarian crew in the loop. Extensive research programs are needed for this purpose using large ground based instalations like the Biosphere 2. The success of the use of electrical fields as replacement of gravitational field in the fitotron which proved the dominating role over gravity, of several kV/m electical field intensities. It also proves the feasibility of improving the crop productivity in ground based greenhouses, provided that we do restore inside the missing in "normal" designs our global electrical field. The fair weather electrical field (not to mention the enhanced field) is the missing vital environmental factor which has been systematically "overlooked" in practically all greenhouses. It is

  3. The BWR [Boiling Water Reactor] Emergency Operating Procedures Tracking System (EOPTS): Evaluation by control-room operating crews

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Orvis, D.D.; Spurgin, J.P.; Luna, C.J.

    1990-05-01

    This report presents the results of a project sponsored by the Electric Power Research Institute (EPRI) and Taiwan Power Company (TPC) and conducted by APG and TPC to perform evaluation of the Emergency Operating Procedures Tracking System (EOPTS). The EOPTS is an expert system employing artificial intelligence techniques developed by EPRI for Boiling Water Reactor (BWR) plants based on emergency operating procedures (EOPs). EOPTS is a computerized decision aid used to assist plant operators in efficient and reliable use of EOPs. The main objective of this project was to evaluate the EOPTS and determine how an operator aid of this type could noticeably improve the response time and the reliability of control room crews to multi-failure scenarios. A secondary objective was to collect data on how crew performance was affected. Experiments results indicate that the EOPTS measurably improves crew performance over crews using the EOP flow charts. Time-comparison measurements indicate that crews using the EOPTS perform required actions more quickly than do those using the flowcharts. The results indicate that crews using the EOPTS are not only faster and more consistent in their actions but make fewer errors. In addition, they have a higher likelihood of recovering from the errors that they do make. Use of the EOPTS in the control room should result in faster termination and mitigation of accidents and reduced risk of power plant operations. Recommendations are made towards possible applications of the EOPTS to operator training and evaluation, and for the applicability of the evaluation methodology developed for this project to the evaluation of similar operator aides. 17 refs., 14 figs., 14 tabs

  4. Impacts of Land Cover and Land Use Change on the Hydrology of the US-Mexico Border Region, 1992-2011

    Science.gov (United States)

    Bohn, T. J.; Vivoni, E. R.; Mascaro, G.; White, D. D.

    2016-12-01

    The semi-arid US-Mexico border region has been experiencing rapid urbanization and agricultural expansion over the last several decades, due in part to the lifting of trade barriers of the 1994 North American Free Trade Agreement (NAFTA), placing additional pressures on the region's already strained water resources. Here we examine the effects of changes in land cover/use over the period 1992-2011 on the region's hydrology and water resources, using the Variable Infiltration Capacity (VIC) model with an irrigation module to estimate both natural and anthropogenic water fluxes. Land cover has been taken from the National Land Cover Database (NLCD) over the US, and from the Instituto Nacional de Estadística y Geografía (INEGI) database over Mexico, for three snapshots: 1992/3, 2001/2, and 2011. We have performed 3 simulations, one per land cover snapshot, at 6 km resolution, driven by a gridded observed meteorology dataset and a climatology of land surface characteristics derived from remote sensing products. Urban water withdrawal rates were estimated from literature. The primary changes in the region's water budget over the period 1992-2011 consisted of: (1) a shift in agricultural irrigation water withdrawals from the US to Mexico, accompanied by similar shifts in runoff (via agricultural return flow) and evapotranspiration; and (2) a 50% increase in urban water withdrawals, concentrated in the US. Because groundwater supplied most of the additional agricultural withdrawals, and occurred over already over-exploited aquifers, these changes call into question the sustainability of the region's land and water management. By synthesizing the implications of these hydrologic changes, we present a novel view of how NAFTA has altered the US-Mexico border region, possibly in unintended ways.

  5. In-flight Diagnostic capability for Crew Health by DESI-mass spectrometry

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop a flight-compatible, direct analysis mass spectrometer that can enable in situ diagnostic analyses for crew health and...

  6. Exercise training as treatment of neck pain among military helicopter pilots and crew members

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling

    ) and Pressure-Pain-Threshold (PPT) in the trapezius m. and upper neck extensors. Secondary outcome: Maximal-Voluntary-Contraction (MVC) for cervical flexion/extension and shoulder-elevation. Results: Neck-pain for ETG was (mean±SD) 1.9±1.7 at baseline and 1.8±2.1 at follow-up, and correspondingly for REF 2.......4±2.0 and 1.7±1.7. Preliminary intention-to-treat analysis, revealed no significant effect on change in pain or PPT between groups. Further analysis, controlling for training frequency, intensity and volume are pending. Baseline MVC for ETG cervical flexion/extension was 184.4±59.8N and 247.2±63.8N......Introduction: Neck pain is frequent among helicopter pilots and crew (1). The aim of this study was to investigate if an exercise intervention could reduce the prevalence of neck-pain among helicopter pilots and crew. Methods: Thirty-one pilots and thirty-eight crew members were randomized...

  7. The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data

    Science.gov (United States)

    Wiener, Earl L.; Chidester, Thomas R.; Kanki, Barbara G.; Palmer, Everett A.; Curry, Renwick E.; Gregorich, Steven E.

    1991-01-01

    The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews.

  8. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    Science.gov (United States)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  9. Ionising Radiation and Cabin Crew Concerns

    International Nuclear Information System (INIS)

    Balouet, J.C.

    1999-01-01

    The trend in flying at higher altitudes and latitudes results in increased exposure to cosmic radiation. The biological incidence of highest energy particles and heavy ions is not well documented. Crew members flying transpolar routes are already exposed to levels of about 6 mSv.y -1 , and are expected to exceed this level in a number of cases. Epidemiological studies are important in risk assessment. Organisation of monitoring campaigns, aircrew information, solar flares and related high levels of exposures, pregnancy related issues, medical control, recognition of occupational exposure during illness, including cancer cases, and social protection, are also major concerns. (author)

  10. Crew Management Processes Revitalize Patient Care

    Science.gov (United States)

    2009-01-01

    In 2005, two physicians, former NASA astronauts, created LifeWings Partners LLC in Memphis, Tennessee and began using Crew Resource Management (CRM) techniques developed at Ames Research Center in the 1970s to help improve safety and efficiency at hospitals. According to the company, when hospitals follow LifeWings? training, they can see major improvements in a number of areas, including efficiency, employee satisfaction, operating room turnaround, patient advocacy, and overall patient outcomes. LifeWings has brought its CRM training to over 90 health care organizations and annual sales have remained close to $3 million since 2007.

  11. Test and Evaluation Metrics of Crew Decision-Making And Aircraft Attitude and Energy State Awareness

    Science.gov (United States)

    Bailey, Randall E.; Ellis, Kyle K. E.; Stephens, Chad L.

    2013-01-01

    NASA has established a technical challenge, under the Aviation Safety Program, Vehicle Systems Safety Technologies project, to improve crew decision-making and response in complex situations. The specific objective of this challenge is to develop data and technologies which may increase a pilot's (crew's) ability to avoid, detect, and recover from adverse events that could otherwise result in accidents/incidents. Within this technical challenge, a cooperative industry-government research program has been established to develop innovative flight deck-based counter-measures that can improve the crew's ability to avoid, detect, mitigate, and recover from unsafe loss-of-aircraft state awareness - specifically, the loss of attitude awareness (i.e., Spatial Disorientation, SD) or the loss-of-energy state awareness (LESA). A critical component of this research is to develop specific and quantifiable metrics which identify decision-making and the decision-making influences during simulation and flight testing. This paper reviews existing metrics and methods for SD testing and criteria for establishing visual dominance. The development of Crew State Monitoring technologies - eye tracking and other psychophysiological - are also discussed as well as emerging new metrics for identifying channelized attention and excessive pilot workload, both of which have been shown to contribute to SD/LESA accidents or incidents.

  12. Analysis of communication contents and the associated crew performance data collected from abnormal operating conditions of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Jin Kyun; Kim, Seung Hwan; Kim, Man Cheol

    2010-11-01

    There would be no objection about the fact that, in the case of human operators working in a large process control system, the consequence of inappropriate communications would be more sensitive because they have to carry out many kinds of crucial activities (sharing key information or planning actions, etc.) based on communications. Accordingly, the reduction of inappropriate communications has been regarded as one of the key approaches in securing the safety of large process control systems, such as commercial airplanes, off-shore oil platforms and nuclear power plants (NPPs). This means that one of the practical methods would be the investigation of communication contents, through which we are able to identify useful insights pertaining to the prevention of inappropriate communications. For this reason, communications of main control room (MCR) operating crews that were faced with two kinds of abnormal operating conditions are analyzed to identify the variation of communication contents. To this end, in total 39 audio-visual records about abnormal training sessions, which were carried out by MCR operating crews, are collected from the full scope simulator of reference NPPs. Then communication contents and the associated crew performance data are compared for selected MCR operating crews. As a result, although additional effort is indispensable to draw a more concrete conclusion, it is strongly expected the performance of operating crews is proportional to the amount of '3-way communication.' In addition, it is necessary to develop a novel framework that can be used to analyze the communication characteristics of MCR operating crews because it is insufficient to retrieve insightful information from simple comparisons based on the empirical observation of crew communications

  13. Unified Tanker Survey and Inspection Regime in Terms of Reducing Psychophysical Strain of the Crew

    Directory of Open Access Journals (Sweden)

    Toni Bielić

    2017-09-01

    Full Text Available The paper focuses on analysis of the effect of various surveys and inspections on the psychophysical behaviour of the crew. After analysing the scope and the extent of each regime, the authors identified more than 60% of surveys overlapping each other. Furthermore, the results of the survey conducted among seafarers indicate that the present method of carrying out ship surveys and inspections have a negative effect on the psychophysical condition of the crew. Therefore, a new method of tanker inspections has been proposed in order to reduce the psychophysical strain of the crew. The proposed method would minimise the annual duration of the inspections up to 30% and improve inspection time coordination without compromising quality and safety of the ships.

  14. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Votockova, I [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ({sup 60}Co, {sup 252}Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS `Exposure of air crew to cosmic radiation` has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. (Abstract Truncated)

  15. Radiation exposure of the crew in commercial air traffic

    International Nuclear Information System (INIS)

    Antic, D.; Markovic, P.; Petrovic, Z.

    1993-01-01

    The routine radiation exposure of the crews in Yugoslav Airlines (JAT) has been studied and some previous results are presented. The flights of four selected groups of pilots (four aircraft types) have been studied during one year. Annual exposures and dose equivalents are presented. Some additional results and discussions are given. (1 fig., 4 tabs.)

  16. Ergonomic and anthropometric issues of the forward Apache crew station

    NARCIS (Netherlands)

    Oudenhuijzen, A.J.K.

    1999-01-01

    This paper describes the anthropometric accommodation in the Apache crew systems. These activities are part of a comprehensive project, in a cooperative effort from the Armstrong Laboratory at Wright Patterson Air Force Base (Dayton, Ohio, USA) and TNO Human Factors Research Institute (TNO HFRI) in

  17. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    Science.gov (United States)

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut; Brovkin, Victor; Calvin, Kate V.; Jones, Andrew D.; Jones, Chris D.; Lawrence, Peter J.; de Noblet-Ducoudré, Nathalie; Pongratz, Julia; Seneviratne, Sonia I.; Shevliakova, Elena

    2016-09-01

    Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-management strategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent to which impacts of enhanced CO2 concentrations on plant photosynthesis are modulated by past and future land use.LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be

  18. Crew aiding and automation: A system concept for terminal area operations, and guidelines for automation design

    Science.gov (United States)

    Dwyer, John P.

    1994-01-01

    This research and development program comprised two efforts: the development of guidelines for the design of automated systems, with particular emphasis on automation design that takes advantage of contextual information, and the concept-level design of a crew aiding system, the Terminal Area Navigation Decision Aiding Mediator (TANDAM). This concept outlines a system capable of organizing navigation and communication information and assisting the crew in executing the operations required in descent and approach. In service of this endeavor, problem definition activities were conducted that identified terminal area navigation and operational familiarization exercises addressing the terminal area navigation problem. Both airborne and ground-based (ATC) elements of aircraft control were extensively researched. The TANDAM system concept was then specified, and the crew interface and associated systems described. Additionally, three descent and approach scenarios were devised in order to illustrate the principal functions of the TANDAM system concept in relation to the crew, the aircraft, and ATC. A plan for the evaluation of the TANDAM system was established. The guidelines were developed based on reviews of relevant literature, and on experience gained in the design effort.

  19. Identification of the operating crew's information needs for accident management

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Hanson, D.J.; Ward, L.W.; Solberg, D.E.

    1988-01-01

    While it would be very difficult to predetermine all of the actions required to mitigate the consequences of every potential severe accident for a nuclear power plant, development of additional guidance and training could improve the likelihood that the operating crew would implement effective sever-accident management measures. The US Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe-accident research results to enhance the capability of the plant operating crew to effectively manage severe accidents. One element of this program includes identification of the information needed by the operating crew in severe-accident situations. This paper discusses a method developed for identifying these information needs and its application. The methodology has been applied to a generic reactor design representing a PWR with a large dry containment. The information needs were identified by systematically determining what information is needed to assess the health of the critical functions, identify the presence of challenges, select strategies, and assess the effectiveness of these strategies. This method allows the systematic identification of information needs for a broad range of severe-accident scenarios and can be validated by exercising the functional models for any specific event sequence.

  20. Long-term monitoring of air crew exposure onboard of Czech Airlines aircraft

    International Nuclear Information System (INIS)

    Ploc, O.; Spurny, F.; Ploc, O.

    2007-01-01

    This contribution presents new results related to the aircraft crew exposure onboard aircraft of Czech air companies. First, the results of long term monitoring onboard of an aircraft of Czech Airlines are presented. In the period May-December 2005, 494 individual flights have been followed using MDU-Liulin Si-diode based spectrometer, together with thermoluminescent and track detectors. The results of measurements are analyzed and compared with those of calculation performed with CARI6 and EPCARD3.2 codes. Monitoring period represented about 4.6 times more than usual annual engagement of an aircrew (600 hours). Total effective dose during these 2 755 hours was between Il and 12 mSv, following the considered method of evaluation. Both the measuring and calculation methods correlate well. This fact leads to confirmation of the routine method evaluating the level of aircraft crew exposure using CARI6 code as correct for this purpose. Second, the results of individual monitoring of aircrew members obtained during few last years by this routine method are presented; general tendencies of aircraft crew onboard exposure of Czech air companies are outlined. The contribution of aircrew exposure to total occupational exposure in the Czech Republic represents about 20%. (authors)

  1. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2016-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  2. The trends of modeling the ways of formation, distribution and exploitation of megapolis lands using geo-information systems

    Directory of Open Access Journals (Sweden)

    Kostyantyn Mamonov

    2017-10-01

    Full Text Available The areas of need for ways of modeling the formation, distribution and use of land metropolis using GIS are identified. The article is to define the areas of modeling ways of formation, distribution and use of land metropolis using GIS. In the study, the following objectives are set: to develop an algorithm process data base (Data System creation for pecuniary valuation of land settlements with the use of GIS; to offer process model taking into account the influence of one factor modules using geographic information systems; to identify components of geo providing expert money evaluation of land metropolis; to describe the general procedure for expert money assessment of land and property by using geographic information system software; to develop an algorithm methods for expert evaluation of land. Identified tools built algorithms used for modeling the ways of formation, distribution and use of land metropolis using GIS. Directions ways of modeling the formation, distribution and use of land metropolis using GIS.

  3. STS-58 Landing at Edwards with Drag Chute

    Science.gov (United States)

    1993-01-01

    A drag chute slows the space shuttle Columbia as it rolls to a perfect landing concluding NASA's longest mission at that time, STS-58, at the Ames-Dryden Flight Research Facility (later redesignated the Dryden Flight Research Center), Edwards, California, with a 8:06 a.m. (PST) touchdown 1 November 1993 on Edward's concrete runway 22. The planned 14 day mission, which began with a launch from Kennedy Space Center, Florida, at 7:53 a.m. (PDT), October 18, was the second spacelab flight dedicated to life sciences research. Seven Columbia crewmembers performed a series of experiments to gain more knowledge on how the human body adapts to the weightless environment of space. Crewmembers on this flight included: John Blaha, commander; Rick Searfoss, pilot; payload commander Rhea Seddon; mission specialists Bill MacArthur, David Wolf, and Shannon Lucid; and payload specialist Martin Fettman. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space

  4. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety crew roles and qualifications. 417.311 Section 417.311 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... vehicles in flight under the influence of aerodynamic forces; and (x) The application of flight termination...

  5. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    Science.gov (United States)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  6. Scintillator concept of NeuLAND at R3B

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, Thomas; Ignatov, Alexander [Technische Universitaet Darmstadt (Germany); Boretzky, Konstanze; Heil, Michael; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Maroussov, Vassili [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Zilges, Andreas [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Collaboration: R3B-Collaboration

    2011-07-01

    For the R3B experiment at FAIR a detection system for fast neutrons, NeuLAND (new Large Area Neutron Detector), is foreseen. Besides a time resolution of {sigma}{sub t}{approx_equal} 100 ps, spatial resolutions of {sigma}{sub x,y,z}{approx_equal} 1 cm, the detection efficiency of above 90% for neutrons of 0.2-1 GeV and a dedicated multi-neutron recognition capability are demanded. Using the FLUKA Monte Carlo code we studied a NeuLAND detector concept relying entirely on bars of a plastic scintillator (BC408). With a detector depth of 2 m the required efficiency is reached and the fraction of incident neutrons detected within resolution requirements varies from {proportional_to}70% to 80% in the desired energy range. Simulations have verified that the introduction of an inactive converter like iron deteriorates the timing performance. Due to the low density of the scintillator secondary protons typically cross several modules, thus allowing the tracking of secondaries. The status of the multi-hit recognition algorithm using the tracking information is presented along with the latest results for the scintillator prototypes for NeuLAND. Using the same framework a competing concept for NeuLAND based on MRPCs was studied as well and is contrasted to the scintillator concept.

  7. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    Science.gov (United States)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). At left are STS-96 Mission Specialist Daniel T. Barry and Pilot Rick Douglas Husband. At center, STS-96 Mission Specialist Tamara E. Jernigan gives her attention to a technician with DaimlerChrysler while STS-101 Mission Specialist Edward Tsang Lu looks on. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  8. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    the Advanced Crew Escape Suit (ACES), and the Exploration Z-suit. For this mission, the pressure garment that was selected is the Modified ACES (MACES) with EVA enhancements. Life support options that were considered included short closed-loop umbilicals, long open-loop umbilicals, the currently in-use ISS EMU Portable Life Support System (PLSS), and the currently in development Exploration PLSS. For this mission, the life support option that was selected is the Exploration PLSS. The greatest risk in the proposed architecture is viewed to be the comfort and mobility of the baseline MACES and the delicate balance between adding more mobility features while not compromising landing safety. Feasibility testing was accomplished in low fidelity analogs and in the JSC Neutral Buoyancy Laboratory (NBL) to validate the concept before a final recommendation on the architecture was made. The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work and further definition of the remaining kits will be conducted in government fiscal year 14.

  9. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    Science.gov (United States)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  10. Land Competition and Land-Use Change:

    DEFF Research Database (Denmark)

    Vongvisouk, Thoumthone

    Land competition and land-use changes are taking place in many developing countries as the demand for land increases. These changes are leading to changes in the livelihood conditions of rural people. The Government of Laos (GoL), on the one hand, aims to increase forest protection. On the other...... hand, the government is also working to increase national economic growth by promoting private-sector investment in both agriculture and forest resources – two sectors that compete for the same areas intended for protection. This thesis explores how these contradictory drivers of land-use changes...... software. Quantitative data was compiled in a Microsoft Access database and analyzed in Excel. Land-use and livelihood changes are taking place rapidly in the study sites. Overall, land-use change underwent transformation away from subsistence shifting cultivation to cash crops, intensive agriculture...

  11. Deep Space Spaceflight: The Challenge of Crew Performance in Autonomous Operations

    Science.gov (United States)

    Thaxton, S. S.; Williams, T. J.; Norsk, P.; Zwart, S.; Crucian, B.; Antonsen, E. L.

    2018-02-01

    Distance from Earth and limited communications in future missions will increase the demands for crew autonomy and dependence on automation, and Deep Space Gateway presents an opportunity to study the impacts of these increased demands on human performance.

  12. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  13. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-01-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (1) the estimation of human error associated with advanced control room equipment and configurations, (2) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (3) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms

  14. Climate change, land use and land surveyors

    OpenAIRE

    van der Molen, P.; Mitchell, D.

    2016-01-01

    Research reveals that the land sector is a major emitter of greenhouse gases. But the land sector has also potential to reduce emissions. Different from other emission sectors like energy and transport, the land sector (in particular the rural area including forests) has the potential to also remove greenhouse gases from the atmosphere through sequestration and storage. This requires land use, land use change and forestry to be managed with respect to climate change goals. Carbon storage has ...

  15. An IP Framework for the Crew Pairing Problem Using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David

    In this paper we consider an important problem for the airline industry. The widely studied crew pairing problem is typically formulated as a set partitioning problem and solved using the branch-and-price methodology. Here we develop a new integer programming framework, based on the concept...... of subsequence generation, for solving the set partitioning formulation. In subsequence generation one restricts the number of permitted subsequent flights, that a crew member can turn to after completing any particular flight. By restricting the number of subsequences, the number of pairings in the problem...... decreases. The aim is then to dynamically add attractive subsequences to the problem, thereby increasing the number of possible pairings and improving the solution quality. Encouraging results are obtained on 19 real-life instances supplied by Air New Zealand and show that the described methodology...

  16. Air-crew radiation dosimetry - last development

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    Exposure to cosmic radiation increases rapidly with the altitude. At the flight levels of commercial aircraft it is of the order of several μSv per hour. The most of air-crew are exposed regularly to the effective dose exceeding 1 mSv per year, the limit of exposure of non-professionals defined in ICRP 60 recommendation. That is why this problem has been intensively studied from many aspects since the beginning of 90's. This contribution summarises new developments in the field during last two years. First, new international activities are presented, further, new achievement obtained mainly in the author's laboratory are presented and discussed. (authors)

  17. Crew Systems for Asteroid Exploration: Concepts for Lightweight & Low Volume EVA Systems

    Science.gov (United States)

    Mueller, Rob; Calle, Carlos; Mantovani, James

    2013-01-01

    This RFI response is targeting Area 5. Crew Systems for Asteroid Exploration: concepts for lightweight and low volume robotic and extra-vehicular activity (EVA) systems, such as space suits, tools, translation aids, stowage containers, and other equipment. The NASA KSC Surface Systems Office, Granular Mechanics and Regolith Operations (GMRO) Lab and the Electrostatics & Surface Physics Lab (ESPL) are dedicated to developing technologies for operating in regolith environments on target body surfaces. We have identified two technologies in our current portfolio that are highly relevant and useful for crews that will visit a re-directed asteroid in Cis-Lunar Space. Both technologies are at a high TRL of 5/6 and could be rapidly implemented in time for an ARM mission in this decade.

  18. Self-administered physical exercise training as treatment of neck and shoulder pain among military helicopter pilots and crew

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling

    2017-01-01

    BACKGROUND: Neck pain is frequent among military helicopter pilots and crew-members, and pain may influence individual health and work performance. The aim of this study was to examine if an exercise intervention could reduce neck pain among helicopter pilots and crew-members. METHODS: Thirty......-one pilots and thirty-eight crew-members were randomized to either an exercise-training-group (n = 35) or a reference-group (n = 34). The exercise-training-group received 20-weeks of specific neck/shoulder training. The reference-group received no training. PRIMARY OUTCOME: Intensity of neck pain previous 3......-to-treat and per-protocol. Students t-test was performed (p 

  19. Behavioral simulation of a nuclear power plant operator crew for human-machine system design

    International Nuclear Information System (INIS)

    Furuta, K.; Shimada, T.; Kondo, S.

    1999-01-01

    This article proposes an architecture of behavioral simulation of an operator crew in a nuclear power plant including group processes and interactions between the operators and their working environment. An operator model was constructed based on the conceptual human information processor and then substantiated as a knowledge-based system with multiple sets of knowledge base and blackboard, each of which represents an individual operator. From a trade-off between reality and practicality, we adopted an architecture of simulation that consists of the operator, plant and environment models in order to consider operator-environment interactions. The simulation system developed on this framework and called OCCS was tested using a scenario of BWR plant operation. The case study showed that operator-environment interactions have significant effects on operator crew performance and that they should be considered properly for simulating behavior of human-machine systems. The proposed architecture contributed to more realistic simulation in comparison with an experimental result, and a good prospect has been obtained that computer simulation of an operator crew is feasible and useful for human-machine system design. (orig.)

  20. Crew coordination concepts: Continental Airlines CRM training

    Science.gov (United States)

    Christian, Darryl; Morgan, Alice

    1987-01-01

    The outline of the crew coordination concepts at Continental airlines is: (1) Present relevant theory: Contained in a pre-work package and in lecture/discussion form during the work course, (2) Discuss case examples: Contained in the pre-work for study and use during the course; and (3) Simulate practice problems: Introduced during the course as the beginning of an ongoing process. These concepts which are designed to address the problem pilots have in understanding the interaction between situations and their own theories of practice are briefly discussed.

  1. Solving a robust airline crew pairing problem with column generation

    NARCIS (Netherlands)

    Muter, I.; Birbil, S.I.; Bülbül, K.; Sahin, G.; Yenigün, H.; Tas, D.; Tüzün, D.

    2013-01-01

    In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness

  2. Greenhouse Module for Space System: A Lunar Greenhouse Design

    Directory of Open Access Journals (Sweden)

    Zeidler Conrad

    2017-02-01

    Full Text Available In the next 10 to 20 years humankind will return to the Moon and/or travel to Mars. It is likely that astronauts will eventually build permanent settlements there, as a base for long-term crew tended research tasks. It is obvious that the crew of such settlements will need food to survive. With current mission architectures the provision of food for longduration missions away from Earth requires a significant number of resupply flights. Furthermore, it would be infeasible to provide the crew with continuous access to fresh produce, specifically crops with high water content such as tomatoes and peppers, on account of their limited shelf life. A greenhouse as an integrated part of a planetary surface base would be one solution to solve this challenge for long-duration missions. Astronauts could grow their own fresh fruit and vegetables in-situ to be more independent from supply from Earth. This paper presents the results of the design project for such a greenhouse, which was carried out by DLR and its partners within the framework of the Micro-Ecological Life Support System Alternative (MELiSSA program. The consortium performed an extensive system analysis followed by a definition of system and subsystem requirements for greenhouse modules. Over 270 requirements were defined in this process. Afterwards the consortium performed an in-depth analysis of illumination strategies, potential growth accommodations and shapes for the external structure. Five different options for the outer shape were investigated, each of them with a set of possible internal configurations. Using the Analytical Hierarchy Process, the different concept options were evaluated and ranked against each other. The design option with the highest ranking was an inflatable outer structure with a rigid inner core, in which the subsystems are mounted. The inflatable shell is wrapped around the core during launch and transit to the lunar surface. The paper provides an overview of the

  3. Effects of Sea Motion on the Crew of the Petro Canada Terra Nova FPSO (Floating, Production, Storage and Offloading) Vessel

    National Research Council Canada - National Science Library

    Cheung, B; Brooks, Chris J; Simões Ré, A. J; Hofer, Kevin

    2004-01-01

    .... The crew on this vessel must often work under extreme weather conditions, in shifts throughout the day and night for up to three weeks at a time, or even longer if the weather prevents crew changes...

  4. Mapping Forest Inventory and Analysis forest land use: timberland, reserved forest land, and other forest land

    Science.gov (United States)

    Mark D. Nelson; John Vissage

    2007-01-01

    The Forest Inventory and Analysis (FIA) program produces area estimates of forest land use within three subcategories: timberland, reserved forest land, and other forest land. Mapping these subcategories of forest land requires the ability to spatially distinguish productive from unproductive land, and reserved from nonreserved land. FIA field data were spatially...

  5. The Role of Communications, Socio-Psychological, and Personality Factors in the Maintenance of Crew Coordination

    Science.gov (United States)

    Foushee, H. Clayton

    1982-01-01

    There is increasing evidence that many air transport incidents and accidents are the result of the improper or inadequate utilization of the resources accessible to flight dock crew members. These resources obviously include the hardware and technical information necessary for the safe and efficient conduct of the flight, but they also Include the human resources which must be coordinated effectively. The focus of this paper is upon the human resources, and how communication styles, socio-psychological factors, and personality characteristics can affect crew coordination.

  6. From land cover change to land function dynamics: A major challenge to improve land characterization

    NARCIS (Netherlands)

    Verburg, P.H.; Steeg, van de J.; Veldkamp, A.; Willemen, L.

    2009-01-01

    Land cover change has always had a central role in land change science. This central role is largely the result of the possibilities to map and characterize land cover based on observations and remote sensing. This paper argues that more attention should be given to land use and land functions and

  7. Coding conventions and principles for a National Land-Change Modeling Framework

    Science.gov (United States)

    Donato, David I.

    2017-07-14

    This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.

  8. Multi-scale, multi-model assessment of projected land allocation

    Science.gov (United States)

    Vernon, C. R.; Huang, M.; Chen, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.

    2017-12-01

    Effects of land use and land cover change (LULCC) on climate are generally classified into two scale-dependent processes: biophysical and biogeochemical. An extensive amount of research has been conducted related to the impact of each process under alternative climate change futures. However, these studies are generally focused on the impacts of a single process and fail to bridge the gap between sector-driven scale dependencies and any associated dynamics. Studies have been conducted to better understand the relationship of these processes but their respective scale has not adequately captured overall interdependencies between land surface changes and changes in other human-earth systems (e.g., energy, water, economic, etc.). There has also been considerable uncertainty surrounding land use land cover downscaling approaches due to scale dependencies. Demeter, a land use land cover downscaling and change detection model, was created to address this science gap. Demeter is an open-source model written in Python that downscales zonal land allocation projections to the gridded resolution of a user-selected spatial base layer (e.g., MODIS, NLCD, EIA CCI, etc.). Demeter was designed to be fully extensible to allow for module inheritance and replacement for custom research needs, such as flexible IO design to facilitate the coupling of Earth system models (e.g., the Accelerated Climate Modeling for Energy (ACME) and the Community Earth System Model (CESM)) to integrated assessment models (e.g., the Global Change Assessment Model (GCAM)). In this study, we first assessed the sensitivity of downscaled LULCC scenarios at multiple resolutions from Demeter to its parameters by comparing them to historical LULC change data. "Optimal" values of key parameters for each region were identified and used to downscale GCAM-based future scenarios consistent with those in the Land Use Model Intercomparison Project (LUMIP). Demeter-downscaled land use scenarios were then compared to the

  9. Formal testing and utilization of streaming media to improve flight crew safety knowledge.

    Science.gov (United States)

    Bellazzini, Marc A; Rankin, Peter M; Quisling, Jason; Gangnon, Ronald; Kohrs, Mike

    2008-01-01

    Increased concerns over the safety of air medical transport have prompted development of novel ways to increase safety. The objective of our study was to determine if an Internet streaming media safety video increased crew safety knowledge. 23 out of 40 crew members took an online safety pre-test, watched a safety video specific to our program and completed immediate and long-term post-testing 6 months later. Mean pre-test, post-test and 6 month follow up test scores were 84.9%, 92.3% and 88.4% respectively. There was a statistically significant difference in all scores (p Streaming media proved to be an accessible and effective supplement to safety training in our study.

  10. 46 CFR 282.21 - Wages of officers and crew.

    Science.gov (United States)

    2010-10-01

    ... salaries are in the same job during the year, the base wages of the rating carried most of the time shall... Netherlands United States Norway Crew Complement 35 35 35 23 22 35 28 Base Wages 1 53,687 1 24,779 1 53,687 1...,246 51,251 182,124 62,566 Unweighted Percentage FC to WC 33.99% 33.78% 28.27% 34.35% Competition...

  11. Surface Characterization for Land-Atmosphere Studies of CLASIC

    Science.gov (United States)

    Jackson, T. J.; Kustas, W.; Torn, M. S.; Meyers, T.; Prueger, J.; Fischer, M. L.; Avissar, R.; Yueh, S.; Anderson, M.; Miller, M.

    2006-12-01

    The Cloud and Land Surface Interaction Campaign will focus on interactions between the land surface, convective boundary layer, and cumulus clouds. It will take place in the Southern Great Plains (SGP) area of the U.S, specifically within the US DOE ARM Climate Research Facility. The intensive observing period will be June of 2007, which typically covers the winter wheat harvest in the region. This region has been the focus of several related experiments that include SGP97, SGP99, and SMEX03. For the land surface, some of the specific science questions include 1) how do spatial variations in land cover along this trajectory modulate the cloud structure and the low-level water vapor budget, 2) what are the relationships between land surface characteristics (i.e., soil texture, vegetation type and fractional cover) and states (particularly soil moisture and surface temperature) and the resulting impact of the surface energy balance on boundary layer and cloud structure and dynamics and aerosol loading; and 3) what is the interplay between cumulus cloud development and surface energy balance partitioning between latent and sensible heat, and implications for the carbon flux? Most of these objectives will require flux and state measurements throughout the dominant land covers and distributed over the geographic domain. These observations would allow determining the level of up- scaling/aggregation required in order to understand the impact of landscape changes affecting energy balance/flux partitioning and impact on cloud/atmospheric dynamics. Specific contributions that are planned to be added to CLASIC include continuous tower-based monitoring of surface fluxes for key land cover types prior to, during, and post-IOP, replicate towers to quantify flux variance within each land cover, boundary layer properties and fluxes from a helicopter-based system, airplane- and satellite-based flux products throughout the region, aircraft- and tower-based concentration data for

  12. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  13. Mickey Mouse greets prime ASTP crewmen to Florida's Disney World

    Science.gov (United States)

    1975-01-01

    A space-suited Mickey Mouse character welcomes the prime crewmen of the Apollo Soyuz Test Project (ASTP) to Florida's Disney World near Orlando. The crewmen made a side-trip to Disney World during a three-day inspection tour of the Kennedy Space Center. Receiving the Disney World welcome are, left to right, Cosmonaut Valeriy N. Kubasov, engineer on the Soviet crew; Astronaut Donald K. Slayton, docking module pilot of the American crew; Astronaut Vance D. Brand, command module pilot of the American crew; Cosmonaut Aleksey A. Leonov, commander of the Soviet crew; Astronaut Thomas P. Stafford, commander of the American crew; and Cosmonaut Vladimir A. Shatalov, Chief of Cosmonaut Training for the U.S.S.R.

  14. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S. [Environmental Protection Agency, Corvallis, OR (United States). Western Ecology Division; Gaston, G. [Environmental Protection Agency, Corvallis, OR (United States). National Research Council; Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States)

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  15. Turbulent flow over an interactive alternating land-water surface

    Science.gov (United States)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  16. Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft

    Science.gov (United States)

    Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.

    2010-01-01

    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.

  17. Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility

    Science.gov (United States)

    Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.

    2013-01-01

    Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute

  18. Microbiology and Crew Medical Events on the International Space Station

    Science.gov (United States)

    Oubre, Cherie; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van

    2014-01-01

    The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.

  19. The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study.

    Science.gov (United States)

    Bajocco, S; De Angelis, A; Perini, L; Ferrara, A; Salvati, L

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  20. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study

    Science.gov (United States)

    Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L.

    2012-05-01

    In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.

  1. A duty-period-based formulation of the airline crew scheduling problem

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, K.

    1994-12-31

    We present a new formulation of the airline crew scheduling problem that explicitly considers the duty periods. We suggest an algorithm for solving the formulation by a column generation approach with branch-and-bound. Computational results are reported for a number of test problems.

  2. Self-administered physical exercise training as treatment of neck pain among military helicopter pilots and crew

    DEFF Research Database (Denmark)

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling

    ) and upper neck extensors (UNE). Secondary outcome: Maximal voluntary contraction (MVC) for cervical extension/flexion and shoulder elevation. Training compliance was self-reported and categorized as regular if performed ≥ 1 times a week. Results: Neck pain at baseline was 1.9±1.7 (mean±SD) in ETG and 2......Introduction: Flight related neck pain is frequent among helicopter pilots and crew and affect individual health, operational capacity and flight safety. Exercise training has proven effective in reducing neck pain within other job professions. The aim of this study was to investigate...... if an exercise intervention might reduce neck pain among helicopter pilots and crew. Methods: A total of 31 helicopter pilots and 38 crew members were randomized to an exercise-training-group ETG (n=35) or a reference-group REF (n=34). ETG received 20 weeks of strength, endurance and coordination training...

  3. STS-114 Crew Interview: Stephen Robinson

    Science.gov (United States)

    2003-01-01

    Stephen Robinson, Mission Specialist 2 (MS2), of the STS-114 space mission is seen during a prelaunch interview. He discusses his duties as flight engineer, Extravehicular Activity 2 (EVA 2) spacewalker, and medical officer. Robinson answers questions about his interests in spaceflight and the specific goals of the mission. He identifies this mission as the International Space Station Resupply Mission because supplies and experiments are brought to the International Space Station and Expedition 6 crew of Commander Kenneth Bowersox, and Flight Engineers Donald Pettit and Nikolai Budarin are returning to Earth. Lastly, he talks about the docking of the Space Shuttle Atlantis with the International Space Station. He looks forward to this experience in space.

  4. Enhanced Flight Vision Systems and Synthetic Vision Systems for NextGen Approach and Landing Operations

    Science.gov (United States)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.

    2013-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  5. Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes

    Science.gov (United States)

    2008-01-01

    Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected

  6. STS-114 Crew Interviews: 1. Eileen Collins 2. Wendy Lawrence

    Science.gov (United States)

    2005-01-01

    1) STS-114 Commander Eileen Collins emphasized her love for teaching, respect for teachers, and her plan to go back to teaching again someday. Her solid background in Math and Science, focus on her interests, with great support from her family, and great training and support during her career with the Air Force gave her confidence in pursuing her dream to become an astronaut. Commander Collins shares her thoughts on the Columbia, details the various flight operations and crew tasks that will take place during the mission and the importance of Shuttle missions to the International Space Station and space exploration. 2) STS-114 Mission Specialist Wendy Lawrence first dreamed of becoming an astronaut when she watched Neil Armstrong walk on the moon from their black and white TV set. She majored in Engineering and became a Navy pilot. She shares her thoughts on the Columbia, details her major role as the crew in charge of all the transfer operations; getting the MPLM unpacked and repacked; and the importance of Shuttle missions to the International Space Station and space exploration.

  7. An analytical guidance law of planetary landing mission by minimizing the control effort expenditure

    International Nuclear Information System (INIS)

    Afshari, Hamed Hossein; Novinzadeh, Alireza Basohbat; Roshanian, Jafar

    2009-01-01

    An optimal trajectory design of a module for the planetary landing problem is achieved by minimizing the control effort expenditure. Using the calculus of variations theorem, the control variable is expressed as a function of costate variables, and the problem is converted into a two-point boundary-value problem. To solve this problem, the performance measure is approximated by employing a trigonometric series and subsequently, the optimal control and state trajectories are determined. To validate the accuracy of the proposed solution, a numerical method of the steepest descent is utilized. The main objective of this paper is to present a novel analytic guidance law of the planetary landing mission by optimizing the control effort expenditure. Finally, an example of a lunar landing mission is demonstrated to examine the results of this solution in practical situations

  8. Land cover change or land use intensification: simulating land system change with a global-scale land change model

    NARCIS (Netherlands)

    van Asselen, S.; Verburg, P.H.

    2013-01-01

    Land-use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land-use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land

  9. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Science.gov (United States)

    2010-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder conducting supplemental operations schedules a pilot to fly more than eight hours during any 24 consecutive...

  10. Land reform and land fragmentation in Central and Eastern Europe

    DEFF Research Database (Denmark)

    Hartvigsen, Morten B.

    2014-01-01

    It has often been stated that land fragmentation and farm structures characterized by small agricultural holdings and farms divided in a large number of parcels have been the side-effect of land reform in Central and Eastern Europe. This article reports the findings of a study of land reform in 25...... countries in the region from 1989 and onwards and provides an overview of applied land reform approaches. With a basis in theory on land fragmentation, the linkage between land reform approaches and land fragmentation is explored. It is discussed in which situations land fragmentation is a barrier...... for the development of the agricultural and rural sector. The main finding is that land fragmentation is often hampering agricultural and rural development when both land ownership and land use is highly fragmented....

  11. The use of a social network analysis technique to investigate the characteristics of crew communications in nuclear power plants-A feasibility study

    International Nuclear Information System (INIS)

    Park, Jinkyun

    2011-01-01

    Effective and reliable communications are very important in securing the safety of human-involved large process control systems because human operators have to accomplish their tasks in cooperative ways. This means that it is very important to understand the characteristics of crew communications, which can provide useful insights for preventing inappropriate communications. Unfortunately, in the nuclear industry, a systematic framework that can be used to identify the characteristics of crew communications seems to be rare. For this reason, the applicability of the social network analysis (SNA) technique to identifying the characteristics of crew communications was investigated in this study. To this end, the communication data of operating crews working in the main control room (MCR) of nuclear power plants (NPPs) were collected under two kinds of simulated off-normal conditions. Then the communication characteristics of MCR operating crews, which can be represented by the associated SNA metrics, were compared with communication characteristics that are already known from existing studies. As a result, it was found that SNA metrics could be meaningful for explaining the communication characteristics of MCR operating crews. Accordingly, it is expected that the SNA technique can be used as one of the serviceable tools to investigate the characteristics of crew communications in NPPs. - Highlights: → Communications are very important for the safety of complicated socio-technical systems. → A systematic framework to identify communication characteristics seems to be rare. → The feasibility of the social network analysis (SNA) technique was investigated. → It is expected that SNA metrics is meaningful for explaining communication characteristics.

  12. Mortality among a cohort of U.S. commercial airline cockpit crew.

    Science.gov (United States)

    Yong, Lee C; Pinkerton, Lynne E; Yiin, James H; Anderson, Jeri L; Deddens, James A

    2014-08-01

    We evaluated mortality among 5,964 former U.S. commercial cockpit crew (pilots and flight engineers). The outcomes of a priori interest were non-chronic lymphocytic leukemia, central nervous system (CNS) cancer (including brain), and malignant melanoma. Vital status was ascertained through 2008. Life table and Cox regression analyses were conducted. Cumulative exposure to cosmic radiation was estimated from work history data. Compared to the U.S. general population, mortality from all causes, all cancer, and cardiovascular diseases was decreased, but mortality from aircraft accidents was highly elevated. Mortality was elevated for malignant melanoma but not for non-chronic lymphocytic leukemia. CNS cancer mortality increased with an increase in cumulative radiation dose. Cockpit crew had a low all-cause, all-cancer, and cardiovascular disease mortality but elevated aircraft accident mortality. Further studies are needed to clarify the risk of CNS and other radiation-associated cancers in relation to cosmic radiation and other workplace exposures. © 2014 Wiley Periodicals, Inc.

  13. Compliance Behavior Analysis of the Ship Crew to the International Safety Management (Ism) Code in Indonesia???

    OpenAIRE

    Desi Albert Mamahit; Heny K Daryanto; Ujang Sumarwan; Eva Zhoriva Yusuf

    2013-01-01

    The purpose of this code is to provide international standards for the management and safe operation of ships and pollution prevention Furthermore, this study has the objective to identify the role of the ISM Code on maritime activities in Indonesia, knowing the perceptions and attitudes regarding the conduct of the crew boat ISM Code. Location research is conducted on the crew that was in the Port of Tanjung Priok in Jakarta. Data collection and processing is done for 3 months. The study was...

  14. Different strategies for sports injury prevention in an America's Cup yachting crew.

    Science.gov (United States)

    Hadala, Michal; Barrios, Carlos

    2009-08-01

    To analyze the effectiveness in reducing the number of sport injuries after application of different strategies of preventive physiotherapy during competition periods in an America's Cup yachting crew. A prospective physiotherapy intervention study during competition periods for three seasons was conducted on an America's Cup yachting race crew of 30 professional sailors. In the first two acts (2004), athletes did not receive any preventive physiotherapy. In the two acts celebrated in 2005, preventive intervention (phase 1) consisted of stretching exercises before the yacht race and preventative taping. During the four acts corresponding to the 2006 season, the physiotherapy program was implemented adding articular mobilization before competition, ice baths after competition, and kinesiotaping (phase 2). In the last act and the Louis Vuitton Cup (2007), a recovery program with "core stability" exercises, postcompetition stretching exercises, and 12 h of compressive clothing were added (phase 3). In the preintervention phase (2004), the rate of injured sailors/competition day was 1.66, decreasing to 0.60 in 2007 (phase 3). The number of athletes with more than one injury was significantly reduced from 53% (8 of 15) to 6.5% (2 of 12). In the preintervention period, mastmen, grinders, and bowmen showed a rate of 2.88 injuries per competition day. After phase 3, this group only suffered 0.35 injuries per competition day. The implementation of a program of preventive physiotherapy decreased the risk of injuries suffered during competition by an America's Cup yacht crew.

  15. Land Mobility in a Central and Eastern European Land Consolidation Context

    DEFF Research Database (Denmark)

    Hartvigsen, Morten B.

    2014-01-01

    in a Central and Eastern European land consolidation context. The term land mobility is defined and the limited theory available is reviewed. Case studies of land mobility in land consolidation pilot projects in Moldova, Albania and Bosnia-Herzegovina show the correlation between land mobility and the success......In most of the Central and Eastern European countries, land reforms after 1989 have resulted in extensive land fragmentation. The majority of the countries have during the two recent decades introduced land consolidation instruments to address the structural problems with land fragmentation...... or failure of voluntary land consolidation projects. In situations with low land mobility, land consolidation instruments need in order to be successful to be supported by other land policy tools such as land banks. The use of existing state agricultural land is an obvious foundation for establishing a state...

  16. Training method for enhancement of safety attitude in nuclear power plant based on crew resource management

    International Nuclear Information System (INIS)

    Ishibashi, Akira; Karikawa, Daisuke; Takahashi, Makoto; Wakabayashi, Toshio; Kitamura, Masaharu

    2010-01-01

    A conventional training program for nuclear power plant operators has been developed with emphasis on improvement of knowledge and skills of individual operators. Although it has certainly contributed to safety operation of nuclear power plants, some recent incidents have indicated the necessity of an improved training program aiming at improvement of the performance of operators working as a team. In the aviation area, crew resource management (CRM) training has shown the effect of resolving team management issues of flight crews, aircraft maintenance crews, and so on. In the present research, we attempted to introduce the CRM concept into operator training in nuclear power plants as training for conceptual skill enhancement. In this paper, a training method specially customized for nuclear power plant operators based on CRM is proposed. The proposed method has been practically utilized in the management training course of Japan Nuclear Technology Institute. The validity of the proposed method has been evaluated by means of a questionnaire survey. (author)

  17. Differences in physical workload between military helicopter pilots and cabin crew

    NARCIS (Netherlands)

    van den Oord, Marieke H. A.; Sluiter, Judith K.; Frings-Dresen, Monique H. W.

    2014-01-01

    The 1-year prevalence of regular or continuous neck pain in military helicopter pilots of the Dutch Defense Helicopter Command (DHC) is 20%, and physical work exposures have been suggested as risk factors. Pilots and cabin crew perform different tasks when flying helicopters. The aims of the current

  18. Cancer incidence in professional flight crew and air traffic control officers: disentangling the effect of occupational versus lifestyle exposures.

    Science.gov (United States)

    dos Santos Silva, Isabel; De Stavola, Bianca; Pizzi, Costanza; Evans, Anthony D; Evans, Sally A

    2013-01-15

    Flight crew are occupationally exposed to several potentially carcinogenic hazards; however, previous investigations have been hampered by lack of information on lifestyle exposures. The authors identified, through the United Kingdom Civil Aviation Authority medical records, a cohort of 16,329 flight crew and 3,165 air traffic control officers (ATCOs) and assembled data on their occupational and lifestyle exposures. Standardised incidence ratios (SIRs) were estimated to compare cancer incidence in each occupation to that of the general population; internal analyses were conducted by fitting Cox regression models. All-cancer incidence was 20-29% lower in each occupation than in the general population, mainly due to a lower incidence of smoking-related cancers [SIR (95% CI) = 0.33 (0.27-0.38) and 0.42 (0.28-0.60) for flight crew and ATCOs, respectively], consistent with their much lower prevalence of smoking. Skin melanoma rates were increased in both flight crew (SIR = 1.87; 95% CI = 1.45-2.38) and ATCOs (2.66; 1.55-4.25), with rates among the former increasing with increasing number of flight hours (p-trend = 0.02). However, internal analyses revealed no differences in skin melanoma rates between flight crew and ATCOs (hazard ratio: 0.78, 95% CI = 0.37-1.66) and identified skin that burns easily when exposed to sunlight (p = 0.001) and sunbathing to get a tan (p = 0.07) as the strongest risk predictors of skin melanoma in both occupations. The similar site-specific cancer risks between the two occupational groups argue against risks among flight crew being driven by occupation-specific exposures. The skin melanoma excess reflects sun-related behaviour rather than cosmic radiation exposure. Copyright © 2012 UICC.

  19. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  20. Identification of Crew-Systems Interactions and Decision Related Trends

    Science.gov (United States)

    Jones, Sharon Monica; Evans, Joni K.; Reveley, Mary S.; Withrow, Colleen A.; Ancel, Ersin; Barr, Lawrence

    2013-01-01

    NASA Vehicle System Safety Technology (VSST) project management uses systems analysis to identify key issues and maintain a portfolio of research leading to potential solutions to its three identified technical challenges. Statistical data and published safety priority lists from academic, industry and other government agencies were reviewed and analyzed by NASA Aviation Safety Program (AvSP) systems analysis personnel to identify issues and future research needs related to one of VSST's technical challenges, Crew Decision Making (CDM). The data examined in the study were obtained from the National Transportation Safety Board (NTSB) Aviation Accident and Incident Data System, Federal Aviation Administration (FAA) Accident/Incident Data System and the NASA Aviation Safety Reporting System (ASRS). In addition, this report contains the results of a review of safety priority lists, information databases and other documented references pertaining to aviation crew systems issues and future research needs. The specific sources examined were: Commercial Aviation Safety Team (CAST) Safety Enhancements Reserved for Future Implementation (SERFIs), Flight Deck Automation Issues (FDAI) and NTSB Most Wanted List and Open Recommendations. Various automation issues taxonomies and priority lists pertaining to human factors, automation and flight design were combined to create a list of automation issues related to CDM.